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A GENERIC AND STRICTLY BANDED SPECTRAL
PETROV-GALERKIN METHOD FOR DIFFERENTIAL EQUATIONS
WITH POLYNOMIAL COEFFICIENTS

MIKAEL MORTENSEN*

Abstract. In this paper we describe a generic spectral Petrov-Galerkin method that is sparse and
strictly banded for any linear ordinary differential equation with polynomial coefficients. The method applies
to all subdivisions of Jacobi polynomials (e.g., Chebyshev and Legendre), utilises well-known recurrence
relations of orthogonal polynomials and leads to almost exactly the same discretized system of equations
as the integration preconditioners (IP) [Coutsias et al., Math Comp, 65 (1996), 611-635], if this method
was redesigned to make use of trial functions that satisfy a given problems boundary conditions. A link
between the new Petrov-Galerkin method and IP is revealed through a new recursion relation for Jacobi
polynomials. Because of the strictly banded nature of all coefficient matrices, the new method extends easily
and efficiently to multiple dimensions though the use of tensor product methods.

1. Introduction. Spectral methods are widespread in most branches of natural sci-
ences, with several books dedicated entirely to the subject [3, 35, 16, 5, 22, 19]. Spectral
methods are favoured by scientists aiming at ultimate accuracy in as few degrees of freedom
as possible, making them particularly successful in fields such as meteorology, turbulence,
hydrodynamic stability, geophysical flows, stochastic differential equations and uncertainty
quantifications. Common for these fields is that physical processes can be studied with high
precision in simple Cartesian product domains, which is a requirement since global spectral
methods can be difficult, or impossible, to apply to irregular domains. This disadvantage can
sometimes be overcome by mapping a complex domain into a regular through an explicit,
smooth [30], or a Gordon-Hall mapping [15], or, alternatively, by embedding the complex
domain into a larger regular domain [18]. Still, the possibility of studying physical processes
with extreme accuracy in very few degrees of freedom has always been attractive to scien-
tists, and it has recently inspired the development of several spectral software frameworks
[10, 28, 4, 26, 25].

We will in this paper be interested in the global spectral methods that are referred
to as spectral Galerkin, and more specifically spectral Petrov-Galerkin methods. These
methods solve equations in spectral space, as opposed to collocation (or pseudospectral)
methods [13] that solve equations in physical space. The Galerkin methods have a clean
and elegant design, using variational principles and function spaces with built-in boundary
conditions, that can be easily analysed. The Galerkin method is also easily implemented
and automated, evidenced, e.g., by the large number of generic finite element software
frameworks that have emerged in later years [1]. The Tau [24] method is quite closely
related to spectral Galerkin, also solving equations in spectral space, but with a primary
focus on finding spectral differentiation matrices in the orthogonal basis. The Tau and
Galerkin methods differ the most in how the boundary conditions are specified. The Tau
method enforces boundary conditions by modifying rows of the coefficient matrix, whereas
Galerkin builds homogeneous boundary conditions into the basis functions, and adds non-
homogeneous boundary conditions through additional lifting functions [2]. The Galerkin
approach has the advantage that the coefficient matrices remain strictly banded regardless
of boundary condition, whereas the Tau-matrices become almost-banded, see, e.g., [27].

We will in this work limit ourselves to global spectral methods that make use of or-
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2 M. MORTENSEN

thogonal Jacobi polynomials Pfla’ﬁ )(x) as basis functions. This includes both Chebyshev,
Legendre and all ultraspherical polynomials, but excludes Fourier exponentials and Her-
mite/Laguerre polynomials. Many efficient global methods for the Jacobi polynomials have
already been described, and most of these methods are based on ideas that date back to
Clenshaw [6] and Orzag [29], taking advantage of several recurrence relations that exist for
orthogonal polynomials. Of particular importance is the recurrence relation

o d (a d (a
(L.1) Q@) = bum1n Q1 () + busrn - QU (),

for the ultraspherical polynomial Q%a)(ac) ~ P (x), where B = (b;;) is a matrix oper-
ator. The best global methods that are known to take advantage of recursions like (1.1),
are probably those based on integration reformulation [17, 36, 11], the related integration
preconditioner [8, 7, 23] or the ultraspherical approach [27, 4, 14]. With integration refor-
mulation the n’th order differential equation is first integrated n times, before an integral
version of (1.1) is used on all lower order terms in the equation, leading to a banded lin-
ear system of equations (see, e.g., [36]). With integration preconditioners the matrix B of
the recurrence (1.1) is used explicitly as a preconditioner on the otherwise poorly condi-
tioned and full algebraic equations that are assembled for the Tau-method. The integration
preconditioners also make use of other recurrence relations and obtain sparse systems off
equations for linear differential equations with rational functions as coefficients, see [7]. The
ultraspherical approach [27] makes use of recurrence (1.1), but is somewhat camouflaged
into a correlation between Chebyshev polynomials of first Ty (x) and second Ug(x) kind,
see relation (2.8) given in [27]. Numerous other methods (e.g., [17, 14, 12]) rely on the
same recurrence relations, in one form or another. However, there has to the author’s best
knowledge never been described a generic spectral Galerkin, or Petrov-Galerkin, method
for Jacobi polynomials that take systematic advantage of recurrence relations, and that can
match the sparsity of for example the integration preconditioners for variable coefficient
equations. For specific equations, boundary conditions and bases there are of course excep-
tions. Shen has suggested a sparse and efficient method with compact Legendre polynomials
[31], whereas Guo et al. [20] obtain sparse and efficient methods using generalized Jacobians.
Elbarbary [12] describe a sparse Petrov-Galerkin method with Chebyshev polynomials for
constant coefficient second-order equations subject to either Dirichlet or Neumann boundary
conditions.

In his seminal paper series on efficient direct solvers for the spectral-Galerkin method
[31, 32, 33, 34] Shen notes that it is surprising that virtually no effort has been made to
construct appropriate bases for the spectral Galerkin method. His recommended approach
is to use the most compact combinations of orthogonal basis functions that satisfy a given
problems boundary conditions, for both the identical test and trial spaces. However, this
does not always lead to sparse matrices, and in general it leads to algebraic problems that
require tailored solvers for efficiency. In this paper we intend to show that a k’th order
linear differential equation with polynomial coefficients simply can use a basis with the very
specific test function

k
(12) @) = (-2 T PP @), nz 0k >0,

regardless of boundary conditions for the problem under investigation. We will then auto-
matically get a sparse and strictly banded Petrov-Galerkin method in the natural Lim, 8
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A GENERIC SPARSE SPECTRAL PETROV-GALERKIN METHOD 3

space, as long as the trial function is chosen compactly (basis recombination) from the nat-
ural basis {Py(La’B )}. Furthermore, through a new recurrence relation we will show that such
a Petrov-Galerkin method will have a lot in common with the integration preconditioners
[8, 7], or the quasi-inverse [23] approach if restricted to constant coefficient equations and
Chebyshev polynomials.

This paper is outlined as follows: in Sec. 2 we present the necessary theory for Jacobi
and ultraspherical polynomials and a new recursion relation. In Sec. 3 we consider spectral
differentiation in the frequency space and show how a test function like (1.2) can simplify the
description considerably through a Petrov-Galerkin formulation. In Sec. 4 we present the
new and sparse Petrov-Galerkin method for linear differential equations with either constant
or polynomial coefficients. The extension to multiple dimensions is described briefly, and
some numerical examples are presented. Conclusions are drawn in Sec. 5

2. Preliminaries. In this section we introduce some necessary identities and recur-
rence relations for Jacobi polynomials. We will mainly be interested in ultraspherical poly-
nomials, like Legendre or Chebyshev, but the main results are applicable for any Jacobi

basis, which is why we find it natural to start here.

2.1. Jacobi polynomials. The Jacobi polynomials, RSO"B )(x), are found as eigenso-
lutions to the Sturm-Liouville problem in the domain x € [—1,1]. The first two polynomials
are

« [e% 1 1
(2.1) PP =1, plh) = glatB+2)a+ s(a—p),

and the remaining can be found through the recurrence relation

(2.2) P00 = a0 P D P ) Py,
where
s 2nta)n+p)
T Onta+B+1)2n+a+B)
2 2

(2.3) al?) = — o0 :

mn Cn+a+B+2)2n+a+p)

(@f) _ 2n+1)(nt+a+pB+1)

a = .
T On 4+ a4+ B+2)2n+a+B+1)

The two parameters a and § are both real numbers > —1, and the boundary values of the
Jacobi polynomials can be found as

(2.4) PR (1) = (” * 0‘) . PleA (1) = (~1) (n + b’) .

n n
In matrix form we will write

(2.5) zP = A"P,

for the infinite-dimensional matrix operator A(®#) = (a&?f ))
pd) — (Péa’ﬁ),Pl(a’B), ...)T. Note that if the parameters are simply (a, 3), and it is

oo

m.n—o and the column vector
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possible to avoid confusion, then we will simply omit the superscript from the matrix and
vector operators, like in Eq. (2.5).

If we multiply (2.5) by z97 !, for integer ¢ > 0, and then use the original (2.5) ¢ — 1
times on the right hand side, we get a nested recursion

(2.6) 2P = (AT P,

where A9 = (a%%)ﬁnzo is the ¢’th matrix power of A.

For integer k > 0 the k’th derivative of P,(La’ﬁ ) with respect to z is known to be [35]

)

) PP =yl DRI, s

. . . . . k
where 9" is conveniently used to represent the ordinary derivative kav and

(ha) _ (Rt at+ B+ 1)
’(/}n - Qk bl

using the Pochhammer symbol (a); = I'(a + k) /T'().
The Jacobi polynomials also satisfy a recurrence relation of the form

(2.8)

(2.9) Pe? =yl gpled) L pladgpled) (D gpled)
or
(2.10) P =BTHP,
where the matrix operator B = (bgﬁﬁﬁ))mnzo, OP = (o,apfc”ﬂ),apéaﬂ), ...)T and
(e, 8) (a.B) (e,8)
(2 11) b(a,ﬂ) _ Ap_1n b(a’ﬁ) _ _2an,n b(a,ﬁ) _ Aptin
. n—1,n n+a+ﬂ’ n,n Oé+ﬁ7 n+1l,n Tl+1

Note that negative indices into the matrix components are here and throughout treated by
setting the component to zero.
Higher order derivatives satisfy (see Eq. (11) [7])

(2.12) ok=tp = (BHTo" P,
where 0 < [ < k, and the first & items of the vector ¥ P are 0. Note that the bandwidth of
the matrix B! is < 1+ 2[, see [7].

The Jacobi polynomials PS\?’ﬁ) = (Péa’ﬁ), Pl(a’ﬁ), ey P](Va’ﬁ))T form an orthogonal basis

in Li(a‘ 5 [—1,1] for Py, which is the set of polynomials of degree less than or equal to N.
The weight w(®#) = (1 — 2)*(1 + 2)?, and we have

1
(P Pe?) :/ PLB) plasd) (09 g
wle —1

(213) - hgy?’ﬁ)émna
where 9,,, is the Kronecker delta-function and

20+A+1 F'n+a+1)I(n+B+1)

2.14 hleB) —
(2.14) n (2n+a+ B+ 1)n! T(n+a+pB+1)

This manuscript is for review purposes only.
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A GENERIC SPARSE SPECTRAL PETROV-GALERKIN METHOD 5

Using (2.7) in (2.13) we find that the k’th derivatives of the Jacobi polynomials are orthog-
onal with respect to w(@+k.A+k)

k plasB) gk p(e.h) _ 5 (ka,B)
(2.15) (8 Pn k ,O0"P, ek )w(aﬂc"“k) =h,.\ Om—+kntk, for m,n >0,
where
2
a+k, k
(2.16) hglha,ﬁ) _ hfljc B+k) (wr(lk,a,/i’)>

This result is also derived in [35], and it is the key to the sparse spectral Galerkin methods

discussed in the current paper. Note that h(k B =0 for n < k, and for simplicity we
use K = p{®*?)  In matrix form we will use the diagonal matrix operators H =
diag(héa’ﬁ),hga’ﬁ), ...) and H®) = diag(hék’a’5)7hgk’a’5), ...), where the first k£ rows and
columns of the matrix H®) are 0.

Since 0% P are orthogonal polynomials they will also satisfy a three-term recurrence

relation like (2.5), when multiplied by x. The relation is easily obtained by inserting for

(2.7) in (2.5)

n+1
(2.17) 2" PR = N ale ok pleh),
m=n—1
where the nonzero components of the tri-diagonal matrix operator ggﬁ;{l’ﬁ ) are
k,a,B k,a,B) k,B+k), ) (ko8
(2.18) anfk n)+k (winfk )~ 16‘5:; ot W’fwj )7 Vm,n 2> 0.

In matrix form we get
(2.19) 20" P = ATO"P,

where AF8) = (g1 (koo ﬁ))m n—o has both the first £ columns and rows equal to 0. Multi-
plying (2.19) by z%~ 17 for mteger g > 0, and recursively using (2.19) on the right hand side
leads to

n+q
(2.20) xq@ka(Laﬁ) — Z (k a,,8) gk p( 76)
m=n—q
where a( N component of the ¢’th matrix power of A(k’a’ﬁ). Note that A(®#) =

A(Oaﬁ)_

Using the recursion relations above together with the orthogonality (2.15) we can obtain
three important inner products in Li(ﬁkvﬂ,ﬂ) [—1,1] for the Jacobi polynomials

(2'21) (8k an’ 8k )w(a+k B+k) h,f) b1('7ll)n’

(2.22) (akpquak )WM A hffi) foi;?),
m-+q

(2'23) (ak lP wqak ) (atk,B+k) = Z h(k) (k,q)bglg’
s=m—q
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6 M. MORTENSEN

where the («a, 3) superscript has been dropped for simplicity. Also, we have used the trans-
pose equality

(2:24) hali® = hGalid,

which follows since (8kPn, xqakPm)w(M,BW = (xq(?kPn, (’“)kPm)w(aMYHk). Equation (2.21)
follows by inserting for 9*~'P,, on the left hand side using (2.12), and then forming the right
hand side using (2.15). Equation (2.22) follows by combining (2.20) and (2.15), whereas
(2.23) follows by using (2.20) and (2.21). The bandwidth of (2.21) is 1421, of (2.22) 1+ 2g¢,
and of (2.23) it is 1 + 2(q +1). Note that Eq. (2.23) is a generic form that simplifies to Eq.
(2.22) for I =0, Eq. (2.21) for ¢ =0, Eq. (2.15) for I = ¢ =0, and (2.13) for k=1 =¢ = 0.
The matrix components on the right hand side are then simplified by using that the zeroth
matrix power equals the identity matrix.

Finally, we introduce in Lemma (2.1) a new recursion relation that will be heavily
utilized in this paper.!

LEMMA 2.1. The Jacobi polynomials satisfy the recursion relation
(2.25) (1—a2?)kokp = (cW)TP,

where (CUNT = HF BEH =1 for integer k > 0.
Proof. We first write the relation in index form as
m-+k
(2.26) (1—a?)f ok Py = > BIBEIRTTP, m>0.
s=m—k
The relation is obviously true for 0 < m < k since both sides are then zero. It is also obvious

that both sides of the equation have the same polynomial order m + k for any given m > k.
Hence we can write the left hand side as an expansion in Jacobi polynomials

m—+k

(2.27) (1 -2 0"Py = > WP, m>k,

s=0
for some matrix C'*) with upper bandwidth k. In order to show that cﬁ’f,{ = h%)bgﬁhgl we
take the weighted inner product of (2.27) with P,, for n >0

m-+k

(Pm (1- $2)kakpm)w<a,5> = Zo (P"’ Cg’:T)LPS)wmﬁ) '

The inner product on the left is given by (2.21) with k = [, and the right hand side can be
simplified using (2.15)

m+k
BB, = 3 eOhs
s=0

A final step sets necessarily s = n and hence c% = hgf) bgf;lh;l for all m > k and n > 0,
which concludes the proof. 0

1The relation in Lemma 2.1 is well-known for k = 1, but Lemma 2.1 for k > 1 is not simply a recursive
(or nested) version of this relation.

This manuscript is for review purposes only.
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A GENERIC SPARSE SPECTRAL PETROV-GALERKIN METHOD 7

2.2. Special instances of the Jacobi polynomials. The Jacobi polynomials are
commonly used with specific combinations of the parameters « and 3, and often with differ-
ent standardizations. For simplicity we will use the following form for a special orthogonal
polynomial
(2.28) QP (@) = g\ P{*P) (x),
where g,(f’”” is a scaling function. The boundary values of @Q,, will depend on g,, and the
basis {Q,} is obviously orthogonal with weight w(@®B) which will normally be abbreviated
as simply w if it is possible to avoid confusion. We will also normally drop the (a,f)
superscript on the special polynomials.

The orthogonal polynomials Q@ = (Qo, Q1,...)” need to take the function g, into ac-
count when forming the recursion relations from Sec. 2.1. For example, for (2.5) we get

(2.29) xQ = ATQ,

where the matrix operator A with components a,,, = (gﬁ’ﬁ))*la%ﬁﬁ)géa’m now has been

defined to include the scaling function. All the other recursion relations and inner product
equalities in Sec. 2.1, like (2.10), (2.12), (2.20), (2.25), (2.15), (2.21), (2.22) and (2.23) are
used exactly as they stand simply by replacing the components P,,, with @Q),, and using scaled
matrices and normalization factor hg,’f) = (gqu s ))2h§q]§’a’5 ). All the matrix operators that
belong to a specific family {Q,,} are in what follows written without the (o, 3) superscript,
whereas the Jacobi operators maintain theirs. Hence A = (amn) and B = (by,y,) will refer
to the specific operators for a basis family that include g,,.

The basis functions Qx = (Qo, Q1,...,Qn)7 form a discrete function space Qy =
span{Q,}N_,, and a function u(z) € Q will be approximated as the truncated

N
(2.30) u(x) = i Qn(z),
n=0

where i, = (u, Qn)w/hn for n =0,1,..., N.

2.3. Ultraspherical polynomials. The ultraspherical polynomials are defined as Ja-
cobi polynomials with only one parameter oo = f3 (see, e.g., Sec. 4.2.3 of [22])

(2.31) Q) (@) = g PN (a), a> -1,

and normally (see [22]) the scaling factor in use is g&a) = ((2;:'11)):
ultraspherical polynomials have boundary values that make them slightly awkward to use
with spectral Galerkin methods, and we will here follow Doha [9] and scale the ultraspherical

polynomials as

However, the regular

I'(n+1)

2.32 (@)(g) = ~—— L plasa) (g,

(2.32) Qi) ) = [P )

where the scaling factor corresponds to gi*) = 1 / P,Ea’a)(l), such that
(2.33) Q'Y (1) = (£1)™.

Legendre and Chebyshev polynomials of the first kind are ultraspherical polynomials
with the scaling used in (2.32) and o = 0 and —1/2, respectively. Chebyshev polynomials
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Family Ultraspherical Legendre Cheb. 1st Cheb. 2nd
& Ly =Q© | T,=Qw" | Up=(n+1)Q"”
I(n+1) 1 T(n+1) I'(n+2)
gn (a1 (/) Cl)n
n n 1 1
an—1,n Int2a+tl Int1 2 2
(n+2a+1) n4+1 Cn 1

On+1,n (2ni2atl) 1 2 2

b - n N __ 1 __ 1
n—1,n (n+2a)(2n+2a+1) 2n+1 2(n—1) 2(n+1)

b _ (n42a41 1 _cn _ 1
n+1,n 2n+2a+1)(n+1) 2n+1 2(n+1) 2(n+1)
h(k) 229 ()22 (a41) (n+2a+k)! 2(n+k)! cnyrmnl(n+k) 7l (n+k+2)

n (2n+2a+1)(n—k)IT'2(n+2a+1) (n—Fk)!(2n+1) 2(n—k)! 2(n+1)(n—k)!
TABLE 1

Recursion matrices and normalization factors for ultraspherical polynomials. The Pochhammer symbol
is represented as (a)p, =I'(a+n)/T'(a).

of the second kind are defined with @ = 1/2 and a slightly different scaling g,(Ll/ 2 — (n +
1)/P7§1/2’1/2)(1), such that U,(x) = (n+ 1) %1/2)(33). A summary of the recursion matrices
and normalization factors for these important families of ultraspherical polynomials is given
in Table 1.

3. Spectral differentiation. For u(z) € Py and u/(z) € Py_1 we have the expan-
sions

N

N
(3.1) u(x) = ZﬁnQn(x) €Py, and u/(z)= Zﬁgll)Qn(m) €Pn_1,
n=0

n=0

with ﬁ%) = 0. The process of finding @) = {ﬁ%l)}ﬁ]:o € RV*L in terms of @ = {4, }_, €
RN+ is usually termed spectral differentiation in the frequency space. In this section we
will use spectral differentiation to introduce the idea of the new Petrov-Galerkin method,
which we arrive at in Sec. 3.4.

3.1. Recursive approach. The most common approach for spectral differentiation in
the frequency space is to assume

N N
(3'2) Z agzl)Qn = Z ﬁnaQn7
n=0 n=0

and then invoke (2.10) on the left hand side to get

N n+1

N
(3.3) SN abn0Qs = 1 0Qn.
n=0

n=0s=n—1

The method is now usually described through equating coefficients, but we can also take
the L2, 511[—1,1] inner product of (3.3) with {0Q.,}2_; and use orthogonality (2.15) to
obtain

N
(3.4) Z b @Y = @y, form=1,2,...,N.
n=0
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A GENERIC SPARSE SPECTRAL PETROV-GALERKIN METHOD 9

. . . (1
This linear system of equations is not square. However, we can use “5\/) = 0 and then solve

(3.4) with back substitution (see, e.g., Ch. (3.2.6) of [35]) such that 1)5\1,)_1 = Un/bn,N-1
and

1
(3.5) o) = (anH byl — bnﬂ,nwaﬁ}jz) , forn=N-2,N-3,...,0.
n+1,n

Note that the first row of the singular matrix B € RV+1*N+1 ig never being used.

3.2. A Galerkin approach. The most obvious Galerkin method for finding @ is
to take the L2[—1,1] inner product of (3.2) by {Q..}¥_,

N N
(36) Z(Qnan)wag) = Z(aanQm)wﬁnv Vm = Oa]-w”Na
n=0 n=0

using orthogonality (2.13) on the left hand side and inverting

§>

N
1
(3.7) a *;TZ:: (0Qn, Qum)witn, ¥Ym=0,1,...,N,

1)

which automatically finds also @)’ = 0. The outcome is the same as with the recursive

approach, but the differentiation matrix dmn = (0Qn, @m)w 1is badly conditioned, upper
triangular and full, and the matrix vector product is costly unless the structure of the
matrix is accounted for. In matrix form we can write

(3.8) a® — pg,
where d, 1) = (0Qn, h 1Qm)w e D™ (d(l%)m n=0 € RNHIXN+1 i5 the spectral differentia-
tion matrix, and D) = (d'%) WY o € RNFIXNHL

3.3. The Integration Preconditioner (IP) approach. The IP approach [8, 7] is
to invoke the recursion (2.10) directly on (3.8), which is achieved by multiplying (3.8) from
the left by the square matrix By € RVTIXNTL o get

(3.9) Bya™® = Iya

where BmQ(l) = Iy, I is the identity matrix, and the square bracket notation on B
and I (which we get from [8]) is used to indicate that the first & rows of the matrix are
set to zero. If the first row of (3.9) is ignored, the matrix equation can be solved with
back substitution for the first N components of @1, and the solution algorithm becomes
identical to Eq. (3.5). Like for B, the fact that By is singular demands special attention
and complicates the description of the method, see [8, 7, 21].

From a Galerkin perspective, we can get a further understanding of the IP method if
we first rewrite (3.6) by dividing each row of both sides by the normalization factor h,,

N N

(3.10) > (Qns by Q)i = " (0Qu, by Q)i

n=0 n=0
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and then apply the preconditioner By;) from the left. The action of the preconditioner is then

simply to invoke (2.10) and to replace a scaled test function Qm = h;;'Q,, by component
m of the matrix vector product By QN With notation pn ., = (B QN)m7 we get that

N N

(311) Z(anpN m) »El) Z(aQnapN,m)wany

n=0 n=0

where the matrix on the right hand side is the diagonal Ij;) and the matrix on the left is
(Bpay)mn = (@n, PN,m)w- As such the IP method can be interpreted as a variational method
that is using the test function basis {pn m}¥_, for the N unknowns {a,}Yj of the trial
basis {@, nNzol Again, the mapping of indices 1,2,..., N for the rows of B to indices
0,1,...,N —1 of @(®) requires special attention.

3.4. A new Petrov Galerkin approach. We will now consider an alternative Petrov-
Galerkin approach for finding specifically @), and in general @(*), from 4. To set the stage
we consider the specific version of the orthogonality equation (2.15) after dividing both sides
by the normalization factor, shifting the m-index to nonzero values and rearranging

(312) <8an, ((k))aka+k> = 5m+k,n7 for m,n > 0.
hm+k w(a,B)

From (3.12) we realise that a test function defined as

(1—a?)F

(k) a Qm—‘rk € Pm+2k7 for m > 07
m+k

(3.13) o) =

would, for the corresponding (the same parameters «, ) orthogonal trial basis {@,}, lead
to a k’th order differentiation matrix with one single constant upper diagonal

(314) (8an7 Qng))w(a,B) - §m+k,n~

This will now be utilized for finding @(*) from .
For simplicity we will first consider (1), and start by multiplying (3.2) with the test
function (ZS?(?P and the weight w(®#) and then integrate over the domain to obtain

N N

1 .
(3.15) O Z(Qm 0Qm+1) (a1, 5+1)U = Z(an ¢ )w(avﬁ)un-
m+1 n=0 n=0
In order for this to be a square and well defined system of equations, we let m =0,1,..., N.

The right hand side matrix is already known from (3.14). Furthermore, the inner product
matrix on the left (Qn, 0Qmi1)yatto41) = hgl_lbmHW which we get from (2.21) (using
k=1=1). The common factor hﬁ,?ﬂ falls out and Eq. (3.15) becomes

N N
(3.16) D b1t = S niin.
n=0 n=0

In matrix form we get

(3.17) Buya®™ = Iy)a,
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where the upper shift matrix I1) = (Oms1,n)0 =0 € RYTPNH and the mass matrix

By = (bm+1,n) e neo € RVTI¥NF1 s the upper triangular

bio b1 b2 O 0
0  b21 bao b3 0
0 0 b3 b33 b3.4
(3.18) Bay=| : . :
0 by-in—2 bON—iN-1 bn_inN
0 bn,N-1 bn,N
i 0 bN+1,N ]

11

Remark 3.1. For index shifted matrices, like B(;y and I(;), we will in this paper use a
special subscript notation with parenthesis to indicate the shift: A, ;) = (m+p.n+q)m.n=o-
If only the row is shifted, we will use only one number: A(,) = (@m+p,n ) no- The notation
applies both to infinite-dimensional matrix operators and finite-dimensional matrices.

We note that the mass matrix B(y) is just a shifted version of B, where row 0 has been
excluded. Hence we are back at more or less exactly the same solution as obtained with
explicit use of an integration preconditioner, which was also found to be exactly the same
as the recursive approach. Apparently, nothing has been gained, and nothing has been
lost. However, the Petrov-Galerkin approach suggested here has a slight advantage. The
mass matrix B() is invertible and the condition ﬁg\}) = 0 is naturally part of the solution.
Another advantage is that we can describe this Petrov Galerkin approach very compactly:
with uy € Qu find u € Qp such that
(3.19) (u—ty,v)y =0, Yvespan{pD}N
and the recursive solution from back substitution then falls out naturally, with no tweaking
or mapping of indices whatsoever. Regarding the function space used for the test function
in (3.19), we note that qﬁ%”(z) satisfies homogeneous Dirichlet boundary conditions on both
sides of the domain. An appropriate test space is thus Vg\l,) = {v € Py |v(£l) = 0} of
dimension N — 1, which is spanned by the basis {¢511)}27;02. To get the correct dimension,
the space used in (3.19) is thus V%Zﬂ = span{s\" 1V,

We can proceed exactly the same way for higher order spectral differentiation. For
second order differentiation we use the basis function ¢$,2L), which satisfies the four conditions

53)(11) = 8(;55,?(:&:1) = 0. An appropriate space for ¢£Z> is thus the biharmonic V§\2,) =
{v € Py|v(£1) = v/(£1) = 0} of dimension N — 3. In general, the basis function o) will
satisfy 2k boundary conditions, and for k£’th order an appropriate space is thus
(3.20) VI = {v e Py |0™0(£]) =0,¥n=0,1,... .k — 1},
of dimension N — 2k + 1. For k’th order spectral differentiation the problem becomes: with
un € Qu find u € Qp such that
(3.21)

(u — 0% un,v) e =0, Yve Vg@i_% = span{pFN_ .
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Following the same approach as above for k = 1 we get that

N N
1 X X
(3.22) non Z(Qm 0* Qi k)i s 1) = Z Orm-+h,n i
h’m-‘,—k n=0 n=0
or
k) ~ ~
(3.23) B a® = Iy

Here I(y) € RV TN+ and the mass matrix defined as B((,?) = (b$)+k7n)ﬁ’nzo € RNFIxN+1
with k = [ (which we get from (2.21)), is upper triangular, and not to be confused with the

I’th matrix power of B(y). Similarly, the IP method for k’th order spectral differentiation is
(3.24) B a® = Iy,

which is basically the same linear algebra system as (3.23). In fact, we can get back to
(3.23), except from the last k rows that will be zero, by multiplying (3.24) from the left by

I(k-) .
Remark 3.2. With the new recursion (2.25) and index shifting it is evident that we can
. . (k)
also write the new test function ¢,,’ as

(3'25) (bgvlj) = (Bké)m+k = (B((II:;Q")W € Prgok for m >0,

which highlights a link to the other methods described in this section, through the recursive
matrix operator B.

There is a minor technical difference between the Petrov-Galerkin method described
in this section and the IP method, even though they here lead to exactly the same result.

For finite-dimensional systems IP corresponds to using a test function pg\];)m = (B*Qx)m €

Pin (m+k,n), With the finite matrix B* and vector Q ~, instead of the non-truncated (bs,]f) =
(BkQ)m € P4k This leads for IP to test functions that are not all in the same space,
and there will be a difference from the PG method in the k highest wavenumbers. However,
since spectral differentiation and thus (3.21) assumes uy € Qy, orthogonality makes all
terms involving @y for k£ > 0 disappear and this minor detail is thus not significant for
spectral differentiation, where {ﬁ%k)}ﬁ[: N_kt1 = 0. However, the difference will matter for
regular differential equations, as we will see in Sec. 4.

3.5. Spectral differentiation with ultraspherical polynomials. For ultraspheri-

cal polynomials the basis function used for VJS/kJZ% is

(=2 0",

(k)
hn+k

= (BkQ(a))an-

(3.26) ¢ =

For ultraspherical polynomials defined as (2.32) it can be shown that

(3 27) bn+1,n _ bn+1,n+2 _ F(n + 2a + 2)
’ hn J 220172 (q + 1)['(n + 2)’
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Family ol )
Legendre +(Ln — Ln2) m (L _ 2(22:;5) Lo+ SZI:;LnM)
Cheb. 1st | —hn(T=Tara) | mgrrisersy (T — 252 Tz + 25T )
Cheb. 2nd % (n[{:l - [iﬁ:;) 27r(n+11)(n+2) (Un - (7?:41)(] %Un—&%)

TABLE 2

Basis functions ¢£L1) and d)%z) on expanded form for Legendre and Chebyshev polynomials.

and the basis functions for £ = 1 and 2 can be written as

(3.28) o) = "; S (Q - Qlrk,),
bt (a) (a)
where ¢, = % For the Legendre and Chebyshev families the basis functions of lowest

order are given in Table 2. It is interesting to note that, for both Legendre and Chebyshev
of the first kind, qﬁ%l) and ¢£?) correspond to scaled versions of the well known Dirichlet
and biharmonic basis functions of Shen [31, 32]. Also, the basis function (3.28) is a scaled
version of the function used by Doha [9].

4. Sparse methods for differential equations. For spectral Galerkin methods the
trial functions are constructed as linear combinations of orthogonal polynomials, in order
to satisfy a given problems boundary conditions. Since we now know that the test function
(b%k) turns the k’th order differentiation matrix (9¥Q,, (;ngf))w into a matrix with one single
upper diagonal, this means that qufj) will make the differentiation matrix of any spectral
Galerkin problem sparse and banded. Because of (2.23) we also know that o) will make
any lower order differentiation matrix with polynomial coefficients (0¥~'Q,,, znggf))w sparse
and banded.

4.1. The new sparse method. We consider a linear differential equation of the form

k
(4.1) Zpl(;v)ak_lu =f, forze[-1,1],
1=0

subject to the k homogeneous boundary conditions
(4.2) TWu=0, 1=0,1,....,k—1.

The coefficients {p;(x)}F_, are polynomials of different degree, and there are k boundary
conditions (Dirichlet, Neumann, etc), specified at either side of the domain. If required,
inhomogeneous boundary conditions can easily be incorporated using a lifting technique [2],
which does not affect any of the coefficient matrices derived below.

We choose a trial space SY;) ={vePy|TOv=0,1=0,1,...,k — 1} of dimension
M +1= N —k+ 1. The new Petrov-Galerkin method is to find u € Sg\]f) such that

k

(4.3) S @0 uv), = (fo)e, Yve Vi,
=0



420
421
422

123

424
425
126
127
428
429
130
31
132
433

134

435

436

437

438
139

440

441

443

444
445

446
447
448
449
150

14 M. MORTENSEN

using basis ¢ = {(bgf)}%:o for the test space Vg\lflk (see (3.20)). A basis for Sg\]f) is
¥ = {¢, 1M, where 1), is constructed from a small number of neighbouring orthogonal
basis functions. For simplicity we will write the trial functions as

M
(4.4) P =KQpy, andthus u(x)= Zﬂn(KQN)n € Py,

n=0

where K = (k;;) € RMTIXNFL g g strictly banded stencil matrix, normally with lower
bandwidth 0 and upper k. The stencil matrix is used in order to derive one set of algebraic
equations to be used for different problems and trial functions, satisfying different boundary
conditions.

Remark 4.1. An uncommon feature of (4.3) is that there is a discrepancy in polynomial
order between the m’th trial function ¢,, € P4+ and the test function ¢>£A,I§) € Pk, and
we search for a solution in Py, using the slightly larger test space P ;. The feature stems
from the different number of boundary conditions used in test and trial spaces.

Remark 4.2. For the basis ¢ the matrix K, = B((Z))H‘1 € RMAIXNFE+L can be

interpreted as a stencil matrix, since

(4.5) o™ = K.Qy -

4.1.1. Constant coefficients. Assume that all the coefficients p; are constant, and
that po = 1. Insert for test and trial functions in the bilinear part of (4.3)

M N
(4.6) (0% u,v), = Z Z(ak_le, AN knstin, form=0,1,..., M,
n=0 s=0

and use the inner products from Eqgs. (2.21) and (2.13). Equation (4.3) on matrix form thus
becomes

k
(4.7) <[(k) + ZplB((Q)> KTa = f,

=1

where the matrices I(;) and B((,?) are of shape RMFT1*N+1 " The right hand side f =

{(f, 5,’§>)w}nﬂf:0 € RM+1 However, using (3.25) we can also write

(4.8) f=B4f,

where f = {f,,}N2E £ = (f,Qm)w and B((Z)) € RMHAIXN+E+1 which is of different shape
k

from B((k)) on the left hand side of (4.7). Simply restricting the right hand side as f € Py

(like the trial function), we get f = {f,n}N_, and can use the same B(:) € RMAIXN+L o
the right hand side as on the left. With this restriction we get for Chebyshev polynomials
and constant coefficients more or less the same method that is defined as the ” quasi-inverse”
method with Galerkin trial functions by Julien and Watson [23]. But here generalised to all
Jacobi polynomials and wrapped up in a Petrov-Galerkin formulation.
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1 4.1.2. Variable coefficients. Assume now that p;(z) = 2%, with integer ¢ > 0, such
52 that we need to compute (0% ~'u, %), for some [ < k. Inserting for test and trial function
3 we get

M N
151 (4.9) (0, ), ZZ (0" 'Qq, 290 s kpstin, form =0,1,..., M,
=0 s=0

455 where the inner product matrix is computed using (2.23) as

m—+q
k, l
156 (4.10) (O 1Qu, 200N, = 3 alvl) b
p=m—q
457  In matrix form we get
458 (4.11) (0" tu, 29), = LEBED KTq,

459  where the matrix L% = AEIZ’Z))BEQ) S RM‘HXN‘H Agg’q)) € RM+IxN+1 454 B(l)) €

160 RNHIXN+L Note that L9 has bandwidth 1+2(I+¢), with the lower bandwidth ¢41—k
461 and upper bandwidth ¢ 4+ [ 4+ k. The bandwidth 1+ 2(¢ + ) was given also in Theorem 2.1
162 of [7], and it follows since both A and B are tri-diagonal matrices and there is a total of
463 q + | matrix powers. The shift of the bandwidth from the centre is special for the current
464  method and due to the row-shifted B((l?). For the Galerkin method there is also an additional

465 problem dependent bandwidth in (4.11) due to the stencil matrix K.

166 Remark 4.3. For any special orthogonal basis described as (2.28), the matrix LKaD can

467 be computed explicitly simply from the Jacobi matrix and vector components ag,?;f ), bg,‘f;f ), hg,’f onp )I

468 and 1/} kc,) given in Sec. 2.1, and the scaling functions g( @h)

469 Remark 4.4. Any equation that can be written as Eq. (4.1) leads to an algebraic prob-
470 lem where the coefficient matrix is a sum of the strictly banded matrices L) This
471 includes also constant coefficient matrices, since AE:E)) = 1. On this form Eq. (4.7) be-
172 comes

k
173 (4.12) ZplL(k’O’l)KT’& — f’
1=0
174 where L®00) = [, and py = 1.
475 4.1.3. The linear form and numerical implementations. For a pure spectral

476 Petrov-Galerkin method the inner product integrals in (4.3) will be computed exactly, lead-
177 ing to analytical coefficient matrices that are sums of L*%) matrices. A discrete inner
178 product in a space with N + 1 quadrature points is represented as (-,-)n,, and (4.3) thus
479 becomes

k
150 (4.13) > (00, V) ik = (O Nk
=0

481 wusing the N + k 4+ 1 quadrature points of the test space Vg@rk Since Gaussian quadrature
182 of order N + k is exact for all polynomial integrands € Py )41, the constant coefficient
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L(F0.D will be exact also for a numerical approach. However, since the integrand of the
variable coefficient L(*%! are polynomials of order less than or equal to 2N +k + ¢, a
numerical approach using N + k 4+ 1 quadrature points will only be exact for ¢ < 2k +1 —1.
Naturally, if g exceeds this limit we can simply increase the number of quadrature points
correspondingly.

A numerical approximation of the right hand side of (4.8) will use quadrature for the
integral and interpolation of f(x)

.
(4.14) f=ByT

where the interpolation coefficients f = {?m,N-&-k}vjxi]g € RNF++L are defined as ?m,N_HC =

Untrf, Qm)NJrk,w and the interpolation operator is defined such that Inyxf(z;) = f(z;)
for all quadrature points {x; }jV: k.

4.1.4. Alternative new sparse method. With a minor modification we can refor-
mulate the method presented in Eq. (4.3), such that the m’th test and trial functions both
have the same polynomial order m + k, and test and trial spaces both are in Py. In order
to achieve this we can simply pull k£ polynomial orders from the test function and put them
into the weight. For even order equations a Petrov-Galerkin formulation may then be to
find u € Sg\]f) such that

k—1 _ (*/2)
(pl(‘3 u, U)w(a+k/2,ﬁ+k/2) = (fa V) latrzarrs, VU E V'

M=

(4.15)
l

Il
o

In order to remain completely identical to (4.3) the additional weight will now have to be
removed from the test function, and we should use

116 _kad) _ WP (1 —a?)rahQut)
( . ) (z)m - (1 _ sz)k/z - h(k’a’ﬁ) )
m-+k

and V%m = span{igf’a’ﬁ) M_ . Note that we have simply shuffled the (1 — 22)"/* term

around and the variational form (4.15) is still identical to (4.3) and we get exactly the
same matrices L*%0 as in Secs. 4.1.1 and 4.1.2. The only difference will be manifested
in numerical implementations of (f,v)y ,(a+k/2.5+%2 , that will naturally make use of N +1

quadrature points instead of N + k + 1. Furthermore, since {ngf pGlans 2)} are orthogonal

with weight w(@+*/2:84+%/2) it is more natural to rewrite the test functions aff"”’ﬁ) using (2.7)
as

—(ky) o -
(4.17) By T = i) g (k/2,0t /2 Gk R)

where the scaling function

kf2,a,B8) (,B)q (B/2,a+%/2,8+Fk/2

d)r(n{i-k gv(n+l~c hm{i-k/z / &
(atk/2,B8+F/2) h(k’a,ﬁ)
m+k/2 m—+k

(4.18) y{eB) =

Naturally, a numerical implementation of (f,v) Nw(e+k2.6+k2) should use the quadrature
points of Jacobi polynomials with parameters (« + ¥/2, 8 + ¥/2) instead of («, ), which is
another discrepancy from the original method.
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517 Remark 4.5. Equation (4.15) should only be considered for even order equations. For
518 odd equations we can still modify the test function and weight, but would have to treat «
519 and [ separately, and depart from ultraspherical polynomials.

iy
o

Remark 4.6. For k =2 and o = f = —1/2 this method corresponds to using Chebyshev
polynomials of the first kind for the trial functions and Chebyshev polynomials of the second
kind for the test functions, with inner products in L2,,[—1,1] and 7,(73’_1/2’_1/2) - 7n}‘1-2'

similar approach is used, e.g., by Olver and Townsend [27] and Burns et al. [4].

ot ot

NN NN
w N

v Ot

=~

4.1.5. A comment on stability. The stability of the new method depends mainly
on the condition numbers of the matrices L*¢) KT, Since the matrices L*%! are very
similar (index shifted) to those obtained by an integration preconditioner approach, and
since these have already been extensively analysed [8, 7, 21], we give here only a brief
comment, highlighting what is unique for the Petrov-Galerkin method.

The coefficient matrix for any problem described in this paper can be written as

(SLENNG] BN SN, G B
N NN
0~ O Ot

N NN
©

530 (4.19) LB KT ¢ RMAIXM+1

531 where L(k) is a weighted sum of matrices L(*%!  with the exact form depending on the
532 polynomial coefficients p;(z). The 2-norm condition number of the matrix L*) K7 is denoted
533 as o(L®KT), and its upper bound can be estimated as

534 (4.20) o(LMKT) < o(L™)o(KT).

535 Coutsias et al. [8] prove that the condition numbers of integration operators (i.e., matrices
536 corresponding to L(k)) will be bounded by a constant C' as long as the leading coefficient
537 of the problem (i.e., po(z)) does not vanish within the problems interval. This condition is
538 also required to avoid singularities, and for problems with smooth solutions we immediately
539 get that o(LWKT) < Co(KT). The Galerkin stencil matrix K is thus seen to play a very
540 important role for the stability of the new method. The stencil matrix is determined by the
541 choice of trial basis, which in turn depends on the boundary conditions of the given problem.
542 We may now follow Shen [35, Chapter 4] and choose the most compact basis function for any
543  set of boundary conditions, weighted such that all terms on the main diagonal of K are one.

544  For k = 2 and Dirichlet boundary conditions we then get K = (8, — 6m+2,n)ﬁ;§;£f:0 €

515 RN=1XN+1 and direct computation reveals that o(K7) scales as O(N). As such, o(L® KT)

5
546 will also scale as O(N) for large N. For the homogeneous biharmonic problem with k = 4

547 we have the ultraspherical stencil matrix K = (8pmn — (1 + ¢p)0mt2.n + cn5m+47n)ﬁ;§:fj:0 S

RN73><N+1 2n+2a43
2n+2a+77

549 condition number of this stencil matrix scales as O(N?), which is thus also the upper bound
550 for o(L™WKT). A similar analysis may easily be performed for any stencil matrix.

, where ¢, = see Eq. (3.29). Direct computation shows that the

551 4.2. Multiple dimensions. The methods described in Secs. 4.1 are all strictly banded
552 and easily extended to multiple dimensions through the use of tensor product methods. Let
553 us for illustration consider the two-dimensional Poisson’s equation in Cartesian coordinates

554 (421) V2U(Z, y) = f(xa y)7

555 for any type of boundary conditions on the domain 2 = [—~1,1]2. For the trial function
556 we choose the tensor product space S = Sg\?) () ® SJ(\?)(y), with basis {t, () (y) |[m,n =
557 0,1,... M}, where ¥, (z) = (KzQn)m and ¥, (y) = (KyQy)n. Here K, € RMHTIXN+I
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and K, € RM+IXN+1 are stencil matrices determined by the problems boundary conditions
in the x and y-directions, respectively. The test space is chosen as V = VIS/24)-2 ® VJSQ_E_Q =
span{qS(z)( ) 2 (y)|m,n=0,1,... M} and we attempt to find u € S such that

(4.22) (V2u,v), = (f,v), YvEV,

where the weight w = w(z)w(y) is the product of the weights in the x and y directions. The
expansion for the solution is now

M M
(4.23) =D dii(a)g;(y) €S,

i=0 j=0

with expansion coefficients U = (t1;;) € RMTIXMHL Ingerting for test and trial functions it
is easy to show that Poisson’s equation (4.22) in algebraic form becomes

(4.24) Lch’O)ULZ(/O’Z)T n Lch’Q)ULéo*O)T _ P

where (F)i; = (f,¢; 2)¢(2 )w and L) = LEZ4OKT for s € (x,y). We now use the row-
major vectorization, or vec?, operation on (4.24) to arrive at

(4.25) (L§9a°> ® LO? + L0 @ L0 ) vee(U) = (L&Oﬂ) ® L;W)) vec(F),

where ® here represent a tensor product, or Kronecker product, of matrices, vec(ﬁ) €
RM+D? ig the column vector obtained by flattening the row-major two-dimensional U , l.e.,
vec(U) = (D00, - -+ WON» W10y - - - UANLs -+ o5+ - - Upf0s - - - Upnrar) T and the Kronecker product
matrices are all of shape ROM+1)*x(M+1)*

The Kronecker product method is easily automated, also for higher dimensions, and
sparse and strictly banded matrices qu’l) lead to sparse and strictly banded Kronecker
product matrices. For a Dirichlet problem using ultraspherical polynomials and Ky =
(Omn — 5m+2-,n)n]\{’:]\(g,n:o € RMHIXN+HL for both s € (z,y), the coefficient matrix on the left

of (4.25) will have 12 nonzero diagonals.
4.3. Numerical examples.

4.3.1. First order problem. We consider the first order problem

1

u(z) = s(x), wu(-1)=0, zel-1,1],
using ultraspherical polynomials. For this first order problem we use the trial space Sg\}) =
{v € Pylv(—1) = 0} with basis function v, = QY + ngi)l, corresponding to a stencil
matrix K = (dmn + 5m+1,n)%;é:g:0 € RV*N+L,

Next, we multiply through with 22+ 1 to get only polynomial coefficients, and attempt
to find u € SS\%) such that

(4.27) (2% 4+ D', v)y + (u,0) = (f,0)s, Vv € VEVZH = span{¢(1)}n 0

2i.e., vec(AUBT) = (A ® B)vec(U) for matrices A, U, B of appropriate shape.
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FiG. 1. Left: The L?[—1,1] error norm for the solution of Eq. (4.27) using u(z) = exp(—0.25z*)(z+1)
and three different computations of f. Right: Sparsity pattern of the coefficient matriz.

where f(z) = (22 + 1)s(x). Inserting for test and trial functions we get

(4.28) (L(1,2,O) —|—L(1’0’0) +L(1,O,1)>KTA — f’

where the coefficient matrix on the left has 6 nonzero diagonals, with lower bandwidth 2
and upper 3, see Fig. 1. We compute the right hand side both exactly and numerically
with either f(x) € Py41 or f(x) € Py. The latter is computed merely as a curiosity,
because it corresponds closely to using the IP method with a Galerkin trial function (see
[23]). Note that if u € Py, then, due to the polynomial coefficient, the right hand side
f(z) will be a polynomial € Pyy;1. The larger test space of the current method thus has
an advantage here. This is evident in the left hand panel of Figure 1, which shows the
L?[—1,1] error norm |luy — ul| = (f,ll(UN — u)2dz)'/* using the manufactured solution
u(z) = exp(—0.252%)(x + 1) and Chebyshev polynomials of the first kind. We see that for
this problem one additional coefficient for f(z) leads to approximately one number extra in
accuracy until machine precision is reached.

The current example is used in slightly different form by Olver and Townsend [27]

1

4.2 _
(4.29) ax? + 1u

o' (z) + ()=0, wu(-1)=1, =ze[-1,1],

with the analytical solution u(z) = exp(f% (tan~!(y/az) — tan~'(y/a))) and a = 5 x 10%.

We can solve this problem as described above, but need to add one (constant) basis function
YN = Qéa) =1 to the trial basis and look for the solution

N
(4.30) u(x) = dnthn(z).
n=0

We immediately get that 4y = u(—1) = 1, and solve for the remaining coefficients using the
same matrices as before (4.28), only scaled appropriately by a. The right hand side vector
fn=0forn=1,2,...,N — 1. However, due to the boundary basis and (u,v), we get the
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FiG. 2. The L%[—1,1] error norm for the solution of Eq. (4.27) using manufactured solution u(x) =
exp(—ﬁ (tan=1(v/az) — tan~1(\/a))) and Legendre (dotted) and Chebyshev (dashed) basis functions.

following nonzero term on the right: fo = — (¢, (i)él))wﬁN = —1. We solve the problem
using both Chebyshev and Legendre polynomials, and the L? error norm is shown in Figure
2. Not surprisingly, the problem is resolved to machine precision using approximately 5000
degrees of freedom, which was obtained also by Olver and Townsend.

Remark 4.7. The condition number of the coefficient matrix L1294 1,(1.0.0) 4 1,(1.0,1)
is bounded by a constant, see Sec. 4.1.5 and Sec. 4 of [8]. Since the condition numbers of
the stencil matrix scale as O(N), the coefficient matrix of this problem also scales as O(N)
for large IV, which is easily shown with direct computations.

4.3.2. Second order problem. We consider the Helmholtz problem
v (@) — pu(z) = f(z),

where the constant coefficient g > 0. For this problem we can use the Dirichlet trial space

(4.31) w(£1) =0,z € [-1,1],

Sj(\?) = Vg\}), with basis {wn}ﬁ)’;g, and 1, = () _ QSQQ, corresponding to a stencil matrix
K = (0pmn — 5m+2,n)%;g:2f:0 € RN-1XN+1 The Petrov-Galerkin problem is formulated as:

find u € VS\}) such that

(4.32) (W' v)y — p(u,v)y = (f,0)w, Vve VE\Q,)H = span{qﬁg)}z;g.

Using Eq. (4.7) with k =2, py = 0 and ps = —p, we obtain

9 .
(4.33) (Io) — uBG) K" = f,
where the coefficient matrix consists of 4 nonzero diagonals. This sparsity matches the best

that has been reported for the Helmholtz problem with Chebyshev polynomials, see [23, 12].

Remark 4.8. Restricted to Chebyshev polynomials, and up to different scaling of the
basis functions, this method corresponds to the Petrov-Galerkin method described by El-
barbary [12].
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An alternative formulation for this problem according to Sec. 4.1.4 is to find u € Vg&)
such that

(4.34) (U, 0) yart) — p(uy )yt = (f,0)poin, Vv E Vg\}) = span{ig’a) N2,

This is actually a regular Galerkin method (not Petrov-Galerkin), since the trial and test
spaces are the same, and it leads to exactly the same left hand side of the algebraic problem
(4.33) as before. The right hand side will differ only for a numerical implementation. For

a = —1/2 this corresponds to using the trial function ¢, = T,, — T,,+2 and test function
—(2,-12) _ 1 (L,1/2) _ 1 U Umi2
¢m - m+2¢m - 7r(m+2)(m+1 T m+3 )

Another second order problem is the Airy differential equation
(4.35) euw —zu=0, u(-1)=Ai (— y i) ,u(1) = Ai < Y i) ,

which has the Airy function u(z) = Ai ((/gx) as solution. Again we follow Olver and

Townsend [27] and choose € = 1072 such that the solution becomes highly oscillatory. Be-
cause of the boundary conditions we also need to add two basis functions to the homogeneous
trial basis, and use y_1 = 3( ) 4 Q) and ¢y = ( ) — Q') The linear algebra
problem to solve becomes

(4.36) (eligy — LEYN K4 = f,

where fJ =0 for j = 2,...,N — 2 and, due to the boundary functions, iy_1 = u(-1),
an = u(l), fo= XN no (W, 208wty and fi = SN (5, 265 )wiy. Figure 3 shows
the Airy function and the L?[—1,1] error using Chebyshev polynomials for basis. The
results are similar to Olver and Townsend, and robust for large N due to good conditioning
of the matrix.? A notable difference from the almost banded matrix obtained by Olver and
Townsend is that the coefficient matrix here is strictly banded with 7 nonzero diagonals.

Remark 4.9. In agreement with the comment in Sec. 4.1.5 it can be shown with direct
computation that the coefficient matrices in this section have condition numbers that are
scaling as O(N) (for large N) for any ultraspherical basis with scaling as (2.32).

4.3.3. A comment on sparsity. The test function </>£,’f) guarantees a sparse and
strictly banded differentiation matrix of any order lower than or equal to k. This is a
generic sparse approach that applies to all orthogonal polynomials in the Jacobi family,
but there is no guarantee that this is the best, or most sparse, solution. Consider, for
example, the second order problem in Sec. 4.3.2 with p = 0. If we reformulate this as
a Galerkin problem, using the same space for both test and trial functions, we can find

u € Vg\lf) = Span{Qm - Qm+2}ﬁ;(2) such that
(4.37) (W) = (f,0)0, Yo e VY =span{oD}N_2.

Note that we here use ¢5i) for the test space instead of (bg,%). For a Legendre basis we now
obtain a diagonal stiffness matrix (see [31])

(4.38) (U, 6%)) = (m + 1) (m + 2)8n.

3In fact, we obtain an L2[—1, 1] error of 1.7 x 10~1* for the overresolved N = 106.
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Fic. 3. The Airy function u(z) = Ai < 3 %x) with e = 109 on the left, with an inset figure zoomed

in on the region x € [—0.01,0.01]. The figure on the right shows the L?[—1,1] error norm using Chebyshev
polynomials.

Since a diagonal stiffness matrix is better than the bi-diagonal I() K T that we found in Sec.
4.3.2, this is clearly a better approach for Legendre polynomials. However, for a Chebyshev
basis of the first kind, or any other ultraspherical basis using (2.32), the corresponding
stiffness matrix will be upper triangular and full (see, e.g., [32]). We note that the Legendre
basis is probably the only ultraspherical basis that can achieve a diagonal stiffness matrix for
(4.37), because a trial basis {¢,,} (e.g., with ¢, = Q, —Qn2) requires {¢!'} to be orthogonal
to a Dirichlet basis. For Legendre L;, — L}, , = (2n + 3)L;,,,, which is orthogonal to the
Dirichlet basis {(1—x?) na1)- This good fortune stems from the fact that b,41,, = —bp_1.n
(such that @, = b,—1,(Q),_1 — @1,41)), which can only be obtained for a = 1/2 with the
scaling used in (2.32).%

5. Conclusions. We have described a generic global spectral Petrov-Galerkin method
for linear ordinary differential equations with polynomial coefficients. The method leads
to highly sparse and strictly banded matrices, and is as such easy to implement using off-
the-shelf linear algebra softwares for banded matrices. Like most efficient methods that
have been described for orthogonal polynomials, the method relies on recursion relations of
Jacobi polynomials. The method is very easy to describe, because all it takes for a k’th
order linear differential equation is the use of a specific test function

(5.1) P ~ (1= 2 0k Qo

where 9F = ;;—l, along with trial functions composed as compact combinations of the special-
ized Jacobi polynomials @Q,,, satisfying a given problems boundary conditions. For efficient
implementations we have also described a new recursion relation for Jacobi polynomials

(5.2) (1-2z2)k*Q = (c")TQ, k>0,

4The Chebyshev polynomials of second kind have bnt+1,n = —bn_1,n, but use different scaling such that

{Un — Un+2} is not a Dirichlet basis.

This manuscript is for review purposes only.
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where Q(*#) = (Q((JO"B), an’ﬁ), ...)T, and the matrix C*)| which has bandwidth 1 + 2k, is
easily computed from well-known, explicit Jacobi recursion operators.

The Petrov-Galerkin method leads naturally to coefficient matrices that consist of
banded stencil matrices and index shifted versions of the matrices obtained by the inte-
gration preconditioner (IP) method. However, there is no explicit need for preconditioners
(or "quasi-inverse” matrices) in the description of the method, only test and trial functions
and naturally assembled coefficient matrices. We have described the generic coefficient ma-
trix for an equation with polynomial coefficients, i.e., (0*~!'Q,, scqugf))w for integer k,! and
¢ and indices m and n, through an explicit expression, which is easily computed simply from
already well-known recursion matrix operators for Jacobi polynomials.

Since all coefficient matrices are strictly banded, the extension of the method to multiple
dimensions is trivial through the use of Kronecker product methods. This is an advantage
over tau-based methods, where the coefficient matrices are almost-banded, using full rows to
implement boundary conditions. For the current method homogeneous boundary conditions
are built into the trial functions, and inhomogeneous conditions can be added through lifting
functions that do not interfere at all with the derived, strictly banded, coefficient matrices.

The Petrov-Galerkin method described in this paper has already been implemented in
the open source global spectral Galerkin software framework Shenfun [26] for any ultras-
pherical or Jacobi basis. It can be used for any linear differential equations with polynomial
coeflicients, with any composition of Dirichlet and Neumann boundary conditions. For
higher dimensions it is using tensor product methods.

Code availability. For reproducibility, the examples in this paper have all been com-
puted with Shenfun (https://github.com/spectral DNS /shenfun), version 4.0.2. The public
repository https://github.com/spectralDNS /PG-paper-2022 contains code used to create all
figures in the paper.

Acknowledgements. I acknowledge support from the 4DSpace Strategic Research
Initiative at the University of Oslo.
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