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Abstract. We introduce the notion of real phase structure on rational
polyhedral fans in Euclidean space. Such a structure consists of an
assignment of affine spaces over Z/2Z to each top dimensional face of
the fan subject to two conditions.

Given an oriented matroid we can construct a real phase structure
on the fan of the underlying matroid. Conversely, we show that from a
real phase structure on a matroid fan we can produce an orientation of
the underlying matroid. Thus real phase structures are cryptomorphic
to matroid orientations.

The topes of the orientated matroid are recovered immediately from
the real phase structure. We also provide a direct way to recover the
signed circuits of the oriented matroid from the real phase structure.
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1. Introduction

We propose a definition of real phase structures on rational polyhedral
fans, with specific attention to matroid fans, also known as Bergman fans
of matroids. A real phase structure on a fan in Rn is the specification of
an affine subspace of (Z/2Z)n for each top-dimensional cone of the fan and
subject to two conditions, see Definition 2.2. Given an oriented matroidM,
its underlying non-oriented matroid is denoted by M. For a fixed matroid
M , an oriented matroid M such that M = M is called an orientation of
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M . Our main theorem states that a real phase structure on the associated
matroid fan ΣM is equivalent to an orientation of the underlying matroid
M .

Theorem 1.1. Given a fixed matroid M , there is a natural bijection between
orientations M of M and real phase structure on the matroid fan ΣM . In
other words, oriented matroids and real phase structures on matroid fans are
cryptomorphic concepts.

Real phase structures have previously been defined on tropical curves
[Mik06, Section 7.2], [Ber], [BBR17], and on non-singular tropical hypersur-
faces [Ren17] and [RS18]. These two special cases of real phase structures on
polyhedral complexes have been used in the study of real enumerative geom-
etry, in the form of Welschinger invariants, and the topology of real algebraic
varieties. Studying the fans of matroids has led to major breakthroughs in
understanding the behaviour of many matroid invariants [AHK18], [ADH20].
Our hope is that matroid fans equipped with real phase structures will find
similar applications in the study of oriented matroids.

The initial goal of our investigation into real phase structures on matroid
fans was to generalise the spectral sequence from [RS18] and subsequent
bounds obtained on Betti numbers of real algebraic hypersurfaces arising
from Viro’s patchworking procedure [Vir84], [Vir08] to more general spaces.
This is the subject of a forthcoming paper, in which we define the real part of
a tropical variety equipped with a real phase structure. This is similar to the
patchworking of tropical linear spaces of Celaya, Loho and Yuen [CLY20],
yet we do not require the underlying matroid of the oriented matroid to be
uniform.

We construct the bijection from Theorem 1.1 explicitly by assigning to
each oriented matroidM withM = M a real phase structure on ΣM . The
real part of this real phase structure produces a topological representation
of the oriented matroid in the sense of the famous theorem of Folkman and
Lawrence [FL78]. This recovers similar constructions by Ardila, Klivans,
and Williams [AKW06] and Celaya [Cel19] for the positive real part and
real part of a matroid fan. In the forthcoming paper, we combine this fact
with Theorem 1.1 to prove that the real part of a non-singular tropical variety
is a PL-manifold.

The paper is organised as follows. In Section 2.1, we recall the definition
of rational polyhedral fans and introduce the notion of real phase structures
on them. Then we specialise to the case of fans arising from matroids. In
Subsection 2.2, we recall the construction of Ardila and Klivans of a matroid
fan from its lattice of flats. In Subsection 2.3, we introduce the notion of
necklace line arrangements and translate one of the conditions for real phase
structures into this language in the case of matroid fans. We show that
real phase structures on matroid fans behave well under the operations of
deletion and contraction of the underlying matroid in Subsection 2.4.

Section 3 contains our main results. First, in subsection 3.1 we show how
to obtain a real phase structure from an oriented matroid. Then in Sub-
sections 3.2 and 3.3, we prove that every real phase structure on a matroid
fan is obtained in this fashion by considering oriented matroid quotients.
Finally, for convenience, in Subsection 3.4 we give an explicit description of
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how to recover the signed circuits of the oriented matroid from the real phase
structure on a matroid fan.
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2. Real phase structures

2.1. Fans and real phase structures. A polyhedral fan Σ in Rn is a
collection of convex polyhedral cones such that every face of a cone in Σ is
also a cone in Σ, and the intersection of two cones is a face of both of them.
A fan is rational if all of its cones are generated over Z. The faces of Σ
which are maximal with respect to inclusion are called the facets of Σ. We
denote the set of facets of Σ by Facets(Σ). A rational polyhedral fan is pure
dimensional if its facets are all of equal dimension. Here we only consider
fans of pure dimension.

Throughout V will be a vector space over Z2 := Z/2Z. We let Affd(V )
denote the set of all affine subspaces of dimension d in V . Given A ∈ Affd(V ),
we denote by T (A) the tangent space of A. In particular, the space T (A) is
the d-dimensional linear subspace in V generated by the vectors x − y for
x, y ∈ A. If σ is a rational polyhedral cone in Rn, we denote its tangent
space by T (σ). This is equivalent to the linear span over R of the vectors
generating the cone. The set of integer points in its tangent space of σ is
denoted by TZ(σ), and the reduction mod 2 of these points is denoted by
TZ2(σ).

Definition 2.1. A collection of subsets of a set such that every element in
the union is contained in an even number of the subsets is called an even
covering.

Definition 2.2. Let Σ be a rational polyhedral fan of pure dimension d in
Rn. A real phase structure E on Σ is a map

E : Facets(Σ)→ Affd(Zn2 )

such that
(1) for every facet σ of Σ, the set E(σ) is an affine subspace of Zn2 parallel

to σ, in formulas, T (E(σ)) = TZ2(σ);
(2) for every codimension one face τ of Σ with facets σ1, . . . , σk adjacent

to it, the sets E(σ1), . . . , E(σk) are an even covering.

Definition 2.3. Let E be a real phase structure on Σ. A reorientation of E is
a real phase structure E ′ obtained by translating all affine subspaces in a real
phase structure E by a fixed vector ε ∈ Zn2 . In other words E ′(σ) = E(σ) + ε
for all σ ∈ Σ.



4 JOHANNES RAU, ARTHUR RENAUDINEAU, AND KRIS SHAW

2.2. Matroid fans. A matroid M is a finite set E together with a function
r : 2E → N≥0, where 2E denotes the power set of E. The set E is called the
ground set of M and r the rank function. The rank function is subject to
the axioms:

(1) 0 ≤ r(A) ≤ |A| for all A ⊆ E
(2) if A ⊆ B ⊆ E, then r(A) ≤ r(B)
(3) if A,B ⊆ E, then r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).
The rank function defines a closure operator on subsets by

cl(A) = {i ∈ E | r(A) = r(A ∪ i)} ⊇ A.
A subset F ⊆ E is a flat of M if it is closed with respect to this operator,
namely cl(F ) = F . The flats of a matroid M ordered by inclusion form a
lattice, known as the lattice of flats, which we denote by L.

A loop is an element of the ground set for which r(i) = 0. Parallel elements
are pairs of non-loop elements for which r(ij) = 1. A matroid is simple if it
contains no loops or parallel elements. A circuit is any set A ⊂ E such that
|A| = r(A) + 1 and |A| = r(A \ i) for any i ∈ A. A coloop is an element that
does not belong to any circuit.

Given a loopfree matroid M on the base set E, we denote by ΣM the
affine matroid fan in RE and by PΣM = ΣM/〈(1, . . . , 1)〉 the projective
matroid fan in RE/〈(1, . . . , 1)〉. We now describe how to construct both of
these fans following Ardila and Klivans [AK06]. Fix the vectors vi = −ei
where {e1, . . . , en} is the standard basis of RE for E = {1, . . . , n} and set
vI =

∑
i∈I vi for any subset I ⊂ E. For a chain of flats

F = {∅ ( F1 ( F2 ( · · · ( Fk ( E}
in the lattice of flats L, define the k + 1-dimensional cone

σF = 〈vF1 , . . . , vFk
,±vE〉≥0.

The affine matroid fan ΣM is the collection of all such cones ranging over
the chains in L. In particular, the top dimensional faces of ΣM are in one
to one correspondence with the maximal chains in the lattice of flats of
M . The projective matroid fan PΣM is the image of ΣM in the quotient
RE/(1, . . . , 1).

If a matroidM has loops L = cl(∅), then we set ΣM := ΣM/L ⊂ RE\L and
PΣM := PΣM/L ⊂ RE\L/(1, . . . , 1). This is a practical definition, the more
coherent point of view is to regard the affine and projective matroid fans
as subsets of boundary strata of tropical affine space and tropical projective
space, respectively. See [Sha13] or [MR] for more details.

Example 2.4. The uniform matroid of rank k + 1 on n elements will be
denoted Uk+1,n. The flats of the matroid M = Uk+1,n are all subsets of
{1, . . . , n} of size less than or equal to k and {1, . . . , n}. Therefore, the faces
of top dimension of ΣM are in bijection with ordered subsets of size k. For
example, the ordered set {i1 < i2 < · · · < ik} corresponds to a chain of flats

F = {∅ ( F1 ( · · · ( Fk ( E}
where F1 = {i1} and Fi+1 = Fi∪ ii+1, which in turn corresponds to the cone

σF = 〈vF1 , . . . , vFk
,±vE〉≥0.
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Figure 1. The projective fan of the matroid U3,4 drawn in
R4/(1, . . . , 1) as described in Example 2.4.

The projective fan for U3,4 is shown in Figure 1. The dotted rays in this fan
correspond to the 6 rank 2 flats.

There are coarser fan structures on the support of the fan ΣM . For
example, the fan with maximal cones σI = 〈vi1 , . . . , vik ,±vE〉 where I =
{i1, . . . , ik} ranges over all subsets I of E of size k, has the same support as
ΣM . This in known as the coarse matroid fan of M [AK06].

2.3. Necklace arrangements. We now give an equivalent reformulation of
Condition (2) in Definition 2.2 in the case of matroid fans. Notice first that
there is a one to one correspondence between real phase structures on ΣM

and PΣM induced by the projection ZE2 → ZE2 /(1, . . . , 1).
Suppose E is a real phase structure on a d-dimensional rational polyhedral

fan Σ and let τ be a codimension 1 face of Σ. Then the affine subspaces
E(σi) where σi are the facets adjacent to τ all contain the direction of the
(d − 1)-dimensional linear space TZ2(τ). The even covering property at the
codimension one face τ can be equivalently checked on the lines in Zn2/TZ2(τ)
obtained as projections of the E(σi)’s.

Given an arrangement of lines L1, . . . , Lk ∈ Aff1(V ), its intersection com-
plex is the simplicial complex that consists of a vertex for every line and a
simplex on the vertices i1, . . . , iq for every point in Li1 ∩ · · · ∩ Liq .

Definition 2.5. An arrangement of lines L1, . . . , Lk ∈ Aff1(V ) is a necklace
of lines if its intersection complex is a cycle graph. An arrangement of sub-
spaces E1, . . . , Ek ∈ Affd(V ) whose tangent spaces share a d− 1-dimensional
linear space W is called a necklace arrangement if the projection to V/W
yields lines L1, . . . , Lk forming a necklace of lines.

Remark 2.6. We will use this definition exclusively for vector spaces over
Z2. Under this assumption, two lines L1, L2 form a necklace if and only if
L1 = L2. If a necklace arrangement consists of more than two lines, then
these lines must be pairwise distinct.

For subspace arrangements of higher dimension, note that the definition
of necklace arrangement is independent of the choice of W . Indeed, if this
choice is not unique, then the affine spaces are all parallel and hence form a
necklace if and only if k = 2 and E1 = E2.
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Figure 2. Three line arrangements in Z3
2 from Example 2.7.

Example 2.7. Figure 2 shows three different line arrangements in Z3
2. The

points in Z3
2 are represented as vertices of a cube. Lines in Zn2 are in corre-

spondence with pairs of points. So in the figure a line is represented by an
edge joining two points. The first line arrangement consists of 4 lines, and
the 4 lines considered as subsets of Z3

2 do not form an even cover in the sense
of Definition 2.1. In the second example, there are 6 lines, which form an
even cover but do not form a necklace arrangement. The third example is
collection of 4 lines forming a necklace arrangement.

We can establish the following alternative for condition (2) in Definition
2.2 in the case of matroid fans.

(2’) For every codimension one face τ of Σ with facets σ1, . . . , σk adjacent
to it, the subspaces E(σ1), . . . , E(σk) form a necklace arrangement.

Lemma 2.8. Let E : Facets(Σ)→ Affd(Zn2 ) be a map satisfying condition (1)
from Definition 2.2. If E satisfies condition (2’), then it also satisfies condi-
tion (2). Moreover, if Σ = ΣM (or Σ = PΣM ) is an affine (or projective)
matroid fan, then the two conditions are equivalent.

Proof. Suppose Condition (2’) is satisfied, then at each codimension one
face τ of Σ the intersection complex of the subspaces E(σ1), . . . , E(σk) is a
necklace arrangement. In particular, every element in E(σ1) ∪ · · · ∪ E(σk) is
contained in exactly two of the affine spaces. This implies the first statement.

Let us now assume Σ = ΣM for some matroid M . The statement for
projective fans is equivalent. Assume that E satisfies condition (2). For a
face τ of codimension 1 of ΣM and a facet σi adjacent to τ , let vi ∈ Zn/TZ(τ)
be the non-zero integer vector representing the image of TZ(σi) under the
quotient by TZ(τ). Let vi ∈ Zn2/TZ2(τ) denote the mod 2 reduction of vi.
Then the directions of the lines in the necklace line arrangement in Zn2/TZ2(τ)
are vi. Any cycle in the intersection complex corresponds to a non-trivial
linear relation among the vectors vi in Zn2/TZ2(τ). In the case of matroid
fans, there is a unique, up to scalar, linear relation among the vi’s, namely
their sum is zero. Indeed, the chain of flats F associated to τ contains exactly
one gap, namely flats F ( G with r(G) = r(F ) + 2. Then the statement
follows from [Rau20, Remark 4.4 b)] and the fact that the setsHi\F , running
through all in-between flats F ( Hi ( G, form a partition of G \ F . �

Definition 2.9. Given a finite set S, a necklace ordering of S is an equiv-
alence class of two cyclic orderings of S, which are related by reversing the
order. For example, a cycle graph defines a necklace ordering of its vertices.
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Remark 2.10. A real phase structure on a matroid fan ΣM determines at
every codimension one face of ΣM a necklace ordering of the facets of ΣM

adjacent to the codimension one face. The necklace ordering is defined by the
cycle graph of the necklace line arrangement at each codimension one face. A
reorientation of a real phase structure in the sense of Definition 2.3 induces
the same necklace ordering of facets adjacent to codimension one faces as the
original real phase structure.

Question 2.11. Is a real phase structure on a matroid fan determined, up
to reorientation, by the induced necklace ordering of the facets at each codi-
mension one face of the fan?

In general, we may ask for a description of the set of real phase structures
which produce a fixed collection of necklace orderings at codimension one
faces. Using the correspondence between real phase structures on matroid
fans and orientations of matroids which we will prove here, we can translate
the question to one about oriented matroids: Up to reorientations, is an
oriented matroid determined by its rank 2 minors?

Example 2.12. Consider the projective fan of the uniform matroid M =
U2,n. The fan PΣM ⊂ Rn−1 has n edges generated by the images of the
vectors v1 = −e1, . . . , vn = −en in Rn/〈(1, · · · , 1)〉. Denote by ρi the image
of the vector vi. Note that

∑
vi = 0. Choosing a real phase structure on

PΣM amounts to choosing the following ingredients:
(1) A necklace ordering of the n edges corresponding to ρi1 , . . . , ρin ;
(2) A point p ∈ Zn−12 ' Zn2/〈(1, · · · , 1)〉 that serves as the intersection

point of E(ρi1) and E(ρi2).
From this information, a collection of affine lines E(ρi) satisfying the condi-
tions of Definition 2.2 can be uniquely recovered. For example, the choice
of point p determines both E(ρi1) and E(ρi2), since their tangent spaces are
fixed. By the necklace arrangement property, the point p +

∑j−1
k=2 vik is in

the affine line E(ρij ) for j ≥ 3, where the vector sum is considered mod 2.
This determines all of the affine lines E(ρij ).

Figure 3 shows the fan PΣM ⊂ R4/〈(1, 1, 1, 1)〉 ∼= R3 for M = U2,4

together with an assignment of affine spaces along its edges that deter-
mine a real phase structure. The induced necklace ordering of the facets
is σ2, σ3, σ1, σ4. From Figure 3, we see that the point p is contained in the
intersection E(σ2) ∩ E(σ3). If we set p = (0, 0, 0, 0) ∈ Z4

2/〈(1, 1, 1, 1)〉, then
the corresponding necklace of lines is the last of the three arrangements in
Z3
2
∼= Z4

2/〈(1, 1, 1, 1)〉 depicted in Figure 2.

Example 2.13. For the matroid M = Un−1,n we will show that there is a
unique real phase structure on PΣM up to reorientation. Such real phase
structures were considered in [RS18].

By [RS18, Lemma 3.14], a real phase structure E on PΣM satisfies

|
⋃
σ

E(σ)| = 2n−1 − 1.

Therefore there is exactly one element ε in the complement Zn−12 \ ∪σ E(σ).
Up to reorientation we can suppose that ε = (0, . . . , 0).
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p+ v3 + TZ2(σ1)

p+ TZ2(σ3)

p+ TZ2(σ2)

p+ v2 + TZ2(σ4)

Figure 3. The projective fan of the matroid U2,4 from Ex-
ample 2.12 drawn in R4/〈(1, . . . , 1)〉 with the labelling of the
faces indicating the assignment of an affine space E(σi) par-
allel to TZ2(σi).

Since PΣM is of codimension one in Rn−1, for each facet σ of PΣM there
is a choice of exactly two affine subspaces of Zn−12 which are parallel to the
reduction of the span of σ in Zn−12 . One of these spaces is an honest vector
subspace and hence contains (0, . . . , 0). Therefore, if we are to associate to
each σ an affine subspace E(σ) and wish to avoid that it contains (0, . . . , 0),
then the choice of affine space at each top dimensional face is determined.
This demonstrates that there is at most one real phase structure on PΣM ,
up to reorientation in the sense of Definition 2.3.

2.4. Deletion and contraction of real phase structures. We briefly
recall the notion of minors of a matroid. Let M be a matroid with ground
set E and rank function r. For S ⊂ E, then the deletion of S is the matroid
M\S with ground set E \ S and rank function rM\S(A) = rM (A). The
contraction of M by S is the matroid M/S whose ground set is again E \ S
and rank function rM/S(A) = rM (A ∪ S)− rM (A). Lastly, the restriction of
M to S is the matroid M |S whose ground set is S and rank function rM |S is
the restriction of rM . Notice that M |S = M\Sc, where Sc = E \S. A minor
of a matroid M is any matroid obtained from M by a sequence of deletions
and contractions.

For any subset A ⊂ E, we denote by pA : RE → RE\A the projection
which forgets the coordinates xi for all i ∈ A. If the matroid M has loops
L ⊆ E, we use the same notation for the projection pA : RE\L → RE\(L∪A).
We also use the shorthand pi in the case A = {i}.

If i is a loop or coloop ofM , thenM\i = M/i, so deletion and contraction
are equivalent. The support of ΣM\i is the image of the projection of the
matroid fan ΣM under the projection pi. Note that this is also true if i is a
loop, in which case, according to our conventions, ΣM\i = ΣM and pi = id.
If i is not a coloop, then the facets of ΣM\i are the projections of facets of
ΣM whose dimensions are preserved under pi.

Suppose that i is not a loop of M . Note that by our convention regarding
loops, we have ΣM/i = ΣM/ cl(i). The support of the matroid fan of M/i is
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the set {x ∈ RE\cl(i) | |p−1cl(i)(x)| > 1}. The facets of ΣM/i are the images
of facets of ΣM whose dimensions are not preserved under the projection
by pcl(i). More details on the geometry of ΣM , ΣM\i, and ΣM/i and their
relations under pi can be found in [Sha13, Section 2] and also [FR13, Section
3].

A real phase structure on the fan of a matroid M induces canonical real
phase structures on the fans of all minors ofM . We will describe the induced
real phase structures for elementary deletions and contractions of a matroid
M . The geometric idea is very simple: Given a facet σ of the matroid fan
of a minor, we pick a facet σ̃ of ΣM that projects to σ. Then the affine
space associated to σ is the projection of E(σ̃). Given that we work with
the fine subdivision of ΣM induced by the lattice of flats, the choice of σ̃ is
in general not unique. To simplify the proofs in the following sections, we
make a specific choice for σ̃. However, Definition 2.14 is independent of this
choice, as discussed after the definition. For σ a facet of ΣM\i, let p∗i (σ) be
the facet of ΣM which is obtained by taking the closure in M of all the flats
of M\i occurring in the chain of flats describing σ when i is not a coloop
of M . If i is a coloop of M , prolongate the chain by one piece by adding i
everywhere. Note that pi(p∗i (σ)) = σ. Moreover, if i is not a coloop p∗i (σ) is
the unique facet that projects to σ. For σ a facet in ΣM/i corresponding to
the chain of flats

∅ =( F1 ( · · · ( Fk ( E \ cl(i),

set p�cl(i)(σ) to be the facet of ΣM given by the chain

cl(∅) ⊆ cl(i) ( F1 t cl(i) ( · · · ( Fl t cl(i) ( E.

Note that pcl(i)(p�cl(i)(σ)) = σ. By abuse of notation, we use the same letter

pA for the reduction mod 2 counterpart pA : ZE2 → ZE\A2 .

Definition 2.14. Let E be a real phase structure for the matroid fan ΣM

and choose i ∈ E. The deletion E\i is the real phase structure on ΣM\i given
by

(E\i)(σ) = pi(E(p∗i (σ)))

for any facet σ of ΣM\i. The contraction E/i is the real phase structure on
ΣM/i given by

(E/i)(σ) = pcl(i)(E(p�cl(i)(σ)))

for any facet σ of ΣM/i.

As previously mentioned, for σ a facet of either ΣM\i or ΣM/i, we are free
to replace p∗i (σ) or p�cl(i)(σ) in the above definition with any facet of ΣM

which projects onto σ under pi or pcl(i), respectively. Any such facet will be
contained in the same facet of the coarsest subdivision of the support of ΣM

as the facets p∗i (σ) or p�cl(i)(σ), respectively. Therefore, Conditions (1) and
(2) of a real phase structure imply that E must assign the same affine space
to any such choice of face.

Proposition 2.15. The maps E\i and E/i from Definition 2.14 define real
phase structures on ΣM\i and ΣM/i respectively.
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Proof. We must show that the maps E\i and E/i satisfy Conditions (1) and
(2) of Definition 2.2. We set p = pi or p = pcl(i) depending on whether we
consider the deletion or the contraction. Let σ be a facet of either ΣM\i or
ΣM/i. Let σ̃ = p∗(σ) or σ̃ = p�(σ). The projection of an affine space along
p remains an affine space. Moreover, since we have σ = p(σ̃) and hence also
T (σ) = p(T (σ̃)), Condition (1) holds for both E\i and E/i.

Let us now check Condition (2). Let τ be a codimension one face of either
ΣM\i or ΣM/i and set τ̃ = p∗(τ) or τ̃ = p�(τ), respectively. If dim τ̃ =
dim τ + 1, then the arrangements of affine subspaces around τ and τ̃ agree
after quotienting by TZ2(τ) and TZ2(τ̃), respectively.

Now let us assume that dim τ̃ = dim τ . Let σ̃1, . . . , σ̃k denote the facets
of ΣM adjacent to τ̃ . Let J = {j | 1 ≤ j ≤ k, dim σ̃j = dim p(σ̃j)}. Then the
arrangement of affine subspaces around τ in the induced real phase structure
consists of the affine spaces p(E(σ̃j)) for j ∈ J . Given a point ε ∈ p(E(σ̃j0))
for some j0 ∈ J , first notice that

|{j ∈ J : ε ∈ p(E(σ̃j))}| = |{(ε̃, j) | ε̃ ∈ p−1(ε) ∩ E(σ̃j) and j ∈ J}|
≡ |{(ε̃, i) | ε̃ ∈ p−1(ε) ∩ E(σ̃i), 1 ≤ i ≤ k}| mod 2.

The equality and congruence follow from the fact that #{E(σ̃i)∩p−1(ε)} = 1
if dim σ̃i = dim p(σ̃i) and #{E(σ̃i) ∩ p−1(ε)} is even otherwise. The last
expression is a sum of even numbers by the fact that E is a real phase
structure on ΣM . Hence, any point ε ∈ p(E(σ̃j0)) for any j0 ∈ J is covered
an even number of times by the affine spaces around τ which proves condition
(2). �

Note that we can iterate the operations of deletion and contraction to
construct general minors E\A/B. To justify the notation, we need to show
that the result is invariant under reordering the sequence of deletions and
contractions.

Proposition 2.16. Let E be a real phase structure for the matroid fan ΣM

of the matroid M and choose i 6= j ∈ E. Then

E\i\j = E\j\i,
E\i/j = E/j\i,
E/i/j = E/j/i.

Proof. We start with the first two equalities. Note that by definition E\i =
E/i if i is a coloop. Hence we may assume that not both i and j are coloops
in the first equation and i not a coloop in the second equation, the exceptions
being covered by the third equation. Under these assumptions, the first two
equations hold since p∗i ◦ p∗j = p∗j ◦ p∗i and p∗i ◦ p�j = p�j ◦ p∗i .

For the last equality, notice that for any i, j the projections pcl(i) and
pcl(j) commute and the composition is pcl(i,j). We are asked to compare the
projections under pcl(i,j) of the affine spaces E(σ1), E(σ2) where σ1, σ2 are
two faces of ΣM associated to the chains of flats

cl(∅) ⊆ cl(i) ⊆ cl(i, j) ( F1 ( · · · ( Fk ( E, (2.1)
cl(∅) ⊆ cl(j) ⊆ cl(i, j) ( F1 ( · · · ( Fk ( E. (2.2)
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We may assume r(i, j) = 2, since otherwise σ1 = σ2. Then σ1 and σ2 are
adjacent to the codimension one face τ associated to

cl(∅) ( cl(i, j) ( F1 ( · · · ( Fk ( E.

Note that pcl(i,j)(T (σ)) = pcl(i,j)(T (τ)) for every facet σ adjacent to τ . In
particular, if two affine subspaces in the necklace arrangement intersect,
their projections under pcl(i,j) agree. Therefore the necklace condition (2’)
implies that pcl(i,j)(E(σ)) is the same affine space for every σ adjacent to
τ . In particular, we have pcl(i,j)(E(σ1)) = pcl(i,j)(E(σ2)). This proves the
claim. �

3. Matroid orientations and real phase structures

3.1. From oriented matroids to real phase structures. Here we will
produce a real phase structure on a matroid fan from an oriented ma-
troid. We will use the covector description of oriented matroids. For an
oriented matroid M, on ground set E, the covectors of M are a subset
C ⊆ {0,+1,−1}E . Let X ∈ C. For i ∈ E, the i-th coordinate of X is
denoted by Xi. The positive and negative parts of X are respectively

X+ := {i ∈ E | Xi = +1} ,
and

X− := {i ∈ E | Xi = −1} .
The support of X is

Supp(X) := {i ∈ E | Xi 6= 0} .
The composition operation ◦ on covectors X and Y is defined by

(X ◦ Y )i =

{
Xi if Xi 6= 0

Yi if Xi = 0.

The separation set S(X,Y ) is defined by

S(X,Y ) := {i ∈ E | Xi = −Yi 6= 0} .
The covectors of an oriented matroid satisfy the following axioms:

(1) 0 ∈ C
(2) X ∈ C if and only if −X ∈ C
(3) X,Y ∈ C implies that X ◦ Y ∈ C
(4) If X,Y ∈ C and i ∈ S(X,Y ) then there exists a Z ∈ C such that

Zi = 0 and Zj = (X ◦ Y )j = (Y ◦X)j for all j 6∈ S(X,Y ).
The set of covectors C forms a lattice under the partial order 0 < +1,−1

considered coordinatewise. There is a forgetful map φ from oriented matroids
to matroids which preserves rank and the size of the ground set. Given an
oriented matroidM, we letM = φ(M) denote its underlying matroid. We
can describe the forgetful map on the level of the covector lattice C ofM and
the lattice of flats L ofM . Given a covector X ∈ C the forgetful map assigns
φ(X) = Supp(X)c ∈ L where Ac denotes E \ A. The image of a covector
of the oriented matroid under the forgetful map is a flat of the underlying
matroid [BLVS+99, Proposition 4.1.13].

The set of topes T are the maximal covectors with respect to the partial
order on C. If the underlying matroid of M has no loops we have T ⊆
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l1

l2

l3

l4

Figure 4. The intersection of a real arrangement of 4 generic
planes in R3 with the unit sphere. Assigning the covector
(+,+,+,+) to the region bounded by the spherical triangle
facing the viewer formed by l1, l2, l3 determines the covectors
of all regions.

{+1,−1}|E|. LetM be an oriented matroid with collection of topes T and
underlying lattice of flats L. For F ∈ L and T ∈ T , we denote by T \
F ∈ {0,+1,−1}E the vector obtained by setting all coordinates in F to
0. We say F is adjacent to T if T \ F ∈ C. More generally, given a flag
F := F0 ( F1 ( F2 ( · · · ( Fk of flats in L, we define the set of topes
adjacent to F by

T (F) = {T ∈ T | T \ Fi ∈ C for all i = 0, . . . , k}.
Example 3.1. A set H1, . . . ,Hn of hyperplanes in Rr defined by linear
forms l1, . . . , ln produces an oriented matroid on {1, . . . , n}. The underlying
matroid on {1, . . . , n} is given by the rank function r(A) = codim(∩i∈AHi).
A covector corresponds to a cell of the decomposition of Rr induced by the
positive regions H+

i = {li(x) ≥ 0} and negative regions H−i = {li(x) ≤ 0}.
Assuming that none of the linear forms are identically equal to zero, the topes
are in bijection with the cells in the complement of the arrangement. The flat
associated to a covector is in bijection with the set of hyperplanes containing
the corresponding cell. Figure 4, shows the intersection of an arrangement of
four planes in R3 with a sphere. The underlying matroid of this arrangement
is the uniform matroid U3,4. There are 14 cells of dimension two in the
subdivision of the sphere induced by the intersections of the four planes.
These are the topes of the oriented matroid. Each cell of the complement
is labelled by a tuple {+,−}4 corresponding to the sign of the linear forms
l1, . . . , l4 evaluated at a point in the open cell.

Lemma 3.2. LetM be an oriented matroid of rank d and set M =M. For
any flag F = {cl(∅) = F0 ( F1 ( · · · ( Fk ( Fk+1 = E} of M we have

|T (F)| = |χMF (−1)|,
where χMF (t) denotes the characteristic polynomial of the matroid

MF =

k+1⊕
i=1

M |Fi/Fi−1.
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In particular, if F is a maximal flag, then |T (F)| = 2d.

Proof. The number of topes of an oriented matroidN is counted by |χN (−1)|
[Zas75]. Moreover, by [BLVS+99, Proposition 3.7.11] the set T (F) is equal
to the set of topes of the oriented matroidMF =

⊕k+1
i=1 M|Fi/Fi−1. Since

MF = MF , the statement follows. �

Remark 3.3. We would like to make the following remark on our choice of
conventions. In this paper, we use both the multiplicative and additive nota-
tion on the group of two elements ({0, 1},+) and ({1,−1}, ·). When speaking
of real phase structures we work with vector spaces over Z2, therefore it is
preferable to use the additive notation and denote the field of two elements
by {0, 1}. On the other hand it is tradition that the covectors of oriented ma-
troids take values in {0,+,−} and we also make use of the group structure
on {+,−}. We routinely use the notation ε to denote elements of the field
{0, 1} or of vector spaces over this field. We use uppercase roman letters, for
example, X,Y, T , to denote covectors. Covectors can be multiplied entry by
entry and this operation is denoted by T · T ′.

To go from the additive group notation to the multiplicative group notation
for vectors, we use (−1)ε = ((−1)ε1 , . . . , (−1)εn), where ε = (ε1, . . . , εn).
This defines a bijection

ZE2 → {+1,−1}E , (3.1)
ε 7→ (−1)ε.

We avoid going backwards as much as possible to avoid writing such per-
versities as log−1, even though this map makes sense as a discrete logarithm
for groups.

Definition 3.4. Let M be a loopfree oriented matroid on the ground set E
and let ΣM ⊆ RE the fan of the underlying matroid M = M. For every
facet σF of ΣM corresponding to the maximal flag of flats F , we set

EM(σF ) = {ε | (−1)ε ∈ T (F)} ⊆ ZE2 .

IfM has loops L = cl(∅), we set EM(σ) := EM\L(σ) ⊆ ZE\L2 .

In the next two lemmata, we show that EM defines a real phase structure
on ΣM . We start with a few useful observations. If T is a tope then T ◦X = T
for any X and X ◦ T is always another tope, which is distinct from T if and
only if X+ * T+ or X− * T−. Given a subset F ⊂ E, the reflection rF (X)
of a covector X in F is given by flipping the signs for all e ∈ F while keeping
the signs for e ∈ E\F . The reflection of a covectorX in a flat F is not always
a covector of the oriented matroid. However, note that if F is adjacent to
the tope T , then rF (T ) is also a tope. Indeed, setting X = T \ F , note that
we can rewrite rF (T ) = X ◦ (−T ), hence the statement.

Recall that given any flat F of M , there is a vector in ΣM defined by
vF :=

∑
i∈F vi, where vi = −ei, see Section 2.2. We denote by εF the

reduction of vF modulo 2. Note that rF ((−1)ε) = (−1)ε+εF .

Lemma 3.5. The set EM(σF ) from Definition 3.4 is a d-dimensional affine
subspace parallel to TZ2(σF ) for every facet σF of ΣM .
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Proof. We may assume that M is loopfree. Let σF be a facet of ΣM with
associated maximal flag

F = {∅ ( F1 ( · · · ( Fd−1 ( Fd = E}.
Let T = (−1)ε ∈ T (F) be a tope adjacent to F . We need to show that
the bijection from (3.1) maps ε+ 〈εF1 , . . . , εFd−1

, εE〉Z2 to T (F). Note that
|T (F)| = 2d by Lemma 3.2, so the two sets have the same size. Therefore, it
suffices to show containment of the image in T (F). For this, it is enough to
prove that T ′ = rFi(T ) ∈ T (F) for every i = 1, . . . , d. Note that T ′ \ Fj =
T \ Fj for j ≥ i and T ′ \ Fj = (T \ Fi) ◦ (−T \ Fj) for j ≤ i. In both cases,
T ′ \ Fj is a covector, and hence T ′ ∈ T (F) as required. �

Lemma 3.6. Let M be a oriented matroid and set M = M. Let τ be a
codimension one face of ΣM and let σ1, . . . , σk be the adjacent facets. Then
the subspaces EM(σi) for i = 1, . . . , k form an even covering.

Proof. Again, we can reduce to the case whenM is loopfree. Let F = {∅ (
F1 ( · · · ( Fk ( E} be the chain of flats associated to τ and pick T ∈ T (F).
Since τ is of codimension one, there is exactly one rank two jump in F . We
need to show that there is an even number of completions of F to maximal
chains F ′ such that T ∈ T (F ′) Clearly, such completions are in bijection
with the completions of the chain of covectors (0, . . . , 0) < Xk < Xk−1 <
· · · < X1 < T withXi := T \Fi. Now, recall from [BLVS+99, Theorem 4.1.14
(ii))] that the covector lattice of an oriented matroid satisfies the diamond
property, that is, all intervals of length 2 consist of 4 elements. It follows
that there are exactly two such completions, which proves the claim. �

Proposition 3.7. The map EM : Facets(ΣM )→ Affd(ZE\cl(∅)) from Defini-
tion 3.4 defines a real phase structure on ΣM .

Proof. By Lemma 3.5 the first axiom of a real phase structure is satisfied.
By Lemma 3.6 the second axiom is satisfied. �

To summarise, we have constructed a map from orientations of M (that
is, oriented matroidsM such thatM = M) to real phase structures on ΣM ,

{Orientation of M} {Real phase structure on ΣM},E (3.2)

which is given by E(M) = EM. The main result of this paper claims that
this map is bijective. We note that the map is injective, since the topes of
M can be recovered from E as

T = {(−1)ε | ε ∈
⋃
σ

E(σ)},

where σ runs through all facets of ΣM and moreover, an oriented matroid is
determined by its collection of topes [dS95].

Remark 3.8. Given an oriented matroid M and a subset S ⊂ E, the re-
orientation of M along S is the oriented matroid M′ whose topes are the
covectors rS(T ) for any tope T of M. Clearly, in this case EM′ is a reori-
entation of EM (in the sense of Definition 2.3) with translation vector εS.
Hence the map E from (3.2) descends to a map modulo reorientations on
both sides.
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H3

H4

H1

H2

(+,+,+,+)

(+,+,−,+)

(−,+,−,+)(−,+,−,−)

(−,−,−,−)

(−,−,+,−)

(+,−,+,+)(+,−,+,−)

Figure 5. An arrangement of 4 lines through the origin in
R2 as used in Example 3.9 to go from real phase structures to
oriented matroids. The necklace ordering of the lines corre-
sponds to the necklace ordering of the facets of PΣM defined
by the real phase structure in Figure 3.

Example 3.9. Here we consider the matroidM = U2,n and describe how we
can construct an inverse to the map in (3.2). By Example 2.12, a real phase
structure E on ΣM determines a necklace ordering of {1, . . . , n}. Note that
Example 2.12 described the projective matroid fan which can be obtained
from ΣM by quotienting by (1, . . . , 1). To determine an orientation of M
from the real phase structure E , let H1, . . . ,Hn ⊂ R2 be a collection of
pairwise distinct lines passing through the origin in R2, arranged so that
the clockwise/anticlockwise appearance of these lines when making a turn
around the origin defines the same necklace ordering on {1, . . . , n} as the
real phase structure E . Two lines Hi, Hj border a chamber of R2 if and only
if E(σi)∩E(σj) 6= ∅. Moreover, if this is satisfied then Hi, Hj border exactly
two chambers which are related by the antipodal map. If the intersection of
the two affine spaces E(σi) and E(σj) is non-empty, then it consists of two
points ε, ε′ = ε+(1, . . . , 1). Assigning (−1)ε to one of the chambers bordered
by Hi, Hj and (−1)ε

′ to the other chamber determines an orientation of U2,n.
See Figure 5 for the example of the 4 lines in R2 corresponding to the real
phase structure on the projective fan of U2,4 from Figure 3. This procedure
associates to any real phase structure on ΣM , an orientation of M and it is
easily checked that it provides an inverse map to E from (3.2).

Example 3.10. Here we consider the matroid M = Un−1,n. Orientations
of M can be constructed from generic real hyperplane arrangements like
in Example 3.1. Moreover, in Example 2.13 we showed that ΣM carries a
unique real phase structure up to reorientation. By Remark 3.8, the map
(3.2) is surjective and hence bijective. An analogous discussion shows that
(3.2) is bijective for M = U1,n.

Our main theorem is to prove the equivalence of real phase structures on
matroid fans and matroid orientations. In the more general framework of
matroids over hyperfields, oriented matroids are identical to matroids over
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the sign hyperfield S = {0,+,−} [BB18]. More precisely, a chirotope describ-
ing an oriented matroid can be interpreted as Grassmann-Plücker function
on Er with values in S. Correspondingly, the affine subspaces provided by
real phase structures live in a vector space over Z2

∼= S∗. For a general hy-
perfield H the non-zero elements form a group H∗ under multiplication and
we can exchange the role of affine subspaces of Zn2 for cosets of subgroups of
(H∗)n.

Question 3.11. Can matroids over a general hyperfield H be equivalently
formulated by specifying cosets of the group (H∗)n on top dimensional faces
of a matroid fan Σ ⊆ Rn?

We finish this subsection by showing that the operations of deletion and
contraction on both oriented matroids and real phase structures commute
with the map E from Equation (3.2). We will use the more convenient
notation of EM to denote the real phase structure E(M).

Proposition 3.12. LetM be an oriented matroid on E and i ∈ E. Then

EM/i = EM/i and EM\i = EM\i.

Proof. We set E = EM and denote byM′, E ′, M ′ the contraction or deletion
by i, respectively. It suffices to show that E ′(σ) ⊆ E ′M(σ) for every facet
σ of ΣM ′ , because both sets are affine subspace of equal dimension. By
[BLVS+99, Proposition 3.7.11] the covectors of M\i are the projections of
the covectors of M under pi. Analogously, the covectors of M/i are the
projections under pi of the covectors of M with Xi = 0 (hence they are
zero on cl(i)). Comparing with Definitions 2.14 and 3.4, the inclusion then
follows. �

3.2. Real subfans and oriented matroid quotients. In this subsection,
we introduce the concept of real subfans and study their relationship to
oriented matroid quotients. Besides the intrinsic importance of these con-
structions, they will be used in the following subsection in the induction step
in the proof of Theorem 1.1.

Given a real phase structure E on a polyhedral fan Σ, we extend the
definition of E to non-maximal cones τ ∈ Σ by setting

E(τ) =
⋃

σ facet
τ⊂σ

E(σ).

As an example, note that if E = EM is induced by an oriented matroidM,
the description of E(σF ) as the set of elements ε such that (−1)ε is adjacent
to F extends to non-maximal cones σF , that is,

EM(σF ) = {ε | (−1)ε ∈ T (F)} ⊆ ZE2 . (3.3)

The set above no longer has the structure of an affine subspace over ZE2 when
σF is not a top dimensional face of the fan.

Definition 3.13. Given a real phase structure E ′ on a fan Σ′, we say that
(Σ′, E ′) is a real subfan of (Σ, E) if Σ′ ⊆ Σ and for any τ ∈ Σ′ we have
E ′(τ) ⊆ E(τ).
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Real subfans occur naturally when considering the pair of contraction and
deletion of a real phase structure along the some subset.

Lemma 3.14. Let M be a matroid on the ground set E and let E be real
phase structure on ΣM . Let F be a flat of M . Then (ΣM/F , E/F ) is a real
subfan of (ΣM\F , E\F ).

Proof. By definition of contraction and deletion for matroids, all flats ofM/F
are also flats of M\F . In the language of matroids the contraction M/F is
a quotient of the deletion M\F . This implies ΣM/F ⊆ ΣM\F , see [FR13] or
[Sha13]. For the inclusions E/F (τ) ⊆ E\F (τ), by recursion we may reduce
to the case where M is loopfree, r(F ) = 1 and τ a facet of ΣM/F .

Let {∅ ( F1 ( · · · ( Fl ( Fl+1 = E \ F} be the chain of flats in M/F
corresponding to the face τ . Then σ0 := p�F (τ) is given by F0 = {∅ ⊆ F (
F1 t F ( · · · ( Fl t F ( E}. Fix an element ε ∈ E(σ0). Removing F from
this chain gives rise to a codimension one face τ0 of σ0 such that pF (τ0) = τ .
By condition (2) of Definition 2.2 there exists another facet σ1 adjacent to
τ0 such that ε ∈ E(σ1).

We now distinguish two cases: If pF (σ1) ) τ we are done, since we proved
that pF (ε) ∈ E\F (pF (σ1)) ⊆ E\F (τ). If pF (σ1) = τ , this implies that F1 is
a flat in M and σ1 is given by F1 = {∅ ⊆ F1 ( F1 tF ( · · · ( Fl tF ( E}.
In this case we may follow a similar procedure as above, this time removing
the flat F1 t F to obtain a face τ1 of codimension one of σ1 in ΣM . Notice
that pF (τ1) = τ . Repeating the argument above we have another facet σ2
of ΣM adjacent to τ1 such that ε ∈ E(σ2). Once again, if pF (σ2) ) τ we
are done. Otherwise the facet σ2 corresponds to a flag F2 = {∅ ⊆ F1 (
F2 ( F3 t F ( · · · ( Fl t F ( E}. We see that we can continue to repeat
the procedure above finding facets σk of ΣM until p(σk) ) τ , unless it is
the case that all Fi, and in particular E \ F , are flats of M . This special
case is equivalent to F being a connected component of M . In this case,
(ΣM/F , E/F ) = (ΣM\F , E\F ) and the statement is trivial. �

We denote byM1 andM2 two oriented matroids on the same ground set
E. For i = 1, 2, we denote by Mi, Σi, Ei the underlying matroids, associated
matroid fans, and associated real phase structures, respectively.

We callM1 a quotient ofM2 if all covectors ofM1 are covectors ofM2,
see [BLVS+99, Section 7.7]. In this case, M1 is a quotient of M2, that is, all
flats of M1 are flats of M2, see [BLVS+99, Corollary 7.7.3].

Proposition 3.15. Let M1 and M2 be two loopfree oriented matroids on
E. Then M1 is a quotient of M2 if and only if (Σ1, E1) is a real subfan of
(Σ2, E2).

Proof. In general, given a real phase structure EM induced by an oriented
matroid M, the inclusion of matroid fans Σ1 ⊆ Σ2 is equivalent to M1

being a (non-oriented) quotient of M2, that is, the flats of M1 are flats of
M2, see [FR13] or [Sha13]. In particular, if M1 is a quotient of M2, then
Σ1 ⊆ Σ2. Together with applying Equation (3.3) to E1(τ) and E2(τ), the
“only if” direction follows.

For the “if” direction, let X be a covector ofM1. Let F = φ(X) denote
the underlying flat of M1. Again, since Σ1 ⊆ Σ2, the flat F is also a flat of
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M2. We consider the chain F = {∅ ( F ( E} and the corresponding ray
σF . Let T be a tope of M1 such that X ≤ T . It follows that T = (−1)ε

with ε ∈ E1(σF ), hence by assumption ε ∈ E2(σF ). This, however, implies
that X = T \ F is a covector ofM2, and we are done. �

Example 3.16. For M = U3,4, the choice of a real phase structure on
ΣM ⊂ R4 is equivalent to the choice of ε ∈ Z4

2 such that ε, ε′ 6∈ ∪σE(σ),
where ε′ = ε+ (1, . . . , 1).

The uniform matroid M ′ = U2,4 is an ordinary matroid quotient of U3,4.
Given a real phase structure E on M , there are 12 real phase structures on
M ′ such that ΣM ′ equipped with one of these real phase structures produces
a real subfan of (ΣM , E). We now describe them. For every i ∈ {1, . . . , 4}
consider the chain of flats

Fi := {∅ ⊂ {i} ⊂ {1, 2, 3, 4}} .

The corresponding cone σi is in both ΣM and ΣM ′ . The set E(σi) consists of
three affine spaces of dimension 3 in Z4

2 which form a necklace arrangement.
Moreover, the complement Z4

2\E(σi) is the unique affine space of dimension
two parallel to TZ2(σi) containing the points ε, ε′.

Contained in E(σi) there are precisely 3 affine spaces of dimension 2 par-
allel to TZ2(σi). These three affine spaces arise as the intersections of the
3-dimensional affine spaces in the necklace arrangement at σi. It follows from
this that if E ′(0) ⊂ E(0), then (ΣM ′ , E ′) is a real subfan of (ΣM , E). This is
because if E ′(0) ⊂ E(0) then for each face σi the affine space E ′(σi) cannot be
equal to the 2-dimensional affine space Z4

2\E(σi), and hence E ′(σi) ⊂ E(σi).
Following the description from Example 2.12, there are a total of 24 real

phase structures on ΣM ′ given by combining the choice of 3 necklace order-
ings and a choice of the points in the intersection E ′(σi1) ∩ E ′(σi2) where i1
and i2 are consecutive faces in the necklace ordering. Of the 24 real phase
structures there are exactly 12 which contain ε, ε′ and 12 which do not con-
tain them. Therefore, for M ′ = U2,4 there are a total of 12 real subfans
(ΣM ′ , E ′) of (ΣM , E) for a fixed real phase structure E .

The uniform matroid M ′′ = U1,4 is also an ordinary matroid quotient of
U3,4. The matroid fan of M ′′ = U1,4 is just a point which we denote by 0.
A real phase structure E ′ on ΣM ′′ produces a real subfan of (ΣM , E) if and
only if E ′′(0) 6= {ε, ε′}.

Following our main theorem, the containment E ′(0) ⊂ E(0) corresponds to
containment of topes of the corresponding oriented matroids. This relation
between oriented matroids corresponds to weak maps, [BLVS+99, Proposi-
tion 7.7.5]. The condition of being a real phase subfan is not always equiva-
lent to having E ′(0) ⊂ E(0) as the next example shows.

Example 3.17. Consider again the uniform matroid M = U3,4. The rank
2 matroid N on E = {1, . . . , 4} where 1, 2 are parallel and 3, 4 are parallel
is also an ordinary matroid quotient of U3,4. The matroid fan of N is an
affine space of dimension 2 in R4 and hence there are 4 possible real phase
structures on ΣN . However, only one of these possible real phase structures
produces a real subfan of (ΣM , E). Indeed, if ρ1 and ρ2 denote the two half
spaces which are top dimensional cones of ΣM , then E(ρ1) and E(ρ2) are
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transversely intersecting affine subpaces of dimension 3 in Z4
2, and hence

their intersection E(ρ1)∩ E(ρ2) gives the unique real phase structure on ΣN

yielding a real subfan. Yet three out of the four real phase structures on
ΣN satisfy E ′(0) ⊂ E(0) and hence correspond to weak maps of oriented
matroids.

3.3. The proof of Theorem 1.1. In this section we prove Theorem 1.1.
The idea of the proof is a follows: We use double induction on rank and
corank of M . The induction step is governed by corank 1 quotients of ori-
ented matroids and (real) tropical modifications, respectively. The crucial
ingredient on the oriented matroid side is the positive answer to the factor-
ization problem in corank 1. We start by recalling the related facts.

LetM1 be a quotient ofM2. The factorization problem asks the question
whether there exists an oriented matroidM on a larger ground set E′ ⊃ E
such that rM(Ec) = r(M2) − r(M1), M1 = M/Ec and M2 = M\Ec =
M|E.

Interestingly, the general answer to this question is no, see [Ric93]. For
our purposes, however, it sufficient to consider r(M2)− r(M1) = 1, in which
case the answer is positive [RZ94]. Here we present a slight generalization
of the statement, which allows for parallel elements.

Lemma 3.18. Let E′ = E t F be a finite set. LetM1 andM2 be oriented
matroids on E such that M1 is a quotient of M2 and r(M2)− r(M1) = 1.
Then there exists an oriented matroid M on E′ such that rM(F ) = 1, F
contains no loops of M, M/F = M1 and M\F = M2. Moreover, the
oriented matroidM is unique up to reorientation of elements in F .

Proof. Let e be an element of F . By [RZ94, Theorem 4.1] the statement
holds true for E ∪{e} and the corresponding oriented matroidM′ is unique
up to reorientation of e. It is easy to check thatM1 ⊕ U0,1 (that is, adding
e as a loop) is a quotient of M′. Successively adding all elements of F in
this way produces a suitable M and the uniqueness statement follows by
recursion. �

Lemma 3.19. Let M be a matroid on E and let F be a flat of rank 1. Let
E and E ′ be two real phase structures on ΣM such that E/F = E ′/F and
E\F = E ′\F . Then E and E ′ agree up to reorientation by an element ε in
the kernel of pF .

Proof. Note that E/F determines the real phase structure on M |F ⊕M/F
induced by E up to reorientation along the kernel (which is equivalent to
picking a real phase structure for M |F ). In particular, if F is a connected
component of M , the claim follows.

Let us now assume that F is not a connected component of M . We pick
a fixed facet σ of ΣM\F and set σ := p∗F (σ). In particular, dim(pF (σ)) =
dim(σ) and we will refer to such facets as non-contracted in the remainder
of this proof. Facets not satisfying this are called contracted.

Since pF (E(σ)) = E\F (σ) = E ′\F (σ) = pF (E ′(σ)), for a non-contracted
face σ, there exists an element ε in the kernel of pF such that E(σ) = E ′(σ)+ε.
Hence after reorienting E ′ by ε we may assume E(σ) = E ′(σ). Assume that
a facet σ′ is non-contracted. Since ΣM\F is connected in codimension one,
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we can connect σ and σ′ by a sequence of non-contracted facets such that
successive pairs intersect in codimension one. Therefore, it is sufficient to
show that given a codimension one face τ of σ, the data of the fixed affine
space E(σ) together with the real phase structures E/F and E\F determine
E for all facets adjacent to τ . Hence the real phase structure is unique up to
reorientation. By the first paragraph of the proof, this also determines E(σ′)
for all contracted facets σ′ ∈ ΣM |F⊕M/F .

Let us formulate the given data in terms of the necklace arrangement
around τ . Knowing E\F is equivalent to knowing the projection of the neck-
lace arrangement under pF . If one of the facets adjacent to τ is contracted,
this is equivalent to one of the affine spaces in the necklace arrangement be-
ing contracted to a subspace of dimension one less under pF . In this case, the
image of the projection is the intersection of two of the affine subspaces in
the corresponding necklace arrangement for E\F . The real phase structure
E/F tells us which intersection of affine spaces in E\F the contracted face
maps to. This data together with the non-contracted affine space E(σ) of
the necklace arrangement uniquely determines the arrangement. If none of
the facets adjacent to τ are contracted, then knowing the projection of the
necklace arrangement under pF and one of the affine space of the necklace
arrangement completely determines the necklace arrangement. This finishes
the proof. �

Example 3.20. In this example, we illustrate the main step in the proof
of Lemma 3.19 for the matroid M = U3,5 and F = {5}. Then M\5 =
U3,4 and M/5 = U2,4. Consider the real phase structure E\ on ΣM\5 with
(0, . . . , 0), (1, . . . , 1) 6∈ E\(σ) for any face σ of ΣM\5.

Let τ be the codimension one face of ΣM corresponding to the chain of
flats

F1 := {∅ ⊂ {1} ⊂ {1, 2, 3, 4, 5}} .
Let σ2 be the facet of ΣM corresponding to the chain of flats

F12 := {∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3, 4, 5}} .

Equip ΣM/5 with a real phase structure E/ having E/(p5(τ)) = (0, 0, 0, 1)+
〈(1, 0, 0, 0), (1, 1, 1, 1)〉. Notice that then E/(p5(τ))) ⊂ E\(p5(τ)). Hence E/
can be completed in such a way as to give rise to a real subfans of (ΣM\5, E\),
see Example 3.17. Suppose that E is a real phase structure on ΣM such that
E\5 = E\ and E/5 = E/. Since we consider real phase structures on ΣM up
to reorientation we are free to fix the affine space for a facet of this fan. Let
us set

E(σ2) = (0, 0, 0, 1, 0) + 〈(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 1, 1, 1, 1)〉.

There are three other facets adjacent to τ in ΣM namely σ3, σ4, σ5 where σi
corresponds to the chain of flats

F1i := {∅ ⊂ {1} ⊂ {1, i} ⊂ {1, 2, 3, 4, 5}} .

The facet σ5 is contracted under p5, namely p5(σ5) = p5(τ).
Since there are only three facets adjacent to a codimension one face of

ΣM\5 the necklace ordering of facets induced by E\ at p5(τ) is unique.
The above specification of E/(p5(τ)) means that E/(p5(τ)) = E\(p5(σ2) ∩
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E\(p5(σ3)). Then the necklace ordering induced on the facets in ΣM adja-
cent to τ induced by E is σ2, σ5, σ3, σ4. The affine space E(σ5) must be the
preimage of E/(p5(τ)) under the map p5. Since we have also fixed E(σ2)
above, we see that

E(σ5) ∩ E(σ2) = (0, 0, 0, 1, 0) + 〈(1, 0, 0, 0, 0), (1, 1, 1, 1, 1)〉.
This intersection together with the necklace ordering determines completely
the necklace arrangement about τ and hence the other affine spaces E(σi).

Lemma 3.19 and Lemma 3.14 tell us that deletion and contraction of real
phase structures behave as expected in relation to oriented matroid quotients
and real subfans in Proposition 3.15. Combining this with the existence of
rank 1 extensions proved in Lemma 3.18, we are able to prove Theorem 1.1.

Proof of Theorem 1.1. We need to show that any real phase structure E on
a matroid fan ΣM can be represented as E = EM for some oriented matroid
M. We proceed by double induction on rank and corank. The base cases
for the induction are U0,n and Un,n and they are trivial.

In the general case, let F be an arbitrary flat ofM of rank 1. Without loss
of generality we may assume that M is loopfree. By the induction assump-
tion, the real phase structures E/F and E\F are represented by oriented
matroids, say M1 and M2, respectively. By Lemma 3.14 and Proposition
3.15 we know that M1 is a quotient of M2. If F is a connected compo-
nent of M , then the claim follows from the induction assumption applied to
each connected component. Otherwise, we have r(M2) − r(M1) = 1. By
Lemma 3.18, there exists an oriented matroidM on E such that rM(F ) = 1,
the flat F contains no loops of M, M/F = M1 and M\F = M2. Since
M/F = M/F and M\F = M\F , the uniqueness of this extension for or-
dinary matroids implies that M = M , see [Whi86, Proposition 8.3.1]. It
follows that E ′ = EM and E are two real phase structures on ΣM whose
deletion and contraction along F agree. By Lemma 3.19, they agree up to
reorientation along some ε. Since reorientations of oriented matroids and
real phase structures are compatible, this shows that the corresponding re-
orientation ofM represents E , which proves the claim. �

Remark 3.21. The previous discussion shows that oriented matroid quo-
tients (or real subfans of codimension 1 of matroid fans) play a special role.
In general, if (Σ1, E1) is a real subfan of (Σ2, E2), we may ask whether this in-
clusion can be completed to a chain of real subfans whose dimensions increase
by one in each step. Interestingly, there is a counter-example of Richter-
Gebert [Ric93, Corollary 3.4] which shows that this is in general not the
case. It tropical language, it gives rise to a pair of real matroid subfans
(Σ1, E1) ⊂ (Σ2, E2) with dim Σ1 = 1 and dim Σ2 = 3 such that there exists
no real matroid fan (Σ, E) such that (Σ1, E1) ( (Σ, E) ( (Σ2, E2).

This is in contrast to non-oriented matroids (equivalently, matroid fans
without real phase structures), where the factorization problem can be an-
swered affirmatively and hence such chains always exist [Whi86, Chapter
8.2]

3.4. From real phase structures to sign circuits. From our main the-
orem, a real phase structure on a matroid fan is equivalent to specifying an
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orientation on the underlying matroid and the topes of the oriented matroid
are the points in the real phase structure. Signed circuits are a cryptomor-
phic description of oriented matroids, and in this section, we will describe
explicitly how to directly construct the signed circuit vectors of the oriented
matroid arising from real phase structure on a matroid fan ΣM .

The signed circuits of an oriented matroid consists of a collection of sign
vectors XC and −XC for every circuit C of the underlying matroid such
that XC has support C and satisfying the signed circuit axioms [BLVS+99].
Describing the signed circuits of an oriented matroid M is equivalent to
choosing for each circuit C ofM and for each pair of elements i, j ∈ C a sign
γ(M)Cij ∈ {±1}, such that for all triples i, j, k ∈ C we have

γ(M)Cijγ(M)Cjkγ(M)Cik = +1. (3.4)

The signed circuits XC and −XC can be recovered from the assignments
γ(M)Cij . If γ(M)Cij = +1, then i, j have the same sign in XC and −XC ,
whereas if γ(M)Cij = −1, then i, j have opposite signs in XC and −XC .

Example 3.22. LetM be the oriented matroid on E = {1, . . . , n} associ-
ated to the (non-zero) linear forms li : Rd → R, i = 1, . . . , n, see Example
3.1. Let M be the underlying matroid. A subset C ⊂ E is a circuit of M if
there exists a linear relation among the li, i ∈ C, say∑

k∈C
aklk = 0,

with all only non-zero coefficients ak and such that this is the unique
relation among the linear forms {lk}k∈C , up to multiplying by a constant.
We can assign a signed vector XC to C by setting (XC)i equal to the sign of
ak if k ∈ C and 0 otherwise. Multiplying the relation by −1 produces −XC .

Now, fix i, j ∈ C. Let x be a generic point in
⋂
k∈C\{i,j}{lk = 0}, and con-

sider X = (sign(ls(x)))s the covector ofM associated to the cell containing
x. Note that

0 =
∑
k∈C

aklk(x) = aili(x) + ajlj(x).

It follows that the sign of aiaj is opposite to the sign of li(x)lj(x), or equiv-
alently,

γ(M)Cij = (XC)i(XC)j = −XiXj .

Hence γ(M)Cij can be determined by comparing entries in certain covectors,
with an extra minus sign. Perturbing x slightly to a generic point x′, we
obtain a tope T = (sign(ls(x

′))). Since the values lk(x′), for k ∈ C \ {i, j}
are arbitrarily small, we still have

γ(M)Cij = −TiTj

for such a tope. In order for a covector to be suitable for computing γCij we
require that Supp(X)c = cl(C \ {i, j}). Moreover, for a tope to be suitable
for computing γ(M)Cij we must have X < T . So the suitable topes T for
computing the signs γ(M)Cij are the ones that are adjacent to cl(C \ {i, j}).
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The previous example extends directly to oriented matroidsM, as follows.
For an oriented matroidM, we denote by γ(M) the associated γ description
of the signed circuits, For any tope T ofM that is adjacent to cl(C \ {i, j}).
we have

γ(M)Cij = −TiTj . (3.5)
The following proposition follows directly from the discussion above and the
fact that the points in the real phase structure correspond to topes of the
oriented matroid associated by Theorem 1.1.

Proposition 3.23. Let M be matroid with real phase structure E on ΣM .
The signed circuits with support C of the orientationME of M arising from
E are described by

γ(ME)Cij = (−1)εi(−1)εj

for all i, j ∈ C, where ε ∈ E(σF ) for F any flag of flats containing the flat
cl(C\ij).

Following our extension of E to arbitrary faces of the matroid fan in Equa-
tion (3.3) we do not require F to be a maximal flag of flats. In particular,
we can choose the flag of flats F = {∅ ( cl(C\ij) ( E} to determine the
signs in the above proposition.
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