
UNIVERSITY OF OSLO
Department of Informatics

SemTask —
Semantic Task
Support in
Integrated
Operations

Master thesis

Aleksander
Blomskøld
[aleksabl@ifi.uio.no]

Fredrik Klingenberg
[fredrkl@ifi.uio.no]

August 1, 2008

Abstract

StatoilHydro and other oil companies are introducing Integrated Operations
(IO) in the management of their oil and gas assets. According to OLF,
IO has an estimated value potential of 300 billion NOK on the Norwegian
Continental Shelf. IO includes increased use of real-time data, more
collaboration in multidisciplinary teams, and increased automation. With
the increased use of real-time data, operators may experience information
overload. This thesis focuses on the“Daily Production Optimization”(DPO)
work process at StatoilHydro. A structured workflow application, called
SemTask, is presented. Its main purpose is to help operators overcome
the information overload problem by suggesting which data sources to
use in different situations. It supports operators in executing the DPO
work process, ensuring that the right tasks are done at the right time.
SemTask uses ontologies in OWL to describe workflows, data sources, and
workflow execution states. The workflow ontology is based on the OMG-
standard Business Process Modeling Notation (BPMN). The ontologies form
an extendable, flexible model. We propose using rules in Jena, a Semantic
Web framework, to implement a workflow execution engine. A prototype
that shows that this leads to an elegant solution was created. The SemTask
model, and how it deals with the DPO scenario as well as possible further
extensions, is discussed. SemTask offers an extendable solution for data
source suggestions and active help to operators during execution of workflows
in Integrated Operations.

Acknowledgements

This master thesis is the result of a collaboration project between the
Department of Informatics, at the University of Oslo, and StatoilHydro.
Many people have helped us to prepare this thesis. First we would like to
thank Trond Lilleng (Integrated Operations coordinator at StatoilHydro)
who was the initiator of this project, Torhild Rio (Hydro IS Partner)
who gave us an initial introduction to APOS, and Espen Halvorsen, our
main contact person in StatoilHydro. Secondly, we thank Jon Henrik
Forssell, Magne Valen-Sendstad, and P̊al Rylandsholm from Det Norske
Veritas (DNV), especially for the ISO 15926-workshop, and the PRODML-
presentation held by Jan Ingvar Riveland (Tietoenator). We would also
like to thank Frédéric Verhelst and B̊ard Henning Tvedt from Epsis for the
two-day seminar that gave an excellent introduction to oil reservoir and
oil production. Kjetil Torvanger (Technical Manager in Cronus Automation
West) also deserves our acknowledgement for the introduction to the Process
Data Portal. Thanks to the people at the IRC-channels ##logic, #swig,
and #jena on Freenode for always giving quick and helpful answers to our
questions. We appreciate and thank Olaf Owe (professor, UiO/IfI) for
the time he spent answering our questions about Pi calculus and Maude.
Fredrik would like to thank Computas for the summer job in 2007 that gave
him a good insight in ontologies and workflow systems for the oil and gas
industry. From Computas we would especially like to thank David Norheim
for answering questions about OWL and Steinar Carlsen for the introduction
to BPMN and access to the BPMN 1.1 specification. We would also like to
thank Rolf Schwitter at Macquarie University, Sydney for introducing us
to the exciting field of Semantic Web. Last we thank our advisors Arild
Waaler (professor, UiO/IfI), especially for helping us with issues regarding
the ontologies and establishing the contact with Epsis and DNV, and Roar
Fjellheim (Computas and professor II, UiO/IfI) for creating the problem
description, establishing the contact with Hydro, proofreading, and giving
us general feedback during the work with this thesis.

Contents

Abstract i

Acknowledgements ii

Contents iii

Figures vii

Listings viii

1 Introduction 1
1.1 Problem statement — Semantic task support 1

1.1.1 Original problem statement 1
1.1.2 Changes . 1

1.2 Motivation . 2
1.3 SemTask . 2
1.4 Organization of thesis . 2

2 Integrated Operations and StatoilHydro 6
2.1 Oil and gas production . 6

2.1.1 Production optimization 8
2.2 Integrated Operations . 9

2.2.1 Benefits . 9
2.2.2 The IO development 10
2.2.3 Implementation requirements 12
2.2.4 Slow adopters . 13

2.3 StatoilHydro . 13
2.3.1 Statoil and Hydro merger 14
2.3.2 Hydro at Sandsli — Oseberg East 14
2.3.3 Data . 14

2.4 Industry standards . 17
2.4.1 ISO 15926 . 18
2.4.2 WITSML . 19
2.4.3 PRODML . 20

iii

CONTENTS CONTENTS

3 Workflow 21
3.1 Definition . 21
3.2 Different workflow systems . 23
3.3 Why use workflow systems? 23
3.4 Limitations . 24
3.5 Business Process Management 25
3.6 SoluDyne . 25

3.6.1 Problems . 27
3.6.2 Alternatives to SoluDyne 28

3.7 BPMN . 29
3.7.1 Flow objects . 29
3.7.2 Connecting objects . 31
3.7.3 Swimlanes . 31
3.7.4 Artifacts . 31
3.7.5 Benefits over SoluDyne 33

4 Introducing SemTask 34
4.1 Daily Production Optimization (DPO) 34

4.1.1 Description . 35
4.1.2 DPO — Optimization potentials 37

4.2 Scenario . 37
4.2.1 Participants . 37

4.3 SemTask implementation overview 40
4.3.1 Our focus on SemTask 41

4.4 SoluDyne to BPMN . 41

5 Ontology 46
5.1 An introduction . 46

5.1.1 Definition . 46
5.1.2 Example . 47
5.1.3 Classes . 48
5.1.4 Properties . 48
5.1.5 Language requirements 49
5.1.6 TBox and ABox . 50
5.1.7 Expressiveness vs. decidability 51
5.1.8 Reasoning/inference tasks 51

5.2 Short Introduction to Semantic Web 52
5.2.1 XML . 53
5.2.2 RDF . 54
5.2.3 RDFS . 54
5.2.4 OWL . 55
5.2.5 SPARQL . 55

5.3 Web Ontology Language . 57
5.3.1 OWL Full . 57

iv

CONTENTS CONTENTS

5.3.2 OWL-DL . 57
5.3.3 OWL Lite . 57
5.3.4 OWL representation 57

5.4 Representation of SemTask 58
5.4.1 Alternatives . 58
5.4.2 Using OWL for Semantic Task Support 60

6 SemTask ontologies 63
6.1 Topology . 63
6.2 Development . 64

6.2.1 Tools . 64
6.2.2 Methodology . 65
6.2.3 Upper ontologies . 65
6.2.4 Reuse . 65
6.2.5 Other design decisions 66

6.3 Ontology statistics . 66
6.4 BPMN Ontology . 67

6.4.1 Overall strategy . 67
6.4.2 Classes . 68
6.4.3 Properties . 72
6.4.4 Deviations from the BPMN specification 73
6.4.5 BPMN as language . 73
6.4.6 Comparison to the sBPMN ontology 74

6.5 Semantic task support ontology 75
6.5.1 Classes . 75
6.5.2 Properties . 76

6.6 Data ontology . 77
6.6.1 Data model . 78
6.6.2 The Data Ontology in OWL 79
6.6.3 Instances of the ontology 80
6.6.4 Extensions . 80

6.7 Execution ontology . 80
6.7.1 The overall idea . 81
6.7.2 Example execution . 82
6.7.3 Classes . 84
6.7.4 Properties . 84

7 Execution model 86
7.1 Introduction . 86

7.1.1 Execution alternatives 88
7.2 Rules . 88

7.2.1 Triple pattern matching 89
7.3 Rules in Jena . 90

7.3.1 Testing platform . 90

v

CONTENTS CONTENTS

7.3.2 Execution engine implementation 90
7.3.3 Completing the execution engine 90

7.4 Fulfillment of the scenario . 92

8 Conclusion and further work 95
8.1 Contributions and conclusion 95
8.2 Further work . 97

8.2.1 Finishing SemTask . 97
8.2.2 Automation of tasks 97
8.2.3 Extension of the Data Ontology 98
8.2.4 Guarantees in a workflow diagram 98
8.2.5 Constrains checking 98
8.2.6 Extending with other ontologies 98

Acronyms 100

Bibliography 102

Appendix 112

A The SemTask OWL Ontologies 113
A.1 The BPMN Ontology . 113
A.2 The SemTask Ontology . 122
A.3 The Data Ontology . 125
A.4 The Execution Ontology . 128

B The RDF Documents 132
B.1 The Daily Production Optimization 132
B.2 Data Sources . 151

C Jena Rules 155

vi

Figures

2.1 Image of two types of oil platforms 7
2.2 Production and cost with and without IO 11
2.3 Differences between G1 and G2 work processes 12
2.4 Topology before PDP . 16
2.5 Topology with PDP . 16
2.6 SharePoint interface for the daily morning meetings 17
2.7 A screenshot showing the ActiveX control for subsea well

monitoring . 18
2.8 Data integration with human interaction 19

3.1 The BPM Life-Cycle . 26
3.2 Example of a workflow diagram in the SoluDyne system used

by the operators at StatoilHydro, Sandsli 26
3.3 The basic elements making up BPMN 30
3.4 Original SoluDyne diagram represented in BPMN 32

4.1 Overview of the approach in making SemTask 40
4.2 The architecture of the SemTask application 42
4.3 Daily Production Optimization in BPMN 43
4.4 The sub-processes of Production follow-up 44

5.1 An example of an ontology 47
5.2 The use of a covering axiom 49
5.3 The Semantic Web Layer Cake 56

6.1 The topology of the ontologies in SemTask 64
6.2 Three kinds of BPMN-events 69
6.3 A UML class diagram representing the data model 78
6.4 An illustration of four execution steps 83

7.1 An example of relevant data 87

vii

Listings

5.1 Example of N3 notation . 55
6.1 Some of the OWL-code regarding the Events 70
6.2 Some of the OWL-code regarding the Activities 71
6.3 Example RDF-N3 code of a ServiceCompensationSubProcess 71
6.4 An example of a sequence flow 72
6.5 A FormDocument in RDF . 76
6.6 The definition of DecisionGateway 76
7.1 The rule for creating Tasks out of Triggers 91
7.2 Weekly P&I plan SPARQL query 92
A.1 The BPMN Ontology in OWL-AS 113
A.2 The Semantic Task Support Ontology in OWL-AS 122
A.3 The Data Ontology in OWL-AS 125
A.4 The Execution Ontology in OWL-AS 128
B.1 Daily Production Optimization in Notation3 132
B.2 A sample of data sources in Notation3 151
C.1 Two execution rules in Jena 155

viii

Chapter 1

Introduction

The best way to be boring is to
leave nothing out

Voltaire

1.1 Problem statement — Semantic task support

1.1.1 Original problem statement

The candidates shall examine the tasks and information sources for operators
in Hydro’s Operations Center of Oseberg East at Sandsli (Bergen). A task
ontology shall be established (in OWL), which can be used to describe the
tasks / work processes and how these are related to different situations and
information sources. Moreover, the candidate shall show how a reasoning
system based on the ontology can help the operators to select the right
source of information in various working conditions (normal conditions and
critical situations).

1.1.2 Changes

The original problem statement has been slightly changed during the work
with this thesis. As we did not get as much time with the operators at
Oseberg East as we needed, we never learned enough about their different
working conditions, especially in critical situations. As a consequence, we
only looked at how a workflow system based on ontologies could help the
operators in normal working conditions.

1

1. INTRODUCTION 1.2. MOTIVATION

1.2 Motivation

The oil and gas industry is highly technical. Large sums are invested in
research and development, and cutting edge technology is used. Currently
there is an important focus on Integrated Operations (IO). IO is a new way
of working with increasing focus on multidisciplinary teams and use of real-
time data. The goal is to make better decisions, which result in lower costs
and increased incomes. One problem with increased use of real-time data is
the possibility of information overload. It has been said that operators use
about 40% of their working time searching for the information they need.
The problem will not be smaller in the future when even more real-time data
is available for the operators.

When experienced operators are leaving, new ones need to be trained. One
way of reducing the problem of losing intellectual capital, is by having good
workflow systems. They help inexperienced employees to do the work the
experienced employees might just know by heart.

1.3 SemTask

SemTask is an abbreviation for Semantic Task support. This thesis presents
the SemTask application. It is a workflow system based on ontologies, meant
to help the operators in Hydro’s Operations Center of Oseberg East getting
suggestions on data sources to look at while working on a particular task.
It can also serve as a general workflow system helping the employees doing
the right tasks at the right time. We have ideas on how SemTask may work,
and have proposed an internal model based on ontologies.

1.4 Organization of thesis

Chapter 2 — Integrated Operations and StatoilHydro

To understand the problem statement one needs to understand sufficiently
enough of the oil and gas domain. This chapter gives an introduction to
oil and gas production. The oil industry is currently undergoing some huge
technological and organizational changes, which go by the name “Integrated
Operations”, and these are discussed. The chapter also gives information
about StatoilHydro and the key IT applications the company uses to support
workflow and information storage and retrieval. At last, the chapter presents
some of the most important industry standards in the field of oil and gas
production.

2

1. INTRODUCTION 1.4. ORGANIZATION OF THESIS

This chapter is a summarization of the information collected from meetings
and seminars at StatoilHydro and Det Norske Veritas DNV in addition to
available IO material.

Chapter 3 — Workflow

A major focus of Integrated Operations is to improve the work processes.
To be able to carry out these changes in an organization, workflow systems
are of great help. This chapter is a summarization of workflow literature
with: what workflow systems are, why they are important, and examples
of workflow languages and systems that exist today. SoluDyne, Hydro’s
workflow system, and the Business Process Modeling Notation (BPMN) are
presented.

This chapter outlines the weaknesses of SoluDyne and explains why BPMN
is a better alternative as a workflow notation. An example of how SoluDyne
diagrams can be mapped into BPMN is also presented.

Chapter 4 — Introducing SemTask

This chapter presents the most important work process for this thesis: Daily
Production Optimization (DPO). It is a work process that the operators at
Hydro’s operation center of Oseberg East go through every day.

We outline the weaknesses and optimization potentials of the current way
DPO is done. A scenario exemplifies how these weaknesses can be addressed
by using the SemTask application. Then a comprehensive mapping from
DPO in SoluDyne into BPMN shows how much knowledge can be transferred
from documentation into workflow diagrams. This mapping is the first step
in making the SemTask scenario possible. The chapter also provides an
overview on how the rest of SemTask is to be implemented.

Chapter 5 — Ontology

Ontologies will be discussed in this chapter, as they are a key part
of the SemTask architecture. An introduction to the Web Ontology
Language (OWL) along with some of the other Semantic Web technologies is
presented. The chapter outlines different ways of representing the workflow
model in SemTask, and explains why ontologies are the best choice.

3

1. INTRODUCTION 1.4. ORGANIZATION OF THESIS

Chapter 6 — SemTask ontologies

In this chapter the four ontologies we created, which are part of the SemTask
architecture, are presented: BPMN, SemTask, Data, and Execution. The
chapter starts with some general information on methodology and high
level design decisions regarding the ontologies. Then some design decisions
around the BPMN ontology are explained.

As BPMN currently does not have a standardized serialization format, we
propose using our ontology for this. The ontology is also compared to the
sBPMN ontology by the SUPER project, which also brings semantics into
BPMN.

Finally we have created a highly modular and extendable architecture used
for workflow execution using ontologies. This architecture is thoroughly
explained.

Chapter 7 — Execution model

Until now a model which can represent workflows, with state along with
data sources, has been discussed. This chapter explains how an execution
model based upon rules could work. We start with a general introduction
to rules and rule languages. In SemTask, the rules are separated from
the model. This makes it easy to extend the functionality by adding rules
without altering the model. We have created examples of rules that partly
implement the workflow execution engine. Thoughts about how the rest of
the different workflow diagram elements could be implemented, to complete
the workflow execution engine, are presented.

Chapter 8 — Conclusion and further work

The last chapter contains conclusions and offers some thoughts about further
work and possible extensions of SemTask.

Acronyms

A list of acronyms used in this thesis is included on page 100. For a
list of oil-specific terms we refer to The Norwegian Petroleum Directorate
“Terms and definitions”-page at http://www.npd.no/English/Om+OD/Nyttig/

Olje-ABC/Ordliste/olje_ordliste.htm.

4

http://www.npd.no/English/Om+OD/Nyttig/Olje-ABC/Ordliste/olje_ordliste.htm
http://www.npd.no/English/Om+OD/Nyttig/Olje-ABC/Ordliste/olje_ordliste.htm

1. INTRODUCTION 1.4. ORGANIZATION OF THESIS

Appendix A — The SemTask OWL Ontologies

The appendix gives the full source of our four ontologies. The source is
presented in the OWL Abstract Syntax format.

Appendix B — The RDF Documents

In this appendix two RDF documents are presented in full source. First, the
DPO workflow RDF document is presented (based upon the BPMN and the
Semantic Task Support ontologies). Then an RDF document of some data
sources is presented (based upon the Data ontology). The RDF documents
are written in the N3 format.

Appendix C — Jena Rules

The last appendix presents two rules which show some basics of how
a workflow may be executed with the help of the Jena Semantic Web
Framework.

5

Chapter 2

Integrated Operations and
StatoilHydro

This chapter gives a brief introduction to oil and gas production on the
Norwegian Continental Shelf (NCS). Some of the general challenges of the oil
and gas industry are outlined, and an introduction to Integrated Operations
is presented. In addition, it is focused on ex-Hydro at Sandsli and how the
Hydro operators are coping with their daily tasks. StatoilHydro’s workflow
systems, IT applications, and data sources with regards to production
optimization are also presented.

2.1 Introduction to offshore oil and gas production

The Norwegian oil adventure started in the middle of the 1960s, when the
Ekofisk field was discovered and developed. Since then more than 60 oil
and gas fields have been successfully developed and recovered. Oil and
gas production on the NCS is a highly technical task involving several
engineering disciplines.

The life cycle of an offshore oil and gas project starts with searching for
hydrocarbons1. Data is among others gathered with airplanes (measuring
magnetic fields) and with seismic survey boats. The data is transformed
into visual models and analyzed by geologists. If there is a high enough
probability that sufficient amounts of hydrocarbons exist, test drillings start.
This is done with drilling rigs which drill exploration wells. These wells are
either wildcat wells (used to check whether hydrocarbons exist) or appraisal
wells (used to determine the size of a petroleum deposit). Rock and sand

1Hydrocarbons is a term used for oil, gas, condensate, and Natural Gas Liquids (NGL).

6

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.1. OIL AND GAS PRODUCTION

Figure 2.1: A picture of a normal oil platform with a topside production
plant, and a graphical representation of an underwater
installation that bring fluids to an onshore production plant.

samples are brought onshore to be interpreted by different geologists and
other oil experts. If the experts find the discovery commercially viable the
recovery (or production) phase can start.

Several types of production platforms exist: those that are completely sub-
surface with the processing plant onshore (for instance Ormen Lange), the
more usual ones with an oil rig with a topside processing plant, and floating
boat-like processing plants. Figure 2.1 shows how these two types of platform
look like.

After the exploration phase has finished, the exploration wells are plugged
and new production wells are drilled. There are three types of wells: recovery
wells, where oil and gas are flowing to the processing plant, injection wells,
which are used for regulating the pressure of the reservoir, and observation
wells, which are used for observation and testing purposes. Some of the
wells may be a combination of these three types. The wells are drilled with
the help of real-time drilling data (including seismic data) and with the
presence of multidisciplinary teams including geologists, physicists, oil and
drilling experts. In order to produce maximum amounts of hydrocarbons
from a field, it is crucial that the wells are drilled in order to cover as much
of the field as possible. For an offshore field, tens of wells are typically
drilled.

The production phase starts when the production platforms are placed
offshore, and the first production wells are drilled. This phase typically
lasts for a couple of decades. It involves monitoring, maintenance, regular
production optimization, and various types of manual day-to-day work.

7

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.1. OIL AND GAS PRODUCTION

2.1.1 Production optimization

One part of the production phase is to perform production optimization.
Production optimization is to monitor several measurements from sensors
and adjust some parameters that lead to enhanced production. Examples
of measurements include temperatures, wellhead pressure rates, flow rates,
and well/pipe/tank/process capacities. Short-term parameters that may be
adjusted are mainly choke values (regulations of valves) and adjustment of
pressure with the injection wells. Examples of long-term actions that can
be done to increase production are: drilling new wells, pump acids in the
reservoir to increase the flow, and increasing topside processing capacities
by replacing or improving equipment.

There are several things that make production optimization difficult. One
problem is the large amount of data available. As more information may
actually lead to worse decisions [Schroder et al. 1967], information overload
is a big problem. There may be tens of thousands of sensors connected to a
field/platform sending data several times a minute. Finding the important
information is difficult. To cope with this problem, the industry is trying
to come up with new ways to visualize the data to make searching for
information easier. Computer programs watching for measurements that
are outside predetermined threshold values and abnormal trends (like a
well pressure that is falling unnaturally fast) may also help to minimize
the information overload problem.

Another problem is uncertainty. Each measurement is associated with an
amount of uncertainty. There are not enough sensors to cover all the
necessary information. For instance, it is very difficult to get enough
information to decide the ratio of water/gas/oil in a production well. This
ratio is important to know when dealing with production optimization, as
one always wants to minimize the amount of water to pump up and increase
the amount of oil. What typically is known is the well’s volume flow in total
and the ratio after the well has mixed its fluids with other wells in the field.
With a manual process it is possible to find the ratio in a single well, but one
cannot check this continuously. Hence, the data used for making decisions
might be out-of-date.

A third problem that makes production optimization difficult is that a local
optimization may affect the global properties of the reservoir. For instance,
if one wants to decrease the choke in one production well and increase the
choke on a second because there is a larger ratio of oil in the first one,
a third well may be affected because of the changed pressure. Complex
reservoir simulations need therefore to be run at regular intervals, to help
the operators making the right decisions.

8

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.2. INTEGRATED OPERATIONS

Yet another issue about production optimization is that there is often a
trade off between higher productivity and lower safety levels. Increasing the
well pressure may yield a higher production rate, but it will probably also
increase the risk for equipment damage, etc.

2.2 Integrated Operations

The oil and gas industry sees a large economic potential in increased use
of IT. Integrated Operations (IO) is an initiative meant to change the
way people work, enabled by IT tools. IO is a broad term used for
increased collaboration across multiple locations and disciplines, increased
automation, more streamlined work processes, and increased use of real-time
data. Implementing IO involves organizational changes and new information
and communication technologies. It promises to increase efficiency, reduce
costs, and enhance hydrocarbon recovery. Moderate calculations by The
Norwegian Oil Industry Association (OLF) state that the value potential of
implementing IO on the Norwegian continental shelf is at least 300 billion
NOK [OLF 2007].

Throughout the industry, different definitions and opinions about IO exist.
Examples of similar terms are: “Smart Operations”, “eOperations”, and
“Smart Field” to name a few. As StatoilHydro, OLF, and The Norwegian
Oil and Energy Ministry are using “Integrated Operations”; this term will
be used here. Some in the industry focus mostly on increased collaboration
between vendors and producers, some on increased automation of work
processes, while others focus on better use of real-time data. IO is defined
by the Norwegian Government to be: “Use of information technology to
change the work processes to achieve better decisions, steer by remote control
equipment and processes and to move functions and personnel to land” [OLF
2006]. Information technology has been used for several decades by the oil
companies. So even if the IO definition includes the key elements: “Use of
information technology”, “change in the work processes”, and “the relocation
of functions” these are not exclusive to the definition of IO. What IO does
to optimize the industry is to use IT as a strategic tool for increasing the
effectiveness of work tasks and make the decision processes in oil and gas
production on a large scale easier. IO has also introduced a comprehensive
redistribution of work tasks between units placed on land and at sea.

2.2.1 Benefits

There are several reasons for introducing IO. The economic motives include:

• Increased exploitation [Ministry of Petroleum and Energy 2007a]

9

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.2. INTEGRATED OPERATIONS

• Accelerated production 5%-10% [OLF 2005]

• Reduced operating costs 20%-30% [OLF 2005]

• Higher safety levels

• Extended field life (See figure 2.2 on the following page)

• Enhanced oil and gas recovery (EOR) 3%-4% [OLF 2005]

2.2.2 The IO development

IO enables increased interaction and collaboration between offshore
platforms and onshore support centers. Concentrating information and
decision making onshore make it possible to let experts work on different
offshore fields during the day. Real-time data from sensors are transferred
via high capacity fiber links from offshore facilities to operational centers on
land. Here multidisciplinary teams collaborate to optimize operations and
rapidly solve problems, often using video conference equipment.

The traditional practices have been: self-sustainable fields, specialized
onshore units, and periodic onshore support. There is limited work process
interaction across disciplines, between onshore and offshore, and across
companies. Fragmented problem solving and solutions created in isolation
are some of the unfortunate consequences of today’s work processes.

“Integrated Work Processes will most likely be implemented in two stages,
i.e. first by Generation 1 (G1), then by Generation 2 (G2) processes” [OLF
2005]. G1 of IO is improving and, to some extent, solving the problem
of fragmented problem solving. This is done by using integrated onshore
and offshore processes and centers, and also providing continuous onshore
support. The disciplines work together in making plans and executing them.
Some of the platforms are running pilots, while others are already into the
implementation phase. Well planning was, in the traditional way before
G1, done in a more or less sequential way. Implementation of G1 leads
to a more integrated process where several people with different expertise
work together. However, it is a potential improvement related to real-time
integration of acquired data and updating of geological and reservoir models.
In production optimization several improvements are brought into life as a
result of implementing G1 work processes. One example is that onshore
functions are more available for the offshore operators.

G1 work processes are implemented in different ways depending on the
company in question. However, several common features are present:

• Onshore centers staffed by professionals

10

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.2. INTEGRATED OPERATIONS

Figure 2.2: This is an example of how cost and production at an oil
platform may develop with and without IO. When the cost
is reduced with 15% and the production is increased with a
small percentage, the lifetime of the platform may be increased
substantially. The numbers used for making these graphs are
based upon [OLF 2006]. The Brage platform is a concrete
example of a field that has increased its lifetime, probably for
at least 10 years. [Holst and Nystad 2007]

11

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.2. INTEGRATED OPERATIONS

Figure 2.3: Differences between G1 and G2 work processes

• 24/7 onshore support for areas like drilling

• “What-if” analysis performed onshore

• Direct involvement of production and maintenance vendors

In well completion, the phase where a well is prepared for production of oil
and gas, virtual reality models of completion are being used. In addition,
real-time monitoring of the wells with advanced equipment is utilized.

Trends and benefits of G1 will be enhanced further in G2 IO. Operators
offshore in Norway have already started prototyping and piloting G2
processes. Digital services will be introduced, and vendors will be included in
a different manner. “The vendors will participate actively in the operation of
fields through delivery of digital drilling, well, production, and maintenance
services” [OLF 2005]. The field operators will be operational 24/7. Daily
production will be automated and run safely. Complex IT applications will
be used to a large extent in providing useful 3D models, statistical and
analytical decisions guidance to name a few areas. More intelligent filtering,
automation of processes and decisions will prevent information overload for
the operators.

The next and final step of IO would be to automate more and more of the
work processes, which depends heavily on IT applications.

2.2.3 Implementation requirements

Several requirements must be met to make G2 processes a reality.
Development and implementation of G2 processes will naturally be more

12

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.3. STATOILHYDRO

demanding than G1 processes as they are more complex. Digital
infrastructure is necessary to support connections between vendors and
operators. An information security framework for reliable and secure
connection with third party access will be required. Data standards are
necessary to ensure that data is correct and understood correctly across
disciplines and companies, and they need to be developed and implemented.
Here Semantic Web technology is a promising approach [Teijgeler 2007].
“New technologies and solutions for broad scale instrumentation of
installations, real-time gathering of information and real-time optimization
of operations are required” [OLF 2005]. Organizational changes will be a
necessary precondition to be able to fully take advantage of G2 processes.
Several of these issues have been addressed by OLF projects.

2.2.4 Slow adopters

Unfortunately, the oil industry is a conservative business. Although there
are strong forces working for modernizing the business (such as OLF), there
are also people who are more satisfied with the ways things currently work.
It has been said that many of the changes with IO we are seeing happening
now, happened more than a decade ago in the automotive industry [Øystein
Fossen 2007]. There may be several reasons for the somewhat slow transition
to IO. One is that offshore oil production companies earn a lot of money,
even though they are lagging in their use of technology. Another problem
with introducing new technology in an oil company is that they are rather
short-handed on human resources. Every work-hour spent on testing and
evaluating new technology is an hour lost spending on short-term production
optimization.

David Ottesen, CEO in Ziebel (a multinational company working with smart
wells), said this about the situation: “The technology is here, yes. It’s the
determination we are lacking. The contracts are designed such that suppliers
earn more when things take more time and more people are used. That is
the exact opposite of what we should be striving towards.” [Rasen 2008]

2.3 StatoilHydro

StatoilHydro is one of the largest offshore oil companies in the world. It
operates in about 40 countries, and is worth more than 500 billion NOK.2.
The company has most of its activities in Norway, and is the largest operator

2StatoilHydro was worth about 540 billion NOK at 31. December 2007 [StatoilHydro
2008].

13

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.3. STATOILHYDRO

on the NCS (about 80% of the total production) [Ministry of Petroleum and
Energy 2007b].

2.3.1 Statoil and Hydro merger

During the work with this thesis the two companies Hydro and Statoil
merged. The companies are now harmonizing their different processes,
policies, and IT applications. In areas with differences in IT applications
between the two companies we will mainly focus on Hydro’s application
unless otherwise specified. For instance for documenting work processes
Statoil used Business Process Management (BPM) along with a software
called Docmap, and Hydro used APOS (“ArbeidsProsess Orientert
Styringssystem” or “Work Process Oriented Administration System”) and a
software called SoluDyne3. As a basis for this thesis we will use ex-Hydro’s
system, APOS.

2.3.2 Hydro at Sandsli — Oseberg East

StatoilHydro has a department at Sandsli, Bergen that was previously owned
by Hydro. At this department several offshore oil platforms are operated,
including the Oseberg East.

Operator rooms

Each platform has its own dedicated operator room onshore. In the operator
room dedicated for Oseberg East, video conferencing equipment is installed.
This helps to share experts between different platforms, and let more people
work on land. The video conference equipment has possibilities for showing
live video and shared IT applications on large screens. It is used several
times a day to have meetings with offshore and onshore personnel. Some
of the meetings are recurring, such as the daily morning meeting (going
through plans for the day) and the daily production optimization meetings.

A 3D display is used for getting a visual representation of the reservoir served
by the platform. Wells can be seen along with geological data.

2.3.3 Data

StatoilHydro uses many IT applications for oil and gas development, divided
into the following categories:

3 http://www.soludyne.com/

14

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.3. STATOILHYDRO

• Well design

• Flow assistance

• Well surveillance

• Production optimization

• Reporting

As previously mentioned, the oil industry is continuously increasing their use
of data, especially real-time data. Each oil field has thousands of sensors
regularly sending measurements in fixed intervals. Currently most of the
fields operated by the operating center at StatoilHydro in Sandsli have data
coming in at an interval of 4 seconds. This makes the load of data very high.
The data is currently stored in a database called IP21 from AspenTech4. To
help the operators visualize and make use of the data a portal layered on
top of IP21, named Process Data Portal, is being utilized.

Process Data Portal

Traditionally, different technologies are chosen for different oil and gas
platforms. This leads to different interfaces and operating environments.
Operators may therefore potentially waste time looking for the required piece
of data. Also, if an operator is working with different platforms, she might
not be familiar with the interfaces, which may be cumbersome. Because of
this, the Process Data Portal (PDP) was created. Its purpose is to streamline
access to real-time data from different sensors, historical data, alarms and
events, and finally reports. In addition, it is an integration layer for other
applications. PDP is originally from former Hydro.

With PDP the topology has changed considerably from what can be seen at
figure 2.4 on the next page to more structured as can be seen in figure 2.5.

We will not go into detail on the new topology. However, a quick overview
explains which direction IO is going. Two IP21 databases which are mirrors
of one another are present; one located onshore, the other located offshore.

PDP has an abstraction layer between the applications and the IP21
database. It handles data requests from applications so clients do not have
to deal with the native IP21 format. There is also a web server with different
applications. Both onshore and offshore users access the applications in the
same way. Data moves both to and from the central IP21 database. Data
going back to the database are typically the results of heavy computations
so they only need to be done once.

4http://www.aspentech.com/

15

http://www.aspentech.com/

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.3. STATOILHYDRO

Figure 2.4: Topology before PDP

Figure 2.5: Topology with PDP

16

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.4. INDUSTRY STANDARDS

Figure 2.6: SharePoint interface for the daily morning meetings

PDP is in addition a package of different standard applications like
“production overview” and “subsea well outline”. Consequently, the operator
does not have to use much time searching for data. A fixed template has
been made out of Web Parts which is integrated in SharePoint5. The Web
Parts are dynamic in the sense that one can click on them to bring up more
detailed information or other numbers. See figure 2.6 for a screenshot.

Another example of PDP would be subsea well overview with alarms (see
figure 2.7 on the following page). Here the operator can easily see the
actual production compared to the planned/estimated one for the wells.
Different color codes, red for “alarm”, green for “normal”, and yellow for
“need attention”, make it easy to focus on the subsea wells that need watched
closely. One has the option to look at the state of the system in intervals of
1hr, 6hr, 24hr, and 72hr to see trends and to get a good general view of the
wells at hand.

2.4 Industry standards

As IO is about collaboration between different entities, much work is being
done to make petroleum specific standards.

5SharePoint is an intranet portal solution for Microsoft — see http://en.
wikipedia.org/wiki/SharePoint for more information.

17

http://en.wikipedia.org/wiki/SharePoint
http://en.wikipedia.org/wiki/SharePoint

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.4. INDUSTRY STANDARDS

Figure 2.7: A screenshot showing the ActiveX control for subsea well
monitoring

2.4.1 ISO 15926

ISO 15926 (“Industrial automation systems and integration — Integration of
life-cycle data for process plants including oil and gas production facilities”)
is a large standard for data integration. It has its roots from a European
Union project started in 1991, and it is not currently finished. It consists of
seven parts, where the first five have been standardized, and the remaining
two have just been submitted to ISO for review.

The standard is a large ontology that covers definitions of meta objects
(thing, class, individual), generic engineering concepts (such as physical
objects, connections, activities, etc.), and text book concepts typically
found in processing plants in the petroleum industries (pump, reducer,
heat, etc.) [David Leal 2005]. It will also cover more user-defined classes
such as company commodity classes and catalogues from suppliers and
manufactures. The ontology is quite large — part 4 of the standard, which
is called the reference library, covers about 100.000 classes important to
process plants and the petroleum industry. The standard covers everything
from specific types of pumps and “A standard gas hour” to “Class of class of
physical object”.

A main use of ISO15926 is to ease data integration. Today much time is
being spent converting data to different data systems from different entities

18

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.4. INDUSTRY STANDARDS

DFO = Documents For Operation

Viiking
DB

SAGA
S-Div.

Project
DB

EP Contractor

=Human interaction

EPC/Suppliers
Nymo

DB

DB

DB

Suppliers
DFO

Installation
Contract
TLP

Tipas
DB

= Electronic transfer

Figure 2.8: An example from a real-world project of how much human
interaction is required because different entities use different
data formats. The figure is taken from [Valen-Sendstad 2008].

in the value chain. In figure 2.8 one can see an example of how much human
interaction is done in a real-world project.

For more information about ISO 15926 see the Wikipedia-page6 or the
standards themselves [ISO 2004; 2003; 2007].

2.4.2 WITSML

WITSML [Energistics 2008] (Wellsite Information Transfer Standard
Markup Language) is a standard for data access and integration in the
domain of well drilling. It is being developed by POSC/Energistics7 and
is much used in the industry.

Technically, the standard is a set of XML schemas (XSDs) with documented
descriptions of terms. The standard also covers an API for accessing the
data, which are based upon web services (SOAP and WSDL).

For more information about WITSML see the WITSML-Wikipedia page8

6http://en.wikipedia.org/wiki/ISO_15926
7POSC (Petrotechnical Open Standards Consortium) — see http://posc.org. In

2006 POSC was rebranded to Energistics — see http://www.energistics.org.
8See http://en.wikipedia.org/wiki/Wellsite_information_transfer_

standard_markup_language

19

http://en.wikipedia.org/wiki/ISO_15926
http://posc.org
http://www.energistics.org
http://en.wikipedia.org/wiki/Wellsite_information_transfer_standard_markup_language
http://en.wikipedia.org/wiki/Wellsite_information_transfer_standard_markup_language

2. INTEGRATED OPERATIONS AND STATOILHYDRO 2.4. INDUSTRY STANDARDS

or the WITSML homepage 9

2.4.3 PRODML

“[PRODML is] a shared solution for information exchange allowing
Upstream Oil & Gas Companies more easily execute those software
applications used to optimize production” [Morneau 2007]. PRODML
(Production Markup Language) is a standard for data integration between
different applications dealing with production optimization and production
reporting [Energistics 2006]. It was created by a working group with
participants from 13 upstream oil and service companies in the oil and gas
domain [Shipley et al. 2008]. It was later handed over to POSC/Energistics
for maintenance. The standard is based upon two Norwegian standards
that were used for production reports sent to government agencies and
to partners: Partner Production Daily Reporting and Monthly Production
Reporting Data Transfer Standard.

More specifically the data that PRODML can represent is mostly about what
flows where, how much and when. An example of a statement represented
in PRODML is: “X Sm3 of condensate flowed between pipe connection A
and pipe connection B between timestamp X and timestamp Y”. The aim
is that all sensors should produce PRODML-data. The data should then
be processed by production optimization applications or sent directly to
partners or government agencies for reporting.

PRODML is built up much in the same way as WITSML. There are XML
schemas that describe how to represent some terms found inn ISO 15926.
The standard covers a data access API in the same way as WITSML.

For more information about PRODML, see the PRODML homepage10.

9http://www.witsml.org/.
10http://www.prodml.org/

20

http://www.witsml.org/
http://www.prodml.org/

Chapter 3

Workflow

The object of all work is
production or accomplishment and
to either of these ends there must
be forethought, system, planning,
intelligence, and honest purpose,
as well as perspiration.

Thomas Edison

The previous chapter presented an overview of the oil industry in general,
and StatoilHydro in particular. Additionally an introduction to Integrated
Operations along with there challenges and opportunities were made. As a
part of those challenges, changed work processes were proposed to handle
the issue with fragmented problem solving process and to enable support of
tasks in multidisciplinary teams. To be able to change the work processes,
they should first be documented. This documentation is often done in a
Workflow System.

This chapter takes a look at the area of workflow and workflow systems.
SoluDyne, the workflow system StatoilHydro uses today is presented, as
well as Business Process Modeling Notation (BPMN), an OMG workflow
notation standard.

3.1 Definition

According to the Dictionary of Computer Science, Engineering, and
Technology, workflow is defined as:

“Workflow: multiple tasks/steps/activities, of which there are two types:
simple, representing indivisible activities, and compound, representing those

21

3. WORKFLOW 3.1. DEFINITION

which can be decomposed into sub activities. An entire workflow can be
regarded as a large compound task. The workflow defines the relationships
among the activities in a project, from start to finish. Activities are related
by different types of trigger relation. Activities may be triggered by external
events or by other activities. Also the movement of documents around an
organization for purposes including sign-off, evaluation, performing activities
in a process and co-writing.” [Laplante 2000]

A more informal definition and more according to the use of StatoilHydro
would include the control and flow of tasks. The flow is formally described
and is repeatable and reliable. The workflow can be described in a static way
where participants, data and processes are linked together. Some workflow
descriptions may be executable, while others may only serve as a manual
or documentation for humans. It helps the people working together to have
a common understanding of the overall goal and how they can get there.
By formally describing the workflow one can also better document and see
improvements. These improvements can then be included in the better and
newer workflows. In that way not only the work of the participants in the
workflow, but also the workflow itself is always the current best practice.
This means that the workflow describes the best way of doing something.
An example could be the workflow of buying a movie ticket. Here the
participants are the customer and the ticket seller. Resources are money and
ticket. The order of events is not incidental, for instance: the seller must first
make sure that she has more tickets to sell before selling to the buyer. For
a more comprehensive description of workflow systems see [Georgakopoulos
et al. 1995].

There is also the question of what level of abstraction the workflow should
describe. Should one describe the inner workings of every aspect of the
workflow components? To continue the “selling a movie ticket” example,
should one remove the workflow part that is included in the process of
checking whether there are any tickets left? In other words should one model
the database transaction, data transfer protocols, etc.? This clearly depends
on the domain. From a cinema’s standpoint the database transactions
concerned in the “ticket selling” is irrelevant.

The workflow can be described using illustrative symbols representing a
given functionality or process. The Business Process Modeling Notation has
for example the symbols shown in figure 3.3 on page 30. Also here the level
of abstraction comes into play. The language might have elements describing
low level operations or higher level elements.

22

3. WORKFLOW 3.2. DIFFERENT WORKFLOW SYSTEMS

3.2 Different workflow systems

In general there exist three kinds of workflow applications. The first two
support long-lived workflows that are controlled by humans, and tend to
focus on human interaction: sending documents from one person to another,
nice user interface, etc. The term “human-centric” is often used for such
workflows.

The human-centric workflow systems may either be passive or active.
Passive workflow systems are just a type of documentation systems.
SoluDyne, discussed in section 3.6 on page 25, is such a workflow system.
Users can read and write documents and workflow diagrams. Active
workflow systems have an execution engine. The engine interprets events
(e.g., timer going of, documents submitted to server), and acts on these
according to the predefined business processes. It also facilitates the flow of
information, tasks, and events.

The other type of workflow applications has little or no concept of human
roles. These workflows are typically written in BPEL or similar language.
They focus on automating interactions among software components (often
Web Services), and are sometimes called “engineering workflows”.

3.3 Why use workflow systems?

Introducing workflow into a business or company leads to several
benefits: more formal understanding of the key processes and discovery of
improvements. One can argue that by having a formal notation and diagram
of a work process it is more likely to be improved upon due to the fact that
improvements can more easily be implemented and documented. Not just in
the making of the workflow diagrams, but also later there is a possibility to
discover improvements. There are side effects when improving the diagrams
such as increased safety. Errors are less likely to occur when work processes
are formal and documented. They are directly connected to the safety of
onshore and offshore personnel. Equipment that once had a function can
become redundant as a result of work process improvements or other more
cost efficient solutions is discovered. Efficiency could increase and ultimately
save money and time.

Knowledge and expertise are often centered on a few individuals. It would be
more beneficial to have it in the company itself. In that way the company is
not as dependent on the individuals, but keeps the knowledge independent
of the working staff. When key individuals leave the company, replacing
them becomes easier. Training inexperienced crew operators is easier when

23

3. WORKFLOW 3.4. LIMITATIONS

manuals of working tasks are available. Computer applications that guide
the users through the workflow may be especially beneficial for inexperienced
personnel. Another aspect of separating knowledge from experts in the
company by using workflow systems, is that process optimization is easier.
Optimization is difficult when there is great emphasis on human knowledge
and judgment. In strict workflow systems optimization does not depend
so much on the skill and knowledge of the operator, but is instead on the
workflow itself. As a result of optimization the productivity could also be
improved.

By having a formal notation and diagram of the work processes, they
are more likely to be improved. This is because improvements can be
more easily implemented and documented in diagrams. One may discover
improvements, not just in creating workflow diagrams, but also later in their
lifecycle. Finally by introducing workflow diagrams the work processes go
from ad-hoc human oriented control to well documented, repeatable, and
predictable.

With active workflow systems the tasks will be executed in the same way
given that the data input is the same. As a result one gets no deviations
from the initial optimized workflow due to human interactions as could be
the case with passive human centric workflow.

3.4 Limitations

Even though workflow systems clearly have several advantages, they also
have weaknesses. There are areas and uses where other modeling languages
are used with better results. One such language is Π − calculus, which is
a theory of mobile processes. The word mobility refers to the movement
of links in a space of linked processes. An example could be the changing
connections between telephones and the network of base stations as they
are carried around1. A regular workflow language/notation has problems in
accomplishing this.

The execution of a single workflow is easily done, but problems could occur in
an execution of several tightly connected parallel workflows: two workflows
from two different vendors trying to simultaneously buy the last product
from a service provider for example.

Workflow systems often rely on one database and one workflow engine. This
architecture could easily become a bottleneck in a large enterprise.

1For more information about the Pi-calculus see [Sangiorgi and Walker 2003, Milner
1999].

24

3. WORKFLOW 3.5. BUSINESS PROCESS MANAGEMENT

A limitation due to different vendors and their proprietary workflow
notations is the lack of collaboration between different workflow systems.
Workflow systems incorporate in their design very concrete and exclusive
interpretation of the world which makes it difficult to federate different
systems [Alonso and Schek 1996, Jae-Yoon Jung and Hoontae Kim and
Suk-Ho Kang 2006]. To overcome this, efforts are underway to make a
standard workflow/process notation (section 3.7 on page 29 presents BPMN,
which is such a standard). In our domain of interest, Integrated Operations,
where different vendors, oil and gas companies and different experts are to
collaborate, such a standard is of high relevance.

3.5 Business Process Management

When talking about workflow, Business Process Management (BPM) and
business processes are often mentioned. A business process is: “a collection
of related, structured activities that produce a service or product that
meet the needs of a client” [Wikipedia 2008a]. One can argue that these
processes are of great value and that a company would like them to be
as efficient as possible. Business processes are implemented as information
processes or material processes. Information processes relate to automated
tasks and partially automated tasks (i.e., tasks performed by programs
and tasks performed by humans interacting with computers, respectively)
[Georgakopoulos et al. 1995]. Material processes refer to human tasks rooted
in the physical world (i.e., moving, storing, transforming, and assembling
physical objects). In this thesis we will focus on business processes related
to information processes.

BPM is the method for managing business processes. Workflows fit into
the BPM by covering the first two parts of the BPM lifecycle: Design and
Modeling (see figure 3.1 on the next page).

3.6 SoluDyne

For documenting best practices, workflows, and so on, the pre-Hydro part of
StatoilHydro uses a solution from the Norwegian company SoluDyne. The
product, also named SoluDyne, has several modules where the workflow
module is one of them. The workflow notation is a proprietary one, created
by the company. We were not able to get any documentation from SoluDyne
despite our emails. However, some documentation was found in [Engum and
Wathne 2004] and the diagram elements where more or less self-explanatory.
The notation consists of “role lanes” keeping track of who the responsible

25

3. WORKFLOW 3.6. SOLUDYNE

Business
Process
Management
Life-Cycle

Figure 3.1: The BPM Life-Cycle

Figure 3.2: Example of a workflow diagram in the SoluDyne system used
by the operators at StatoilHydro, Sandsli

26

3. WORKFLOW 3.6. SOLUDYNE

person or group of the activity is. Simple atomic and compound activities
are represented by squares.

A simple example of a SoluDyne workflow diagram is shown in figure 3.2 on
the preceding page. The diagram is in Norwegian, but when talking about
the tasks and roles we use their English translations. The numbers in the
diagram and text help to see which task is discussed. The diagram is also
translated into BPMN in figure 3.4 on page 32 using the English translation.

The four participants are:

1. Executing (Technical manager, operation)

2. Organizer (production engineer, onshore)

3. Executing (Production engineer, onshore)

4. Executing (Process/Operation engineer, onshore)

The arrow from an activity can split into several others such as “02
- Production Optimization Meeting” splitting into: “03 - Execution of
updated plan”, “05 - Production follow up”, and “08 - Topside production
optimization”. We assume there is an implicit fork present. Two arrows
can join into one like it does before “04 Need for process”. Neither here
is the exact semantics defined, but we assume it means a regular XOR-join
operation (i.e. wait until both have finished) where two separate flows merge
into one.

By clicking on a process one can move into a lower level of abstraction and
see the workflow diagram representing the selected process. At the leaf
nodes of the workflows one may find further documents and descriptions
explaining the step. These details are typically written in a Microsoft Word
document or similar. Improvements in a work process could be discovered
as it is being used or as a result of an analysis. The workflow description
should be continuously updated to reflect such improvements. In this way
the diagrams and the documents describe the current best practice of an
operation. The level of abstraction of the workflows is relatively high. This
is due to the fact that they apply to all pre-Hydro oil and gas platforms
belonging to StatoilHydro. Details belonging to individual fields are up to
the specific platform at hand to determine.

3.6.1 Problems

There are several problems and areas of possible improvements regarding
the workflow solution with SoluDyne. The notation is not very rich in its
possibilities, and it has been mentioned that some of the details from the
work processes were lost when expressing it in that notation.

27

3. WORKFLOW 3.6. SOLUDYNE

The workflow diagrams are of such high level of abstraction that it is in
reality up to the main operator and her level of experience to control the
tasks in operator room and not up to the strict rules or methodology. The
workflow documents are mainly a guideline more than a strict definition
of how things should be done. After attending several well meetings, we
observed how some of the much used workflow diagrams are used in practice.
The high-level workflow diagram was shown on a shared screen by offshore
and onshore. This acted as an agenda for the meeting. However, the
diagrams were mostly used as a checklist making sure that the operators
had covered all the main important parts of a process.

3.6.2 Alternatives to SoluDyne

The probably best known workflow language is the Business Process
Execution Language (BPEL). It is an XML-based language for describing
a business process in which most of the tasks represent interaction between
the process and external Web Services [OMG 2005]. As BPEL is used for
orchestrating services more than documentation of human workflow it is not
seen as a real alternative in our context. There is a relation between the
graphical notation BPMN and BPEL. BPMN can be translated into BPEL,
which is specified in the specification. However, there is not a one-to-one
translation and there exist elements in BPMN that cannot be mapped into
BPEL, and vice versa [Ouyang et al. 2006, Recker and Mendling: 2006].

Another workflow language is the Yet Another Workflow Language
(YAWL2), which came out as a result of a project with researchers
at Eindhoven University of Technology and Queensland University of
Technology as participants. It has a clear and formal semantics [YAWL
Foundation 2007]. YAWL has not got the number of users and is not a
standard, and for that reason not considered in this thesis.

BPMN is a much more known process modeling notation than SoluDyne. It
is a public standard, as opposed to SoluDyne which is a proprietary solution
used only by a few companies. The community and resources available to
support BPMN is considerable. There are several other alternatives that
could be used, but as BPMN is arising as the most important standard for
modeling business processes we are using this in our master thesis.

2http://www.yawlfoundation.org/

28

http://www.yawlfoundation.org/

3. WORKFLOW 3.7. BPMN

3.7 BPMN

BPMN [Stephen A. White 2004] is a standardized graphical modeling
notation used for drawing workflow diagrams of business processes. It was
developed by the Business Process Management Initiative (BPMI3), but is
now being maintained by the Object Management Group (OMG4) after
their merge in 2005 [Wikipedia 2007]. As of July 2008, the current adopted
version is 1.0 and a new version, 2.0, is currently under construction [OMG
2008].

The designers of BPMN had two goals for their notation. First they wanted
it to be simple to create diagrams. Secondly they wanted it to be able
to handle the complexity inherent in business processes. The solution was
to create a small set of notation symbols grouped into different sets. This
makes it easy for the modeler to create a basic diagram which captures
most of the intended meaning of the business process itself. The small set of
symbols can be extended to support the requirements for complexity without
dramatically changing the look and feel of the diagram. An example is the
gateway object. A regular gateway is depicted as a diamond with nothing
inside. One can further expand the semantics by adding a star inside making
it a “complex decision”.

We will briefly explain the basic elements making up most BPMN diagrams5.
An example will be depicted as well. Figure 3.3 on the following page depicts
the basic elements. Examples of diagrams in BPMN are found in chapter 4
(figure 4.3 on page 43 and figure 4.4 on page 44).

The basic elements are divided into:

• Flow Objects

• Connecting Objects

• Swimlanes

• Artifacts

3.7.1 Flow objects

These are objects that appear in the flow of the workflow diagram. There
are three different kinds of flow objects:

3http://www.bpmi.org/
4Object Management Group is also the group behind the ubiquitous UML-standard.

http://www.omg.org/.
5There are several other entities making up BPMN. For a full overview, see: http:

//www.bpmn.org/.

29

http://www.bpmi.org/
http://www.omg.org/
http://www.bpmn.org/
http://www.bpmn.org/

3. WORKFLOW 3.7. BPMN

F
ig

u
re

3.
3:

T
he

ba
si

c
el

em
en

ts
m

ak
in

g
up

B
P

M
N

30

3. WORKFLOW 3.7. BPMN

Events

An event is something that may happen during the course of a business
process. Events affect the flow of the business, and usually have a trigger
and a result. They can start, interrupt or end the flow. There are several
different event-types, like message event, timer event, etc.

Activities

This is something that is to be done (e.g., “find reservation”). We
differentiate between compound and atomic activities where the atomic ones
are called tasks. Compound activities can be broken down into a finer level
of detail. If the activities have more details, and can be expanded, they are
called sub-processes.

Gateways

Gateways are depicted as diamond shaped figures. In BPMN they are
divided into two types, forks and joins, which again can be divided into
several different sub types. Forks split the flow into two or more directions,
while joins take two or more flows and merge them together into one.

3.7.2 Connecting objects

The connecting objects are represented by arrows in a diagram. They are
used to represent paths of messages, sequences, and associations.

3.7.3 Swimlanes

There are two types of swimlanes. The “main” one is called a Pool and
represents participants in business-to-business processes. The other is called
a Lane which most often represents different roles. All elements must belong
to a pool or a lane.

3.7.4 Artifacts

Artifacts are other types of graphical elements. They are divided into
three: Data Objects, Text Annotation, and Group. These are present in
the notation to be able to show information beyond the basic flow-chart
structure of the process.

31

3. WORKFLOW 3.7. BPMN

Production optimization
Executing (Process/
Operation engineer,

onshore)

Executing (Production engineer,
onshore)

Organizer (production
engineer, onshore)

Executing
(Technical manager, operation)

P
ro

p
o
si

ti
o
n

 f
o
r

in
it

ia
ti

v
e

To
p

si
d

e
 p

ro
d

u
ct

io
n

 o
p

ti
m

iz
a
ti

o
n

C
o
n

ti
n

u
o
u

s
p

ro
d

u
ct

io
n

 s
u

p
e
rv

is
in

g
E

xe
cu

ti
o
n

 o
f

u
p

d
a
te

d
p

la
n

P
ro

d
u

ct
io

n
 o

p
ti

m
iz

a
ti

o
n

m

e
e
ti

n
g

P
ro

d
u

ct
io

n
 f

o
ll
o
w

-u
p

E
v
a
lu

a
te

 w
e
ll
 i
n

it
ia

ti
v
e
s

S
y
st

e
m

 o
p

ti
m

iz
in

g

Ye
s N
o

W
e
e
kd

a
y
 9

a
m

Im
p
le

m
e
n
t

in
it

ia
ti

v
e
?

O
p
ti

m
a
l

p
ro

d
u
ct

io
n

F
ig

u
re

3.
4:

T
he

sa
m

e
di

ag
ra

m
as

fo
un

d
in

fig
ur

e
3.

2,
on

ly
re

pr
es

en
te

d
in

B
P

M
N

in
st

ea
d

of
So

lu
D

yn
e

32

3. WORKFLOW 3.7. BPMN

3.7.5 Benefits over SoluDyne

BPMN has a broader notation than SoluDyne, with several types of events
depicting what triggers the event. SoluDyne has only a blank start event
type. BPMN makes it possible to show flow of data using artifacts with
associations, something which is not possible in SoluDyne. BPMN, in
contrast of SoluDyne, makes it possible to show different types of forks
and joins, gateways, default paths, exceptions, if a task is user-based or
application-based, etc. The extra power of BPMN enables the architects who
draw the diagram to express their diagrams closer to the reality, compared
to the diagrams expressed in for instance SoluDyne.

33

Chapter 4

Introducing SemTask

The previous chapters gave an introduction to Integrated Operations and
workflow. This chapter will bring these two aspects together, and explain
how they form the SemTask application. SemTask is an abbreviation for
Semantic Task support. It is an application meant to help the operators
make better decisions, faster. SemTask will be explored with its functionality
at a high level. It gives an indication of what role SemTask may play in IO
as well as how it relates to other applications available at StatoilHydro.
Reasons why SemTask is needed and what it solves are examined.

Workflow is a central and fundamental part of SemTask as they form
the foundation of work process execution. The ambiguous and weak
semantics in the SoluDyne diagrams is not adequate, so BPMN is used
as a replacement. The new diagrams have additional semantics because of
the higher expressiveness of BPMN. Additional information found in the
APOS documentation is also added into the diagrams. The conversion and
the diagrams themselves will be explained.

A scenario where SemTask is used is introduced, based on Hydro’s work
process “Daily Production Optimization” (DPO). DPO is a central part of
exemplifying how SemTask works, and will be explained in detail. Let us
start by looking at the common work process DPO, and outline some of the
problems with today’s work method.

4.1 Daily Production Optimization (DPO)

DPO is a work processes the operators at StatoilHydro at Sandsli execute
every weekday, designed to get maximum production out of an oil field.
The process starts each day with a meeting where production increasing
initiatives are discussed.

34

4. INTRODUCING SEMTASK 4.1. DAILY PRODUCTION OPTIMIZATION (DPO)

Different activities of this work process will be shown in detail. This is
important for the understanding of the scenario, and for several other parts
of this thesis.

The process involves several people and resources. The SoluDyne version is
depicted in figure 3.2 on page 26. The workflow consists of four role-lanes,
or participants. From top to bottom:

• Executing (Technical manager operation)

• Organizer (Production engineer, onshore)

• Executing (Production engineer, onshore)

• Executing (Process/operation engineer, onshore)

The organizer owns the daily morning meeting (also called production
optimization meeting), and is responsible for accepting or rejecting
optimization suggestions.

Following is the descriptions of each of the tasks/sub processes in the work
process DPO, as described in APOS. The interactions and connections
between the given tasks and sub processes will then become more evident.

4.1.1 Description

01 — Weekly P&I Plan The Production and Injection plan is taken as
a starting point for the meeting.

02 — Production optimization meeting The first activity in the
workflow is the production optimization meeting. It has both onshore
and offshore participants. The result of the meeting is a list of activities,
consisting of production increasing initiatives that the technical manager for
operations uses as input in the activity “Execution of updated plan”.

All participants of the meeting should create an overview of different types
of data. The Production engineer should in advance create an overview of:

• Well capacities

• Process capacities

• Well status

• Variances from the production and injection plan as well as the results
from the previous day

• Need for change of steering parameters

35

4. INTRODUCING SEMTASK 4.1. DAILY PRODUCTION OPTIMIZATION (DPO)

The technical team should be prepared for questions about:

• Categorization of losses in relation to the budget

• Capacity constraints in the plant

• Planned activities

A representative from the operation group should be prepared to give input
about:

• Capacity constraints

• Process technical issues that may affect the production

03 — Execute updated plan The plan for the day should be updated
with the action list from the daily morning meeting. It must also be
updated when new actions are found. If it is not possible to follow the plan,
the technical manager should discuss this with the organizer (production
engineer).

04 — Continuous production supervision The production is
supervised by the Executing (Technical manager operation). When new
initiatives are found these are sent to the Organizer (Production engineer,
onshore). Trends and analysis for the wells are some of the parameters that
are supervised.

05 — Production follow-up Production follow-up is a sub-process
consisting of several activities. The production engineer is dedicated to
production follow-up, and she should be located in the operation room at
least 4 hours daily. The action list from the production optimization meeting
should be checked to see the effects of the planned changes. The production
engineer should continuously evaluate the wells and processes to look for
additional optimization potentials. If an optimization potential is found, it
should be tested with computer simulations before it is implemented.

08 — Topside production optimization One onshore production
engineer should be dedicated to finding production increasing potential
regarding the topside processing plant.

09 — Proposition for initiative The organizer (the onshore production
engineer) should consider any action that may increase the production. If
there is a need for collaboration between onshore and offshore, the organizer

36

4. INTRODUCING SEMTASK 4.2. SCENARIO

arranges this meeting to discuss this. If the proposition is accepted, it is
sent to the Executive (Technical manager) who adds it to the plan for the
day.

4.1.2 DPO — Optimization potentials

SoluDyne is a documentation application, and does its intended meaning in
a good way. The operators use it to look up documentation about the work
process when needed. However, some of the information about processes
was lost while creating the documentation as a result of SoluDyne’s lack of
expressiveness.

There is no automation of work processes. Operators can easily forget tasks
in a complex workflow. Ultimately, the workflow system should be executed.
In that way no tasks are missed or done in an incorrect order.

It is claimed that engineers use up to 40% of their working time to look
for the right data to use. The number may actually grow in the future as
the availability of real-time data increases. The workflow application should
assist the operators in getting the right data at the right time.

The current work processes have no associated flow of data. Data sources
that a person uses while performing a task may be useful for the users of
the subsequent tasks. Decisions are most likely based upon them.

Some of the problems with today’s workflow system have been outlined. As
the different parts of SemTask are explained more benefits and details are
presented. But let us take it one step further looking at a scenario where
SemTask is used to solve some of these optimization potentials. The scenario
is based on the DPO process.

4.2 Scenario

4.2.1 Participants

• Frida — Executing (Technical manager operation, offshore)

• Per — Organizer (Production engineer, onshore)

• Pernille — Executing (Production engineer, onshore)

• Didrik — Executing (Process/operation engineer, onshore)

1. SemTask notifies Per that it is time for the process “Daily Production
Optimization”. Per asks SemTask to notify the other participants

37

4. INTRODUCING SEMTASK 4.2. SCENARIO

(Frida, Pernille, and Didrik) that they should connect to start this
workflow. They all notify SemTask at their presence and head for
the meeting room. As Per is the meeting owner he gets an overview
of who have joined the meeting, and whether anyone is currently
missing. SemTask knows the connections between tasks and data
and can therefore infer that the weekly Production and Injection plan
(P&I) should be available to study. SemTask brings the P&I plan up
on the screen.

2. As this is a meeting between participants onshore and offshore,
SemTask suggests opening a video conference to connect to Frida who
is offshore. After the video conferencing system has connected the
teams, SemTask automatically shows some important key information
like well and process capacities, well statuses, and differences between
yesterday’s actual and planned production. The key information is
gathered in a preconfigured workspace in PDP. Per suspects a negative
trend in oil production in well A6. He clicks on this well to get more
information, and uses PDP to look at the historical data in different
intervals. His suspicion turns out to be true, and upon investigating
the pressure level for the well in question he sees a quite dramatic
decrease. He asks Frida about her opinion as she can see the same
as Per on her screen. SemTask will automatically present information
about well A6 like type, parts and manufactures, and start-up date,
on the screen as Per looks at the production data for that specific well.
Per and the others decide to contact an expert for her opinion as the
pressure decrease is abnormal, since this may suggest that something
is dramatically wrong, or that it is just a sensor malfunction. Per
clicks on the pressure sensor for well A6 to get information about
manufacturer and contact person. The expert who is listed as contact
person is currently not available and SemTask automatically suggests
another person registered as a contact for the well pressure sensor.
It turns out that there is a known problem with this type of sensor,
and an action to survey the well and continue the normal production
is made. The surveillance initiative action is logged in PDP and Per
instructs SemTask to continue the process.

3. As the meeting ends, everyone goes to their own working place. Now
it is time for Frida, Pernille, and Didrik to work in parallel. Frida gets
the activity “Execute updated plan” activated as well as “Continuous
production supervising”. SemTask shows her the action list from the
production optimization meeting along with a planning program that
lets her put different activities up at different times. SemTask also
shows production supervision information available in PDP. She does
not see any immediate optimization potentials at the moment, but is
prepared to give them, with the help of SemTask, to Per at any time.

38

4. INTRODUCING SEMTASK 4.2. SCENARIO

Frida sees the newly made “surveillance” action, and follows it up.

4. Didrik gets the activity “Topside production optimization” activated
on his screen. SemTask brings relevant information to this activity,
which is an overview of the oil and gas capacities, pollution rates in
the waste water, alarm, and event logs. He notices that the pollution
rate is increasing more than it normally should. As he is unsure of the
cause so he writes in SemTask that he is concerned about the pollution
rates in the waste water from the processing plant, and that he needs
to have a meeting with some of the engineers offshore. SemTask sends
his reports to Per.

5. Per receives Didrik’s report, and gets the screen for “Proposition for
initiative” shown on his display. As the report from Didrik covers a
concern about the processing plant, Per sees the same data of the
processing plant as Didrik did when he asked for a meeting. SemTask
automatically presents a list of offshore engineers who might have
experience with the problem and the equipment mentioned in the
report. Per is also able to see the schedule of the different engineers
and the meeting room, which enables him to find a time for the meeting
between Didrik and the offshore engineer.

6. At this point Mona, which is currently working with a domain expert
regarding a malfunction in one of the subsea well, needs help from
Per. She knows that Per is busy working on the “Daily Production
Optimization” process. For that reason, she decides to bring up
SemTask to start the monitoring function of that particular process.
SemTask shows the tasks that Per is currently working on. Mona
knows how important these tasks are, and decides not to interrupt
Per. Since the SemTask application is already running, she checks
out some statistics of the tasks being done in the DPO-process. She
notices that only a small percentage of the initiatives from the“Topside
production optimization” task is actually implemented, and decides to
follow it up later.

7. While Frida and Didrik are working on their tasks, SemTask shows the
task “Follow-up” on Pernille’s screen. SemTask presents the action-list
from the daily morning meeting, key information from each of the
wells, etc. Each of the activities in the action list has a responsible
person associated with it. If a planned activity seems to have a
negative effect on the production, it will be easy for Pernille to contact
that person through SemTask. Pernille is aware of the fact that this
oil field has a known problem with network optimization, so she checks
whether a network model exists. If no model exists, she asks SemTask
to start the network optimization task. This leads SemTask to start
the associated applications, which are GAP and MaxPro. Pernille

39

4. INTRODUCING SEMTASK 4.3. SEMTASK IMPLEMENTATION OVERVIEW

Rules

SemTaskDPO (RDF)

Ontology

DPO (BPMN)DPO (SoluDyne)

Figure 4.1: Overview of the approach in making SemTask

creates the model while SemTask has already brought up relevant
process capacities to aid Pernille. SemTask is aware of the “System
optimization process”, so it foresees the need for data to test the
model. It checks whether production or test data is available, and
gives the choice to Pernille of which to use for testing the network
model. Pernille chooses production data and SemTask asks Pernille
if the model is OK. Pernille answers SemTask by checking if the
model passes some requirements. SemTask brings her to the activity
“Execution of optimization” and brings up the “checklist for system
optimization”. She notifies SemTask as she is satisfied with the model,
and the subprocess is finished.

8. If Frida, Pernille, or Didrik has an action proposal, it will automatically
be sent to Per through SemTask. Per will get the action proposal along
with who made the proposal, what data was used, attached documents,
etc. If he accepts the proposal, it is sent to Frida who puts it in the
plan of the day.

4.3 SemTask implementation overview

There are several approaches to building an application that fulfills the
scenario. Technological and architectural decisions become evident as the
different parts of SemTask are discussed (e.g., why use ontologies instead of
XML-Schema and why the ontologies are structured in the following way).

The workflow diagrams are now in SoluDyne, and need to be converted into
BPMN. Once they are in BPMN they are to be converted into RDF instances
using a set of ontologies. Rules are used to implement the execution engine
of SemTask so that these workflow diagrams can be executed. Figure 4.1
illustrates how the different parts of SemTask are related to each other.

A more technical diagram is presented in figure 4.2 on page 42. How the
different ontologies relate to each other will become evident in chapter 6
on page 63. Chapter 7 deals with the integration between the reasoner,
rules and ontologies using Java and a Semantic Web framework called Jena.

40

4. INTRODUCING SEMTASK 4.4. SOLUDYNE TO BPMN

Graphical User Interface is not treated in this thesis, but the general idea,
and ideas for further work are presented in chapter 8 on page 95.

4.3.1 Our focus on SemTask

SemTask is a complicated workflow and decision support application. It
consists of several parts, including a graphical user interface, a client/server
architecture, logic to start up the right applications with the right
parameters, etc. We will not focus on any of those components in SemTask.
What we will focus on is the functionality of showing the right data at the
right time. This will require a further formalizing of the workflow diagrams,
along with a formalizing of necessary input data and data sources. In
section 8.2 on page 97 several possible extensions of the SemTask application
are examined.

4.4 SoluDyne to BPMN

As described in section 3.6 on page 25, the Hydro part of StatoilHydro
uses SoluDyne for describing and documenting their work processes. The
SoluDyne system is both used for drawing, storing, and displaying the
diagrams, and for connecting documentation (like short texts, documents,
and spreadsheets) to the diagrams. As the SoluDyne workflow diagram
notation lacks documentation (like what is the exact meaning of the different
diagram shapes), and only provides the simplest opportunities for drawing
workflow diagrams, we have chosen to translate the original SoluDyne
diagram to BPMN.

The BPMN version of DPO sets out to capture more of the underlying
semantics and details, found in the APOS documentation, that were
originally lost as a result of modeling the workflow in SoluDyne. Figure 3.2
on page 26 shows the original diagram in the SoluDyne system and our
translation with some additions are found on figure 4.3 on page 43.

In order to create the enhanced BPMN-version, we studied the DPO-
workflow and the supporting documentation from APOS [Hydro 2008].
In addition, we have emailed and had meetings with Espen Halvorsen at
StatoilHydro and Kjetil Torvanger from Cronus Engineering. This was done
to be able to understand not only the diagram, but also the process that
it intends to capture. The conversion from SoluDyne diagrams to BPMN
diagrams is not straight forward so we will briefly explain it. The conversion
described here is for the specific process DPO, and the conversion shows signs
of the fact that additional information is added to the resulting diagram.

41

4. INTRODUCING SEMTASK 4.4. SOLUDYNE TO BPMN

usedIn

usedIn

usedIn

usedIn

usedIn

usedIn

usedIn

Java w/GUI

Pellet reasonerRules Jena

Workflow in RDPlatform in RDF

Ontologies

usedIn

Data

BPMN

SemTask

Execution

Figure 4.2: The architecture of the SemTask application

42

4. INTRODUCING SEMTASK 4.4. SOLUDYNE TO BPMN

Figure 4.3: Daily Production Optimization in BPMN

43

4. INTRODUCING SEMTASK 4.4. SOLUDYNE TO BPMN

(a) Evaluate Subsea Well Initiative

P
ro

d
u

ct
io

n
 e

n
g

in
e
e
r

Process
capacities

Well data
PI/Pres/W

Creating network
model

Validating model with
production data

Validating model
with test data

Evaluation of
input data

Execution of
optimization

MaxPro GAP

Checklist for
system optimizing

Network model

Optimized model
calculations

Yes

No

Model OK?

Use test
data

Model with test-
or production data?

Use production
data

Need for network
optimizing

(b) System Optimization

Figure 4.4: The sub-processes of Production follow-up

44

4. INTRODUCING SEMTASK 4.4. SOLUDYNE TO BPMN

In the SoluDyne version we find the activity “05-Follow up” that triggers
both “System Optimization” and “Evaluate Subsea Well Initiative”. These
are performed in a sequential manner, as depicted, before handling the flow
over to “Proposition for initiative”. Following the documentation for the
process “Follow up” and our research, which can be read in section 4.1.1, we
chose to model it as a sub-process. The reason is that the two processes:
“System optimization” and “Evaluate subsea well initiative” are parts of the
ongoing “Follow up” process. It is a looping process and each time the
“Executing (Production engineer, onshore)” finds an optimization potential,
an event kicks off. The event results in sending a data document to the
“Proposition for initiative” process. Associations to the data objects show
what activity is producing the data, and where it is being used as input. The
control is given both to the “Proposition for initiative” process and back to
the “Follow up” process.

In much the same way as the “Follow up”-activity the “Topside production
optimization” has undergone some changes to the new diagram. It is looped,
and has an intermediate event connected to it in the similar way as the
“Follow-Up” process. We also assume that once a production increasing
initiative is found, the process does not stop, but sends a document to
the responsible person for the entire “Daily production optimization”, and
continue to look for further initiatives. In this case that person is “Organizer
(Production engineer, onshore)”.

In the original SoluDyne diagram “03-Execute updated plan” and “04-
Continuous production supervising” these tasks are performed in sequence.
However, we interpret its meaning to be that they are performed in
parallel. One should always do “Continuous Production Supervising”
and it is not the case that one should first start supervising after the
executed plan task is finished. Also in much the same way as the “Follow
up” and the “Topside production optimization” activities, the “Continuous
Production Supervising” activity includes an intermediate event. This
event ultimately sends a data document “Optimization Potential” to
the “Organizer (Production engineer, onshore)”, and continues with the
production supervising. For the “Execute updated plan” we have extended
the semantics by showing the data used as input both from “Production
optimization meeting” and “Proposition for Initiative”.

SoluDyne lacks the feature of showing data flow in workflow diagrams. The
ability to do this is a feature of BPMN, so we have tried to use it where it
seems feasible. Both input of data, output of data, and data flow are shown.
For instance can we see that the Production optimization meeting uses the
Weekly Production and Injection-plan as input, and that it produces an
Action list that the activity Execution of updated plan uses.

45

Chapter 5

Ontology

We are getting into semantics
again. If we use words, there is a
very grave danger they will be
misinterpreted.

H. R. Haldeman

The previous chapter gave an introduction to SemTask by going through a
scenario. This chapter will present how data sources and workflow diagrams
may be represented to be able to fulfill the requirements of the scenario. An
introduction to ontologies will be presented along with the main alternatives.
The conclusion is that using ontologies to represent data and workflow lead
to several advantages. These advantages will be outlined and explained.
Why ontologies seems to be the best option as a representation foundation
for the SemTask application will also be discussed.

5.1 An introduction

5.1.1 Definition

The term ontology can have different meanings. It originates from a subfield
of philosophy concerning the study of the nature of existence, the branch
of metaphysics concerned with identifying the kinds of things that actually
exist and how to describe them [Antoniou and van Harmelen 2008]. The
meaning in computer science is a bit different. The most used definition is
probably the following: “An ontology is an explicit and formal specification
of a conceptualization” [Gruber 1995]. A more informal, and perhaps more
explanatory, definition would be: an ontology is a hierarchy of concepts,

46

5. ONTOLOGY 5.1. AN INTRODUCTION

Automobile Owner

owl:Thing

Racer PickUp

Tire

MotorTruck

Figure 5.1: An example of an ontology. The figure is made using Protégé
and visualized using the OWLViz plug-in. See http: // www.

co-ode. org/ downloads/ owlviz/

which can be seen as classes, and relations between these classes.

5.1.2 Example

A simple ontology about Automobiles is presented in figure 5.1. Here we
have Thing as the super class with three subclasses: Automobile, Owner,
and Tire. The class Automobile is further divided into Racer, PickUp,
and MotorTruck. Every class is disjoint from its siblings (i.e., an instance
of Automobile cannot also be an instance of Tire). Once this simple
concept/class hierarchy is in place one can define the properties. One
often differentiates between object and datatype properties. Properties are
relations going from an object to another object for object properties and
to datatype (such as natural numbers or strings) for datatype properties.
Properties have a domain and a range. The domain consists of the elements
that the relation “goes from’,’ and the range consists of the elements that
the relation “goes to”. We could then define an object property called owns
with the domain: Owner and range: Automobile. An example of a datatype
property could be numberOfDoors having Automobile as domain, and the
natural numbers as range.

There are several other constructs available in an ontology language than
the ones mentioned in the example. The available constructs define the
expressiveness of the ontology language at hand1.

1For a good introduction to making ontologies see [Horridge et al. 2004].

47

http://www.co-ode.org/downloads/owlviz/
http://www.co-ode.org/downloads/owlviz/

5. ONTOLOGY 5.1. AN INTRODUCTION

5.1.3 Classes

An ontology consists of classes and properties. Depending on the ontology
language you can state different things about the classes. Typically axioms
include:

• Disjointness of classes: If class A and B are disjoint, no instance can
be a member of both A and B.

• Inheritance/subsumption: If class A inherits class B (B subsumes A)
then all instances of A are automatically also instances of B.

• Complex definitions: A class can be defined to contain exactly all
instances that have a property of a specific type or list all its members,
for instance.

• Complex inheritance: A class can be defined to include all instances
that have a property of a specific type, for instance.

In an ontology, there are two kinds of classes: defined classes and normal
classes. A defined class has one or more sufficient conditions, meaning that
if an instance has met all these conditions, it is automatically a member of
that class. An example is value partitions where a class is defined exactly to
be the union of its disjoint subclasses. Another example is one that specifies
exactly which members (instances) it has. These kinds of defined classes are
often called enumerated classes or enumerated types.

5.1.4 Properties

Properties connect instances. It is possible to specify several facts about the
properties in an ontology (depending on the expressiveness of the ontology
language), including:

• Domain and range: If D is the domain and R is the range of a property
P then for all x and y: if P(x,y) then x is a member of D and y is a
member of R

• The inverse of a property: If P and S are inverse properties then for
all x and y: P(x,y) if and only if S(y,x).

• Reflexivity: If P is a reflexive property and C is in the domain of P
then for all x in C we have P(x,x).

• Property inheritance: If P and S are properties and S inherits P then:
for all x and y, if S(x,y) then P(x,y).

• Symmetry: If P is symmetric then for all x and y, if P(x,y) then P(y,x).

48

5. ONTOLOGY 5.1. AN INTRODUCTION

Figure 5.2: The use of a covering axiom to get a value partition class. The
figure is taken from [Horridge et al. 2004]

• Transitivity: If P is transitive then for all x, y, and z, if P(x,y) and
P(y,z) then P(x,z).

• Functionality: If P is functional then for all x, y, and z: if P(x,y) and
P(x,z) then y=z.

• Inverse-functionality: If P is inverse-functional then for all x, y, and z:
if P(x,y) and P(z,y) then x=z.

5.1.5 Language requirements

There are several requirements for ontology languages. The main ones
are: well-defined syntax, efficient reasoning support, a formal semantics,
sufficient expressive power, and convenience of expression [Antoniou and van
Harmelen 2008]. Well-defined syntax is clear from the fact that otherwise a
computer would not be able to parse the ontology description. A formal
semantics means that the meaning of a word should not be a result of
human interpretation or a computer program implementation. Algebra in
Mathematics is an example of a language with a well-defined semantics.

49

5. ONTOLOGY 5.1. AN INTRODUCTION

5.1.6 TBox and ABox

When discussing knowledge bases2 a distinction is often made between the
terminology knowledge and the asserted knowledge. These parts are called
the TBox and ABox respectively. There are no logical distinctions between
the TBox and the ABox, but as we shall see, reasoning algorithms often
work on either one of them. Having a term for these different parts of the
knowledge base is therefore convenient. An analogy is classes and objects
in object oriented programming. The classes can be compared to the TBox,
and the objects which belong to a class can be compared to instances in the
ABox.

TBox

The TBox is a set of schema axioms that define the classes and the
relations/roles with their respective properties. The concept and role
constructors used and allowed are constrained by the ontology language
in question. We have, in the most general case, inclusion (A v B)
and equivalence axioms (A ≡ B) where A and B can be class or
relation/property. More expressive languages have additional axioms, such
as those mentioned in section 5.1.3 and 5.1.4

Following the example about Automobiles a schema axiom could be:
Racer v Automobile which means that Automobile subsumes Racer.
Another example of a schema axiom could be: Mother ≡ Woman u
∃hasChild.Person which says that the class Mother is defined as all objects
belonging to the Woman class and which has one or more properties of the
kind hasChild with the class Person as range.

There is much more to a TBox than what is stated here, and the curious
reader is referred to [Baader et al. 2007].

ABox

The ABox on the other hand is a set of data axioms that define a specific
state of affair of an application domain in terms of concepts and roles [Baader
et al. 2007]. In the ABox we define individuals by giving them names; let
us, call three individuals: a, b, and c. We then make two kinds of assertions
about them called concepts assertions and role assertions like C(a) and R(a,
b), where C is a concept and R is a role.

2Knowledge base is defined as a set of sentences, expressed in a knowledge
representation language (e.g., ontology language), each representing some assertion about
the world [Russell and Norvig 2003].

50

5. ONTOLOGY 5.1. AN INTRODUCTION

In the example of Automobiles example data axioms could be that BMW-Z8
is an instance of the class Racer and Ford-Ranger is an instance of the class
PickUp. Further, we can say drivesFaster(BMW-Z8, Ford-Ranger), which is
an example of a role assertion.

In practical implementations, there may be other constructors for ABox
axioms available, e.g. differentFrom, which states that the individuals are
different from each other.

5.1.7 Expressiveness vs. decidability

There is a tradeoff between expressiveness and decidability when dealing
with ontology languages. We want the ontology language to be as expressive
as possible making us able to express what we want. However, the language
in question should be decidable meaning that there are reasoning algorithms
that are sound and complete and will stop in a finite time. There is ongoing
research to extend ontology languages with new constructs making us able
to express more without losing decidability.

Although one would like the ontology language to be decidable one can work
with undecidable languages as well. The ontology could for example be used
as a taxonomy where we do not need support for reasoning. An example in
the domain of oil and gas production is the Active Knowledge Management
in the petroleum industry — AKSIO project [Norheim and Fjellheim 2006].
Here an ontology defined in an undecidable ontology language is used for
expanding a text based search by looking at synonyms and relative terms of
the initial search term.

5.1.8 Reasoning/inference tasks

Concerning the TBox, several inference tasks are relevant. Satisfiability
of a concept/class is the reasoning task to see whether there is a model3

in which the concept is non-empty; i.e., find out if the concept can have
members. Subsumption is to reason about whether one concept is always a
generalization of another, that is if a membership of one class always results
in the membership of another class. Equivalence of classes is the inference
task of checking whether two classes always must have the same members.

Concerning the ABox, the reasoning task is instance checking, i.e., checking
which classes an individual belongs to.

3Model is here referred to as the model theory in Description Logic. See [Baader et al.
2007] for a thorough introduction.

51

5. ONTOLOGY 5.2. SHORT INTRODUCTION TO SEMANTIC WEB

It is shown that the reasoning tasks: checking satisfiability of a class,
if two classes are equivalent, and if two classes are disjoint, can all be
done using only subsumption. If the negation of concepts is allowed in
the language, the reasoning tasks can be reduced to unsatisfiability. As a
result of this, a reasoner typically only implements either subsumption or
unsatisfiability, depending on the knowledge representation language. For
a more comprehensive introduction to reasoners, reasoning tasks, and the
algorithms behind see [Donini et al. 1996].

In the development of large ontologies, like in the ISO 15926 standard men-
tioned in section 2.4.1 where there are over 100.000 classes, automatically
reasoning support is necessary since reasoning“by-hand”would take too long
time. It is surprisingly easy to create unsatisfiable concepts for instance.
When running subsumption checking one will see all classes, intended or
unintended, that a given class is a sub class of. This information can be
used to improve the ontology.

Let us look at one example of reasoning that uses the example in section 5.1.2
on page 47. We define Automobile and Owner to be disjoint from Tire, as
well as defining an object property called hasTireBrand with the domain of
Automobile and range Tire. We state that both Automobile and Owner have
exactly one instance of the hasTireBrand as a necessary condition for all the
elements of the class. It is tempting to conclude that the reasoner would infer
that the class Owner is inconsistent since the domain of the hasTireBrand
is only Automobile. However, the reasoner would instead infer that the class
Owner is subclass of Automobile. If the two classes were disjoint the reasoner
would detect an inconsistency in the class Owner meaning that it cannot
have any members.

5.2 Short Introduction to Semantic Web

Many of the technologies we use in this master thesis are part of the
Semantic Web stack. It can be illuminating to shortly present the idea
behind Semantic Web, and how the technologies relate to one another.

The web we know of today consists mostly of content suitable for human
consumption [Antoniou and van Harmelen 2008]. By introducing the
Semantic Web, or Web 3.0, researchers are trying to change this, i.e.,
making the content understandable for computers as well. There are several
consequences to this such as better web searches because the computer
knows the meaning, i.e., the semantics, not just the syntax of the web
content. Different web content from different sources could also be more
smartly merged before presented to the end user since the meaning of the
content is machine accessible. These are examples of what has been called

52

5. ONTOLOGY 5.2. SHORT INTRODUCTION TO SEMANTIC WEB

“the Semantic Web vision” that states that the web should be a web of
data that is machine accessible, thus making the examples given possible.
The Semantic Web initiative came from Tim Berners-Lee (the “father of the
web”). He explains the Semantic Web vision with agents, machine accessible
data, and reasoning of data in the famous Scientific American article: The
Semantic Web [Berners-Lee et al. 2001].

Although mainstream adoption of the Semantic Web is still some years
away it has been a considerable progress in the development of, and use
of standards, languages, technologies, and applications [Cardoso 2007].
Because of this, the Semantic Web has reached a level of maturity so that
big companies can apply the technology. For example, OWL is used for data
integration by companies like Audi, Boeing, and Hewlett Packard [Antoniou
and van Harmelen 2008]. Using ontologies for data integration is further
explained in section 5.4.2 on page 61. Companies like Vodafone, Google,
and Oracle are all working for a smarter web by developing Semantic Web
applications [Cardoso 2007].

The technologies that are a part of the Semantic Web are layered in a stack.
The stack by W3C, naming all the key technologies and showing how they
depend on each other, is found in figure 5.3 on page 56. This stack has
been changed several times and will probably change again. However, the
main interesting technologies in the development of SemTask are all W3C
recommendations (what other organizations would have called a standard):
XML, RDF, RDFS, OWL, and SPARQL; and are likely to be in the Semantic
Web stack in the future as well. Looking at the Semantic Web stack one
can roughly divide it into elements concerning syntax, data, ontology and
logic. URI and XML define the syntax, RDF defines the data layer, OWL
and RDFS are used in the ontology layer and rules are used in the logic
layer. SPARQL is the W3C recommendation for query language over RDF.
Concerning SemTask, the Ontology technology of the Semantic Web Stack
is of main interest. However, let us quickly go through the technologies
constituting the foundation of the Semantic Web stack: XML, RDF, RDFS,
OWL, and SPARQL.

5.2.1 XML

eXtensible Markup Language (XML) [Maler et al. 2006] is a W3C
recommendation for a syntactic format used for representing tree-structures
of information. XML allows representing machine-accessible information
and allows the user to define markup for their documents using tags.

XML is a widely used standard in all types of businesses. The petroleum
industry has also chosen XML as the syntactic standard, with PRODML

53

5. ONTOLOGY 5.2. SHORT INTRODUCTION TO SEMANTIC WEB

and WITSML as examples.

5.2.2 RDF

RDF stands for Resource Description Format and is a W3C recommendation
[Carroll and Klyne 2004]. It is a simple data model used to describe resources
and the relations between them. The core concepts of RDF are: resources
and literals. A resource can be though of as an object and is given an
identity by a unique URI (e.g., URL, ISBN, or telephone number). Literals
are atomic values (e.g., strings, integers, and booleans).

Statements are triples consisting of a subject, predicate, object. The subject
can either be a resource or literal. Predicates are a special type of resource
denoting the relation between different resources and is identified using URL.
The object can either be a literal or another resource. As XML defines trees
RDF takes this one step further and gives the possibility of representing
directed graphs.

RDF/XML is a W3C recommendation [Beckett 2004] and defines a syntax
for serializing RDF graphs. There are other languages for serializing RDF
like Turtle [David Beckett 2007], and Notation3 (N3) [Tim Berners-Lee
2006]. The N3 notation is a compact and readable alternative to RDF/XML,
and is extended to allow greater expressiveness.

Since the RDF documents in the appendix are written in N3 format a quick
introduction is beneficial. Statements are separated using “.”. There are
several shortcuts in N3. Looking at listing 5.1 on the following page one
sees that the empty prefix is defined as “#” meaning the current document.
When writing multiple statements about the same subject there are two
shortcuts: “;” introduces another property and “,” introduces another object
with the same predicate and subject. The rdf:type property is abbreviated
in N3 to just “a”.

5.2.3 RDFS

Resource Description Framework Schema (RDFS) is a W3C recommenda-
tion [Brickley and Guha 2004]. It is an extensible knowledge representation
language and is used to structure RDF resources and provide a vocabu-
lary/ontology for RDF. RDFS forms the basic ontology language in the
Semantic Web stack. It is a primitive ontology language [Antoniou and
van Harmelen 2008] with the ability to define classes, properties with their
domain and range and hierarchy of these classes and properties.

54

5. ONTOLOGY 5.2. SHORT INTRODUCTION TO SEMANTIC WEB

Listing 5.1: Example of N3 notation
@pref ix : <#> .
@pre f ix bpmn: <http://www.ifi.uio.no/fredaleks/semtask/C

bpmn#> .
@pre f ix owl : <http://www.w3.org/2002/07/owl#> .
@pre f ix p r o t e g e : <http://protege.stanford.edu/plugins/owl/C

protege#> .
@pre f ix r d f : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>C

.
@pre f ix r d f s : <http://www.w3.org/2000/01/rdf-schema#> .
@pre f ix semtask : <http://www.ifi.uio.no/fredaleks/semtask/C

semtask#> .
@pre f ix xsd : <http://www.w3.org/2001/XMLSchema#> .
@pre f ix xsp : <http://www.owl-ontologies.com/2005/08/07/xspC

.owl#> .

: a c t i o n L i s t a semtask:FormDocument ;
bpmn:hasConnectingFrom C

:act ionListToExecutionOfUpdatedPlan ;
bpmn:hasConnectingTo C

:productonOptimzationMeetingToActionList ;
bpmn:hasName "Action List"ˆˆ x s d : s t r i n g .

5.2.4 OWL

OWL [van Harmelen and McGuinness 2004] is a richer ontology language
than RDFS. It is built upon RDFS and has in addition the ability to describe
relations between classes (e.g. disjointness), characteristics on properties
(e.g. symmetry), and enumerated classes, to name a few. OWL will be
explained in further detail in section 5.3 on page 57.

5.2.5 SPARQL

SPARQL [Prud’hommeaux and Seaborne 2008] is a recursive acronym that
stands for SPARQL Protocol and RDF Query Language. It is a query
language used to query RDF triples. It has been a W3C working draft since
October 2005 and became a W3C recommendation in 2008. It is supported
by most of the Semantic Web tools, such as Pellet, Protégé, and Jena. The
syntax is based upon SQL.

55

5. ONTOLOGY 5.2. SHORT INTRODUCTION TO SEMANTIC WEB

Figure 5.3: The Semantic Web Layer Cake — from http: // www. w3. org/

2007/ 03/ layerCake. png

56

http://www.w3.org/2007/03/layerCake.png
http://www.w3.org/2007/03/layerCake.png

5. ONTOLOGY 5.3. WEB ONTOLOGY LANGUAGE

5.3 Web Ontology Language

OWL (Web Ontology Language) is the W3C recommendation for the
ontology language used in the Semantic Web [van Harmelen and McGuinness
2004]. It came out of the need to have a much richer expressiveness than
RDFS that primarily is restricted to class and property hierarchy with the
ability to define domain and range for properties. OWL supports most of
the axioms mentioned in section 5.1.3 and section 5.1.4.

OWL is divided into three sublanguages, each having different restrictions
on what can be expressed.

5.3.1 OWL Full

OWL-Full does not add any restrictions on the OWL primitives. Thus
being the most expressive language of OWL. However, the drawback of the
expressiveness of OWL-Full is that the language is undecidable. That implies
that it is not possible to have efficient and complete reasoning support.

5.3.2 OWL-DL

OWL-DL is a sublanguage of OWL-Full that restricts how the constructors
of OWL and RDF can be used to make the language decidable. The
advantage is that we in many practical cases get efficient reasoning support
[Antoniou and van Harmelen 2008], the disadvantage is less expressiveness.

5.3.3 OWL Lite

OWL Lite is a sublanguage of OWL-DL and adds further restrictions
on OWL-DL. This leads to less expressiveness, but somewhat better
computational properties. The language can also be easier to understand
for beginners.

5.3.4 OWL representation

There are several standards for serializing an OWL document. One is to
use OWL XML, which is criticized for being bloaty. The ontologies made
in this thesis are represented in the OWL Abstract Syntax. See [Peter F.
Patel-Schneider and Horrocks 2004] for the specification.

57

5. ONTOLOGY 5.4. REPRESENTATION OF SEMTASK

5.4 Representation of SemTask

Some of the most evident alternatives to using ontologies for representing
the workflow model and the data model in SemTask are:

• graphical workflow language (BPMN, UML, YAWL . . .)

• workflow language for execution (BPEL, YAWL, . . .)

• Data models (e.g., databases or XML-schemas)

• specialized oil-specific standard (WITSML, PRODML, . . .)

5.4.1 Alternatives

Graphical workflow language

Using a graphical workflow notation is a possibility for representing the
workflow diagrams. UML (Unified Modeling Language), which is probably
best known for class, object and use case diagrams, and BPMN are some
of the alternatives. Neither of these graphical languages are suitable for
representing dataflow and workflow in one single diagram.

BPMN has a rich set of possibilities when it comes to modeling workflows.
There are three shortcomings of using BPMN as-is: First, BPMN is a
notation with currently no standard way of serializing a diagram. Secondly,
it is not possible to model different types of data and data sources in BPMN.
Thirdly, the behavioral semantics in BPMN is not clearly defined in the
specification [Wong and Gibbons 2008].

UML is slightly less powerful than BPMN when it comes to representing
workflows [Eloranta et al. 2006], and has all the same shortcomings as
BPMN.

Ontologies have their foundation in set theory and description logic. Using
ontologies for representing workflow diagrams would define a strict semantic
interpretation of the diagrams. UML and BPMN have their foundation in
a specification that is not sufficient for a machine to do reasoning about.

Workflow language for execution

Several workflow languages for execution exist, where BPEL is probably
the most well-known. There are execution engines able to execute BPEL
processes. However, they are not as well supported for human tasks as
computer based tasks. BPEL is better adapted for the collaboration of
different web services than connecting resources and processes.

58

5. ONTOLOGY 5.4. REPRESENTATION OF SEMTASK

Data models

Data models (e.g., databases or XML-schemas) define the structure and
integrity of their data sets. This structure is often only intended for
one enterprise, or application, and not intended to be shared by other
applications. Ontologies should be as generic and task-independent as
possible [Spyns et al. 2002]. G2 processes of IO include the integration
of different vendors into the processes. The integration of their applications
and data would be easier using ontologies.

Another big advantage of using ontologies instead of data models is the
ability to do reasoning (see section 5.4.2 on the following page for example).

Specialized oil-specific standard

Data can be represented in a specialized oil-specific standard, like PRODML.
The problem with most of these standards is that they are quite narrow,
so they do not capture all the data we would need. Although ISO 15926
contains many oil-specific data, it is missing some core relations we would
like to have (like that temperature is relevant to pressure).

We are not aware of any oil-specific standards for modeling workflows.

Data representation

UML class diagrams can represent data as class diagrams, which could
be implemented using databases or Java. However, representing data in
an ontology makes it more accessible for reasoning. Scalability of the
systems based on these ontologies will be better since all parties use the
same data representation. Alternatively they could map their internal data
representation to the one provided by the ontology, instead of mapping
between all the different internal representations used by the different parties
they collaborate with.

WSML

WSML (Web Service Modeling Language) [de Bruijn et al. 2005b] is an
ontology language meant for representing semantic descriptions of web
services. It is part of the WSMO (Web Service Modeling Ontology)
[de Bruijn et al. 2005a] project. The language comes in five flavors each
with different expressiveness:

59

5. ONTOLOGY 5.4. REPRESENTATION OF SEMTASK

• WSML Core which is the least expressive one, based upon the
intersection between Description Logic and Horn Logic.

• WSML DL which is based upon Description Logic. It is somewhat
compatible with OWL (it has in general a bit lesser expressiveness
than OWL, but better data type support) [Keller et al. 2006], and
conversion tools exist4.

• WSML Flight which is based upon Horn Logic. It has a higher
expressiveness than WSML Core, and a different expressiveness than
WSML DL.

• WSML Rules which is an undecidable extension to WSML Flight.

• WSML Full which unifies WSML Rules and WSML DL.

WSML is meant to be used for workflow between computer applications. It
is not meant to describe human based workflow systems and diagrams.

5.4.2 Using OWL for Semantic Task Support

As mentioned earlier, there are several good workflow languages and tools
to represent workflow, both as a graphical notation and as an execution
language. With that in mind, why should one use ontologies to represent
workflow and data?

Workflow diagram reasoning

One of the benefits of using ontologies and OWL for workflow diagram
representation is, as mentioned, their foundation in set theory and
description logic. This enables for workflow diagram reasoning. Reasoning
can be done either to do semantic checks (e.g., check whether all tasks are
connected to a lane), or to infer new knowledge (e.g., fork gateways that
have several conditional sequence flows to be decision gateways).

Merging of workflow and data

None of the alternative solutions to OWL treats processes and data in the
same model. Doing so will yield a couple of interesting possibilities. For
instance, the execution of an activity may in it self yield new understanding
of data (e.g., an alarm may not be critical if an operator has just finished
checking the problem). The influence may also go the other way: data may

4The WSML2OWL translator — http://tools.sti-innsbruck.at/wsml/
wsml2owl-translator/v0.1/.

60

http://tools.sti-innsbruck.at/wsml/wsml2owl-translator/v0.1/
http://tools.sti-innsbruck.at/wsml/wsml2owl-translator/v0.1/

5. ONTOLOGY 5.4. REPRESENTATION OF SEMTASK

lead to the execution of activities. One such example could be a sensor
showing levels above the predefined threshold that would automatically
trigger a task to address the problem.

Common data and workflow representation

G2 of IO includes a more tightly integration of vendors and other third
party companies. A standard for data integration is therefore crucial to be
able to collaborate. Using Semantic Web technology has been suggested for
the Norwegian petroleum industry [Gulla et al. 2006]. There are several
ongoing ontology projects including OLF’s dataintegration project5 and
the ISO 15926 project. However, SemTask takes this even further by also
making the workflow itself common for the different parties. Now different
tools, formats, and workflow products are used by the different oil and
gas participants. A common workflow and data, represented as ontologies,
through the entire collaboration chain between the different parties will take
IO one step closer to G2. Not only is there a common vocabulary, but also
a logically consistent meaning of the terms in the vocabulary.

Data source classification

Data sources should be classified in a taxonomy, and should in addition
have relations between themselves. This will make SemTask able to suggest
data sources in different situation. For instance, if one does not have access
to some piece of information one might be interested in the information
located higher up in the taxonomy. One may not have access to a specific
production plan for a specific day. SemTask may then infer that a more
general production plan for the week might be interesting. Similarly, if the
production plan is available and an operator asks for it, SemTask may then
suggest related data that might be interesting, like different trend analyzes.
Ontologies are a very good solution for this.

Data integration

One of the major benefits of using ontologies instead of an ad-hoc data model
for SemTask is the ease of data integration.

OWL is also used to make ontologies for data integration. It makes it
possible to map information from one source to information from another
source, even if their syntactical representations are not equal.

5 http://www.olf.no/io/dataintegrasjon/ for more information about the
dataintegration project.

61

http://www.olf.no/io/dataintegrasjon/

5. ONTOLOGY 5.4. REPRESENTATION OF SEMTASK

Why OWL?

OWL is chosen as ontology language for several reasons. It is by far the most
used ontology language [Cardoso 2007]. RDFS is not expressive enough. Its
lack of expressiveness for several use cases identified by the Web Ontology
Group of W3C6 ultimately resulted in using DAML+OIL [Horrocks 2002]
as the starting point for creating OWL. As OWL is the most used ontology
language, and also a W3C recommendation this leads to the development of
tools, research and a good community in the context of ontology engineering.

In addition, the Norwegian oil industry has decided to rely on the Semantic
Web technology as a platform for future Integrated Operations [Strasunskas
and Tomassen 2007].

6http://www.w3.org/2001/sw/WebOnt/

62

http://www.w3.org/2001/sw/WebOnt/

Chapter 6

SemTask ontologies

So far we have presented ontologies in general. How ontologies fit in
the Semantic Web, different languages used for representing ontologies,
and reasons why OWL is the ontology language of our choice have been
presented. This chapter follows this up by examining the development of
each of the ontologies in SemTask, as well as development issues such as
methodology, reuse, and other design decisions. We will outline what role
each ontology has in SemTask, and how they relate to each other. This is
important as they form the foundation for executing the DPO-process.

6.1 Topology

The topology of the ontologies in SemTask results from the fact that we
wanted to clearly separate four different aspects:

• BPMN specification — The foundation for representing BPMN
diagrams.

• SemTask — An extension of the BPMN specification, needed to
represent APOS-diagrams with additional semantics.

• Data — Describing data sources, and how different sources of data
relate to one another.

• Execution — Used for representing state in a diagram.

This architecture is made with StatoilHydro in mind. However, it is possible
for other companies to use it. They can start by using the BPMN and
Execution module. This also makes it easier for the integration of workflow
between different companies.

An illustration of the topology is shown in figure 6.1.

63

6. SEMTASK ONTOLOGIES 6.2. DEVELOPMENT

usedIn

Data

usedIn

BPMN

usedIn

SemTask

Execution

Figure 6.1: The topology of the ontologies in SemTask

We wanted a good process description language as a foundation, so we made
an ontology based on the BPMN specification. Using this ontology, it is
possible to describe specific business diagrams in RDF. However, to be able
to describe the data sources in DPO, some extensions to the BPMN ontology
were necessary. These extensions are included in the SemTask ontology.

The SemTask ontology includes the BPMN ontology making it possible to
model the APOS diagrams (for instance DPO) with specific documents like
“Weekly P&I-plan” (see figure 4.3 on page 43), specifying documents to be
shown for example. With both of these ontologies, it is possible to represent
the workflow diagrams in RDF.

The Data ontology describes different data sources and how they relate to
one another. An instance of this ontology represents data sources found on
a specific oil and gas platform. The ontology is used with the Execution
ontology to execute the diagrams and pass data from one task to another.

The Execution ontology extends the SemTask ontology opening for the
possibility to pass Decisions and Tasks with the use of data in the diagram.

6.2 Development

6.2.1 Tools

We used Protégé1 for editing the ontologies and Pellet2 as reasoner since
they are free (Open Source), of high quality, and fit our needs.

1See [Noy et al. 2001] or http://protege.stanford.edu/ for more information
about Protégé.

2See [Sirin et al. 2007] or the Pellet homepage: http://pellet.owldl.com/ for more
information.

64

http://protege.stanford.edu/
http://pellet.owldl.com/

6. SEMTASK ONTOLOGIES 6.2. DEVELOPMENT

6.2.2 Methodology

When making the ontologies we followed mainly the development method-
ology described in [Noy and McGuinness 2001]. We used an iterative ap-
proach and mainly followed the phases: determine scope, consider reuse,
define taxonomy, define properties, define facets, define instances, and check
consistency.

6.2.3 Upper ontologies

An upper ontology is a general framework of concepts [Russell and Norvig
2003]. It consists of high level concepts such as “Places”, “Measurements”,
“Physical Objects”, etc. Other ontologies may use these upper ontologies by
letting the concepts defined in the ontology extending concepts in the upper
ontology. One could have used an upper ontology, such as The Standard
Upper Ontology3 or Cyc4, in our ontologies. However, bringing in upper
ontologies at this stage would make the SemTask prototype unnecessary
complex. Different upper ontologies used by the different parties in IO
could lead to different semantics for the same terms. Although some upper
ontologies are used more than other there is currently no de-facto standard
[Wikipedia 2008b].

6.2.4 Reuse

There are mainly two different views on building ontologies based on reuse:
“by assembling, extending, specializing and adapting, other ontologies which
are parts of the resulting ontology”or“by merging different ontologies on the
same or similar subject into a single one that unifies all of them” [Pinto and
Martins 2000]. We tried mainly to find ontologies in the area of workflow or
something similar to BPMN to reuse in one of the two ways described.

There are several sites one could use to search for ontologies, including:
Swoogle 5, Schemaweb6, the DAML.org ontologies site7, and normal search
engines such as Google. Concerning the BPMN ontology the only ontology
we found was the sBPMN ontology. sBPMN uses WSML instead of OWL,
which is one of the reasons for not using it. A comparison of our ontology
and sBPMN is presented in section 6.4.6.

3http://suo.ieee.org/
4http://www.opencyc.org/
5http://swoogle.umbc.edu/
6http://www.schemaweb.info/
7http://www.daml.org/ontologies/

65

http://suo.ieee.org/
http://www.opencyc.org/
http://swoogle.umbc.edu/
http://www.schemaweb.info/
http://www.daml.org/ontologies/

6. SEMTASK ONTOLOGIES 6.3. ONTOLOGY STATISTICS

One aspect of making ontologies is reusing existing ontologies, another is
making the resulting ontology easy to reuse. Related to the latter is ontology
modularization, which is the mechanism to extract only a subset, an ontology
module, of the original ontology [Pinto and Martins 2000]. Talking about
composing and decomposing ontologies it is argued that: “ontologies cannot
be decomposed into semantically distinct components, we cannot predict
the scope of a (local) change, and how to reuse parts of ontologies or safely
compose them are open problems” [Sattler et al. 2006a]. We have therefore
not made any effort to make the ontologies easily accessible for reuse.

The BPMN ontology is relatively small in size and is a general formalization
of BPMN. Others may use it for their ontology integration, and it can be
argued that when a small set of modular, highly reusable ontologies are
available, large ontologies for specific purposes can more easily be assembled.
Ontology modularization is a complex area, and different approaches are
used to accomplish ease of ontology integration.8

6.2.5 Other design decisions

There are many design decisions to make while creating an ontology. One of
the simplest is naming conventions. We have chosen to use singular for
class names as it is most used in practice [Noy and McGuinness 2001].
We use UpperCamelCase for classes and lowerCamelCase for properties.
Individuals (instances) in the ontologies are named using UpperCamelCase,
while instances in the RDF-documents are named using lowerCamelCase.

In each of the ontologies we decided to have one super-class that all the
other classes extended, one super-property for all the object properties and
one super-property for all the datatype properties. We did so to organize
the properties and classes in the different ontologies.

6.3 Ontology statistics

Listed below are some statistics showing how many classes, properties, and
individuals each ontology have. It gives an indication of their sizes compared
to each other.

BPMN Data SemTask Execution
Classes 77 15 18 11
Data Properties 4 7 6 4
Object Properties 13 16 6 17
Individuals 8 0 6 0

8For more information about ontology modularization see [Sattler et al. 2006b].

66

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

6.4 BPMN Ontology

As seen in the SemTask scenario (chapter 4), we need a formalization of
the workflow for the SemTask application to work. We will achieve this
formalization by creating an ontology describing workflows. The ontology
is based upon the Business Process Modeling Notation (BPMN), which was
discussed in section 3.7, and has been written in OWL-DL.

Representing BPMN in OWL has already been suggested [Endert et al.
2007], and some preconditions have been set on how the ontology should be
[Hepp and Roman 2007]. Most of the literature on using semantic technology
in terms of workflow stems from Semantic Business Process Management
(SBPM) [Hepp et al. 2005] and Semantic Web Services (SWS) [Cabral et al.
2004] which is more about orchestrating Web Services and less about human
interaction than what we need for SemTask.

All the elements of BPMN have been formalized. Only a part of the
ontology is used in modeling the DPO workflow. But by modeling the
entire specification, we have a good foundation for extending the SemTask
application with more BPMN elements (e.g., exceptions, messages, and
loops). BPMN is also a well-known industry standard, and can be used
by all the different parties in future G2 of IO. Specific extensions of BPMN
can be layered on top in the SemTask ontology as described in section 6.5.

The ontology as a whole can be found in appendix A.1 on page 113.
An example where this ontology (and the next Semantic Task Support
Ontology) is in use can be found in appendix B.1 on page 132 where an
RDF-document encoded in N3-format of the DPO-workflow is found.

6.4.1 Overall strategy

Scope

Our goal for the ontology is to be able to create an RDF document
representing a BPMN diagram. There are several details in the BPMN
specification that could be modeled; however, the gain for this project would
be small. There is also a rule of thumb to only model at most one extra
level of detail [Noy and McGuinness 2001] of what the ontology is used for.

Data model vs. reasoning model

One must choose if the ontology should be used primarily as a data model or
as a reasoning model. We tried to accomplish both. This lead to the decision

67

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

to use OWL-DL, which is decidable but still pretty expressive resulting in
the fact that we get an ontology for the BPMN specification that can be
reasoned upon.

6.4.2 Classes

The first step was to go through the BPMN Specification [OMG 2006], find
concepts and make them into OWL-classes. The top class in our hierarchy is
BPMNElement. We made four subclasses of this class, representing the four
groups all BPMN-elements may be placed within: (some direct subclasses
in parenthesis)

• Artifact (Annotation, DataObject, Group)

• Connecting (Association, MessageFlow, SequenceFlow)

• Flow (Activity, Event, Gateway)

• Grouping (Lane, Pool)

All these classes are disjoint. The subclasses of Artifact and Grouping are
pretty much self-explanatory. Flow and Connecting however have some
design decisions worth mentioning.

Flow

The flow class represents the flow objects in BPMN. It is a defined class,
and all its members must be in a lane. All its subclasses are disjoint from
one another. These are the subclasses of Flow:

• Event

• Activity

• Gateway

There are two ways the BPMN-events may be divided into different groups.
Either they may be divided into different groups according to what the
BPMN-specification calls “main types” (Start, Intermediate or End) or they
may be divided according to what type of event they are (e.g., cancel-event
or timer-event). An example of three types of events is found in figure 6.2
on the following page. To model these events, one may use one of three
approaches:

1. Just use inheritance (needs multiple inheritance)

2. Use fields of an enumerated type

68

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

(a) TimerStartEvent (b) TimerIntermediateEvent (c) ErrorEndEvent

Figure 6.2: Three kinds of BPMN-events

3. A mixture of the two former (inheritance from one class and one field
of an enumerated type)

The second approach has been used in both wsper.org’s meta-model of
BPMN [Jean-Jacques Dubray 2007] and in the meta-model found in OMG’s
upcoming BPMN 2.0 specification [OMG 2007]. This approach has the
advantage that the result will have fewer classes than with the other
approaches. It also has the advantage over the first approach that it
may directly be mapped to a language which does not support multiple
inheritance (e.g. Java). However, our choice was the first approach —
inheritance. The reasons for why we chose multiple inheritance were twofold:
First of all it feels intuitive and second, OWL-DL supports it. A convention
in ontology making is to have all subclasses to be a “is-a” relation to its
super class. If it feels unnatural to say subclass B “is-a” A (which is the
super class) one might want to reconsider the hierarchy. The modeling of
BPMN events using multiple inheritance supports this convention. Also,
the number of classes did not grow to an unacceptable level. As base-
classes for the events we made all the main types, as well as all the event
types. The concrete events are inherited from two of these groups. For
instance, ErrorEndEvent inherits from the class EndEvent and the class
ErrorEvent. Not all combinations are valid. For instance, the BPMN-
specification does not allow an event that has main-type end, and event
type timer, no TimerEndEvent is therefore found in our ontology. This type
of restriction would have required more work to model if we had not chosen
a multiple inheritance approach. An intercept of the OWL-code describing
events can be found in listing 6.1 on the next page.

A BPMN-activity can be either a Task or a Sub-Process, depending on if it
is compound or not. An activity can be one of: “normal”, “looped”, “multiple
instance”, or “compensation”. A sub process can be all these, in addition to
type “ad-hoc”. Each activity, independent of being task or sub-process, has
a type that can be: “Service”, “Receive”, “Send”, “User”, “Script”, “Manual”,
“Reference”, or “None” describing how it should be executed. Here, we have
the same modeling alternatives as with the events. Modeling this with just
inheritance would require about 100 classes. We chose therefore to model

69

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

Listing 6.1: Some of the OWL-code regarding the Events
#Event Main t y p e s :
Class (a :Star tEvent partial

a:Event)
Class (a : IntermediateEvent partial

a:Event)
Class (a:EndEvent partial

a:Event)

#Some event t y p e s :
Class (a :ErrorEvent partial

a:Event)
Class (a:TimerEvent partial

a:Event)
#(. . .)

#Some e v e n t s :
Class (a:ErrorEndEvent partial

a:ErrorEvent
a:EndEvent)

Class (a:TimerStartEvent partial
a:TimerEvent
a :Star tEvent)

Class (a :TimerIntermediateEvent partial
a:TimerEvent
a : IntermediateEvent)

#(. . .)

70

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

Listing 6.2: Some of the OWL-code regarding the Activities
#D e f i n i t i o n o f the v a l u e p a r t i t i o n : Act iv i tyTaskType
Class (a:ActivityTaskType complete
oneOf(a:None a :User a:Manual a :Rece ive a : S c r i p t a : S e r v i c eC

a:Send a :Re f e r ence))
ObjectProperty (a :hasActiv ityTaskType Functional
domain(unionOf (owl:Thing a : A c t i v i t y))
range (a:ActivityTaskType))

#An example o f an a c t i v i t y
Class (a :Compensat ionAct iv i ty partial

a : A c t i v i t y)

Class (a :SubProcess partial
restrict ion (a :hasStartEvent cardinality (1))
a : A c t i v i t y)

Class (a:CompensationSubProcess partial
a:SubProcess
a :Compensat ionAct iv i ty)

Listing 6.3: Example RDF-N3 code of a ServiceCompensationSubProcess
: exampleCompSubProcService a bpmn : CompensationSubProcess ;
bpmn : hasActivityTaskType bpmn : S e r v i c e ;

(more p r o p e r t i e s here)
.

the execution-type as an enumerated field. In listing 6.2 one can see some of
the OWL code making up the activities, and in listing 6.3 one can see how
a compound service sub-process looks like in RDF.

Gateways are pretty straightforward to model. The Gateway class has two
subclasses named MergeGateway and ParallellForkOrJoinGateway. The
MergeGateway has OrMergeGateway and XorMergeGateway as its sub-
classes. The ParallellForkOrJoinGateway has two defined subclasses, a Par-
allellForkGateway, which is defined as a ParallellForkOrJoinGateway with
more than one SequenceFlow coming out of it, and a ParallellJoinGate-
way, which is defined as a ParallellForkOrJoinGateway with more than one
SequenceFlow coming in to.

71

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

Listing 6.4: An example of a sequence flow
: implementIn it iat iveToOptimalProduct ion a bpmn :C

Condit ionalSequenceFlow ;
bpmn : connectedFrom : d e c i s i o n I m p l e m e n t I n i t i a t i v e ;
bpmn : connectedTo : opt imalProduct ion ;
bpmn : hasCondit ion "No"ˆˆ xsd : s t r i n g .

Connecting

Connecting is the group of different sequence flows (Normal, Default or
Conditional), message flow and association (directed or undirected). The
first intuitive approach to model this is to use OWL-properties instead
of having them as classes. However, if we want to attach attributes to
these sequence flows — such as name, id, conditions, etc., we would have
to use OWL-Full since OWL-DL does not support adding properties to
properties. Modeling these as classes would fix this problem, but resulting
in the ontology being more complicated. The RDF documents based on the
ontology would also be more complicated. However, as a result of using
OWL-DL, these drawbacks had to be included in the ontology. In listing 6.4
one can see the RDF code for the sequence flow between “Implement
initiative?” and “Optimal production” from the BPMN-diagram found in
figure 4.3 on page 43.

All the connecting classes: SequenceFlow, MessageFlow, and Association
are sub-classes of Connecting. The sub-classes of SequenceFlow are:
NormalSequenceFlow, DefaultSequenceFlow, and ConditionalSequenceFlow.

6.4.3 Properties

The datatype properties in our ontology are straight forward and consist of:

• hasCondition: used for setting conditions on properties

• hasMessage: used for specifying messages on message flows.

• hasName: used for setting the name of the elements, like “Follow-up”
or “New initiative”.

They are all functional and have all String as range.

The object properties and their inverse:

• hasActivityTaskType: used to specify the activity task type

72

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

• hasStartEvent: used to specify the start event that begins a sub-
process

• hasConnecting ⇔ connecting. With sub-properties:

– hasConnectingTo ⇔ connectingTo

– hasConnectingFrom ⇔ connectingFrom

• isInLane ⇔ hasObject: specifies which lane a BPMN-element is in

• isInInPool ⇔ hasLane: specifies which pool a lane is in

bpmnStartEvent is both functional and inverse-functional (a sub-process can
only have one start-event which is the beginning of that sub-process, and
that start-event can only be a part of one sub-process). isInLane, isInPool,
connectedTo, hasActivityTaskType are all functional.

6.4.4 Deviations from the BPMN specification

We have made the restriction that a subprocess must have one, and only
one, start event that starts the entire process within. This is accomplished
by adding the property hasStartEvent having SubProcess as domain and
StartEvent as range. The property is added as a necessary condition on the
class SubProcess with the cardinality of 1.

6.4.5 BPMN as language

BPMN is a notation, and not a language. As a result of this, no standard
storage format exists at the moment. There are however work going on to
create such a format, but there are weaknesses in all of them. XPDL 2.0,
OMG’s BPDM, and Intalio’s XML are three proposals. To create a portable
format for the BPMN diagrams a unique mapping from the diagram to
the storage format is necessary. This storage format could for example be
XML. It has been argued that the format should reflect the terminology and
semantics of the diagram, and that neither of XPDL 2.0, OMG’s BPDM nor
Intalio’s XML does so [Silver 2007].

By making an ontology from BPMN we have made it into a vocabulary
with strong semantics. The storage format could then be in any of the RDF
syntax formats such as:

• N3

• Turtle

• RDF/XML

73

6. SEMTASK ONTOLOGIES 6.4. BPMN ONTOLOGY

Our format supports most of BPMN’s semantics. What it currently does
not support is the graphically placements (i.e. x and y coordinates) and sizes
of the elements. This is something that should be addressed before it can
be used as a standard for serializing BPMN diagrams.

By specifying the standard in an ontology instead of an XML Schema (such
as XSD), one can express the standard on a higher level of abstraction.
[Klein et al. 2001] Using an ontology to specify a storage format and for
instance RDF/XML to serializing the diagrams have several advantages:

• Unambiguous syntax

• Tool support (for instance automatic generation of Java classes out of
the ontology)

• Semantic checks (for instance that a stop-event cannot have any
sequence flows from it. These types of checks can easily be done with
already built libraries/reasoning engines.)

6.4.6 Comparison to the sBPMN ontology

We found another BPMN ontology called sBPMN [Abramowicz et al. 2007].
This ontology was created as a part of the SUPER9 research project. The
ontology is a part of a larger stack of ontologies that aims at bringing
semantics to Business Process Management (BPM). As mentioned earlier,
Semantic BPM deals with orchestrating web services.

The ontology language used for sBPMN is WSML FLIGHT, which is not
compatible with OWL. However, it gives sense to look at some of the
similarities and differences between our BPMN ontology and the sBPMN
ontology. Many of the same design decisions were made with the two
ontologies. For instance, the Events were modeled as multiple inheritance,
SequenceFlows as classes, and both ontologies had about the same class
hierarchy. However, while our approach was to create an ontology which
models the BPMN-specification as close as possible, the sBPMN is an
ontology with some practical concepts not found in the BPMN-specification
added. For instance, we find concepts such as Participant, Transaction, and
WebService, which are not found in the BPMN-specification.

9SUPER is an abbreviation for Semantic Utilised for Process Management within and
between Enterprises — http://www.ip-super.org.

74

http://www.ip-super.org

6. SEMTASK ONTOLOGIES 6.5. SEMANTIC TASK SUPPORT ONTOLOGY

6.5 Semantic task support ontology

The purpose of the SemTask ontology is to extend the BPMN ontology so
that one can model the DPO-process with specialized data elements, and
also put extra classes which are not part of the BPMN specification. With
only the BPMN ontology one cannot represent the specific data elements like
“Weekly P&I plan” in other ways than just stating that it is a DataObject.

Since the ontology is small one might ask why it has not directly been
included in the BPMN ontology. The main reason for this is that we wanted
to clearly separate the BPMN specification from the other parts of SemTask.
Therefore, possible future extensions of the BPMN ontology should be placed
in this ontology.

The idea of this extension is based on the fact that in the DPO there are
activities that use a fixed set of data. If we look at the BPMN diagrams
(see figure 4.3 on page 43) we find three types of data usage — either a
type of document (e.g., “Weekly P&I plan”), a computer application (e.g.,
“MaxPro”) or generated data (“Optimization Potential”).

The OWL-ontology can be found in appendix A.2 on page 122. An example
where this ontology is in use can be found in appendix B.1 on page 132
where an RDF-document of the DPO-workflow is found.

6.5.1 Classes

The ontology has classes which extend the DataObject class from the BPMN
ontology with specific documents. The documents defined in the ontology
are: URLBasedDocument, ApplicationDocument, and FormDocument.
These classes are all disjoint from each other. The ontology also has a
class related to the FormDocument: Field.

A URLBasedDocument represents a document that may be accessed with a
given URL. Examples of these are normal web pages (either on intranet or
on the internet), or PDP workspaces. Local files can also be represented with
a URL (e.g., file://). An ApplicationDocument represents a description
of how to execute a program. It typically has a URL pointing to where the
executable program is, along with a list of program parameters that should
be passed to the program.

A FormDocument represents a form to be filled out. An example
of use in DPO is the “Optimization Potential”-data sent from the
activities “Production follow-up” and “Continuous production supervising”
to “Proposition for initiative”. The idea is that “Optimization Potential”
could be modeled as document form. It consists of fields like “Name of

75

6. SEMTASK ONTOLOGIES 6.5. SEMANTIC TASK SUPPORT ONTOLOGY

Listing 6.5: A FormDocument in RDF
: o p t i m i z a t i o n P o t e n t i a l a semtask : FormDocument ;

bpmn : hasConnectingFrom :C
o p t m i z a t i o n P o t e n t i a l T o P r o p o s i t i o n F o r I n i t i a t i v e ;

bpmn : hasConnectingTo :C
cont inuousProduct ionSuperv i s ingToOptmizat ionPotent ia lC
,

: productonFollowUpToOptmizationPotential ;
bpmn : hasName "Optimization Potential"ˆˆ xsd : s t r i n g ;
semtask : hasF ie ld : est imatedRisk ,

: est imatedValue ,
: l ongDesc r ip t i on ,
: s h o r t D e s c r i p t i o n .

: s h o r t D e s c r i p t i o n a semtask : F i e ld ;
semtask : hasName "Short description of the optimization C

potential"ˆˆ xsd : s t r i n g ;
semtask : isInForm : o p t i m i z a t i o n P o t e n t i a l .

: est imatedValue a semtask : F i e ld ;
semtask : hasName "Estimated Value in NOK"ˆˆ xsd : s t r i n g ;
semtask : isInForm : o p t i m i z a t i o n P o t e n t i a l .

#(more f i e l d s . . .)

Listing 6.6: The definition of DecisionGateway
Class (a:Decis ionGateway complete
intersectionOf (b:Gateway restrict ion (b:hasConnectingFrom C

al lValuesFrom (b:Condit ionalSequenceFlow)) restrict ion (C
b:hasConnectingFrom minCardinality (2))))

proposal”, “Estimated value”, etc. An intercept of the RDF-code forming
this FormDocument is found in listing 6.5.

The ontology is also meant to have general extensions of the BPMN
specification (e.g., the DecisionGateway class). It defines gateways where a
user needs to do a decision (e.g. “Implement initiative?”), and has least two
conditional sequence flow going out from it. The definition can be found in
listing 6.6.

6.5.2 Properties

The datatype properties are: programParameters, URL, hasName, and
isBeginningEvent. The two former properties have already been explained.
hasName is used to set the name of a field. isBeginningEvent is a property

76

6. SEMTASK ONTOLOGIES 6.6. DATA ONTOLOGY

that is set on the BPMN start event if it is the start event of the entire
diagram. It is beneficial to have such a property when one looks at the
execution of a diagram.

The only object property in the ontology is hasField. It has FormDocument
as domain and Field as property.

6.6 Data ontology

This section presents the ontology used for representing the data sources
that are needed for the SemTask scenario to work. The purpose of the
ontology is to provide the users of SemTask options for further evaluating
decisions and tasks by looking at relevant data sources to the ones the users
have looked at. The previously mentioned scenario contains examples of
suggestions of data sources.

The ontology can be found in appendix A.3 on page 125, and an example
RDF-document using the ontology is found in appendix B.2 on page 151.

The data source ontology is only meant to cover a subset required for
SemTask. The scope is limited to deal with the work process DPO, and
the functionality mentioned in the SemTask scenario. As the ontology is
made without help from domain experts, only very simple mappings are
made. Ultimately, a more comprehensive ontology should be created. This
ontology might reuse some ideas from PRODML, or some concepts from the
ambitious ISO 15926 Ontology, and it should be created with much more
interaction with domain experts.

The Data ontology is inherited in the Execution ontology, and used by
properties there. How the Data ontology in the Execution ontology works
will be explained in section 6.7.

The Data ontology is an ontology concerning data sources, and is not an
ontology of data itself. This makes an instance of the ontology able to
express different types of data sources (e.g., sensors), where they are placed,
how they are related to one another, and how one could access data from
these data sources (i.e., a PDP-ID). If one would like to refer to a concrete
measurement, one could refer to the data source and the exact time of the
measurement.

There are several reasons for not using the production data directly in
SemTask. As previously described in section 2.3.3 on page 14, StatoilHydro’s
PDP application has optimized the flow and processing of data by having one
centralized access point for it, along with several standardized applications
to present the information. When decisions in a workflow are connected to

77

6. SEMTASK ONTOLOGIES 6.6. DATA ONTOLOGY

TopsideProductionFacility

Sensor
Platform

InjectionWell ProductionWell

Well

ContinuousSensor DiscreteSensor

PressureSensor TempSensor

VolumeSensor

FlowSensor

1..*
1

*

*

*

0..1

Figure 6.3: A UML class diagram representing the data model

the sources of data being used at different times, one could easily use the
existing tools to look at this data. This is beneficial since one does not need
to create these tools again, and since operators at StatoilHydro are used to
a set of tools, and do not want to use time to learn new ones.

We decided to model the concepts with their properties and relations as a
data model represented in UML first. By doing this it is easier to get a
sense of how the data sources are related to one another, compared to what
it is describing it with text. It turns out that the Data ontology is very
simple, and can be almost directly mapped from the UML representation to
an ontology.

6.6.1 Data model

Before creating an ontology for the data needed to represent the SemTask
scenario, we will present a more simplified data model as a UML Class
Diagram. The diagram, which is found in figure 6.3, is a basic description
of the data sources needed, and how they relate to one another.

We have two types of wells: injection wells and production wells. We have
sensors that either may be on a well or on a topside production facility.
These topside production facilities may be things like a separator, a water
cleaner, tanks, and so on. Both well and sensor classes are constructed in a
hierarchy using multiple inheritance.

78

6. SEMTASK ONTOLOGIES 6.6. DATA ONTOLOGY

6.6.2 The Data Ontology in OWL

We will not go into too much detail on how the conversion from the UML
Class Diagram to an OWL-DL is done. The main reason is that the
conversion is pretty straight forward, like the class Well and the subclasses
ProductionWell and InjectionWell converts to exactly that in the ontology
with the two subclasses disjoint. This can also be read by looking at the
OWL code. This is valid for most of the data model.

Classes

The classes are more or less taken directly from the UML-diagram.

Properties

There are two datatype properties in the ontology. Both are functional:

• hasDescription: used to attach a short description of a given data
source

• hasPDPId: used to set the PDP-id of the data element

The object properties are:

• artifactBelongsTo ⇔ hasArtifact: used to set which platform an
artifact belongs to

• isLocatedOn ⇔ hasSensor: used to set where a sensor is located, i.e.,
a well, an artifact or just a platform

• wellBelongingTo ⇔ hasWell: sets which platform a well is connected
to

• relevantData : set relevant data. Sub-properties:

– relevantArtifact: used to connect relevant artifacts together.

– relevantSensor: used to connect relevant sensors together.

– relevantWell: used to connect relevant wells together. If two wells
are very close to each other for instance, they may be relevant to
one another.

The first three of the object properties are functional. The last four
properties are symmetric and transitive.

79

6. SEMTASK ONTOLOGIES 6.7. EXECUTION ONTOLOGY

6.6.3 Instances of the ontology

An instance (an RDF document using the ontology) of the Data ontology
will typically be a description of an oil and gas platform. This instance will
be reused in the execution of all work processes related to that platform.
The instance will have information of which wells, topside artifacts, and
sensors available on that platform.

6.6.4 Extensions

As mentioned, this ontology is made without interaction with domain
experts. This makes it less interesting than it could have been. Further
extensions of the ontology could be made by having more classes, especially
defined ones. What also can take this ontology further is the introduction of
logical rules. Rules will be discussed in section 7.2. With rules one may state
terminological knowledge such as “If a sensor x is of type TempSensor and is
located on Well y, and one has another sensor z of type PressureSensor also
located on y, then: x isRelevantTo z.” These kinds of statements would make
the ontology more useful as one would not need to state all the isRelevantTo-
statements explicitly for each sensor, for instance.

6.7 Execution ontology

With the two ontologies: BPMN and SemTask, we can represent a workflow
diagram that represents the BPMN-extended SoluDyne diagrams previously
seen in figure 4.3 on page 43. In other words, with the ontologies it is possible
to represent a static picture of a workflow like the DPO. But some of the
functionality of SemTask relies on the notion of state, and the dynamic
behavior of a process. This is something which is not found in the BPMN
specification [Wohed et al. 2006], and therefore not in our BPMN-ontology
either. The Execution ontology is introduced for making SemTask capable
of representing state in an execution of a workflow.

This section gives an overview of the ontology. As the ontology forms the
foundation of workflow diagram execution, it can be illuminating to explain
the overall idea of execution first. This idea evolved during our work, and
will be explained. How it evolved will, as it clarifies some of the design
decisions of the execution ontology itself, be described. Rules are used in
the execution engine of the SemTask application, and will be thoroughly
explained in chapter 7.

80

6. SEMTASK ONTOLOGIES 6.7. EXECUTION ONTOLOGY

6.7.1 The overall idea

Maybe the most intuitive approach of representing workflow diagram states
would be to have a status attribute on each of the elements, in the
workflow diagram, denoting the state they are in. Elements meaning: tasks,
subtasks, gateways, and events. The status attribute would typically be an
enumeration of:

• Ready: It is ready to be started.

• Ongoing: Someone is currently working with this task.

• Waiting: It is not possible to start the task at the moment, and its
neither finished nor ongoing.

• Finished: The task is finished.

The activities would then change their status during the execution of a
workflow. One example would be the “Production optimization meeting”
task. It would initially have the status of Ready when the workflow is
initialized, changed to Ongoing as the meeting starts, and to Finished when
the meeting is finished. Then subsequent tasks will automatically be started
by changing their status from Waiting to Ready.

Data sources would only be connected to the activities that use or
produce them. An example is the “Topside production optimization” task,
which produces “Production increasing initiative report” or “Production
optimization meeting”, which uses “Weekly P&I plan” as seen in the DPO-
process (denoted in figure 4.3 on page 43).

This idea had several weaknesses. One is where two different tasks,
connected to the same subsequent task, finishes. The subsequent task would
then only get the state Ready. The information that it was two tasks
responsible for this task getting Ready is lost, hence also the information
that this task needs to be done twice. A possible solution would be to let each
task have a property counter that reflects how many times the task should
be run. However, you will not be able to see why it should be run. After
having worked on the initial idea we noticed a more important problem.
Data is sent between all the different tasks, not only between those which
have dataflow modeled in the BPMN-diagrams such as “Topside production
optimization” and “Proposition for initiative”. The execution model needed
to reflect this.

This lead to a new architecture. We discovered that one could divide the
data being sent into decisions and tasks. In the BPMN diagram created for
DPO we only show flow of data for the data documents, this convention
should be followed as showing dataflow between all tasks/subtasks would

81

6. SEMTASK ONTOLOGIES 6.7. EXECUTION ONTOLOGY

complicate instead of clarifying the diagrams. Also these data documents,
such as “Production increasing initiative report” change their meaning from
denoting the data being produced and used by activities, to being schemas or
forms for the activities to include each time data is to be sent to a subsequent
activity.

Flow elements (like Activities) in the BPMN specifications have tasks
connected to themselves where the tasks in turn have relevant data sources.
Out of the tasks, decisions are made. The tasks have also a relation
hasReason pointing to the trigger or decision that was responsible for its
creation. The effectiveness of the workflow can be increased as the data
needed for a task is immediately available.

When SemTask shall suggest data sources for an operator it does so by
looking at the current Task. It checks the reason for why the Task was
made (typically an earlier made Decision), and sees what data were used to
make that Decision. That data is suggested, along with relevant data (set
by the relevantData property). Let us look at an execution example shown
in figure 6.7.2, which uses tasks, triggers, and decisions.

6.7.2 Example execution

First an event is triggered as a result of a timer going of. The triggering
is represented by an instance of the Trigger class, connected to the activity
with a hasTrigger-property. An activity A is then assigned a task, because of
the Trigger. The task shows the reason for its creation with the hasReason
property. When a person is done with the Task, a decision is made. This
decision may have usesData, hasDocument, and hasDescription properties
attached to it. This decision is a result of the task, and this is indicated by
the isResultOf property. The decision is recorded on the activity A before
it passes on to the subsequent activity B as a new Task. The decision made
from activity A to add a task to activity B is reflected in the fact that the
task assigned to B has a relation hasReason from the task to the decision.

The tasks and decisions are never deleted throughout the execution. This
enables backtracking, so one can see the reason for why a task has
been assigned to an activity, along with the reason for that reason again
(recursively). It is then possible to go back as many steps as one would like.
The overall monitoring of the workflow execution can get a full history of
the tasks and decisions made.

82

6. SEMTASK ONTOLOGIES 6.7. EXECUTION ONTOLOGY

A B

:Trigger

hasTrigger

(a) Step 1. The circle at the left side represents an event. The
two rectangles, A and B, represent tasks. The arrow between
the event and A, and the arrow between A and B represents a
sequence flow. We can see that the event has been triggered.

A B

:Trigger

:Task

hasReason

hasTrigger

(b) Step 2. The execution engine attached a new task to A, since
the event was triggered, and there is a sequence flow between the
event and A.

A B

:Trigger

:Task

:Decision

isResultOf
hasReason

hasTrigger

(c) Step 3. After the owner of activity A is finished with the task,
she creates a decision.

A B

:Trigger

:Task

:Decision :Task

isResultOf

hasReason

hasReason

hasTrigger

(d) Step 4. The execution engine attached a new task to B, since
A had a decision, and there is a sequence flow between A and B.

Figure 6.4: An illustration of four execution steps

83

6. SEMTASK ONTOLOGIES 6.7. EXECUTION ONTOLOGY

6.7.3 Classes

There are three classes regarding the general execution in the Execution
ontology: Decision, Task, and Trigger. The general idea is that zero or
more Tasks are assigned to each activity. Decisions are made from Tasks;
these Decisions may lead to new Tasks, again passed to subsequent activities.
Triggers are connected to events, and lead to creation of new tasks. Besides
these classes there are two classes regarding the forms mentioned in the
SemTask-ontology: FilledForm and FilledField.

Decisions typically contain a textual description along with some attached
documents. The data used for making that decision should also be attached
to an instance of Decision.

As Decisions and Tasks are made, their relevant data are attached using the
belonging properties. The Decisions and Tasks are not deleted throughout
the execution of the diagrams. One can therefore always backtrack and see
the relevant data that was used for a Task or Decision.

FilledForm and FilledField are used to represent forms that are filled out
with information.

6.7.4 Properties

The properties and their inverse are:

• triggerBelongsTo ⇔ hasTrigger: connects a Trigger to an Event

• taskBelongsTo ⇔ hasTask: connects a Task to an Activity

• decisionBelongsTo ⇔ hasDecision: connects a Decision to a Task

• hasFilledField ⇔ belongsToFilledForm: sets which FilledForm a
FilledField belongs to

• hasFilledForm ⇔ usedInDecision: used to connect a Decision to a
FilledForm

• isOfFormType: used to denote which kind of Form the FilledForm is
of

• hasDescription: used to have a textual description of Decisions and
Tasks

• isResultOf ⇔ resultsIn: used to connect the Decisions to Tasks

• usesData: used to denote what data a Task or Decision is using

84

6. SEMTASK ONTOLOGIES 6.7. EXECUTION ONTOLOGY

• hasReason: used to denote the reason why a Task was created (either
a Trigger or a Decision)

• hasDocument: used to add documents to decisions

85

Chapter 7

Execution model

The previous chapter presented the ontologies in SemTask, and how they
relate to each other. This chapter will use these ontologies together with
rules to form the executional part of SemTask.

The chapter starts with limiting the scope of the execution engine we are
going to create. Different alternatives for creating the workflow execution
engine are outlined, along with an explanation of why we chose to use
rules. An introduction to rules is presented, with a list of current Semantic
Web implementations, and how rule engines work by doing triple pattern
matching. Then we go through one of the rules we made for creating Tasks
out of Triggers. The chapter ends by explaining how this execution engine
may fulfill some parts of the SemTask scenario.

7.1 Introduction

Building an enterprise workflow execution engine is a difficult task
since workflows can be highly complex with synchronization between
tasks, exceptions, distributed workflows, and communication between
tasks/workflows, etc. However, the functionality of the execution part of
SemTask, described in this chapter, is limited to a few areas: automatic
suggestions of relevant data, handling of tasks, and monitoring.

One of the key features of SemTask is the suggestions of relevant data
sources. We use some simple techniques to infer which data sources might
be relevant for a given task. First we use the data sources that are relevant
(denoted by a relevantData-property) for the data that the operator is
currently examining. If the operator is for instance currently looking at the
well temperature in well A1, and that sensor has a relevantData-property
pointing to the well-head pressure in well A1, that data source will be

86

7. EXECUTION MODEL 7.1. INTRODUCTION

A B

:Trigger

:Task

:Decision :Task

:DataElement:DataElement

:DataElement :DataElement

relevantDatarelevantData

usesData

usesData

hasReason

isResultOfhasReason

hasTrigger

Figure 7.1: An example of relevant data. If a person is working with Task
B, all the DataElement-objects seen here will be suggested as
relevant data.

suggested. Second we see on the hasReason-property of the current Task.
If it points to a Decision which again has some usesData-properties, these
data sources would also be suggested.

An illustration of relevant data can be seen in figure 7.1. If a person works
with the task connected to B, then the data source he has been looking at
is relevant, and similar data elements to that (found by the relevantData
property) may also be relevant. The Task connected to B was created
because of a previous Decision connected to A. That Decision was made
based on a data source. This data source as well as similar data sources
may also be relevant.

The SemTask architecture is based on a centralized server-client architec-
ture. The clients are the participants in a workflow execution (e.g., Per and
Didrik from the scenario), and the server is responsible for the execution
itself. The focus in this chapter will be on the execution engine on the
server-side. The implementation communication between the client/server,
security, exceptions, Graphical User Interface (GUI), etc., belong to further
extensions of SemTask.

87

7. EXECUTION MODEL 7.2. RULES

7.1.1 Execution alternatives

Building an engine to support the different aspects of workflow diagram
execution can have several different solutions. Let us briefly look at the two
approaches we considered.

Java approach

Maybe the most obvious way is to use an imperative language such as Java
with a corresponding framework to deal with RDF. Benefits include great
tool support, excellent community, and mature technology. The downside is
that with imperative languages it is a clear separation between specification
and implementation. The implementation of a complex execution engine is
doomed to introduce errors and deviations from the specification. As it is
a language mismatch between RDF/OWL and Java, one would need many
lines of code for doing simple things such as accessing a property of a given
instance. This makes the code base large, and therefore hard to maintain.

Rules approach

Being declarative, rules have several benefits over imperative languages such
as Java. The code is often smaller, easier to read, with a higher level of
abstraction, and greater ease of later code extension. A downside is that
rules can be difficult to combine with other languages or frameworks, and
they do not fit for all tasks. Rules can only be used to specify some parts
a system. We found that rules were a good fit for specifying the execution
engine.

7.2 Rules

There are several rule languages proposed for the Semantic Web. Semantic
Web Rule Language (SWRL), Description Logic Programs (DLP), and Jena
rules are probably the three most known proposals.

SWRL [Horrocks et al. 2004] is a W3C member submission, with several
partial implementations already. No full implementation exists as full
support would lead to undecidability.

DLP [Grosof et al. 2003] is a newer proposal than SWRL. DLP is less
expressive than SWRL, but decidable.

Jena [Carroll et al. 2004] is not a rule specification, but a Semantic Web
Framework for Java. It provides a programmatic environment for RDF,

88

7. EXECUTION MODEL 7.2. RULES

RDFS, OWL, and SPARQL. It also includes a mature rule engine that
supports to use custom rules. Besides the normal possibility of inferencing
new knowledge one can delete triples, and alter the RDF graph in other
ways. We chose to use Jena rules because we have good experience with
Jena, and the rule engine seemed to be powerful enough.

7.2.1 Triple pattern matching

There are several ways of understanding how rules work. One of them
is to think of the rule engine as a triple pattern matching engine [Holger
Knublauch 2006]. Let us look at the following example:

(?x childOf ?y), (?y hasBrother ?z) -> (?z uncleOf ?x).

A rule consists of two parts: a body (also called antecedent or
premises) and a head (also called succedent or conclusion). In the
above rule, (?x childOf ?y), (?y hasBrother ?z) is the body and
(?z uncleOf ?x) is the head.

Different rule languages have different types of built-ins. Built-ins are special
functions that can be found in the rule-language. Often found built-ins
are equality functions, arithmetic functions, negation predicate, string tests,
string manipulation functions, etc. Some rule-languages, including Jena,
allow to create own built-ins1.

A rule engine goes through the knowledge base, and tries to match all the
premises in the head of the rule with triples. If it succeeds, it asserts the
body of the rules. Rules may depend on each other. For instance, if we had
a second rule that looked like this:

(?x childOf ?z), (?y childOf ?z), (?y sex "male"), (?x != ?y)
-> (?x hasBrother ?y)

And a knowledge base with the following triples:

(John childOf Brad), (Alex childOf Brad), (Jeff childOf Alex)
(John sex "male")

The rule engine would infer:

(John uncleOf Jeff), (Brad hasBrother John)

1For information about built-ins in Jena, see http://jena.sourceforge.net/
inference/.

89

http://jena.sourceforge.net/inference/
http://jena.sourceforge.net/inference/

7. EXECUTION MODEL 7.3. RULES IN JENA

7.3 Rules in Jena

7.3.1 Testing platform

To create the rules, we needed a way of testing them. One solution would
be to use an IDE that supports development of Jena-rules. One such IDE
is TopBraid Composer2. Another solution would be to create a sample Java
application, using Jena. We chose to do so, since we felt it gave us a better
overview of what was happening.

7.3.2 Execution engine implementation

We have only implemented two rules. The complete source of the rules is
found in appendix C on page 155.

In the execution example, Step 2 (figure 6.4(b) on page 83) one saw that
the execution engine created a Task out of a Trigger. In listing 7.1 on the
following page one can see the rule that actually does this.

In line 3–6 the types of our variables are specified. These lines are not strictly
needed, as the domain and range of the properties below them would infer
the same types. We left them there as the rule might be easier to understand
with them than without them. Line 9–11 specifies that the sequence flow,
activity start-event, and the trigger are connected in the way we want. In line
14–20 we see use of three different kinds of Jena built-ins. noValue asserts
that it should not be possible to match the following triple. It is used to
make sure that this rule is only triggered once for a given pair of Trigger
and Activity instances. makeTemp(?task) creates a blank RDF-node, and
now(?now) binds ?now to a timestamp with the current day and time.

The body of the rule is found in line 23–33. It should be self-explaining by
looking at the well-commented code.

7.3.3 Completing the execution engine

Because of time limitations we have only implemented two of the rules
needed for the execution engine. One might encounter some difficulties with
the expressiveness of the rules when implementing the rest of the parts of
the execution. However, we believe that it will be possible to complete
the workflow-engine by creating the rest of the rules, at least if one allows
creating additional built-ins. What is currently missing is rules to handle

2TopBraid Composer from TopQuadrant. http://www.topquadrant.com/
topbraid/composer/.

90

http://www.topquadrant.com/topbraid/composer/
http://www.topquadrant.com/topbraid/composer/

7. EXECUTION MODEL 7.3. RULES IN JENA

Listing 7.1: The rule for creating Tasks out of Triggers
1 [p roc e s sTr i gge r :
2 // S p e c i f y the t y p e s o f our v a r i a b l e s
3 (? s f rd f : type bpmn : SequenceFlow) ,
4 (? a c t i v i t y rd f : type bpmn : Act i v i ty) ,
5 (?s tar tEvent rd f : type bpmn : StartEvent) ,
6 (? t r i g g e r rd f : type execut ion : Tr igger) ,
7
8 // Make sure t h a t they are connected to each o t her
9 (?s tar tEvent execut ion : hasTr igger ? t r i g g e r) ,

10 (? s f bpmn : connectedFrom ?star tEvent) ,
11 (? s f bpmn : connectedTo ? a c t i v i t y) ,
12
13 // This t r i g g e r has not t r i g g e r e d t h i s a c t i v i t y b e f o r e
14 noValue(? t r i g g e r t r i g g e d ? a c t i v i t y) ,
15
16 // Create a new , b lank , RDF−node .
17 makeTemp(?task) ,
18
19 // Create a new RDF−node with the curren t time .
20 now(?now) ,
21
22 −>
23
24 // Make sure t h i s i s not executed any more f o r t h i s event
25 (? t r i g g e r t r i g g e d ? a c t i v i t y) ,
26
27 // Create the new Task and a t t a c h i t to the a c t i v i t y and C

the t r i g g e r
28 (?task rd f : type execut ion : Task) ,
29 (? a c t i v i t y execut ion : hasTask ?task) ,
30 (?task execut ion : hasCause ? t r i g g e r) ,
31
32 // Set timestamp f o r the t r i g g e r
33 (?task execut ion : c r ea ted ?now)
34]

91

7. EXECUTION MODEL 7.4. FULFILLMENT OF THE SCENARIO

Listing 7.2: Weekly P&I plan SPARQL query
PREFIX bpmn : <http://www.ifi.uio.no/fredaleks/semtask/bpmnC

#>
PREFIX rd f : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX semtask : <http://www.ifi.uio.no/fredaleks/semtask/C

semtask#>
SELECT ? Plan
WHERE {

: product ionOptimizat ionMeet ing bpmn :C
hasConnectingTo ? connecter .

? connecter bpmn : connectedFrom ? Plan .
? Plan rd f : type semtask : URLBasedDocument .

}

different kinds of forks, joins and gateways. We estimate that only a couple
of more rules will be needed to cover this. The final execution engine can
probably be specified with less than a hundred effective lines of rules.

7.4 Fulfillment of the scenario

Now let us look at how this architecture and its partitioning of tasks and
decisions can be used to fulfill the SemTask scenario described. Let us start
with the automatic execution of activities and how SPARQL, or the Jena
framework, can be used to bring up the relevant data concerning a particular
process.

Automatic suggestions of relevant data

Let us exemplify by showing how the “Weekly P&I Plan” is automatically
brought up in the “Production optimization meeting”-activity. We make the
assumption that we are in the “Production optimization meeting” process.
The SPARQL query given in listing 7.2 will list up all the relevant documents
so that the program can automatically show the right information, and also
bring up the necessary applications. The query returns: the Weekly P&I
plan.

Adding inference support to SPARQL with the SemTask ontology one can
do reasoning to find documents that are further down in the hierarchy (i.e.,
by subsumption get all instances of the subclasses of the class originally used
in the query). In further extensions it is also possible to extend the class
hierarchy introducing new and more specialized documents.

92

7. EXECUTION MODEL 7.4. FULFILLMENT OF THE SCENARIO

Regarding the scenario one can see that this fulfills the feature where the
right PDP instance gets shown on the screen in the“Production optimization
meeting”.

Dataflow between the different tasks can help with automatic suggestions of
relevant data. Once an activity is activated one can list all potential tasks
that are associated with it, with the help of either a SPARQL query, or with
Jena. Each task can then typically have a PDP instance URL, a textual
description, and possibly an application to be automatically brought up.

Automatically handling activities

The rules form the heart of the execution engine. To exemplify and give a
quick introduction to the syntax and semantics of the rules in Jena as well
as introducing the thoughts behind the strategy of the SemTask execution
let us take an example.

First let us look at how the rules are used regarding the triggered events.
This is the first rule in appendix C on page 155. It is up to the Java part of
SemTask to create the triggers in the diagrams, meaning that the “Weekday
9am” is trigged as a result of a function in the SemTask application that
checks the time. The application adds the trigger RDF triple on to the
event (this corresponds to figure 6.4(a) on page 83). Now the rule triggers,
and automatically sees this event. resulting in a task being made. For the
noValue, makeTemp, and now they are used to make sure the rule does
not apply several times to the trigger, the making of a blank node and the
making of a time stamp3.

Automatically viewing of decisions/available tasks

With SemTask it is also easy for the participants such as Per in the SemTask
scenario to automatically get on his screen the decisions that need his
attention. An easy SPARQL query is sufficient. Per can then make the
decision, and the rule engine can proceed with the execution of the workflow
diagram.

In much the same way the users can always get an overview of the tasks
that can be started the second they become available.

3See the Jena documentation for more information: http://jena.sourceforge.
net/inference/#rules.

93

http://jena.sourceforge.net/inference/#rules
http://jena.sourceforge.net/inference/#rules

7. EXECUTION MODEL 7.4. FULFILLMENT OF THE SCENARIO

Monitoring, statistics, and history

In the scenario we saw how Mona was able to not only see what tasks Per
was currently working on in the DPO-process but also look at statistics.
Our execution model supports this, and the functionality can easily be
implemented by making a predefined set of SPARQL queries.

Also following the fact that tasks are never deleted throughout the execution
of a process one can easily produce statistics. This reflects the monitoring
and optimization part of the BPM life cycle.

Given the scenario where a participant in the execution questions why
a task was assigned to her, there is a direct link to the decision which
was responsible for the making of the task. It is also possible to go
further back in history of tasks and decisions by using the properties:
hasReason and isResultOf. In other words, a history functionality is
easily implemented where one can examine tasks with their decisions, the
corresponding activities, and the data sources used.

94

Chapter 8

Conclusion and further work

8.1 Contributions and conclusion

SemTask has introduced several features that may facilitate work processes
in to the domain of oil and gas production. Our contributions are
summarized by the following list:

• Proposed an architecture for SemTask, an active support system for
IO work processes based on Semantic Web technology

• Upgraded the graphical work process notation from SoluDyne to
BPMN

• Created an OWL-DL ontology for BPMN, resulting in a standard
storage format (serialization) for BPMN diagrams

• Described (parts of) Hydro’s DPO process in BPMN/RDF

• Created a usage scenario for how SemTask could significantly aid
operators in the DPO process

• Created an execution model for SemTask to connect tasks, data
sources, and decisions

• Proposed an elegant execution engine relying on rules

• Described how the proposed execution model fulfill the main features
of the DPO usage scenario

It has been shown how the SoluDyne notation has been replaced by the more
expressive BPMN. It is then possible to capture more knowledge into the
workflow system, which makes it easier for inexperienced operators to carry
out tasks. The conversion from SoluDyne to BPMN was shown for the DPO

95

8. CONCLUSION AND FURTHER WORK 8.1. CONTRIBUTIONS AND CONCLUSION

process, which illustrated the first step needed to go from solely passive to
active human centric workflows.

Introducing execution support for key processes has benefits such as:
increased effectiveness and safety, more control, and better quality. Time can
be spent on other problems than the “trivial” parts of day-to-day operations,
such as making the processes more effective by optimizing the workflow. This
allows an iterative approach of gradual work process improvement.

We formalized BPMN as an OWL-DL ontology. BPMN is a workflow
notation standard by OMG, adopted by many companies. Making a
standard serializable format, based on ontologies, is therefore a contribution
to the industry. This makes it possible for different workflow vendors to
have a common serialization format. Using ontologies also opens for making
semantic consistency checks of the diagrams.

The SemTask ontologies provide a good foundation for the application
system. They show how Semantic Web technology can be used in the oil and
gas domain. SemTask realizes the scenario mentioned for the DPO-process
at StatoilHydro, and brings more control into the process. This may lead to
faster and better decisions both by experienced and inexperienced operators.

The architecture is modular in the sense that there is a clear separation
between the ontologies and their responsibilities: BPMN specification, data
sources, states in a workflow diagram, and execution of a workflow diagram.
These have been layered in a logical stack. StatoilHydro and other IO parties
could partly use this solution by starting with the BPMN layer.

Extending the SemTask application by introducing ISO 15926 instead of
the current data source ontology may be done independently of the other
ontologies. Also, further extension of the rule would easily be done by adding
rules without changing other parts of the system. This opens for an iterative
upgrade of SemTask to include further features and to cover other aspects
of oil and gas production.

Logical rules in Jena were chosen to implement SemTask’s execution engine.
Even though we did not write all the rules needed to complete the engine,
using rules shows a good potential. They seem to give a very small and
elegant code base.

SemTask illustrates how workflow and data can be merged in workflow
diagrams. This could lead to new understanding of data as well as processes.
In addition, related data sources are automatically suggested when working
with tasks. This saves the operators’ time, and help them deal with the
information overload problem. SemTask also supports sending general
messages between different tasks in the workflow.

96

8. CONCLUSION AND FURTHER WORK 8.2. FURTHER WORK

8.2 Further work

We have seen how SemTask can be used to solving problems in the DPO
process. In this chapter further extensions of the SemTask application will
be examined.

8.2.1 Finishing SemTask

The first thing one might want to do is to finish the rule base. A basic
framework of SemTask that combines the ontologies, the rules, and diagrams
has been set up. However, this is not a finished product. It needs to be a
tighter integration with PDP to simplify writing workflow diagrams and link
PDP screens into tasks; for example.

A set of tools should be developed to aid the operators creating the
workflows. The conversion between diagrams expressed in BPMN into RDF
instances could for example be done using XSLT [Clark 1999]. A user
friendly GUI on top would ease the use of the transformation application.

Much of the functionality of the monitoring functionality of SemTask can
be accomplished with a set of predefined SPARQL queries. However, a GUI
should be built on top of the monitoring functionality to make it easy to
use.

After these initial steps are finished several other possible extensions of
SemTask are possible. These parts are briefly discussed below.

8.2.2 Automation of tasks

As mentioned in section 2.2.2, the final phase of Integrated Operations is
partial (and in some cases full) automation of work processes. SemTask does
not automate any tasks in a workflow; it only helps operators by guiding
them through a workflow, and suggesting data the operators could use. The
internal SemTask model can support automation of activities in a workflow
as an extension. To automate a task one would add the computer application
that executes the given task as a role in the workflow. The application would
then act as a “person” who consumes Tasks and creates Decisions.

Further investigation is needed to see whether the execution ontology
requires adjustments to support integration with computer applications.
Some way of adding computer-interpretable parameters to a decision is
probably needed for the application to do its tasks. Relevant work in this
direction is reported in [Schall et al. 2008].

97

8. CONCLUSION AND FURTHER WORK 8.2. FURTHER WORK

8.2.3 Extension of the Data Ontology

An extension of the data ontology is needed for SemTask to be usable.
One should investigate what type of reasoning is needed to create helpful
suggestions for the operators. For instance, one should see what type of
knowledge can be encoded in OWL-DL, and what type of knowledge can
only be encoded in rules. As most of the rule-languages are undecidable,
one should investigate what kinds of practical problems may occur when
using rules.

8.2.4 Guarantees in a workflow diagram

Certain constraints of the workflow diagrams could be checked, to ensure
that BPMN is followed, using languages such as Maude [Clavel et al. 2001].
The RDF instance of the workflow diagrams could be transformed into
Maude syntax, and a predefined set of queries could be executed searching
for illegal patterns (i.e., DataObject having a direct connection to another
DataObject). This would be a useful tool to aid the inexperienced operators
in making the diagrams. Introducing formal support and analysis to a
notation have already been applied to UML [Durán et al. 2003].

If the entire organization starts to use SemTask, security considerations
such as role based access control and separations of duty would have to be
included. Previous work has already been done in this area [Kong et al.
2005] and can be extended.

Policy rules could also be included in the set of searches, e.g., the person who
proposes an initiative cannot be the same who decides whether to implement
it or not. Maude opens for making complex policy rules (i.e., formalization
of access control policies [de Oliveira 2007].

8.2.5 Constrains checking

The FormDocument class as explained in section 6.5 on page 75 would
typically include several fields to be filled out. A possible extension could
be to include checks so that these fields always are filled out. A related
extension could then provide easy access to help, by connecting experts or
detailed documents to them.

8.2.6 Extending with other ontologies

As SemTask is built with ontologies, other ontologies may be included to
enhance the functionality.

98

8. CONCLUSION AND FURTHER WORK 8.2. FURTHER WORK

Organization modeling and skill finding

The roles (lanes) in a workflow diagram now only represent a single person.
This is not as flexible as one would like, as certain tasks should either be
done by someone with a specific organizational role, or by someone with a
defined skill. Using ontologies as a part of skill-finding has already been
done [Colucci et al. 2003; 2005], and it could be interesting to see how this
would fit in the SemTask architecture.

Decision support

A given problem/task in an activity can have several solutions each
connected to a given outcome. These decision situations can be highly
complex with significant uncertainties. SemTask provides the reasons for
the given task and relevant data. An extension to SemTask could be to
provide decision support, analyzing different possible solutions and aiding
the operators in making the right decision. Research has already been done
in this area [Fjellheim et al. 2008], and can be integrated into SemTask.

Experience finding

Knowledge of previous operations can provide important information for
making the right decisions on current ones. The knowledge should be
recorded and easily accessible. Previous work has been done in knowledge
transfer between drilling projects, through documented experiences, best
practices, and expert references in the AKSIO project [Norheim and
Fjellheim 2006]. This could provide a valuable extension to SemTask.

99

Acronyms

AKSIO Active Knowledge Management for Integrated Operations
APOS ArbeidsProsessOrientert Styringssystem (Work Process

Oriented Administration System)
BPDM Business Process Definition Metamodel
BPEL Business Process Execution Language
BPM Business Process Management
BPMI Business Process Management Initiative
BPMN Business Process Modeling Notation
DAML DARPA Agent Markup Language
DL Description Logic
DLP Description Logic Program
DNV Det Norske Veritas
DPO Daily Production Optimization
EOR Enhanced Oil Recovery
G1/G2 Generation 1 / Generation 2 (in IO)
GAP Groups, Algorithms and Programming
GUI Graphical User Interface
IDE Integrated Development Environment
IO Integrated Operations
IP21 InfoPlus 21
IRC Internet Relay Chat
ISO International Standards Organization
N3 Notation3 (readable RDF syntax)
NCS Norwegian Continental Shelf
NGL Natural Gas Liquids
NOK Norwegian Kroners
OIL Ontology Inference Layer
OLF Oljeindustriens Landsforening (The Norwegian Oil Indus-

try Association)
OMG Object Management Group
OWL Web Ontology Language
OWL-AS OWL Abstract Syntax
OWL-DL OWL — Description Logic

100

PDP Process Data Portal
POSC Petrotechnical Open Standards Consortium
PRODML Production Markup Language
RDF Resource Description Framework
RDFS RDF Schema
RuleML Rule Markup Language
SBPM Semantic Business Process Management
sBPMN Semantic Business Process Modeling Notation
Sm3 Standard Cubic Meter
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
SUPER Semantics Utilised for Process management within and

between EnteRprises
SWIG Semantic Web Interest Group
SWRL Semantic Web Rule Language
SWS Semantic Web Services
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WITSML Wellsite Information Transfer Standard Markup Language
WSDL Web Services Description Language
WSML Web Service Modeling Language
WSMO Web Service Modeling Ontology
XML eXtensible Markup Language
XPDL XML Process Definition Language
XSD XML Schema Definition
XSLT eXtensible Stylesheet Language Transformations
YAWL Yet Another Workflow Language

101

Bibliography

Witold Abramowicz, Agata Filipowska, Monika Kaczmarek, and Tomasz
Kaczmarek. Semantically enhanced Business Process Modelling Notation.
In Proceedings of the Workshop on Semantic Business Process and Product
Lifecycle Management (SBPM), Innsbruck, Austria, April 2007.

Gustavo Alonso and Hans-Jörg Schek. Research Issues in Large Workflow
Management Systems. In Proceedings of the NSF Workshop on Workflow
and Process Automation in Information Systems, Athens, Georgia, USA,
May 1996.

Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The
MIT Press, Second edition, March 2008. ISBN 978-0262012423.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
theory, implementation, and applications. Cambridge University Press,
September 2007. ISBN 978-0521876254.

Dave Beckett. RDF/XML Syntax Specification (Revised). W3C
Recommendation, W3C (World Wide Web Consortium), February 2004.
URL http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):28–37, May 2001.

Dan Brickley and Ramanathan V. Guha. RDF vocabulary description
language 1.0: RDF schema. W3C Recommendation, W3C (World Wide
Web Consortium), February 2004. URL http://www.w3.org/TR/2004/

REC-rdf-schema-20040210/.

Liliana Cabral, John Domingue, Enrico Motta, Terry R. Payne, and Farshad
Hakimpour. Approaches to Semantic Web Services: an Overview and
Comparisons. In ESWS, volume 3053, pages 225–239, 2004.

Jorge Cardoso. The Semantic Web Vision: Where Are We? IEEE Intelligent
Systems, 22(5):84–88, 2007. ISSN 1541–1672. doi: 10.1109/MIS.2007.97.

102

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

BIBLIOGRAPHY BIBLIOGRAPHY

Jeremy J. Carroll and Graham Klyne. Resource description framework
(RDF): Concepts and abstract syntax. W3C Recommendation, W3C
(World Wide Web Consortium), February 2004. URL http://www.w3.

org/TR/2004/REC-rdf-concepts-20040210/.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: Implementing the Semantic
Web Recommendations. In WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on Alternate track papers &
posters, pages 74–83, New York, NY, USA, 2004. ACM. ISBN 1-58113-
912-8. doi: 10.1145/1013367.1013381.

James Clark. XSL Transformations (XSLT). W3C Recommendation, W3C
(World Wide Web Consortium), November 1999. URL http://www.w3.

org/TR/xslt.

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and José F. Quesada. Maude: Specification
and programming in rewriting logic. Theoretical Computer Science, 2001.

Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M.
Donini, Marina Mongiello, and Marco Mottola. A Formal Approach
to Ontology-Based Semantic Match of Skills Descriptions. Journal of
Universal Computer Science, 9(12):1437–1454, December 2003.

Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M.
Donini, Giacomo Piscitelli, and Stefano Coppi. Knowledge Based
Approach to Semantic Composition of Teams in an Organization. In
SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing,
pages 1314–1319, New York, NY, USA, 2005. ACM. ISBN 1-58113-964-0.

David Beckett. Turtle — Terse RDF Triple Language. Technical report,
November 2007. URL http://www.dajobe.org/2004/01/turtle/. [Online;
accessed 30-July-2008].

David Leal. ISO 15926 ”Life Cycle Data for Process Plant”: An Overview.
Oil & Gas Science and Technology, 60(4):629–637, 2005.

Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin
Hepp, Uwe Keller, Michael Kifer, Birgitta König-Ries, Jacek Kopecky,
Rubén Lara, Holger Lausen, Eyal Oren, Axel Polleres, Dumitru
Roman, James Scicluna, and Michael Stollberg. Web Service Modeling
Ontology (WSMO). Member submission, W3C (World Wide Web
Consortium), June 2005a. URL http://www.w3.org/Submission/2005/

SUBM-WSMO-20050603/.

Jos de Bruijn, Dieter Fensel, Uwe Keller, Michael Kifer, Holger Lausen,
Reto Krummenacher, Axel Polleres, and Livia Predoiu. Web Service

103

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/

BIBLIOGRAPHY BIBLIOGRAPHY

Modeling Language (WSML). Member Submisson, W3C (World Wide
Web Consortium), June 2005b. URL http://www.w3.org/Submission/

2005/SUBM-WSML-20050603/.

Anderson Santana de Oliveira. Rewriting-based access control policies.
Electron. Notes Theor. Comput. Sci., 171(4):59–72, 2007. ISSN 1571-
0661. doi: 10.1016/j.entcs.2007.02.055.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in Description Logics. Principles of Knowledge
Representation, pages 191–236, 1996. ISSN 1-57586-056-2.

Francisco Durán, Javier Herrador, and Antonio Vallecillo. Using UML and
Maude for Writing and Reasoning about ODP Policies. In POLICY
’03: Proceedings of the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 15–25, Washington, DC, USA,
October 2003. IEEE Computer Society. ISBN 0-7695-1933-4.

Lauri Eloranta, Eero Kallio, and Ilkka Terho. A Notation Evaluation of
BPMN and UML Activity Diagrams. [Online; accessed 5-May-2008],
2006. URL http://www.soberit.hut.fi/T-86/T-86.5161/2006/BPMN_vs_

UML_final.pdf.

Holger Endert, Tobias Küster, Benjamin Hirsch, and Sahin Albayrak.
Mapping BPMN to Agents: An Analysis. In Agent, Web Services, and
Ontologies Integrated Methodologies, pages 43–58, May 2007.

Energistics. PRODML Specifications, Version 1.0. Technical report,
Energistics, November 2006. URL http://www.prodml.org/images/

prodml/standards/v10/PRODMLV1.0_11172006.zip. [Online; accessed 2-
June-2008].

Energistics. WITSML — Wellsite Information Transfer Standard Markup
Language, 2008. URL http://www.witsml.org/.

Erlend Agøy Engum and Rolf Axel Wathne. Databaser for Dynamiske
Arbeidsprosesser. Master’s thesis, Norges Teknisk-Naturvitenskapelige
Universitet (NTNU), June 2004.

Roar A. Fjellheim, Reidar Bratvold, and Mike Herbert. CODIO —
Collaborative Decisionmaking in Integrated Operations. In Intelligent
energy. Optimised efficency. Smarter business., Convertion Centre,
Amsterdam RAI, The Netherlands, February 2008. Society of Petroleum
Engineers.

Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An
Overview of Workflow Management: From Process Modeling to Workflow
Automation Infrastructure. Distributed and Parallel Databases, 3(2):119–
153, April 1995. ISSN 0926-8782. doi: 10.1007/BF01277643.

104

http://www.w3.org/Submission/2005/SUBM-WSML-20050603/
http://www.w3.org/Submission/2005/SUBM-WSML-20050603/
http://www.soberit.hut.fi/T-86/T-86.5161/2006/BPMN_vs_UML_final.pdf
http://www.soberit.hut.fi/T-86/T-86.5161/2006/BPMN_vs_UML_final.pdf
http://www.prodml.org/images/prodml/standards/v10/PRODMLV1.0_11172006.zip
http://www.prodml.org/images/prodml/standards/v10/PRODMLV1.0_11172006.zip
http://www.witsml.org/

BIBLIOGRAPHY BIBLIOGRAPHY

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription Logic Programs: Combining Logic Programs With Description
Logic. In WWW ’03: Proceedings of the 12th international conference on
World Wide Web, pages 48–57. ACM, May 2003. ISBN 1-58113-680-3.
doi: 10.1145/775152.775160.

Thomas R. Gruber. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Journal Human-Computer Studies, 43
(5–6):907–928, November 1995. ISSN 1071-5819. doi: 10.1006/ijhc.1995.
1081.

Jon Atle Gulla, Darijus Strasunskas, and Stein L. Tomassen. Semantic
Interoperability in the Norwegian Petroleum Industry. Proceedings of the
5th International Conference on Information Systems Technology and its
Applications (ISTA 2006), P-84:81–94, 2006.

Martin Hepp and Dumitru Roman. An Ontology Framework for Se-
mantic Business Process Management. In Proceedings of the 8th
International Conference Wirtschaftsinformatik 2007. Universitaetsver-
lag Karlsruhe, February 2007. URL http://www.heppnetz.de/files/

hepp-roman-an-ontology-framework-for-SBPM-WI2007.pdf.

Martin Hepp, Frank Leymann, John Domingue, Alexander Wahler, and
Dieter Fensel. Semantic Business Process Management: A Vision Towards
Using Semantic Web Services for Business Process Management. In
ICEBE ’05: Proceedings of the IEEE International Conference on e-
Business Engineering, pages 535–540, Washington DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2430-3. doi: 10.1109/ICEBE.2005.110.

Holger Knublauch. Semantic Web Rules; Tools and Languages — Jena
Rules Walkthrough. Rule and Rule Markup Languages for the Semantic
Web, Second International Coference, November 2006. URL http://2006.

ruleml.org/slides/tutorial-holger.pdf. [Online; accessed 25-july-2008].

Bjørn Holst and Espen Nystad. Oil & Gas offshore/onshore Integrated
Operations - introducing the Brage 2010+ project. In Human Factors
and Power Plants and HPRCT 13th Annual Meeting, 2007 IEEE 8th,
pages 357–359, August 2007. doi: 10.1109/HFPP.2007.4413233.

Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and
Chris Wroe. A practical guide to building OWL ontologies using the
Protege-OWL plugin and CO-ODE tools Edition 1.0, 2004. URL http://

www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf. [Online;
accessed 13-May-2007].

Ian Horrocks. DAML+OIL: a Description Logic for the Semantic Web. IEEE
Data Engineering Bulletin, 25(1):4–9, 2002.

105

http://www.heppnetz.de/files/hepp-roman-an-ontology-framework-for-SBPM-WI2007.pdf
http://www.heppnetz.de/files/hepp-roman-an-ontology-framework-for-SBPM-WI2007.pdf
http://2006.ruleml.org/slides/tutorial-holger.pdf
http://2006.ruleml.org/slides/tutorial-holger.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML, May 2004. URL http://www.w3.org/

Submission/SWRL/.

Hydro. Hydros APOS (Arbeids Prosess Orientert Styring) documentation,
January 2008. [Workflow diagrams, descriptions, documents, etc. in the
SoluDyne system. Not publicly available].

ISO. ISO 15926: Industrial automation systems and integration – In-
tegration of life-cycle data for process plants including oil and gas
production facilities – Part 1: Overview and fundamental princi-
ples. Technical report, The International Standardization Organization,
July 2004. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm%?csnumber=29556.

ISO. ISO 15926: Industrial automation systems and integration–Integration
of life-cycle data for oil and gas production facilities–Part2: Data
Model. Technical report, The International Standardization Organiza-
tion, 2003. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm%?csnumber=29557.

ISO. ISO 15926: Industrial automation systems and integration – Integra-
tion of life-cycle data for process plants including oil and gas production fa-
cilities – Part 4: Initial reference data . Technical report, The International
Standardization Organization, 2007. URL http://www.iso.org/iso/iso_

catalogue/catalogue_tc/catalogue_detail.htm%?csnumber=41329.

Jae-Yoon Jung and Hoontae Kim and Suk-Ho Kang. Standards-
based approaches to B2B workflow integration. Computers
& Industrial Engineering, 51:321–334, October 2006. URL
http://www.sciencedirect.com/science/article/B6V27-4KVXHGT-2/1/

c7470c49eeb4d1cba3e6ea8126c8c0d4.

Jean-Jacques Dubray. BPMN 1.0 Meta Model, October 2007. URL
http://www.wsper.org/bpmn10.html. [Online; accessed 19-November-2007.

Uwe Keller, Cristina Feier, Nathalie Steinmetz, and Holger Lausen. Report
on reasoning techniques and prototype implementation for the WSML-
Core and WSML-DL languages. RW 2 Project Deliverable, July 2006.

Michel Klein, Dieter Fensel, Frank van Harmelen, and Ian Horrocks. The
Relation Between Ontologies and XML Schemas. Electronic Transactions
on Artificial Intelligence. Special Issue on the 1st International Workshop
”Semantic Web: Models, Architectures and Management”, 5:65–94,
October 2001.

Weiqiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi. Formal Analysis of

106

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm% ?csnumber=29556
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm% ?csnumber=29556
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm% ?csnumber=29557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm% ?csnumber=29557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm% ?csnumber=41329
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm% ?csnumber=41329
http://www.sciencedirect.com/science/article/B6V27-4KVXHGT-2/1/c7470c49eeb4d1cba3e6ea8126c8c0d4
http://www.sciencedirect.com/science/article/B6V27-4KVXHGT-2/1/c7470c49eeb4d1cba3e6ea8126c8c0d4
http://www.wsper.org/bpmn10.html

BIBLIOGRAPHY BIBLIOGRAPHY

Workflow Systems with Security Considerations. In Seventeenth Interna-
tional Conference on Software Engineering and Knowledge Engineering,
pages 531–536, Howard International House,Taipei, Taiwan, Republic of
China, July 2005.

Philip A. Laplante. Dictionary of Computer Science, Engineering, and
Technology. CRC Press, December 2000. ISBN 978-0849326912.

Eve Maler, Jean Paoli, C. M. Sperberg-McQueen, François Yergeau, and
Tim Bray. Extensible Markup Language (XML) 1.0 (Fourth Edition).
W3C Recommendation, W3C (World Wide Web Consortium), August
2006. URL http://www.w3.org/TR/2006/REC-xml-20060816.

Robin Milner. Communicating and Mobile Systems: The Pi Calculus.
Cambridge University Press, June 1999. ISBN 978-0521658690.

Ministry of Petroleum and Energy. Stortingsmelding 38 — del
3.3, 2007a. URL http://www.regjeringen.no/nb/dep/oed/dok/regpubl/

stmeld/20032004/Stmeld-nr-38-2003-2004-/3/3.html?id=404862. [On-
line; accessed 21-February-2008].

Ministry of Petroleum and Energy. Beskrivelse av det sammensl̊atte
selskapet, 2007b. URL http://www.regjeringen.no/nb/dep/oed/dok/

regpubl/stprp/20062007/Stprp-nr-60-2006-2007-/6.html?id=462001.
[Online; accessed 29-January-2008].

Rick Morneau. <PRODML/> PRODuction xML Standard Overview,
March 2007. URL http://www.energistics.org/images/posc/meetings/

mar07annual/mar07annual_prodml.ppt. [Online; accessed 9-May-2008].

David Norheim and Roar A. Fjellheim. AKSIO — Active Knowledge
Management in the Petroleum Industry. In European Semantic Web
Conference (ESWC), Budova, Montenegro, June 2006. URL http://ftp.

informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-194/paper3.pdf.

Natalya F. Noy and Deborah L. McGuinness. Ontology De-
velopment 101: A Guide to Creating Your First Ontology,
March 2001. URL http://www.ksl.stanford.edu/people/dlm/papers/

ontology101/ontology101-noy-mcguinness.html. [Online; accessed 22-
December-2007].

Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubezy, Ray W.
Fergerson, and Mark A. Musen. Creating Semantic Web Contents with
Protégé-2000. IEEE Intelligent Systems, 16(2):60–71, 2001. ISSN 1541-
1672. doi: 10.1109/5254.920601.

OLF. Integrated Work Prcess: Future work processes on the NCS. Technical
report, OLF (Oljeindustriens Landsforening), October 2005. URL http:

107

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.regjeringen.no/nb/dep/oed/dok/regpubl/stmeld/20032004/Stmeld-nr-38-2003-2004-/3/3.html?id=404862
http://www.regjeringen.no/nb/dep/oed/dok/regpubl/stmeld/20032004/Stmeld-nr-38-2003-2004-/3/3.html?id=404862
http://www.regjeringen.no/nb/dep/oed/dok/regpubl/stprp/20062007/Stprp-nr-60-2006-2007-/6.html?id=462001
http://www.regjeringen.no/nb/dep/oed/dok/regpubl/stprp/20062007/Stprp-nr-60-2006-2007-/6.html?id=462001
http://www.energistics.org/images/posc/meetings/mar07annual/mar07annual_prodml.ppt
http://www.energistics.org/images/posc/meetings/mar07annual/mar07annual_prodml.ppt
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-194/paper3.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-194/paper3.pdf
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://www.olf.no/io/rapporter/?51638.pdf
http://www.olf.no/io/rapporter/?51638.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

//www.olf.no/io/rapporter/?51638.pdf. [Online; accessed 17-September-
2007].

OLF. Verdipotensialet for Integrerte operasjoner p̊a Norsk Sokkel. Technical
report, OLF (Oljeindustriens Landsforening), April 2006. URL http:

//www.olf.no/io/aktuelt/?32756.pdf. [Online; accessed 17-September-
2007].

OLF. Oppdatering av verdipotensialet i IO. Technical report, OLF
(Oljeindustriens Landsforening), December 2007. URL http://www.olf.

no/io/rapporter/?52498.pdf. [Online; accessed 17-June-2008].

OMG. Business Process Modeling Notation (BPMN) Information, FAQ,
2005. URL http://www.bpmn.org/Documents/FAQ.htm. [Online; accessed
13-May-2008].

OMG. Business Process Modeling Notation Specification 1.1 - DRAFT.
Technical report, OMG (Object Management Group, Inc.), July 2007.
[Currently not publicly available].

OMG. BPMN Information Home, January 2008. URL http://www.bpmn.

org/. [Online; accessed 26-May-2008].

OMG. Final Adopted BPMN 1.0 Specification. Technical report,
OMG (Object Management Group, Inc.), February 2006. URL
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%

20Spec%2006-02-01.pdf.

Chun Ouyang, Will M.P. van der Aalst, Marlon Dumas, and Arthur H.M.
ter Hofstede. Translating BPMN to BPEL. [Online; accessed 2-
May-2008], 2006. URL http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

reports/2006/BPM-06-02.pdf.

Patrick Hayes Peter F. Patel-Schneider and Ian Horrocks. OWL
Web Ontology Language Semantics and Abstract Syntax. W3C
Recommendation, W3C (World Wide Web Consortium), February 2004.
URL http://www.w3.org/TR/owl-semantics/.

H. Sofia Pinto and João Pavão Martins. Reusing Ontologies. In
Proceedings of the AAAI2000 Spring Symposium Series, Workshop
Bringing Knowledge to Business Processes, pages 77–84. AAAI Press,
March 2000.

Eric Prud’hommeaux and Andy Seaborne. SPARQL query lan-
guage for RDF. W3C Recommendation, W3C (World Wide
Web Consortium), January 2008. URL http://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/.

Bjørn Rasen. Time for integrated action, March 2008. URL

108

http://www.olf.no/io/rapporter/?51638.pdf
http://www.olf.no/io/rapporter/?51638.pdf
http://www.olf.no/io/rapporter/?51638.pdf
http://www.olf.no/io/aktuelt/?32756.pdf
http://www.olf.no/io/aktuelt/?32756.pdf
http://www.olf.no/io/rapporter/?52498.pdf
http://www.olf.no/io/rapporter/?52498.pdf
http://www.bpmn.org/Documents/FAQ.htm
http://www.bpmn.org/
http://www.bpmn.org/
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

BIBLIOGRAPHY BIBLIOGRAPHY

http://www.npd.no/English/Emner/IO/IO-forum/11.03.08+time+for+

integrated+action.htm. [Online; accessed 7-July-2008].

Jan C. Recker and Jan Mendling:. On the Translation between BPMN
and BPEL: Conceptual Mismatch between Process Modeling Languages.
In Thibaud Latour and Michaël Petit, editors, CAiSE 2006 Workshop
Proceedings - Eleventh International Workshop on Exploring Modeling
Methods in Systems Analysis and Design (EMMSAD), pages 521–532,
June 2006. ISBN 2870375255. URL http://wi.wu-wien.ac.at/home/

mendling/publications/06-EMMSAD.pdf.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003. ISBN 0-13-080302-2.

Davide Sangiorgi and David Walker. The Π − calculus A Theory of
Mobile Processes. Cambridge University Press, October 2003. ISBN 978-
0521543279.

Ulrike Sattler, Frank Wolter, and Ian Horrocks. Composing and
decomposing ontologies: a logic-based approach—A Case for Support.
[Online; accessed 5-June-2008], December 2006a. URL http://www.csc.

liv.ac.uk/~dirk/modularity/papers/conservative-epsrc-proposal.pdf.

Ulrike Sattler, Frank Wolter, Ian Horrocks, Borris Konev, and Bijan Parsia.
Composing and decomposing ontologies: a logic-based approach — A Case
for Support, 2006b. URL http://www.csc.liv.ac.uk/~dirk/modularity/

papers/conservative-epsrc-proposal.pdf. [Online; accessed 12-March-
2008].

Daniel Schall, Hong-Linh Truong, and Schahram Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations. IEEE Internet
Computing, 12(3):62–68, 2008. ISSN 1089-7801. doi: 10.1109/MIC.2008.
66.

Harold M. Schroder, Michael J. Driver, and Siegfried Streufert. Human
Information Processing: Individuals and Groups Functioning in Complex
Social Situations. Holt, Rinehart & Winston, Inc., 1967.

Dave Shipley, Ben Weltevrede, Alan Doniger, Hans Eric Klumpen, and
Laurence Ormerod. Production Data Standards: The PRODML Business
Case and Evolution. In Intelligent Energy 2008 conference, Amsterdam,
The Neherlands, 25-7 February 2008. Society of Petroleum Engineers,
February 2008.

Bruce Silver. What if BPMN Were a Modeling Language?,
2007. URL http://www.brsilver.com/wordpress/2007/04/30/

what-if-bpmn-were-a-modeling-language/. [Online; accessed 22-
October-2007].

109

http://www.npd.no/English/Emner/IO/IO-forum/11.03.08+time+for+integrated+action.htm
http://www.npd.no/English/Emner/IO/IO-forum/11.03.08+time+for+integrated+action.htm
http://wi.wu-wien.ac.at/home/mendling/publications/06-EMMSAD.pdf
http://wi.wu-wien.ac.at/home/mendling/publications/06-EMMSAD.pdf
http://www.csc.liv.ac.uk/~dirk/modularity/papers/conservative-epsrc-proposal.pdf
http://www.csc.liv.ac.uk/~dirk/modularity/papers/conservative-epsrc-proposal.pdf
http://www.csc.liv.ac.uk/~dirk/modularity/papers/conservative-epsrc-proposal.pdf
http://www.csc.liv.ac.uk/~dirk/modularity/papers/conservative-epsrc-proposal.pdf
http://www.brsilver.com/wordpress/2007/04/30/what-if-bpmn-were-a-modeling-language/
http://www.brsilver.com/wordpress/2007/04/30/what-if-bpmn-were-a-modeling-language/

BIBLIOGRAPHY BIBLIOGRAPHY

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semantics:
Science, Services and Agents on the World Wide Web, 5(2):51–53, June
2007. ISSN 1570-8268. doi: 10.1016/j.websem.2007.03.004.

Peter Spyns, Robert Meersman, and Mustafa Jarrar. Data modelling versus
Ontology engineering. SIGMOD Record, 31(4):12–17, 2002. ISSN 0163-
5808. doi: 10.1145/637411.637413.

StatoilHydro. StatoilHydros Årsrapport for 2007, April 2008. URL
http://www.statoilhydro.com/no/NewsAndMedia/News/2008/Pages/

2007report.aspx. [Also available online].

Stephen A. White. Introduction to BPMN. Technical report, OMG
(Object Management Group, Inc.), May 2004. URL http://www.bpmn.

org/Documents/Introduction%20to%20BPMN.pdf. [Online; accessed 12-
November-2007].

Darijus Strasunskas and Stein L. Tomassen. Scenario-Driven Information
Retrieval: Supporting Rule-Based Monitoring of Subsea Operations.
Information Technology and Control, 36(1A):87–92, 2007.

Hans Teijgeler. The Process Industries and the ISO 15926 Semantic Web.
[Online - Updated 12 March 2008-edition; accessed 23-May-2008], August
2007. URL http://www.infowebml.ws/Topics/papers/15926SW.htm.

Tim Berners-Lee. Notation3 (N3) A readable RDF syntax. Technical
report, W3C (World Wide Web Consortium), March 2006. URL http:

//www.w3.org/DesignIssues/Notation3.

Magne Valen-Sendstad. POSC Caesar/EPISTLE/ISO 15926 presentation
at Det Norske Veritas 14 February 2008, February 2008. [Not publicly
available].

Frank van Harmelen and Deborah L. McGuinness. OWL Web Ontology
Language Overview. W3C Recommendation, W3C (World Wide
Web Consortium), February 2004. URL http://www.w3.org/TR/2004/

REC-owl-features-20040210/.

Wikipedia. Business process management — wikipedia, the free encyclope-
dia, 2008a. URL http://en.wikipedia.org/w/index.php?title=Business_

process_management&oldid=191665516. [Online; accessed 24-February-
2008].

Wikipedia. Upper ontology (information science) — wikipedia, the free
encyclopedia, 2008b. URL http://en.wikipedia.org/w/index.php?title=

Upper_ontology_%28information_science%29&oldid=210976563. [Online;
accessed 24-July-2008].

110

http://www.statoilhydro.com/no/NewsAndMedia/News/2008/Pages/2007report.aspx
http://www.statoilhydro.com/no/NewsAndMedia/News/2008/Pages/2007report.aspx
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf
http://www.infowebml.ws/Topics/papers/15926SW.htm
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://en.wikipedia.org/w/index.php?title=Business_process_management&oldid=191665516
http://en.wikipedia.org/w/index.php?title=Business_process_management&oldid=191665516
http://en.wikipedia.org/w/index.php?title=Upper_ontology_%28information_science%29&oldid=210976563
http://en.wikipedia.org/w/index.php?title=Upper_ontology_%28information_science%29&oldid=210976563

BIBLIOGRAPHY BIBLIOGRAPHY

Wikipedia. Business process modeling notation — wikipedia, the free
encyclopedia, 2007. URL http://en.wikipedia.org/w/index.php?title=

Business_Process_Modeling_Notation&oldid=158972395. [Online; accessed
26-September-2007].

Petia Wohed, Wil M.P. van der Aals, Marlon Dumas, Arthur H.M. ter
Hofstede, and Nick Russell. Lecture Notes in Computer Science, volume
4102/2006, chapter On the Suitability of BPMN for Business Process
Modelling, pages 161–176. Springer, 2006.

Peter Y.H. Wong and Jeremy Gibbons. A Process Semantics for BPMN.
Submitted for publication. Extended version available online, 2008. URL
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf.

YAWL Foundation. YAWL - Yet Another Workflow Language, 2007. URL
http://www.yawlfoundation.org/theory/index.php. [Online; accessed 13-
May-2008].

Øystein Fossen. Integrerte operasjoner — akselerert læring; Høyde-
punkter fra p̊ag̊aende OLF prosjekt, Stavanger 12. juni. OLFs
konferanse om integrerte operasjoner 12. og 13. juni 2007, June
2007. URL http://www.olf.no/getfile.php/Konvertert/www.olf.no/

Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%

20Fossen%2C%20Arbforskinst.pdf. [Online; accessed 25-july-2008].

111

http://en.wikipedia.org/w/index.php?title=Business_Process_Modeling_Notation&oldid=158972395
http://en.wikipedia.org/w/index.php?title=Business_Process_Modeling_Notation&oldid=158972395
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf
http://www.yawlfoundation.org/theory/index.php
http://www.olf.no/getfile.php/Konvertert/www.olf.no/Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%20Fossen%2C%20Arbforskinst.pdf
http://www.olf.no/getfile.php/Konvertert/www.olf.no/Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%20Fossen%2C%20Arbforskinst.pdf
http://www.olf.no/getfile.php/Konvertert/www.olf.no/Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%20Fossen%2C%20Arbforskinst.pdf

Appendix

112

Appendix A

The SemTask OWL
Ontologies

A.1 The BPMN Ontology

Listing A.1: The BPMN Ontology in OWL-AS
Namespace(rd f = <http://www.w3.org/1999/02/22-rdf-syntaxC

-ns#>)
Namespace(owl = <http://www.w3.org/2002/07/owl#>)
Namespace(xsd = <http://www.w3.org/2001/XMLSchema#>)
Namespace(r d f s = <http://www.w3.org/2000/01/rdf-schema#>)
Namespace(bpmn = <http://www.ifi.uio.no/fredaleks/semtaskC

/bpmn#>)

Ontology (<http://www.ifi.uio.no/fredaleks/semtask/bpmn>

ObjectProperty (bpmn:bpmnObjectProperty)
ObjectProperty (bpmn:connected
inverseOf (bpmn:hasConnecting)
domain(bpmn:Connecting)
range (unionOf (bpmn:Flow bpmn:Art i fact)))

ObjectProperty (bpmn:connectedFrom
inverseOf (bpmn:hasConnectingFrom)
domain(bpmn:Connecting))

ObjectProperty (bpmn:connectedTo Functional
inverseOf (bpmn:hasConnectingTo)
domain(bpmn:Connecting))

ObjectProperty (bpmn:hasActivityTaskType Functional
domain(unionOf (owl:Thing bpmn:Activity))
range (bpmn:ActivityTaskType))

ObjectProperty (bpmn:hasConnecting
inverseOf (bpmn:connected)

113

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

domain(unionOf (bpmn:Flow bpmn:Art i fact))
range (bpmn:Connecting))

ObjectProperty (bpmn:hasConnectingFrom
inverseOf (bpmn:connectedFrom))

ObjectProperty (bpmn:hasConnectingTo InverseFunctional
inverseOf (bpmn:connectedTo))

ObjectProperty (bpmn:hasLane InverseFunctional
inverseOf (bpmn:isInPool)
domain(bpmn:Pool)
range (bpmn:Lane))

ObjectProperty (bpmn:hasObject InverseFunctional
inverseOf (bpmn:isInLane)
domain(bpmn:Lane)
range (unionOf (bpmn:Connecting bpmn:Flow)))

ObjectProperty (bpmn:hasStartEvent Functional C
InverseFunctional

domain(bpmn:SubProcess)
range (bpmn:StartEvent))

ObjectProperty (bpmn:isInLane Functional
inverseOf (bpmn:hasObject)
domain(unionOf (bpmn:Connecting bpmn:Flow))
range (bpmn:Lane))

ObjectProperty (bpmn:isInPool Functional
inverseOf (bpmn:hasLane)
domain(bpmn:Lane)
range (bpmn:Pool))

DatatypeProperty (bpmn:bpmnDatatypeProperty)
DatatypeProperty (bpmn:hasCondition Functional
domain(unionOf (bpmn:ConditionalSequenceFlow C

bpmn:NormalSequenceFlow))
range (x s d : s t r i n g))

DatatypeProperty (bpmn:hasMessage Functional
domain(unionOf (bpmn:MessageFlow bpmn:NormalSequenceFlow)C

)
range (x s d : s t r i n g))

DatatypeProperty (bpmn:hasName Functional
domain(bpmn:BPMNElement)
range (x s d : s t r i n g))

Class (bpmn:Activity partial
bpmn:Flow)

Class (bpmn:ActivityTaskType partial
bpmn:BPMNElement)

EnumeratedClass (bpmn:ActivityTaskType bpmn:None C
bpmn:Manual bpmn:User bpmn:Receive bpmn:Script C
bpmn:Service bpmn:Send bpmn:Reference)

Class (bpmn:AdHocActivity partial
bpmn:Activity)

114

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

Class (bpmn:AdHocSubProcess partial
bpmn:AdHocActivity
bpmn:SubProcess)

Class (bpmn:Annotation partial
bpmn:Art i fact)

Class (bpmn:Art i fact partial
bpmn:BPMNElement)

Class (bpmn:Associat ion partial
bpmn:Connecting)

Class (bpmn:BPMNElement partial)
Class (bpmn:CancelEndEvent partial

bpmn:EndEvent
bpmn:CancelEvent)

Class (bpmn:CancelEvent partial
bpmn:Event)

Class (bpmn:CancelIntermediateEvent partial
bpmn:IntermediateEvent
bpmn:CancelEvent)

Class (bpmn:ComensationIntermediateEvent partial
bpmn:CompensationEvent
bpmn:IntermediateEvent)

Class (bpmn:CompensationActivity partial
bpmn:Activity)

Class (bpmn:CompensationEndEvent partial
bpmn:CompensationEvent
bpmn:EndEvent)

Class (bpmn:CompensationEvent partial
bpmn:Event)

Class (bpmn:CompensationSubProcess partial
bpmn:SubProcess
bpmn:CompensationActivity)

Class (bpmn:CompensationTask partial
bpmn:CompensationActivity
bpmn:Task)

Class (bpmn:ConditionalSequenceFlow partial
bpmn:SequenceFlow)

Class (bpmn:Connecting complete
unionOf (bpmn:Associat ion bpmn:SequenceFlow C

bpmn:MessageFlow))
Class (bpmn:Connecting partial
bpmn:BPMNElement
restrict ion (bpmn:connectedTo maxCardinality (1))
restrict ion (bpmn:connected cardinality (2)))

Class (bpmn:DataBasedXorMergeGateway partial
bpmn:XorMergeGateway)

Class (bpmn:DataObject partial
bpmn:Art i fact)

Class (bpmn:DefaultSequenceFlow partial
bpmn:SequenceFlow)

115

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

Class (bpmn:EndEvent partial
bpmn:Event)

Class (bpmn:ErrorEndEvent partial
bpmn:ErrorEvent
bpmn:EndEvent)

Class (bpmn:ErrorEvent partial
bpmn:Event)

Class (bpmn:ErrorIntermediateEvent partial
bpmn:ErrorEvent
bpmn:IntermediateEvent)

Class (bpmn:Event partial
bpmn:Flow)

Class (bpmn:EventBasedXorMergeGateway partial
bpmn:XorMergeGateway)

Class (bpmn:ExceptionEndEvent partial
bpmn:EndEvent
bpmn:ExceptionEvent)

Class (bpmn:ExceptionEvent partial
bpmn:Event)

Class (bpmn:ExceptionIntermediateEvent partial
bpmn:IntermediateEvent
bpmn:ExceptionEvent)

Class (bpmn:Flow complete
intersectionOf (restrict ion (bpmn:isInLane cardinality (1))C

unionOf (bpmn:Event bpmn:Gateway bpmn:Activity)))
Class (bpmn:Flow partial
bpmn:BPMNElement)

Class (bpmn:Gateway partial
bpmn:Flow)

Class (bpmn:Group partial
bpmn:Art i fact)

Class (bpmn:Grouping complete
unionOf (bpmn:Pool bpmn:Lane))

Class (bpmn:Grouping partial
bpmn:BPMNElement)

Class (bpmn:IntermediateEvent partial
bpmn:Event)

Class (bpmn:Lane partial
bpmn:Grouping
restrict ion (bpmn:isInPool cardinality (1)))

Class (bpmn:LinkEndEvent partial
bpmn:EndEvent
bpmn:LinkEvent)

Class (bpmn:LinkEvent partial
bpmn:Event)

Class (bpmn:LinkIntermediateEvent partial
bpmn:IntermediateEvent
bpmn:LinkEvent)

Class (bpmn:LinkStartEvent partial

116

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

bpmn:StartEvent
bpmn:LinkEvent)

Class (bpmn:LoopedActivity partial
bpmn:Activity)

Class (bpmn:LoopedSubProcess partial
bpmn:LoopedActivity
bpmn:SubProcess)

Class (bpmn:LoopedTask partial
bpmn:LoopedActivity
bpmn:Task)

Class (bpmn:MergeGateway partial
bpmn:Gateway)

Class (bpmn:MessageEndEvent partial
bpmn:EndEvent
bpmn:MessageEvent)

Class (bpmn:MessageEvent partial
bpmn:Event)

Class (bpmn:MessageFlow partial
restr ict ion (bpmn:connectedFrom cardinality (1))
bpmn:Connecting
restrict ion (bpmn:connectedTo cardinality (1)))

Class (bpmn:MessageIntermediateEvent partial
bpmn:IntermediateEvent
bpmn:MessageEvent)

Class (bpmn:MessageStartEvent partial
bpmn:StartEvent
bpmn:MessageEvent)

Class (bpmn:MultipleEndEvent partial
bpmn:MultipleEvent
bpmn:EndEvent)

Class (bpmn:MultipleEvent partial
bpmn:Event)

Class (bpmn:Mult ip l e Ins tanceAct iv i ty partial
bpmn:Activity)

Class (bpmn:Mult ip leInstanceSubProcess partial
bpmn:SubProcess
bpmn:Mult ip l e Ins tanceAct iv i ty)

Class (bpmn:Mult ipleInstanceTask partial
bpmn:Mult ip l e Ins tanceAct iv i ty
bpmn:Task)

Class (bpmn:Mult ipleIntermediateEvent partial
bpmn:IntermediateEvent
bpmn:MultipleEvent)

Class (bpmn:MutipleStartEvent partial
bpmn:MultipleEvent
bpmn:StartEvent)

Class (bpmn:NormalSequenceFlow partial
bpmn:SequenceFlow)

Class (bpmn:OrMergeGateway partial

117

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

bpmn:Gateway)
Class (bpmn:ParalellForkGateway complete
intersectionOf (restrict ion (bpmn:hasConnectingFrom C

minCardinality (2)) bpmn:ParalellForkOrJoinGateway))
Class (bpmn:Paralel lForkOrJoinGateway partial

bpmn:Gateway)
Class (bpmn:Paralel lJoinGateway complete
intersectionOf (restrict ion (bpmn:hasConnectingTo C

minCardinality (2)) bpmn:ParalellForkOrJoinGateway))
Class (bpmn:Pool partial

bpmn:Grouping
restrict ion (bpmn:hasLane minCardinality (1)))

Class (bpmn:RuleEndEvent partial
bpmn:EndEvent
bpmn:RuleEvent)

Class (bpmn:RuleEvent partial
bpmn:Event)

Class (bpmn:RuleStartEvent partial
bpmn:StartEvent
bpmn:RuleEvent)

Class (bpmn:SequenceFlow partial
restr ict ion (bpmn:connectedFrom cardinality (1))
bpmn:Connecting
restrict ion (bpmn:connectedTo cardinality (1)))

Class (bpmn:StartEvent partial
bpmn:Event)

Class (bpmn:SubProcess partial
restr ict ion (bpmn:hasStartEvent cardinality (1))
bpmn:Activity)

Class (bpmn:Task partial
restr ict ion (bpmn:hasActivityTaskType someValuesFrom (C

bpmn:ActivityTaskType))
bpmn:Activity)

Class (bpmn:TerminateEndEvent partial
bpmn:TerminateEvent
bpmn:EndEvent)

Class (bpmn:TerminateEvent partial
bpmn:Event)

Class (bpmn:TimerEvent partial
bpmn:Event)

Class (bpmn:TimerIntermediateEvent partial
bpmn:IntermediateEvent
bpmn:TimerEvent)

Class (bpmn:TimerStartEvent partial
bpmn:TimerEvent
bpmn:StartEvent)

Class (bpmn:XorMergeGateway partial
bpmn:Gateway)

Class (owl:Thing partial)

118

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

Individual (bpmn:Manual
type (bpmn:ActivityTaskType))

Individual (bpmn:None
type (bpmn:ActivityTaskType))

Individual (bpmn:Receive
type (bpmn:ActivityTaskType))

Individual (bpmn:Reference
type (bpmn:ActivityTaskType))

Individual (bpmn:Script
type (bpmn:ActivityTaskType))

Individual (bpmn:Send
type (bpmn:ActivityTaskType))

Individual (bpmn:Service
type (bpmn:ActivityTaskType))

Individual (bpmn:User
type (bpmn:ActivityTaskType))

Datatype (x s d : s t r i n g)

DisjointClasses (bpmn:TimerEvent bpmn:ExceptionEvent)
DisjointClasses (bpmn:MultipleEvent bpmn:TimerEvent)
DisjointClasses (bpmn:CompensationEvent C

bpmn:TerminateEvent)
DisjointClasses (bpmn:TimerEvent bpmn:LinkEvent)
DisjointClasses (bpmn:Event bpmn:Gateway)
DisjointClasses (bpmn:XorMergeGateway C

bpmn:ParalellForkOrJoinGateway)
DisjointClasses (bpmn:IntermediateEvent bpmn:StartEvent)
DisjointClasses (bpmn:MergeGateway C

bpmn:ParalellForkOrJoinGateway)
DisjointClasses (bpmn:CancelEvent bpmn:ExceptionEvent)
DisjointClasses (bpmn:MultipleEvent bpmn:CancelEvent)
DisjointClasses (bpmn:TerminateEvent bpmn:ExceptionEvent)
DisjointClasses (bpmn:MultipleEvent bpmn:TerminateEvent)
DisjointClasses (bpmn:DataBasedXorMergeGateway C

bpmn:EventBasedXorMergeGateway)
DisjointClasses (bpmn:Pool bpmn:Lane)
DisjointClasses (bpmn:LinkEvent bpmn:CancelEvent)
DisjointClasses (bpmn:MessageEvent bpmn:RuleEvent)
DisjointClasses (bpmn:RuleEvent bpmn:CancelEvent)
DisjointClasses (bpmn:CompensationEvent bpmn:MessageEvent)
DisjointClasses (bpmn:TerminateEvent bpmn:LinkEvent)
DisjointClasses (bpmn:TimerEvent bpmn:CancelEvent)
DisjointClasses (bpmn:Connecting bpmn:Grouping)
DisjointClasses (bpmn:AdHocActivity C

bpmn:CompensationActivity)
DisjointClasses (bpmn:MergeGateway bpmn:XorMergeGateway)
DisjointClasses (bpmn:LinkEvent bpmn:ExceptionEvent)

119

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

DisjointClasses (bpmn:TimerEvent bpmn:TerminateEvent)
DisjointClasses (bpmn:Connecting bpmn:Art i fact)
DisjointClasses (bpmn:DataObject bpmn:Annotation)
DisjointClasses (bpmn:Grouping bpmn:Art i fact)
DisjointClasses (bpmn:Mult ip l e Ins tanceAct iv i ty C

bpmn:CompensationActivity)
DisjointClasses (bpmn:CompensationEvent bpmn:RuleEvent)
DisjointClasses (bpmn:MultipleEvent bpmn:LinkEvent)
DisjointClasses (bpmn:MessageEvent bpmn:ExceptionEvent)
DisjointClasses (bpmn:MultipleEvent bpmn:MessageEvent)
DisjointClasses (bpmn:Connecting bpmn:Flow)
DisjointClasses (bpmn:ConditionalSequenceFlow C

bpmn:NormalSequenceFlow)
DisjointClasses (bpmn:TerminateEvent bpmn:CancelEvent)
DisjointClasses (bpmn:StartEvent bpmn:EndEvent)
DisjointClasses (bpmn:AdHocActivity C

bpmn:Mult ip l e Ins tanceAct iv i ty)
DisjointClasses (bpmn:MessageEvent bpmn:LinkEvent)
DisjointClasses (bpmn:Flow bpmn:Grouping)
DisjointClasses (bpmn:Associat ion bpmn:MessageFlow)
DisjointClasses (bpmn:SequenceFlow bpmn:MessageFlow)
DisjointClasses (bpmn:NormalSequenceFlow C

bpmn:DefaultSequenceFlow)
DisjointClasses (bpmn:TimerEvent bpmn:MessageEvent)
DisjointClasses (bpmn:OrMergeGateway C

bpmn:ParalellForkOrJoinGateway)
DisjointClasses (bpmn:Flow bpmn:Art i fact)
DisjointClasses (bpmn:Event bpmn:Activity)
DisjointClasses (bpmn:LoopedActivity C

bpmn:CompensationActivity)
DisjointClasses (bpmn:Flow bpmn:ActivityTaskType)
DisjointClasses (bpmn:ConditionalSequenceFlow C

bpmn:DefaultSequenceFlow)
DisjointClasses (bpmn:RuleEvent bpmn:ExceptionEvent)
DisjointClasses (bpmn:MultipleEvent bpmn:RuleEvent)
DisjointClasses (bpmn:CompensationEvent C

bpmn:ExceptionEvent)
DisjointClasses (bpmn:Associat ion bpmn:SequenceFlow)
DisjointClasses (bpmn:CompensationEvent bpmn:MultipleEventC

)
DisjointClasses (bpmn:LoopedActivity bpmn:AdHocActivity)
DisjointClasses (bpmn:LinkEvent bpmn:RuleEvent)
DisjointClasses (bpmn:Group bpmn:Annotation)
DisjointClasses (bpmn:CompensationEvent bpmn:CancelEvent)
DisjointClasses (bpmn:Gateway bpmn:Activity)
DisjointClasses (bpmn:IntermediateEvent bpmn:EndEvent)
DisjointClasses (bpmn:CompensationEvent bpmn:LinkEvent)
DisjointClasses (bpmn:XorMergeGateway bpmn:OrMergeGateway)
DisjointClasses (bpmn:MessageEvent bpmn:CancelEvent)

120

A. THE SEMTASK OWL ONTOLOGIES A.1. THE BPMN ONTOLOGY

DisjointClasses (bpmn:TimerEvent bpmn:RuleEvent)
DisjointClasses (bpmn:CompensationEvent bpmn:TimerEvent)
DisjointClasses (bpmn:TerminateEvent bpmn:MessageEvent)
DisjointClasses (bpmn:MergeGateway bpmn:OrMergeGateway)
DisjointClasses (bpmn:TerminateEvent bpmn:RuleEvent)
DisjointClasses (bpmn:SubProcess bpmn:Task)
DisjointClasses (bpmn:LoopedActivity C

bpmn:Mult ip l e Ins tanceAct iv i ty)
DisjointClasses (bpmn:MultipleEvent bpmn:ExceptionEvent)
DisjointClasses (bpmn:DataObject bpmn:Group)
Equ iva l entC la s s e s (unionOf (bpmn:ConditionalSequenceFlow C

bpmn:NormalSequenceFlow))

SubPropertyOf(bpmn:hasConnectingTo bpmn:hasConnecting)
SubPropertyOf(bpmn:connectedTo bpmn:connected)
SubPropertyOf(bpmn:hasName bpmn:bpmnDatatypeProperty)
SubPropertyOf(bpmn:isInLane bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:connected bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:hasLane bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:hasActivityTaskType C

bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:hasConnecting bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:hasCondition bpmn:bpmnDatatypePropertyC

)
SubPropertyOf(bpmn:hasStartEvent bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:connectedFrom bpmn:connected)
SubPropertyOf(bpmn:hasConnectingFrom bpmn:hasConnecting)
SubPropertyOf(bpmn:isInPool bpmn:bpmnObjectProperty)
SubPropertyOf(bpmn:hasMessage bpmn:bpmnDatatypeProperty)
SubPropertyOf(bpmn:hasObject bpmn:bpmnObjectProperty)

DifferentIndividuals (bpmn:None bpmn:Manual bpmn:User C
bpmn:Receive bpmn:Script bpmn:Service bpmn:Send C

bpmn:Reference)

)

121

A. THE SEMTASK OWL ONTOLOGIES A.2. THE SEMTASK ONTOLOGY

A.2 The SemTask Ontology

Listing A.2: The Semantic Task Support Ontology in OWL-AS
Namespace(rd f = <http://www.w3.org/1999/02/22-C

rdf-syntax-ns#>)
Namespace(owl = <http://www.w3.org/2002/07/owl#>C

)
Namespace(xsd = <http://www.w3.org/2001/C

XMLSchema#>)
Namespace(r d f s = <http://www.w3.org/2000/01/rdf-C

schema#>)
Namespace(bpmn = <http://www.ifi.uio.no/fredaleksC

/semtask/bpmn#>)
Namespace(semtask = <http://www.ifi.uio.no/fredaleksC

/semtask/semtask#>)

Ontology (<http://www.ifi.uio.no/fredaleks/semtask/semtaskC
>

Annotation (owl : import s <http://www.ifi.uio.no/fredaleks/C
semtask/bpmn>)

ObjectProperty (bpmn:hasConnectingFrom)
ObjectProperty (s emtask :hasF ie ld InverseFunctional
inverseOf (semtask: i s InForm)
domain(semtask:FormDocument)
range (s emtask :F i e ld))

ObjectProperty (semtask: i s InForm Functional
inverseOf (s emtask :hasF ie ld)
domain(s emtask :F i e ld)
range (semtask:FormDocument))

ObjectProperty (semtask:semtaskObjectProperty)
ObjectProperty (r d f : r e s t)
ObjectProperty (owl:oneOf)

DatatypeProperty (semtask:hasName Functional
domain(s emtask :F i e ld)
range (x s d : s t r i n g))

DatatypeProperty (semtask : i sBeg inn ingEvent Functional
domain(bpmn:StartEvent)
range (xsd :boo l ean))

DatatypeProperty (semtask:programParameters Functional
domain(semtask:ApplicationDocument)
range (x s d : s t r i n g))

DatatypeProperty (semtask:semtaskDatatypeProperty)
DatatypeProperty (s emta sk :u r l Functional

122

A. THE SEMTASK OWL ONTOLOGIES A.2. THE SEMTASK ONTOLOGY

domain(unionOf (semtask:ApplicationDocument C
semtask:URLBasedDocument))

range (x s d : s t r i n g))
DatatypeProperty (r d f : f i r s t)

Class (bpmn:Activity complete
unionOf (bpmn:SubProcess bpmn:Task))

Class (bpmn:ConditionalSequenceFlow partial)
Class (bpmn:DataObject partial)
Class (bpmn:DefaultSequenceFlow partial)
Class (bpmn:Gateway partial)
Class (bpmn:NormalSequenceFlow partial)
Class (bpmn:SequenceFlow complete
unionOf (bpmn:ConditionalSequenceFlow C

bpmn:NormalSequenceFlow bpmn:DefaultSequenceFlow))
Class (bpmn:StartEvent partial)
Class (bpmn:SubProcess partial)
Class (bpmn:Task partial)
Class (semtask:ApplicationDocument partial

restr ict ion (semtask:programParameters minCardinality (1))
semtask:Document
restrict ion (s emta sk :u r l minCardinality (1)))

Class (semtask:Decis ionGateway complete
intersectionOf (bpmn:Gateway restrict ion (C

bpmn:hasConnectingFrom allValuesFrom (C
bpmn:ConditionalSequenceFlow)) restrict ion (C
bpmn:hasConnectingFrom minCardinality (2))))

Class (semtask:Decis ionGateway partial
semtask:SemTaskElement)

Class (semtask:Document complete
unionOf (semtask:ApplicationDocument semtask:FormDocumentC

semtask:URLBasedDocument))
Class (semtask:Document partial

semtask:SemTaskElement
bpmn:DataObject)

Class (s emtask :F i e ld partial
semtask:SemTaskElement)

Class (semtask:FormDocument partial
semtask:Document)

Class (semtask:SemTaskElement partial)
Class (semtask:URLBasedDocument partial

semtask:Document
restrict ion (s emta sk :u r l minCardinality (1)))

Class (owl:Thing partial)

Datatype (xsd :boo l ean)
Datatype (x s d : s t r i n g)

DisjointClasses (semtask:Decis ionGateway semtask :F i e ld)

123

A. THE SEMTASK OWL ONTOLOGIES A.2. THE SEMTASK ONTOLOGY

DisjointClasses (semtask:ApplicationDocument C
semtask:URLBasedDocument)

DisjointClasses (semtask:Document semtask:Decis ionGateway)
DisjointClasses (semtask:Document semtask :F i e ld)
DisjointClasses (semtask:ApplicationDocument C

semtask:FormDocument)
DisjointClasses (semtask:FormDocument C

semtask:URLBasedDocument)

SubPropertyOf(semtask:hasName C
semtask:semtaskDatatypeProperty)

SubPropertyOf(semtask:programParameters C
semtask:semtaskDatatypeProperty)

SubPropertyOf(semtask: i s InForm C

semtask:semtaskObjectProperty)
SubPropertyOf(s emtask :hasF ie ld C

semtask:semtaskObjectProperty)
SubPropertyOf(semtask : i sBeg inn ingEvent C

semtask:semtaskDatatypeProperty)
SubPropertyOf(s emta sk :u r l semtask:semtaskDatatypePropertyC

)

)

124

A. THE SEMTASK OWL ONTOLOGIES A.3. THE DATA ONTOLOGY

A.3 The Data Ontology

Listing A.3: The Data Ontology in OWL-AS
Namespace(rd f = <http://www.w3.org/1999/02/22-rdf-syntaxC

-ns#>)
Namespace(owl = <http://www.w3.org/2002/07/owl#>)
Namespace(xsd = <http://www.w3.org/2001/XMLSchema#>)
Namespace(r d f s = <http://www.w3.org/2000/01/rdf-schema#>)
Namespace(data = <http://www.ifi.uio.no/fredaleks/semtaskC

/data#>)

Ontology (<http://www.ifi.uio.no/fredaleks/semtask/data>

ObjectProperty (da ta : a r t i f a c tBe l ong ingTo Functional
inverseOf (d a t a : h a s A r t i f a c t)
domain(da ta :Tops id eAr t i f a c t)
range (data :P lat form))

ObjectProperty (data :dataObjectProperty)
ObjectProperty (d a t a : h a s A r t i f a c t InverseFunctional
inverseOf (da ta : a r t i f a c tBe l ong ingTo)
domain(data :P lat form)
range (da ta :Tops id eAr t i f a c t))

ObjectProperty (data :hasSensor InverseFunctional
inverseOf (data : i sLocatedOn)
domain(unionOf (data :Wel l da ta :Tops id eAr t i f a c t))
range (data :Sensor))

ObjectProperty (data :hasWel l InverseFunctional
inverseOf (data :we l lBe long ingTo)
domain(data :P lat form)
range (data :Wel l))

ObjectProperty (data : i sLocatedOn Functional
inverseOf (data :hasSensor)
domain(data :Sensor)
range (unionOf (data :Wel l da ta :Tops id eAr t i f a c t)))

ObjectProperty (d a t a : r e l e v a n t A r t i f a c t Tra n s i t i v e Symmetric
inverseOf (d a t a : r e l e v a n t A r t i f a c t)
domain(da ta :Tops id eAr t i f a c t)
range (da ta :Tops id eAr t i f a c t))

ObjectProperty (data : r e l evantData
domain(data:DataElement)
range (data:DataElement))

ObjectProperty (d a t a : r e l e v a n t S e n s o r Symmetric
inverseOf (d a t a : r e l e v a n t S e n s o r)
domain(data :Sensor)
range (data :Sensor))

ObjectProperty (da ta : r e l evantWe l l T ran s i t i v e Symmetric
inverseOf (da ta : r e l evantWe l l)
domain(data :Wel l)

125

A. THE SEMTASK OWL ONTOLOGIES A.3. THE DATA ONTOLOGY

range (data :Wel l))
ObjectProperty (data :we l lBe long ingTo Functional
inverseOf (data :hasWel l)
domain(data :Wel l)
range (data :P lat form))

ObjectProperty (r d f : r e s t)
ObjectProperty (owl:oneOf)

DatatypeProperty (data :dataDatatypeProperty)
DatatypeProperty (da ta :ha sDes c r i p t i on Functional
domain(data:DataElement)
range (x s d : s t r i n g))

DatatypeProperty (data:hasPDPURL
domain(data:DataElement)
range (x s d : s t r i n g))

DatatypeProperty (r d f : f i r s t)

Class (data :Cont inuousSensor partial
data :Sensor)

Class (data:DataElement partial
owl:Thing
restrict ion (data:hasPDPURL minCardinality (1)))

Class (d a t a : D i s c r e t e S e n s o r partial
data :Sensor)

Class (data :FlowSensor partial
data :Cont inuousSensor)

Class (d a t a : I n j e c t i o n W e l l partial
data :Wel l)

Class (data :P lat form partial
data:DataElement)

Class (da ta :Pre s su reSenso r partial
d a t a : D i s c r e t e S e n s o r)

Class (data :Product ionWel l partial
data :Wel l)

Class (data :Sensor partial
data:DataElement
restrict ion (data : i sLocatedOn cardinality (1)))

Class (data:TempSensor partial
d a t a : D i s c r e t e S e n s o r)

Class (da ta :Tops id eAr t i f a c t partial
data:DataElement)

Class (data:VolumeSensor partial
d a t a : D i s c r e t e S e n s o r)

Class (data :Wel l complete
unionOf (d a t a : I n j e c t i o n W e l l data :Product ionWel l))

Class (data :Wel l partial
data:DataElement)

Class (owl:Thing partial)

126

A. THE SEMTASK OWL ONTOLOGIES A.3. THE DATA ONTOLOGY

Datatype (x s d : s t r i n g)

DisjointClasses (d a t a : I n j e c t i o n W e l l data :Product ionWel l)
DisjointClasses (da ta :Pre s su reSenso r data:VolumeSensor)
DisjointClasses (data :P lat form data :Tops id eAr t i f a c t)
DisjointClasses (data :P lat form data :Sensor)
DisjointClasses (data :P lat form data :Wel l)
DisjointClasses (d a t a : D i s c r e t e S e n s o r data :Cont inuousSensorC

)
DisjointClasses (data:TempSensor data :Pre s su reSenso r)
DisjointClasses (data :Sensor da ta :Tops id eAr t i f a c t)
DisjointClasses (data :Wel l da ta :Tops id eAr t i f a c t)
DisjointClasses (data:TempSensor data:VolumeSensor)
DisjointClasses (data :Wel l data :Sensor)

SubPropertyOf(da ta :ha sDes c r i p t i on C

data:dataDatatypeProperty)
SubPropertyOf(d a t a : r e l e v a n t S e n s o r data : r e l evantData)
SubPropertyOf(data :we l lBe long ingTo C

data :dataObjectProperty)
SubPropertyOf(data : r e l evantData data :dataObjectProperty)
SubPropertyOf(data : i sLocatedOn data :dataObjectProperty)
SubPropertyOf(da ta : r e l evantWe l l data : r e l evantData)
SubPropertyOf(da ta : a r t i f a c tBe l ong ingTo C

data :dataObjectProperty)
SubPropertyOf(data:hasPDPURL data:dataDatatypeProperty)
SubPropertyOf(data :hasWel l data :dataObjectProperty)
SubPropertyOf(data :hasSensor data :dataObjectProperty)
SubPropertyOf(d a t a : h a s A r t i f a c t data :dataObjectProperty)
SubPropertyOf(d a t a : r e l e v a n t A r t i f a c t data : r e l evantData)

)

127

A. THE SEMTASK OWL ONTOLOGIES A.4. THE EXECUTION ONTOLOGY

A.4 The Execution Ontology

Listing A.4: The Execution Ontology in OWL-AS
Namespace(rd f = <http://www.w3.org/1999/02/22-C

rdf-syntax-ns#>)
Namespace(owl = <http://www.w3.org/2002/07/owl#>C

)
Namespace(xsd = <http://www.w3.org/2001/C

XMLSchema#>)
Namespace(r d f s = <http://www.w3.org/2000/01/rdf-C

schema#>)
Namespace(execut ion = <http://www.ifi.uio.no/fredaleksC

/semtask/execution#>)
Namespace(bpmn = <http://www.ifi.uio.no/fredaleksC

/semtask/bpmn#>)
Namespace(data = <http://www.ifi.uio.no/fredaleksC

/semtask/data#>)
Namespace(semtask = <http://www.ifi.uio.no/fredaleksC

/semtask/semtask#>)

Ontology (<http://www.ifi.uio.no/fredaleks/semtask/C
execution>

Annotation (owl : import s <http://www.ifi.uio.no/fredaleks/C
semtask/data>)

Annotation (owl : import s <http://www.ifi.uio.no/fredaleks/C
semtask/semtask>)

ObjectProperty (execut ion :be longsToFi l l edForm Functional
inverseOf (e x e c u t i o n : h a s F i l l e d F i e l d)
domain(e x e c u t i o n : F i l l e d F i e l d)
range (execut ion :F i l l edForm))

ObjectProperty (execut i on :dec i s i onBe longsTo Functional
inverseOf (e x e c u t i o n : h a s D e c i s i o n)
domain(e x e c u t i o n : D e c i s i o n)
range (bpmn:Flow))

ObjectProperty (execut i on : execut i onObjec tProper ty)
ObjectProperty (e x e c u t i o n : h a s D e c i s i o n InverseFunctional
inverseOf (execut i on :dec i s i onBe longsTo)
domain(bpmn:Flow)
range (e x e c u t i o n : D e c i s i o n))

ObjectProperty (execution:hasDocument
domain(e x e c u t i o n : D e c i s i o n)
range (semtask:Document))

ObjectProperty (e x e c u t i o n : h a s F i l l e d F i e l d InverseFunctional
inverseOf (execut ion :be longsToFi l l edForm)
domain(execut ion :F i l l edForm)

128

A. THE SEMTASK OWL ONTOLOGIES A.4. THE EXECUTION ONTOLOGY

range (e x e c u t i o n : F i l l e d F i e l d))
ObjectProperty (execut ion :hasF i l l edForm InverseFunctional
inverseOf (ex e cu t i on :u s e d I nDe c i s i on)
domain(e x e c u t i o n : D e c i s i o n)
range (execut ion :F i l l edForm))

ObjectProperty (execut ion :hasReason InverseFunctional
domain(execut ion :Task)
range (unionOf (e x e c u t i o n : D e c i s i o n e x e c u t i o n : T r i g g e r)))

ObjectProperty (execut ion :hasTask InverseFunctional
inverseOf (execut ion : taskBe longsTo)
domain(bpmn:Flow)
range (execut ion :Task))

ObjectProperty (ex e cu t i o n :h a s Tr i gg e r InverseFunctional
inverseOf (exe cu t i on : t r i gg e rBe l ong sTo)
domain(bpmn:Event)
range (e x e c u t i o n : T r i g g e r))

ObjectProperty (execution: isOfFormType Functional
domain(execut ion :F i l l edForm)
range (semtask:FormDocument))

ObjectProperty (e x e c u t i o n : i s R e s u l t O f Functional C
InverseFunctional

inverseOf (e x e c u t i o n : r e s u l t s I n)
domain(e x e c u t i o n : D e c i s i o n)
range (execut ion :Task))

ObjectProperty (e x e c u t i o n : r e s u l t s I n Functional C
InverseFunctional

inverseOf (e x e c u t i o n : i s R e s u l t O f)
domain(execut ion :Task)
range (e x e c u t i o n : D e c i s i o n))

ObjectProperty (execut ion : taskBe longsTo Functional
inverseOf (execut ion :hasTask)
domain(execut ion :Task)
range (bpmn:Flow))

ObjectProperty (exe cu t i on : t r i gg e rBe l ong sTo Functional
inverseOf (ex e cu t i o n :h a s Tr i gg e r)
domain(e x e c u t i o n : T r i g g e r)
range (bpmn:Event))

ObjectProperty (ex e cu t i on :u s e d I nDe c i s i o n
inverseOf (execut ion :hasF i l l edForm)
domain(execut ion :F i l l edForm)
range (e x e c u t i o n : D e c i s i o n))

ObjectProperty (execut ion :use sData
domain(unionOf (e x e c u t i o n : D e c i s i o n execut ion :Task))
range (datexecut ion:DataElement))

DatatypeProperty (execut ion :c reatedTime Functional
domain(execut ion :Task)
range (xssemtask:dateTime))

DatatypeProperty (e x e c u t i o n : d e s c r i p t i o n Functional

129

A. THE SEMTASK OWL ONTOLOGIES A.4. THE EXECUTION ONTOLOGY

domain(unionOf (e x e c u t i o n : D e c i s i o n execut ion :Task))
range (x s s e m t a s k : s t r i n g))

DatatypeProperty (execut ion : execut ionDatatypeProper ty)
DatatypeProperty (e x e c u t i o n : t r i g g e r D e s c r i p t i o n Functional
domain(e x e c u t i o n : T r i g g e r)
range (x s s e m t a s k : s t r i n g))

Class (bpmn:Event partial)
Class (bpmn:Flow partial)
Class (datexecut ion:DataElement partial)
Class (e x e c u t i o n : D e c i s i o n partial

execut ion :Execut ionElement)
Class (execut ion :Execut ionElement partial)
Class (e x e c u t i o n : F i l l e d F i e l d partial

execut ion :Execut ionElement)
Class (execut ion :F i l l edForm partial

execut ion :Execut ionElement)
Class (execut ion :Task partial

execut ion :Execut ionElement)
Class (e x e c u t i o n : T r i g g e r partial

execut ion :Execut ionElement
restrict ion (exe cu t i on : t r i gg e rBe l ong sTo cardinality (1)))

Class (e x e c u t i o n : T r i g g e r partial
annotat ion (rdfs:comment "Class representing a triggeringC

of an event"ˆˆ h t t p : //www. w3 . org /2001/XMLSchema#C
s t r i n g)

)
Class (semtask:Document partial)
Class (semtask:FormDocument partial)

AnnotationProperty (rdfs:comment)

Datatype (x s s e m t a s k : s t r i n g)
Datatype (xssemtask:dateTime)

DisjointClasses (execut ion :F i l l edForm C

e x e c u t i o n : F i l l e d F i e l d)
DisjointClasses (execut ion :F i l l edForm execut ion :Task)
DisjointClasses (e x e c u t i o n : D e c i s i o n e x e c u t i o n : F i l l e d F i e l d)
DisjointClasses (e x e c u t i o n : D e c i s i o n execut ion :Task)
DisjointClasses (execut ion :F i l l edForm e x e c u t i o n : T r i g g e r)
DisjointClasses (execut ion :Task e x e c u t i o n : F i l l e d F i e l d)
DisjointClasses (e x e c u t i o n : D e c i s i o n e x e c u t i o n : T r i g g e r)
DisjointClasses (e x e c u t i o n : F i l l e d F i e l d e x e c u t i o n : T r i g g e r)
DisjointClasses (execut ion :Task e x e c u t i o n : T r i g g e r)
DisjointClasses (e x e c u t i o n : D e c i s i o n execut ion :F i l l edForm)

SubPropertyOf(exe cu t i on : t r i gg e rBe l ong sTo C

execut i on : execut i onObjec tProper ty)

130

A. THE SEMTASK OWL ONTOLOGIES A.4. THE EXECUTION ONTOLOGY

SubPropertyOf(e x e c u t i o n : r e s u l t s I n C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(e x e c u t i o n : h a s D e c i s i o n C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut ion :hasF i l l edForm C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut ion :hasTask C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut ion :be longsToFi l l edForm C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execution:hasDocument C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut ion :hasReason C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(e x e c u t i o n : i s R e s u l t O f C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut i on :dec i s i onBe longsTo C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut ion :use sData C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(ex e cu t i on :u s e d I nDe c i s i on C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(ex e cu t i o n :h a s Tr i gg e r C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execution: isOfFormType C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(execut ion :c reatedTime C

execut ion :execut ionDatatypeProper ty)
SubPropertyOf(execut ion : taskBe longsTo C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(e x e c u t i o n : t r i g g e r D e s c r i p t i o n C

execut ion :execut ionDatatypeProper ty)
SubPropertyOf(e x e c u t i o n : h a s F i l l e d F i e l d C

execut i on : execut i onObjec tProper ty)
SubPropertyOf(e x e c u t i o n : d e s c r i p t i o n C

execut ion :execut ionDatatypeProper ty)

)

131

Appendix B

The RDF Documents

B.1 The Daily Production Optimization

Listing B.1: Daily Production Optimization in Notation3
#Converted wi th h t t p ://www. mindswap . org /2002/ r d f c o n v e r t /

@prefix : <#> .
@prefix bpmn : <http://www.ifi.uio.no/fredaleks/semtask/C

bpmn#> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix protege : <http://protege.stanford.edu/plugins/owl/C

protege#> .
@prefix rd f : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>C

.
@prefix r d f s : <http://www.w3.org/2000/01/rdf-schema#> .
@prefix semtask : <http://www.ifi.uio.no/fredaleks/semtask/C

semtask#> .
@prefix xsd : <http://www.w3.org/2001/XMLSchema#> .
@prefix xsp : <http://www.owl-ontologies.com/2005/08/07/xspC

.owl#> .

: a c t i o n L i s t a semtask : FormDocument ;
bpmn : hasConnectingFrom :C

actionListToExecutionOfUpdatedPlan ;
bpmn : hasConnectingTo :C

productonOptimzationMeetingToActionList ;
bpmn : hasName "Action List"ˆˆ xsd : s t r i n g .

: actionListToExecutionOfUpdatedPlan a bpmn : As soc i a t i on ;
bpmn : connectedFrom : a c t i o n L i s t ;
bpmn : connectedTo : executionOfUpdatedPlan .

132

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: approvedToStoringTestInProdTekDatabase a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : decis ionApproved ;
bpmn : connectedTo : stor ingTestInProdTekDatabase ;
bpmn : hasCondit ion "Yes"ˆˆ xsd : s t r i n g .

: approvedToWellTesting a bpmn : Condit ionalSequenceFlow ;
bpmn : connectedFrom : decis ionApproved ;
bpmn : connectedTo : we l lTe s t ing ;
bpmn : hasCondit ion "No"ˆˆ xsd : s t r i n g .

: bestPract iceDocumentForWel lAnalys is a semtask :C
URLBasedDocument ;

bpmn : hasConnectingFrom :C
bestPract iceDocumentForWellAnalys isToWellAnalys is ;

bpmn : hasName "Best Practice Document for Well Analysis"C
ˆˆ xsd : s t r i n g ;

semtask : u r l "http://en.wikipedia.org/wiki/Best_Practice"C
ˆˆ xsd : s t r i n g .

: bestPract iceDocumentForWellAnalys isToWellAnalys is a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : bestPract iceDocumentForWel lAnalys is ;
bpmn : connectedTo : w e l lA na ly s i s .

: check l i s tForSystemOpt imiz ing a semtask : URLBasedDocument ;
bpmn : hasConnectingFrom :C

checkl i stForSystemOptimiz ingToExecut ionOfOptimizat ionC
;

bpmn : hasName "Checklist for System Optimizing"ˆˆ xsd :C
s t r i n g ;

semtask : u r l "http://en.wikipedia.org/wiki/Checklist"ˆˆC
xsd : s t r i n g .

: checkl i stForSystemOptimiz ingToExecut ionOfOptimizat ion a C
bpmn : As soc i a t i on ;

bpmn : connectedFrom : check l i s tForSystemOpt imiz ing ;
bpmn : connectedTo : execut ionOfOpt imizat ion .

: cont inuousProduct ionSuperv i s ing a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

continuousProduct ionSupervis ingToFork ,
: cont inuousProduct ionSuperv i s ingToOptmizat ionPotent ia l ;
bpmn : hasConnectingTo :C

forkContinuousProduct ionSupervis ingToContinuous−C
Product ionSuperv i s ing ,

: productionOptimizationMeetingTo−C
Cont inuousProduct ionSuperv is ing ;

133

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : hasName "Continuous production supervising"ˆˆ xsd :C
s t r i n g ;

bpmn : i s InLane : execut ing Techn ica l manager operat ion .

: cont inuousProduct ionSupervis ingToFork a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : cont inuousProduct ionSuperv i s ing ;
bpmn : connectedTo : forkContinuousProduct ionSupervis ingAndC
−P r o p o s i t i o n F o r I n i t i a t i v e .

: cont inuousProduct ionSuperv i s ingToOptmizat ionPotent ia l a C
bpmn : As soc i a t i on ;

bpmn : connectedFrom : cont inuousProduct ionSuperv i s ing ;
bpmn : connectedTo : o p t i m i z a t i o n P o t e n t i a l .

: creatingNetworkModel a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : creatingNetworkModelToDecision ,

: creatingNetworkModelToNetworkModel ;
bpmn : hasConnectingTo :C

processCapacit iesToCreatingNetworkModel ,
: wellDataToCreatingNetworkModel ;
bpmn : hasName "Creating network model"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: creatingNetworkModelToDecis ion a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : creatingNetworkModel ;
bpmn : connectedTo : decisionModelWithTestOrProductionData C

.

: creatingNetworkModelToNetworkModel a bpmn : As soc i a t i on ;
bpmn : connectedFrom : creatingNetworkModel ;
bpmn : connectedTo : networkModel .

: dec is ionApproved a semtask : DecisionGateway ;
bpmn : hasConnectingFrom :C

approvedToStoringTestInProdTekDatabase ,
: approvedToWellTesting ;
bpmn : hasConnectingTo : wellTestingToApproved ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: d e c i s i o n I m p l e m e n t I n i t i a t i v e a semtask : DecisionGateway ;
bpmn : hasConnectingFrom :C

implementInit iat iveToExecutionOfUpdatedPlan ,
: implementIn it iat iveToOptimalProduct ion ;
bpmn : hasConnectingTo : p r o p o s i t i o n F o r I n i t i a t i v e T o D e c i s i o nC

;
bpmn : i s InLane : o rgan i z e r Produc t i on eng ine e r on sho r e .

134

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: decisionModelOK a semtask : DecisionGateway ;
bpmn : hasConnectingFrom : decis ionToEvaluationOfInputData ,

: decis ionToExecutionOfOptimzation ;
bpmn : hasConnectingTo :C

val idatingModelWithProductionDataToDecis ion ,
: val idatingModelWithTestDataToDecis ion ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: decisionModelWithTestOrProductionData a semtask :C
DecisionGateway ;

bpmn : hasConnectingFrom :C
decis ionToValidatingModelWithProductionData ,

: decis ionToValidatingModelWithTestData ;
bpmn : hasConnectingTo : creatingNetworkModelToDecis ion ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: decisionMoreThan180DaysSinceLastWellExamination a semtaskC
: DecisionGateway ;

bpmn : hasConnectingFrom : decis ionToWellExamination ,
: d e c i s i on To We l l I n i t a t i v e Sug g e s t i o n ;
bpmn : hasConnectingTo : we l lAna lys i sToDec i s i on ;
bpmn : hasName "More than 180 days since last well C

examiniation"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: dec is ionNeedForWel lTest a semtask : DecisionGateway ;
bpmn : hasConnectingFrom : needForWellTestToWellAnalysis ,

: needForWellTestToWellTesting ;
bpmn : hasConnectingTo : trendingOfWellDataToDecis ion ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: dec is ionToEvaluat ionOfInputData a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : decisionModelOK ;
bpmn : connectedTo : evaluat ionOfInputData ;
bpmn : hasCondit ion "No"ˆˆ xsd : s t r i n g .

: decis ionToExecutionOfOptimzation a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : decisionModelOK ;
bpmn : connectedTo : execut ionOfOpt imizat ion ;
bpmn : hasCondit ion "Yes"ˆˆ xsd : s t r i n g .

: decis ionToValidatingModelWithProductionData a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom :C
decisionModelWithTestOrProductionData ;

bpmn : connectedTo : val idatingModelWithProductionData ;
bpmn : hasCondit ion "Use production data"ˆˆ xsd : s t r i n g .

135

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: decis ionToValidatingModelWithTestData a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom :C
decisionModelWithTestOrProductionData ;

bpmn : connectedTo : val idatingModelWithTestData ;
bpmn : hasCondit ion "Use test data"ˆˆ xsd : s t r i n g .

: decis ionToWellExamination a bpmn : Condit ionalSequenceFlow ;
bpmn : connectedFrom :C

decisionMoreThan180DaysSinceLastWellExamination ;
bpmn : connectedTo : wel lExamination ;
bpmn : hasCondit ion "Yes"ˆˆ xsd : s t r i n g .

: d e c i s i on To We l l I n i t a t i v e Sug g e s t i o n a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom :C
decisionMoreThan180DaysSinceLastWellExamination ;

bpmn : connectedTo : w e l l I n i t i a t i v e S u g g e s t i o n ;
bpmn : hasCondit ion "No"ˆˆ xsd : s t r i n g .

: e s t imatedRisk a semtask : F i e ld ;
semtask : hasName "Estimated risk (1-5)"ˆˆ xsd : s t r i n g ;
semtask : isInForm : o p t i m i z a t i o n P o t e n t i a l .

: est imatedValue a semtask : F i e ld ;
semtask : hasName "Estimated Value in NOK"ˆˆ xsd : s t r i n g ;
semtask : isInForm : o p t i m i z a t i o n P o t e n t i a l .

: e v a l u a t e S u b s e a W e l l I n i t i a t i v e bpmn : hasConnectingTo :C
f o l l owUpToEva luateSubseaWel l In i t ia t ive ;

bpmn : hasName "Evaluate Subsea Well Initiative"ˆˆ xsd :C
s t r i n g ;

bpmn : hasStartEvent : needForWellAnalys is ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: evaluat ionOfInputData a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : evaluationOfInputDataToWellData ;
bpmn : hasConnectingTo : dec is ionToEvaluat ionOfInputData ;
bpmn : hasName "Evaluation of Input Data"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: evaluationOfInputDataToWellData a bpmn : NormalSequenceFlowC
;

bpmn : connectedFrom : evaluat ionOfInputData ;
bpmn : connectedTo : wel lData .

: exe cu t ing Proce s s Opera t i on eng inee r onsho r e a bpmn : Lane ;

136

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : hasName "Executing (Process/Operation engineer , C
onshore)"ˆˆ xsd : s t r i n g ;

bpmn : hasObject :C
forkTopsideProduct ionOptimizat ionAndPropos it ionFor−C
I n i t a t i v e ,

: tops ideProduct ionOpt imizat ion ;
bpmn : i s I n P o o l : product ion Opt imizat ion .

: execut ing Produc t i on eng inee r onshore a bpmn : Lane ;
bpmn : hasName "Executing (Production engineer onshore)"ˆˆC

xsd : s t r i n g ;
bpmn : hasObject : creatingNetworkModel ,

: decis ionApproved ,
: decisionModelOK ,
: decisionModelWithTestOrProductionData ,
: decisionMoreThan180DaysSinceLastWellExamination ,
: decis ionNeedForWellTest ,
: e va lua t eSubs eaWe l l I n i t i a t i v e ,
: evaluationOfInputData ,
: execut ionOfOptimizat ion ,
: followUp ,
: forkProduct ionFol lowUpAndPropos i t ionForIn i t ia t ive ,
: needForNetworkOptimizing ,
: needForWellAnalysis ,
: opt imizedModelCalculat ions ,
: p ro c e s sCapac i t i e s ,
: productionFollowUp ,
: startProductionFol lowUp ,
: storingTestInProdTekDatabase ,
: systemOptimization ,
: trendingOfWellData ,
: updatingAllModelsThatUseTestData ,
: val idatingModelWithProductionData ,
: validatingModelWithTestData ,
: we l lAna lys i s ,
: wellData ,
: wellExamination ,
: w e l l I n i t i a t i v e S u g g e s t i o n ,
: we l lTe s t ing ;
bpmn : i s I n P o o l : product ion Opt imizat ion .

: execut ing Techn ica l manager operat ion a bpmn : Lane ;
bpmn : hasName "Executing (Tehnical manager, operation)"ˆˆC

xsd : s t r i n g ;
bpmn : hasObject : cont inuousProduct ionSuperv i s ing ,

: executionOfUpdatedPlan ,
: forkContinuousProduct ionSupervis ingAnd−C

P r o p o s i t i o n F o r I n i t i a t i v e ;
bpmn : i s I n P o o l : product ion Opt imizat ion .

137

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: execut ionOfOpt imizat ion a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

executionOfOptimzationToOptimizedModelCalculat ions ;
bpmn : hasConnectingTo :C

checkl i stForSystemOptimiz ingToExecutionOfOptimizat ionC
,

: dec is ionToExecutionOfOptimzation ;
bpmn : hasName "semtask of Optimization"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: executionOfOptimzationToOptimizedModelCalculat ions a bpmnC
: NormalSequenceFlow ;

bpmn : connectedFrom : execut ionOfOpt imizat ion ;
bpmn : connectedTo : opt imizedMode lCalcu lat ions .

: executionOfUpdatedPlan a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

execut ionOfUpdatedPlanToProps i t ionForIn i t ia t ive ;
bpmn : hasConnectingTo : actionListToExecutionOfUpdatedPlanC

,
: implementInit iat iveToExecutionOfUpdatedPlan ,
: newInit iat iveToExecutionOfUpdatedPlan ,
: productionOptimizationMeetingToExecutionOfUpdatedPlan ;
bpmn : hasName "semtask of Updated Plan"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Techn ica l manager operat ion .

: execut ionOfUpdatedPlanToProps i t ionForIn i t ia t ive a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : executionOfUpdatedPlan ;
bpmn : connectedTo : p r o p o s i t i o n F o r I n i t i a t i v e .

: fol lowUp a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

fo l lowUpToEvaluateSubseaWel l In i t iat ive ,
: fol lowUpToSystemOptimization ;
bpmn : hasName "Follow-up"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: f o l l owUpToEva luateSubseaWel l In i t ia t ive a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : fol lowUp ;
bpmn : connectedTo : e v a l u a t e S u b s e a W e l l I n i t i a t i v e .

: fol lowUpToSystemOptimization a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : fol lowUp ;

138

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : connectedTo : systemOptimization .

: forkCont inuousProduct ionSuperv is ingAndPropos i t ion−C
F o r I n i t i a t i v e a bpmn : Parale l lForkGateway ;

bpmn : hasConnectingFrom :C
forkContinuousProduct ionSupervis ingToContinuous−C
Product ionSuperv i s ing ,

: fo rkCont inuousProduct ionSuperv i s ingToProps i t ion−C
F o r I n i t i a t i v e ;

bpmn : hasConnectingTo :C
cont inuousProduct ionSupervis ingToFork ;

bpmn : i s InLane : execut ing Techn ica l manager operat ion .

: forkContinuousProduct ionSupervis ingToContinuous−C
Product ionSuperv i s ing a bpmn : NormalSequenceFlow ;

bpmn : connectedFrom :C
forkCont inuousProduct ionSuperv is ingAndPropos i t ion−C
F o r I n i t i a t i v e ;

bpmn : connectedTo : cont inuousProduct ionSuperv i s ing .

: fo rkCont inuousProduct ionSuperv i s ingToProps i t ion−C
F o r I n i t i a t i v e a bpmn : NormalSequenceFlow ;

bpmn : connectedFrom :C
forkContinuousProduct ionSupervis ingAnd−C
P r o p o s i t i o n F o r I n i t i a t i v e ;

bpmn : connectedTo : p r o p o s i t i o n F o r I n i t i a t i v e .

: forkProductionFol lowUpAndProposit ion−F o r I n i t i a t i v e a bpmnC
: Parale l lForkGateway ;

bpmn : hasConnectingFrom :C
forkProductionFollowUpToProductionFollowUp ,

: forkProductionFol lowUpToPropsit ion−F o r I n i t i a t i v e ;
bpmn : hasConnectingTo : productionFollowUpToFork ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: forkProductionFollowUpToProductionFollowUp a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom :C
f o rkProduct ionFo l lowUpAndPropos i t ionForIn i t ia t ive ;

bpmn : connectedTo : productionFollowUp .

: f o rkProduct ionFo l l owUpToProps i t i onFor In i t i a t ive a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom :C
f o rkProduct ionFo l lowUpAndPropos i t ionForIn i t ia t ive ;

bpmn : connectedTo : p r o p o s i t i o n F o r I n i t i a t i v e .

: forkTopsideProductionOptimizationAnd−C
P r o p o s i t i o n F o r I n i t a t i v e a bpmn : Parale l lForkGateway ;

139

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : hasConnectingFrom :C
forkTopsideProductionOptimizat ionTo−C
P r o p s i t i o n F o r I n i t i a t i v e ;

bpmn : hasConnectingTo :C
tops ideProduct ionOptimizat ionToFork ;

bpmn : i s InLane :C
execut ing Proce s s Opera t i on eng inee r onsho r e .

: forkTopsideProductionOptimizat ionTo−C
P r o p s i t i o n F o r I n i t i a t i v e a bpmn : NormalSequenceFlow ;

bpmn : connectedFrom : forkTopsideProductionOptimizationAndC
−P r o p o s i t i o n F o r I n i t a t i v e ;

bpmn : connectedTo : p r o p o s i t i o n F o r I n i t i a t i v e .

: forkValidatingModelWithProductionDataAnd−C
ValidatingModelWithTestData a bpmn : Parale l lForkGateway C

.

: implementInit iat iveToExecutionOfUpdatedPlan a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : d e c i s i o n I m p l e m e n t I n i t i a t i v e ;
bpmn : connectedTo : executionOfUpdatedPlan ;
bpmn : hasCondit ion "Yes"ˆˆ xsd : s t r i n g .

: implementIn it iat iveToOptimalProduct ion a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : d e c i s i o n I m p l e m e n t I n i t i a t i v e ;
bpmn : connectedTo : opt imalProduct ion ;
bpmn : hasCondit ion "No"ˆˆ xsd : s t r i n g .

: l ongDesc r i p t i on a semtask : F i e ld ;
semtask : hasName "Long description"ˆˆ xsd : s t r i n g ;
semtask : isInForm : o p t i m i z a t i o n P o t e n t i a l .

: needForAnalysisToTrendingOfWellData a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : needForWel lAnalys is ;
bpmn : connectedTo : trendingOfWellData .

: needForNetworkOptimizing a bpmn : StartEvent ;
bpmn : hasConnectingFrom :C

needForNetworkOptimizingToProcessCapacit ies ,
: needForNetworkOptimizingToWellData ;
bpmn : hasName "Need for Network Optimizing"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: needForNetworkOptimizingToProcessCapacit ies a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : needForNetworkOptimizing ;

140

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : connectedTo : p r o c e s s C a p a c i t i e s .

: needForNetworkOptimizingToWellData a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : needForNetworkOptimizing ;
bpmn : connectedTo : wel lData .

: needForWellAnalys is a bpmn : StartEvent ;
bpmn : hasConnectingFrom :C

needForAnalysisToTrendingOfWellData ;
bpmn : hasName "Need for Well Analysis"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: needForWellTestToWellAnalysis a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : decis ionNeedForWel lTest ;
bpmn : connectedTo : w e l lA na ly s i s ;
bpmn : hasCondit ion "No"ˆˆ xsd : s t r i n g .

: needForWellTestToWellTesting a bpmn :C
Condit ionalSequenceFlow ;

bpmn : connectedFrom : decis ionNeedForWel lTest ;
bpmn : connectedTo : we l lTe s t ing ;
bpmn : hasCondit ion "Yes"ˆˆ xsd : s t r i n g .

: networkModel a bpmn : DataObject ;
bpmn : hasConnectingFrom :C

networkModelToValidatingModelWithProductionData ,
: networkModelToValidatingModelWithTestData ;
bpmn : hasConnectingTo : creatingNetworkModelToNetworkModelC

;
bpmn : hasName "Network Model"ˆˆ xsd : s t r i n g .

: networkModelToValidatingModelWithProductionData a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : networkModel ;
bpmn : connectedTo : val idatingModelWithProductionData .

: networkModelToValidatingModelWithTestData a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : networkModel ;
bpmn : connectedTo : updatingAllModelsThatUseTestData .

: n e w I n i t i a t i v e a semtask : FormDocument ;
bpmn : hasConnectingFrom :C

newInit iat iveToExecutionOfUpdatedPlan ;
bpmn : hasConnectingTo :C

p r o p o s i t i o n F o r I n i t i a t i v e T o N e w I n i t i a t i v e ;
bpmn : hasName "New Initiative"ˆˆ xsd : s t r i n g .

141

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: newInit iat iveToExecutionOfUpdatedPlan a bpmn : As soc i a t i on ;
bpmn : connectedFrom : n e w I n i t i a t i v e ;
bpmn : connectedTo : executionOfUpdatedPlan .

: opt imalProduct ion a bpmn : TerminateEndEvent ;
bpmn : hasConnectingTo :C

implementIn it iat iveToOptimalProduct ion ;
bpmn : hasName "Optimal Production"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : o rgan i z e r Produc t i on eng ine e r on sho r e .

: o p t i m i z a t i o n P o t e n t i a l a semtask : FormDocument ;
bpmn : hasConnectingFrom :C

o p t m i z a t i o n P o t e n t i a l T o P r o p o s i t i o n F o r I n i t i a t i v e ;
bpmn : hasConnectingTo :C

cont inuousProduct ionSuperv i s ingToOptmizat ionPotent ia lC
,

: productonFollowUpToOptmizationPotential ;
bpmn : hasName "Optimization Potential"ˆˆ xsd : s t r i n g ;
semtask : hasF ie ld : est imatedRisk ,

: est imatedValue ,
: l ongDesc r ip t i on ,
: s h o r t D e s c r i p t i o n .

: opt imizedMode lCalcu lat ions a bpmn : TerminateEndEvent ;
bpmn : hasConnectingTo :C

executionOfOptimzationToOptimizedModelCalculat ions ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: o p t m i z a t i o n P o t e n t i a l T o P r o p o s i t i o n F o r I n i t i a t i v e a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : o p t i m i z a t i o n P o t e n t i a l ;
bpmn : connectedTo : p r o p o s i t i o n F o r I n i t i a t i v e .

: o r gan i z e r Produc t i on eng ine e r on sho r e a bpmn : Lane ;
bpmn : hasName "Organizaer (production engineer , noshore)"C

ˆˆ xsd : s t r i n g ;
bpmn : hasObject : d e c i s i o n I m p l e m e n t I n i t i a t i v e ,

: optimalProduction ,
: product ionOptimizat ionMeeting ,
: p r o p o s i t i o n F o r I n i t i a t i v e ,
: weekday 9am ;
bpmn : i s I n P o o l : product ion Opt imizat ion .

: p r o c e s s C a p a c i t i e s a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

processCapacit iesToCreat ingNetworkModel ;

142

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : hasConnectingTo :C
needForNetworkOptimizingToProcessCapacit ies ;

bpmn : hasName "Process Capacities"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: processCapacit iesToCreat ingNetworkModel a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : p r o c e s s C a p a c i t i e s ;
bpmn : connectedTo : creatingNetworkModel .

: productionFollowUp a bpmn : LoopedSubProcess ;
bpmn : hasConnectingFrom : productionFollowUpToFork ,

: productonFollowUpToOptmizationPotential ;
bpmn : hasConnectingTo :C

forkProductionFollowUpToProductionFollowUp ;
bpmn : hasName "Production Follow-up"ˆˆ xsd : s t r i n g ;
bpmn : hasStartEvent : startProduct ionFol lowUp ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: productionFollowUpToFork a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : productionFollowUp ;
bpmn : connectedTo :C

f o rkProduct ionFo l lowUpAndPropos i t ionForIn i t ia t ive .

: p r o d u c t i o n I n c r e a s i n g I n i t i a t i v e R e p o r t a semtask :C
FormDocument ;

bpmn : hasConnectingFrom :C
produc t i on Inc r ea s ing In i t i a t i v eRepor tTo−C
P r o p o s i t i o n F o r I n i t i a t i v e ;

bpmn : hasConnectingTo : topsdeProductionOptimizationTo−C
P r o d u c t i o n I n c r e a s i n g I n i t i a t i v e R e p o r t ;

bpmn : hasName "Production Increasing Initiative Report"ˆˆC
xsd : s t r i n g .

: p roduc t i on Inc r ea s ing In i t i a t i v eRepor tTo−C
P r o p o s i t i o n F o r I n i t i a t i v e a bpmn : As soc i a t i on ;

bpmn : connectedFrom : p r o d u c t i o n I n c r e a s i n g I n i t i a t i v e R e p o r tC
;

bpmn : connectedTo : p r o p o s i t i o n F o r I n i t i a t i v e .

: product ionOptimizat ionMeet ing a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : productionOptimizationMeetingTo−C

ContinuousProduct ionSupervis ing ,
: productionOptimizationMeetingToExecutionOfUpdatedPlan ,
: productionOptimizationMeetingToProductionFollowUp ,
: productionOptimizationMeetingToTopsideProduction−C

Optimization ,
: productonOptimzationMeetingToActionList ;

143

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : hasConnectingTo :C
weekday9amToProductionOptimizationMeeting ,

: weeklyPlanToProductonOptimzationMeeting ;
bpmn : hasName "Production Optimization Meeting"ˆˆ xsd :C

s t r i n g ;
bpmn : i s InLane : o rgan i z e r Produc t i on eng ine e r on sho r e .

: productionOptimizationMeetingToContinuous−C
Product ionSuperv i s ing a bpmn : NormalSequenceFlow ;

bpmn : connectedFrom : product ionOptimizat ionMeet ing ;
bpmn : connectedTo : cont inuousProduct ionSuperv i s ing .

: productionOptimizationMeetingToExecutionOf−UpdatedPlan a C
bpmn : NormalSequenceFlow ;

bpmn : connectedFrom : product ionOptimizat ionMeet ing ;
bpmn : connectedTo : executionOfUpdatedPlan .

: productionOptimizationMeetingToProduction−FollowUp a bpmnC
: NormalSequenceFlow ;

bpmn : connectedFrom : product ionOptimizat ionMeet ing ;
bpmn : connectedTo : tops ideProduct ionOpt imizat ion .

: productionOptimizationMeetingToTopsideProduction−C
Optimizat ion a bpmn : NormalSequenceFlow ;

bpmn : connectedFrom : product ionOptimizat ionMeet ing ;
bpmn : connectedTo : tops ideProduct ionOpt imizat ion .

: product ion Opt imizat ion a bpmn : Pool ;
bpmn : hasLane :C

execut ing Proce s s Opera t i on eng inee r onshore ,
: execut ing Product i on eng inee r onshore ,
: execut ing Techn ica l manager operat ion ,
: o r gan i z e r Produc t i on eng ine e r on sho r e ;
bpmn : hasName "Production Optimization"ˆˆ xsd : s t r i n g .

: productonFollowUpToOptmizationPotential a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : productionFollowUp ;
bpmn : connectedTo : o p t i m i z a t i o n P o t e n t i a l .

: productonOptimzationMeetingToActionList a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : product ionOptimizat ionMeet ing ;
bpmn : connectedTo : a c t i o n L i s t .

: p r o p o s i t i o n F o r I n i t i a t i v e a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

p r o p o s i t i o n F o r I n i t i a t i v e T o D e c i s i o n ,

144

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: p r o p o s i t i o n F o r I n i t i a t i v e T o N e w I n i t i a t i v e ;
bpmn : hasConnectingTo :C

execut ionOfUpdatedPlanToProps i t ionForIn i t ia t ive ,
: forkContinuousProduct ionSupervis ingTo−C

P r o p s i t i o n F o r I n i t i a t i v e ,
: f o rkProduct ionFo l lowUpToProps i t ionFor In i t ia t ive ,
: forkTopsideProductionOptimizat ionTo−C

P r o p s i t i o n F o r I n i t i a t i v e ,
: op tm i za t i onPot en t i a lToPropo s i t i onFor In i t i a t i v e ,
: p roduc t i on Inc r ea s i ng In i t i a t i v eRepo r tToPropo s i t i on−C

F o r I n i t i a t i v e ;
bpmn : hasName "Proposition for Initiative"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : o rgan i z e r Produc t i on eng ine e r on sho r e .

: p r o p o s i t i o n F o r I n i t i a t i v e T o D e c i s i o n a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : p r o p o s i t i o n F o r I n i t i a t i v e ;
bpmn : connectedTo : d e c i s i o n I m p l e m e n t I n i t i a t i v e .

: p r o p o s i t i o n F o r I n i t i a t i v e T o N e w I n i t i a t i v e a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : p r o p o s i t i o n F o r I n i t i a t i v e ;
bpmn : connectedTo : n e w I n i t i a t i v e .

: recommendedPracticeForWellTesting a semtask :C
URLBasedDocument ;

bpmn : hasConnectingFrom :C
recommendedPracticeForWellTestingToWellTesting ;

bpmn : hasName "Recommended Practice for Well Te"ˆˆ xsd :C
s t r i n g ;

semtask : u r l "http://en.wikipedia.org/wiki/Well_Testing"C
ˆˆ xsd : s t r i n g .

: recommendedPracticeForWellTestingToWellTesting a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : recommendedPracticeForWellTesting ;
bpmn : connectedTo : we l lTe s t ing .

: s h o r t D e s c r i p t i o n a semtask : F i e ld ;
semtask : hasName "Short description of the optimization C

potential"ˆˆ xsd : s t r i n g ;
semtask : isInForm : o p t i m i z a t i o n P o t e n t i a l .

: startProduct ionFol lowUp a bpmn : StartEvent ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: startProductionFollowUpToFollowUp a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : startProduct ionFol lowUp ;

145

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : connectedTo : fol lowUp .

: stor ingTestInProdTekDatabase a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

storingTestInProdTekDatabaseToUpdating−C
AllModelsThatUseTestData ;

bpmn : hasConnectingTo :C
approvedToStoringTestInProdTekDatabase ,

: we l lTestResultsToStor ingTestInProdtekDatabase ;
bpmn : hasName "Storing Test in ProdTek Database"ˆˆ xsd :C

s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: storingTestInProdTekDatabaseToUpdating−C
AllModelsThatUseTestData a bpmn : NormalSequenceFlow ;

bpmn : connectedFrom : storingTestInProdTekDatabase ;
bpmn : connectedTo : updatingAllModelsThatUseTestData .

: systemOptimizat ion a bpmn : SubProcess ;
bpmn : hasConnectingTo : fol lowUpToSystemOptimization ;
bpmn : hasName "System Optimization"ˆˆ xsd : s t r i n g ;
bpmn : hasStartEvent : needForNetworkOptimizing ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: topsdeProduct ionOptimizat ionToProduct ionIncreas ing−C
I n i t i a t i v e R e p o r t a bpmn : As soc i a t i on ;

bpmn : connectedFrom : tops ideProduct ionOpt imizat ion ;
bpmn : connectedTo : p r o d u c t i o n I n c r e a s i n g I n i t i a t i v e R e p o r t .

: tops ideProduct ionOpt imizat ion a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

topsdeProduct ionOpt imizat ionToProduct ionIncreas ing−C
I n i t i a t i v e R e p o r t ,

: tops ideProduct ionOptimizat ionToFork ;
bpmn : hasConnectingTo :C

productionOptimizationMeetingToProductionFollowUp ,
: productionOptimizationMeetingToTopside−C

Product ionOptimizat ion ;
bpmn : hasName "Topside Production Optimization"ˆˆ xsd :C

s t r i n g ;
bpmn : i s InLane :C

execut ing Proce s s Opera t i on eng inee r onsho r e .

: tops ideProduct ionOptimizat ionToFork a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : tops ideProduct ionOpt imizat ion ;

146

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : connectedTo :C
forkTops ideProduct ionOptimizat ionAndPropos it ion−C
F o r I n i t a t i v e .

: trendingOfWellData a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : trendingOfWellDataToDecis ion ;
bpmn : hasConnectingTo :C

needForAnalysisToTrendingOfWellData ;
bpmn : hasName "Trending of Well Data"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: trendingOfWellDataToDecis ion a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : trendingOfWellData ;
bpmn : connectedTo : dec is ionNeedForWel lTest .

: updatingAllModelsThatUseTestData a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

updatingAllModelsThatUseTestDataToWellAnalysis ;
bpmn : hasConnectingTo :C

networkModelToValidatingModelWithTestData ,
: storingTestInProdTekDatabaseToUpdating−C

AllModelsThatUseTestData ;
bpmn : hasName "Updating all Models that Use Test Data"ˆˆC

xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: updatingAllModelsThatUseTestDataToWellAnalysis a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : updatingAllModelsThatUseTestData ;
bpmn : connectedTo : w e l lA na ly s i s .

: val idatingModelWithProductionData a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

val idatingModelWithProductionDataToDecis ion ;
bpmn : hasConnectingTo :C

decis ionToValidatingModelWithProductionData ,
: networkModelToValidatingModelWithProductionData ;
bpmn : hasName "Validating Model with Production Data"ˆˆC

xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: val idatingModelWithProductionDataToDecis ion a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : val idatingModelWithProductionData ;
bpmn : connectedTo : decisionModelOK .

147

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: val idatingModelWithTestData a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

val idatingModelWithTestDataToDecis ion ;
bpmn : hasConnectingTo :C

decis ionToValidatingModelWithTestData ;
bpmn : hasName "Validating Model with Test Data"ˆˆ xsd :C

s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: val idatingModelWithTestDataToDecis ion a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : validatingModelWithTestData ;
bpmn : connectedTo : decisionModelOK .

: weekday9amToProductionOptimizationMeeting a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : weekday 9am ;
bpmn : connectedTo : product ionOptimizat ionMeet ing .

: weekday 9am a bpmn : TimerStartEvent ;
bpmn : hasConnectingFrom :C

weekday9amToProductionOptimizationMeeting ;
bpmn : hasName "Weekday 9am"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : o rgan i z e r Produc t i on eng ine e r on sho r e ;
semtask : i sBeginningEvent "true"ˆˆ xsd : boolean .

: weeklyPlanToProductonOptimzationMeeting a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : weekly P and I plan ;
bpmn : connectedTo : product ionOptimizat ionMeet ing .

: weekly P and I plan a semtask : URLBasedDocument ;
bpmn : hasConnectingFrom :C

weeklyPlanToProductonOptimzationMeeting ;
bpmn : hasName "Weekly P&I-plan"ˆˆ xsd : s t r i n g ;
semtask : u r l "http://en.wikipedia.org/wiki/Plan"ˆˆ xsd :C

s t r i n g .

: we l lA na ly s i s a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : we l lAna lys i sToDec i s i on ;
bpmn : hasConnectingTo :C

bestPracticeDocumentForWellAnalysisToWellAnalysis ,
: needForWellTestToWellAnalysis ,
: updatingAllModelsThatUseTestDataToWellAnalysis ;
bpmn : hasName "Well Analysis"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

148

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

: we l lAna lys i sToDec i s i on a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : w e l lA n a ly s i s ;
bpmn : connectedTo :C

decisionMoreThan180DaysSinceLastWellExamination .

: wel lData a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : wellDataToCreatingNetworkModel ;
bpmn : hasConnectingTo : evaluationOfInputDataToWellData ,

: needForNetworkOptimizingToWellData ;
bpmn : hasName "Well Data"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: wellDataToCreatingNetworkModel a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : wel lData ;
bpmn : connectedTo : creatingNetworkModel .

: wel lExamination a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom :C

wel lExaminat ionToWel l In i tat iveSuggest ion ;
bpmn : hasConnectingTo : decis ionToWellExamination ;
bpmn : hasName "Well Examination"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: we l lExaminat ionToWel l In i tat iveSuggest ion a bpmn :C
NormalSequenceFlow ;

bpmn : connectedFrom : wel lExamination ;
bpmn : connectedTo : w e l l I n i t i a t i v e S u g g e s t i o n .

: w e l l I n i t i a t i v e S u g g e s t i o n a bpmn : TerminateEndEvent ;
bpmn : hasConnectingTo : dec i s i onToWe l l In i t a t i v eSugge s t i on ,

: we l lExaminat ionToWel l In i tat iveSuggest ion ;
bpmn : hasName "Well Initiative Suggestion"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: we l lTe s tResu l t s a bpmn : DataObject ;
bpmn : hasConnectingFrom :C

wel lTestResultsToStor ingTestInProdtekDatabase ;
bpmn : hasName "Well Test Results"ˆˆ xsd : s t r i n g .

: we l lTestResultsToStor ingTestInProdtekDatabase a bpmn :C
Assoc i a t i on ;

bpmn : connectedFrom : we l lTe s tResu l t s ;
bpmn : connectedTo : stor ingTestInProdTekDatabase .

: we l lTe s t ing a bpmn : Task ;
bpmn : hasActivityTaskType bpmn : User ;
bpmn : hasConnectingFrom : wellTestingToApproved ;

149

B. THE RDF DOCUMENTS B.1. THE DAILY PRODUCTION OPTIMIZATION

bpmn : hasConnectingTo : approvedToWellTesting ,
: needForWellTestToWellTesting ,
: recommendedPracticeForWellTestingToWellTesting ;
bpmn : hasName "Well Testing"ˆˆ xsd : s t r i n g ;
bpmn : i s InLane : execut ing Produc t i on eng inee r onshore .

: wellTestingToApproved a bpmn : NormalSequenceFlow ;
bpmn : connectedFrom : we l lTe s t ing ;
bpmn : connectedTo : dec is ionApproved .

bpmn : BPMNElement r d f s : comment ""ˆˆ xsd : s t r i n g .

#ENDS

150

B. THE RDF DOCUMENTS B.2. DATA SOURCES

B.2 Data Sources

Listing B.2: A sample of data sources in Notation3
@prefix : <#> .
@prefix data : <http://www.ifi.uio.no/fredaleks/semtask/C

data#> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix protege : <http://protege.stanford.edu/plugins/owl/C

protege#> .
@prefix rd f : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>C

.
@prefix r d f s : <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd : <http://www.w3.org/2001/XMLSchema#> .
@prefix xsp : <http://www.owl-ontologies.com/2005/08/07/xspC

.owl#> .

<> a owl : Ontology ;
owl : imports <http://www.ifi.uio.no/fredaleks/semtask/dataC

> .
[a owl : A l l D i f f e r e n t ;
owl : dist inctMembers (

: temp1
: temp2
: temp3
: temp4
: temp5
: temp6
: temp7
: temp8)] .

: f low1 a data : FlowSensor ;
data :hasPDPURL "http://pdp/sensors/flow1"@en ;
data : isLocatedOn : in jec t ionWel lA1 ;
data : r e l evantSenso r : f low5 .

: f low2 a data : FlowSensor ;
data :hasPDPURL "http://pdp/sensors/flow2"@en ;
data : isLocatedOn : productionWellB1 ;
data : r e l evantSenso r : f low5 .

: f low3 a data : FlowSensor ;
data :hasPDPURL "http://pdp/sensors/flow3"@en ;
data : isLocatedOn : productionWellB2 ;
data : r e l evantSenso r : f low5 .

: f low4 a data : FlowSensor ;
data :hasPDPURL "http://pdp/sensors/flow4"@en ;
data : isLocatedOn : productionWellB3 ;

151

B. THE RDF DOCUMENTS B.2. DATA SOURCES

data : r e l evantSenso r : f low5 .

: f low5 a data : FlowSensor ;
data : hasDesc r ip t i on "Flow before liquid gets seperated"C

ˆˆ xsd : s t r i n g ;
data :hasPDPURL "http://pdp/sensors/flow5"@en ;
data : isLocatedOn : s epara to r1 ;
data : r e l evantSenso r : f low1 ,

: f low2 ,
: f low3 ,
: f low4 .

: gasTank1 a data : Tops ideArt i f a c t ;
data : a r t i f a c tBe long ingTo : osebergEast ;
data :hasPDPURL "http://pdp/osebergEast/artifacts/gasTank1C

"@en ;
data : hasSensor : pressure2 ,

: temp1 ;
data : r e l e v a n t A r t i f a c t : gasTank2 ,

: o i lTank1 .

: gasTank2 a data : Tops ideArt i f a c t ;
data : a r t i f a c tBe long ingTo : osebergEast ;
data :hasPDPURL "http://pdp/osebergEast/artifacts/gasTank2C

"@en ;
data : hasSensor : pressure4 ,

: temp2 ;
data : r e l e v a n t A r t i f a c t : gasTank1 .

: in j ec t ionWel lA1 a data : I n j e c t i o nWe l l ;
data :hasPDPURL ""ˆˆ xsd : s t r i n g ;
data : hasSensor : f low1 ,

: pressure1 ,
: temp3 ;

data : r e l evantWel l : productionWellB3 ;
data : wel lBelongingTo : osebergEast .

: o i lTank1 a data : Tops ideArt i f a c t ;
data : a r t i f a c tBe long ingTo : osebergEast ;
data :hasPDPURL ""@en ;
data : hasSensor : temp4 .

: osebergEast a data : Platform ;
data : h a s A r t i f a c t : gasTank1 ,

: gasTank2 ,
: oilTank1 ,
: s epara to r1 ;

data :hasPDPURL "http://pdp/osebergEast/"@en ;
data : hasWell : in ject ionWel lA1 ,

152

B. THE RDF DOCUMENTS B.2. DATA SOURCES

: productionWellB1 ,
: productionWellB2 ,
: productionWellB3 .

: p r e s su r e1 a data : Pres sureSensor ;
data :hasPDPURL "http://pdp/sensors/pressure1"@en ;
data : isLocatedOn : in jec t ionWel lA1 ;
data : r e l evantSenso r : temp2 .

: p r e s su r e2 a data : Pres sureSensor ;
data :hasPDPURL "http://pdp/sensors/pressure2"@en ;
data : isLocatedOn : gasTank1 ;
data : r e l evantSenso r : temp1 .

: p r e s su r e3 a data : Pres sureSensor ;
data :hasPDPURL "http://pdp/sensors/pressure3"@en ;
data : isLocatedOn : productionWellB1 .

: p r e s su r e4 a data : Pres sureSensor ;
data :hasPDPURL "http://pdp/sensors/pressure4"@en ;
data : isLocatedOn : gasTank2 .

: productionWellB1 a data : ProductionWell ;
data :hasPDPURL ""ˆˆ xsd : s t r i n g ;
data : hasSensor : f low2 ,

: pressure3 ,
: temp5 ;

data : r e l evantWel l : productionWellB2 ;
data : wel lBelongingTo : osebergEast .

: productionWellB2 a data : ProductionWell ;
data :hasPDPURL ""ˆˆ xsd : s t r i n g ;
data : hasSensor : f low3 ,

: temp6 ;
data : r e l evantWel l : productionWellB1 ;
data : wel lBelongingTo : osebergEast .

: productionWellB3 a data : ProductionWell ;
data :hasPDPURL ""ˆˆ xsd : s t r i n g ;
data : hasSensor : f low4 ,

: temp7 ;
data : r e l evantWel l : in j ec t ionWel lA1 ;
data : wel lBelongingTo : osebergEast .

: s epara to r1 a data : Tops ideArt i f a c t ;
data : a r t i f a c tBe long ingTo : osebergEast ;
data :hasPDPURL "http://pdp/osebergEast/artifacts/C

separator1"@en ;
data : hasSensor : f low5 ,

153

B. THE RDF DOCUMENTS B.2. DATA SOURCES

: temp8 .

: temp1 data :hasPDPURL "http://pdp/sensors/temp1"@en ;
data : isLocatedOn : gasTank1 ;
data : r e l evantSenso r : p r e s su re2 .

: temp2 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp2"@en ;
data : isLocatedOn : gasTank2 ;
data : r e l evantSenso r : p r e s su re1 .

: temp3 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp3"@en ;
data : isLocatedOn : in jec t ionWel lA1 .

: temp4 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp4"@en ;
data : isLocatedOn : oi lTank1 .

: temp5 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp5"@en ;
data : isLocatedOn : productionWellB1 .

: temp6 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp6"@en ;
data : isLocatedOn : productionWellB2 .

: temp7 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp7"@en ;
data : isLocatedOn : productionWellB3 .

: temp8 a data : TempSensor ;
data :hasPDPURL "http://pdp/sensors/temp8"@en ;
data : isLocatedOn : s epara to r1 .

#ENDS

154

Appendix C

Jena Rules

Listing C.1: Two execution rules in Jena
// p r e f i x e s
@prefix bpmn : <http://www.ifi.uio.no/fredaleks/semtask/C

bpmn#>
@prefix data : <http://www.ifi.uio.no/fredaleks/semtask/C

data#>
@prefix semtask : <http://www.ifi.uio.no/fredaleks/semtask/C

semtask#>
@prefix execut ion : <http://www.ifi.uio.no/fredaleks/C

semtask/execution#>
@prefix xsd : <http://www.w3.org/2001/XMLSchema#>

// r u l e t h a t p r o c e s s e s o f t r i g g e r e d e v e n t s
[p r o c e s sTr i gge r :
// S p e c i f y the t y p e s o f our v a r i a b l e s

(? s f rd f : type bpmn : SequenceFlow) ,
(? a c t i v i t y rd f : type bpmn : Act i v i ty) ,
(?s tar tEvent rd f : type bpmn : StartEvent) ,
(? t r i g g e r rd f : type execut ion : Tr igger) ,

// Make sure t h a t they are connected to each o t her
(?s tar tEvent execut ion : hasTr igger ? t r i g g e r) ,
(? s f bpmn : connectedFrom ?startEvent) ,
(? s f bpmn : connectedTo ? a c t i v i t y) ,

// This t r i g g e r has not t r i g g e r e d t h i s a c t i v i t y b e f o r e
noValue(? t r i g g e r t r i g g e d ? a c t i v i t y) ,

// Create a new , b lank , RDF−node .
makeTemp(?task) ,

// Create a new RDF−node with the curren t time .

155

C. JENA RULES

now(?now) ,
−>

// Print debug in format ion
print ("RULE: processTrigger. Activity" , ? a c t i v i t y , "C

Event:" , ? s tar tEvent) ,

// Make sure t h i s i s not executed any more f o r t h i s event
(? t r i g g e r t r i g g e d ? a c t i v i t y) ,

// Create the new Task and a t t a c h i t to the a c t i v i t y and C
the t r i g g e r

(?task rd f : type execut ion : Task) ,
(? a c t i v i t y execut ion : hasTask ?task) ,
(?task execut ion : hasCause ? t r i g g e r) ,

// Set timestamp f o r the t r i g g e r
(?task execut ion : c r ea ted ?now)

]

// r u l e t h a t c r e a t e s a t a s k out o f a d e c i s i o n
[p r o c e s s De c i s i o n :

(? s f rd f : type bpmn : SequenceFlow) ,
(? d e c i s i o n A c t i v i t y rd f : type bpmn : Act i v i ty) ,
(? ta skAct iv iy rd f : type bpmn : Act i v i ty) ,
(? d e c i s i o n rd f : type execut ion : Dec i s i on) ,

(? s f bpmn : connectedFrom ? d e c i s i o n A c t i v i t y) ,
(? s f bpmn : connectedTo ? ta skA c t i v i t y) ,
(? d e c i s i o n execut ion : belongsTo ? d e c i s i o n A c t i v i t y) ,

noValue(? d e c i s i o n t r i g g e d ? ta skA c t i v i t y) ,
makeTemp(?task) ,
now(?now) ,
−>

print ("RULE: processDecision. from activity" , C
? d e c i s i o n A c t i v i t y , " to activity:" , ? ta skAct iv iy) ,

(?task rd f : type execut ion : Task) ,
(? t a skAc t i v i t y execut ion : hasTask ?task) ,

//make sure t h i s i s not executed any more f o r t h i s event
(? d e c i s i o n t r i g g e d ? ta skA c t i v i t y) ,

// Create a new Task based on the Decis ion
(?task execut ion : c r ea ted ?now) ,
(?task execut ion : hasCause ? d e c i s i o n)

]

156

	Abstract
	Acknowledgements
	Contents
	Figures
	Listings
	Introduction
	Problem statement --- Semantic task support
	Original problem statement
	Changes

	Motivation
	SemTask
	Organization of thesis

	Integrated Operations and StatoilHydro
	Oil and gas production
	Production optimization

	Integrated Operations
	Benefits
	The IO development
	Implementation requirements
	Slow adopters

	StatoilHydro
	Statoil and Hydro merger
	Hydro at Sandsli --- Oseberg East
	Data

	Industry standards
	ISO 15926
	WITSML
	PRODML

	Workflow
	Definition
	Different workflow systems
	Why use workflow systems?
	Limitations
	Business Process Management
	SoluDyne
	Problems
	Alternatives to SoluDyne

	BPMN
	Flow objects
	Connecting objects
	Swimlanes
	Artifacts
	Benefits over SoluDyne

	Introducing SemTask
	Daily Production Optimization (DPO)
	Description
	DPO --- Optimization potentials

	Scenario
	Participants

	SemTask implementation overview
	Our focus on SemTask

	SoluDyne to BPMN

	Ontology
	An introduction
	Definition
	Example
	Classes
	Properties
	Language requirements
	TBox and ABox
	Expressiveness vs. decidability
	Reasoning/inference tasks

	Short Introduction to Semantic Web
	XML
	RDF
	RDFS
	OWL
	SPARQL

	Web Ontology Language
	OWL Full
	OWL-DL
	OWL Lite
	OWL representation

	Representation of SemTask
	Alternatives
	Using OWL for Semantic Task Support

	SemTask ontologies
	Topology
	Development
	Tools
	Methodology
	Upper ontologies
	Reuse
	Other design decisions

	Ontology statistics
	BPMN Ontology
	Overall strategy
	Classes
	Properties
	Deviations from the BPMN specification
	BPMN as language
	Comparison to the sBPMN ontology

	Semantic task support ontology
	Classes
	Properties

	Data ontology
	Data model
	The Data Ontology in OWL
	Instances of the ontology
	Extensions

	Execution ontology
	The overall idea
	Example execution
	Classes
	Properties

	Execution model
	Introduction
	Execution alternatives

	Rules
	Triple pattern matching

	Rules in Jena
	Testing platform
	Execution engine implementation
	Completing the execution engine

	Fulfillment of the scenario

	Conclusion and further work
	Contributions and conclusion
	Further work
	Finishing SemTask
	Automation of tasks
	Extension of the Data Ontology
	Guarantees in a workflow diagram
	Constrains checking
	Extending with other ontologies

	Acronyms
	Bibliography
	Appendix
	The SemTask OWL Ontologies
	The BPMN Ontology
	The SemTask Ontology
	The Data Ontology
	The Execution Ontology

	The RDF Documents
	The Daily Production Optimization
	Data Sources

	Jena Rules

