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Abstract. The family of complex projective surfaces in P3 of degree d having precisely δ nodes as
their only singularities has codimension δ in the linear system |OP3(d)| for sufficiently large d and

is of degree NP3
δ,C(d) = (4(d− 1)3)δ/δ! +O(d3δ−3). In particular, NP3

δ,C(d) is polynomial in d.

By means of tropical geometry, we explicitly describe (4d3)δ/δ! + O(d3δ−1) surfaces passing

through a suitable generic configuration of n =
(
d+3
3

)
− δ− 1 points in P3. These surfaces are close

to tropical limits which we characterize combinatorially, introducing the concept of floor plans for
multinodal tropical surfaces. The concept of floor plans is similar to the well-known floor diagrams
(a combinatorial tool for tropical curve counts): with it, we keep the combinatorial essentials of a
multinodal tropical surface S which are sufficient to reconstruct S.

In the real case, we estimate the range for possible numbers of real multi-nodal surfaces satisfying

point conditions. We show that, for a special configuration w of real points, the number NP3
δ,R(d,w)

of real surfaces of degree d having δ real nodes and passing through w is bounded from below by(
3
2
d3
)δ
/δ! +O(d3δ−1).

We prove analogous statements for counts of multinodal surfaces in P1 × P2 and P1 × P1 × P1.

1. Introduction

For δ < 4(d−4), the family of surfaces of degree d in P3 having δ nodes as their only singularities

is smooth of dimension n =
(
d+3

3

)
− 1− δ [5, 11], so it is natural to state the enumerative problems:

(C) What is the degree of this family? Equivalently, what is the number NP3

δ,C(d) of surfaces S
of degree d and with δ nodes passing through n points in general position?

(R) What is the maximal possible number NP3

δ,R(d,w) of real δ-nodal surfaces of degree d passing
through a configuration w of n real points in general position?

For δ = 1, the answer to question (C) is well-known: NP3

δ,C(d) = 4(d− 1)3. Concerning question (R)

for δ = 1, we have proved in [9] the existence of a point configuration w giving the lower bound

NP3

δ,R(d,w) ≥ 3
2d

3 + O(d2). To obtain this bound, we have used a tropical approach involving a
lattice path algorithm. The use of integration with respect to the Euler characteristic works only
for odd-dimensional hypersurfaces (see an example of plane curves in Section 2).

For arbitrary fixed δ and d� δ, it is known that the answer to question (C) is polynomial in d,
and the first coefficients of the polynomial are:

NP3

δ,C(d) =
(4(d− 1)3)δ

δ!
+O(d3δ−3) . (1)

This results from the standard computation of the class of the incidence variety, while O(d3(δ−1))
designates parasitic terms generated by the diagonals. On the other hand, there has yet to be any
general approach to question (R). In this paper, we address question (R), giving a lower bound
similar to the case of δ = 1.

Our approach to this question is via tropical geometry, where instead we count tropicalizations of
δ-nodal surfaces with an appropriate multiplicity reflecting the number of (complex or real) δ-nodal
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surfaces of degree d that interpolate the given points and tropicalize to a particular tropical surface
in the count. In the complex case, we let

NP3,trop
δ,C (d) =

∑
S

multC(S), (2)

where the sum goes over all tropicalizations S of δ-nodal surfaces of degree d satisfying the point
conditions, and multC(S) accounts for the number of such surfaces which tropicalize to S. Then,
the correspondence

NP3

δ,C(d) = NP3,trop
δ,C (d)

holds by definition. Here, we work over the field of complex Puiseux series to employ tropicalization.
Unfortunately, the combinatorics of the tropicalizations S of δ-nodal surfaces can be quite in-

tricate, and the task to enumerate them precisely is difficult. Similar to how floor diagrams for
tropical curves can be used to manage counts of tropical curves [4, 6], we introduce floor plans
for tropical surfaces suitable for our counting problem. They give us a tool to combinatorially
characterize a subset of the tropical surfaces S contributing to the above sum, for a special choice
of point configuration w (containing n =

(
d+3

3

)
− δ − 1 points). Viewed asymptotically, the subset

in question is large, and suffices to reproduce the leading coefficient when we count floor plans.
One can think about the subset as the set of tropical surfaces for which the tropicalizations of the
δ nodes are sufficiently far apart.

More precisely, we define the number of complex floor plans of degree d with δ nodes to be

NP3,floor
δ,C (d) =

∑
F

multC(F ),

where the sum goes over all floor plans F (see Definition 5.2), each floor plan corresponds to a
unique tropical surface S contributing to the sum in (2), and multC(F ) = multC(S).

Since the tropical surfaces arising from floor plans form only a subset of the surfaces S contribut-
ing to the sum in (2), we have

NP3,floor
δ,C (d) ≤ NP3,trop

δ,C (d). (3)

Our first main result (see Theorem 6.1) considers the asymptotics of the number NP3,floor
δ,C (d): we

have NP3,floor
δ,C (d) = (4d3)δ/δ! + O(d3δ−1). Thus, counting floor plans, we can recover the leading

coefficient of the polynomial NP3,trop
δ,C (d) = NP3

δ,C(d), in spite of the fact that (3) gives an inequality

only.
In order to count floor plans, we have to determine the multiplicities multC(Sj) of the corre-

sponding tropical surfaces Sj . We use patchworking techniques to do this, in particular we have to
solve local lifting equations involving the initials of the coefficients of a surface tropicalizing to S,
and its singular points [8, 9].

Having the combinatorial tool of floor plans at hand, we turn our attention to the case of real
multinodal surfaces. Pick a real point configuration w (i.e. over the field of real Puiseux series)
and let

NP3,trop
δ,R (d,w) =

∑
S

multR,w(S), (4)

where now the sum goes over all tropicalizations of real δ-nodal surfaces of degree d passing through
w, and multR,w(S) accounts for the number of such surfaces which tropicalize to S. Again, the
correspondence

NP3

δ,R(d,w) = NP3,trop
δ,R (d,w)

holds by definition.
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We adapt the count of floor plans to the real situation by setting NP3,floor
δ,R,s (d) to be the number

of real floor plans of degree d with δ nodes,

NP3,floor
δ,R,s (d) =

∑
F

multR,s(F ),

where the sum goes over the same floor plans F as above, each floor plan corresponds to a unique
tropical surface S in (4), and multR,s(F ) = multR,w(S). Here, s stands for a vector consisting of
three signs for each point pi in w. We choose s = ((+)3)n. To relate the count of floor plans to the
count of tropical surfaces, as before we pick w in horizontally stretched position, so it is only the
sign vector s which governs different lifting behaviour.

We determine multR,s(F ) = multR,w(S) with the same patchworking techniques as before, only
now we search for real solutions for the initials of the coefficients of a surface tropicalizing to S.
From the lifting equations we set up, it turns out that along with the coefficients, the singular points
in question are real. For some tropical surfaces, it cannot be decided whether the lifting equations
have real or imaginary solutions. As a consequence, we disregard the floor plans corresponding to
those in our count of floor plans, resp. we set multR,s(F ) = 0.

Thus, in the real setting, the subset of tropical surfaces S arising from our floor plans which
contribute to our count is smaller than in the complex case: in addition to tropical surfaces for
which the singularities are not sufficiently far apart, we exclude tropical surfaces for which the real
multiplicity is unknown. Nevertheless, we have

NP3,floor
δ,R,s (d) ≤ NP3,trop

δ,R,w (d,w) (5)

for our special choice of w, and where s = ((+)3)n denotes the vector of signs of the points w.

Our second main result (see Theorem 6.2) considers the asymptotics of the number NP3,floor
δ,R,s (d):

we have NP3,floor
δ,R,s (d) =

(
3
2d

3
)δ
/δ! +O(d3δ−1). Here, all the signs in s are chosen positive.

Combining this with the inequality (5) and the correspondence (4), we obtain:

Theorem 1.1. For any given δ ≥ 1 and any d� δ there exists a configuration w of n real points in
P3 such that there are at least 1

δ!(
3
2d

3)δ +O(d3δ−1) real δ-nodal surfaces of degree d passing through
w, whose singular points are all real.

The fact that the complex count of floor plans produces the expected leading coefficient can
be viewed as evidence that this estimate is reasonable, in any case we obtain the same leading
exponent as for the complex count of surfaces in P3, which is the highest possible.

We establish analogous results for asymptotic counts of surfaces in P1×P2 and P1×P1×P1 (see
Theorems 6.4 and 6.7 in Section 6).

The contents of the paper are organized as follows. In Section 2, we highlight some special
constructions of pencils containing a large number of real curves and hypersurfaces in the uninodal
case. We begin the tropical approach in Section 4, where we review the notion of floor decomposition
for curves and also outline a tropical proof, due to Benôıt Bertrand, of the existence of pencils of
real curves containing the maximal number of real solutions in P2 and P1 × P1. In Section 5, we
define floor plans of singular surfaces and define their real and complex multiplicities. We also
describe in this section how these multiplicities relate to the real and complex multiplicities of the
corresponding singular tropical surfaces. Finally in Section 6, we asymptotically enumerate singular
multinodal surfaces in P3,P2 × P1 and P1 × P1 × P1 over C and for a specific point configuration
over R.

For the real counts, our statements involve specific point configurations for which we must choose
sign vectors. We have played with different versions of sign vectors, hoping to maximize the number
of real surfaces. Unfortunately, the counts become hard to control. To keep the computations as
simple as possible, we have therefore chosen the all positive sign vectors s = ((+)3)n for our counts
in P3 and P2 × P1. In the case of P1 × P1 × P1, we are able to carry out the computations for a
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different choice of sign vectors, which turns out to give more real surfaces than the all positive case
(see Definition 5.21 and Remark 5.22).
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2. Enumeration of real uninodal curves resp. hypersurfaces: special
constructions

Here, we discuss special pencils of real curves resp. hypersurfaces containing a relatively large
number of real singular curves resp. hypersurfaces (which sometimes is larger than what we get via
tropical geometry). However, we point out that none of these constructions extend to the multi-
nodal case, while the tropical construction of uninodal curves resp. hypersurfaces extends to the
multi-nodal case in a natural way.

2.1. Real uninodal curves. An elementary approach to enumerate real singular curves in a
generic pencil is based on integration with respect to the Euler characteristic [13]. Consider a
pencil spanned by two real smooth curves of degree d intersecting in d2 distinct real points. The
pencil defines a projection of RP 2

d2 (the real projective plane blown up at d2 real points) onto RP 1.
Integration with respect to the Euler characteristic yields

χ(RP 2
d2) =

∫
RP 1

χ(RCt)dχ(t) =⇒ n+ − n− = d2 − 1 ,

where n+, resp. n− is the number of real curves with a real hyperbolic, resp. elliptic node. In
general, one can guarantee only that at least d2− 1 singular curves in such a pencil are real among
3(d− 1)2 complex singular curves.

However, one can do much better. The following statement has been suggested to the authors
by V. Kharlamov.

Lemma 2.1. For any d ≥ 2, there exists a pencil of plane curves of degree d that contains 3(d−1)2

real uninodal curves and no other singular curves.

Proof. Let L1, ..., Ld and L′1, ..., L
′
d be two collections of real lines in general position in P2, and

let K1,K2,K3 ⊂ RP 2 be disjoint closed discs such that all d(d−1)
2 intersection points Li ∩ Lj lie in

Int(K1), all d(d−1)
2 intersection points L′i ∩ L′j lie in Int(K2), and all d2 intersection points Li ∩ L′j

lie in Int(K3). Now consider the real pencil P = {λL1 · ... · Ld + µL′1 · ... · L′d | (λ : µ) ∈ P1}. The
rational function on the plane

ϕ =
L′1 · ... · L′d
L1 · ... · Ld

vanishes along the lines L′1, ..., L
′
d in K2, and hence has at least one real critical point in each of the

(d−1)(d−2)
2 components of K2\(L′1 ·...·L′d) disjoint from ∂K2. Similarly, ϕ (or, equivalently, ϕ−1) has

at least one real critical point in each of the (d−1)(d−2)
2 components of K1 \ (L1 · ... ·Ld) disjoint from

∂K1. In K3, we have (d−1)2 quadrangular components of the complement K3\(L1 ·...·Ld ·L′1 ·...·L′d)
disjoint from ∂K3, and in each of them ϕ has at least one real critical point: indeed, ϕ vanishes
along two opposite sides and takes infinite value along the other opposite sides of each quadrangular
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component, and hence has at least one saddle point inside. Then we take generic real curves C, C ′

of degree d sufficiently close to L1 · ... ·Ld and L′1 · ... ·L′d, respectively, and such that the intersection

points Li∩Lj and L′i∩L′j , 1 ≤ i < j ≤ d, all turn into saddle points of the rational function ϕ̃ = C′

C

with different critical values. Then, in the pencil P̃ = {λC + µC ′ | (λ : µ) ∈ P1}, we observe

2 · (d− 1)(d− 2)

2
+ (d− 1)2 + 2 · d(d− 1)

2
= 3(d− 1)2

real singular curves. �

It is also possible to use tropical geometry to find a pencil of plane curves containing 3(d−1)2 real
uninodal curves. This approach is suggested by B. Bertrand [1] and is outlined after we introduce
the notion of floor decomposed curves in Section 4.

2.2. Real uninodal hypersurfaces. In the higher-dimensional case we demonstrate an elemen-
tary construction of a pencil of real hypersurfaces that contains the number of real singular hyper-
sirfaces asymptotically comparable with the degree of the discriminant.

Lemma 2.2. For any n ≥ 3 and d ≥ 2, there exists a pencil of real hypersurfaces of degree d in
Pn that contains at least 2(d− 1)n real singular hypersurfaces.

Proof. Take the real polynomial

F (x1, ..., xn) =

n∑
i=1

d∏
j=1

(xi − ξij), ξij ∈ R .

For suitable values of ξij , it has (d− 1)n real critical points in a small disc K1 ⊂ Rn with different
critical values. Consider the polynomial

G(x1, ..., xn) = F (x1 + t, ..., xn + t) ,

where t ∈ R will be specified later. We claim that, for t � 0, the rational function ϕ = F
G has

at least (d − 1)n real critical points in the disc K1 and at least (d − 1)n real critical points in the
shifted disc K2 = K1 − t(1, ..., 1). Indeed, in the disc K1 the critical point system reads

Fxi = F · Gxi
G
, i = 1, ..., n . (6)

Note that the factors
Gxi
G in the right-hand sides in all the equations are of order O(t−1). Hence,

for a sufficiently large t > 0, we obtain (at least) (d − 1)n real solutions to the system (6) in the
disc K1. Similarly, in K2 we get at least (d− 1)n real critical points. �

3. Preliminaries for the tropical approach

We work over the field of complex Puiseux series K =
⋃
m≥1 C{t1/m}, which is an algebraically

closed field of characteristic zero with a non-Archimedean valuation denoted by val. Tropicaliza-
tion, denoted by trop, is coordinate-wise valuation. The field K possesses the natural complex
conjugation involution and contains the complete real subfield KR of real Puiseux series.

We assume that the reader is familiar with tropical hypersurfaces and their dual Newton subdi-
visions. When we speak about the area (resp. volume) of polygons (resp. polytopes) in a Newton
subdivision, we mean normalized area (resp. volume). A tropical surface in R3 is of degree d if
it is dual to the polytope Conv{(0, 0, 0), (0, 0, d), (0, d, 0), (d, 0, 0)}. A tropical surface is of bide-
gree (d, e) if it is dual to the polytope Conv{(0, 0, 0), (0, 0, d), (0, d, 0), (e, 0, 0), (e, 0, d), (e, d, 0)}. A
tropical surface is of tridegree (d, e, f) if it is dual to the polytope

Conv{(0, 0, 0), (0, d, 0), (0, 0, e), (0, d, e), (f, 0, 0), (f, d, 0), (f, 0, e), (f, d, e)} (7)

(see Figure 1).
A lift of a tropical surface S is a surface in K3 tropicalizing to S. We call it a real lift if it is

defined over KR. A lift of a tropical surface of degree d can canonically be compactified in P3 and
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Figure 1. Polytopes dual to the threefolds in which we count surfaces.

is then of degree d, a lift of a tropical surface of bidegree (d, e) can be compactified in P1 × P2 to a
surface of bidegree (d, e) and a lift of a tropical surface of tridegree (d, e, f) can be compactified in
P1 × P1 × P1 to a surface of tridegree (d, e, f).

To determine the lifting multiplicities (i.e. numbers of (δ-nodal) surfaces of a certain (bi-,tri-)
degree passing through w which tropicalize to a given S), we rely on patchworking results from
[9, 8].

4. Floor plans for singular tropical curves

We start by presenting the analogue of our main combinatorial tool in one dimension lower —
as a tool to count plane tropical curves with one node. We can recover the well-known count of
nodal complex curves satisfying point conditions in this way [10].

Throughout this section, we pick a horizontally stretched point configuration in R2. For counts
of curves of degree d in P2, we fix n =

(
d+2

2

)
− 2 points. For counts of curves of bidegree (d, e) in

P1×P1, we fix n = (d+ 1) · (e+ 1)− 2 points. We use coordinates (x, y) for R2 and let πy : R2 → R
be the projection to y. We denote the points by q1, . . . , qn and their projections by Qi = πy(qi).

Recall that all tropical plane curves passing through the horizontally stretched points are floor
decomposed, i.e. all vertical lines appear in the dual Newton subdivision [4, 6]. The well-known
tool of floor diagrams restricts the count of tropical plane curves to its combinatorial essence by
shrinking each connected component of a tropical curve minus its horizontal edges to a single vertex.
Different from that, a floor plan encodes the positions of the horizontal edges under the projection
πy.

Definition 4.1. A floor plan for a tropical plane curve of degree d with one node consists of an
index j and a tuple (Dd, . . . , D1) of tropical divisors on R, where each Di is of degree i.

The divisor Di passes through the following points:

if i > j : Q(d+2
2 )−(i+2

2 )+1
, . . . , Q(d+2

2 )−(i+1
2 )−1

if i = j : Q(d+2
2 )−(j+2

2 )+1
, . . . , Q(d+2

2 )−(j+1
2 )−2

if i < j : Q(d+2
2 )−(i+2

2 ), . . . , Q(d+2
2 )−(i+1

2 )−2
.

Here, the indices of the points are supposed to be in ascending order. If this is not the case, then
the corresponding divisor meets no points.

Furthermore, the divisor Dj may have a point of weight 2 if j 6∈ {1, d}. If not, one of the points
of Dj has to align with a point of Dj−1 or of Dj+1.

Analogously, we define a floor plan for a tropical plane curve of bidegree (d, e) with one node.
The differences are: the tuple of divisors is (Dd, . . . , D0), now each Di is of degree e, Dj may have
a point of weight 2 if j 6∈ {0, d}, and the divisor passes through the following points:

if i > j : Q(d−i)·(e+1)+1, . . . , Q(d−i)(e+1)+e

if i = j : Q(d−j)·(e+1)+1, . . . , Q(d−j)(e+1)+e−1

if i < j : Q(d−i)·(e+1), . . . , Q(d−i)(e+1)+e−1.

Observe that in the case of degree d, for i 6= j, the divisor Di has i points and has to meet i
points, while for i = j, Dj has to meet only j − 1 points. In the same way, for degree (d, e), Di

meets e points if i 6= j and Dj meets e− 1 points.
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Q1

Q3

Q2

Q4

Q5

Q6

Q7

2

j = 1 j = 0j = 2

Figure 2. Floor plans for 1-nodal curves of bidegree (2, 2). The divisor D2 is drawn
with red dots, D1 with blue and D0 with green. On the left, the position of the
points Qi are marked.

Q1

Q3

Q2

Q4

Q5

Q6

Q7

Figure 3. How to construct a plane curve satisfying point conditions from a floor plan.

Construction 4.2. Given a floor plan F we construct a floor composed tropical curve as in Section
3 [2]: we set Xi = R for all i, the effective divisors are the Di. The rational functions fi are, since
they must satisfy div(fi) = Di − Di−1, determined up to a shift. We fix the shift such that the
constructed floor meets the point condition whose projection lies between the points of Di and the
points of Di−1.

Example 4.3. Let (d, e) = (2, 2). We list all floor plans with one node for this degree. We have
n = 7 points in R. We have to consider tuples consisting of 3 divisors of degree 2 each. If j = 2,
D2 passes through Q1, D1 through Q3 and Q4 and D0 through Q6 and Q7. One of the points of
D2 has to be at Q3, or Q4. If j = 1, D2 passes through Q1 and Q2, D1 passes through Q4 and D0

through Q6 and Q7. Either D1 has a point of weight 2 at Q4, or one of the points of D1 is at Q1,
Q2, Q6 or Q7. If j = 0, D2 passes through Q1 and Q2, D1 through Q4 and Q5 and D0 through Q7.
One of the points of D0 is at Q4 or Q5. Figure 2 depicts all the possibilities.

Figure 3 shows an example of how a tropical plane curve is constructed as a floor composed
curve from a floor plan.

Definition 4.4. We define the complex multiplicity multC(F ) of a floor plan F as above to be 4 if
it contains a divisor with a point of weight 2, and 1 otherwise.

Theorem 4.5. For a floor plan F for a tropical plane curve of degree d (resp. of bidegree (d, e))
with one node, Construction 4.2 produces a unique element C in the set of tropical plane curves of
degree of degree d (resp. of bidegree (d, e)) with one node meeting the horizontally stretched points
q1, . . . , qn.

Conversely, every tropical plane curve of degree d (resp. of bidegree (d, e)) with one node meeting
the horizontally stretched points q1, . . . , qn arises from a floor plan using Construction 4.2.
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Furthermore, the complex multiplicity of F equals the complex multiplicity of C.

In particular, the count of floor plans with complex multiplicity equals the count of tropical
curves with complex multiplicity, which by Mikhalkin’s Correspondence Theorem [10] equals the
number of complex 1-nodal curves of degree d (resp. bidegree (d, e)) satisfying point conditions.

Proof. By construction, we obtain from 4.2 a tropical curve satisfying the point conditions from
a floor plan. If the floor plan has a divisor with a point of weight 2, this tropical curve has a
horizontal bounded edge of weight 2. It is dual to an edge of weight 2 in the dual subdivision,
adjacent to two triangles of area 2 each. If a non-fixed point aligns with another, the corresponding
horizontal end passes through a floor, producing a parallelogram in the dual Newton subdivision.
Besides those special features, the subdivision contains only triangles of area one, by the genericity
of the point conditions and the fact that we construct ends of weight 1 only. The curve has the
right degree. Its multiplicity is 4 if it has an edge of weight 2 and 1 otherwise.

Vice versa, given a tropical curve contributing to the count, we can produce a floor plan by
projecting the horizontal edges between two floors to obtain the Di. The index j is obtained
either by the position of the weight 2 end, or by the position of a horizontal bounded edge which
passes through a floor and does not meet a point between two adjacent floors. The projection thus
either gives a divisor with a point of weight 2, or a point which aligns with a point of the divisor
corresponding to the neighbouring two floors. �

With the following proposition, we demonstrate how floor plans can be used to count efficiently.

Proposition 4.6. The count of floor plans F for a tropical plane curve of degree d (resp. of bidegree
(d, e)) with one node with complex multiplicity equals 3(d− 1)2 (resp. 6de− 4d− 4e+ 4).

Proof. We begin with the case of degree d. If j = d, the point of Dd which is not fixed by the d− 1
conditions for Dd can align with any point of Dd−1, so there are d−1 choices, each of multiplicity 1.
If j = 1, the point can align with one of the two points of D2, leading to 2 choices. For d > j > 1,
we have j−1 choices for a point of weight 2, leading to a summand of 4(j−1). The non-fixed point
can also align with any of the j + 1 points of Dj+1 and any of the j − 1 points of Dj−1, leading to
a summand of 2j. Altogether, we obtain

d− 1 + 2 +
d−1∑
j=2

(4(j − 1) + 2j) = d+ 1 +
d−1∑
j=2

(6j − 4)

= d+ 1 + 6

(
d(d− 1)

2
− 1

)
− 4(d− 2) = 3d2 − 6d+ 3 = 3(d− 1)2.

We now turn to the case of bidegree (d, e). If j = e, there are d points with which the point
of Dd which is not fixed by the d − 1 conditions for Dd can align. The same holds if j = 0. For
e > j > 0, the non-fixed point can either form a point of weight 2 with each of the d−1 fixed points
— each of these choices has multiplicity 4, so we have to sum 4(d− 1) of those for each j — or it
can align with one of the d points of Dj+1 or one of the d points of Dj−1, leading to a summand of
2d for each such j. Altogether, we obtain d+ (e− 1) · (4(d− 1) + 2d) + d = 6de− 4d− 4e+ 4. �

We now return to the tropical proof of the existence of a pencil of curves of degree d containing
3(d−1)2 real nodal curves. This approach is due to Bertrand [1]. Since we will consider real curves,
we must also choose a real configuration of points, meaning for each point qi we must select the
signs of its coordinates. To do this we fix εi ∈ Z2

2, where we think of 0, 1 ∈ Z2 as representing +
and −, respectively.

Bertrand introduces the notion of signed marked floor diagrams for curves based on the notion
of a real tropical plane curve from [10, Definition 7.8] . Firstly, a real structure on a tropical plane
curve C is obtained by assigning to each edge e of C an equivalence class Se ∈ Z2

2/weve where
we is the weight of e and ve is its primitive integer direction modulo 2. These assignments are
subject to compatibility conditions at the vertices. For example, if e is a horizontal edge of weight
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1 of a floor decomposed curve C, then a real structure on C would assign an equivalence class
Se = {(σ1, σ2) ∼ (1 + σ1, σ2)}, for some (σ1, σ2) ∈ Z2

2. If e is a horizontal edge of even weight of C,
then the equivalence class would consist of a single element Se = {(σ1, σ2)}. An edge of weight 1
of a floor of C is assigned an equivalence class of the form Se = {(σ1, σ2) ∼ (σ1 + q, σ2 + 1)} where
q = 0, 1 depending on whether the first coordinate of ve is even or odd.

A real tropical curve C passes through a point configuration q1, . . . , qk with sign vector s =
(s1, . . . , sk) ∈ (Z2

2)k if the curve passes through the point configuration and for each point qi
contained on an edge ei we have si ∈ Sei . Here we assume that the points qi are contained in the
interior of the edges of C.

Bertrand also introduces the real multiplicity of a signed marked tropical floor diagram, which
here we relate back to floor decomposed curves. The non-trivial part of the definition occurs
when the floor decomposed real tropical curve has a horizontal edge of weight 2 and its complex
multiplicity is 4. The horizontal edge e attaches to two consecutive floors Xi and Xi+1 defined by
divisors Di − Di−1 and Di+1 − Di, respectively. Notice that if e′ and e′′ are the edges of a floor
adjacent to a horizontal edge of C of weight 2, then ve′ ≡ ve′′ mod 2 and Se′ = Se′′ .

Suppose X is a floor of the floor decomposed curve C which is adjacent to a horizontal even
weighted edge α. Let e′ and e′′ be the two edges of the floor X adjacent to α. The multiplicity
assigned to the pair α and X is then

µα,X =

{
0 if Sα 6⊂ Se′
2 if Sα ⊂ Se′ .

Definition 4.7. The R-multiplicity of a marked real tropical curve C passing through the point
configuration {q1, . . . , qk} with sign vector s is

µC =
∏

X a floor of C

µX

where
µX =

∏
α even edge adjacent to X

µα,X ,

and µX = 1 if there is no even weighted edge adjacent to X.

Example 4.8. Figure 4 shows a portion of a real tropical floor decomposed curve between the floors
X5 and X6. The part of the curve is shown passing through a configuration of 6 real points. The
signs of these points, read from left to right, are fixed to be ε, ε, ε′, ε, ε′, ε′, where ε is any choice of
pair of signs and ε′ := ε+ (1, 0) if we identity {+,−} with {0, 1}.

The real structure on the curve is given by prescribing an equivalence class of signs Se on each
edge. The horizontal edges of the curve all have Se = {ε, ε′}, except for the edge α of weight 2
which is only labelled with Sα = {ε}. Let ε′′ = ε+ (0, 1) and ε′′′ = ε+ (1, 1). Then the labels next
to an edge in the figure indicate the equivalence class Se ⊂ Z2

2 of the other edges of the curve. By
Definition 4.7, we have µX5,α = µX6,α = 2.

Theorem 4.9. [1] For every d there exists a signed configuration of d(d+3)
2 − 1 points such that

the number of uninodal marked real tropical curves passing through this point configuration counted
with the multiplicities from Definition 4.7 is equal to 3(d− 1)2.

Proof. Firstly, by [1] the multiplicity of a marked real tropical curve C passing through the point
configuration {q1, . . . , qk} with sign vector s from Definition 4.7 corresponds to the number of real
curves tropicalizing to C and passing through a configuration of real points which tropicalize to
{q1, . . . , qk}.

We choose a horizontally stretched point configuration. Notice that

d(d+ 1)

2
− 1 + d = d+

d∑
i=2

i,
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{ε, ε′′}

{ε′, ε′′}
{ε, ε′′}

{ε, ε′′}

{ε′, ε′′}

{ε′, ε′′′}
{ε, ε′′′}

{ε, ε′′′}
{ε′, ε′′′}
{ε, ε′′′}

2

Figure 4. A portion of a real tropical floor decomposed curve with a weight 2 edge
passing through a real point configuration from Example 4.8. The signs of the red
marked points read from left to right are ε, ε, ε′, ε, ε′, ε′.

so to specify the signs of the points we do it in “blocks”. The first block of d signs can be chosen
arbitrarily. Then the signs are fixed in a block of size d, then d− 1, d− 2 and so on, until the final
block of size two.

Fix an ε ∈ (Z2)2 and let ε′ := ε + (1, 0). The first sign of a block with j points is ε considered
in (Z2)2 and the second sign of a block is the same as the first. Then the signs alternate between
ε and ε′ until the last sign of the block which is equal to the sign of the (j − 1)-th sign. As an
example, in degree 7 a choice of signs of the points written in the order Q1, . . . , Q d(d+1)

2
+d−1

is

ε1, ε2, ε3, ε4, ε5, ε6, ε7|ε, ε, ε′, ε, ε′, ε, ε|ε, ε, ε′, ε, ε′, ε′|ε, ε, ε′, ε, ε|ε, ε, ε′, ε′|ε, ε, ε|ε, ε.

The bars “|” in the list are only used to delimit a block and can be removed.
Suppose C is a uninodal tropical curve with no weight 2 edges and passing through a point

configuration. No matter what choice of sign vector for the points, it is possible to equip C
uniquely with signs so that the signed tropical curve passes through the signed point configuration
[1]. Therefore, if the tropical curve has no edges with even weight the real and complex tropical
multiplicities are both equal to one.

Otherwise, a uninodal tropical curve can have at most one weight 2 edge. If it does have an edge
of weight 2, its complex multiplicity is equal to 4. When the tropical curve is floor decomposed the
weight 2 edge is a horizontal edge and we can suppose it is a weight 2 edge joining the floors Xj−1

and Xj together with another j − 3 edges of weight one, for some 3 ≤ j ≤ d. Using the partition
of the sign vector into blocks, the sign of the point marking the floor Xj is ε and the sign of the
point on the floor Xj−1 is ε + (j, 0). In other words, the first and last signs in the j-th block are
the signs of the marked point on the floors Xj and Xj−1, respectively.

Denote the weight 2 edge by α and suppose that it is marked by the k-th sign of the block of size
j, so that there are exactly k−2 edges of weight one that come before it. Notice that 2 ≤ k ≤ j−1
since the first and last signs of the block mark the floor. Therefore, we have Sα = {ε} if k is even
and Sα = {ε′} if k is odd. Let e and e′ be the two edges adjacent to α in the floor Xj . The edge
a of the floor Xj marked by the point must have the equivalence class of signs Sa = {ε, ε+ (j, 1)},
where again ε+ (j, 1) is considered in (Z2)2. Moreover, any weight one edge between the floors Xj

and Xj−1 has equivalence class of signs {ε, ε′}. By the rule for propagating the equivalence classes
around a trivalent vertex with only weight one edges we find that Se = Se′ = {ε, ε + (j, 1)} if k is
even and Se = Se′ = {ε′, ε+ (j, 1)} if k is odd. Therefore, no matter what the parity of k is we have
Sα ⊂ Se = Se′ . Thus µα,Xj = 2.

We can perform the analogous check for the floor Xj−1. We use the same convention as above
and suppose that the weight 2 edge is marked by the k-th sign of the block of size j. Then as
above Sα = {ε} if k is odd and Sα = {ε′} if k is even. The edge a of the floor Xj−1 marked by
the point is in direction (j − 1, 1) and is marked by ε + (j − 1, 0), considered in (Z2)2. Therefore,
the equivalence class of signs is Sa = {ε + (j − 1, 0), ε + (0, 1)}. By the rule for propagating the
equivalent classes of signs we find that Sa′ = {ε, ε+ (0, 1)}, where a′ is the unbounded edge of the
floor Xj−1 in direction (0, 1). Therefore, if e and e′ are the edges of the floor adjacent to α, we
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have Se = Se′ = {ε, ε + (0, 1)} if k is even and or Se = Se′ = {ε′, ε + (0, 1)} if k is odd. Once
again, no matter what the parity of k is we have Sα ⊂ Se = Se′ . Thus µα,Xj−1 = 2. Then the
real multiplicity of the floor decomposed tropical curve is equal to four which is the same as the
complex multiplicity, therefore, the real count is equal to the complex count which is 3(d− 1)2. �

Using floor decomposed real tropical curves it is also possible to find a real point configuration
in P1×P1 such that the number of real curves passing through the point configuration is maximal,
i.e. is equal to the complex number.

Theorem 4.10. For every bidegree (d, e) there exists a real point configuration in P1 × P1 such
that the number of marked real tropical curves passing through this point configuration counted with
the multiplicities from Definition 4.7 is equal to 6de− 4d− 4e+ 4.

Proof. Uninodal curves of bidegree (d, e) in P1×P1 are fixed by (d+1)(e+1)−2 = 2d+(d+1)(e−1)
points. As in the proof of Theorem 4.9, we fix the sign vector of the floor decomposed point
configuration in blocks. We first choose a sign ε and set ε′ = ε + (1, 0). Then the first block is of
size d and can be chosen arbitrarily. The next e− 1 blocks are of size d + 1 and are all the same.
They begin with the sign ε, followed again by ε and then alternate until the d-th sign. The last
sign of the block is the same as the d-th sign. Finally the last d signs can be chosen arbitrarily. As
an example for d = 4 and e = 3 we have

ε1, ε2, ε3, ε4|ε, ε, ε′, ε, ε|ε, ε, ε′, ε, ε|ε5, ε6, ε7, ε8.
With the signs of the point configuration chosen we can follow the proof of Theorem 4.9 to establish
that the real multiplicity of every real floor decomposed tropical curve is equal to the complex
multiplicity, which proves the theorem. �

Bertrand’s maximality argument does not generalize beyond the uninodal case. However, he does
go further to consider the asymptotic count of real curves in P2 with a fixed number of nodes [1].
Using floor diagrams, Fomin and Mikhalkin found that the number of complex curves of degree d in
P2 with δ nodes passing through d(d+ 3)/2− δ points in general position is a polynomial function
in d of degree 2δ [7]. By considering real floor diagrams, Bertrand shows that for any choice of signs
on the point configuration, the number of real floor decomposed curves with δ nodes counted with
real multiplicity behaves as Θ(d2δ). Furthermore, for a fixed number of nodes δ, Bertrand exhibits
a family of real point configurations such that, as d tends to infinity the number of real curves of
degree d passing through the point configuration has the same asymptotic as the complex case.

5. Floor plans for singular tropical surfaces

Throughout the rest of the paper, we pick a point configuration w = (p1, . . . , pn) consisting of n
points in (K∗)3, such that their tropicalizations (which we denote by (q1, . . . , qn)) are distributed
on a line in R3 with direction (1, η, η2), where 0 < η � 1, and with growing distances.

We use x, y and z for the coordinates of R3 and πyz : R3 → R2 for the projection to the
yz-coordinates. We let Qi = πyz(qi) for all i = 1, . . . , n.

As in Section 4, a floor plan contains a tuple of effective divisors, now in R2 rather than R, thus
plane tropical curves. We introduce the notion of a string which will be used in our definition of
floor plans: Let C be a plane tropical curve of degree d (resp. of bidegree (d, e)) satisfying point
conditions. Assume that the right or left corner of the Newton polygon appear in the subdivision
(resp. the upper right or lower left), and that there are no point conditions on the two ends adjacent
to the dual vertex. In this case we can prolong the adjacent bounded edge of direction (1, 0) or
(−1,−1) (resp. (1, 1) or (−1,−1)) arbitrarily, without losing the property of passing through the
points. We call the union of the two ends a string — a right string if it is dual to the right corner,
a left string if it is dual to the left corner.

Definition 5.1. Let C be a plane tropical curve of degree d (resp. of bidegree (d, e)) passing through(
d+2

2

)
− 2 (resp. (d + 1)(e + 1) − 2) points in general position. A node germ of C is one of the

following:
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(1) a vertex resp. midpoint of an edge of weight 2, dual to a parallelogram resp. a pair of adjacent
triangles of area 2 each sharing an edge of weight 2 in its Newton subdivision,

(2) a horizontal or diagonal (resp. horizontal or vertical) end of weight 2,
(3) a right or left string.

5.1. Surfaces in P3. Here, n =
(
d+3

3

)
− 1− δ with 0 < δ ≤ d

2 .

Definition 5.2. A δ-nodal floor plan F of degree d is a tuple (Cd, . . . , C1) of plane tropical curves
Ci of degree i, together with a choice of indices d ≥ iδ ≥ . . . ≥ i1 ≥ 1, such that ij+1 > ij + 1 for
all j, satisfying the following properties:

(1) The curve Ci passes through the following points (where we set i0 = 0 and iδ+1 = d+ 1):

if iν > i > iν−1 : Q∑d
k=i+1 (k+2

2 )−δ+ν , . . . , Q
∑d
k=i (

k+2
2 )−2−δ+ν ,

if i = iν : Q∑d
k=i+1 (k+2

2 )−δ+ν+1
, . . . , Q∑d

k=i (
k+2
2 )−2−δ+ν .

(2) The plane curves Cij have a node germ for each j = 1, . . . , δ.
(3) If the node germ of Cij is a left string, then its horizontal end aligns with a horizontal

bounded edge of Cij+1.
(4) If the node germ of Cij is a right string, then its diagonal end aligns either with a diagonal

bounded edge of Cij−1 or with a vertex of Cij−1 which is not adjacent to a diagonal edge.
(5) If iδ = d, then the node germ of Cd is either a right string or a diagonal end of weight 2.
(6) If i1 = 1, then the node germ of C1 is a left string.

Observe that each Ci with i 6= iν passes through
(
i+2

2

)
− 1 points, whereas each Ciν passes

through
(
iν+2

2

)
− 2 points.

Example 5.3. Let d = 2 and δ = 1. A floor plan contains a tuple (C2, C1) of tropical plane curves,
where C2 is a conic and C1 a line. Furthermore, one index i belongs to a curve with a node germ. If
i = 2, then C2 passes through Q1, . . . , Q4. By condition (5) of Definition 5.2, the node germ in C2

can either be a right string or a diagonal end of weight 2. The right string would, by condition (4),
have to meet a bounded edge of C1 or a vertex which is not adjacent to a diagonal edge, which is
both impossible. So the node germ at C2 is a weight 2 diagonal end. The curve C1 passes through
Q6 and Q7. If i = 1, C2 is a smooth conic passing through Q1, . . . , Q5. The line C1 passes through
Q7. By condition (6), its node germ is a left string, which by condition (3) aligns with the unique
horizontal bounded edge of C2.

Altogether, we have two possible 1-nodal floor plans of degree 2, as shown in Figure 5. The
points Q5 and Q8 fix the position of the floors of degree 2 and 1, respectively of the surface of
degree 2 in the top floor plan. In the bottom floor plan it is the points Q6 and Q8 that fix these
respective floors.

Definition 5.4. Let F = (Cd, . . . , C1) be a δ-nodal floor plan of degree d. For each node germ C∗ij
in Cij , we define the following local complex multiplicity multC(C∗ij ):

(1) If C∗ij is dual to a parallelogram, then multC(C∗ij ) = 2.

(2) If C∗ij is the midpoint of an edge of weight 2, then multC(C∗ij ) = 8.

(3) If C∗ij is a horizontal end of weight 2, then multC(C∗ij ) = 2 · (ij + 1).

(4) If C∗ij is a diagonal end of weight 2, then multC(C∗ij ) = 2 · (ij − 1).

(5) If C∗ij is a left string, then multC(C∗ij ) = 2.

(6) If C∗ij is a right string whose diagonal end aligns with a diagonal bounded edge, then

multC(C∗ij ) = 2.

(7) If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal

edge, then multC(C∗ij ) = 1.
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Q8

2

Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q7

Q6

Q5
Q4

Q3Q2

Q1

Q8

Figure 5. The 1-nodal floor plans of degree 2.

The complex multiplicity of a δ-nodal floor plan is defined as the product of the local multiplicities
of all of its node germs,

multC(F ) =

δ∏
j=1

multC(C∗ij ),

and we set
NP3,floor
δ,C (d) =

∑
F

multC(F ),

where the sum goes over all δ-nodal floor plans of degree d.

Remark 5.5. Note in Definition 5.4(1) and (2) that if C∗ij is dual to a parallelogram, or the midpoint

of an edge of weight 2, then multC(C∗ij ) equals twice the complex multiplicity of Ci, i.e. 2 resp. 8.

Example 5.6. Consider again the two one-nodal floor plans of degree 2 we considered in Example

5.3. Both floor plans are of multiplicity 2 by Definition 5.4. Altogether, we have NP3,floor
1,C (2) = 4.

Remark 5.7. In Example 5.6 (using Example 5.3), we have determined the number NP3,floor
1,C (2) = 4.

It turns out that in this case NP3,floor
1,C (2) = 4 = NP3,trop

1,C (2) = NP3

1,C(2). In fact, for δ = 1, the

inequality (3) is always an equality. For d = 3 and δ = 2, the inequality (3) is strict, as shown in
[3]. We expect the inequality to be strict as soon as δ > 1, since then one expects the existence of
tropical surfaces for which the nodes are not apart, which we neglect with our enumeration of floor
plans.

Construction 5.8. From a δ-nodal floor plan (Cd, . . . , C1) together with the points qi, we produce a
construction pattern as in Section 3 [2]: we set Xi = R2 for all i, and the effective divisor Di = Ci.
The rational functions fi are, since they must satisfy div(fi) = Ci−Ci−1, determined up to a global
shift. We fix the shift such that the constructed floor meets the point between the points on Ci−1

and the points on Ci.

Proposition 5.9. Construction 5.8 viewed as a map from the set of δ-nodal floor plans of degree
d to the set of tropical surfaces is injective. It sends a floor plan F to a δ-nodal tropical surface S
of degree d passing through the qi, and we have multC(F ) = multC(S).

In particular, the inequality (3) holds.

Proof. By construction, we obtain a tropical surface S passing through the qi from a floor plan F .
It is also obvious that the map is injective. We have to show that S is δ-nodal. Each node germ
C∗ij is in charge of a tropical node:
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(1) If C∗ij is dual to a parallelogram, the subdivision of S contains a bipyramid over the par-

allelogram. The midpoint of the edge dual to the parallelogram is the tropicalization of a
node, and there are

multC(C∗ij ) = 2

many ways to pick initials for the local equation of a complex surface tropicalizing to S (see
Lemma A.7 (1) and (2) in [9]).

(2) If C∗ij is the midpoint of an edge of weight 2, its dual is an edge of weight 2 adjacent to

two triangles. In the subdivision dual to S, we have altogether 4 bipyramids over the two
triangles. According to Lemma A.1 [9], there are multC(C∗ij ) = 8 ways to pick complex lifts.

(3) If C∗ij is a horizontal end of weight 2, the dual Newton subdivision of S contains many

pyramids involving the dual edge: one for each intersection of a diagonal end of Cij+1 with
the edge of weight 2. As in Lemma A.2 [9], we can pick each of those intersections to fix a
tropical node, and we have 2 lifts for each choice. Altogether, the local complex multiplicity
equals the number of complex lifts.

(4) If C∗ij is a diagonal end of weight 2, the situation is analogous: we get to pick an intersection

point with a horizontal end of Cij−1, and for each we have 2 complex lifts, see Lemma A.3
[9].

(5) If C∗ij is a left string, it has to align with a horizontal bounded edge. The dual Newton

subdivision of S contains a parallelogram formed by the dual of the horizontal string edge,
and the edge with which it aligns. The two vertices dual to the triangles that appear dual
to Cij−1 form a bipyramid with the square. We have 2 complex lifts for the coefficients
according to Lemma A.7 [9].

(6) The same holds if C∗ij is a right string whose diagonal end aligns with a diagonal bounded

edge.
(7) If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal

edge, then the dual Newton subdivision of S contains a pentatope formed by the dual of
the diagonal end and the dual of the vertex with which it aligns. There is one lift according
to Lemma A.10 [9]. �

We now want to investigate the real situation. For this we fix the sign vector with all signs
positive, s = ((+)3)n.

Definition 5.10. Let F = (Cd, . . . , C1) be a δ-nodal floor plan of degree d. For each node germ
C∗ij in Cij , we define the following local real multiplicity multR,s(C

∗
ij

):

(1) If C∗ij is dual to a parallelogram, it depends on the position of the parallelogram in the

Newton subdivision:
• assume it has the vertices (k, 0), (k, 1), (k − 1, l) and (k − 1, l + 1), then

multR,s(C
∗
ij ) =

{
2

0
if

1

2
· (3ij + 2 + 2k + 2l)(ij − 1) ≡

{
1

0
modulo 2,

• assume it has the vertices (k, d− ij − k), (k, d− ij − k− 1), (k+ 1, l) and (k+ 1, l+ 1),
then

multR,s(C
∗
ij ) =

{
2

0
if

1

2
· (ij + 2 + 2l)(ij − 1) ≡

{
1

0
modulo 2.

(2) If C∗ij is the midpoint of an edge of weight 2, then multR,s(C
∗
ij

) = 0.

(3) If C∗ij is a horizontal end of weight 2, then multR,s(C
∗
ij

) = 0.

(4) If C∗ij is a diagonal end of weight 2, then multR,s(C
∗
ij

) = 2 · (ij − 1).
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(5) If C∗ij is a left string, then it depends on the position of the dual of the horizontal bounded

edge of Cij+1 with which it aligns. Assume it has the vertices (k, l) and (k, l + 1). Then

multR,s(C
∗
ij ) =

{
2

0
if ij − k ≡

{
0

1
modulo 2.

(6) If C∗ij is a right string whose diagonal end aligns with a diagonal bounded edge, then

multR,s(C
∗
ij

) = 0.

(7) If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal

edge, then multR,s(C
∗
ij

) = 1.

The real multiplicity of a δ-nodal floor plan is defined as the product of the local multiplicities of
all of its node germs,

multR,s(F ) =

δ∏
j=1

multR,s(C
∗
ij ),

and we let NP3,floor
δ,R,s (d) be the sum of all δ-nodal floor plans of degree d, counted with real multiplicity.

Example 5.11. Revisit Example 5.3, but now consider the real multiplicities of the two one-nodal
floor plans of degree 2. According to Definition 5.10(4), the first floor plan has real multiplicity 2.
For the second floor plan, we use Definition 5.10(5). Here ij = 1, (k, l) = (1, 0), so we obtain real

multiplicity 2 again. Altogether, we have NP3,floor
1,R,s (2) = 4.

Proposition 5.12. Given a floor plan F , the δ-nodal tropical surface S of degree d passing through
the qi which is obtained by Construction 5.8 has at least multR,s(F ) real lifts passing through the
lifts w of the qi with sign vector s = ((+)3)n. In particular, inequality (5) holds.

Proof. We compute numbers of lifts for the coefficients of a lift of S near each node germ C∗ij :

(1) If C∗ij is dual to a parallelogram, the real local multiplicity equals the number of ways to

pick real lifts, see Lemma 5.7 [9]. (Notice that case (2) of Lemma 5.7 [9] actually gives a
circuit consisting of three collinear points and not a parallelogram [12].)

(2), (3) If C∗ij is the midpoint of an edge of weight 2 or a horizontal end of weight 2, the number of

real lifts is hard to control (see Section 5.5 [9]), which is why we set the real local multiplicity
to zero.

(4) If C∗ij is a diagonal edge of weight 2, we get to pick an intersection point with a horizontal

end of Cij−1, and each of the 2 complex lifts, is real, see Lemma 5.9 [9].
(5) If C∗ij is a left string, then the number of real lifts depends on the position of the dual of

the horizontal bounded edge of Cij+1 with which it aligns. Assume it has the vertices (k, l)
and (k, l + 1). Then there are

multR,s(C
∗
ij ) =

{
2

0
if ij − k ≡

{
0

1
modulo 2

real lifts, see Lemma 5.6 (3) [9].
(6) If C∗ij is a right string whose diagonal end aligns with a diagonal bounded edge, then the

contribution is of lower order in d (see Remark A.9 [9]), so we can safely disregard them
and set multR,s(C

∗
ij

) = 0 when we care for bounds for the asymptotic count.

(7) If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal

edge, then there are multR,s(C
∗
ij

) = 1 real lifts, see Lemma 5.4 [9]. �
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5.2. Surfaces in P1 × P2. Throughout this section we suppose that the integers d, e, δ satisfy
0 < δ ≤ 1

2 min{d, e}. We also let n = (d+ 1) ·
(
e+2

2

)
− 1− δ.

Note that, under the above assumptions, the family of δ-nodal surfaces of bidegree (d, e) in
P1 × P2 has codimension δ in the space of all surfaces of bidegree (d, e), and similarly to formula
(1) we have

NP1×P2

δ,C (d, e) =
(12(d− 1)(e− 1)2)δ

δ!
+O(dδ−2e2δ) +O(dδ−1e2δ−1) +O(dδe2δ−2) . (8)

Definition 5.13. A δ-nodal floor plan F of bidegree (d, e) is a tuple (Cd, . . . , C0) of plane tropical
curves Ci of degree e, together with a choice of indices d ≥ iδ ≥ . . . ≥ i1 ≥ 0, such that ij+1 > ij +1
for all j, satisfying the following properties:

(1) The curve Ci passes through the following points (where we set i0 = −1 and iδ+1 = d+ 1):

if iν > i > iν−1 : Q(d−i)(e+2
2 )−δ+ν , . . . , Q(d+1−i)(e+2

2 )−δ+ν−2,

if i = iν : Q(d−i)(e+2
2 )−δ+ν+1, . . . , Q(d+1−i)(e+2

2 )−δ+ν−2.

(2) The plane curves Cij have a node germ for each j = 1, . . . , δ.
(3) If the node germ of Cij is a left string, then its horizontal end aligns with a horizontal

bounded edge of Cij+1.
(4) If the node germ of Cij is a right string, then its diagonal end aligns either with a diagonal

bounded edge of Cij−1 or with a vertex of Cij−1 which is not adjacent to a diagonal edge.
(5) If i1 = d, then the node germ of Cd is either a right string or a diagonal end of weight 2.
(6) If iδ = 1, then the node germ of C1 is either a left string or a horizontal end of weight 2.

Observe that each Ci with i 6= iν passes through
(
e+2

2

)
− 1 points, whereas each Ciν passes

through
(
e+2

2

)
− 2 points.

Definition 5.14. Let F = (Cd, . . . , C0) be a δ-nodal floor plan of bidegree (d, e). For each node
germ C∗ij in Cij , we define the following local complex multiplicity multC(C∗ij ):

(1) If C∗ij is dual to a parallelogram, then multC(C∗ij ) = 2.

(2) If C∗ij is the midpoint of an edge of weight 2, then multC(C∗ij ) = 8.

(3) If C∗ij is a horizontal end of weight 2, then multC(C∗ij ) = 2e.

(4) If C∗ij is a diagonal end of weight 2, then multC(C∗ij ) = 2e.

(5) If C∗ij is a left string, then multC(C∗ij ) = 2.

(6) If C∗ij is a right string whose diagonal end aligns with a diagonal bounded edge, then

multC(C∗ij ) = 2.

(7) If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal

edge, then multC(C∗ij ) = 1.

The complex multiplicity of a δ-nodal floor plan is defined as the product of the local multiplicities
of all of its node germs,

multC(F ) =

δ∏
j=1

multC(C∗ij ),

and we set
NP1×P2,floor
δ,C (d, e) =

∑
F

multC(F ),

where the sum goes over all δ-nodal floor plans of bidegree (d, e).

Proposition 5.15. Construction 5.8 viewed as a map from the set of δ-nodal floor plans of bidegree
(d, e) to the set of tropical surfaces is injective. It sends a floor plan F to a δ-nodal tropical surface
S of bidegree (d, e) passing through the qi, and we have multC(F ) = multC(S). In particular,

NP1×P2,floor
δ,C (d, e) ≤ NP1×P2,trop

δ,C (d, e). (9)
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Proof. The proof is analogous to Proposition 5.9. The only difference is that a horizontal or diagonal
end of weight 2 intersects e edges of the previous or next floor, respectively. �

Again we want to investigate the real situation and fix the all positive sign vector, s = ((+)3)n.
For the following, we assume e ≡ 0 mod 4. This restriction is important for case (1) of Definition

5.16 below.

Definition 5.16. Let F = (Cd, . . . , C0) be a δ-nodal floor plan of bidegree (d, e) where e ≡ 0
mod 4. For each node germ C∗ij in Cij , we define the following local real multiplicity multR,s(C

∗
ij

):

(1) If C∗ij is dual to a parallelogram, then multR,s(C
∗
ij

) = 2.

(2) If C∗ij is the midpoint of an edge of weight 2, then multR,s(C
∗
ij

) = 0.

(3) If C∗ij is a horizontal end of weight 2, then multR,s(C
∗
ij

) = 0.

(4) If C∗ij is a diagonal end of weight 2, then multR,s(C
∗
ij

) = 2e.

(5) If C∗ij is a left string, then it depends on the position of the dual of the horizontal bounded

edge of Cij+1 with which it aligns. Assume it has the vertices (k, l) and (k, l + 1). Then

multR,s(C
∗
ij ) =

{
2

0
if ij − k ≡

{
0

1
modulo 2.

(6) If C∗ij is a right string whose diagonal end aligns with a diagonal bounded edge, then

multR,s(C
∗
ij

) = 0.

(7) If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent to a diagonal

edge, then multR,s(C
∗
ij

) = 1.

The real multiplicity of a δ-nodal floor plan is defined as the product of the local multiplicities of
all of its node germs,

multR,s(F ) =
δ∏
j=1

multR,s(C
∗
ij ),

and we set
NP1×P2,floor
δ,R,s (d, e) =

∑
F

multR,s(F ),

where the sum goes over all δ-nodal floor plans of bidegree (d, e).

Proposition 5.17. Given a floor plan F , the δ-nodal tropical surface S of bidegree (d, e), where
e ≡ 0 mod 4, passing through the qi has at least multR,s(F ) real lifts. In particular,

NP1×P2,floor
δ,R,s (d, e) ≤ NP1×P2,trop

δ,R ((d, e),w) .

Proof. The proof is analogous to that of Proposition 5.12, and we have to confirm the individual
real multiplicities of each node. It follows that the real multiplicities in Definition 5.16 (3-7) match
the numbers of real lifts in the same way as the real multiplicities in Definition 5.10 (4-7) treated
in the proof of Proposition 5.12. In the remaining case of C∗ij dual to a parallelogram and e ≡ 0

mod 4 (see Definition 5.16), we claim that there are two real lifts. Indeed, as indicated in the proof
of [9, Lemma 4.8], the question reduces to the existence of two real solutions with respect to the
variable z1,0 in the system [9, Formula (36)], which we reproduce here in the form

a1,i′,j′z
i′
20z

j′

30 − a−1,m′,n′z
m′
20 z

n′
30z
−2
10 = 0 . (10)

Assume that the parallelogram dual to C∗ij has vertices

(ij , k, l), (ij , k, l + 1), (ij , k + 1, 0), (ij , k + 1, 1) .

This circuit is associated with two additional points (cf. the second paragraph in the proof of [9,
Lemma 5.7])

w′ = (ij − 1, e, 0), w′′ = (ij + 1, 0, 0) . (11)
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Performing an affine-integral transformation that takes the given parallelogram into the following
one

Conv{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)} , (12)

we obtain

w′ = (−1, e− k, l(e− k − 1)), w′′ = (1,−k,−l(k + 1)) .

It follows that in (10) we have

i′ = −k, j′ = −l(k + 1), m′ = e− k, n′ = l(e− k − 1) .

The parameters z20, z30 can be found from the equations

a001 + a011z20 = 0, a010 + a011z30 = 0

(cf. [9, System (36)]). Due to the relation

a000a011 = a010a001

(cf. the first formula in [9, System (36)]), we have

z30 = −a000

a001
> 0 . (13)

Indeed, the parameters a000 and a001 come from the coefficients at the points (ij , k, l), (ij , k, l+ 1)
of the original circuit, and they must have different signs in view of the totally positive sign vector
s and the fact that the aforementioned points are joined by one segment of the lattice path. Next,
we notice that the difference of the exponents of z20 in (10) equals m′ − i′ = e− k − (−k) = e ≡ 0
mod 4. Hence, under the condition e ≡ 0 mod 4, equation (10) has two real solutions in z10 as
long as a1,i′,j′a−1,m′,n′ > 0. Due to our choice of the totally positive sign vector s, the latter relation
is equivalent to the evenness of the number of the edges of the lattice path joining the points w′

and w′′. Since this number equals 1
2e(e+ 3) + 2 ≡ 0 mod 2, we obtain the desired claim.

Assume that the parallelogram dual to C∗ij has vertices

(ij , k, e− k − 1), (ij , k, e− k), (ij , k + 1, l), (ij , k + 1, l + 1)

and is associated with the same points (11). By an affine integral transformation we bring the
given parallelogram to the form (12) and obtain

w′ = (−1, e− k, (e− k)(e− k − l − 2) + 1), w′′ = (1,−k,−k(e− k − l − 1)− e+ k + 1) ,

which yields in (10)

i′ = −k, j′ = −k(e− k − l − 1)− e+ k + 1, m′ = e− k, n′ = (e− k)(e− k − l − 2) + 1 .

As in the preceding case, we have z30 > 0, which finally provides two real solutions in (10) as long
as the number of the edges of the lattice path joining the points w′ and w′′ is even. Again this
number is 1

2e(e+ 3) + 2 ≡ 0 mod 2, we obtain the desired claim. �

5.3. Surfaces in P1 × P1 × P1. Throughout this section we suppose that the integers d, e, f, δ
satisfy 0 < δ < 1

2 min{d, e, f}. We also let n = (d+ 1)(e+ 1)(f + 1)− 1− δ.
Note that, under the above assumptions, the family of δ-nodal surfaces of tridegree (d, e, f) in

P1 × P1 × P1 has codimension δ in the space of all surfaces of tridegree (d, e, f), and similarly to
formulas (1), (8) we have

NP1×P1×P1
δ,C (d, e, f) =

(24(d− 1)(e− 1)(f − 1))δ

δ!
+O(dδ−2eδf δ) + +O(dδeδ−2f δ) +O(dδeδf δ−2)

+O(dδ−1eδ−1f δ) +O(eδ−1eδf δ−1) +O(dδeδ−1f δ−1) .

Definition 5.18. A δ-nodal floor plan F of tridegree (d, e, f) is a tuple (Cd, . . . , C0) of plane
tropical curves Ci of bidegree (e, f), together with a choice of indices d ≥ iδ ≥ . . . ≥ i1 ≥ 0, such
that ij+1 > ij + 1 for all j, satisfying the following properties:
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(1) The curve Ci passes through the following points (where we set i0 = −1 and iδ+1 = d+ 1):

if iν > i > iν−1 : Q(d−i)(e+1)(f+1)−δ+ν , . . . , Q(d+1−i)(e+1)(f+1)−δ+ν−2,
if i = iν : Q(d−i)(e+1)(f+1)−δ+ν+1, . . . , Q(d+1−i)(e+1)(f+1)−δ+ν−2.

(2) The plane curves Cij have a node germ for each j = 1, . . . , δ.
(3) If the node germ of Cij is a left string, then its horizontal end aligns with a horizontal

bounded edge of Cij+1.
(4) If the node germ of Cij is a right string, then its horizontal end aligns with a horizontal

bounded edge of Cij−1.
(5) If i1 = d, then the node germ of Cd is either a right string, or a right horizontal or up

vertical end of weight 2.
(6) If iδ = 1, then the node germ of C1 is either a left string or a left horizontal or down vertical

end of weight 2.

Observe that each Ci with i 6= iν passes through ef + e + f points, whereas each Ciν passes
through ef + e+ f − 1 points.

Definition 5.19. Let F = (Cd, . . . , C0) be a δ-nodal floor plan of tridegree (d, e, f). For each node
germ C∗ij in Cij , we define the following local complex multiplicity multC(C∗ij ):

(1) If C∗ij is dual to a parallelogram, then multC(C∗ij ) = 2.

(2) If C∗ij is the midpoint of an edge of weight 2, then multC(C∗ij ) = 8.

(3) If C∗ij is a horizontal end of weight 2, then multC(C∗ij ) = 2f.

(4) If C∗ij is a vertical end of weight 2, then multC(C∗ij ) = 2e.

(5) If C∗ij is a left string, then multC(C∗ij ) = 2.

(6) If C∗ij is a right string, then multC(C∗ij ) = 2.

The complex multiplicity of a δ-nodal floor plan is defined as the product of the local multiplicities
of all of its node germs,

multC(F ) =
δ∏
j=1

multC(C∗ij ),

and we set

NP1×P1×P1,floor
δ,C (d) =

∑
F

multC(F ),

where the sum goes over all δ-nodal floor plans of tridegree (d, e, f).

Notice that different to Definitions 5.4 and 5.14, a right string cannot align with a vertex which
is not adjacent to a horizontal edge, which is why we do not have case (7) in P1 × P1 × P1 that we
had in those two definitions.

Proposition 5.20. Construction 5.8 viewed as a map from the set of δ-nodal floor plans of tridegree
(d, e, f) to the set of tropical surfaces is injective. It sends a floor plan F to a δ-nodal tropical surface
S of tridegree (d, e, f) passing through the qi, and we have multC(F ) = multC(S). In particular,

NP1×P1×P1,floor
δ,C (d, e, f) ≤ NP1×P1×P1,trop

δ,C (d, e, f). (14)

Proof. The proof is analogous to Proposition 5.9. The only difference is that a horizontal end of
weight 2 intersects f edges of the previous or next floor, and a vertical end of weight 2 intersects e
edges of the next floor, and that a right string cannot align with a vertex which is not adjacent to
a horizontal edge. �

We now turn again to the real situation with a somewhat more subtle choice of signs.
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Definition 5.21. We define the sign vector s = {(+,+, εr)}r=1,...,n so that εr = + everywhere,
except for

r = f + 2 + 2λf + µ(e+ 1)(f + 1), λ = 0, ...,

[
e− 1

2

]
− θ, µ = 1, ..., d− 2 ,

where θ = 0 or 1 is chosen to satisfy the condition

ef + e+ f +

[
e− 1

2

]
− θ ≡ 0 mod 2 .

Remark 5.22. For the reader’s convenience, we comment on the meaning of the formulas for the sign
vector s in Definition 5.21. Extend the given configuration w with δ extra points following the rule
in the first paragraph of Section 5. Take the corresponding lattice path which goes through all the
integral points of the polytope (7). In each slice given by fixing the first coordinate i = const ≥ 1
and for each odd k = 2λ + 1 (with λ as in Definition 5.21), we consider the fragment of the
lattice path joining the points (i, k, 0) and (i, k, f) and pick the bottom segment. This segment is
associated with a point in the given configuration, and for this point, we set the signs (+,+,−). All
the remaining elements of the sign vector s are (+,+,+). When we consider the actual lattice path
omitting δ integral points in the polytope, we, first, exile the extra δ points in the configuration
and, second, we notice that each “negative” segment of the lattice path is shifted upward by the
number of preceding omitted points. The idea behind this choice of the sign vector is that it allows
one to obtain more real δ-nodal surfaces than for the totally positive sign vector (see details in the
proof of Proposition 5.24).

Definition 5.23. Let F = (Cd, . . . , C0) be a δ-nodal floor plan of tridegree (d, e, f). For each node
germ C∗ij in Cij , we define the following local real multiplicity multR,s(C

∗
ij

):

(1) If C∗ij is dual to a parallelogram either with vertices

(ij , k, l), (ij , k, l + 1), (ij , k + 1, 0), (ij , k + 1, 1), (15)

or

(ij , k, f − 1), (ij , k, f), (ij , k + 1, l), (ij , k + 1, l + 1), (16)

and e is even, then multR,s(C
∗
ij

) = 2.

(2) If C∗ij is the midpoint of an edge of weight 2, then multR,s(C
∗
ij

) = 0.

(3) If C∗ij is a horizontal end of weight 2, then multR,s(C
∗
ij

) = 0.

(4) If C∗ij is a vertical end of weight 2, dual to one of the segments [(ij , k − 1, 0), (ij , k + 1, 0)]

or [(ij , k − 1, f), (ij , k + 1, f)] where k ≤ 2
[
e−1

2

]
− 2θ + 1, then multR,s(C

∗
ij

) = 2f .

(5) If C∗ij is a left string, then it depends on the position of the dual of the horizontal bounded

edge of Cij+1 with which it aligns. Assume it has the vertices (ij+1, k, l) and (ij+1, k, l+1).
Then

multR,s(C
∗
ij ) =

{
2

0
if f + k ≡

{
0

1
modulo 2.

(6) If C∗ij is a right string, then it depends on the position of the dual of the horizontal bounded

edge of Cij+1 with which it aligns. Assume it has the vertices (ij−1, k, l) and (ij−1, k, l+1).
Then

multR,s(C
∗
ij ) =

{
2

0
if f + k ≡

{
0

1
modulo 2.

The real multiplicity of a δ-nodal floor plan is defined as the product of the local multiplicities of
all of its node germs,

multR,s(F ) =

δ∏
j=1

multR,s(C
∗
ij ),
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and we let
NP1×P1×P1,floor
δ,R,s (d, e, f) =

∑
F

multR,s(F ),

where the sum goes over all δ-nodal floor plans of tridegree (d, e, f).

Proposition 5.24. Suppose that e is even. Given a floor plan F , the δ-nodal tropical surface S
of tridegree (d, e, f) passing through the qi we obtain by Construction 5.8 at least multR,s(F ) real
lifts. In particular,

NP1×P1×P1,floor
δ,R,s (d, e, f) ≤ NP1×P1×P1

δ,R ((d, e, f),w).

Proof. As in Propositions 5.12 and 5.17 the real multiplicity of a floor plan equals the product of
the numbers of real lifts of each node C∗ij .

We start with the following observation: in any lattice path corresponding to δ-nodal floor plans
under consideration, the segments that are associated with the sign elements (+,+,−) ∈ s are of
the following form (cf. Remark 5.22)

[(i, k, lik), (i, k, lik + 1)], where


0 ≤ i ≤ d,
1 ≤ k ≤ 2[(e− 1)/2]− 2θ + 1, k ≡ 1 mod 2,

0 ≤ lik ≤ δ

Consider the node as in Definition 5.23 (1). Let it be dual to the parallelogram (15). This
parallelogram is associated with the points w′ = (ij − 1, e, f) and w′′ = (ij + 1, 0, 0). An affine-
integral transformation that takes the parallelogram to the canonical form (12) brings w′,w′′ to
the form

w′ = (−1, e− k, l(e− k) + f − l) =: (−1,m′, n′), w′′ = (1,−k,−l(k + 1)) =: (1, i′, j′) .

The key equation (10) turns into

a1,i′,j′z
−e
20 − a−1,m′,n′z

le+f
30 z−2

10 = 0 . (17)

In view of relation (13) which holds here in the same way as in the proof of Proposition 5.17,
equation (17) has two real solutions with respect to z10, since e is even and a1,i′,j′a−1,m′,n′ > 0.
The latter relations comes from the fact that the number of sign changes along the fragment of the
lattice path between the points w′,w′′ equals

ef + e+ f −
([

e− 1

2

]
− θ
)
≡ 0 mod 2 .

In the case of the parallelogram (16), we bring it to the canonical form (12) and obtain

w′ = (−1, e−k, (e−k)(f−l−1)+l) =: (−1,m′, n′), w′′ = (1,−k, k(l+1−f)−f+1) =: (1, i′, j′) .

Hence, the key equation (10) takes the form

a1,i′,j′z
−e
20 − a−1,m′,n′z

e(f−l−1)+f
30 z−2

10 = 0 ,

which for the above reason yields two real solutions.
In the case of Definition 5.23 (5), the node is associated with the parallelogram circuit

Conv{(ij − 1, k, l), ((ij − 1, k, l + 1), (ij , 0, 0), (ij , 0, 1)}
and two points

w′ = (ij − 1, k − 1, f), w′′ = (ij − 1, k + 1, 0) .

Bringing the parallelogram to the canonical form (12) by an affine-integral transformation, we
obtain

w′ = (−1, 0, f − 2l) =: (−1,m′, n′), w′′ = (1, 0, 0) =: (1, i′, j′),

and the key equation (10) in the form

a1,i′,j′ − a−1,m′,n′z
f−2l
30 z−2

10 = 0 .
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To get two real solutions we need the number of the sign changes along the fragment of the lattice
path between the points w′,w′′ to be even, and this number (cf. Definition 5.21) has the parity of
f + k. In the same manner we treat the case of Definition 5.23 (6).

At last, the case of Definition 5.23 (4) is governed by [9, Lemma 4.9(1) and Lemma 5.9]. An
upward oriented edge of weight 2 intersects f horizontal left-oriented ends of the floor Cij+1, and
each intersection point yields 2 real lifts. Indeed, the sufficient condition (cf. the first paragraph
of the proof of [9, Lemma 5.9]) for that is that the number of sign changes in the fragment of the
lattice path joining the endpoints of the circuit is even. This fragment contains 2f + 1 arcs, each
one yielding a sign change except for exactly one arc (see Definition 5.21). Similarly we obtain 2f
real lifts for each downward oriented edge of weight 2. �

6. Asymptotics and lower bounds for counts of floor plans for surfaces

Theorem 6.1. The number NP3,floor
δ,C (d) of δ-nodal floor plans for surfaces of degree d satisfies

NP3,floor
δ,C (d) = (4d3)δ/δ! +O(d3δ−1).

Proof. Given a floor plan, we associate an ordered partition (δ1, δ2, δ3) of δ, where, for i = 1, 2, 3,
δi is the number of node germs of type (i) in Definition 5.1. We first count floor plans for a fixed
partition (δ1, δ2, δ3). Relabeling the tuple of indices, we let i1 > . . . > iδ1 be the indices of the
curves carrying a node germ of type (1), iδ1+1 > . . . > iδ1+δ2 the indices of the curves carrying a
node germ of type (2) and iδ1+δ2+1 > . . . > iδ the indices of curves with a node germ of type (3).
Let us momentarily fix such a choice of indices, and consider the contribution of all floor plans for
our fixed partition and for the fixed choice of indices. This contribution is polynomial in the ij .
Since we will later sum over all possible ij , we only need to take the leading order into account for
our asymptotic count.

By Proposition 4.6, the number of Cij satisfying the conditions with a node germ of type (1) is

3i2j +O(ij), and the complex multiplicity of such a node germ is defined to be twice the multiplicity

of the curve (see Definition 5.4). Thus, for each ij , j = 1, . . . , δ1, we obtain a factor of 6i2j .

The number of Cij with a node germ of type (2) is 2ij , since we have that many possible locations
for horizontal or diagonal ends of weight 2. The multiplicity for each one is 2ij +O(1) by Definition
5.4, so altogether we obtain a factor of 4i2j .

Finally, consider a curve Cij with a left string. It can align with any horizontal bounded edge of
Cij+1, and since the latter is a smooth tropical plane curve of degree ij + 1 satisfying horizontally

stretched point conditions, there are ij + . . . + 1 = 1
2 i

2
j + O(ij) such edges. For each, the local

complex multiplicity is 2, and so we have a contribution of i2j for these. If Cij has a right string,
it can either meet a diagonal bounded edge of Cij−1, of which there are ij − 2 many, or a vertex

not adjacent to a diagonal edge, of which there are 2(ij − 3 + ij − 4 + . . .+ 1) = i2j +O(ij) many.
We can see that the alignments with a diagonal bounded edge do not produce the leading degree,
so we can neglect them. Altogether, we obtain a factor of i2j + i2j = 2i2j for all possibilities for Cij
which have a string, counted with multiplicity.

Thus, the leading term of the contribution of all floor plans with fixed partition and fixed choice
of indices as above is

6δ1 ·
δ1∏
j=1

i2j · 4δ2 ·
δ1+δ2∏
j=δ1+1

i2j · 2δ3 ·
δ∏

j=δ1+δ2+1

i2j .

We have to sum this expression over all choices of indices. By definition of floor plans (see 5.2),
the indices have to be sufficiently apart. Simplifying our summation ranges in a way that this is
not taken into account however, we do not change the leading term. Also, the computations from
above are not valid for the indices 1, d, since there are special requirements in the definition of a
floor plan. Again, neglecting those does not change the leading term. We conclude that the leading
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term of the contribution of floor plans with partition (δ1, δ2, δ3) equals the leading term of

d∑
i1=1

i1∑
i2=1

. . .

iδ1−1∑
iδ1=1

d∑
iδ1+1=1

. . .

iδ1+δ2−1∑
iδ1+δ2=1

d∑
iδ1+δ2+1=1

. . .

iδ−1∑
iδ=1

6δ1 ·
δ1∏
j=1

i2j · 4δ2 ·
δ1+δ2∏
j=δ1+1

i2j · 2δ3 ·
δ∏

j=δ1+δ2+1

i2j .

We compute this, using Faulhaber’s formula
∑d

h=1 h
p = 1

p+1d
p+1 +O(dp), to be

6δ1
(

1

3

)δ1 1

δ1!
· 4δ2

(
1

3

)δ2 1

δ2!
· 2δ3

(
1

3

)δ3 1

δ3!
d3δ = 2δ1+δ3 · 4δ2 ·

(
1

3

)δ2+δ3

· 1

δ1!δ2!δ3!
· d3δ.

What remains to be done is to sum the coefficient of this expression over all (δ1, δ2, δ3). Taking
δ1 + δ2 + δ3 = δ into account, we obtain

δ∑
δ1=0

δ−δ1∑
δ2=0

2δ2δ2
(

1

3

)δ−δ1
· 1

δ1!δ2!(δ − δ1 − δ2)!
= 2δ

δ∑
δ1=0

(
1

3

)δ−δ1 1

δ1!

δ−δ1∑
δ2=0

2δ2
1

δ2!(δ − δ1 − δ2)!

=2δ
δ∑

δ1=0

(
1

3

)δ−δ1 1

δ1!(δ − δ1)!

δ−δ1∑
δ2=0

2δ2
(
δ − δ1

δ2

)
= 2δ

δ∑
δ1=0

(
1

3

)δ−δ1 1

δ1!(δ − δ1)!
(1 + 2)δ−δ1

=2δ
δ∑

δ1=0

1

δ1!(δ − δ1)!
=

2δ

δ!

δ∑
δ1=0

(
δ

δ1

)
=

2δ

δ!
(1 + 1)δ =

4δ

δ!
. �

We can adapt this count, producing lower bounds for numbers of real surfaces:

Theorem 6.2. Let s = ((+)3)n be the sign vector with all signs positive. Then the number of
δ-nodal floor plans of degree d, counted with real multiplicity w.r.t. s, satisfies:

NP3,floor
δ,R,s (d) =

1

δ!

(
3

2
d3

)δ
+O(d3δ−1).

Proof. The proof is analogous to the proof of Theorem 6.1, we just have to adapt the numbers to
the real multiplicities.

Consider curves Cij with a node of type (1). Going through Definition 5.10, we can see that
for node germs which are midpoints of an edge of weight 2, the real multiplicity is 0. From the
proof of Proposition 4.6, we can see that these curves account for 2i2j +O(ij) in the total complex

count. The ones with node germ dual to a parallelogram contribute the remaining i2j +O(ij) in the
complex count, but here, only half of them come with a nonzero real multiplicity, being 2. Thus,
for each ij , j = 1, . . . , δ1, we obtain a factor of i2j .

The number of Cij with a node germ of type (2) is 2ij , since we have that many possible
locations for horizontal or diagonal ends of weight 2. However, now only the ones with a diagonal
end contribute by Definition 5.10, and their multiplicity for each is 2ij + O(1), so altogether we
obtain a factor of 2i2j .

Finally, consider a curve Cij with a left string. It can align with any horizontal bounded edge of
Cij+1, but only half of the choices lead to a nonzero multiplicity of 2. Thus, we have a contribution

of 1
2 i

2
j for these. If Cij has a right string, we can neglect alignments with a diagonal bounded edge as

before and only consider the possibilities to meet a vertex not adjacent to a diagonal edge of Cij−1,

of which there are i2j + O(ij) many, each counting with multiplicity one. Altogether, we obtain a

factor of 1
2 i

2
j + i2j = 3

2 i
2
j for all possibilities for Cij which have a string, counted with multiplicity.

Thus, the leading term of the contribution to the real count of all floor plans with fixed partition
and fixed choice of indices as above is

1δ1 ·
δ1∏
j=1

i2j · 2δ2 ·
δ1+δ2∏
j=δ1+1

i2j ·
(3

2

)δ3
·

δ∏
j=δ1+δ2+1

i2j .
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We have to sum this expression over all choices of indices as above, and using Faulhaber’s formula
again we obtain

1δ1
(

1

3

)δ1 1

δ1!
· 2δ2

(
1

3

)δ2 1

δ2!
·
(

3

2

)δ3 (1

3

)δ3 1

δ3!
d3δ =

(
1

3

)δ
2δ2 ·

(
3

2

)δ3
· 1

δ1!δ2!δ3!
· d3δ.

We sum the coefficient of this expression over all (δ1, δ2, δ3) and obtain

(
1

3

)δ δ∑
δ1=0

δ−δ1∑
δ2=0

2δ2
(

3

2

)δ−δ1−δ2
· 1

δ1!δ2!(δ − δ1 − δ2)!

=

(
1

3

)δ δ∑
δ1=0

1

δ1!(δ − δ1!)

δ−δ1∑
δ2=0

2δ2
(

3

2

)δ−δ1−δ2
·
(
δ − δ1

δ2

)

=

(
1

3

)δ δ∑
δ1=0

1

δ1!(δ − δ1!)

(
2 +

3

2

)δ−δ1
=

(
1

3

)δ 1

δ!

δ∑
δ1=0

(
δ

δ1

)(
7

2

)δ−δ1
=

(
1

3

)δ 1

δ!

(
1 +

7

2

)δ
=

(
1

3
· 9

2

)δ 1

δ!
=

(
3

2

)δ 1

δ!
. �

This proves Theorem 1.1.

Theorem 6.3. The number NP1×P2,floor
δ,C (d, e) of δ-nodal floor plans for surfaces of bidegree (d, e)

satisfies

NP1×P2,floor
δ,C (d, e) = (12de2)δ/δ! +O(dδ−1e2δ) +O(dδe2δ−1).

Proof. We proceed as in the proof of Theorem 6.1.
Now the number of Cij satisfying the conditions with a node germ of type (1) is 3e2 +O(e), and

the complex multiplicity of such a node germ is defined to be twice the multiplicity of the curve
(see Definition 5.14). Thus, for each ij , j = 1, . . . , δ1, we obtain a factor of 6e2.

The number of Cij with a node germ of type (2) is 2e, since we have that many possible locations
for horizontal or diagonal ends of weight 2. The multiplicity for each is 2e by Definition 5.14, so
altogether we obtain a factor of 4e2.

Finally, consider a curve Cij with a left string. It can align with any horizontal bounded edge of

Cij+1, and there are 1
2e

2 +O(ij) many. For each, the local complex multiplicity is 2, and so we have

a contribution of e2 for these. If Cij has a right string, we disregard alignments with a diagonal
bounded edge and only consider alignments with a vertex not adjacent to a diagonal edge, of which
there are e2 + O(e) many. Altogether, we obtain a factor of e2 + e2 = 2e2 for all possibilities for
Cij which have a string, counted with multiplicity.

Thus, the leading term of the contribution of all floor plans with fixed partition and fixed choice
of indices as above is

(6e2)δ1 · (4e2)δ2 · (2e2)δ3 .

Again, we sum this over all choices of indices, obtaining:

d∑
i1=1

i1∑
i2=1

. . .

iδ1−1∑
iδ1=1

d∑
iδ1+1=1

. . .

iδ1+δ2−1∑
iδ1+δ2=1

d∑
iδ1+δ2+1=1

. . .

iδ−1∑
iδ=1

(6e2)δ1 · (4e2)δ2 · (2e2)δ3

=6δ14δ22δ3
1

δ1!δ2!δ3!
(de2)δ.

What remains to be done is to sum the coefficient of this expression over all (δ1, δ2, δ3):
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δ∑
δ1=0

δ−δ1∑
δ2=0

6δ14δ22δ−δ1−δ2 · 1

δ1!δ2!(δ − δ1 − δ2)!

=
1

δ!

δ∑
δ1=0

δ!

δ1!(δ − δ1)!
6δ1

δ−δ1∑
δ2=0

4δ22δ−δ1−δ2 · (δ − δ1)!

δ1!δ2!(δ − δ1 − δ2)!

=
1

δ!

δ∑
δ1=0

δ!

δ1!(δ − δ1)!
6δ1(4 + 2)δ−δ1 =

1

δ!
(6 + 6)δ =

1

δ!
12δ. �

This asymptotics in the complex case was known to the experts. However, now we use our
method to consider the real case:

Theorem 6.4. Let s = ((+)3)n be the sign vector with all signs positive, and let integers d, e, δ
satisfy 0 < δ ≤ 1

2 min{d, e}. Then the number of δ-nodal floor plans of bidegree (d, e), counted with
real multiplicity w.r.t. s, satisfies:

NP1×P2,floor
δ,R,s (d, e) ≥ 1

δ!

(
11

2
de2

)δ
+O(dδ−1e2δ) +O(dδe2δ−1), (18)

where δ is fixed and min{d, e} → ∞.

Proof. Suppose, first, that e ≡ 0 mod 4.
Similarly to the proof of Theorem 6.2, we have to adapt the proof of Theorem 6.3 to the real

multiplicities of Definition 5.16.
Now the number of Cij satisfying the conditions with a node germ of type (1) which is a par-

allelogram is e2 + O(e), and the real multiplicity of such a node germ is defined to be twice the
multiplicity of the curve (see Definition 5.16). Thus, for each ij , j = 1, . . . , δ1, we obtain a factor
of 2e2.

The number of Cij with a node germ of type (2) is 2e, since we have that many possible locations
for horizontal or diagonal ends of weight 2. The multiplicity is 0 for the horizontal ends and 2e for
the diagonal ends by Definition 5.16, so altogether we obtain a factor of 2e2.

Finally, consider a curve Cij with a left string. It can align with any horizontal bounded edge of

Cij+1, and there are 1
2e

2 +O(ij) many, but only half of them give a nonzero contribution of 2. We

obtain 1
2e

2 for these. If Cij has a right string, we disregard alignments with a diagonal bounded
edge and only consider alignments with a vertex not adjacent to a diagonal edge, of which there
are e2 + O(e) many. Altogether, we obtain a factor of 1

2e
2 + e2 = 3

2e
2 for all possibilities for Cij

which have a string, counted with multiplicity.
Thus, the leading term of the contribution of all floor plans with fixed partition and fixed choice

of indices as above is

(2e2)δ1 · (2e2)δ2 ·
(

3

2
e2

)δ3
.

Again, we sum this over all choices of indices, obtaining:

d∑
i1=1

i1∑
i2=1

. . .

iδ1−1∑
iδ1=1

d∑
iδ1+1=1

. . .

iδ1+δ2−1∑
iδ1+δ2=1

d∑
iδ1+δ2+1=1

. . .

iδ−1∑
iδ=1

(2e2)δ1 · (2e2)δ2 ·
(

3

2
e2

)δ3

=2δ12δ2
(

3

2

)δ3 1

δ1!δ2!δ3!
(de2)δ.

What remains to be done is to sum the coefficient of this expression over all (δ1, δ2, δ3):
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δ∑
δ1=0

δ−δ1∑
δ2=0

2δ12δ2
3

2

δ−δ1−δ2
· 1

δ1!δ2!(δ − δ1 − δ2)!

=
1

δ!

δ∑
δ1=0

δ!

δ1!(δ − δ1)!
2δ1

δ−δ1∑
δ2=0

2δ2
(

3

2

)δ−δ1−δ2
· (δ − δ1)!

δ1!δ2!(δ − δ1 − δ2)!

=
1

δ!

δ∑
δ1=0

δ!

δ1!(δ − δ1)!
2δ1
(

2 +
3

2

)δ−δ1
=

1

δ!

(
2 +

7

2

)δ
=

1

δ!

(
11

2

)δ
.

Suppose that e 6≡ 0 mod 4. Set e′ = 4[e/4]. Then, for the data d, e′, δ, we have

NP1×P2,floor
δ,R,s (d, e′) ≥ 1

δ!

(
11

2
d(e′)2

)δ
+O(dδ−1(e′)2δ) +O(dδ(e′)2δ−1)

∼ 1

δ!

(
11

2
de2

)δ
+O(dδ−1e2δ) +O(dδe2δ−1) .

Thus, the following lemma completes the proof. �

Lemma 6.5. Let ∆′ ⊂ ∆ ⊂ R3 be nondegenerate convex lattice polytopes, δ ≥ 1. Suppose that there
exists a configuration p′ of |∆′ ∩Z3| − 1− δ points in (R∗)3 such that the linear system of surfaces
with Newton polytope ∆′ passing through p′ contains N real surfaces with δ real nodes as their only
singularities (in the big torus), and each of these surfaces corresponds to a point of a transversal
intersection of the linear system with the family of δ-nodal surfaces with Newton polytope ∆′. Then
one can extend p′ up to a configuration p of |∆ ∩ Z3| − 1 − δ points in (R∗)3 so that the linear
system of surfaces with Newton polygon ∆ passing through p will contain (at least) N real surfaces
with δ real nodes as their only singularities.

Proof. The statement can be proved literally in the same manner as [9, Theorem 5.3]. �

Theorem 6.6. The number NP1×P1×P1,floor
δ,C (d, e, f) of δ-nodal floor plans for surfaces of tridegree

(d, e, f) satisfies

NP1×P1×P1,floor
δ,C (d, e, f) = (24def)δ/δ! +O(dδ−1eδf δ) +O(dδeδ−1f δ) +O(dδeδf δ−1).

Proof. We proceed as in the proof of Theorem 6.1.
Now the number of Cij satisfying the conditions with a node germ of type (1) has leading term

6ef , so we obtain a factor of 12ef .
The number of Cij with a node germ of type (2) is 2e + 2f , since we have that many possible

locations for horizontal or vertical ends of weight 2. The multiplicity for each horizontal one is 2f
by Definition 5.4, whereas for the vertical ones we have 2e, so altogether we obtain a factor of 8ef .

Finally, consider a curve Cij with a left string. It can align with any horizontal bounded edge of
Cij+1, and there are ef many asymptotically. For each, the local complex multiplicity is 2, and so
we have a contribution of 2ef for these. The same holds for right strings. Altogether, we have 4ef .

Thus, the leading term of the contribution of all floor plans with fixed partition and fixed choice
of indices as above is

(12ef)δ1 · (8ef)δ2 · (4ef)δ3 .

Again, we sum this over all choices of indices, obtaining:

d∑
i1=1

i1∑
i2=1

. . .

iδ1−1∑
iδ1=1

d∑
iδ1+1=1

. . .

iδ1+δ2−1∑
iδ1+δ2=1

d∑
iδ1+δ2+1=1

. . .

iδ−1∑
iδ=1

(12ef)δ1 · (8ef)δ2 · (4ef)δ3

=
1

δ1!δ2!δ3!
12δ18δ24δ3(def)δ.



TROPICAL FLOOR PLANS AND ENUMERATION OF MULTI-NODAL SURFACES 27

What remains to be done is to sum the coefficient of this expression over all (δ1, δ2, δ3), and in
the same way as before we obtain 1

δ! · 24δ. �

Again, this asymptotics in the complex case was known to the experts. As before, we now use
our methods to consider the real case:

Theorem 6.7. Let integers d, e, f, δ satisfy 0 < δ < 1
2 min{d, e, f}, and let the sign vector s be as

introduced in Definition 5.21. Then the number of δ-nodal floor plans of tridegree (d, e, f), counted
with real multiplicity w.r.t. s, satisfies:

NP1×P1×P1,floor
δ,R,s (d, e, f) =

(10def)δ

δ!
+O(dδ−1eδf δ) +O(dδeδ−1f δ) +O(dδeδf δ−1), (19)

where δ is fixed and min{d, e, f} → ∞.

Proof. Suppose, first, that e is even. We adapt Theorem 6.6 to the real multiplicities of Definition
5.23.

The number of Cij satisfying the conditions with a node germ of type (1) has leading term 6ef ,
but only 2ef of those come from parallelograms and the others from midpoints of weight 2 edges
which do not contribute, so we obtain a factor of 4ef .

The number of Cij with a node germ of type (2) is 2e + 2f , since we have that many possible
locations for horizontal or vertical ends of weight 2. But only the vertical ones contribute with
multiplicity 2f , so altogether we obtain a factor of 4ef .

Finally, consider a curve Cij with a left string. It can align with any horizontal bounded edge of
Cij+1, and there are ef many asymptotically, but only half of them contribute. For each, the local
complex multiplicity is 2, and so we have a contribution of ef for these. The same holds for right
strings. Altogether, we have 2ef .

Thus, the leading term of the contribution of all floor plans with fixed partition and fixed choice
of indices as above is

(4ef)δ1 · (4ef)δ2 · (2ef)δ3 .

Again, we sum this over all choices of indices, obtaining:

d∑
i1=1

i1∑
i2=1

. . .

iδ1−1∑
iδ1=1

d∑
iδ1+1=1

. . .

iδ1+δ2−1∑
iδ1+δ2=1

d∑
iδ1+δ2+1=1

. . .

iδ−1∑
iδ=1

(4ef)δ1 · (4ef)δ2 · (2ef)δ3

=
1

δ1!δ2!δ3!
4δ14δ22δ3(def)δ.

What remains to be done is to sum the coefficient of this expression over all (δ1, δ2, δ3), and in
the same way as before we obtain 1

δ! · 10δ.
Suppose that e is odd. Then we prove (19) by means of Lemma 6.5 as it was done in the proof

of Theorem 6.4. �
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