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using a subset of items, identified using factor analy-
sis of mixed data (FAMD)-based cluster analysis. We 
developed both FIs for the ADNI1 cohort (n = 819). 
We also calculated another standard FI  (FIc) developed 
by Canevelli and coworkers. Results were validated in 
an external sample by pooling ADNI2 and ADNI-GO 
cohorts (n = 815). Cluster analysis yielded two clusters 
of subjects, which significantly  (pFDR < .05) differed on 
26 health items, which were used to compute  FIr. The 
data-driven subset of items included in  FIr covered a 
range of systems and included well-known frailty com-
ponents, e.g., gait alterations and low energy. In predic-
tion analyses,  FIr outperformed  FIs and  FIc in terms of 
baseline cognition and future dementia conversion in 
the training and validation cohorts. In conclusion, the 
data show that data-driven health deficit assessment 
improves an FI’s prediction of current cognitive status 
and future dementia, and suggest that the standard FI 
procedure needs to be refined when used for dementia 
risk assessment purposes.

Keywords Alzheimer’s disease · Dementia · Mild 
cognitive impairment · Frailty · Machine learning · 
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Abstract Frailty is a dementia risk factor commonly 
measured by a frailty index (FI). The standard pro-
cedure for creating an FI requires manually selecting 
health deficit items and lacks criteria for selection opti-
mization. We hypothesized that refining the item selec-
tion using data-driven assessment improves sensitivity 
to cognitive status and future dementia conversion, and 
compared the predictive value of three FIs: a stand-
ard 93-item FI was created after selecting health defi-
cit items according to standard criteria  (FIs) from the 
ADNI database. A refined FI  (FIr) was calculated by 

Data used in preparation of this article were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). As such, the investigators 
within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not 
participate in analysis or writing of this report. A complete 
listing of ADNI investigators can be found at: http:// adni. 
loni. usc. edu/ wp- conte nt/ uploa ds/ how_ to_ apply/ ADNI_ 
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Introduction

Frailty is an age-related state of multisystem physiologi-
cal decline increasing the risk of adverse outcomes such 
as hospital complications and death [1–3]. The frailty 
index (FI) operationalizes frailty along a continuum 
based on the accumulation of health deficits model [4]. 
Evidence suggests that FIs may predict conversion to 
dementia [2, 5, 6] and points to FIs as useful measures 
for identifying subjects at high dementia risk. As frailty 
may be reversible [7], it is conceivable that frailty may 
serve as a target for dementia prevention. FIs are suit-
able for measuring frailty in this regard, as they are vali-
dated for longitudinal assessment [8] and show promise 
as outcome measures in clinical trials [9].

Standard FIs comprise a selection of several age-
related health deficits which fit pre-defined criteria 
[10], and, when reflecting the accumulated burden of 
30 to 40 health deficit variables, are robust for predic-
tion of mortality [11]. In terms of dementia risk pre-
diction, to the best of our knowledge, FI studies with 
external validation have so far been lacking. Tradition-
ally, the deficit accumulation model has included more 
cognition-related measures when operationalizing frailty 
compared with its rival, the phenotype model [20]. 
Although frailty and dementia are inter-related, they 
are distinct concepts and by including dementia-related 
measures (e.g., certain activities of daily living, cogni-
tive test results) into an FI, its use in the prediction of 
dementia may become circular. While Ward and cow-
orkers found a significant association between FI and 
future dementia risk when adjusting for global cognition 
[12], results across studies show, however, that the asso-
ciation between FIs and future dementia risk weakens 
after removing deficits which might represent early core 
dementia symptoms [6, 12]. How to construct an opti-
mal FI for dementia risk prediction purposes remains 
unknown. One caveat is that the standard procedure 
lacks criteria for discarding deficits with little explained 
variance, which may reduce FI performance [14].

In general, one approach to maximize explained vari-
ance is by employment of data-driven techniques which 
decompose and weigh correlated input variables. While 
the accuracy of a neural-network based machine learn-
ing approach outperformed an unweighted (i.e., stand-
ard) FI in the prediction of mortality [15], the applica-
tion of machine learning weights to individual patients 
has been intangible. Using machine learning to guide 
selection of health deficit items at the development 

stage of an FI may represent a more feasible approach. 
The resulting FI may in turn be applied to any subject 
for which all or a subset of the relevant health deficit 
data exists. In general, discarding non-informative vari-
ables is an efficient step to remove noise and improve 
model performance. As an example, a data-driven 
refined FI based on a selection of 35-items identified 
using factor analysis among a larger set of items nearly 
outperformed a 139-item standard FI in terms of mor-
tality prediction [16]. In contrast to factor analysis, 
principal component analysis (PCA) aims to maximize 
explained variance in variable set and may be used for 
weighting health deficits [17]. As most FIs include 
mixed data, factor analysis of mixed data (FAMD)––a 
combination of PCA for continuous variables and 
multiple correspondence analysis (MCA) for categori-
cal––is needed [18, 19]. FAMD has thus far, however, 
not been applied to the field of frailty assessment.

To this end, the purpose of the present study was 
to test adding FAMD-based cluster analysis to the 
standard FI procedure as a way to empirically guide 
health deficit selection (Fig.  1). Cluster analysis has 
previously been shown to identify subjects living with 
frailty in an unsupervised manner [20]. We hypoth-
esized that data-driven health deficit selection would 
(1) improve the stability and replicability of an FI com-
pared with standard procedure only, and (2) enhance its 
prediction of cognitive impairment, even when adjust-
ing for cognitive and functional performance using a 
validated Clinical Dementia Rating (CDR) scale. To 
test our hypotheses, we created a data-driven FI  (FIr) 
by applying FAMD-based clustering to a set of health 
variables selected according to standard criteria [10] 
from the ADNI database. The main objective was to 
develop and externally validate  FIr and compare it to 
two standard FIs using the ADNI1 (development) and 
ADNI2 and ADNI-GO (validation) cohorts against 
cognitive status and future dementia risk.

Methods

Data source

For model training, we used data from ADNI1, an 
observational prospective case–control cohort study 
(hereafter denoted “development sample”) of subjects 
between ages 55 to 90 living with normal cognition, 

GeroScience (2023) 45:591–611592



1 3
Vol.: (0123456789)

mild cognitive impairment (MCI) or Alzheimer’s 
disease dementia (AD). For external validation, 
we pooled participants from two other prospective 
cohorts, ADNIGO and ADNI2. All data are publicly 
available (https:// ida. loni. usc. edu/). The ADNI data-
set used herein was downloaded on October 21st, 
2021. ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. 
Weiner, MD. The primary goal of ADNI has been 

to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the pro-
gression of MCI and AD. For up-to-date information, 
see www. adni- info. org.

Sample

Inclusion criteria for all participants included age 55 
to 90  years; study partner to provide evaluation of 
function; speaks English; ability to undergo all test-
ing, blood samples for genotyping and biomarkers, 
and neuroimaging procedures; completed six grades 
of education or work history; for women postmeno-
pausal or surgically sterile, not depressed, and a mod-
ified Hachinski score less than five in order to rule out 
vascular dementia. Individuals with AD satisfied cri-
teria for NINCDS/ADRDA for probable AD. Subjects 
enrolled as MCI had memory complaints verified 
by a study partner, Mini Mental Status Examination 
(MMSE) score of 24 to 30, Clinical Dementia Rating 
(CDR) score = 0.5 with sum of boxes (CDRSB) score 
of at least 0.5, and general cognition and functional 
performance sufficiently preserved such that a diag-
nosis of dementia could not be made. In later phases 
of ADNI, subjects with MCI were further sub-divided 
by their Wechsler Memory Scale Logical Memory II 
score into early (EMCI) and late (LMCI): in the pre-
sent study, EMCI and LMCI-subjects were pooled 
and merely labeled MCI. Healthy controls (HC) had 
no memory complaints aside from those common 
to other normal subjects of that age range, MMSE 
score of 24 to 30, CDR = 0 (with CDRSB score = 0), 
and were deemed cognitively normal, based on an 
absence of significant impairment in cognitive func-
tions or activities of daily living. Description of the 
enrollment is found online (http:// www. adni- info. 
org/ Scien tists/ doc/ ADNI_ Gener alPro cedur esMan ual. 
pdf).

Statistical analyses

FI computation and statistical analyses were per-
formed in R version 3.6.2. A github-repo is freely 
available online with the code used to generate 
the FIs and to perform the analyses detailed below 
(https:// github. com/ LAMag lan/ ADNI- FI- clust ering). 
An FI is based on a cumulative deficits model grading 

Fig. 1  Data-driven supplement (red boxes) to the standard 
procedure (green boxes) for creating a frailty index (FI). *For 
the refined selection of health deficit variables, a false discov-
ery rate (FDR)-adjusted p value < .05 from regression analy-
ses of each variable on cluster belonging is used as selection 
threshold. †Assess face validity of refined selection against 
standard criteria and core frailty construct.  FIr (see “Methods” 
section) was developed using the data-driven supplement to the 
standard procedure as shown, whereas  FIs and  FIc were devel-
oped using standard procedure only

GeroScience (2023) 45:591–611 593

https://ida.loni.usc.edu/
http://www.adni-info.org
http://www.adni-info.org/Scientists/doc/ADNI_GeneralProceduresManual.pdf
http://www.adni-info.org/Scientists/doc/ADNI_GeneralProceduresManual.pdf
http://www.adni-info.org/Scientists/doc/ADNI_GeneralProceduresManual.pdf
https://github.com/LAMaglan/ADNI-FI-clustering


1 3
Vol:. (1234567890)

heterogeneity in health status on a continuous scale 
from 0 to 1, where greater scores indicate higher 
degree of frailty [10]. We selected candidate health 
deficits by assessing screening and baseline variables 
in the ADNI database. The selection process adhered 
to standard criteria described by Searle and coworker 
[10]. Specifically, we included variables reflecting 
health deficits, i.e., symptoms, clinical signs, dis-
eases, laboratory abnormalities, or other measures 
associated with adverse health outcomes. Jointly, the 
deficits should cover many organ systems and consist 
of more than co-morbidities or function. The selected 
deficits should generally be considered age-related 
at the population level, but a variable representing a 
deficit does not, individually, need to be significantly 
related to age [11]. We selected health deficits which 
were present in at least 1% of the sample, but not 
more than 80%, and discarded variables which were 
missing in more than 5% of the patients. In accord-
ance with previous research on frailty and cognitive 
outcomes by the developers of the FI method, we 
excluded certain health deficits related to the diagno-
sis of dementia [6, 21]. Specifically, we excluded neu-
ropsychological test results, the remembering item in 
the Functional Activities Questionnaire (FAQ) and 
specific neuropsychiatric inventory (NPI) items such 
as disinhibition and delusions. A total of 93 health 
deficit variables fit the criteria and were used to com-
pute a standard FI, denoted  FIs. Next, we optimized 
the initial selection of health deficits using a data-
driven refinement process (Fig. 1):

1) Factor analysis of mixed data (FAMD): we used 
FAMD (Pagès, 2004) in the R package Facto-
MineR [19] to reduce the 93 variables into princi-
pal components (PC). FAMD is a combination of 
principal component analysis (PCA) for continu-
ous variables and multiple correspondence analy-
sis (MCA) for categorical variables. All variables 
were normalized prior to the dimensionality 
reduction. Missing data for the continuous vari-
ables were imputed for dimensionality reduction 
using the k-Nearest Neighbour algorithm from 
the R package bnstruct [22].

2) Subject cluster analysis: the number of PCs from 
FAMD explaining 80% cumulative variance 
was used as input for cluster analysis, which is 
in line with previous clinical studies employing 
FAMD-based clustering [23, 24]. Above this 

level, cumulative explained variance as function 
of PC number gradually plateaus (Supplementary 
Figure S1). For clustering, we used Hierarchical 
Clustering on Principal Components (HCPC) in 
the R-package FactoMineR [19]. HCPC entails 
agglomerative hierarchical clustering in the first 
step and k-means clustering to improve the ini-
tial clustering. Note that the hierarchical cluster 
analysis is performed on PCs following FAMD, 
and not directly on the original health deficit var-
iables themselves. In addition to dimensionality 
reduction, this additional step is done to reduce 
noise in the data and generally yields a more sta-
ble cluster analysis [25]. We chose a two-cluster 
solution based on the higher relative loss of the 
sum of within-cluster inertia [19]. This entails 
that all participants are empirically divided into 
two cluster sub-groups.

3) Regression analysis for health deficit weighting: 
we used regression models to rank the relative 
importance or “weight” of the 93 health deficit 
variables. To this end, cluster sub-group belong-
ing was used as independent binominal variable 
and each of the health deficit variables identified 
following the standard procedure as dependent 
variables. For binomial dependent variables, we 
used logistic regression models; for ordinal cat-
egorical variables (FAQ items), we used ordinal 
logistic regression; and for the continuous vari-
ables, we used linear regression.

To compute  FIr, we included health deficit vari-
ables with a false discovery rate (FDR)-adjusted 
p < 0.05 from the regression analyses in step 3 only 
(i.e., the highest ranked items). We assessed face 
validity of the refined set of health deficits included 
in  FIr against standard criteria for an FI [10] and core 
components of the frailty construct [1].

In order to compare our FIs with one created by 
others, we further calculated a published 40-item FI 
 (FIc) [26]. The items included in each FI is reported 
in Table  1. For all FIs, selected health deficit vari-
ables were binarized with a value of “1” given if a 
health deficit––or a marker thereof––was present, and 
“0” if absent. Continuous health deficit variables were 
dichotomized using established reference ranges, cod-
ing “1” as outside the normal range, “0” as within. 
For coding of continuous blood tests results, we used 
the ADNI laboratory reference ranges (including age 
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Table 1  Health deficit 
items included in  FIs,  FIr, 
and  FIc

Frailty Index (FI) variable

Health deficit variables FIs FIr FIc

On medication for arthritis X
On medication for elevated cholesterol X
On medication for hypertension X
On medication for hypothyroidism X
History of cardiovascular disease X X
History of endocrine-metabolic disease X X
History of head, eyes, ears, nose, and throat diseases X X
History of dermatologic-connective tissue disease X X
History of gastrointestinal disease X X
History of hematopoietic-lymphatic disease X X
History of hepatic disease X X
History of malignancies X X
History of musculoskeletal disease X X
History of neurological (non-AD) disease X X
History of psychiatric disease X X X
History of renal-genitourinary disease X X
History of respiratory disease X X
History of other diseases X
History of major surgical procedures X
FAQ, writing checks, paying bills, or balancing checkbook X X X
FAQ, assembling tax records, business affairs, or other papers X X X
FAQ, heating water, making a cup of coffee X X X
FAQ, traveling out of the neighborhood) X X X
FAQ, preparing a balanced meal X X X
FAQ, paying attention to and understanding a TV program, book, 

or magazine
X X X

FAQ, playing a game of skill such as bridge or chess X X X
FAQ, shopping alone for clothes, household X X X
NPI, agitation X X X
NPI, anxiety X X X
NPI, depression X X
NPI, irritability X X X
NPI, sleep disturbance X X
NPI, apathy X X X
NPI, aberrant motor behavior X X X
NPI, change in appetite and eating X X
Auditory impairment on physical exam X
Cranial nerve abnormality on physical exam X
Abnormal finger to nose test X X
Abnormal heel-knee test X
Abnormal gait on physical exam X X X
Motor strength deficit on physical exam X
Abnormal plantar reflex on physical exam X
Abnormal tendon reflex on physical exam X
Sensory nerve abnormality on physical exam X
Tremor on physical exam X X
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Table 1  (continued) Frailty Index (FI) variable

Health deficit variables FIs FIr FIc

Vision impairment on physical exam X
Symptoms from abdomen X
Self-reported ankle swelling X
Self-reported shortness of breath X X
Self-reported chest pain X
Self-reported constipation X X
Self-reported cough X
Self-reported depressed mood X X
Self-reported dizziness X X
Self-reported drowsiness X X X
Self-reported dry mouth X
Self-reported low energy X X X
Self-reported recent fall X X
Self-reported insomnia X X
Self-reported life satisfaction X
Self-reported muscle pain X X
Self-reported palpitations X
Self-reported urinary discomfort X X
Self-reported urinary frequency X
Self-reported vision disturbance X
Blood albumin (g/dL) X
Blood alkaline phosphatase (ALP; U/L) X
Blood alanine aminotransferase (ALT; U/L) X
Blood aspartate aminotransferase (AST; U/L) X
Blood vitamin B12 (pg/mL) X
Blood total bilirubin (mg/dL) X
Blood calcium (mg/dL) X
Blood cholesterol (mg/dL) X
Blood creatinine (mg/dL) X
Blood glucose (mg/dL) X
Blood hematocrit (%) X
Blood hemoglobin (g/dL) X
Blood mean corpuscular hemoglobin (MCH; pg) X
Blood mean corpuscular volume (MCV; fL) X
Blood neutrophil count  (103/μl) X X
Blood total protein (g/dL) X
Blood red blood cell count (RBC;  106/μl) X X
Blood triglycerides (mg/dL) X
Blood urea nitrogen (BUN, mg/dL) X
Blood uric acid (mg/dL) X
Body mass index (BMI) X
Diastolic blood pressure (mmHg) X X
Heart rate (count) X
Mean arterial pressure (mmHg) X
Pulse pressure (mmHg) X X
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and/or sex-specific cut-points). For activities of daily 
living variables, the deficit item was recoded in an 
ordinal manner [26]: for instance, the Finances item 
of the FAQ was coded as follows: “0” for independ-
ent/normal functioning, “0.25” for difficulty, and 
“0.5” for requires assistance, and “1” for dependent. 
All cut points used for dichotomization are provided 
in Supplementary Tables S1 and S2. Note that an FI 
score was only calculated for individuals who had 
less than 20% missing variables. The same selection 
of health deficits used to compute the FIs in the devel-
opment sample (i.e., the ADNI1-cohort) were subse-
quently used to calculate corresponding FI-variables 
for the validation sample (i.e., pooled ADNI2 and 
ADNI-GO cohorts). The validation sample FIs were 
tested and displayed along with the results from the 
development sample for out-of-sample verification.

Diagnostic prediction performance

To assess diagnostic performance of the two standard 
FIs  (FIs and  FIc) versus  FIr, we performed three sets 
of machine-learning based binary classification on 
the diagnostic groups (HC vs AD, MCI vs AD, and 
HC vs MCI) using linear discriminant analysis from 
the R packages discrim [27] and tidymodels [28]. In 
the main analyses, we ran tenfold internal cross-vali-
dation on the ADNI1 data (i.e., whereby 9 of the folds 
predict the remaining fold iteratively), repeated 100 
times on randomly partitioned data. To assess repro-
ducibility, we built our models based on the develop-
ment cohort (ADNI1) which were then used to clas-
sify the diagnostic groups in the validation cohort 
(ADNI2 and ADNI-GO). To obtain an estimate of 
standard deviation for each of the binary classifica-
tion analyses of the validation-sample, we performed 

a pseudo-tenfold cross-validation with 100 repeti-
tions, where first the validation-sample was split into 
10 folds, where each of the folds was predicted with 
the same machine learning model (built on the whole 
development-sample, i.e., ADNI1 dataset) for each 
of the respective binary classification tasks. We com-
puted area under the curve (AUC) as our main meas-
ure of model performance, but also report sensitivity, 
specificity, negative predictive value (NPV), positive 
predictive value (PPV), and the F1-score. Due to dif-
ferences in diagnostic group size (i.e., class imbal-
ance), we conducted sensitivity analyses to account 
for imbalanced sampling in the development-sample. 
Here, for every binary classification task, we under-
sampled the larger diagnostic group to match the 
lower diagnostic group. Then, as in the main analyses 
in the development sample, we ran tenfold cross-vali-
dation with 100 repetitions.

Finally, we examined whether the discriminative 
ability of the three FI-variables changed according to 
different age and sex strata by dividing the develop-
ment sample into young-old and old-old (± 75 years), 
and male and female. Here, we performed binary 
classification on the four resulting sub-groups for 
HC versus AD classification only to constrain the 
number of analyses run. We ran paired t tests to sta-
tistically compare the model performance of the two 
classifiers (either  FIs or  FIc, versus  FIr) in the main 
analyses, as well as for the sensitivity analyses with 
undersampling.

Prognostic performance

We evaluated how well the FI-variables predicted 
future dementia risk by survival analysis of subjects 
living with MCI at baseline. Analyses were performed 

Table 1  (continued) Frailty Index (FI) variable

Health deficit variables FIs FIr FIc

Systolic blood pressure (mmHg) X X
Number of medications (polypharmacy) X X
Elevated geriatric depression scale (GDS) score X X

X denotes that the variable is included in the respective frailty index (FI). FIs = a 93-item frailty 
index created according to standard procedure. FIr = a 26-item frailty index created according 
to a refined, data-driven procedure. FIc = a 40-item FI created according to standard procedure 
by Canevelli, et  al. [26]. FAQ = Functional Assessment Questionnaire. NPI = Neuropsychiatric 
Inventory
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using the survival package [29], if not otherwise 
stated. We assessed time from baseline examination 
to the date of registered AD conversion. Participants 
who had not progressed at their last recorded visit 
were right-censored. We did not account for a com-
peting mortality risk. Dementia-free survival in MCI 
participants was first assessed by different sample 
levels of frailty using FI-quartiles without adjusting 
for covariates by the Kaplan–Meier estimator. To test 
and compare the predictive performance of the three 
continuous FI-variables over time we also estimated 
time-dependent areas under receiver operating char-
acteristic curves (AUC(t)) and their 95% confidence 
intervals and bands by means of the R package ‘tim-
eROC’, using the iid-representation of the AUC esti-
mator for inference [30].

Next, we tested associations between dementia-
free survival and the three FIs as continuous variables 
by fitting multivariate Cox proportional hazards mod-
els, taking into account age, sex, education as well as 
baseline cognitive and functional performance. Here, 
FI-scores were multiplied by 100 in order to facili-
tate meaningful interpretation of the associated haz-
ard ratios (HR). In the first model set, we included 
either one of the continuous FI variables, covarying 
for age, sex, and education. In the second model set, 
we assessed relationships between the FI scores and 
dementia risk when accounting for baseline cogni-
tive and functional performance. To this end, we fit-
ted Cox proportional hazards models with the Clini-
cal Dementia Rating Sum of Boxes (CDRSB) score 
for each participant as an additional covariate. For 
the development sample, individual, and global Sch-
oenfeld scaled residuals tests were all non-signifi-
cant, suggesting proportionality of hazards. In the 
validation sample, Schoenfeld scaled residuals tests 
indicated violation of the proportionality of hazards 
assumption for the age covariate (p < 0.05). Thus, 
for the multivariate validation models, we estimated 
average hazard ratios [31] using Prentice weights 
with censoring correction and robust variance estima-
tion as implemented in the coxphw package.

To examine predictive validity, we tested asso-
ciations between the FI-variables and mortality 
risk—the endpoint for which the FI-approach was 
originally developed [4, 10]. Due to a relatively low 
mortality rate, particularly in the validation cohort 
(ndeaths = 15 AD, 10 HC and 20 MCI, respectively), 
subjects across diagnostic groups were pooled and 

the analyses were considered explorative. We hypoth-
esized that  FIr would be associated with mortality 
risk comparable to published literature, also when 
adjusting for confounders (age, sex, education, cogni-
tive performance). Here, MMSE was used to account 
for variation in baseline cognition instead of CDRSB 
as the latter equals 0 in HC subjects. In the adjusted 
analyses, we assumed non-proportional hazards and 
estimated average hazard ratios as described above 
since Kaplan–Meier plots showed pronounced cross-
ing of the survival curves for  FIs and  FIc (Supplemen-
tary Figure S4).

Results

Table  2 summarizes baseline characteristics for the 
development and validation samples. The valida-
tion sample was younger, more highly educated, and 
included fewer patients living with dementia at base-
line compared with the development sample.

FAMD-based subject cluster analysis

We performed FAMD on the 93 health deficit variables 
identified by the standard procedure which yielded 93 
PCs. A plot of the cumulative explained variance of all 
PCs, and a scree plot of the first 10 are shown in Sup-
plementary Figure S1. The contribution of each contin-
uous and categorical health deficit variable to the first 
5 PCs are shown in Supplementary Figures S2 and S3, 
respectively. FAQ-items contributed most to the 1st PC. 
Number of prescription drugs contributed the most to 
the 2nd. The first 60 PCs, explaining 80% of cumulative 
variance, were fed into cluster analysis. A cluster den-
drogram showing the empirical division of individual 
subjects into our chosen two-cluster solution is shown 
in Fig. 2. Baseline characteristics of the individuals in 
each cluster are shown in Table  3. Median degree of 
frailty, as measured by two standard FIs  (FIs,  FIc), was 
significantly greater in the smaller cluster (cluster 2, 
coined “frail”), comprising 230 subjects (149 AD, 81 
MCI). The largest cluster, cluster 1 (coined “fit”), con-
sisted of 589 subjects (229 HC, 316 MCI, and 44 AD). 
The participants in the two clusters were of compara-
ble age, and had similar sex distributions. In cluster 2, 
more subjects were living with polypharmacy, more 
reported low levels of energy, and had more symptoms 
of depression compared with subjects in cluster 1.
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Table 4 shows the empirical ranking of health defi-
cit items, including the 26 health deficit variables cor-
relating significantly  (pFDR < 0.05) with cluster belong-
ing, which were used to compute  FIr. Sixteen out the 
26 health deficits used to compute  FIr were related 
to activities of daily living (FAQ) and neuropsychi-
atric symptoms (NPI) reported by next of kin. Three 
items were based on self-report (feeling depressed, 
low energy, drowsy). One item was based on depres-
sive symptoms as rated on the geriatric depression 
scale (GDS), one was having abnormal gait on physi-
cal exam, one was number of prescription drugs, two 
were blood test results (neutrophil count, red blood 
cell count), the last item was pulse pressure. Except 
having an item count less than 30,  FIr was deemed in 
accordance with standard criteria for an FI [10].

Frailty index characteristics

Density plots for all three FI-variables for the 
development and validation samples are shown in 
Fig. 3A, whereas central tendency, variability and 
99th percentiles are quantified in Table 2.  FIr dis-
played a pattern of greater right-skew, variability 
and a higher upper FI-limit compared with stand-
ard FIs  (FIs,  FIc). As expected, median FI-scores 
increased with greater degree of cognitive impair-
ment for all FIs (Fig.  3B). As shown in Supple-
mentary Figure  S5, the relationship with age 
appeared weaker for  FIr compared with standard 
FIs.

Table 2  Baseline 
characteristics of 
development and validation 
samples

AD = Alzheimer’s disease dementia. FIs = a 93-item frailty index (FI) created according to 
standard procedure by the authors. FIr = a 26-item FI created by adding a data-driven supplement 
to the standard procedure. FIc = a 40-item FI created according to standard procedure by 
Canevelli, et  al. [26]. HC = cognitively normal control. IQR = interquartile range. MCI = mild 
cognitive impairment. SD = standard deviation. Sample group differences for continuous 
and categorical variables were assessed by Kruskal–Wallis and Pearson’s chi-squared tests, 
respectively

Sample Development
(ADNI1, n = 819)

Validation
(ADNI2 + GO, n = 815)

p

Baseline diagnosis, n (%)  < 0.001
 AD 193 (23.6%) 151 (18.5%)
 HC 229 (28.0%) 190 (23.3%)

MCI 397 (48.5%) 474 (58.2%)
Age in years, median [IQR] 75.5 [71.2;80.0] 72.6 [67.6;77.7]  < 0.001
Sex, n (%) 0.075
 Female 342 (41.8%) 377 (46.3%)
 Male 477 (58.2%) 438 (53.7%)

Education in years, median [IQR] 16.0 [13.0;18.0] 16.0 [14.0;18.0]  < 0.001
MMSE, median [IQR] 27.0 [25.0;29.0] 28.0 [26.0;29.0]  < 0.001
CDRSB, median [IQR] 1.5 [0.0;3.0] 1.0 [0.5;2.5] 0.400
FIs

 Median [IQR] 0.168 [0.125;0.220] 0.174 [0.133;0.228] 0.019
 Mean (SD) 0.176 (0.070) 0.183 (0.067)
 99th percentile 0.358 0.367

FIr

 Median [IQR] 0.154 [0.077;0.269] 0.154 [0.096;0.269] 0.125
 Mean (SD) 0.187 (0.138) 0.192 (0.131)
 99th percentile 0.615 0.594

FIc

 Median [IQR] 0.200 [0.131;0.269] 0.206 [0.150;0.275] 0.349
 Mean (SD) 0.211 (0.100) 0.214 (0.097)
 99th percentile 0.469 0.468
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Fig. 2  A Dendrogram showing the hierarchical structure of 
the subject clustering solution. The blue part shows the first 
and largest cluster which we coined “fit” due to significantly 
lower frailty scores in this subgroup (c.fr. Table 3) compared 
with the second, smaller cluster (yellow), coined “frail”. B 

Scatterplot showing subjects and their cluster belonging based 
on the two first principal components (PC, “Dim1”, “Dim2”) 
from factor analysis of mixed data (FAMD). The percentages 
denote explained variance of each PC

Table 3  Baseline characteristics of subject cluster sub-groups formed by FAMD-based cluster analysis

AD = Alzheimer’s disease dementia. CDRSB = Clinical Dementia Rating Sum of Boxes. FIs = a 93-item frailty index (FI) created 
according to standard procedure by the authors. FIc = a 40-item FI created according to standard procedure by Canevelli, et al. [26]. 
HC = healthy cognitively normal control. MCI = mild cognitive impairment. Continuous variables are reported as median [interquar-
tile range]. Sample group differences for continuous and categorical variables by Kruskal–Wallis and Pearson’s chi-squared tests, 
respectively

Cluster Cluster 1 “Fit” Cluster 2 “Frail” p value
(N = 589) (N = 230)

Diagnosis  < 0.001
 -AD 44 (7.5%) 149 (64.8%)
 -HC 229 (38.9%) 0 (0.0%)
 -MCI 316 (53.7%) 81 (35.2%)

Age 75.2 [71.3;79.7] 76.40 [70.70;81.80] 0.299
Sex 0.943
 -Female 245 (41.6%) 97 (42.2%)
 -Male 344 (58.4%) 133 (57.8%)

Education, years 16.0 [14.0;18.0] 16.0 [12.0;17.0] 0.001
CDRSB 0.50 [0.00;1.50] 3.50 [2.50;5.00]  < 0.001
FIs 0.15 [0.11;0.19] 0.22 [0.18;0.27]  < 0.001
FIc 0.17 [0.12;0.23] 0.30 [0.23;0.37]  < 0.001
Number of prescription drugs] 5.0 [3.0;7.0] 6.0 [4.0;8.0]  < 0.001
Self reported low energy  < 0.001
 -Absent 504 (85.6%) 154 (67.0%)
 -Present 85 (14.4%) 76 (33.0%)

NPI, depressive symptoms  < 0.001
 -No 524 (89.1%) 140 (60.9%)
 -Yes 64 (10.9%) 90 (39.1%)
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Table 4  Ranking of health 
deficit items

Rank Health deficit variable Adjusted p value

1 FAQ, writing checks, paying bills, or balancing checkbook  < 0.001
2 FAQ, assembling tax records, business affairs, or other 

papers
 < 0.001

3 FAQ, shopping alone for clothes, household  < 0.001
4 FAQ, traveling out of the neighborhood)  < 0.001
5 FAQ, preparing a balanced meal  < 0.001
6 FAQ, playing a game of skill such as bridge or chess  < 0.001
7 FAQ, paying attention to and understanding a TV pro-

gram, book, or magazine
 < 0.001

8 FAQ, heating water, making a cup of coffee  < 0.001
9 NPI, anxiety  < 0.001
10 NPI, apathy  < 0.001
11 NPI, agitation  < 0.001
12 NPI, depression  < 0.001
13 NPI, irritability  < 0.001
14 NPI, change in appetite and eating  < 0.001
15 NPI, sleep disturbance  < 0.001
16 Self-reported depressed mood  < 0.001
17 NPI, aberrant motor behavior  < 0.001
18 History of psychiatric disease  < 0.001
19 Self-reported low energy  < 0.001
20 Self-reported drowsiness  < 0.001
21 Geriatric Depression Scale (GDS) score  < 0.001
22 Abnormal gait on physical exam  < 0.001
23 Number of medications (polypharmacy)  < 0.001
24 Blood neutrophil count  (103/μl)  < 0.001
25 Blood red blood cell count (RBC;  106/μl) 0.01
26 Pulse pressure (mmHg) 0.03
27 Blood glucose (mg/dL) 0.07
28 Self-reported dizziness 0.07
29 History of endocrine-metabolic disease 0.07
30 Heart rate (count) 0.07
31 Blood hematocrit (%) 0.07
32 Tremor on physical exam 0.12
33 Body mass index (BMI) 0.12
34 Blood mean corpuscular hemoglobin (MCH; pg) 0.16
35 Blood albumin (g/dL) 0.16
36 Blood mean corpuscular volume (MCV; fL) 0.20
37 Blood hemoglobin (g/dL) 0.20
38 Systolic blood pressure (mmHg) 0.24
39 Vision impairment on physical exam 0.28
40 Self-reported muscle pain 0.29
41 Blood alanine aminotransferase (ALT; U/L) 0.29
42 Blood alkaline phosphatase (ALP; U/L) 0.30
43 Blood creatinine (mg/dL) 0.30
44 Cranial nerve abnormality on physical exam 0.30
45 Blood cholesterol (mg/dL) 0.31
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Table 4  (continued) Rank Health deficit variable Adjusted p value

46 On medication for elevated cholesterol 0.31
47 On medication for arthritis 0.34
48 Diastolic blood pressure (mmHg) 0.42
49 Self-reported chest pain 0.49
50 On medication for hypertension 0.49
51 Self-reported dry mouth 0.50
52 Blood urea nitrogen (BUN, mg/dL) 0.52
53 Abnormal plantar reflex on physical exam 0.52
54 Mean arterial pressure (mmHg) 0.52
55 Blood triglycerides (mg/dL) 0.52
56 Self-reported recent fall 0.53
57 Auditory impairment on physical exam 0.53
58 History of musculoskeletal disease 0.55
59 History of hepatic disease 0.60
60 On medication for hypothyroidism 0.61
61 Self-reported cough 0.61
62 Abnormal finger to nose test 0.61
63 Self-reported constipation 0.62
64 Blood uric acid (mg/dL) 0.62
65 Self-reported palpitations 0.62
66 Abnormal tendon reflex on physical exam 0.68
67 History of gastrointestinal disease 0.71
68 Abnormal heel-knee test 0.72
69 Motor strength deficit on physical exam 0.72
70 Symptoms from abdomen 0.72
71 Sensory nerve abnormality on physical exam 0.72
72 Self-reported vision disturbance 0.72
73 Self-reported life satisfaction 0.72
74 History of head, eyes, ears, nose, and throat diseases 0.72
75 Self-reported urinary frequency 0.72
76 Self-reported shortness of breath 0.74
77 Blood calcium (mg/dL) 0.77
78 History of dermatologic-connective tissue disease 0.77
79 History of cardiovascular disease 0.77
80 Self-reported ankle swelling 0.77
81 Blood total protein (g/dL) 0.77
82 History of neurological (non-AD) disease 0.80
83 Blood total bilirubin (mg/dL) 0.84
84 Blood vitamin B12 (pg/mL) 0.89
85 History of respiratory disease 0.89
86 History of renal-genitourinary disease 0.89
87 History of other diseases 0.89
88 History of hematopoietic-lymphatic disease 0.89
89 History of major surgical procedures 0.97
90 Blood aspartate aminotransferase (AST; U/L) 0.97
91 History of malignancies 0.97
92 Self-reported urinary discomfort 0.97
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Diagnostic performance

Table  5 shows the results from pairwise diagnostic 
group classifications for the development and valida-
tion samples. For classification of HC versus AD,  FIr 
showed excellent performance in both development 
and validation samples (AUC 0.95 and 0.93, respec-
tively) with relatively balanced sensitivity and speci-
ficity. For all other group classifications, poorly bal-
anced sensitivity and specificity were seen, reflected 
by the imbalanced diagnostic group sizes. Class imbal-
ance correction by undersampling led to more bal-
anced sensitivity and specificity metrics, while over-
all model performance remained largely unchanged 
(Supplementary Table S3). For HC versus MCI, both 
 FIs and  FIc showed poor classification performance in 
both samples, whereas  FIr showed acceptable perfor-
mance. For all comparisons, including results obtained 
by adjusting for class imbalance, classification perfor-
mance was greater for  FIr compared with both  FIs and 
 FIc (p < 0.001). Assessment of discriminative ability 
across age and sex-strata (Supplementary Table  S4) 
suggested poorer performance for  FIs in younger old 
(below 75 years) compared with old (75 +) age groups, 
particularly for males. A similarly tendency was seen 
for  FIc, whereas overall performance for  FIr remained 
excellent across age and sex-strata. For females aged 
75 and older,  FIr AUC for HC versus AD classification 
was outstanding (0.97, 95% CI 0.95 to 0.99).

Prognostic performance

In the development sample, 382 out of 397 subjects 
with MCI at baseline had diagnostic follow-up data, 
with a median follow-up time of 744 days (interquartile 
range, 410 to 1461); 205 (54%) converted to dementia. 
In the validation sample, 443 out of 474 subjects with 
MCI at baseline had diagnostic follow-up data, with 
a median follow-up time of 1451  days (interquartile 
range, 731 to 2195); 111 (25%) converted to dementia.

Figure 3D shows Kaplan–Meier survival curves illus-
trating the probability of remaining stable MCI (demen-
tia-free) at time of follow-up for different FI-quartiles 
calculated for each sample. The FI-quartile curves dif-
fered significantly in terms of future dementia risk across 
samples for  FIr only. Estimates of AUC(t) for prediction 
of AD conversion in subjects with MCI at baseline over 
5-year follow-up for the three continuous FI variables are 
shown in Fig. 4E. AUC(t) 95% confidence bands (Sup-
plementary Figure S6) for  FIs and  FIc both intersected the 
0.5-line, suggesting poor to chance level discrimination. 
Average AUC(t) for  FIr ranged from 0.62–0.70 over time 
suggesting poor to acceptable performance in prediction 
of future dementia risk, outperforming  FIc and  FIs from 
year 2 in both samples (Supplementary Figure S7). In the 
multivariate survival analyses (Table  6), only  FIr asso-
ciated with future dementia risk across samples and in 
a model adjusting for cognitive and functional baseline 
performance (as scored by CDRSB).

In exploratory analyses, we found a crude mortal-
ity hazard ratio for  FIr of 1.04 (1.02 to 1.05) which 
is in accordance with published estimates from FI 
meta-analysis (HR 1.04, 95% CI 1.03 to 1.04) [32]. 
Kaplan–Meier survival curves and associations with 
mortality risk for all three FI-variables  (FIs,  FIr,  FIc) 
are shown in Supplementary Figure  S4 and Supple-
mentary Table  S5. In the Development sample, only 
 FIr associated with mortality risk (average hazard ratio 
1.02, 95% CI 1.01 to 1.04) in the fully adjusted model.

Discussion

Several studies show promise for FIs in dementia 
risk prediction [2, 5, 6, 12], but the results have been 
variable and validation studies are lacking. We tested 
whether adding a data-driven health deficit selection 
step to the standard FI procedure improves predic-
tion of current cognitive status and future conversion 
to dementia. The data-driven optimization procedure 

Table 4  (continued) Rank Health deficit variable Adjusted p value

93 Self-reported insomnia 0.99

The right column shows false discovery rate (FDR)-adjusted p values from regression analyses 
examining the association between 93 health deficits identified according to a set of standard 
criteria given by Searle, et al. [10], and subject clusters resulting from factor analysis of mixed 
data (FAMD)-based clustering analysis. Deficits were ranked according to the p values and a 
horizontal line below item 26 marks the 0.05 p value threshold. The top 26 items were used to 
compute  FIr. Abbreviations: FAQ = Functional Assessment Questionnaire. NPI = Neuropsychiatric 
Inventory
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may help researchers and clinicians streamline FI 
development and improve early detection of MCI and 

AD and identify those at highest risk for clinical trial 
enrolment.
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Our results show that the data-driven  FIr out-
performs standard FIs in terms of diagnostic and 
prognostic performance, both in development and 
validation samples. As an example of diagnostic per-
formance, Canevelli and coworkers reported an AUC 
of 0.67 to 0.75 for a standard FI in discriminating 
participants with and without dementia [26]. Clas-
sification performance for  FIr in discriminating sub-
jects with normal cognition and dementia was 0.95 
to 0.96. While  FIr diagnostic performance remained 
excellent (mean AUCs from 94 to 97) across age and 
sex-strata, overall performance dropped in younger 
strata for standard FIs  (FIs,  FIc). As the FAMD-based 
clustering approach employed here aims to maximize 
explained variance of included health deficits, overlap 
with confounding entities is likely diminished.

In terms of prognostic performance, only  FIr asso-
ciated with future dementia conversion when adjusting 
for cognitive status. Some studies of frailty and future 
dementia risk have not adjusted for baseline cognitive 
status [2, 6], others have shown conflicting results [5, 
12, 33]. The present study is the first to include out-of-
sample verification. Our data show that two FIs created 
according to standard procedure had little added value 
in prediction of dementia when adjusting for cogni-
tive performance, even when health deficits strongly 
related to dementia (such as certain ADL-items and 
cognitive tests) were excluded. The results show  that 
dementia prediction ability of the accumulation of defi-
cits model is variable and depends on the way an FI 
is constructed. Our proposed data-driven assessment of 
health deficits revealed items particularly sensitive to 

AD-related cognitive status and conversion to demen-
tia. We argue that the standard procedure for creating 
an FI published in 2008 [10] could benefit from revi-
sion and that health deficit selection may be stream-
lined by FAMD-based subject clustering.

Characteristics of health deficits identified by cluster 
analysis

In line with previous studies, higher FI-scores were 
associated with greater degree of cognitive impair-
ment [5, 33, 34]. FAQ items were amongst the top 
health deficit variables that differed most between 
cluster subgroups, including independence in assem-
bling tax records, business affairs, or other papers, 
and writing checks, paying bills, or balancing check-
books. Previous studies confirm that FAQ is sensi-
tive to early cognitive decline [35, 36]. Polypharmacy 
(more than five different prescription medications 
daily) was also among the highest ranked health defi-
cit variables following cluster analysis, a feature of 
frailty previously associated with dementia risk [37]. 
Cardiovascular disease and frailty are closely linked 
and may share similar causal mechanisms [38]. As 
such, most FIs to date consist of one or more items 
involving the cardiovascular system, including a his-
tory of ischemic heart disease, stroke, or heart failure 
[e.g., 2, 5, 16, 21, 26, 34]. Some also include bio-
markers thereof, such as blood pressure [21, 26]. The 
question here seems not to be whether cardiovascular 
health deficits should be included in an FI, but rather 
which one to choose in order to maximize FI perfor-
mance. While the standard procedure for creating an 
FI gives little advice on optimal item selection [10], 
the present data-driven approach ruled out all car-
diovascular items except pulse pressure (PP). Often 
used as a surrogate of arterial stiffness, increased PP 
is a feature of aging that has been associated with 
blood–brain barrier dysfunction and cognitive impair-
ment [39]. Two items representing hematopoietic 
and immune systems were also among the top-rated 
health deficits variables (Table 4) and were included 
in  FIr: blood neutrophil count and red blood cell count 
(RBC). Neutrophils are the most abundant leukocyte 
in the periphery and are gaining increasing atten-
tion as a prognostic AD biomarker [40]. Neutrophils 
are hypothesized to contribute to AD progression 
through systemic inflammation and disturbance of the 
blood–brain barrier [41]. RBC is one of several red 

Fig. 3  A Density plots showing three frailty index (FI) dis-
tributions for ADNI1 (development) and ADNI2/GO (valida-
tion) cohorts.  FIs = a 93-item FI created according to standard 
procedure by the authors.  FIr = a 26-item FI created by adding 
a data-driven supplement to the standard procedure.  FIc = a 
40-item FI created according to standard procedure by Can-
evelli, et al. [26]. B Boxplots illustrating central tendency and 
variability of the three different FI-variables for cognitively 
normal (healthy) controls (HC), and subjects living with mild 
cognitive impairment (MCI) or Alzheimer’s disease dementia 
(AD). P values are from Wilcoxon rank sum tests comparing 
diagnostic group differences in FI-scores. C Kaplan–Meier 
survival curves for sample quartiles calculated for each FI. The 
survival probabilities indicate the probability of remaining sta-
ble MCI at time of follow-up, and vertical lines through each 
line indicate censoring. D Estimated mean AUC(t) for predic-
tion of AD conversion in subjects with MCI at baseline plotted 
over 5 years of follow-up for the three rival continuous FI vari-
ables in development and validation cohorts

◂
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blood cell indices associated with AD and cognitive 
decline [42], and may reflect an array of pathological 
disturbances affecting brain function, i.e., B-vitamin 
deficiencies [43], anemia [44], and chronic kidney 
disease [45].

Cluster analysis revealed a higher degree of 
depressive symptomatology in the smaller, “frail” 
cluster 2, compared with cluster 1 (see Table  3). In 
turn,  FIr included both self-reported depressed mood, 
the NPI depression-item and GDS score as health 
deficits, reinforcing the strong link between frailty 
and depressive syndromes [46]. Depression is also a 
common manifestation in AD with prevalence esti-
mates up to 50% [47], with associations with AD 
pathology including amyloid-β accumulation [48]. 
The present findings are intriguing as the ADNI 

study was designed to rule out subjects with clinical 
depression, and points to an important role even for 
subclinical symptoms. Indeed, one study found that 
even subthreshold symptoms of geriatric depression 
were related to AD-related neurodegeneration, which 
appeared to be independent of amyloid burden [49]. 
Self-reported low levels of energy and abnormal 
gait were also among the top variables that differed 
between the cluster subgroups. These characteristic 
frailty components might represent targets of preven-
tion, as a randomized controlled clinical trial found 
that exercise was effective in reducing cognitive 
frailty [50]. Overall, the clustering approach identi-
fied a nuanced pattern of frailty-related health factors 
jointly contributing to the predictive ability of  FIr.

Table 5  Pairwise group classification

AD = Alzheimer’s disease dementia, AUC  = area under the curve. FIs = a 93-item frailty index (FI) created according to standard 
procedure by the authors. FIr = a 26-item FI created by adding a data-driven supplement to the standard procedure. FIc = a 40-item 
FI created according to standard procedure by Canevelli, et al. [26]. HC = healthy cognitively normal control. MCI = mild cognitive 
impairment. NPV = negative predictive value. PPV = positive predictive value
§ Error margin is reported as standard error

Classification/perfor-
mance measure

Sample

Development (ADNI1) Validation (ADNI2 + GO)

FI-variable

HC vs. AD FIs FIr FIc FIs FIr FIc

Area under the curve 0.75 (0.00) 0.95 (0.00) 0.81 (0.00) 0.75 (0.00) 0.93 (0.00) 0.80 (0.00)
Sensitivity 0.81 (0.00) 0.94 (0.00) 0.83 (0.00) 0.82 (0.00) 0.95 (0.00) 0.82 (0.00)
Specificity 0.56 (0.01) 0.77 (0.00) 0.64 (0.00) 0.53 (0.00) 0.76 (0.00) 0.58 (0.00)
PPV 0.69 (0.00) 0.83 (0.00) 0.74 (0.00) 0.69 (0.00) 0.83 (0.00) 0.71 (0.00)
NPV 0.71 (0.01) 0.92 (0.00) 0.77 (0.01) 0.70 (0.00) 0.92 (0.00) 0.72 (0.00)
F1-score 0.74 (0.00) 0.88 (0.00) 0.78 (0.00) 0.75 (0.00) 0.89 (0.00) 0.76 (0.00)
MCI vs. AD FIs FIr FIc FIs FIr FIc

Area under the curve 0.67 (0.00) 0.81 (0.00) 0.71 (0.00) 0.60 (0.00) 0.76 (0.00) 0.66 (0.00)
Sensitivity 0.97 (0.00) 0.89 (0.00) 0.92 (0.00) 0.95 (0.00) 0.89 (0.00) 0.91 (0.00)
Specificity 0.11 (0.01) 0.47 (0.00) 0.24 (0.00) 0.08 (0.00) 0.42 (0.00) 0.23 (0.00)
PPV 0.69 (0.00) 0.78 (0.00) 0.71 (0.00) 0.76 (0.00) 0.83 (0.00) 0.79 (0.00)
NPV 0.66 (0.05) 0.69 (0.01) 0.61 (0.02) 0.32 (0.00) 0.55 (0.00) 0.44 (0.00)
F1-score 0.81 (0.00) 0.83 (0.00) 0.80 (0.00) 0.85 (0.00) 0.86 (0.00) 0.84 (0.00)
HC vs. MCI FIs FIr FIc FIs FIr FIc

Area under the curve 0.60 (0.00) 0.78 (0.00) 0.63 (0.00) 0.65 (0.00) 0.78 (0.00) 0.65 (0.00)
Sensitivity 0.00 (0.00) 0.41 (0.00) 0.06 (0.01) 0.01 (0.00) 0.31 (0.00) 0.07 (0.01)
Specificity 1.00 (0.00) 0.89 (0.00 0.97 (0.00) 1.00 (0.00) 0.92 (0.00) 0.97 (0.00)
PPV 0.15 (0.03)§ 0.68 (0.01) 0.57 (0.06) 1.00 (0.00) 0.60 (0.00) 0.45 (0.00)
NPV 0.63 (0.00) 0.73 (0.00) 0.64 (0.00) 0.71 (0.00) 0.77 (0.00) 0.72 (0.00)
F1-score 0.15 (0.03)§ 0.51 (0.00) 0.18 (0.00)§ 0.01 (0.00) 0.41 (0.01) 0.12 (0.05)
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The relationship between frailty and future dementia 
risk varies across FI-variables

The degree of frailty predicted conversion from MCI 
to dementia across samples for the data-driven  FIr only. 
Although standard generated FIs  (FIs,  FIc) associated 
with future dementia risk in age, sex, and education-
adjusted models, these results failed out-of-sample val-
idation and the association did not remain when adjust-
ing for baseline CDRSB scores. We are aware of few 
FI-studies of dementia risk with external validation, 
and most lack correction for baseline cognition using 
more comprehensive tools such as CDRSB. Many 
geriatric outpatient clinics have started implementing 
frailty assessment by means of FIs created using stand-
ard procedure. Given that validated tools for cognitive 
and functional assessment such as CDR exist, our find-
ings question the addition of time-consuming assess-
ment by means of standard FIs for clinical dementia 
workup unless their predictive abilities are improved 
following, e.g., a data-driven optimization procedure.

Several studies have employed prediction models 
of dementia due to AD [51], but to the best of our 
knowledge, this is the first study that does so based on 
subject clustering of health deficits related to frailty. 

Interestingly, only  FIr, and not  FIs and  FIc were pre-
dictive of conversion to AD when including CDRSB 
as an additional covariate, suggesting that the clus-
tering approach to selecting health deficits yields a 
frailty measure with  added predictive value beyond 
global cognitive functioning. Based on the specific 
health differences between cluster subgroups, this 
finding is in line with the literature. For instance, dif-
ferences in low energy and gait abnormalities fit well 
with the frailty construct, and studies indicating that 
physical activity associates with AD risk [e.g., 52].

Limitations

The current findings should be interpreted with the fol-
lowing limitations taken into consideration. The selec-
tion of health variables was based on availability in the 
ADNI database, which was not originally designed to 
estimate frailty. Thus, our selection did not include cer-
tain phenotypical frailty measures such as weight loss, 
poor grip strength, or walking speed. The cut-points 
for the individual health deficits used to estimate FI are 
somewhat arbitrary, such as for blood pressure, and also 
applying data-driven approaches to different reference 
ranges might have improved the utility of the FI [53]. 

Table 6  Associations between three different FI-variables and conversion to dementia within follow-up for subjects with MCI at 
baseline

AHR = average hazard ratio. HR = hazard ratio. CI = confidence interval. FIs = a 93-item frailty index (FI) created according to 
standard procedure by the authors. FIr = a 26-item FI created by adding a data-driven supplement to the standard procedure. FIc = a 
40-item FI created according to standard procedure by Canevelli, et al. [26]
* All FI-variables were multiplied by 100 before entered into the models
a Model 1 included age, sex, and education as covariates
b Model 2 included age, sex, education, and Clinical Dementia Rating scale, Sum of Boxes (CDRSB)
c Due to non-proportionality of hazards for age in model 1 and 2 of the validation cohort, we estimated average hazard ratios (AHRs) 
instead of HRs using Prentice weights with censoring correction and robust variance estimation

Sample/FI-variable* Model  1a Model  2b

Development
(ADNI1)

HR (95% CI) p value HR (95% CI) p value

   FIs 1.02 (1.00–1.04) 0.04 1.00 (0.98–1.03) 0.68
   FIr 1.03 (1.02–1.05)  < 0.001 1.02 (1.01–1.03)  < 0.001
   FIc 1.01 (1.00–1.03) 0.06 1.00 (0.99–1.02) 0.72 

Validation
(ADNI2/GO)c

AHR (95% CI) p value AHR (95% CI) p value

   FIs 1.02 (0.99–1.05) 0.19 0.99 (0.96–1.02) 0.40
   FIr 1.04 (1.03–1.06)  < 0.001 1.02 (1.00–1.04) 0.02
   FIc 1.02 (1.00–1.05) 0.04 1.00 (0.97–1.02) 0.80
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Another limitation is the lack of validation against 
traditional frailty endpoints, such as mortality, hos-
pitalizations and falls. In exploratory analyses, we 
found that crude  FIr HR-estimates for mortality in 
ADNI were comparable to those in the literature [32]. 
Although  FIr was the only FI-variable correlating 
with mortality in fully adjusted analysis (Supplemen-
tal Table S5), superiority in the prediction of mortal-
ity and other frailty endpoints needs to be assessed 
in future research employing larger-scale databases. 
Furthermore, the dataset employed here did not allow 
for comparison of our data-driven revision of the 
accumulation of deficits model with results obtained 
by using the rival phenotype or physical frailty model 
[54].

To our knowledge, using FAMD-based subject 
clustering as an approach for selecting out features, 
such as health deficits is novel. In particular, selecting 
health deficits based on regression analyses of clus-
ter belonging using FDR-adjusted p-value threshold 
has not been tested before. The sensitivity to differ-
ences in sample size might call for further develop-
ment of our method using unbiased deficit selection 
for different population and sample sizes. One could 
even argue that a more appropriate approach would 
be to select features using a supervised approach [55]. 
However, an advantage to our unsupervised approach 
is that it more likely captures variance related to 
frailty per se compared to supervised methods, and 
is not bound to categorical definitions of diagnoses. 
Another advantage is that the present approach does 
not need information about the primary endpoint 
(e.g., mortality, incident dementia) for model train-
ing, importantly enabling FI development on novel 
datasets and clinical cohorts where prospective end-
point data are not yet available.

Conclusion

Adding a data-driven supplemental step to the stand-
ard procedure for creating an FI  improves prediction 
of cognitive status and future dementia risk. While 
the data-driven procedure employed here reduced 
the number of items included in an FI, the remain-
ing selection adhered well with standard criteria out-
lined by Searle and colleagues [10] and included items 
reflecting core components of the frailty construct [1].

The two identified subject clusters from cluster 
analysis showed a unique constellation of health defi-
cits which contributed to the stronger predictive abil-
ity of diagnosis and disease progression. In particu-
lar, our data-driven clustering analysis suggested a 
strong contribution of activities of daily living, poly-
pharmacy, and tests reflecting immune, hematopoietic 
and cardiovascular systems, as well as several items 
of depressive symptomatology in AD risk stratifica-
tion, even within a sample well-screened to rule out 
clinical depression. The results point to frailty––when 
measured using an FI with data-driven health deficit 
assessment––as a putative modifiable AD risk factor. 
The proposed data-driven procedure warrants further 
testing on other often-used frailty endpoints, such as 
mortality.
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