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Executive Summary

The dissertation identifies and discusses impact of a model-based approach to
teaching and learning introductory object-oriented programming both for practi-
tioners and for computer science education research.

Learning to program is notoriously difficult. This dissertation investigates ways to
teach introductory object-oriented programming at the university level. It focuses
on a model-based approach, describes and argues for this approach and investi-
gates several of its aspects. It gives an overview of the research in teaching intro-
ductory programming in an objects-first way. The dissertation also investigates
ways for university teachers to share and document best practices in teaching in-

troductory object-oriented programming through pedagogical patterns.

The dissertation addresses both traditional young full-time students and experi-
enced programmers (although not in object-orientation) participating in part-time
education. It examines whether the same success factors for learning program-
ming apply to a model-based approach as to introductory programming courses in
general for full-time students and gives a general overview of research in success
factors for introductory programming. Some factors are the same, because stu-
dents’ math competence is positively correlated with their success. The disserta-
tion examines how experienced programmers link a model-based programming
course to their professional practices. The general answer is that the part-time stu-
dents do not need to have a direct link to their specific work-practice, they expect
to create the link themselves; but the teacher must be aware of the conditions fac-
ing the part-time students in industry. Furthermore, the dissertation addresses in-
teraction patterns for part-time students learning model-based introductory pro-
gramming in a net-based environment. A previously prepared solution to an exer-

cise is found to mediate the interaction in three different ways.

Design patterns have had a major impact on the quality of object-oriented soft-
ware. Inspired by this, researchers have suggested pedagogical patterns for shar-
ing best practices in teaching introductory object-oriented programming. It was
expected that university teachers’ knowledge of pedagogical patterns was limited,
but this research proved that to be wrong; about half of the teachers know peda-

gogical patterns. One of the problems this dissertation identifies is the lack of a



structuring principle for pedagogical patterns; potential users have problems iden-
tifying the correct patterns to apply. An alternative structuring principle based on
a constructivist learning theory is suggested and analysed.
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1 Introduction

Two roads diverged in a wood, and | —
| took the one less travelled by,
And that has made all the difference.

Robert Frost (1874—-1963), “The Road Not Taken”

This chapter shortly introduces the problem area. It describes and argues for the

research questions guiding this dissertation.

Learning to program is notoriously difficult. For example, Bergin and Reilly
(2005) note that “it is well known in the Computer Science Education (CSE)
community that students have difficulty with programming courses and this can
result in high drop-out and failure rates.” (p. 293). For almost 40 years teaching
programming to novices has been considered a big challenge — and it still is
(Dijkstra, 1969; Gries, 1974; McCracken et al., 2001; Robins, Rountree, & Roun-
tree, 2003; Soloway & Spohrer, 1989; Tucker, 1996); in fact, it is considered one
of seven grand challenges in computing education (McGettrick et al., 2005).
Teaching introductory programming at the university level has been the basis for
many lively discussions among computer science teachers (Astrachan, Bruce,
Koffman, Kolling, & Reges, 2005; Bailie, Courtney, Murray, Schiaffino, &
Tuohy, 2003; Bruce, 2005; SIGCSE-members, 2005) and the basis for a substan-
tial number of articles (e.g., searching “CS1” at ACM’s digital library gives 1331
hits and searching “introductory programming” gives 1309 (search results com-
piled August, 31 2007)). Universal approaches to the design of computing curric-
ula also have been taken — the most well known and influential being the series of
curricula recommendations made by the ACM (American Association for the
Computing Machinery — (Association for computing machinery, n.d.)) and IEEE
(Institute of Electrical and Electronics Engineers, Inc. — (IEEE, n.d.)). They first
described a standardized curriculum for introductory programming at the univer-
sity level in 1968 (Atchison et al., 1968). Currently, a revision and enlargement of
the curriculum recommendations are underway, broadening their scope from tra-
ditional computer science to the broader field of IT (Shackelford, 2005), from

Information Systems (Gorgone et al., 2002) to Computer Engineering (Soldan,
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2004). Within the bachelors’ program, where introductory programming is de-
scribed, the latest description is from 2001, known as the “Computing Curriculum
2001,” or CC2001, for short (Engel & Roberts, 2001). For an overview of the de-
velopment of the ACM curricula, see Hemmendinger (2007).

This dissertation is within the field of computer science education research, more
specifically, research on teaching and learning introductory object-oriented pro-
gramming.

The next two sections present the research questions guiding the PhD project
along with the rationale for these questions. The questions are organized and ar-
gued in relation to the didactic triangle: Content, student and teacher. The last

section presents the organization of the remainder of the dissertation.

1.1 Research Focus and Research Questions

One of the first courses students encounter when learning computer science or
related fields (e.g., multimedia, information science) is an introductory program-
ming course. As CC2001 concluded:

... the programming-first model is likely to remain dominant for the foresee-
able future (p. 24).

This gives us an extra incentive to focus on problems related to introductory pro-
gramming courses (commonly known as CS1 courses). However, as Doran and
Langan (1995) note:

Unfortunately, initial Computer Science courses are often characterized by: (i)
a great deal of learning frustration; (ii) a fairly significant student drop rate;
(iit) poorly defined exit behaviours (i.e., what students should be able to do by
the time the course is completed) and (iv) inadequate tools to determine if the

students learned “enough”. (p. 218)

The overall focus of this dissertation is teaching and learning object-oriented in-

troductory programming, and the overall research theme is:

What is a good approach to teaching and learning introductory pro-

gramming using the objects-first approach?

A good approach avoids the problems noted by Doran and Langan (see above). A

good approach to learning is different from student to student (e.g., the Dunn and

12



Dunn learning style focuses on “each individual’s multidimensional characteristics
in order to determine what will most likely trigger each student’s concentration,
and cause long-term memory” (Dunn, 1990, p. 224)). Many different learning
styles exist with associated teaching methods (Cassidy, 2004)*. It is therefore im-
portant to notice the indefinite article a good approach; we do not have the hypo-
thesis that one approach suitable to all students and/or teachers exists.

There are several basic assumptions and hypotheses in the theme. Learning pro-
gramming takes place in an institutional setting (more precisely at a university)
where the traditional way to learn something is to follow a course. In this course,
the course designer (typically the teacher) defines the goals and content of the
course and the way to evaluate these goals. Consequently, it is the course designer
who defines what programming means, in what programming language the pro-
gramming is expressed, what tools and resources is to be used and what level of

programming expertise is required.

Given these prerequisites, this dissertation aims at giving one answer within the
research theme. It does so by describing one approach to teaching introductory
object-oriented programming (the word “approach” is used in a broad sense in-
cluding the goals of the course, pedagogical/didactical decisions, programming
language, and tools). The dissertation further researches ways to document and
exchange teaching experience among teachers teaching introductory programming
and success factors for students participating in learning introductory object-
oriented programming.

In “Computer Science Education Research” Fincher and Petre (2004) write as the
first sentence that “computer science education research is an emergent area and is
still giving rise to a literature” (p. 1). The area draws on many different fields of
scholarship and research — computer science, psychology, education, and technol-
ogy — with the aim of building theories for teaching and learning computer science
education specific topics. Since computer science in itself is a relatively young

field (ACM — Association for Computing Machinery, the first society in comput-

! Learning styles have also been used in research within introductory programming (L. Thomas,
Ratcliffe, Woodbury, & Jarman, 2002). However, this is not the focus of this dissertation.
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ing — celebrates its 60" anniversary in 2007), there are many unexploited research
questions in this field.

1.1.1 The Research Questions

Didactics (Greek: didaskein (8L820K2L¥) = to teach; lore of teaching) is defined

by Merriam-Webster’s On-Line Dictionary as

systematic instruction (and a synonym for pedagogy, which is defined as “the

art, science, or profession of teaching”) (Merriam-Webster, 2007)
A better and operational definition is given by Wikipedia as

the theory of teaching and, in a wider sense, the theory and practical applica-
tion of teaching and learning. Slight variations on the term are widely used in

many cultures, but rarely used in English-speaking cultures. (Wikipedia, 2007)

In the Anglo-American part of the world, didactics has a negative connotation.

However, as Hamilton (1999) note

The European discourse of didactics is, | suggest, very close to the Anglo-

American discourse of pedagogies. Only their language divides them. (p. 135)

According to Diederich (1988) the relevant elements in a teaching situation can
often be described by the didactic triangle (see figure 1). According to Peterf3en
(2001), this triangle originates from Johann Friedrich Herbart; a German philoso-
pher, psychologist, and by some defined as the founder of pedagogy as an aca-
demic discipline.

Content

Teacher Student

Figure 1: The didactic triangle
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The didactic triangle describes the relevant elements in a teaching situation; the
model also stresses the relations between them. In this dissertation the didactic
triangle is not used as an analytic framework but as a means to identify the rele-
vant elements to study. More specific didactic models exist; one is discussed later
in the dissertation (section 4.1).

This dissertation addresses all three elements of the didactic triangle within the
area of object-oriented introductory programming. It describes, motivates and
argues for a particular didactical design of an introductory programming course. It
researches aspects of students being taught using this didactical design and teach-

ers teaching within the area of introductory object-oriented programming.

The particular design of an introductory programming course under investigation
is termed ‘““a model-based approach”. The approach will be described in detail in

section 6.1, but it is founded on four principles:

1. Objects from day one — in the beginning students use predefined classes to
create objects, then they imitate the implementation of a class and finally

they create classes,

2. A balanced view of the three perspectives on the role of a programming
language (Knudsen & Madsen, 1988),

3. Enforce the use of a systematic way to implement the description of a so-

lution, and

4. An explicit focus on the programming process, not just the programming
language.

One of the main outcomes of this dissertation is such a design and research of it.
The design is based on pedagogical theories helping to fulfil the principles. The
explicit focus on the programming process broadens the content category to in-

clude process not just traditional static content.

The second main outcome of this dissertation is a way to structure and generalize
teaching experiences in the form of pedagogical patterns based explicitly on learn-

ing theories. Graphically the outcome is illustrated in figure 2.
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Content
model-based

pedagogical approach
patterns

Teacher Student

Figure 2: Main outcomes of disse rtation

1.1.1.1 Content
CC2001 characterize the current state of affairs of programming courses in the

following way:

Programming courses often focus on syntax and the particular characteristics
of a programming language, leading students to concentrate on these relatively
unimportant details rather than the underlying algorithmic skills. This focus on
details means that many students fail to comprehend the essential algorithmic

model that transcends particular programming languages.

Moreover, concentrating on the mechanistic details of programming con-
structs often leaves students to figure out the essential character of program-
ming through an ad hoc process of trial and error. Such courses thus risk leav-
ing students who are at the very beginning of their academic careers to floun-
der on their own with respect to the complex activity of programming. (p. 23)

Consequently, we need to find ways to teach programming so that there is a
broader scope than just the syntax and particular characteristics of the program-
ming language and with a goal of learning a systematic programming process
other than trial and error.

Knudsen and Madsen (1988) describe three perspectives on the role of a pro-

gramming language:

Instructing the computer: The programming language is viewed as a high-
level machine language. The focus is on aspects of program execution such as

storage layout, control flow and persistence.
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Managing the program description: The programming language is used for
an overview and understanding of the entire program. The focus is on aspects

such as visibility, encapsulation, modularity and separate compilation.

Conceptual modelling: The programming language is used for expressing
concepts and structures. The focus is on constructs for describing concepts and

phenomena (p. 25).

These represent a widespread three-level perspective on object-oriented pro-
gramming as represented by the three abstraction levels for the interpretation of
UML class models (OMG, 2007): conceptual level, specification level and

code/implementation level (Fowler & Scott, 2000).

Designing a programming course requires a decision about how much time, effort,
and focus are given to each of these three perspectives. It is possible to focus only
on the first, instructing the computer, and to ignore the two others. This result in a
course in which the programming language’s details are in focus, but whose stu-
dents do not learn the underlying programming paradigm as the one described in
the first paragraph in the quote from CC2001. If, on the other hand, the focus is
only on conceptual modelling (using a case-tool to generate code), the result is a
course whose students cannot produce code by themselves.

Most of the descriptions and discussions of the objects-first strategy tend to focus
on instructing the computer and managing the program’s description (‘“Program-
ming in Context: a Model-First Approach to CS1”). Robins, Rountree and Roun-
tree (2003) conclude, “Typical introductory programming textbooks devote most
of their content to presenting knowledge about a particular programming lan-
guage” (p. 141); that is to say, the majority of them are based on an “instructing
the computer” or “managing the computer” perspective. We have been able to
find only four articles discussing the adoption of conceptual modelling in intro-
ductory programming courses (Alphonce & Ventura, 2002; Knudsen & Madsen,
1996; Madsen, Torgersen, Rgn, & Thorup, 1998; Sicilia, 2006).

In “Grand Challenges in Computing: Education — A Summary” McGettrick et al.
(2005) identify seven challenges for computer science education. One is pro-

gramming issues (challenge #4) where they describe the challenge as
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Understand the programming process and programming practice to deliver ef-
fective educational transfer of knowledge and skills (p. 46)

The problems identified above and the objective of a course not just focusing on
one of the perspectives of the object-oriented programming language has led to

the following research question:

R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models? as a structuring

mechanism, and coding?

This research question is a kind of existence proof seeking a course design that
meets the design criteria systematic programming process, conceptual models as
a map of the program and where the students still learn coding®. A requirement
for the design is that the students learn the above mentioned criteria; this is inter-
preted as the number of students passing the exam is at least as high as traditional

courses. This dissertation describes such a course design called model-based.

1.1.1.2 Student
For the students, the main interest is in factors related to their success in learning

object-orientation.

Most of the studies of learning introductory object-oriented programming focus
on traditional, full-time university students. A growing target group in computer
science education is adults with previous knowledge of programming but not ob-
ject-oriented programming. Denmark’s IT industry employs more than 100,000
people (Ministeriet for Videnskab - Teknologi og Udvikling, 2003). Only 15,000
of them have a university degree (at least two years of study at the college level).
In other words, more than 85,000 people are professionally working in the IT in-
dustry without a college education. Many of these work as programmers, mostly

trained in an imperative way of thinking®. Given the current trend of changing to

2 The term “conceptual model” is to be understood in the way it is used in the three perspectives on
the programming language described by Knudsen and Madsen (1988). It is not to be understood as
a synonym for models in the referent system (see page 33)

® The term “coding” refers to the implementation of a specification in a programming language.

* See e.g. Raadt, Watson and Toleman (2002) who found in 2002 that “Over half of all students are
initially taught using a Procedural approach” (p. 333). Levy (1995) reported that in 1995 Pascal “is
still taught by most schools in the United States” (p. 24)
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object-orientation (Benander, Benander, & Sang, 2004), it is relevant to study
how these people learn object-oriented programming. This group knows what
programming is, so one interesting question is how they link the different aspects
of a course on introductory object-oriented programming to their professional
practices. This has led to the following research question:

R2a: How do the different aspects of a model-based programming

course influence professionals’ practice?

Lifelong learning is seen as one of the key answers to challenges that the Euro-
pean Union faces (European Union, 2006b). One of the elements in implementing
lifelong learning is e-learning, thereby making it possible for adult students to
combine their working-, family- and study-life. The addition of e-learning in-
creases the complexity and influences the learning. But how do the interaction
patterns® between the learners when they are adults and “not-traditional” students

evolve, and how does a technology rich environment, influence the interaction?

R2b: What are the interaction patterns for professionals learning ob-
ject-oriented programming with a focus on a systematic programming
process and conceptual models as structuring mechanisms in a tech-

nology rich distance education setting?

Factors for predicting success in learning object-oriented programming can be
divided into two groups — those that teachers cannot do anything about and those
that teachers can address. Several studies on this subject have focused on predic-
tors that the teachers have no control over (see section 3.2.3 and appendix 11.9).
These studies report mixed findings (some report that over 60% of a student’s
exam grade can be predicted by a few factors such as math grade or abstraction
ability — e.g., Kurtz (1980); others found that none of the studied variables have
any effect — e.g., Ventura and Ramamurthy (2004)). Only a few of these studies

were done in an objects-first course.

Are the factors that promote the students’ success when taught in a model-based

way the same as in other approaches? The factors investigated for this dissertation

5 Please do not confuse the use of the word “interaction pattern” here with the use of the word
“pattern” in pedagogical pattern or design pattern. In this context it means “observable characteris-
tics of the interaction of students”
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include among other variables previous math grades, gender, and abstract reason-
ing ability.

R3: Do model-based introductory programming courses have the same

success factors as more traditional courses?

The rationale for conducting this kind of study is to see if the oft-cited predictors
apply equally to a model-based course. This rationale is two-fold: first, if the same
predictors apply, it could be taken as an argument for the generalizability of pre-
vious studies’ findings. Second, if the traditional predictors accurately predict the
success of students participating in a model-based course, studies focusing on
more detailed elements need not be done; it would be more relevant to find ways

to improve these success factors.

Focusing on the two subgroups of students — professionals with previous impera-
tive programming experience and traditional young students who have just fin-
ished high-school — calls for a comparison of the success factors between these
two groups. Unfortunately, the number of professionals with previous imperative
programming experience we can address is too limited to do statistical analysis for
differences between the groups. Consequently — and in order for the results to be
comparable with findings in related research — the group researched for success
factors will be traditional young students who have just finished high-school.

1.1.1.3 Teacher
In “Grand Challenges in Computing: Education — A Summary” McGettrick et al.

(2005) describe the grand challenges for computing education: Perception of
computing, Innovation, Competencies, Programming issues, Formalism, about e-
learning and Pre-university issues. The basis for the selection of challenges was a
conference held in Newcastle on 30 and 31 March 2004. However, as Lister
(2005a) notes:

The Grand Challenges paper ignores one important area, and that is ourselves.
All of us who teach computer science were students once, and unusually suc-
cessful students. This makes us blind to some of the problems faced by typical
students, and makes us reluctant to change from the content and teaching style
that so appealed us. Computer education research should study teachers as

much as students. (p. 15)
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Kansanen and Meri (1999) discusses the relation between the teacher and the con-
tent:

In the relation between the teacher and the content the teacher’s competence in
content is in focus. From the point of view of subject didactics the question is
of the balance between subject knowledge and pedagogy.... Of importance is
also that the teacher’s relation to the content is sufficiently many-sided and

there is pedagogical competence enough. (p. 113)

Typically, teachers who teach computer science — like most other university
teachers — have no formal education in teaching. Many are more interested in re-
search than in teaching (Lister, 2006). This research therefore focuses on ways
that teachers not necessarily interested in pedagogy can improve their teaching of

introductory object-oriented programming.

Others have focused on this problem. One approach we find promising is the use
of patterns to capture knowledge of teaching and learning object technology
(Bennedsen & Eriksen, 2003; Bergin, n.d.; Eckstein, 2001; Fincher & Utting,
2002; The pedagogical patterns project, n.d.) in the form of pedagogical patterns.
Pedagogical patterns try “to capture expert knowledge of the practice of teaching
and learning” (The pedagogical patterns project, n.d.) in a compact way which is
easy to communicate.

Design patterns (Gamma, Helm, Johnson, & Vlissides, 1995) have had an enor-
mous impact on the dissemination of good design practice within object-oriented
software developers. Several other areas have tried to use this approach to assimi-
late and distribute knowledge of solutions to common, recurring problems (Alex-
ander, Ishikawa, & Silverstein, 1977; Fowler, 1997; Hall & Hord, 2000).

Concrete teaching advice in CS1 is highly rated by teachers. There are numerous
conferences and workshops focusing on teaching programming: general ones like
SIGCSE: The Annual Technical Symposium on Computer Science Education
(1970)°, ITICSE: The Annual Conference on Innovation and Technology in Com-
puter Science Education (1996), FIE: Frontiers in Education (1971) and ACE:
Australasian Computing Education Conference (1996) as well as specialized ones

like Program Visualization Workshop (2000, biannual, held in even years in con-

% The number in parenthesis marks the year of origin
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junction with the ITICSE conference), JICC: Java & the Internet in the Compu-
ting Curriculum conference (1997) and CCSCSE: Annual Consortium for Compu-
ting Sciences in Colleges CCSC: Southeastern Conference (1987). The examples
and advice offered at these conferences are enormous, but does not seem to be
described in a way that it is transferable and useful for practitioners. Haberman
(2006) discusses the same problems for the sub-group of High-school computer
science teachers (we believe the same argument is true for university computer

science teachers):

The computer science high school teaching community of practice possesses a
rich, distributed practical knowledge base consisting of individual pieces of
knowledge regarding pedagogical expertise. However, without a proper means
of communication and common rules of discourse, the individual pieces of
knowledge might remain as personal property only, and will be not transferred

within the community, and eventually might even get lost. (p. 87)

Haberman continues to discuss and illustrate how pedagogical patterns can be

used as a communication and reflection means.

Fincher (1999) shares the same hope in her article “Analysis of Design: An Ex-
ploration of Patterns and Pattern Languages for Pedagogy:

For the purposes of education, it would be of great utility if we could discover
and develop ways to exchange knowledge about the design of effective learn-
ing environments. (p. 331)

Although pedagogical patterns have been around since 1995 (Eckstein, 2001),
several authors claim that their impact is limited. Fincher and Utting (2002) state:
“Pedagogical patterns still lack widespread acceptance” (p. 201). This statement
is compliant with the remarks made by Bennedsen and Eriksen (2003), who said:
“To our knowledge there are no reports on the awareness of pedagogical patterns
among teachers, no systematic evaluation of the effect of pedagogical patterns or
other ways of evaluating pedagogical patterns” (p. T4A-3).

Two obvious answers to the question why pedagogical patterns have a limited
impact are: Teachers do not know of pedagogical patterns and/or teachers do not
find pedagogical patterns useful. This has led to the first research question aimed
at teachers:
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R4a: What are the awareness of, use of, and attitude toward pedagogi-
cal patterns among computer science university teachers around the

world?

Pattern and pattern languages originate from Christopher Alexander’s works “The
Timeless Way of Building” (Alexander, 1979) and “A Pattern Language. Towns,
Buildings, Construction” (Alexander et al., 1977) on the architectural design of
buildings and towns. Alexander defines a pattern as a problem which occurs over
and over again in our environment, and then describes the core of the solution to
that problem. He describes 253 patterns in a consistent typographical style (a pat-
tern template) in ”A Pattern Language”. A “language” has two senses for Alexan-
der according to Fincher (1999): “The first sense is that we all share a design lan-
guage that his work merely articulates [...] The other sense of “language” is of an
organising principle which facilitates the use of patterns. Just as a dictionary is
(normally) organised on an alphabetic principle, thus allowing the user to find the
required word easily, so the “language” of the patterns organises them to facilitate
access.” (p. 333). For an introduction to the work of Christopher Alexander see
also Lea (1994).

A pattern language needs an organising principle in order to be useful. The orga-
nizing principle in “A Pattern Language” is scale: Town, street, house. Patterns
are organized according to their usefulness from “city-relevant” to “house-
relevant”. The organizing principle in Gamma, Helm, Johnson, and Vlissides
(1995) (commonly known as the GoF book) is: Creational (object creation),
Structural (structures in a class model) and Behavioural (ways to organize recur-
ring algorithmic problems). The collection of pedagogical patterns has “neither
order, nor organising principle: instead, four separate “indexes” are provided,
each on a different axis: A Learning Objectives Index, a Teaching/Learning Ele-
ment Index, an Alphabetical Index and an Author Index.” (Fincher, 1999, p. 340)

The lack of order or structure to the pedagogical patterns could be one of the an-
swers to the limited impact of them. This has led to the following research ques-

tion:

R4b: How can pedagogical patterns be structured to make them more

useful for university teachers?
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1.2 A Summary of the Research Questions

This dissertation investigates six more specific questions of the general research
theme (learning introductory programming using an objects-first approach). The
six questions are grouped in four (model-based programming course (R1), profes-
sional adults learning introductory programming (R2a + R2b), success factors for
a model-based course (R3) and pedagogical patterns (R4a+R4b)):

R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models as a structuring

mechanism, and coding?

R2a: How do the different aspects of a model-based programming

course influence professionals’ practice?

R2b: What are the interaction patterns for professionals learning ob-
ject-oriented programming with a focus on a systematic programming
process and conceptual models as structuring mechanisms in a tech-

nology rich distance education setting?

R3: Do model-based introductory programming courses have the same
success factors as more traditional courses?

R4a: What are the awareness of, use of, and attitude toward pedagogi-
cal patterns among computer science university teachers around the
world?

R4b: How can pedagogical patterns be structured to make them more
useful for university teachers?

1.3 Organization of the Rest of the Dissertation

This dissertation is composed of an introductory essay (chapters 1 through 9) and
eight research articles, provided as appendices. Chapter 2 gives background and
motivation for this dissertation. Chapter 3 presents the research field “computer
science education” with a specific focus on the areas relevant to this PhD work.
Chapter 4 discusses learning theories. It gives a very brief general overview of
learning theories and more detailed description of the pedagogical approached
used in this research. Chapter 5 gives an account of the research methods. It ar-

gues for the methods used, describes the data sources and discusses trustworthi-
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ness of both the quantitative as well as the qualitative studies. Chapter 6 answers

the research questions. Chapter 7 points out some implications for practice of this

research

both in the area of computer science education and pedagogical patterns.

Many issues are debates in the community of computer science educators, chapter

8 discusses this dissertation’s relation to some of these issues and the last chapter

(chapter

9) points to some further research.

The titles of the eight research articles included as appendices are:

Article I: Programming in Context: a Model-first Approach to CS1.
Article 11: Revealing the Programming Process.
Article 111: Learning Object-Orientation by Professional Adults.

Article IV: Examining Social Interaction Patterns for Online Apprentice-
ship Learning — Object-oriented Programming as the Knowledge Do-

main.

Article V: Abstraction Ability as an Indicator of Success for Learning

Object-Oriented Programming?

Article VI: An Investigation of Potential Success Factors for an Introduc-

tory Model-Driven Programming Course.

Article VII: Categorizing Pedagogical Patterns by Teaching Activities
and Pedagogical Values.

Article VIII: The Dissemination of Pedagogical Patterns.

The eight articles address the four groups of research questions in the following

way:

R1 R2 R3 R4

Article

(1 ", v V, Vi VIIL, VI
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2 Background and Motivation

Ability is what you're capable of doing.
Motivation determines what you do.
Attitude determines how well you do it.

Lou Holtz (1937-1980), American Football Coach

This chapter discusses the background of the research presented. It starts with a
section on computer science education in a world-wide perspective to indicate
some of the implications a better teaching of computer science could have. The
next section discusses teaching and learning programming and gives a background
for the different ways to teach introductory programming defined by ACM. The
following section gives a background for teaching object-oriented programming;
it defines object-orientation, discusses what programming is and, as a conse-
guence of the discussion, what needs to be taught in a programming course. The
next section gives a brief account of my personal background in the area of teach-
ing introductory programming — a background that naturally has had a major im-
pact of the scope of this dissertation. The last section introduces the project in
which part of this dissertation was done.

IT is embedded in everything. IT has a dominant position in the western world’s
economy; in Denmark the IT industry’s part of the total wealth creation in the
private sector was 8.7% in 2001 (Danmarks statistik & Ministeriet for Videnskab,
teknologi og udvikling, 2005, p. 10). The declining number of students enrolling
in computer science programs (Denning, 2004; Madsen, 2006) has therefore be-
come an issue in the political debate (Ministeriet for Videnskab - Teknologi og
Udvikling, 2006). Added to that problem is the low retention rate within computer
science (Beaubouef & Mason, 2005; Denning, 2004; Hundhausen, Farley, &
Brown, 2006; Kaasbagll et al., 2004, p. 1; Kumar, 2003, p. 40). These two prob-
lems stress the importance of building knowledge of the challenges and pitfalls in

computer science education.
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2.1 A World-Wide Perspective on Computer Science Education

UNESCO (United Nations Educational, Scientific and Cultural Organization,
(UNESCO, 2007)) collects data on the number of students who enrol and graduate
in different fields worldwide. In Table 1 the number of students enrolled in terti-
ary computing education and the number of students graduating in regions cov-
ered by UNESCO is given (UNESCO, n.d.). Tertiary studies last from two to
eight years. The enrolment does not include the United States, India and China, so

we estimate that more than two million students per year enrol in computing stud-

ies worldwide.
Number of students | Number of students | Number of countries
enrolled graduated who have supplied

data’

1999 665,058 154,164 43

2000 818,442 205,928 53

2001 1,053,813 239,795 58

2002 1,628,815 319,198 59

2003 1,696,519 374,972 59

2004 1,505,437 368,765 62

Average | 1,228,014 277,137 56

Table 1: Enroliment and graduation in tertiary computer science education.
To give some indication of how difficult students find computer science, we have
contrasted the numbers from the years 1999 (enrolment) and 2004 (graduation);
this is a rough estimation of a world-wide pass (or fail) rate®. For some countries,
1999 enrolment numbers or 2004 graduation numbers were not accessible; in
those cases we have used numbers from the neighbouring years. The result is

shown in figure 3. From this figure, the number of students graduating in 2004

7 Some countries have only given numbers for the enrollment or graduation. The number is the
total number of countries, including the ones who only have supplied one of the numbers. For
example, the United States supply graduation numbers but not enroliment.

8 World-wide the lengths of study programs differ, so the number is a rough approximation to the
percentage of students passing a computer science program.
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was only 27% of the number of students enrolled in 1999°. In other words, it
seems that there are a huge number of students enrolling in tertiary education who
do not graduate; with the reservations mentioned above, 1.45 million students
drop out of their computer science program. In this light, just a small improve-
ment of the pass rate of CS1 would cause a gigantic increase in the number of
students passing (and perhaps eventually graduating) — a one percent increase in

the pass rate means 20,000 students extra passing CS1. This underlines the impor-
tance of building up knowledge on how to teach programming!
500000 }/
400000
300000-/

200000 L
100000 /

Arab States
Europe
Central Asia

O Graduation

Central and Eastern
Caribbean

Western Europe

B Enrollment

Latin America and the
South and West Asia

Figure 3: Enrollment and graduation in computing by region

2.2 Teaching and Learning Programming

Over the years, ongoing discussions have debated the content of an introductory
programming course. In order to define a common curriculum, including an
introductory course, ACM and IEEE established the Joint Task Force on
Computing Curricula 2001 (CC2001). The charter was, “To review the Joint
ACM and IEEE CS Computing Curricula 1991 and to develop a revised and

enhanced version for the year 2001 that will match the latest developments of

° Note that a student graduating in 2004 need not to be enrolled in 1999, so the number take into
account that students may use more or less than the scheduled study time.
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computing technologies in the past decade and endure through the next decade.”
The resulting report gives a de facto description of an introductory programming
course.

CC2001 describes the CS body of knowledge. This body of knowledge is organ-
ized hierarchically into three levels. The highest level of the hierarchy is the area,
which represents a particular disciplinary subfield. There are fourteen areas such
as programming fundamentals (PF) or software engineering (SE). The areas are
broken down into smaller divisions called units, which represent individual the-
matic modules within an area; as an example, fundamental programming con-
structs is a unit on programming fundamentals. Each unit is further subdivided
into a set of topics, which are the lowest level of the hierarchy. It lists the topics
that must be included and some topics that can be included. (Engel & Roberts,
2001, p. 14)

It furthermore describes three approaches to teaching introductory programming

with a focus on programming: imperative-first, objects-first, and functions-first:

Imperative-first: The imperative-first approach is the most traditional of the
models we have included in this report...[the first course] offers an introduc-
tion to programming in an imperative style, using a structure similar to that in
CS1 as defined in Curriculum ’78 (Austing, Barnes, Bonnette, Engel, &
Stokes, 1979; Koffman, Miller, & Wardle, 1984). [The second course] then
extends this base by presenting much of the material from the traditional CS2
course (Koffman, Stemple, & Wardle, 1985), but with an explicit focus on
programming in the object-oriented paradigm ... the first course focuses on
the imperative aspects of that language: expressions, control structures, proce-
dures and functions, and other central elements of the traditional procedural
model. The technigues of object-oriented design are deferred to the follow-on

course (p. 29).

Objects-first: The objects-first model also focuses on programming, but em-
phasizes the principles of object-oriented programming and design from the
very beginning ... The first course in either sequence begins immediately with
the notions of objects and inheritance, giving students early exposure to these
ideas. After experimenting with these ideas in the context of simple interactive
programs, the course then goes on to introduce more traditional control struc-

tures, but always in the context of an overarching focus on object-oriented de-

29



sign. The follow-on courses then go on to cover algorithms, fundamental data
structures and software engineering issues in more detail (p. 30).

Functional-first: The functional-first style was pioneered at MIT in the 1980s
(Abelson & Sussman, 1985) and is characterized by using a simple functional
language, such as Scheme, in the first course ... To cover the material that is
essential in the first year, an introductory course that follows the functional-
first strategy must be followed by an intensive course that covers object-

oriented programming and design (p. 30).

2.3 Teaching and Learning Object-Oriented Programming

Many define Simula as the origin of object-orientation — and consequently
Kresten Nygaard and Ole Johan-Dahl as the inventor of object-orientation (ACM,
2002; Rentsch, 1982).

Madsen, Nygaard and Mgller-Petersen (1993) defined object-oriented program-

ming as follows:

A program execution is regarded as a physical model simulating the behaviour
of either a real or imaginary part of the world.” The real or imaginary part of
the world being modeled is called the referent system, and the program execu-

tion constituting the physical model is called the model system. (p. 286).

One important word here is “model,” which can represent either an abstract de-
scription of the problem domain, a specification model describing the overall
structure of the solution or a concrete implementation model. However, these
models are connected and can be seen as a hierarchy of abstractions. This under-
lines the importance of the students’ understanding of models and how, in a sys-
tematic way, specification models can be transformed into implementation models
(code).

Object-orientation has become a main paradigm of programming in industry, as
well as in computer science and engineering education (Benander et al., 2004;
Dale, 2005; Douglas & Hardgrave, 2000; Lucas, 2003; Raadt et al., 2002; Schulte
& Bennedsen, 2006). As reported by Schulte and Bennedsen (2006), more than
85% of all introductory programming courses include object-oriented concepts,

and of these more than 60% are objects-first courses (p. 5).
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Learning introductory programming is considered difficult by teachers. Schulte
and Bennedsen (2006) report that:

In general it seems that learning programming is seen as difficult. [...] “25%

of the students have difficulty with the subject” (p. 5).

Many different research topics exist within the research on teaching introductory
object-oriented programming. Ragonis and Ben-Ari (2005a) did

an extensive survey of the literature on teaching OOP, which showed that the
following subjects have interested researchers: OOP vs. procedural program-
ming, languages, environments and other tools such as visualizations, teaching
approaches and relevant teaching theories such as constructivism and cogni-

tive apprenticeship (p. 206).

They found that the underlying OOP model must be taught early, and that both
classes and objects must be treated, but detailed treatment of control statements
and advanced object-oriented topics such as inheritance should be postponed.
They furthermore found that educators agree that there is a need for a different
pedagogical approach to teaching OOP, and that there is lack of provable peda-
gogical approaches, appropriate books and suitable environments for novices.
They conclude: “We did not find any publications that reported a long and formal
research project on teaching OOP” (p. 207).

2.3.1 What is Programming?

There is a long and ongoing discussion on the goals for an introductory program-
ming course. Not even the curriculum recommendations in CC2001 give precise
competence goals for a CS1 course. The programming fundamentals (PF) area of
the CS body of knowledge consists of five units: Fundamental programming
constructs (PF1, six topics), Algorithms and problem-solving (PF2, five topics),
Fundamental data structures (PF3, 12 topics), Recursion (PF4, six topics), and
Event-driven programming (PF5, three topics). Within these units, programming

skills are only mentioned as three topicss:

PF1. Topic: Structured decomposition. Learning objectives: Apply the
techniques of structured (functional) decomposition to break a program

into smaller pieces.
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PF2: Topic: Problem-solving strategies; the role of algorithms in the prob-
lem-solving process; debugging strategies. Learning objectives: Discuss
the importance of algorithms in the problem solving process; create algo-
rithms for solving simple problems; describe strategies that are useful in

debugging.

PF4: Topic: Divide-and-conquer strategies; recursive backtracking. Learn-
ing objectives: Describe the divide-and-conquer approach; discuss prob-

lems for which backtracking is an appropriate solution.

A discussion of the learning objectives is outside the scope of this dissertation; it
suffices to note that there is very little focus on programming skills: as Caspersen
(2007) notes:

Except for a bit about recursion and debugging, all that is mentioned is the

vague terms of structured decomposition and problem solving strate-
gies—abstract terms that, without a modern interpretation, easily become ech-

oes from a distant past or even worse: buzzwords (p. 70)

Madsen, Nygaard and Mgaller-Pedersen (1993) describe a general framework for
system development (see figure 4Figure ). Their framework builds upon their per-
spective on objected-oriented programming (see quote on page 30).

Traditionally, abstraction in the referent system is known as analysis, modelling
from the referent system to the model system is known as design and abstraction
in the model system is known as coding.
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Figure 4: The system development process (Madsen et al; 1993, p. 286)

Buck and Stucki (2000) argue that the traditional way to teach programming is “to
recapitulate the systems development process, because that is the order in which
we have learned to apply our craft.” (p. 76). However, as they argue based on an
analysis of cognitive levels of competences founded on Bloom’s taxonomy of
cognitive learning (Bloom, Krathwohl, & Masia, 1956), the typical order in (wa-
terfall) system development (analysis — design — coding) suggest that the high-
est cognitive level is taught first. They conclude that “based on these pedagogical
influences, the process of learning software engineering should turn the Develop-
ment Life Cycle on its head, incrementally building towards design and then
analysis.” (p. 76)

Doran and Langan (1995) describe'® the development of their CS1 course based
on “strategic sequencing and associated levels of mastery of key topics based on
Bloom levels” (p. 218). In general they find their approach satisfactory, but as
they notice, they lack a control group for assessment purposes. Their results indi-

cate that the students perceived a benefit in the explicit expectations and goals.

Adams (1996) discusses what software design methodology should be taught in
CS1 when a change is made from an imperative programming language (Pascal at
the time of the article) to an object-oriented programming language (C++ at the
time of the article). He conclude

10 Their description includes both their CS1 and CS2 course
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Two common answers are (i) continue teaching structured design in CS 1 and
switch to object-oriented design in CS2; or (ii) teach object-oriented design
from the outset in CS 1. We believe that both of these approaches have sig-
nificant drawbacks. (p. 78)

He argues that teaching structured design in CS1 requires the students to
“unlearn” this when they learn object-oriented design in CS2 — a major burden on
the students. Learning object-oriented design from the outset requires the students
to know the entire object-oriented conceptual framework!* — a very demanding
task.

2.3.2 What Should Students Learn when Learning to Program?

A substantial amount of research has been conducted regarding teaching introduc-
tory programming (e.g., Christensen (2004); Gries (1974) and Pattis (1993)). Be-
fore the mid-nineties, all studies were on students learning imperative style of
programming; see e.g., Winslow (1996) for a summary of these studies. Later
studies have also focused on learning an object-oriented style of programming.
One aspect of this discussion is — naturally — what novices find problematic when
they learn programming (see e.g., Détienne (1997); Goold and Rimmer (2000);
Lahtinen, Ala-Mutka, and Jarvinen (2005); Rountree, Rountree, Robins, and Han-
nah (2004) plus Wiedenbeck, Fix, and Scholtz (1993). A comprehensive review
of this is Robins et al (2003)).

Several authors have asked teachers about their view on topics for CS1. Milne and
Rowe (2002) asked students and lecturers from Ireland and the United Kingdom
to rank the difficulty of several topics from the C++ programming language. The
three most difficult topics were pointers, virtual functions and dynamic allocation
of memory (with malloc). Dale (2006; 2005) asked teachers, in a free-text form,
the following question: “In your experience, what is the most difficult topic to
teach in CS1?” Based on these answers, Dale performed a content analysis and
abstracted a list of topics teachers find relevant. Dale furthermore asked about the

relevance of several other topics by asking the respondents to give the number of

1 The object-oriented conceptual framework include notions of concepts and phenomena, identifi-
cation of objects, identification of classes, classification, generalization and specialization, mul-
tiple classification, reference- and part-of composition (Madsen, Nygaard, & Magller-Pedersen,
1993).
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hours they teach the particular topic. Schulte and Bennedsen (2006) performed a
study on the importance, difficulty and relevance of 28 topics compiled from the
study of Dale, Milne and Rowe as well as CC2001. They found that the teachers
found the “classic” topics (e.g. selection and iteration, simple data structures, pa-
rameters) to be the most relevant and those which should be taught at the highest
competence level (on average at the analysis level according to Bloom’s taxon-
omy (Bloom et al., 1956)). They found that the teachers found recursion, algo-
rithm efficiency, polymorphism and inheritance, generics and advanced data
structures to be the most difficult topics for the students to learn (all topics close
to “Very Difficult (50% have problems)”).

In the 1980s, a series of experiments were undertaken in order to understand the
problems a novice faces when learning programming. du Boulay (1989, p. 283)
summarized these and described five overlapping areas that a student must be able

to master:

General orientation: What is the general idea of programs, what are they

for, and what can be done using them?

The notional machine: An abstract model of the machine when it exe-
cutes programs (i.e., the running program’s meaning). The notional ma-
chine’s properties are language dependent (du Boulay, O'Shea, & Monk,
1999, p. 265).

Notation: The syntax and semantics of the programming language used.

Structures: (Abstract) solutions to standard problems, a structured set of
related knowledge.

Pragmatics: The skills of planning, developing, testing, debugging and so

on.

In other words it is not enough just to present the syntax and semantics of a pro-
gramming language as is the dominant way to teach introductory programming

(Kolling, 2003; Robins et al., 2003), we also need to teach the other areas.

Schulte and Bennedsen (2006) included a study on teachers’ view of the role of
the five areas in an introductory programming course. They found the following

percentage of areas covered (table from p. 24 in the article):
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Univer- High OO covered
Taught Overall | College
sity school | Yes No

General orien- | 53% 52% 63% 45% 56% 53%
tation

Notional ma- | 29% 29% 32% 27% 30% 33%

chine

notation + S57% 58% 65% 43% 60% 58%

structures 58% 57% 67% 51% 61% 60%

pragmatics 48% 45% 56% 45% 52% 44%

Table 2: Percentages of areas taught (no sign. differences between OO covered yes/no)
Apart from the low coverage of the notional machine, all areas are covered
equally.

The general orientation should give the students an understanding of computers
and the problems that are relevant to solve using computers. We should give the
students an understanding of the difference in the referent system and the model
system; in the referent system it is possible to use a prototypical view (or defini-
tion) of a given concept whereas in the model system we must give an Aristotelian
definition of a given concept. Madsen, Nygaard and Mgller-Pedersen (1993) de-
fine prototypical view and Aristotelian view as follows (the intension of a concept
is a collection of properties that in some way characterize the phenomena in the
collection of phenomena that the concept somehow covers):

Avristotelian view: The intension of a concept is a collection of properties that
may be divided into two groups: the defining properties that all phenomena in
the extension must have and the characteristic properties that the phenomena
may or may not have. The nature of the properties is such that it is objectively

determinable whether or not a phenomenon has a certain property. (p. 292)

Prototypical view: The intension of a concept consists of examples of proper-
ties that phenomena may have, together with a collection of typical phenom-
ena covered by the concept, called prototypes. (p. 293)

36



The understanding of the different views on concepts in the referent and model
system does not dependent on the paradigm used, i.e. we need to make sure that
the students learn this regardless of the actual programming paradigm taught.

The notional machine depends on the programming paradigm taught. If it is an
imperative paradigm, the execution can be described by the call stack (given that
we do not dynamically allocate memory). In the object-oriented paradigm, we
furthermore need a description of the objects and there links. Several articles have
found that students often construct wrong models of an object-oriented program’s
execution (Lahtinen et al. (2005); Milne and Rowe (2002) plus Ragonis and Ben-
Ari (2005b)). Milne and Rowe (2002) conclude that most reported learning prob-
lems are due to the “inability [of students] to comprehend what is happening to
their program in memory, as they are incapable of creating a clear mental model
of its execution.” (p. 55). Lahtinen, Ala-Mutka, and Jarvinen (2005) studied what
domains students found problematic. They concluded: “For example, there are
often misconceptions related to variable initialization, loops, conditions, pointers
and recursion. Students also have problems with understanding that each instruc-
tion is executed in the state that has been created by the previous instructions” (p.
15). These findings are consistent with the findings of Guzdial (1995) “A specific
problem that students encounter is creating collaborative objects — students have
difficulty creating and understanding connections between objects” (p. 182).
Ragonis and Ben-Ari (2005a) have conducted a longitudinal study among high
school students learning object-oriented programming; they conclude, “students
find it hard to create a general picture of the execution of a program that solves a
problem” (p. 214).

The structures (see p. 35) are related to the programming paradigm, e.g. in the
imperative paradigm we could teach the general sweep algorithm (see Figure 5)
in order to teach a student how to find one or many elements in a collection fulfill-

ing a given criteria:
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result ~ <empty>

do <collection is not empty>
<select element>
if <element fulfils criteria>

<add element to result>

fi

od

return result

Figure 5: General find-all sweep algorithm
In the object-oriented paradigm, the class model describes the static structure of
the solution (the conceptual modelling perspective described by Knudsen and
Madsen (1988)). Consequently, we need to teach systematic ways to implement
class models (see figure 6 for an example) as well as standard solutions for im-
plementation of methods (e.g. iteration through a collection of objects in order to
find all that fulfils a given criteria — the find-all sweep algorithm or the sweep

algorithm from figure 6 ).

class A {

private T al;

public A(T al) {

this.al = al;

T:al }
ml (T2) : T3 public T3 ml (T2 param) {

Figure 6 Coding pattern for a single class
As described above, the programming process is not a linear one with a fixed set
of rules. Robillard (2005) describes two creative mental activities: systematic and
opportunistic. A set of cognitive actions is systematic when all the knowledge
required to complete a task is available making it possible to follow a well-
structured plan. A set of cognitive actions is opportunistic when further explora-
tion is necessary. He argues that “any engineering activity that involves some
creativity will result in a mixture of opportunistic and systematic approaches.” (p.

63). It is therefore necessary that we teach the students how to handle these differ-
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ent approaches and that a “golden road” from problem to final program does not
exists. Soloway (1986) noted back in 1986 that

Expert programmers know a great deal more than just the syntax and seman-
tics of language constructs [...] They have built up large libraries of stereo-
typical solutions to problems as well as strategies for coordinating and com-
posing them. Students should be taught explicitly about these libraries and

strategies for using them. (p. 850)

Experts are not necessarily conscious of the knowledge and strategies they em-
ploy to solve a problem, write a program, etc. (Soloway, 1986). Often, experts
refer to “intuition, gut feel, etc.” as the sources of their inspiration. This is the
same in related fields (e.g. mathematics (Michener, 1978; Sweller, Mawer, &
Ward, 1983) and physics (Larkin, McDermott, Simon, & Simon, 1980; Larkin,
McDermott, Simon, & Simon, 1980)) and has lead to ways to handle this in teach-
ing: cognitive apprenticeship (Collins, Brown, & Newman, 1989; Collins, Brown,
& Holum, 1991). For a more elaborated discussion on cognitive apprenticeship,

see section 4.6.

Consequently, we need to adapt a way of teaching that can disclose these strate-
gies to the students — in other words we need to teach programming as both a verb

and a noun rather than just as a noun.

2.4 My Personal Background for this Research

| have taught introductory programming for many years (since 1988) and have
always found it to be challenging. This interest has naturally led me to the focus
of this dissertation.

When | graduated in Computer Science from the University of Aarhus, | started to
teach at the Advanced Computer Studies at Aarhus Business College (Advanced
Computer Studies, n.d.). It is a practice-oriented, full-time educational study last-
ing two years and three months. It is divided into five semesters consisting of a
combination of IT-disciplines and a number of commercial subjects. The first four
semesters are subject-oriented and in the fifth semester the main dissertation is

elaborated in close co-operation with a company in Denmark or abroad.

When | started, it was at a time where studying computer science was popular and

many students enrolled; many of the students fund the relatively short study at-
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tractive compared to a more traditional university masters degree (in Denmark it
was — and still is — rather uncommon to stop studying after a bachelors degree).
However, many of the students dropped out. One of the major factors to this was
that they (also) found programming to be very difficult. As a consequence, Mi-
chael Caspersen and | analysed the problems we could observe and the foundation
for the approach described and researched in this dissertation was laid. It is de-
scribed in Bennedsen and Caspersen (1995). We found the following problems
(back then we used Pascal (Jensen, Wirth, Mickel, & Miner, 1991) as the pro-

gramming language):

Algorithmic patterns. We would like to focus on algorithmic patterns and
techniques, but used the first 75% of the course teaching about the pro-

gramming language.

Details. We bombarded the students with language details (all the types in
the language, pointers, all the possible ways to do iteration etc.). The stu-

dents lost sight of the wood for all the trees.

Abstraction ability. Almost all of our exercises started from scratch; the
students should program everything. The students did not get used to use
pre-programmed abstractions (modules).

Closed/open exercises. Many exercises required too much work before
the students got to the point where they could test their solutions. Further-
more, the exercises did not motivate the students do continue working on
them.

Role model. We expected that the students could write a program after
they had seen one or two. The students need to read a lot of well-designed
programs before they write their own.

Motivation. Many exercises were uninteresting. When exercises start from
scratch, the ambition level is limited and consequently the problems that

students can solve do not show the power of computer applications.

The model-based approach described and analysed in this dissertation addresses
all of the above problems and proposes solutions for them. Naturally, the concrete
instructional design depends on many factors, e.g. the factors described by Hiim

and Hippe (2006) — see section 4.1. Young liberal arts students who have to learn
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about programming to have an understanding of the problems that one can solve
using programming or experienced imperative programmers who should learn to
program object-oriented have different learning premises and different learning
objectives. Ten students in a class is different than 300 in a lecture hall and conse-
quently requires a different didactical design.

2.5 Project COOL

The Comprehensive Object-Oriented Learning project (Berge et al., 2003; COOL,
n.d.; Nygaard, 2002) started in October 2002 and concluded at the end of 2005. Its
main partners were InterMedia and the Department of Informatics, both at the
University of Oslo; the Norwegian Computing Center; and Simula Research
Laboratory. | was associated with the project and have conducted research with
several of its participants (“Programming in Context: a Model-First Approach to
CS1”; “Examining social interaction patterns for online apprenticeship learning —
Object-oriented programming as the knowledge domain”; Bennedsen, 2006a,;
Fjuk, Holmboe, Jahreie, & Bennedsen, 2006; Fjuk, Berge, Bennedsen, & Casper-
sen 2004). The project was initiated by Kristen Nygaard*?. With its foundation in
the Scandinavian approach to object-orientation (Knudsen & Madsen, 1988), the
project has been concerned with exploring challenges met in learning this para-
digm and its corresponding concepts. Some of the project’s findings were pub-
lished in the anthology “Comprehensive Object-Oriented Learning: The Learner’s
Perspective” (Fjuk, Karahasanovic, & Kaasbgll, 2006).

Project COOL has explored the challenges of learning object-orientation by study-
ing relationships between tools and programming environments, types of learners,
pedagogical approaches and learning strategies, learning resources and ICTs. The
research has been carried out by conducting a number of case studies, design ex-
periments and controlled experiments (Fjuk, Karahasanovic, & Kaasbgll, 2006).
My contributions to the project are concerned with teaching and learning intro-
ductory object-oriented programming, with a particular interest in the model-

based approach.

12 Kristen Nygaard passed away just a few months before the start of the project. A memorial site
is located at http://www.ifi.uio.no/in_memoriam_Kkristen/
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3 Computer Science Education Research

There is nothing like looking, if you want to find something.
You certainly usually find something, if you look,
but it is not always quite the something you were after

J.R.R. Tolkien (1892-1973), “The Lord of the Rings”

This chapter describes the field of computer science education research, an emerg-
ing field since computer science itself is a rather novel field. The chapter gives a
general, historical description of the field, a general introduction to research in
introductory programming, followed by a more thorough description of the specif-
ic subfields: research in teaching introductory object-oriented programming, re-
search in novices’ programming process and research in success factors for learn-
ing introductory programming. Then follows a description of research in the area
of pedagogical patterns. A more elaborate description of the field of computer
science education research can be found in Détienne (2002) plus Fincher and Pe-
tre (2004).

3.1 Historic Overview of Computer Science Education Research

Computer science is a novel field, and so is computer science education research.
As Fincher and Petre (2004) note:

Computer science (CS) education research is an emergent area and is still giv-

ing rise to literature.

While scholarly and scientific publishing goes back to Philosophical Transac-
tion (first published by the Royal Society in England in 1665), one of our old-
est dedicated journals, Computer Science Education was established less than
two decades ago, in 1988 (p. 1).

The researchers in the field naturally come from the field of computer science, but
also from established fields such as education, psychology, engineering and tech-
nology. According to Holmboe (2005), most of the field’s work emerged from
one of three fields: cognitive psychology, computer science teaching and human

computer interaction.
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The main forums for computer science education research are the annual Ameri-
can-based conference on computer science education (Technical Symposium on
Computer Science Education®®, SIGCSE) and its European counterpart, Innova-
tion and Technology in Computer Science Education (ITICSE). SIGCSE will be
held for the 39" time in 2008, and ITiCSE will be held for the 13" time in 2008.
Most of the publications within the field of computer science education research
are “practitioner reports” (Carbone & Kaasbgll, 1998; Fincher & Petre, 2004;
Holmboe, 2005, p. 15), but a current change is marked by more research-based
publications. ACM is hosting a conference aimed specifically at Computer Sci-
ence Education Research (International Computing Education Research Work-
shop'®, ICER), to be held for the fourth time in 2008.

In the late sixties and early seventies, a special interest in programming as a do-
main to study cognition emerged. Many consider the book, “The Psychology of
Computer Programming,” by Gerald M. Weinberg in 1971, to be the first book
within the field (it was republished in 1998 in a silver anniversary edition
(Weinberg, 1998)). In the book’s preface he writes, “This book has only one ma-
jor purpose — to trigger the beginning of a new field of study: computer program-
ming as a human activity” (p. vii). In the seventies, programming cognition be-
came an active field with a focus on how expert programmers differ from novices.
One of the major contributions was Brooks (1977), who described a theory for
studying programming. The theory “postulates understanding, method-finding,
and coding processes in writing programs, and presents an explicit model for the
coding process” (p. 737). The article was reprinted in the 30" anniversary issue in
1999; an issue that reprinted the most cited articles from International Journal of
Human-Computer Studies (formerly International Journal of Man-Machine Stu-
dies). Several overviews of this early research have been published (e.g., Détienne
(2002); Robins et al. (2003) and Winslow (1996)). However, Sheil (1981) noted:
“As a body of psychological studies, the research on programming is very week

methodologically” (p. 112). This is also noted by Weinberg, (1971): “it has not

13 ACM names its conferences based on the expected number of attendants. A technical sympo-
sium is a conference with 100-300 participants expected — even though more than 1200 attended in
2006. It is a conference with peer-reviewed papers.

14 ACM names conferences with less than 100 expected participants ‘workshops’ — ICER is a
conference with peer reviewed papers.
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been possible to support certain ideas with ‘scientific’ evidence.”” (p. vii). Brooks
(1977) has a cognitive psychology perspective in his research, where he uses theo-
ries of long- and short-term memory to analyse the behaviour of expert program-

mers when programming. He is one of the exceptions to Sheil’s comments.

In the following decade (the eighties,) much knowledge in the field of expert pro-
grammers was amassed. Some of those findings are presented in (Hoc, 1990; So-
loway & Spohrer, 1989). von Mayrhauser and Vans (1994) sum up much research

and describe the characteristics of an expert programmer as follows:

Experts organize knowledge structures by functional characteristics of the
domain in which they are experts. Knowledge possessed by novices is typi-
cally organized by surface features of the problem. For instance, novices may
have knowledge about a particular program organized according to the pro-
gram syntax. An example of a functional category is algorithms. Experts may
organize knowledge about programs in terms of the algorithms applied rather

than the syntax used to implement the program.

Experts have efficiently organized specialized schemas developed through ex-
perience. Experts not only used general problem solving strategies such as di-
vide-and-conquer, but also more specialized design schemas. These schemas
differed in granularity and seemed to be abstracted from previously designed
software systems.

Experts are flexible in approaches to problem comprehension. In addition, ex-
perts are able to let go of questionable hypotheses and assumptions more eas-
ily than novices. Experts tend to generate a breadth-first view of the program

and then refine hypotheses as more information becomes available (p. 5-6).
Winslow (1996) sums up studies on novices. They

e lack an adequate mental model of the area (Keesler & Anderson,
1989),

o are limited to a surface knowledge of the subject,

¢ have fragile knowledge (something the student knows but fails to use
when necessary) (Perkins & Martin, 1986)

e use general problem solving strategies (i.e., copy a similar solution or
work backward from the goal to determine the solution) rather than

strategies dependent on the particular problem,
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e tend to approach programming through control structures, and

e use a line-by-line, bottom up approach to problem solving (Anderson,
1985)

(p. 18)

In the nineties, the field of computer science education research broadened to in-

clude more areas such as visualization, tools, and ethics.

In the new millennium the field has matured even more. Conferences have been
established that focus on computer science education research (ICER, 2006) in a
broad sense (as opposed to the more specialized field of programming, where
there has been a long series of conferences in the psychology of programming
interest group (Psychology of programming interest group, n.d.)), and methodo-
logical books are beginning to appear (e.g., Fincher and Petre (2004)).

Several methodological reviews have been made in order to characterize the field
of computer science education research (Randolph et al., 2005; Randolph, Bed-
narik, & Myller, 2005; Simon, 2007b; Simon, 2007a; Valentine, 2004).

Valentine (2004) analysed 444 entities (articles, workshop reports and panels)
dealing with traditional CS1/2 topics from the SIGCSE conferences from 1984 to
2003. He used a six-fold taxonomy to classify the type of articles: Experimental
(the author made an attempt to assess the “treatment” with some scientific analy-
sis), Marco Polo (“I went there and I saw this”), Philosophy (“the author made an
attempt to generate debate on an issue, on philosophical grounds, among the
broader community”), Tools (“things helping education — not all software tools,
but also rubrics”), Nifty (“small elements used in teaching such as nifty assign-
ments”) and John Henry™ (“every now and then a colleague describes a course
that seems so outrageously difficult (in my opinion) that it is suspected of telling
us more about the author than about its pedagogy”). The general conclusions from

his research were:

15 John Henry was an American worker who worked as a steel-driver for the Chesapeake & Ohio
Railroad. The folktale says that he was the strongest and fastest worker who had ever drilled holes
using a hammer and a steel spike. One day a salesman came with a steam-powered drill and
claimed that it could do better than any man. John Henry competed, won, but died due to strain
(American Folklore, 2006).
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e 21% of the articles presented (94 out of 444) fell into the experimental
category (i.e., a kind of research article).

e The portion of Experimental articles has been on the rise since the mid-

nineties.

e The Marco Polo articles dropped from approximately 35% in 1984 to 19%
in 2003 (a statistically significant drop).

e The total number of entities presented increased during the period.

e The percentage of first year entities remained almost the same throughout

the period.
However, as noticed by Randolph, Bednarik, and Myller (2005),

Valentine’s findings, however, should be accepted with a fair amount of scep-
ticism because the methodology used to conduct Valentine’s review was lack-
ing (e.g., there were no estimates of reliability about his categorizations) (p.
104).

Randolph et al. (2005) analysed the 59 articles from the first four Koli Calling
Conferences (Korhonen & Malmi, 2004; Kuittinen, 2001; Kurhila, 2003; Sutinen,
2002).

It was found that the majority of articles did not report research involving hu-
man participants. Experimental/quasi-experimental and exploratory descrip-
tive were the two most commonly used methodology categories; the post-test-
only with controls design was the most commonly used experimental design.
(p. 108)

Again, the majority of the articles were not what traditionally is seen as research
articles. “By far, the most frequently published type of paper in the Koli proceed-
ings are pure program (project) descriptions” (Randolph et al., 2005, p. 107). This
observation is supported by Carbone and Kaasbgll (1998). Randolph et al. reports
on inter-rater reliability for the classification of articles. They also analysed the
content of the articles: structure and amount of specific parts. The amount was
measured by inches of text, a debateable measurement (e.g., a literature review is

not necessarily better the longer it is, it could be that it just is wordier.)
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Simon (2007b) analysed research articles presented at the Koli proceedings from
2001 to 2006. He categorised the articles according to four article categories: ex-
periment (“reports on a clear and deliberate research experiment”), analysis (“au-
thors have set out to answer a particular question, gathered existing data as appro-
priate, and analysed it”), report (“describing something that has been tried or de-
veloped in an educational context”) and position (“elucidates the authors’
thoughts on a matter, or perhaps sets out plans for future work). He concludes
that there has been a growth in what he classifies as research articles (experiment
and analysis) from less than 10% to more than 40%. Simon developed the catego-
rization when he categorized articles from four Australian and three New Zeeland

based conferences (Simon, 2007a).

In general, studies in computer science are small-scale studies within the context
of one course. Pears, Seidman, Eney, Kinnunen, and Malmi. (2005) have made a
taxonomy with four areas in order to classify computer science education research
articles. In an ITICSE working-group report (Pears et al., 2007) applying the tax-
onomy in order to create a body of research literature to inform instructors when

designing a new introductory programming course, the working group found that

The majority of studies reviewed were located in area A of the Lisbon taxon-
omy table [(Pears et al., 2005)]. The concentration of small-scale studies is
understandable, since it is easy for practitioners to study their own instruc-
tional settings. However, it is difficult to aggregate results from such papers to
produce well-supported arguments for particular approaches to teaching. A
more consistent approach to reporting the results of individual studies would

facilitate generalizability. (p. 2)

The ITICSE working group (Pears et al., 2007) produced a list of 45 articles after
having considered 179 articles. They found the citation index for each article us-
ing http://scholar.google.com. The average citation index of the articles was 18.7,
the mean 9. The average age of the articles (i.e. time since the article was pub-

lished) was 6.8 years.

Overall, we conclude that computer science education research is an emerging
field without a well-established research method. The field draws on other fields

such as education and computer science teaching, and it is therefore relevant to
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look to these fields for inspiration on research methods. Chapter 5 will discuss the
research method used in this PhD work.

3.2 Research on Teaching Introductory Programming

Fincher and Petre (2004) map the area of computer science education research in
the following ten areas:

student understanding, animation/visualization/simulation systems, teaching
methods, assessment, educational technology, transfer of professional practice
into the classroom, incorporation of new development and new technologies
into the classroom, transferring to remote teaching (‘“e-learning”), recruitment

and retention of students, and, finally, the construction of the discipline itself.
(p.3)

Even if we restrict ourselves to research of teaching introductory programming,
we will find much research in all ten areas. Consequently, it seems almost impos-
sible to give an overview of the entire area. In the following section (3.2.1) we
will focus on research in the objects-first approach to teaching introductory pro-

gramming.

Many approaches to teaching introductory programming have been proposed in-
cluding a procedures early approach (Pattis, 1993), a top-down approach (Hilburn,
1993; Reek, 1995), a graphics approach (Matzko & Davis, 2006). Even within
object-oriented introductory programming, many different approaches exist: ob-
jects early (Alphonce & Ventura, 2002), inheritance early (Schmolitzky, 2004),
GUIs early (Wolz & Koffman, 2000), concurrency early (Reges, 2000), events
early (Stein, 1998), components early (Howe, Thornton, & Weide, 2004b), etc.

All of these articles about teaching introductory programming describe different
peoples’ approaches. However, many are in the “Marco Polo” style of reporting
research in introductory programming, or to be more precise they are arguing that
a certain approach is better than other approaches based on the assumption that

certain learning outcomes should be promoted.

Berglund, Daniels and Pears (2006) argues that “conducting studies which are
theoretically anchored in pedagogy, as well as in computing, can help us to draw
more solid and significant conclusions about how students learn computing.” (p.

25). The section on learning theories will discuss and argue for the pedagogy ap-
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plied in the courses used as empirical basis for this dissertation. However, using
real-world observations (as opposed to controlled experiments) for studying pro-
gramming makes this somewhat difficult since it is very difficult to characterize
the pedagogy in a course solely by one pedagogical theory (Gilmore, 1990). As
Biggs (2003) note in his book “Teaching for Quality Learning at University: what
the student does™:

I assume that most teachers, including readers of this book, are not particularly
interested in theories of learning so much as in improving their teaching. For
that we need a framework to aid reflection: a theory of learning that is broad-
based and empirically sound, and that easily transfers into practice. To my
mind that means constructivism®, with its emphasis on what students have to
do, rather than on how they represent knowledge. Both emphasize that the
student creates knowledge [...] so that knowledge is not imposed or transmit-

ted by direct instruction. (pp. 12-13)

Section 4 will describe pedagogical theories in general and the theories applied in

the courses under study in particular.

3.2.1 Research on Teaching and Learning Introductory Object-
Oriented Programming

The objects-first approach to teaching object-orientation has gained much atten-

tion in recent years.

Indeed one need only look to modern object-oriented languages such as C++,
Java, and Microsoft’s C# as proof of OOP’s success. Since the mid-1990s,
there has been considerable attention given to teaching object-oriented pro-

gramming early. (Ventura, 2003, p. 2)

Programming languages have always elicited debate in the teaching community.
The current dominant programming language is Java (Dale, 2005; Raadt et al.,
2002; Schulte & Bennedsen, 2006). Because it is impossible in Java to create
methods that are not associated with a class, it is implied that teachers using Java

have been forced to rethink their curriculum (Bergin, Koffman, Proulx, Rasala, &

16 Biggs have a broad definition of constructivism: it is theories where the learner has to do to
create knowledge. (J. B. Biggs, 2003, p. 12)
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Wolz, 1999; Culwin, 1999; Kolling & Rosenberg, 2001; Mitchell, 2000; Weber-
Wulff, 2000).

Teaching introductory object-oriented programming is considered difficult. Ko I-
ling and Rosenberg (2002) believe

that this is not due to any intrinsic complexity associated with OO, but is

caused by a set of other factors which includes:

e Alack of experience and knowledge about how to teach these courses

well, which results in mistakes being made.

e Many teachers are not as familiar with object orientation as they are
with the procedural language they taught earlier and have technical
difficulties.

e The teaching materials are not as mature as they were for earlier lan-
guages. Many books were produced very quickly with clear compro-
mises in quality. In addition, the authors often do not have the neces-

sary teaching experience in this new paradigm themselves.

e The software tools are often not suited to the new paradigm. Many
development environments are variations of procedural environments

that fail to capture the full potential of object orientation.

e In conjunction with the introduction of object orientation into first
year courses there has been a shift in focus from an algorithms centred
view to a software engineering centred view. This introduces new top-

ics and new material into the course.

e Technological advances have forced additional material into the

course. (pp. 1-2)

Kolling (2003) stressed his point by analysing 39 major selling textbooks on in-
troductory programming. The overall conclusion of his survey was that all books
are structured according to the programming language’s language constructs, not

by the programming techniques that should be taught to the students.

In 1994 Decker and Hirshfield (1994) described what they found to be the top 10
reasons for not teaching object-orientation in an introductory programming

course. Their conclusion supports the conclusions from Kélling and Rosenberg.
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Since the computing curriculum’s publication in 2001, a lively discussion has
arisen on the idea of “objects-first.” Back in March 2004 a dynamic discussion
took place on the SIGCSE mailing list (SIGCSE-members, 2005). For a summary
of this discussion, see Bruce (2005). The discussion was analyzed in order to ex-
plore “how the CS community debates the issue and whether contributors' posi-
tions are supported by the research literature on novice programmers” (Lister et
al., 2006, p. 146). At SIGCSE 2005, a discussion entitled “Resolved: Objects Ear-
ly Has Failed” (Astrachan et al., 2005), and at the Annual Consortium for Compu-
ting Sciences in Colleges sponsored CCSC: Eastern Conference in 2003, a panel
discussion entitled “Objects first - does it work?” (Bailie et al., 2003) took place.
In the fall of 2006, Michael Kolling reopened the debate with his “I Object” con-
tribution to the SIGCSE mailing-list.

Obijects-first is defined only vaguely in CC2001: “The objects-first model also
focuses on programming, but emphasizes the principles of object-oriented pro-
gramming and design from the very beginning [...] The first course in either se-
guence begins immediately with the notions of objects and inheritance, giving
students early exposure to these ideas. After experimenting with these ideas in the
context of simple interactive programs, the course then goes on to introduce more
traditional control structures, but always in the context of an overarching focus on
object-oriented design” (p. 30). This is in concordance with the notes made by
Lewis (2000) who note that the term objects-first is

often used to convey the general idea that objects are discussed early in the
course and established as a fundamental concept. Beyond that, however, these
phrases seem to take on a variety of meanings, with important implications (p.
246).

In order to get a better understanding of the term objects-first, Bennedsen and
Schulte (2007) did a content analysis (Stemler, 2001) of over 200 responses from
teachers around the world. The data was the respondents from the study in Schulte

and Bennedsen (2006). Three different categories of the concept were found:

Using objects: At the beginning of the course, the student uses objects
implemented beforehand. When students have understood the object con-
cept, they move on to defining classes by themselves. Focus is on usage

before implementation.
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Creating classes: Student both defines and implements classes and creates
instances of the defined classes. Focus is on the concrete-creative part of

programming.

Concepts: Students learn about general principles and ideas of the object-
oriented paradigm, not just focusing on programming but on creating ob-
ject-oriented models in general. Focus is on the conceptual aspects of ob-

ject-orientation.

The respondents were categorized into these three categories. Thirty-two percent
(75 in total) of the descriptions were too short to categorize. Moreover, many of
the descriptions defined objects-first as “something else” or in opposition to pro-
cedural-first-indicating a focus on object-orientation but not necessarily an ob-
jects-first approach: “Starting with object-oriented concepts rather than procedural
concepts.” Fifty fell in the category ‘other’. They found that most (respondents)
use a creating classes’ approach (51), followed by 34 who use concepts and 28

using objects.

From the categorization of the responses it was possible to check if there were any
differences in the three groups’ evaluation of the relevance, difficulty, or teaching
level of topics in an introductory programming course. The important implications
(indicated by Lewis (2000) in the above quote) of these three categories are not
prominently apparent in the list of topics for an introductory programming course.
Further research is needed to establish those implications. They could be in the
use of different teaching methods or the sequence of topics taught.

Many articles have described different authors’ experiences with an objects-first
approach. There have been workshops at computer science conferences, e.g.,
Bruce, Danyluk, and Murtagh (2001b) and even panels discussing how to start an
objects-first course ("Day One of the Objects-First First Course: What to Do”
(Bergin, Clancy, Slater, Goldweber, & Levine, 2007)). In Table 3 there is a short
description of different authors’ approaches to objects-first. The selection criteria
were that the article describes (parts of) a way to teach an objects-first CS1
course. Articles with a focus on conceptual modelling is excluded from the over-

view, but discussed later in contrast to research question R1. The table is by no
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means complete but serves the purpose of showing different authors views on
what is relevant in CS1.

(2003)

Author(s) Article Language

Adams (1996) i Object-centered design: a five-phase intro-  : Java

Adams and  FErens duction to object-oriented programming in (originally
. CS1-2 i C++)

Obiject centered design for Java: teaching
| 00D in CS-1

__________________________________________________________________________________________________________

They claim that deS|gn is an important skill and consequently it must be taught in
CS1. They describe three phases of a design process: 1) Use only objects. Find
objects and methods by noun/verb inspection. 2) Classes and methods. Abstract
over the nouns to create concepts (=classes) if they can not be represented by a
primitive type. 3) Inheritance. If two or more classes have common attributes,

consolidate those attributes into a super class.

Woodworth and | Integrating console and event-driven models | C++
Dann (1999) 5 in CS1

They find that it is |mportant for the students to know of event-driven programs
They focus on three elements: 1) fundamentals of problem-solving and control
structures, 2) students should design their own abstractions, and 3) emphasizing
two types of functions: class methods and library functions

Culwin (1999) | Object imperatives!

Culwin state that the |n|t|al educational experience in computer science will have
a major impact on the students’ subsequent progression. Based on this, he argues
that courses needs to be rooted in current concerns and practice in order to prepare
the students for a professional life. He then discusses how this influences the cur-

riculum including a discussion on objects-first vs. objects-late.

Buck and  Stucki | DeS|gn early considered harmful: graduated | Java
(2000) : exposure to complexity and structure based

. on levels of cognitive development
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Buck and Stucki propose a structuring of a CS1 course based on Bloom’s taxon-
omy. They argue that the traditional system development life cycle (analysis —
design — coding) starts with competences at the highest level and moves down-
wards. As a consequence, they argue that students should start by modifying code
and later design (parts of) a system. The argue for an approach where the lan-
guage constructs are introduces as needed

Proulx (2000) . Programming patterns and design patterns in

: the introductory computer science course

Proulx have developed a pattern catalogue aimed at helping novices Iearnlng to
program. It includes patterns like “Name Use Pattern: Every programming lan-
guage uses 'identifiers’ to represent different kinds of entities in a program. Yet
the use of all identifiers follows a set pattern: declare - define/build — use - de-
stroy.” (p. 81)

She introduces programming via key concepts and the relevant patterns. Students
read the patterns, see several completely solved problems related to the pattern
and gets a number of unsolved problems (including a suggestion for a problem
solving strategy)

Cooper, Dann, and: Teaching objects-first in | Alice-lingo
Pausch (2000; 2003a; : introductory  computer |
2003b) science. '

Moskal, Lurie, and Coo-é Using Animated 3D
per (2004) . Graphics to Prepare No- |
' vices for CS1. '

Alice: a 3-D tool for in-
troductory programming
concepts
Evaluating the effective-
ness of a new instruction-

 al approach.

They describe their use of a 3D micro-world (Alice) to teach programming. They

emphasis design and a low number of details the student must master.




Their argumentation for Alice is: 1) Working with an easy-to-use 3D graphics
environment is attractive and highly motivating to today’s generation of media-
conscious students. 2) The visual nature and immediate feedback of program
visualizations makes it easy for students to see the impact of a statement or group
of statements. Further, it makes debugging easier. 3) The drag-and-drop editor
prevents students from making syntax errors that are prevalent for beginners. 4)
The 3D modelled classes and instantiated objects in Alice provide a very concrete
notion of the concept of an object and support an objects-first approach. (Moskal
etal., 2004, p. 76)

Wick (2001) : Kaleidoscope' using design patterns in CS1

Wick finds that de5|gn patterns are an essential competence of a professmnal pro-
grammer and therefore it must be included in CS1. Given this, he presents a pro-
gram - kaleidoscope — including several design patterns and a way to use this in

CS1 (including a proposed sequence of topics).

Nguyen and Wong | OOP in introductory CS: Better students
(2001) 5 through abstraction

__________________________________________________________________________________________________________

Nguyen and Wong argue for an “objects-first-with-design-patterns” mtroductory
sequence. Thereby, according to them, the students train abstract thinking. They
do this by teaching the students to abstractly decompose problems and express
their ideas in terms of abstract object models

Bruce, Danyluk, and | Event-driven programming facilitates learn- | Java
Murtagh (2001a' . ing standard programming concepts. '

2001b; 2001c; 2004) . Event- driven programming is simple enough

for CS1.

Events and objects first: an innovative ap-é
proach to teaching JAVA in CS 1
A library to support a graphics-based objects-
first approach to CS 1 '

__________________________________________________________________________________________________________

They make a case for an event driven approach to CS1 using their own Ilbrary

where the students inspects code before they write it on their own.

The implemented graphics library wraps Java’s AWT framework, thereby making




it possible for beginning students to use it.

They have found that the event-driven approach familiarize students with object-
oriented concepts.

Kolling and Rosen-: Guidelines for teaching object orientation | Java
berg (2001) 5 with Java |

__________________________________________________________________________________________________________

Kélling and Rosenberg describes a set of guidelines for teaching object -oriented
programming: Start with objects (introduce objects from the beginning and not a
small imperative style program), don’t start with a blank screen (the students shall
start by making small changes to existing code, not by creating code themselves),
read code (students should read well written code and mimic the style and
idioms), use “large” projects (the benefits of object-orientation is best seen in
large projects where the syntactic overhead is minor), don’t start with main (the
main method has nothing to do with object-orientation), don’t use “hello world”
(hello world is not an object-oriented program), show program structure (the
classes and their structure are a central issue in object-oriented programming,
learn the students who this can be expressed), be careful with the user interface
(making a nice interface is time consuming). They discuss how to address the
guidelines using Bluel.

Becker (2001) 5 Teaching CS1 with Karel the robot in Java 5 Java

Becker describes the progressmn of the first five weeks of their course 1 Instanti-
ating and using objects, 2. Extending existing classes, 3. Selection and iteration, 4.
Methods and parameters, and 5. Instance variables. He furthermore describes how
a concrete micro-world (Karel the robot) is used in such a sequence.

Lawhead et al.| A road map for teaching introductory pro-: Java
(2002) i gramming using LEGO® mindstorms robots

The authors make a case for the use of robots in a CS1 course. The robot exhibits
physical behaviour, the objects representing the model in a natural way has state,
and the state change can directly be observed. Inheritance can also be illustrated

by extending models of robots.

They present several examples of exercises and give tips to get started.
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Barnes (2002) Teachlng introductory Java through LEGO ! Java
MINDSTORMS models '

Barnes argues that the use of LEGO MINDSTORMS can motivate students He
discusses how MINDSTORMS can be used in an introductory course and ad-
dresses some problems: polling a sensor vs. adding an event listener, the corre-
spondence between the physical model and the program and the physical limita-
tions of the MINDSTORMS brick.

Proulx, Raab, and : Objects from the beginning - with GUIs . Java
Rasala (2002) '

Proulx, Raab and Rasala describe the use of GUI’s as an mtroductlon to object-
oriented programming. In the first lab, the students use a picture manipulation
application and change the state of the pictures. Later the students inspect the
code for the picture class. Their second lab is a turtle micro world where the turtle
can be manipulated using traditional Java syntax. Their third lab, the students
adds functionality to a ticket selling machine. In the fourth lab, the students im-

plement a subclass of the picture class presented in lab one.

Christensen and : Frameworks in CS1: a different way of intro- | Java
Caspersen (2002) i ducing event-driven programming '

Christensen and Caspersen argue that today’s programmers reuse code as much as
they produce code. One goal of a CS1 course must consequently be that students
get used to reuse and extend code. They present a concrete framework used in
their teaching.

Roumani (2002) . Design guidelines for the lab component of | Java
5 objects-first CSl. :

__________________________________________________________________________________________________________

This article describes not an entire CS1 course but the lab component Roumani
put forward that labs must be seen as an integrated component in the students

learning.
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Nevison and Wells | Teaching objects early and design patterns in | Java
(2003; 2004) . Java using case studies '

. Using a maze case study to teach: object-

5 oriented programming and design patterns

They suggest an approach to teaching based on a case study. In the beginning,
simple versions of the case study can be used for the first concepts and increase
the complexity of the case study during the course. An important characteristic of
the case study is that is must use a graphical and interactive presentation. They
use design patterns as an organizing principle. They describe two concrete cases:

an elevator system and a maze.

Towell and Towell ; Reality abstraction and OO pedagogy: results | MOO

(2003) from 5 weeks in virtual reality

Towell and Towell descrlbe a five week introductory sequence where the students
are exposed to an OO virtual environment. The students explored the environment
as avatars sending messages to other objects (other avatars, rooms etc). They find
that the approach helps the students understand abstraction, inheritance and
method override but not state.

Bruhn and Burton | An approach to teaching Java using comput- | Java
(2003) ers ’

Bruhn and Burton descrlbes an approach to CS1 using studio teachlng the stu-
dents have their own laptop and are able to test and run their code in class. The
instructor write on his computer (which is projected to a large screen) and the

students can use their computers as well.

Guzdial (2003) i A media computation course for non-majors : Python

Guzdial and Forte | Design process for a non-majors computing
(2005) 5 course

__________________________________________________________________________________________________________

Guzdial discusses the challenges related to the broader student mtake (students
majoring in other areas than computer science). They describe and discuss the

design of a course that uses computation for communication as a guiding princi-




ple, where the students manipulate (writing programs for this manipulation) digi-
tal media.

Edwards (2003a; Rethinking computer science education from ' Java
2003b) a test-first perspective '

Improving student performance by evaluating
. how well students test their own programs

He argues that students think a program is finished when it compiles. He suggests
a test-driven strategy to all assignments. The students write then on their own

tests. The test and coding style is a part of the grading.

Schmolitzky  (2004; | "Objects first, interfaces next" or interfaces | Java
2006) . before inheritance '

. Teaching inheritance concepts with Java

Schmolitzky distinguish between hierarchies of types (interfaces in Java) and hie-
rarchies of implementation (classes in Java). He argues that that it is important to

use this as a way to differentiate “what” from “how”

The students see this difference from day one. In the beginning it is supported by
the use of javadoc vs. implementation; later the students are taught the interface
concept in Java explicitly.

Howe, Thornton, and ;| Components-first approaches to CS1/CS2: | C++/Java
Weide (2004a) : principles and practice '

The authors argue that the availability of software components significantly af-
fects how professionals think about building their software. Students might bene-
fit from learning this early in the CS curriculum.

They argue that it is vital for the students to be more able to distinguish between
the interface and the implementation of a concept, and argues that traditional ob-
jects-first courses ignore this difference. Loop invariants are another difference —
they are introduced early in the component-based approach (as opposed to tradi-

tional objects-first courses)
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. Motivating OOP by blowing things up: an | Java
Bierre Ventura . exercise in cooperation and competition in an |
Phelps, and Egert introductory java programming course
(2006) The use of MUPPETS in an introductory java

| programming course

Bierre and. Phelps Hello, M.U.P.P.E.T.S.: using a 3D collabora-
(2004)  tive virtual environment to motivate funda-

Egert, Bierre, Phelps, ' mental object-oriented learning
and Ventura (2006)

“Bierre et. al. claim that students find traditional programming assignments as toy |
problems not matching the graphics-rich, interactive notion of programming stu-
dents have on beforehand. They propose the use of a micro-world (TankBrains)
implemented in their MUPPETS system (Multi-User Programming Pedagogy for
Enhancing Traditional Study).

Ventura, Egert, and : Ancestor worship in CS1: on the primacy of Java
Decker (2004) arrays

__________________________________________________________________________________________________________

They make a case that the introduction of object-oriented programmlng implies
that the students should use some Collection class rather than arrays

Leska and Rabung ; Refactoring the CS1 course | Java
(2005) | |

They use games as a way of motivating the students. They claim that it is impor-
tant to start with design without coding and gradually include coding. The pro-

gramming language features are included by “the need of” game projects.

Xinogalos, Sa- | An introduction to object-oriented program- i Karel++
tratzemi, and Dag- ming with a didactic microworld: objectKarel
dilelis (2006)

The authors argue that the use of objectKarel overcomes some of the dlfflculty
traditionally found when teaching using a traditional programming language: 1)
The extended instruction set of programming languages. Karel++ is a small lan-
guage. 2) The notional machine. objectKarel animates the program execution via

robots. 3) Students focus on the syntactic details. ObjectKarel uses a structure




editor.

ObjectKarel includes small lessons on given subjects and problems the student

can solve

Roumani (2006) ' Practice what you preach: full separation of |
5 concerns in CS1/CS2 '

__________________________________________________________________________________________________________

Roumani believes that the main problem in CS1 stems from abandonlng a long
held principle in computer science: separation of concerns. CS1 should be taught
from a client perspective. This means we only write main programs that use exist-

ing components. In the article, he presents his order of topics.

Pecinovsky, . Let's modify the objects-first approach into
Pavlickova, and | design-patterns-first
Pavlicek (2006) |

The authors argue that design patterns have gained great |mportance and conse-
quently must be taught in CS1. They describe the content of their first five weeks
of their course: 1. lesson: Show the students an example of an object based pro-
gram (with the property that the objects are not merely representation of real life
objects), Create test classes, and introduce design patterns. 2. lesson: Create a
handwritten program, introduce the first design pattern (Servant) and introduce
the concept of interface. 3. lesson: Introduce more design patterns (Crate and
observer). 4. lesson: one class — one task (split classes into two) and more design
patterns (Bridge, strategy). 5. lesson: Inheritance of interfaces, design patterns
(State and proxy)

Table 3: Approaches to objects-first
The review of articles describing the objects-first approach shows that a unified
approach does not exist. However, it seems that there are some important areas of

contention:

Events: Several authors argue that one of the learning objectives should be

that the students can create event-based programs.

Components: Several authors argue that it is vital for students to be better

to (re)use existing components. It is important that the students know the
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difference between the specification and the implementation, and that it is
normal to use code others have created.

Micro-worlds: Several different micro-worlds have been created and used
in objects-first courses. The authors argues either by the motivational fac-
tor of a micro-world (students play many games) or by the reduction in

complexity of the programming language or development tool (or both).

Design: Several authors argue that design (modelling in figure 4Figure , p.
33) is a key competence of computer science students and consequently
must be (one of) the primary learning goal(s). Others argue that design is
too difficult for novices and consequently it shall be postponed to later

courses.

Concrete exercisers: Several authors describe concrete examples they
have used in their teaching. Most of the examples have “motivation” as a

key quality parameter.

Trends in industry: Several authors argue that new trends in industry re-

quire new learning goals in their CS1 course.

The overall conclusion is that there are many different approaches to teaching an
objects-first introductory programming course. Many good ideas are described,
but the contexts of the concrete experiences are lacking thus making it difficult to
transfer to other practitioners. This could call for a more uniform way of describ-
ing teaching experiences — a description based on pedagogical theories and didac-
tics to make it more transferable.

Others have discussed how to teach object-orientation with a focus on the concep-
tual model aspect. The conceptual model aspect is one of the defining characteris-
tics (Knudsen, Lofgren, Madsen., & Magnusson, 1993 chapter 4) of what is
known as the “Scandinavian approach” to object-orientation (Madsen, 1995). In
the following, these other articles are discussed and their differences to a model-
based approach highlighted. For a short description of the model-based approach

see page 15; for a more elaborated description see section 6.1.

Knudsen and Madsen (1996) describe how they have used object-orientation as a
common basis for the system development part of the curriculum at the University

of Aarhus in 1996. In their description, object-orientation was introduced in the
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second programming course; the first programming course used an imperative
programming language and focused on common, imperative algorithms. The main
course design criteria used by Knudsen and Madsen was that the “programming
courses must introduce object-orientation in such a way that the concepts, lan-
guages and [development] tools are applicable in other courses” (p. 55). The focus
of a model-based approach is not that the development tools shall be applicable in
other courses, but the concepts and language should be. However, Knudsen and
Madsen do not focus on a systematic construction process as done in the model-
based approach (p. 15). Knudsen and Madsen’s “main emphasis in the program-
ming course is on modelling and design” (p. 59). In a model-based approach, the
specification models are given to the students in the beginning, but the connection
between the domain model, the specification model and the program code is made
clear. In this way, students see that it is possible to understand the code at an ab-
stract level. Later the students are required to create their own specification mod-

els and implement those models on their own.

The focus of the programming course Knudsen and Madsen describe is “pro-
gramming-in-the-large;” this is in contrast to the studies done in dIntProg (5.2.4)
and IOOP (5.2.1). This implies a focus on many software engineering elements

29 ¢ 99 ¢

such as “exception handling,” “software testing,” “persistence and object-oriented
databases” and “concurrent programming.” Another difference, although not ex-
plicitly stated by Knudsen and Madsen, is the study program the students follow.
Knudsen and Madsen’s students are all going to major in computer science,

whereas the students in dintProg follow many different study programs.

Madsen, Torgersen, Rgn, and Thorup (1998) describe a course for proficient C
programmers learning object-orientation. That course objective is to teach both
object-oriented programming and object-oriented modelling (p. 3). They focus on
the underlying object-oriented conceptual framework, and start by teaching the

students the conceptual framework. They find that:

Using the conceptual framework as the foundation for the object-oriented pro-
gramming course gives students a generally applicable knowledge, which is
independent of any concrete programming language. This is very powerful

and useful in many other settings because it gives the students a tool to criti-
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cally understand and evaluate new object-oriented programming languages
and methodologies (p. 5).

Madsen et al. uses both a graphical and textual notation as in a model-based ap-
proach.

The main motivation for using a graphical, as well as a textual, syntax was to
emphasize that the main difference between OOA/OOD languages and OOP
languages is a matter of syntax. We often experience that people have difficul-
ties in realizing that OOA/OOD and OOP languages are based on (almost) the

same set of abstract language constructs. (p. 6)

This is consistent with the model-based approach, which presents the students
with a specification model expressed as a UML class model and the correspond-
ing code. In order to focus on a systematic approach to programming, the students
abstract general coding patterns from many concrete implementations of specifi-
cation models.

Alphonce and Ventura (2002) describe an introductory programming course with
“a strong design and thematic object orientated philosophy” (p. 72). Their ap-
proach begins, like the approach of Madsen, Rgn, Krab, and Torgersen, with an
introduction to (elements of) the object-oriented conceptual framework. In a later
article (Alphonce & Ventura, 2003), they describe how they use a small, graphics
library called NGP (“Nice Graphics Package”) in order to teach their course.

Alphonce and Ventura use a code generation tool so that the students develop
designs in UML and generate the corresponding code. The model-based approach
requires the students to implement the class structure by themselves. The rationale
is twofold. First, the students experience hands-on the connection between the
specification model and the code (they see how a concrete model is implemented
in a given programming language); second, the students get hands-on experience
with abstraction, because they realise that the implementation of an element of the
specification model can be described in an abstract way (they se that there is a

coding skeleton for most UML class-model constructs).

Hadar and Hadar (2007) discuss the balance between the concrete language and
the conceptual framework when teaching objects-first. They — like Alphonce and

Ventura (2002) — argue for the use of a code generating tool. They use the tool to
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generate skeleton programs from UML diagrams, thereby showing the students
the equivalence of the UML model and the programming code.

Zhu and Zhou (2003) discuss the difference between teaching a programming
language (in their article this is specifically C++) and the general object-oriented
conceptual framework. They conclude that the methodology is more important
than the programming language (in concordance with Luker (1989; 1994)), and

suggest six steps to introduce object-orientation:

1) Discuss fundamental principles of object-orientation with respect to con-

ventional thinking;

2) Introduce an object concept by observing the real world;

3) Acquire the class concept by abstraction of many common objects;
4) Introduce instantiation after the class concept is learned;

5) Hlustrate subclasses by adding more details to an existing class and super

classes by finding common things among several classes;

6) (Optional) Discuss meta-classes to master completely the class and object
concepts. (p. 141)

They use formal description and not a concrete programming language (e.qg., their
description of an object is a “quadruple: Object ::= <N, s, M, X >, where N is an
identification or name of an object; s is a state or a body represented by a set of
attributes; M is a set of methods (also called services or operations) the object can
perform; and X is an interface that is a subset of the specifications of all the meth-
ods of the object.” (p. 142)). Furthermore, they seem only to pay attention to the
concepts “object”, “class” and “inheritance” and consequently leaving out major

parts of the object-oriented conceptual framework such as association and aggre-
gation.

Sicilia (2006) raises “a number of problematic issues regarding the teaching of
object-oriented concepts with Java in CS1” (p. 16). He categorises the problems in

three areas:
1. From object models to Java programs,
2. Teaching extensibility, and

3. Design by contract and exceptions.
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Overall, the ideas Sicilia presents comply with the ideas in a model-based ap-
proach. He finds that starting with object-models is very fruitful, because it makes
the students aware of the phenomena in a given problem domain. The objects can
then be grouped into sets, thereby introducing the idea of a class. He describes his

approach as an “instances first” approach (p. 4).

Sicilia introduces coding patterns for the different conceptual constructs. He finds
the container classes in Java to be problematic to introduce, hence he uses ar-

rays to implement to-many associations.

The overall conclusion is that there exist many different approaches to designing
and teaching an objects-first introductory programming course. A few of these
approaches focus on the conceptual framework as a guiding principle in the

course design.

3.2.2 Research in Novices’ Programming Process

One of the problems students struggle with in programming is not the product
(i.e., the program), but the construction process (Soloway, 1986; Spohrer & Solo-
way, 1986; Spohrer & Soloway, 1986).

In the eighties, a series of studies on misconceptions or bugs represents one line of
research in this area. The following are a few examples of this research. For an
overview of some of the early studies on program comprehension and program
generation see Robins, Rountree and Rountree (2003). For a list of different
bugs/errors/problems, see table 1 (pp 46-48) in Ko and Myers (2005).

Bayman and Mayer (1983) found that students who learned BASIC through a
self-study course were capable of generating programs but “possessed a wide
range of misconceptions concerning the statements they have learned” (p. 677).
They found that most of the problems were related to misconceptions of what the

execution of a given language construct stands for.

Bonar and Soloway (1985) argues that “many novice programming bugs can be
explained as inappropriate use of knowledge used in writing step-by-step specifi-
cations in natural language” (p. 134), i.e. the students wrongly transfers the se-

mantics of natural language words to programming language. As an example, they
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discuss the difference between the meaning of the word “then” in a programming

language and in natural language.

Goldenson and Wang (1991), based on analyses of log-files, characterized the
processes by which students interact with the Pascal GENIE novice programming
environment. However, their focus was not to draw general conclusions of novice
programming processes but to evaluate the usefulness of syntax directed structure

editing.

Many other studies were performed at that time in order to describe bugs and give
explanations to what causes the bugs. Several researchers tried to describe a cata-
logue of bugs containing over 100 bugs (Johnson, Soloway, Cutler, & Draper,
1983; Spohrer et al., 1985).

All of the above studies were done in the context of an imperative programming
style. Ramalingam and Wiedenbeck (1997) and Wiedenbeck, Ramalingan,
Sarasamma and Corritore (1999) focused on the differences between the mental
representation of object-oriented programs and imperative programs. They found
that the comprehension of imperative programs was better, but there were differ-
ences in the mental representations. The imperative programs focused on pro-
gram-level knowledge whereas the mental representations of the object-oriented
programs focused more on domain-level knowledge. Their findings supports the
findings of Gilmore and Green (1984) who, from a comparison of answers to
questions to programs in the procedural and declarative notation, found that the
notation highlights some information at the expense of others. The procedural
notation, naturally, supported questions about what happens in a program after
some specific action is performed, whereas the declarative notation was better
when answering questions about what combination of circumstances causes a
given action. The transferability of studies from the imperative paradigm to the

object-oriented paradigm is therefore not straightforward.

The above mentioned research is mainly focused on program comprehension and
not the programming process. Comprehension plays a role in a novice’s pro-
gramming process, but reading a program in order to understand it is a different

activity than creating a program to solve some task.
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Research in the problems a student encounters regarding their programming proc-
ess seems limited. Hundhausen, Brown, Farley and Skarpas (2006) note

Empirical studies of novice programming typically rely on code solutions or
test responses as the basis of their analyses. While such data can provide in-
sight into novice programming knowledge, they say little about the program-

ming processes in which novices engage. (p. 59)

Their goal was not to generalize problems students encounter in their program-
ming process but to evaluate three different forms of semantic feedback for their
ALVIS! Live programming environment (for a description of this environment
see Hundhausen and Brown (2007)). They found four distinct behavioural pat-
terns that could describe 29 of 35 participants: No Feedback (completes solution
with few missteps), Automatic (succeeds through persistence), On Request (can-
not get on track, despite honest effort) and No Feedback (gives up quickly).

Eckerdal, Thuné, and Berglund (2005) have studied what it takes to learn program
thinking from a student perspective. Using a phenomenological research method,
they have analysed the interviews of 14 students and found five categories of pro-
gram thinking:

Learning to program is experienced as to understand some programming lan-

guage, and to use it for writing program texts.

As above, and in addition learning to program is experienced as learning a
way of thinking, which is experienced to be difficult to capture, and which is

understood to be aligned with the programming language.

As above, and in addition learning to program is experienced as to gain under-

standing of computer programs as they appear in everyday life.

As above, with the difference that learning to program is experienced as learn-
ing a way of thinking which enables problem solving, and which is experi-

enced as a ’method” of thinking.

As above, and in addition learning to program is experienced as learning a

skill that can be used outside the programming course. (p. 137)

Many teachers teaching introductory programming courses claim that the students
learn ‘problem solving’ and consequently expect that their students should be at
Eckerdal, Thuné, and Berglund’s highest level when they have finished their pro-
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gramming course. The natural question here is what is meant by ‘problem solv-
ing’? Eckerdal, Thuné, and Berglund do not define what they mean by ‘problem
solving’, so students may have many different views on the concept. Palumbo
(1990) made an extensive review of literature regarding the connections between
learning programming languages and problem solving skills. He summarises
many studies (done in the imperative style of programming and most of them in a
primary or secondary school setting) on the transferability of learning a program-
ming language and problem solving skills. Palumbo distinguish between two
types of transfer: the distance of transfer and generalizability of transfer. Near
transfer is “skills and expertise to a new problem solving domain that is similar in
its stimulus features to the domain in which proficiency and skill have already
been obtained and established “(p. 70), whereas distant transfer is “the transfer of
skills and expertise to a new problem-solving domain that is distinctly different in
its stimulus features to the problem-solving domain where expertise had already
been established” (p. 71). Specific transfer “can be defined as transfer of one or
more specific skills to a new problem-solving domain. Generalized transfer can be
defined as the transfer of general problem-solving strategies and procedures from
one problem solving context to another.” (p. 70). His conclusion is that one can
not expect neither distant nor general transfer to happen in an introductory course,
since the time possible to practice is simply too limited.

Eckerdal, Thuné and Berglund restrain themselves from giving advice on how to
enhance the students “program thinking” level. However, they find that “in ob-
ject-oriented programming as in mathematics there are standard solutions to cer-
tain type of problems, ’canonical procedures’ to learn and discover. They are used
by experienced programmers and necessary for the simplification and speed up of
the work. It is thus desirable to help the students to discern such procedures” (p.
140). Canonical procedure is a term defined by Hazzan (2003):

A canonical procedure is a procedure that is more or less automatically trig-
gered by a given problem. This can happen either because the procedure is
naturally suggested by the nature of the problem, or because prior training has

firmly linked this kind of problem with this procedure. (p. 108)

Consequently, Eckerdal, Thuné and Berglund ask an important question:
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How can we help beginning programming students to discern ’canonical pro-

cedure’ when learning object-oriented programming? (p. 141)

In this light, the answer to research question R1 (Is it possible to make a course
design where the students learn a systematic programming process, conceptual
models as a structuring mechanism, and coding?) can be seen as one response to
Eckerdal, Thuné, and Berglund’s question: Coding patterns describe ‘canonical
procedures’ that programmers can use when they encounter the problem of im-
plementing a class model, the focus on standard algorithmic solutions to standard
problems like finding one object among many objects and process recordings de-
scribe ways to integrate these ‘canonical patterns’. However, if the problem stu-
dents shall solve is distant and/or more general than the problems they have learnt
one can not (and should not) expect them to be able to solve it (Palumbo, 1990).
deRaadt (2007) did an experiment in order to see if explicit teaching of program-
ming plans had an impact. They taught the same curriculum to two groups of stu-
dents during a weekend, but in one of the groups he explicitly taught plans. In the
final programming assignment, he found that 44% of the solutions in the group
where the plans were taught included plans whereas only 28% of the solutions
included plans in the other group*’.

One of Hazzan’s compatriots Orna Muller’s answer to ‘canonical procedures’ is
pattern-oriented instruction (Muller, 2005; Muller, Ginat, & Haberman, 2007).
She has described a number of algorithmic patterns that are:

solutions to basic recurring algorithmic problems and form the building blocks
for developing algorithms. Algorithmic patterns refer to a classification of al-

gorithmic problems according to their goal (Muller, 2005, p. 60)

From a study based on two groups of students — one group that has received pat-
tern-oriented instruction and one that has not — she found that the group who was
exposed to pattern-based instruction exhibited a better problem-solving compe-
tence than the other group (Muller et al., 2007).

As for the teaching of the programming process, Caspersen (2007) concludes

17 Please note that the groups only contained four people, so he was not able to check for statisti-
cally significant differences.
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except for a few far-sighted researchers that promote various forms of patterns
and techniques, programming skills and the programming process does not
have a solid seat in the joint awareness of what to teach in introductory pro-

gramming courses. (p. 73)

The claim made by Caspersen is further illustrated by the lack of focus on the
programming process in computer science textbooks. Lin, Lin and Wu (1999)
analysed the examples in 16 textbooks for teaching computer science in high
schools and found that all of the textbooks neglects the programming process
when presenting examples. Only two of the textbooks include examples where

debugging and correction of logic or semantic errors were included.

Using the pedagogical theory of cognitive apprenticeship, this dissertation de-

scribes a way to unfold the programming process to novices.

3.2.3 Research on Success Factors for Learning Introductory Object-
Oriented Programming

A substantial amount of research has been conducted to identify general variables
that predict the success of students aiming for a university degree. The variables
investigated encompass gender (Rountree et al., 2004; Sanders 1998; Ventura,
2005), parents’ educational level (Ting & Robinson, 1998), ACT/SAT® scores
(Brooks & DuBois, 1995; Butcher & Muth, 1985; Sanders 1998), performance in
prior courses (Chamillard, 2006), emotional factors (Bennedsen & Caspersen,
2008c; Pritchard & Wilson, 2003; Szulecka, Springett, & de Pauw, 1987), and the
application of a consistent memory model (Caspersen, Bennedsen, & Larsen,
2007; Dehnadi, 2006; Dehnadi & Bornat, 2006). Research has been conducted
within the general context of education, within computer science and in the more
topic specific area of introductory programming (Bennedsen, 2003; Bergin &
Reilly, 2005; Byrne & Lyons, 2001; Hagan & Markham, 2000b; Leeper & Silver,
1982; Pillay & Jugoo, 2005). Even in the area of introductory object-oriented pro-

18 ACT: is formerly known as the American College Test. An American, nation-wide college en-
trance exam. It assesses high school students' general educational development and their ability to
complete college-level work. It is a multiple-choice test that covers four skill areas: English,
mathematics, reading, and science. The Writing Test, which is optional, measures skill in planning
and writing a short essay (ACT). SAT (formerly known as the Scholastic Aptitude Test and Scho-
lastic Assessment Test) is a standardized reasoning test taken by United States high school stu-
dents applying for college. It covers two areas — verbal and mathematics. (SAT)
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gramming research has tried to establish general factors to predict particular stu-
dents’ success or failure. In particular, Phil Ventura’s work (2003) focuses on a
systematic evaluation of hypotheses related to the success factors of an introduc-
tory programming course using an objects-first approach. The results are docu-
mented in Ventura (2003); Ventura and Ramamurthy (2004) and Ventura (2005).

In the sixties a lot of work on creating and validating psychological test to select
programmers were performed. Much of the work of the Special Interest Group in
Computer Personnel Research (SIGCPR) was about psychological tests for the
selection of computing staff. Back then there were not many people educated in
the field but industry had a huge demand for manpower. In 1966 the number of
programmers and system analyst was 170.000 — 200.000; and the number was
expected to rise to 400.000 in 1970 (Dickmann & Lockwood, 1966). Simpson
(1973) published a bibliography in 1973 containing 152 publications describing

test for programming ability.

Evans and Simkin (1989) sum up the arguments given in many studies for per-

forming these kinds of studies:
1. Discriminating among enrolment applicants
2. Advising students’ majors
3. Identifying productive programmers
4. ldentifying employees who might best profit from additional training
5. Improving computer classes for non-CIS majors

6. Determining the importance of oft-cited predictors of computer compe-
tency, such as gender or math ability

7. Exploring the relationship between programming abilities and other cogni-

tive reasoning processes
(p. 1322)

Evans and Simkin’s study was carried out during a time when many students en-
rolled in computer science classes. This is not the case today, and so the first ar-
gument is not currently relevant because most computer science departments now

accept all students who apply.
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The following table is an extract of appendix 11.9 presenting the findings of se-

lected studies. The presentation in the appendix describes the researcher, the

number of students involved in the research, the programming language involved,

the variables investigated, the findings, and the research method. Studies focused

on formal reasoning — or abstraction ability — are excluded, these are addressed

later (apart from Werth (1986) who mainly focuses on other variables but includes

cognitive development level).

Study and year

Predictors

Gotterer and Stal-

naker

(1964)

The two significant factors are the E-51 (the tested must solve a problem
presented in program form) and the relationship between part three of the
IBM programmer aptitude test (PAT) and the math achievement.

Biamonte (1964)

Both PAT and BLT (a paper and pencil analogue of the Logical Analysis
Device) correlated with the exam-score (PAT r=0.56, BLP r=0.44).

Bauer, Mehrens
and Vinsonhaler
(1968)

All variables were significantly correlated with course grade at p<0.05.
GPA predicted most (46%). Three variables (GPA, figures series of apti-
tude test for programmer personnel (ATPP) and computer programmer

scale of strong vocational interest blank) predicted 65.6%

McKee (1974)

Alspaugh (1972) | Math background, personality (thusstone temperament schedule) and criti-
cal thinking (Watson-Glaser critical thinking appraisal) accounts for 61.4
% of the variation. Math alone accounts for the most variation.

DeNelsky and The aptitude assessment battery: programming predicts 16% of the stu-

dents’ grade.

Newsted (1975)

Programming ability, GPA and time spend predicts 41 %. Time spend is a

negative factor (i.e. more time spend means lower result).

Capstick, Gordon
and Salvadori
(1975)

A non-significant relationship between ATPP scores and COBOL. The
correlations between ATPP scores and FORTRAN are significant at p<
.05. The larger and most significant correlation is between FORTRAN,

and the arithmetical reasoning test component.

Mazlack (1980)

None of the variables showed a correlation with the final grade.

Leeper and Silver
(1982)

All but math and science correlate with the final grade. The regressions
formula predicts 26 %. 64 % of the predicted fail-students did actually fail

in the following year.
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Konvalina, Wile-
man and Stephens
(1983)

Students who passed the course (228) had significantly more mathematics
background than students who withdrew (154).

There were statistically significant differences between the students who

passed and failed wrt. all but one of the success factors (word problems).

Hostetler (1983)

GPA, diagramming and reasoning score, mathematics background, and
Sober/Happy-go-lucky accounted for 42.6 % of the variance.

Nowaczyk Performance in prior mathematics and English courses, amount of pre-

(1983) vious computer experience, expected grade in the course, and performance
on selected logic and algebraic-word problems accounted for a statistically
significant amount of variation (does not say how much). Neither person-
ality factors nor computer anxiety correlated with success.

Sorge and Wark In order to make a satisfactory progress in the program studied (computer

(1984) science major), a student should have SAT math score of at least 560,
SAT-verbal score of at least 500, a score of at least 5 on a trigonometry
test, a grade of Aor B in the first CS course.

Werth (1986) Correlation between College grades/high school math (R=0.252, p<0.05),

cognitive style (R=0.317, p<0.01) and Piagetian intellectual development
(R=0.232, p<0.05).

Mayer, Dyck and
Vilberg (1986)

Word problem translation, word problem solution, and following direc-

tions accounted for 50% of the variance.

Austin (1987)

High school composite achievement, quantitative end algorithmic reason-
ing abilities, vocabulary end general information abilities, self-assessed
math ability, and cognitive style — self-assessed introvert accounted for

64% of the variance.

Evans and Simkin
(1989)

Combinations of the variables accounted for at most 23% of the variance
of the six different outcome variables. No pattern can be found in the com-

binations.

Taylor and Moun-
field (1989)

Students with prior computer science courses as well as male students

perform better, hours worked and major had no impact.

Gibbs (2000)

No correlation between field dependent /.field independent and design or

coding was found.

Goold and Rim-
mer (2000)

Average score in other units, relative abstraction, dislike programming,
problem solving, raw secondary score and gender accounted for 43% of

the variance.

Hagan and Mark-

The more programming languages a student knew prior to taking the
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ham (2000b)

course, the higher the performance.

Byrne and Lyons
(2001)

Math (r = 0.353) and science (r = 0.572, but only 35 students had studied a

science subject) correlates with programming performance.

Rountree, Roun-
tree and Robins
(2002)

The strongest single indicator of success was the grade the student ex-
pected to get on the course. Other factors that relate to success include
whether students think their background is science, commerce, or humani-
ties; whether they have recent university math experience; and what year

of study they are in.

Stein (2002)

There is a correlation between math and success in CS1. Students who
study calculus do at least as well as students who study discrete math in
their CS1-CS2 courses.

Wilson (2002)

Comfort level, math background, attribution of success/failure to luck
(negative correlation), work style preference and attribution of suc-

cess/failure to task difficulty accounted for 40% of the variance.

Rountree, Roun-

tree, Robins and

Four rules to identify students who will potentially fail. The rules identify

53% + 11% instead of the expected 27%. Two rules for successful stu-

Hannah (2004) dents.

Holden and Prior experience (sum of knowledge of encapsulation and inheritance (IE),

Weeden (2003) number of semesters in high school involving programming and program-
ming as part of work) as well as IE in itself is an advantage in the first
course in a programming sequence, but not in later courses. Comfort level
does not correlate with success.

Ramalingam, Mental model, self-efficacy, and previous programming and computer

LaBelle and experience accounted for 30% of the variance.

Wiedenbeck

(2004)

Ventura and Ra-
mamurthy (2004)

Prior knowledge of C++ or Java was not a predictor of success for their
objects-first CS1. There were no correlation between programming self-

efficacy and success.

Bergin and Reilly
(2005)

Student’s perceived understanding of the module, gender, Irish learning
certificate mathematics grade, and comfort level accounted for 79% of the

variance.

Ventura (2005)

Percent lab usage, comfort level, and SAT math score accounted for 52.9%

of the variance.

75



Wiedenbeck
(2005)

Prior computer and programming experience, self-efficacy, and knowledge

organization accounted for 30% of the variance.

Thomas, Kara-
hasanovic and
Kennedy (2005)

There is a fairly strong, negative correlation between typing speed and

coding performance.

Bergin and Reilly
(2006)

Irish learning certificate mathematics score, number of hours playing com-
puter games (negative effect), and programming self-esteem accounted

correctly classified 80% of the students in the categories weak and strong.

Rauchas, Rosman, | English predicts better than math.

Konidaris and

Sanders (2006)
Simon et al. A positive correlation between deep learning and the exam score, surface
(2006) learning was negatively correlated. Spatial visualization skills are posi-

tively correlated. A rich articulation of search strategies is positively corre-
lated.

Table 4: Predictors of success for programming
For another overview of prior research in the area of predicting success in pro-

gramming, see Caspersen (2007) table 5-1.

Many computer science educators argue that abstraction is a core competency for
computer professionals, and that it therefore must be a learning goal of a given
computer science curriculum — see, e.g., Alphonce and Ventura (2002); Kurtz
(1980); Nguyen and Wong (2001); Or-Bach and Lavy (2004) plus Sprague and
Schahczenski (2002).

Nguyen and Wong (2001) claim that it is difficult for many students to learn ab-
stract thinking; at the same time they claim abstract thinking to be a crucial com-
ponent for learning computer science in general and programming in particular.
The authors describe an objects-first-with-design-patterns approach to introduc-
tory programming with a strong focus on abstract thinking and developing the
students’ abstract skills.

Or-Bach and Lavy (2004) argue that abstraction is a fundamental concept in pro-
gramming in general, and in object-oriented programming, in particular. The au-
thors describe a four-level ordering of cognitive abstraction activities that students

employ when solving a given problem: 1) defining a concrete class, 2) defining an
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abstract class with attributes only, 3) defining an abstract class including methods,
and 4) defining an abstract class including abstract methods. They do not use a
general definition of cognitive development, and therefore no standard test in-
struments that others have proven valid and reliable. Their definitions (and test

instrument) are very specific to object-orientation.

Sprague and Schahczenski (2002) also argue that abstraction is the key concept
for computer science students. They furthermore argue that object-orientation
“facilitates, and even forces, a higher level of abstraction than does procedural

programming” (p. 211).

Hudak and Anderson (1990) found that a measurement of learning style (concrete
experiencing, measured via Kolb’s learning style inventory (Kolb, 1976)) and
formal operation (the level of formal operations, measured by formal operational
reasoning test (Roberge & Flexer, 1982)) correctly classified 72% of computer
science students using a cut-off of 80% or better as a criterion of success in the

course.

Kurtz (1980) used what seems to be a sub-scale of Inhelder and Piaget’s stage
theory (Inhelder & Piaget, 1958) for his study, and found that the measured ab-
straction level strongly predicted programming success (it predicted 66% of the
final score). However, the study’s sample was very small (n=23). He found that
the first and last developmental levels were “strong predictors of poor and out-
standing performance, respectively; and the [developmental] level predicts per-
formance on tests better than performance on programs” (p. 114). Barker and
Unger (1983) did a follow-up study (almost a replication but with a shortened
version of Kurtz’s instrument) with a much larger sample (n=353). They found
that the intellectual development level (Inhelder & Piaget, 1958) accounted for
11.6% of the students’ final grade.

As described in section 5.4.3, it can be difficult to generalize from one cultural
context to another. Most of the above-cited studies were done in universities in the
United States. Care is required when directly comparing the results found in these
studies to results that we find when studying Danish university students. For ex-

ample, Phil Ventura’s finding about math’s missing impact on his students’ suc-
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cess might not be directly transferable to a Danish cultural context, and therefore

would not necessarily contradict others’ findings.

From the above we conclude that it is difficult to make a general conclusion on
the success factors for programming. Most of the factors are predictive in some
studies but non-predictive in others. One of the few factors that seem to recur in
the prediction is students’ mathematical ability. Success is in almost all studies

defined as the result of the examination.

3.3 Research on Pedagogical Patterns

As described in section 1.1.1.3, the goal of pedagogical patterns is to capture ex-
pert knowledge of teaching and make the transfer of such knowledge possible to
practitioners. Like design patterns, pedagogical patterns do not express new peda-

gogical ideas but tried and “proven” solutions to pedagogical problems.

Most of the research within the field of pedagogical patterns is done in a positivis-
tic style, merely describing the expectations of the pedagogical patterns’ develop-
ers (e.g., Eckstein (2001); Seffah and Grogono (2002) plus Sharp, Manns, and
Eckstein (2000; 2003)).

A few descriptions in the “Marco Polo style” were also noted from teachers who
have used pedagogical patterns to develop their teaching or who have reflected on
their teaching — see, e.g., Erickson and Leidig (1997); Muller, Haberman, and
Averbuch (2004) plus Seffah and Grogono (2002).

The Journal of Computer Science Education has published a thematic issue on
pedagogic patterns (this is the issue where both of the articles on pedagogical pat-
terns included in this dissertation appear): Volume 16 issue 2, 2006. In this issue,
the following articles are presented:

Denning, P. J., & Hiles, J. E. (2006). Transformational Events, 77-85

Haberman, B (2006). Pedagogical Patterns: A means for Communication

within the CS Teaching Community of Practice, 87-103.

Retalis, S., Georgiakakis, P. & Dimitriadis, Y.(2006). Eliciting Design
Patterns for e-learning Systems, 105-118.
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Bennedsen, J. (2006b). The Dissemination of Pedagogical Patterns, 119-
136.

Derntl, M., & Botturi, L. (2006). Essential Use Cases for Pedagogical Pat-
terns, 137-156.

Bennedsen, J., & Eriksen, O. (2006). Categorizing Pedagogical Patterns by
Teaching Activities and Pedagogical Values, 157-172.

Denning and Hiles (2006) describes a pattern for teaching and explaining how
innovations occur. According to their pattern, it occurs in three stages Period of
increasing ferment, Transformational moment and Period of adoption and set-
tling. They describe how they have used this pattern in their Cornerstones of
Computer Science course where the students identify modern problem areas ready

for transformation.

Haberman (2006) describes how she has used pedagogical patterns as a tool to
discuss and retain pedagogical development and expertise among high-school
computer science teachers. She proposes a five stage process to foster the use of

pedagogical patterns as a communication tool among teachers:

1. A beginners workshop so that newcomers can be introduced to the concept
of patterns,

2. ldentify new patterns. Each teacher identify new patterns based on their

experience,

3. Writers” workshop. Presentation, discussion and identification of recur-
rence of the proposed patterns,

4. Feedback and assessment. The teachers should give feedback and assess
the patterns, pattern languages and value systems, and

5. Shepherding. The teachers at this stage should help newcomers in order to

expand the community.

Retalis, Georgiakakis, and Dimitriadis (2006) discuss the process of creating pat-
terns for e-learning systems. They argue that these patterns must contain both
pedagogical and technical advice. As they say: “Creating patterns for e-learning
systems thus signifies an explicit commitment to a set of values that characterize

well-being, well-learning, and a good social and physical convivial learning envi-
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ronment.” (p. 109). With this boundary condition, they propose a four step devel-
opment process in order to create a design pattern language for e-learning sys-
tems: Identify and sketch design patterns, draft a design pattern, critique patterns,
and identify related patterns.

Derntl and Botturi (2006) define three key terms: Design pattern, pattern language
and pattern system. By seeing the development of patterns as a system develop-
ment process, they describe functional and non-functional requirements for pat-
tern systems, add structure to these requirements, and derive essential use cases.
Finally, “implications concerning the pedagogical use of pattern-based design are
drawn, concluding that a stronger focus on the underlying (pedagogical) value
system is required in order to make a pattern system a meaningful tool for effec-

tive educational design” (p. 137).

Apart from the special issue, research in pedagogical patterns is hard to find. Jal-
loul (2000) describe and evaluate their development of three pedagogical patterns
(Link, Reuse and Evaluation) used in the teaching of object-oriented software

engineering. Their biggest challenge was the

gap between the theory introduced in classrooms and the real habitat of the
theory, namely work environments and challenges. In particular it was hard to
teach object-oriented software engineering concepts [...] effectively and con-
vincingly when the practical application of these concepts was confined to
class work or lab projects. (p. 76).

They find that the application of these three patterns have enhanced the learning
outcome of the students.

From this we conclude that the research area of pedagogical patterns is emerging
and no clear research tradition exists. It is necessary to focus on the foundation of
pedagogical patterns like structuring of patterns or a template that emphasizes the

pedagogical aspects of the patterns.
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4 Research on Teaching and Learning

Experience is the best teacher, but a fool will learn from no other.
Benjamin Franklin (1706-1790)

As opposed to computer science, the field of learning has a long tradition. This
chapter starts by presenting a more elaborated didactical model than the didactical
triangle (see section 1.1.1). Following that an overview of different learning theo-
ries are given and a short description of published applications of learning theory
in computer science education. The next section gives a more detailed description
and argumentation of the learning theories applied in the concrete courses used as
empirical basis for this dissertation — constructivism, situated learning and appren-
ticeship learning (and more specific cognitive apprenticeship). The last section
discusses the differences between young students learning programming as their
formal education and professionals learning a new programming paradigm, i.e.

the difference between freshmen and professionals.

4.1 Didactical Models

Many factors influence teaching and learning and consequently have to be taken
into account when designing a course. For example, Hiim and Hippe (2006) have
developed a didactic model that identifies six aspects that influence students’

learning outcomes™® °:

Student’s learning premises — knowledge, experiences, attitudes and
skills that the students already possess when they come for the course’s

first lesson.

1% Translation from Danish done by the author.

20 Other didactical models exists (e.g. Weitl, Sii8, Kammerl and Freitag (2002) describes a didac-
tical model for e-learning or Hansen and Tams (2006) who describes what they call the diamond-
model (seven elements influence teaching and learning: goals and purpose, the teacher, the institu-
tion, the student, the content, the form , and the evaluation)) but the purpose of this section is not
to discuss different models but to show that many elements influence a teaching and learning sit-
uation. For that purpose Hiim and Hippe’s model is found very appropriate.
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External conditions — conditions that limit or make learning possible such
as equipment, artefacts, time, place, classroom settings, teacher’s re-

sources, learning resources, etc.

Objectives for the learning activity — what the students should learn
from the course/activity in terms of knowledge, skills, attitudes and com-

petencies.

Contents — what the course is about, and how its content is selected, ad-

justed and presented.

Learning process — the process of change within the learning subjects
(i.e., the students), and reflections on how the intended changes are facili-
tated.

Evaluation — assessment or evaluation in relation to the teaching process,

in relation to the course’s objectives and in relation to the students’ learn-

ing.

All of the above aspects influence each other (e.g., the content can not be selected

without knowing the student’s learning premises, the objectives ...); consequently

their model is normally drawn as in figure 7:

Student’s learning premises

External
Evaluation conditions
: Objectives
Learning
process

Content

Figure 7: Hiim and Hippe's didactical model

Hiim and Hippe’s model can be seen as a detailing of the didactical triangle as

shown in figure 8.
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Content

the objectives for the learning activity, evaluation
and content (the actual content)

external
conditions

Teacher Student
the learning process (the reflection Student’s learning premises
on facilitation) and the content (ad- and the learning process (the
justment, selection and presentation) process of change part)

Figure 8 Relation between the three elements of the didactic triangle and the six elements of
Hiim and Hippe's didactic model (in italics)

Kaasbgll (1998) describes three didactic models for programming: semiotic lad-
der, cognitive objectives taxonomy and problem solving. Semiotic ladder is de-
scribed as: “the teaching and learning sequence starts out from syntax, and pro-
ceed to semantics and pragmatics of the language-like tools” (p. 196), cognitive
objectives taxonomy: “The sequence of instruction comprised using an applica-
tion program, reading the program, an changing the program. Creating a program
may also be added.” (p. 196), and problem solving: “Through solving problems,
the students should extend their experience and repertoire of practice, and the ba-
sis for the process is the knowledge structure of the field of programming. The
problem solving process is guided by methods and environments.” (p. 196). Based
on five interviews with teachers at computer science departments in Australia he

concludes:

... interviews with teachers of introductory programming in universities indi-
cated that suggested models for teaching had not been adapted, and that most

courses had no clear teaching model.

From the above, we conclude two things. Firstly, many factors influence a learn-
ing situation and consequently it is difficult to generalize from one educational

context to another. Secondly, it is a prerequisite for others to evaluate the results
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to know the context in which the research is done. For a start, it seems problem-
atic to compare results from CS1 courses simply due to the fact that the learning
objectives are not compatible (or at least stated explicitly so that one knows what
to compare). The observations by Kaasbgll on the different didactic models can be
seen as a difference between the learning objectives, e.g., is it the mastering the
programming language or mastering problem solving and the ability to express a
solution to this problem in some formal language that is the goal. Consequently,
in this research the learning objectives, students, etc. are described in order to help

others to evaluate the transferability of the results.

4.2 Learning Theories

Cognition and learning are central concepts in education. There is a long tradition
for research in this area, and many different “schools” of education exists. Conse-
quently, many different descriptions and classification can be given. The follow-
ing overview is based on the categorization from Greeno, Collins, and Resnick
(1996) and consequently uses their terminology. They have described three gen-
eral views of knowing and learning they find dominant in European and North
America: empiricist, rationalist, and pragmatist-sociohistoric. The empiricist
view is typified by authors like Thorndike (1931), Skinner (1965), and Watson
(1925). Empiricism stresses the importance of consistency of knowledge and ex-
perience and sees learning as building, strengthening and weakening associations
between stimuli and responses. An alternative name for the empiricist view is
behaviourist view, a term introduced by Watson (1913), the “father” of behaviour-
ism (Marton & Booth, 1997, p. 4). The rationalist view is typified by authors like
Piaget (Inhelder & Piaget, 1958), Bruner (1990) and Glasersfeld (2002). This
view seeks “conceptual coherence and formal criteria of truth” (Greeno et al.,
1996, p. 16). An alternative name for the rationalist view is constructivist view.
The pragmatist-sociohistoric view is typified by authors like Dewey (Sleeper,
2001) and Mead (1974). Alternative names for the pragmatist-sociohistoric view

are social constructivism or situated learning.

Many theorists have contributed to the three views; naturally, the following is a

rough characterization of the views.
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Greeno, Collins, and Resnick (1996) divide their description of the different
groups of learning theories under three headlines:

e the views on knowing,
e the views on learning and transfer, and
e the views of motivation and engagement

In the following we will characterize the three general views of knowing and

learning under these three headlines.

4.2.1 Knowing

The empiricist view: What a person knows is often a reflection on what that per-

son has experienced. This is captured in the famous quote of Watson (1925):

Give me a dozen healthy infants, well-formed, and my own specified world to
bring them up in and I’ll guarantee to take any one at random and train him to
become any type of specialist I might select—doctor, lawyer, artist, merchant
chief, and yes, even beggar-man and thief, regardless of his talents, penchants,

tendencies, abilities, vocations and race of his ancestors. (p. 82)

Much of the theoretical foundation of the empiricist view was based in stimulus-
response association theory, where the assumption is, that behaviour is to be un-
derstood as the responses to given stimuli in a given situation. For example, Wat-
son has stated two “laws” that describe the habit®* of stimuli-response (Ormrod,
2004):

Law of frequency: The more frequently a stimulus and response occur in
association with each other, the stronger that stimuli-response habit will

become.

Law of recency: The response that has most recently occurred after a par-
ticular stimulus is the response most likely to be associated with that

stimulus.

Later, Hull (1943; 1952) introduced organismic characteristics into the behaviour-

ist learning theory. He proposed that a number of other factors than just the pres-

2! The term habit was adopted by Watson and other behaviorists from William James as a descrip-
tion of behaviour that requires relatively little conscious control (James, 1950).
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ence of a particular stimuli and a persons past experiences but unique to each or-
ganism and each occasion must be considered in order to predict the likelihood

and strength of a response’s occurrence.

The rationalist view sees knowledge as structures of information and processes
that form these structures (usually known as schemas) and retrieve relevant struc-
tures according to the problem at hand. It builds upon a memory model of two
memory systems: short term memory and long term memory. The processing
takes place in short-term memory and the storage of schemas in long-term mem-
ory. This view on knowing is the one taken in many articles on program compre-
hension (e.g., Soloway and Ehrlic (1984) and Soloway (1986)). Another line of
research based on this view on knowledge it the work on “misunderstandings”

(e.g., Pea (1986))

The “cognitive load theory” described by John Sweller (Clark, Nguyen, &
Sweller, 2006; Sweller, van Merrienboer, & Paas, 1998) has this understanding of
knowledge as its basis. The short-term memory is limited whereas the long-term
memory holds an unlimited capacity. Consequently, cognitive load theory has
described a number of so called effects (e.g., worked examples effect (Paas & Van
Merrienboer, 1994; Ward & Sweller, 1990)) that optimizes®® the load on short-

term memory.

The pragmatist-sociohistoric view sees knowledge as distributed in the world
among individuals as opposed to the individual views described above. This view
includes tools, artefacts and communities of practices where individuals partici-
pate in the view on knowledge; enhancing the view from the brain to the society.
Communities or groups are composed of individuals but has rules and roles that
are part of the (collective) knowledge.

The work of the Russian psychologist Vygotsky (1978) is an example of this view

on knowledge. As he writes:

Every function in the child’s cultural development appears twice: first, on the
social level, and later, on the individual level; first, between people (interpsy-

chological), and then inside the child (intrapsychological). This applies

22 optimize in the sense that most possible short-term memory capacity is used on crea-

tion/modification/extension of schemas
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equally to voluntary attention, to logical memory, and to the formation of con-
cepts. All the higher functions originate as actual relations between human in-
dividuals. (p. 57)

4.2.2 Learning and Transfer

Transfer “is the process of applying knowledge in new situations. Educators want
the knowledge that is acquired in school to apply generally in students’ lives, ra-

ther than being limited to the situations of classrooms where it is acquired.”
(Greeno et al., 1996, p. 21)

The empiricist view: The view on knowledge is a stimuli-response view. Conse-
quently, learning is the formation, strengthening and adjustment of stimuli-
response associations. To apply these associations in new contexts, the learner
needs to broaden the “things” that can cause a given response (and also broaden
the response). Thorndike expressed this as the effect of “belongingness” (Bevan &
Dukes, 1967) — the stimuli-response connection is strengthened if the elements of

association somehow belong together.

The rationalist view: Knowledge is represented as schemas and transfer from one
context to another depends on the ability to acquire a schema that composes a
structure that is invariant across situations. Learning is thus the creation and modi-
fication of such schemas. In general, transfer is difficult to verify (Gick &
Holyoak, 1983), and research have focused on various aspects of problems and to
study the relative effects of these aspects on spontaneous access to and mapping
of the previous learned situation (Bassok, 1990). One thing noticed is that learning
the general schema has to be acquired along with practice in applying the schema

to examples.

The pragmatist-sociohistoric view: Knowledge is seen as practices of communi-
ties and the ability of persons to participate in these practices. Learning is there-
fore seen as enhancing the practices and the participants’ abilities to participate.
Many of the reforms in education is based on students becoming more active in
the learning community, the students must formulate and evaluate hypotheses and
questions and do group work. The students must learn such skills. Since learning
is tightly linked to a practice, transfer becomes problematic since it is another

practice. Typically, there is a distinction between transfer within a community or
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to a practice outside the community (e.g., from school to job). Many of the tools
and artefacts used in one practice is not available in the new practice and “the
problem of transfer becomes one of marshalling the resources needed to be suc-
cessful in the new situation” (Greeno et al., 1996, p. 24)

4.2.3 Motivation and Engagement

The empiricist view: Engagement is assumed to occur mainly due to extrinsic
motivations: rewards, punishments or other (positive or negative) incentives. The
motivations are extrinsic to the person but require the person’s desire to receive or
avoid them. Behaviourists believe that there are basic needs of a person (food,
sleep etc) and undesires (pain) and these are the basic motives. If other motives
can be associated with these, they influence in the same way. Thorndike con-
ducted a famous puzzle-box experiment, where a hungry cat was placed in a box
where a lever could open the door and the cat could get food (see figure 9). The
cat performed random tries to open the door; at some point in time hit the lever
and the door opened. The cat was placed in the box again (after becoming hungry
again), and the same scene happened. But at some point in time, the cat had
“learned” that hitting the lever resulted in the door opening. This was due to the

basic desire for food.
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Teaching and Learning Introductory Programming — A Model-Based Approach

Figure 9: Thorndike’s puzzle-box*

The rationalist view: The motivation is seen as intrinsic to a person. Students are
expected to be interested in the domain. Children are seen as naturally motivated
to learn when their experience is inconsistent with their current knowledge (ad-
justment of schemas) or they encounter regularities in information (generalization
of schemas). Consequently, rationalists have been trying to figure out ways to
foster students’ natural tendency to learn.

The pragmatist-sociohistoric view: Since learning is seen as a social activity,
students become engaged and motivated by participating in communities where
learning is valued.

4.3 Learning Introductory Object-Oriented Programming

In general, many things influence a given learning situation (see section 4.1); con-
sequently thinking that there is one right pedagogy to be used in all introductory
programming courses is mistaken. This implies the need for documenting the ap-
plied pedagogy when doing computer science education research. Unfortunately,
it is difficult to find research in the area of computer science education where de-

scription of the applied pedagogy is explicit. In general, descriptions of the con-

2 The picture is from  Yale University Library Digital  Collections
(http://mssa.library.yale.edu/madid/showzoom.php?id=mss&msrg=569&msrgext=0&pg=1&imgN
um=265).
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text of the research are short description of the university and the content of the

course.

A few researchers have published articles describing how a given pedagogy can
be applied within the area of computer science. Mordechai (or Moti) Ben-Ari has
published a few articles discussing application of constructivism and situated
learning in computer science education (1998; 2001; 2004; 2005). Machanick
(2007) discuss how social constructivism can be applied in computer science whe-
reas Kolling and Barnes (2004), Astrachan and Reed (1995), Astrachan, Selby and
Unger (1996), Chee (1995) as well as Schulte, Magenheim, Niere, and Schéafer
(2003) discuss the application of an apprentice based pedagogy in computer sci-
ence education. In general, it seems that the influence of pedagogy on the design

and development of introductory programming courses is limited.

Rowland (1999) discuss the question “what theory underlies this course?” His
conclusion — based on a discussion of a course in teaching and learning for higher
education teachers — is, that in practice it is not possible to point out a single the-

ory, but

One possibility is that the question is not looking for ‘an underlying theory’
but rather ‘a set of theoretical resources or insights’ ... There is not one over-
arching theory which draws it together, but rather a more pluralistic or eclectic
range of insights, methods, approaches, and so on (pp. 304-305)

In the following sections, the pedagogy or theories influencing the design of the
model-based courses studied in this dissertation is described and discussed. The
above mentioned articles describing the application of a given pedagogy will be
addressed in the following sections.

4.4 Constructivism

An old Chinese proverb says that Tell me about it, and I'll forget it. Show me it,
and I'll remember it. Let me do it, and I'll learn it. This is in short the essence of
constructivism. Biggs (2003) quote Tyler (1949) from his book “Basic Principles

of Curriculum and Instruction”:

Learning takes place through the active behaviour of the student: it is what he

does that he learns, not what the teacher does (p. 25)
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Biggs argues that most modern teachers find that this form of constructivism is
the best way to enhance learning among the students (Biggs, 2003, p. 13). How-
ever, as Phillips (1995) notes, constructivism is not just one theory but it “has
many sects” (p. 5), so one needs to be precise when talking about constructivism.
Based on Phillips different “constructivist schools”, Perkins (1999) calls for what
he call pragmatic constructivism — the view of constructivism as a toolbox that the

teacher can use for problems of learning; teachers should use whatever works.

Ben-Ari (1998; 2001) discusses constructivism in computer science education. As
described above (p. 86), the assumption in constructivism is that cognitive sche-
mas are build on top of other cognitive schemas, i.e. the prior knowledge and un-
derstanding of programming and the computer influences the way students build
their (new) knowledge of the field. As a consequence (if you accept constructiv-
ism as the pedagogical theory) Ben-Ari lists ten issues one must consider, two of
which are that “the model (or as du Boulay (1989) calls it “the notional machine”)
must explicitly be taught” and “don’t start with abstractions”. Following this, he
discusses the problems with an objects-first approach and concludes that “for an
objects-first approach to work, teachers will have to develop ways of explaining
the underlying models without destroying the abstractions.” (p. 63).

Hadjerrouit (1998; 1999; 2005) describes “a pedagogical framework rooted in
constructivist epistemology for teaching object-oriented design and program-
ming” (1999, p. 171). In his framework, Hadjerrouit describes seven principles:

1. Object-oriented knowledge must be actively constructed by learners,

not passively transmitted by teachers.

2. Program development must be guided by object-oriented concepts,

not by language technicalities.

3. Students’ prior knowledge in programming needs to be evaluated

whether it conflicts with the object-oriented approach.

4. In order to be useful for problem-solving, object-oriented concepts
must be strongly linked to problem situations and to the object-
oriented language being used, which must themselves be strongly

connected to each other.

5. The process of constructing strongly linked object-oriented knowl-

edge requires particular types of problem-solving skills.
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6. Traditional modes of teaching such as lectures must be replaced by a
set of activities where the students are actively engaged in the knowl-

edge being constructed.

7. To get students actively involved in problem-solving, the activities
must focus around a set of realistic, intrinsically motivating problems.
(1999, pp. 172-173)

The seven principles fit nicely into the goals of a model-based introductory pro-
gramming course; constructivism is seen as one pedagogical pillar of a model-
based course. However, it seems like Hadjerrouit focuses mostly on the concep-

tual framework of object-orientation not much on the programming process.

4.5 Situated Learning

One of the goals of the model-based approach is that students learn a systematic
approach to the construction of programs. This requires a focus on the program-
ming process. But what constitutes the programming process? And how do we
make the process explicit? Other professions face the same problem; they need to
teach students how to construct things, need to show the students that the solution
is not build in one, big, monolithic step but in small steps. Carpenters solve sever-
al small tasks when building a house, work out problems they encounter during
the construction, use tacit knowledge about the best solution etc. Modern software
development is the same (Beck, 1999; Beck et al.; Larman, 2005; Schwaber,
2004); it focuses on iteration, test, refactoring and development in small steps
towards a solution. We need to make this explicit to the students and find peda-
gogical theories that make this transfer of (tacit) knowledge possible.

The social interactions between the experienced master and his apprentices or
learners are the driving force in the learners’ progressively constructing a deeper
understanding of, and experience in, the profession (Aboulafia & Nielsen, 1997).
One of the most well-known descriptions is by Lave and Wenger (1991). They
demonstrate how midwives, African tailors, United States Navy quartermasters,
meat-cutters and non-drinking alcoholics in Alcoholics Anonymous build their
knowledge of those fields. Probably, the most cited description is the way Vai and
Gola tailors learn by first observing master(s), then sewing and finally cutting the

cloth. The learners participate in what Lave and Wenger call the community of
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practice (CoP). They start in the peripheral of the community, and then move
more and more toward the middle. Lave and Wenger call this learning process
legitimate peripheral participation (LPP). The essence of LPP is that learning
takes place within the community where the knowledge is used, as opposed to
learning in conventional schools which teach knowledge that is de-contextualized
(Lave & Wenger, 1991, p. 40)

It should be noted that Lave and Wenger explicitly state that LPP is not a peda-
gogical strategy:

We should emphasize, therefore, that legitimate peripheral participation is not
in itself an educational form, much less a pedagogical strategy or a teaching

technique. It is an analytical view on learning, a way of understanding learn-

ing (p. 40)
However, as Ben-Ari (2005) argues, it is difficult not to identify LPP with appren-
ticeship. Consequently, he has “chosen to identify the term with apprentice-like

learning that occurs within a community that uses the knowledge.” The under-

standing of situated learning expressed in this dissertation resembles this.

Ben-Ari (2004; 2005) discusses several problems with this analytic way of learn-

ing computer science at high schools or universities:

e LPPas itis presented in Lave and Wenger (1991) describes the entire edu-
cational process that a newcomer undergoes on her way to full-fledged
membership in the community. It is hard to see how to accomplish this
with students who aspire to membership in high-tech communities en-

gaged in science, engineering, medicine and finance,

e apprenticeship requires that the future occupation of a student be deter-

mined at a very early age,
e apprenticeship is susceptible to nepotism,
e real problems should be presented to the students, and

e it would be unreasonable, as well as terribly inefficient, to burden masters

with the entire education of young students, (Ben-Ari, 2004, pp. 87-88)
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Based on this problematization of situated learning, Ben-Ari asks the question
“what can be learned from situated learning?” His answer includes pedagogy,

where he finds

CSE experts should devote time to analyzing what actually happens in real
CoPs, and then to create learning activities that simulate such tasks as well as
possible within the constraints of a school. (I emphasize the word simulate,
because I want to distance myself from naive LPP that insists on ‘‘real’’ situa-
tions and contexts.) This has certainly been attempted in courses of software
engineering and other project-based educational activities (Fincher, Petre, &
Clark, 2001), but I would extend it to earlier levels of learning. (Ben-Ari,
2004, pp. 93-94)

Ben-Ari’s view on LPP is echoed in the design of the courses studied in this dis-

sertation.

4.6 Apprenticeship Learning

Given the modelling aspect of the studied way of teaching programming and the
importance of connecting the learning process to a programming practice, teach-
ing inspired by apprenticeship learning in the craft or craft-like forms of produc-
tion are found promising (Bennedsen & Caspersen, 2003; Bennedsen, 2006a; Fjuk
et al., 2004). This view is shared by others, both in the field of general education
(e.g., Levin and Waugh (1998)) and in the more specific field of introductory pro-
gramming (e.g., Kolling & Barnes (2004)). One example of an apprenticeship-
inspired approach to teaching introductory programming is given by Astrachan
and Read (1995). Their work describes what they term an application-based ap-
prenticeship model for learning; starting by reading programs written by experts,
then modifying them and at the end creating programs by themselves (their didac-
tical model is a good example of the cognitive objectives taxonomy described by
Kaasbgll (1998)). Astrachan, Selby and Unger (1996) describe how they have

used this approach for a data structure course.

Nielsen and Kvale (1997) suggest two facets of apprenticeship learning: the per-
son-centred facet and the de-centred facet. Concerning the person-centred facet,
the master reflects on and thinks aloud about the particular action, making it visi-
ble and a source of identification. As such, the apprentice learns from observing

the master performing the profession’s embedded actions. Concerning the de-
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centred facet, knowledge construction is considered as LPP; i.e., the attention fo-
cuses on the learner’s participation in a community of practitioners where the
master, or a more experienced peer, legitimizes the individual learner’s skills and

knowledge.

Jordan (1989) identified, from a study of village midwifes in Mexico, several

characteristics of traditional apprenticeship learning:

e Work is the driving force. The apprentices’ progressive mastering of tasks
is appreciated for “getting the problem solved,” not as a step toward a dis-

tant, symbolic goal (such as a certificate).

e Apprentices start with skills that are expected by the master to be easiest
and where mistakes are least costly. (The tailors start out sewing, not cut-
ting, the cloth.)

e Learning is focused on bodily performance. It involves the ability to do,
rather than the ability to talk about something. It often focuses on skills

rather than academic competencies.
e Standards of performance are embedded in the work environment.

e Teachers and teaching are largely invisible.
Wenger (1998) finds schools unsuitable for learning:

if we believe that information stored in explicit ways is only a small part of
knowing, and that knowing involves primarily active participation in social

communities, then the traditional format does not look so productive (p. 10)

Traditional university courses make it difficult to apply an apprenticeship-inspired
pedagogy or using LPP as an inspiration to design learning situations. There is no
direct “work™ to be done, so the work cannot be the driving force. This implies
that it can be problematic to have students participate or even identify themselves
in future participation in a community of practice whose practice is system devel-
opment. This is especially true in the case of introductory programming courses,
because many of the students participating in these courses do not want to major
in computer science, but in related fields (e.g., one of the courses studied has par-
ticipants from computer science, mathematics, geology, nano-science, mathemati-

cal economics and multimedia). However, e.g., Guzdial and Tew (2006) describe
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how they have created a community of practice for their students to be involved
in; students who are not majoring in computer science. Others have taken LPP as
their starting point and discussed how schooling can be seen as more or less LPP.
One example is Joseph and Nacu (2003), who talk about instruction as being
“aligned” if students recognise that their school activity leads toward a commu-
nity of practice they value. This implies that students participating in a course
whose goals and purposes cannot be understood as relating to a long-term goal
(e.g., becoming a member of a community of practice) will not be motivated to
learn. Likewise, Shaffer and Resnick (1999) also discuss authenticity. They de-
scribe different kinds of authenticity that are necessarily directly related to a

workplace.

The goal of university courses is not the acquisition of skill, but academic compe-
tencies; the learning takes place in an educational institutional setting, not a work-
place. Collins, Brown and Newman (1989) have described a form of apprentice-

ship they term “cognitive apprenticeship”:

We call this rethinking of teaching and learning in school “cognitive appren-
ticeship” to emphasize two issues. First the method is aimed primarily at
teaching the processes that experts use to handle complex tasks. Where con-
ceptual and factual knowledge are addressed, cognitive apprenticeship empha-

sizes their uses in solving problems and carrying out tasks ...

Second, our term, cognitive apprenticeship, refers to the learning-through-
guided-experience on cognitive and metacognitive, rather than physical, skills
and processes [...] The externalization of relevant processes and methods
makes possible such characteristics of apprenticeship as its reliance on obser-
vation as a primary means of building a conceptual model of a complex target
skill. (p. 457)

Ben-Ari (2005) recognizes the usefulness of cognitive apprenticeship:

An example of the benign use of insights from situated learning is cognitive
apprenticeship (Collins et al. 1989), in which teachers attempt to present stu-
dents with activities that introduce students to the nature of actual practice; for
example, the nature of writing is that the written text must be analyzed and
criticized, and the nature of mathematics is that results come from a struggle

with unfruitful attacks on a problem. Having students assume the role of
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mathematicians may be excellent pedagogy, but only in carefully crafted ac-
tivities that bear little resemblance to actual practice. (p. 374)

To program is to create a program with certain features. It is a process that re-
quires certain skills. These skills are not necessarily well-known and explicitly
described, but they are skills that experienced programmers possess. Traditional
pedagogical practices do not show students key aspects of expertise— “too little
attention is paid to the reasoning and strategies that experts employ when they
acquire knowledge or put it to work to solve complex or real-lift tasks” (Collins et
al., 1991, p. 6). One example of this type of problem was noted by Schoenfeld
(1985), who found that students relied on surface knowledge and standard text-
books for “one direct way from problem to goal.” When the problems the students
face do not match the standard pattern, they are lost about what to do.

According to Collins et al. (1991), traditional apprenticeship has four important

aspects: modelling, scaffolding, fading and coaching.
Modelling is

supposed to give models of expert performance. This does not refer only to an
expert's internal cognitive processes, like heuristics and control processes, but
also to model the expert's performance, tacit knowledge as well as motiva-
tional and emotional impulses in problem solving (Jarveld, 1995, p. 241).

Scaffolding is support given by the master to the apprentices in order to carry out
some given task. ”This can range from doing almost the entire task for them to

giving them occasional hints on what to do next” (Collins et al., 1991, p. 7).

Fading is — as the word suggests — the master pulling back more and more, leaving
the responsibility for performing the task more and more to the apprentice.

Coaching is the entire process of apprenticeship — overseeing the process of learn-
ing. The master coaches the apprentice in many ways: choosing tasks, giving

feedback, challenge the apprentice, encouraging the apprentice, etc.

Collins et al. (1991) have described how these aspects can be used in a more tradi-
tional, school-based educational system. In short, “In order to translate the model

of traditional apprenticeship to cognitive apprenticeship, teachers need to:

¢ identify the process of the task and make it visible to students;
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e sjtuate abstract tasks in authentic contexts so that students understand the
relevance of the work; and

e vary the diversity of situations and articulate the common aspects so that

students can transfer what they learn.” (p. 8)

The teachers must give the right level of support while the learners are solving
problems. The support depends on the learners’ previous knowledge, working
habits etc. It is important that the teacher builds up knowledge about the individ-
ual learner in order to give support. An important issue in cognitive apprentice-
ship is the learners' reflection on the differences between their knowledge and the

reflections made by the master and fellow learners.

Several examples of cognitive apprenticeship in elementary school are described —
e.g., Palinscar and Brown (1984) describe how reading can be taught using cogni-
tive apprenticeship; and Scardamalia, Bereiter, and Steinbach (1984) have devel-
oped an approach to teaching writing based on elements of cognitive apprentice-

ship. In college, Schoenfeld’s (1985) way of teaching mathematics is an example.

Schulte, Magenheim, Niere, and Schéfer (2003) describe a learning environment
for introducing object-oriented technology in upper secondary schools based on a
cognitive apprenticeship pedagogy. They have a strong focus on the modelling
aspect of object-orientation and introduce object-oriented technology by two
tools: Fujaba (a CASE tool that generates executable Java code from a class and
behaviour UML-diagram, (Fujaba, 2007)) and dobs (a plug-in for BlueJ (Kdlling,
Quig, Patterson, & Rosenberg, 2003) that shows the dynamic object structure of a
running program, (Dobs, 2005)). Schulte et al. found a very positive influence of
their learning environment and their pedagogical model using fading guidance.

In 2002 David Gries wrote an invited editorial to Inroads. In his editorial, he re-

flected on teaching programming:

In terms of knowledge —facts, definitions, particular algorithms, etc. — there
has been much progress. The development of OO has helped tremendously, in
the sense that it has given us a tool for organizing our programs and our
thoughts about them. The ongoing switch from C/C++ to Java in introductory

courses is a great step forward [...]
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However, programming is more than a bunch of facts. It is a skill, and teach-
ing such a skill is much harder than teaching physics, calculus, or chemistry.
People expect a student coming out of a programming course to be able to
program any problem. No such expectations exist for a calculus or chemistry
student. Perhaps our expectations are too high. Compare programming to writ-
ing. In high school, one learns about writing in several courses. In addition,
every college freshman takes a writing course. Yet, after all these courses,
faculty member still complain that students cannot organize their thoughts and
write well! In many ways, programming is harder than writing, so why should
one programming course produce students who can organize their program-

ming thoughts and program well. (Gries, 2002, p. 5)

From the above we conclude that cognitive apprenticeship is a relevant pedagogi-
cal theory to apply when designing an introductory course. However, as described
by Hiim and Hippe (see section 4.1), many other factors influence the concrete
design of a course. One of the typical general conditions in university teaching is
the use of large lecture halls or — in the case of further education — the use of e-
learning. Consequently, we need to explore and investigate ways to divulge the
programming process under different conditions and explore ways to apply a cog-
nitive apprenticeship inspired pedagogy under such conditions.

4.7 Freshmen vs. Professionals

Teaching experienced students enjoys a long tradition. In 1926 the American As-
sociation for Adult Education was formed. According to Merriam (2001), the two
most important theory-building efforts within the field of adult education have
been andragogy (Knowles, 1968; Knowles, 1980) (a learner-centred method as
contrasted to a traditional teacher-oriented method) and self-directed learning
(Knowles, 1975; Tough, 1967; Tough, 1972). Even though these two theories
have had a major impact on adult education research, much debate has arisen
about whether anything actually differentiates adult learners from young learners.
As Merriam (2001) noticed:

... ongoing to this day, is the extent to which the assumptions are characteris-
tic of adult learners only. Some adults are highly dependent on a teacher for
structure, while some children are independent, self-directed learners. The

same is true for motivation (p. 5).

99



Imel (1989) summarized research on educators who say they believe in using an
andragogical approach and concluded that they did not necessarily use a different
style when teaching adults. Beder and Darkenwald (1982) found from a study of
teachers teaching both adults and pre-adults that the teachers found

adults were perceived as more intellectually curious, more concerned with the
practical applications/implications of learning, more motivated to learn, less
confident in their ability as learners, more willing to take responsibility for
their own learning, clearer about what they want to learn, more willing to

work hard at learning, and less emotionally dependent on the teacher. (p. 152)

Gorham (1985) actually observed teachers that taught both adults and pre-adults.
She found no difference in how they instructed adults and pre-adults, even though
they said they taught the two groups differently. One way to approach the ques-
tion of whether teaching adults are different is by examining the types of learning
in which adults engage. Cranton (1994) classified adult learning into three catego-

ries:

Subject-oriented adult learning. The primary goal is to acquire content.
The educator "speaks of covering the material, and the learners see them-
selves as gaining knowledge or skills” (p. 10).

Consumer-oriented adult learning. The goal is to fulfil the expressed
needs of learners. Learners set their learning goals, identify objectives, se-
lect relevant resources, and so forth. The educator acts as a coach "and
does not engage in challenging or questioning what learners say about
their needs” (p. 12).

Emancipatory adult learning. The goal is to free learners from the forces
that hinder their opportunities and control their lives; forces that they have
taken for granted or seen as beyond their control. Emancipatory learning
results in transformations of learner perspectives through critical reflection
(Mezirow, 1991). The educator plays an active role in fostering critical re-
flection by challenging learners to consider why they hold certain assump-

tions, values, and beliefs.

Of the three types of adult learning, only emancipatory has been described as

unique to adulthood since "it is only in late adolescence and in adulthood that a

100



person can recognize being caught in his/her own history and reliving it" (Mezi-
row, 1981, p. 11)). According to Imel (1995), subject-oriented learning is the most
common form of learning engaged in by youth. Collaborative and cooperative
learning and other types of experiential learning that are more consumer-oriented

are also found in youth classrooms.

The goal of the introductory programming course is not to free learners from
forces that limit their opportunities; it is to learn object-oriented programming.
From this perspective — the type of learning adults engage in — there is no differ-

ence between young or adult learners.

Examining what adult learners expect from teaching provides another perspective
on whether teaching adults is different. Donaldson, Flannery, and Ross-Gordon
(1993) have combined and reanalyzed research they previously have done indivi-
dually that examined adult college students' expectations of effective teaching and
compared them with those of traditional students. They found that the six most
frequently mentioned attributes adult learners expected of effective instructors

Wwere:

to be knowledgeable

e to show concern for student learning
e to present material clearly

e to motivate

e to emphasize relevance of class material

to be enthusiastic (p. 150)

The adults had preferences for both student-centered (e.g., concern for student
learning) and teacher-centered (e.g., knowledgeable) instruction. When they com-
pared adult expectations for good teaching with those of traditional students,
many similarities existed in how the two groups characterized good teaching.
However, four teacher characteristics mentioned by adults were not among the top

items for undergraduates:
e creates a comfortable learning atmosphere

e uses a variety of techniques
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e adapts to meet diverse needs

e dedicated to teaching
Based on this description it seems natural to ask the question:

Is teaching adults different? Based upon the literature discussed here, the an-
swer is both yes and no. Perhaps a better way to frame the question would be
‘Should teaching adults be different?” The answer to that would, of course,
depend upon the purpose of the teaching-learning situation, including which

approach and methods seem to be appropriate, as well as the needs of the

learners. (Imel, 1995, p. 4).

In this dissertation we are not interested in the general differences between adult
learners and young learners but in the way that professionals with prior program-
ming experience learn object-oriented programming. In particular, we are inter-
ested in how they connect different aspects of a course (content, tools used and

pedagogical model) to their working life.
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5 Method

It is common sense to take a method and try it.
Ifit fails, admit it frankly and try another.
But above all, try something

Franklin D. Roosevelt (182-1945)

This chapter gives an account of the research method employed in this PhD pro-
ject in order to answer the research questions. As summed up in section 1.2, they

Were:

R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models as a structuring

mechanism, and coding?

R2a: How do the different aspects of a model-based programming

course influence professionals’ practice?

R2b: What are the interaction patterns for professionals learning ob-
ject-oriented programming with a focus on a systematic programming
process and conceptual models as structuring mechanisms in a tech-

nology rich distance education setting?

R3: Do model-based introductory programming courses have the same

success factors as more traditional courses?

R4a: What are the awareness of, use of, and attitude toward pedagogi-
cal patterns among computer science university teachers around the

world?

R4b: How can pedagogical patterns be structured to make them more

useful for university teachers?

Section 5.1 describes the research design and its rationale based on the research
questions. Section 5.2 describes the empirical data used. Some research questions
are best answered using quantitative methods, others using qualitative methods or
combination of both. The last two sections discuss the trustworthiness of the

quantitative and qualitative research.
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5.1 Research Design

Some of the research questions can be answered using an empirical approach
while others are more analytic or constructive in nature. The more analytic or con-
structive research questions are R1 and R4b, whereas the rest requires empirical

methods in order to answer the questions.

5.1.1 Analytic/Constructive Questions

This subsection discusses the two research questions requiring the creation of

something.

5.1.1.1 Model-Based programming course
The first research questions (R1):

R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models as a structuring

mechanism, and coding?

requires several elements in order to give an answer. The first is a course design
with a focus on systematic programming process, conceptual models as a structur-
ing mechanism and coding. If it is possible to create such a design, the prerequi-
site for answering “yes” to the question is fulfilled. However, we still need to
make sure that the students actually learn the goals. This is traditionally done at
the exam, so if the exam measures the goals of the course (i.e. systematic pro-
gramming process, conceptual models as a structuring mechanism and coding)
and the results of the exam is at least as god as traditional exam results, then we

will be able to answer “yes” to R1.

5.1.1.2 Structuring of pedagogical patterns
Research question

R4b: How can pedagogical patterns be structured to make them more

useful for university teachers?

can be approached in several ways. One possibility is the use of design methods
inspired by participatory design (Schuler & Namioka, 1993), i.e. design processes
that include the teachers as active participants in the process. However, as argu-

mented elsewhere, the group of university teachers is large and hard to access;
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consequently we find it hard to find representative teachers. Therefore we will use
an approach where pedagogical theory is the guide for the development and the
result subsequently can be evaluated by the users.

5.1.2 Empirical Questions

Information Systems (IS) research has its roots in natural sciences, and is domi-
nated by positivist approaches to research relying on gquantitative methods (Chen
& Hirschheim, 2004; Goles & Hirschheim, 2000; Orlikowski & Baroudi, 1991).
This rooting of IS research has had a major impact on the research methods ap-
plied in computer science education research (Fincher & Petre, 2004; Lister,
2005b). However, the clear-cut distinction between research being either qualita-
tive or quantitative is fading (Alvesson & Skoldberg, 2000; Creswell, 2002;
Lister, 2005b) and mixed methods are becoming more frequent in research in
general (Johnson & Onwuegbuzie, 2004) and in computer science education re-

search (Lister, 2005b) in particular.

A research design entails several decisions. Creswell (2002, p. 5) conceptualized

these decisions in the following three questions:
1. What knowledge claims is the researcher making?
2. What strategies of inquiry will inform the procedures?
3. What methods of data collection and analysis will be used?

He (Creswell, 2002) describes four alternative knowledge positions: Postpositiv-
ism (also called quantitative research), Advocacy/Participatory, Constructivism,
and Pragmatism.

Positivist science is grounded in a correspondence theory of knowledge and a re-
alist ontology (Nielsen, 1990). This view presumes an objective reality apart from
a subjective person who can use language and symbols to accurately describe and
explain the truth of this objective reality. The origin of this realist orientation is
usually credited to Descartes, but it can, in fact, be traced as far as back Galileo,
who stated that “whatever cannot be measured and quantified is not scientific”
(Capra, 1989, p. 133). Knowledge must be attained through an objective distance
from the world, and if this distance is not maintained, the risk of tainting reality

with our own subjective beliefs and biases arises (Guba, 1990; Heshusius, 1994).
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Creswell (2002) uses the word “postpositivism” to indicate a foundation in a posi-
tivist view, but with the additional stipulation that there cannot be an absolute
truth of knowledge.

The advocacy/participatory knowledge claim arose during the 1980s and 1990s.
Researchers who found that the traditional view by postpositivist knowledge
claims did not fit marginalized individuals or groups advocated intertwining the
research with a political agenda (Fay, 1987; Heron & Reason, 1997; Whyte,
1989). “Thus, the research should contain an action agenda for reform that may
change the lives of the participants, the institutions in which the individuals work

or live, and the researcher’s life”” (Creswell, 2002, pp. 9-10).

The constructivist knowledge claim holds the position that meanings are con-
structed by humans engaging with the world. It arises from works such as Berger
and Luckmann (1969) plus Lincoln and Guba (1985). The generation of meaning
is always done in a social context. The researchers acknowledge that their own
personal, cultural and historical background influences the interpretations, and

they position themselves within the research field.

The pragmatic knowledge claim derives from the work of, among others, C.S.
Peirse, William James, George Herbert Mead, John Dewey and Cornel West
(Cherryholmes, 1992, p. 13). The focus is on “what works” and solutions to prob-
lems (Patton, 1990). As Creswell (2002) writes, “Truth is what works at the time;
it is not based on a strict dualism between the mind and a reality completely inde-
pendent of the mind” (p. 12). A mixture of methods — both quantitative and quali-
tative — is therefore used.

In general, there have been two inquiry strategies within educational research:
quantitative (Ayer, 1959; Maxwell & Delaney, 1999) and qualitative (Lincoln &
Guba, 1989; Smith, 1984).

The quantitative approach uses primarily postpositivist claims to build knowledge
(e.g., tests of theories and hypotheses, cause and effect and measurement of spe-
cific variables). It employs strategies of inquiry such as experiments and surveys
using predetermined instruments giving statistical data (Gall, Gall, & Borg, 2003).

The most common quantitative research techniques include (Creswell, 2002):

e Observation
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e Experimentation
e Surveys

Since the late sixties, qualitative research in education has flowered (Bogdan &
Biklen, 1982, p. 3), but it has a long history from, among other things, anthropol-
ogy and sociology (Bogdan & Biklen, 1982). In the qualitative approach, the re-
searcher often uses a constructivist knowledge claim to build knowledge (e.g.,
knowledge is socially constructed with multiple meanings of experiences). The
intent is often to build a theory from the data. The researcher collects open-ended,

emerging data. The most common qualitative research techniques include:
e In-depth interviews
e Focus groups
e Projective methods
e Case studies
e Pilot studies

In the last two or three decades an increasing number of researchers have argued
that it is better to combine these two philosophies than to use only one of them, in
order to better answer the complex research questions in, e.g., educational re-
search (see e.g., Angen (2000); Howe (1988); Johnson and Onwuegbuzie (2004)
plus Onwuegbuzie and Leech (2005)). As Johnson and Onwuegbuzie (2004) no-
tice:

We hope the field will move beyond quantitative versus qualitative research

arguments because, as recognized by mixed methods research, both quantita-

tive and qualitative research are important and useful (p. 14).

This combination is known as a mixed method approach or a compatibility disser-

tation:

The compatibility thesis supports the view, beginning to dominate practice,
that combining quantitative and qualitative methods is a good thing and denies
that such a wedding of methods is epistemologically incoherent. On the con-
trary, the compatibility thesis holds that there are important senses in which

quantitative and qualitative methods are inseparable. (Howe, 1988, p. 10)
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This definition is compliant with the definition of Johnson and Onwuegbuzie
(2004) (italics in the original):

Mixed methods research is formally defined here as the class of research
where the researcher mixes or combines quantitative and qualitative research
techniques, methods, approaches, concepts or language into a single study. (p.
17)

In this work, the knowledge will be claimed using a pragmatic view with a mixed
method approach. The argument for using this approach is the complexity of the
research questions. It will not be physically one single study, however, but several
combined studies aimed at enlightening different aspects of the research ques-

tions.

The research questions R2a, R2b and R3 address different groups of students.
They involves both testing of the hypothesis that traditional success factors for
learning introductory programming also apply to model-based courses, and more
elaborative elements such as interaction patterns and ways to link the educational
setting to the learners’ own work practice. In the other part of the research ques-
tion, the goal is to generate new knowledge and a qualitative approach will be
used (articles “Learning Object-Orientation by Professional Adults “and “Examin-
ing Social Interaction Patterns for Online Apprenticeship Learning — Object-
oriented Programming as the Knowledge Domain”). This will also give several
views on the same research question, thereby enhancing the findings’ validity.

This is in line with the position of Johnson and Onwuegbuzie (2004):

What is most fundamental is the research question — research methods should
follow research questions in a way that offers the best chance to obtain useful
answers. Many research questions and combinations of questions are best and

most fully answered through mixed research solutions (pp. 17-18).
As they note:

For example, the major characteristics of traditional quantitative research are a
focus on deduction, confirmation, theory/hypothesis testing, explanation, pre-
diction, standardized data collection and statistical analysis ...The major char-
acteristics of traditional qualitative research are induction, discovery, explora-
tion, theory/ hypothesis generation, the researcher as the primary “instrument”

of data collection and qualitative analysis (p. 18).
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Research in an educational setting is a challenge. As Daniels, Petre and Berglund
(1998) conclude:

Overcoming the constraints of the educational setting is often a matter of
combination: accumulating results from a series of studies, compiling results
from studies at different sites; mixing qualitative and quantitative techniques
[...]. Combining methods allows a sort of ‘triangulation” among multiple per-
spectives, which can achieve a more complete account. Consolidating results
from different sources can improve representativeness and strengthen conclu-

sions, as long as the data arise from cognate studies. (p. 205).

The following is a discussion and argumentation for the research design for each

question.

5.1.2.1 Influence of a model-based programming course on pro-
fessional practice
The research question

R2a: How do the different aspects of a model-based programming

course influence professionals’ practice?

is targeting professionals with prior knowledge in programming, but not necessar-
ily object-oriented programming. The research question is explorative in nature
aiming at examining the learner’s own experiences of the effects of transforming
their achieved and new knowledge to their daily work situations. Change of work-
ing habits takes time, so the gathering of data must be with students who have
participated in a model-based course and been back in their daily work situations
for some time. Several possibilities exists: observing people using ethnographical
methods, analysing old and new code in order to find if there are traces of object-
oriented concepts in the code after the course, or interviewing students who have
participated. Due to time constraints and the unwillingness of the students and
their employers to let us observe them in their working situations, ethnographical
studies were excluded. Inspection of source code reveals only the impact of ob-
ject-orientation on some of the artefacts one hope to address; the more soft ele-
ments (discussions, the way of thinking about programming) are not addressed.
Furthermore the students involved worked in teams on projects that had been on-

going for some time and consequently it would be very hard to identify the impact
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since not all team members had taken a model-based course. Consequently, semi-

structured interviews were chosen.

In order to address research question R2a, we have interviewed professionals par-
ticipating in a model-based introductory course right after the course. The inter-
views addressed among other things the connection between practice and partici-
pation in a model-based introductory course. However, the data were collected
right after the course ended and therefore the impact of learning was not known.
Therefore we decided to re-interview the students approximately one year after

the course was taken.

The next element to address was which “aspects” to look for? One of the foci of
the interviews done right after the exam was the connection of the course and the
students’ professional situation. Analysing these interviews, noting topics men-
tioned by the interviewed professionals in relation to their working life, extracts
the students’ own focus points in the transfer from learning to practice. We cate-
gorised the topics mentioned: content, tools and social communities. Content ad-
dresses the content of the course: programming language, assignments, examples
etc. Tools addresses the tools used in the course: BluelJ, instant messaging, videos
showing the programming process etc. Social communities included the pedagogy
in the course (cognitive apprenticeship), connections to other professionals etc.
Based on these three categories, we designed an interview protocol according to
the guidelines given in (Selltiz, Wrightsman, & Cook, 1976) and to be used with a
positivist approach (Silverman, 2001, p. 90) in order to acquire information about
the transfer of knowledge from the course setting to the students’ daily working
practices.

Since | was the teacher of the course, we decided to have another person to per-
form the interviews in order not to influence the students. The interviews were
audiotaped. The analysis consisted of categorising the answers according to the
three categories (content, tools, and social communities) and then analysing these
categorized answers for the impact that the students said they had on their profes-

sional practices.
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5.1.2.2 Interaction patterns
The research question

R2b: What are the interaction patterns for professionals learning ob-
ject-oriented programming with a focus on a systematic programming
process and conceptual models as structuring mechanisms in a tech-

nology rich distance education setting?

is to a large extend dependent on the ‘e-learning setting’ studied. One extreme is a
course that is merely an electronic version of traditional correspondence school;
the other extreme is a course that uses the new possibilities technology give. The
decentered aspect of the apprenticeship-based pedagogy applied in IOOP03 was
found to be almost non-existing; that form of distance learning environment did
not foster much collaboration (“Examining social interaction patterns for online
apprenticeship learning — Object-oriented programming as the knowledge do-
main”; Berge & Fjuk, 2006a). Consequently, another form of technology must be
used and evaluated, a form that focus much more on collaboration and the decen-
tered aspect of apprenticeship. Web-based collaboration tools seem to be able to
support this; in such tools it is possible to (in something close to real-time) col-
laborate by talking, sharing applications (e.g., BlueJ), exploring web-pages, make
drawings, etc. As a consequence, a design experiment (Brown, 1992) was estab-
lished with the focus of using a particular web-based collaboration tool to enhance
the decentered aspect of the apprenticeship inspired pedagogy and study the inter-
action that took place between the learners in such a setting. Design experiments
differ in interesting ways from both laboratory experiments and naturalistic inves-
tigations. Ludvigsen and Mgrch (2003) put it very clearly:

Design experiments can be seen as intervention in the educational practice be-
cause the researchers, in collaboration with teachers, try to change the way the
students work. These shifts often presuppose a change in participation struc-
tures and how agency and division of labour are distributed between the

teacher and the students. (p. 67)

The activities were recorded and analysed. In addition to observations, the partici-

pating students were interviewed in groups after the on-line session.

In this research question the focus in on distance education. In a distance educa-

tion setting the possibility to demonstrate the programming process is different,
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e.g., it is not possible to do live coding in the lecture theatre. Consequently, an
alternative way needs to be defined. In this research, streaming video is used,
where the students, sitting at home, sees the teachers screen and hear his voice as
he thinks aloud demonstrating his approach to the problem at hand. Doing so
makes it possible to store the recordings and make them available for later re-
trieval. Is this way of exposing the programming process experienced by the stu-
dents as being relevant and useful? Do they actually watch it? Does it reveal the
programming process? In order to answer these questions — and consequently ex-
tend the possible “yes” to R1 to include distance learning and thereby be able to
answer R2b — an evaluation of the use and attitude towards these process re-
cordings must be done. Since we do not have a comparable control group (the
students taking IOOP are adults with previous programming knowledge whereas
the students taking dIntProg are young freshmen) it is not possible to compare the
two ways of revealing the programming process. Consequently, we measure the
usage of and attitude towards the process recordings using a questionnaire where
the students indicate their use of the process recordings and evaluate the resulting
learning outcome (using a 5 item likert scale from ‘none’ to ‘very high’). In order
to ensure the validity of this, a representative selection of the students will be in-

terviewed using a semi-structured interview.

5.1.2.3 Success factors
The research question
R3: Do model-based introductory programming courses have the same

success factors as more traditional courses?

compares success factors from more traditional courses with a model-based intro-
ductory programming course. Previous studies have been conducted by statisti-
cally analyzing different variables and investigating their correlation with the final
exam score. This is normally done using multiple linear regression analysis
(Schroeder, Sjoquist, & Stephan, 1986) creating a formula for predicting the exam
result. The linear regression formula has the form: A = a + i1 + ... + oy,
where A is the predicted variable (exam score), « is a constant displacement, and
each y; is a predictor variable with corresponding coefficient Si. In a multiple lin-

ear regression analysis, the coefficient of multiple correlation (R) “indicates the
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degree to which variation in the dependent variable is associated with variations in
the several variables taken simultaneously” (Schroeder et al., 1986, p. 33). R? de-
fines the percentage of impact of the regression formula as a whole or of each

variable.

In order to be comparable to previous studies, a similar approach was used to
identify predictors for success in a model-based introductory programming
course. Based on the analysis of previous work on success factors (see section
3.2.3), we have selected the following variables to be included in the analysis in
“An Investigation of Potential Success Factors for an Introductory Model-Driven
Programming Course”: mathematical ability, the students’ work during the
course, gender, intended major, number of years at the university, and the team?*.
Due to technical problems, it was not possible to include previous programming

experience.

Some of the data (gender, number of years at the university, intended major and
exam score) can be found in the university’s administrative system. In order to
evaluate the work the students do during the course, the teaching assistants were
instructed to keep track of each student using a three point scale describing the
students performance with respect to their weekly assignment: ‘Perfect’, ‘OK but
small errors’ and ‘not acceptable’. Since the university does not record the stu-
dents high-school math score, the students were asked for this. Finally, the web-
site of the course describes the team each student is assigned to.

Most authors of articles in computer science education research argue that ab-
straction is a core competency, but defer to describe an evaluation tool for abstrac-
tion ability. The measurement of the students’ abstraction ability used in this re-
search is based on Adey and Shayer’s theory of cognitive development (Adey &
Shayer, 1994; Shayer & Adey, 1981); this theory is a refinement of Inhelder and
Piaget’s (1958) stage theory. Inhelder and Piaget’s theory included four stages:
sensorimotor, pre-operational, concrete operational and formal operational. The
first two stages cover infancy and early childhood (until the age of approximately

seven); the next from seven to eleven is characterized by the appropriate use of

24 All students are grouped into teams of approximately 22 students. Each team has an associated
TA and spends their lab hours together.
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logic. The last stage, formal operational, commences around 11 years of age (pu-
berty) and continues into adulthood. It is characterized by acquisition of the abili-
ty to think abstractly and draw conclusions from the available information.

Adey and Shayer specialize the last three stages of Inhelder and Piaget by defin-
ing eight stages of pupils’ cognitive development (Adey & Shayer, 1994, p. 30) —

see Table 5.
1 Pre-operational
2A Early concrete
2A/2B Mid concrete
2B Late concrete
2B* Concrete  generaliza-
tion
3A Early formal
3A/3B Mature formal
3B Formal generalization

Table 5: Cognitive development stages

Adey and Shayer based their stages of cognitive development on a very large re-
search project, CASE, aimed at finding the cognitive development stages of pupils
in primary and secondary schools (Adey & Shayer, 1994, pp. 78ff). Their research
showed a different result from the direct connection between age and develop-
ment stage originally proposed by Piaget. One of the most important results was
that only ~30% of the pupils follow the development path expected by Piaget, i.e.
the path where it is the age of the person that defines the cognitive development.
Epstein (n.d.) have, from Adey and Sheyer’s work as well as experimental results
in the literature, estimated the percentage of persons at each cognitive level at
each age (from 1-18 and adult). Epstein as well as Kihn et al. (1977) found that
only a third of adults can reason formally.

Shayer and Adey (1994) have developed several tests to determine students’ cog-
nitive development level. These tests focus on several of the reasoning patterns,

but because “the students with very little experience, become fluent with them
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all,” we find it sufficient to use only one test. We used the so called “pendulum
test” which has been used for a long time to test young peoples’ understanding of
the laws of the physical world and thus the interaction between several variables
(Bond, 2004).Adey and Shayer argue that the pendulum test is particularly fo-
cused on testing the cognitive development stages from 2B to 3B (Adey &
Shayer, 1994, p. 30), the span of cognitive stages we find relevant for our target
group.

The students volunteered to participate in the test. It was given to them in a lecture
hall, and they were informed that the test’s outcome would not be communicated

to the lecturer before the exam.

Before performing this type of empirical quantitative research, it is important to
consider the required sample size so that the risk of rejecting a hypothesis when it
actually is true (type Il error), or the other way around (type | error) is acceptable
(for a description of type | and Il errors see section 5.3.4). In order to estimate the

sample size, we consider three concepts:
o effect size (f%)
e alpha level (a, or confidence level)
e power (1-R)

Having a=0.05, 1-8=0.9 and > = 0.15 and one predictor variable, we can calculate
the required sample size to be 71 (Soper, 2007). Given that there are over 235
students participating in the course, it seems reasonable to perform the statistical
analysis.

As in most other studies, the result of the final exam is used as an indicator for
success — higher grade, more success. As described in appendix 11.6, the score in
dintProg is binary (pass/fail) and based on a practical programming test. To pro-
vide numeric grades, we postmarked the answers. The grades of the Danish ten-
ary scale are: 00, 03, 5, 6, 7, 8, 9, 10, 11 and 13 (Exam-scale) was used. A student
needs at least a “6” to pass an exam. Table 6 shows the official conversion from
the Danish scale of marks to the ECTS scale of marks (European Union, 2006a).
Unfortunately, an official conversion to the North American scale does not exist;

we have included our conversion.
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Danish scale of marks | ECTS scale of marks North American scale
of marks
11and 13 A A
10 B B
8and 9 C C
7 D C
6 E D
03and 5 Fx F
00 F F

Table 6: Conversion from Danish scale of marks to A-F scale of marks
In general, the result of the grade that a student gets is solely determined by the
final exam; mandatory assignments are a prerequisite for the final exam, but these

assignments do not contribute to the final exam score.

5.1.2.4 Awareness, use and attitude towards pedagogical patterns
The research question

R4a: What are the awareness of, use of, and attitude toward pedagogi-
cal patterns among computer science university teachers around the

world?

deals with the hypothesis that many teachers do not know pedagogical patterns. It
is a measurement of knowledge and consequently a quantitative study design
seems appropriate using a questionnaire to measure the attributes. Since the re-
spondents are from all over the world, an electronic distribution of the question-
naire is suggested. The response rate among computer science teachers are ex-
pected to be higher using this form than using a paper and pencil version.

The biggest problem is which teachers to address. The research question mentions
“computer science teachers at the university level.” This is a large group of peo-
ple, for whom there exists no database from which to draw a random selection of
people. An accessible group of teachers are the group of teachers attending spe-
cific computer science conferences. However, the attendance-list for conferences
is traditionally not accessible, but the authors of articles for conferences are acces-

sible in the proceedings. The following six groups of teachers where chosen:
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e The authors of articles for Koli Calling 2004, the 4th Annual Finnish / Bal-

tic Sea Conference on Computer Science Education (Korhonen & Malmi,
2004);

e Article authors and panellists at the 36™ Technical Symposium on Com-
puter Science Education (SIGCSE'05, 2005);

e Atrticle authors and panellists at the 10™ Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE'05, 2005);

e The authors of research articles at the 4" International Conference on Ad-
vanced Learning Technologies(ICALT'04, 2004);

e The authors of articles at the Australian Computers in Education Confer-
ence (ACEC'04, 2004); and

The ACM (Association for Computing Machinery) Special Interest Group

in Computer Science Education’s e-mail list (SIGCSE mail-list, n.d.).

The reason for choosing these groups is that they consist of teachers seemingly
interested in computer science education (SIGCSE, ITICSE, Koli, ACEC and the
SIGCSE e-mail list), and of teachers interested in teaching technology but not
necessarily interested in computer science education (ICALT). The four computer
science education conferences (SIGCSE, ITICSE, Koli and ACEC) attract teach-
ers from all over the world. SIGCSE is held in the United States, ITICSE in
Europe and ACEC in Australia, whereas Koli is held in Finland and attracts
teachers mostly from the Baltic Sea area. The participants in ICALT were from all
over the world. The SIGCSE mailing list was used to address teachers who were
not necessarily authors, but who still had an interest in computer science educa-
tion. Section 5.3.6 will further discuss the representativity of the selected groups.

Another way to address teachers from universities around the world would have
been to select representative universities and write to the faculty members of the
computer science departments. The problem with this approach would have been
the difficulty in finding universities spanning the differences in computer science
education. Another problem would be whether the teachers who actually re-

sponded to the questionnaire would be representative.
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Due to time constraints in my PhD work, we do not supplement the research with
qualitative studies. This could have given more insight in what the teacher actu-
ally understand by the term “pedagogical pattern”, a more detailed understanding

of their usefulness etc.

5.2 Data Sources

This section describes the different data sources used in this PhD work. As de-
scribed above, a mixed method approach is used and, consequently, several data
sources. The section describes the teaching context or community where the data
were gathered, and the method used to gather them. Several of the qualitative
studies have been undertaken in collaboration with fellow researchers in the
COOL project.

5.2.1 The IOOP course

This section describes the course upon which articles “Learning Object-
Orientation by Professional Adults” and “Examining Social Interaction Patterns
for Online Apprenticeship Learning — Object-oriented Programming as the

Knowledge Domain” were based.

The course Introduction to Object-Oriented Programming (IOOP) has been
taught as an on-campus course at University of Aarhus in Denmark during the last
decade. In 2003 it was changed to a net-based form (for a description of this trans-
formation’s goals, see Bennedsen and Caspersen (2003) plus Fennefoss and Ben-
nedsen (2003)).

It was a course in master programs in further education at the university level. It
was part of three study programs: Master of multimedia, Master of software con-
struction and Master of ICT and organization. Its participants were both adults
with previous knowledge of programming (but not object-oriented programming)
and adults with no previous knowledge of programming. The participants should

have at least two years of professional experience prior to taking the course.
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5.2.1.1 Goals
The official description of the course goals is?® as follows:

The course covers principles and techniques for systematic construction of
programs, especially object-oriented programs. The course focuses on two dif-
ferent abstraction levels and the transition between them — on one hand a
model level, with topics such as conceptual modelling, ways of structuring,
and design patterns; on the other hand a programming level, whose primary

focus is on how programs are realized with the help of different techniques.

The students will learn fundamental programming concepts and techniques
and to use object-orientation to solve advanced problems such as program-
ming for the World Wide Web and smaller administrative systems (IOOP,
2004).

5.2.1.2 Form
The course lasted for 15 weeks. Each week included a video mediated virtual

meeting, in which the teacher (or master) displayed his competence, based on
problems suggested by the learners or by means of his own examples. Theoretical
aspects (e.g., learning the underlying object-oriented conceptual framework) were
addressed mostly in face-to-face weekend seminars, of which there were three
during the course. For a more thorough description of the course, and especially
of the net-based form, see Bennedsen and Caspersen (2003); “Programming in
Context: a Model-First Approach to CS1” plus Berge and Fjuk (2006b).

5.2.1.3 Content
The learning objectives of the course were divided into two parts: an abstract,

conceptual level and a concrete, practical level.

On the abstract level, the learners should construct an understanding of the under-
lying conceptual framework of object-orientation and how this framework could
be expressed in an object-oriented programming language (in this case, Java™),
This conceptual framework was used at three levels: (i) the domain level (or
analysis level), to describe domain models, (ii) the specification level (or design

level) to describe specifications models and (iii) the implementation level to code

2% Translated from Danish by the author.
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actual programs. The students are not expected to be able to create models on lev-
els i) or ii), but only to read them.

On the concrete level the learners should be familiar not only with the elements of
the chosen programming language but also with the programming process. They
should know techniques and systematic ways to create programs; not just the pro-
gramming language and tools, but how an experienced programmer creates, in a

systematic way, a programming solution to a given problem.

It should be noted that it is a programming course, not a system development
course; hence, it focuses on programming, not on creating models of problem do-
mains. However, the interplay between the problem domain’s model, the specifi-

cation model and the code is studied.

5.2.1.4 Exam
Based on a program that solves one of the mandatory assignments, the student sits

down by the computer and is asked to modify or extend the program. During the
modification, the student and the examiner talks about why the change is made
and what concepts is involved in the program and the change. The evaluation is
pass/fail.

5.2.2 Case Study: IOOP 03

| was the lecturer in this instance of the course taught in fall 2003. I was also one
of the two designers of the net-based version of the course. The case study was
conducted by Ola Berge and Annita Fjuk, University of Oslo. For a more through
description of the course and the data from this case study, see Berge (2006). Ola
Berge and Annita Fjuk conducted semi-structured, audio-recorded interviews
(Kvale, 2005) with nine students and the teaching assistant, each lasting approxi-
mately 30 minutes. These were carried out just after the final examination. The
interviews focused on student collaboration, learning resources and the pedagogi-

cal design (especially the mix of the course’s online and distance elements).

In order to evaluate the course’s impact on the adult target group’s professional
practice, a second set of interviews were conducted with the same nine students
one year after the first interviews. These interviews were also audio-recorded, and

notes were taken during the interviews to support the subsequent analysis. To be
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as neutral as possible, a research assistant conducted the interviews by telephone
using an interview protocol designed according to the guidelines given in Selltiz
(1976) and using a positivist approach. The purpose was to acquire information
about the transfer of knowledge from the course setting to the learners’ daily

working practices.

The case study’s results are reported in “Examining Social Interaction Patterns for
Online Apprenticeship Learning — Object-oriented Programming as the Knowl-
edge Domain”. The results of the interviews are reported in “Learning Object-

Orientation by Professional Adults”.

5.2.3 Design Experiment: IOOP 04

A design experiment was conducted as a follow-up activity to the case study, and
took place during week six of the 15-week course in the spring semester of 2004.
The aim was to explore critical issues identified during the case study with a par-

ticular focus on learners' collaboration.

The delivery situation in the spring semester of 2004 was nearly identical to the
delivery situation in the fall semester of 2003 (presented in Section 5.2.2). The
design, content and objectives were the same, and the learners were part-time
learners committed to a daily work situation. However, the course was delivered
as part of the MS program in ICT and organization or multimedia (and not in
software construction as the previously). Another major difference was that a new
teacher replaced me.

The purpose of this study was to explore some issues identified in the IOOP 03
case study, namely, the missing interactions in the ICT mediated learning envi-
ronment. The findings from the IOOP 04 design experiment are reported in “EX-
amining Social Interaction Patterns for Online Apprenticeship Learning — Object-

oriented Programming as the Knowledge Domain™.

5.2.4 The dintProg Course

This section describes the course upon which the articles “Revealing the Pro-
gramming Process”, “Abstraction Ability as an Indicator of Success for Learning
Object-Oriented Programming?”” and “An Investigation of Potential Success Fac-

tors for an Introductory Model-Driven Programming Course” are based.
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The course spanned the first half of CS1 at the University of Aarhus. The course
ran for seven weeks, and two weeks after the course there was a lab examination
with a binary pass/fail grading.

The instances of the courses included approximately 250 students each from a
variety of study programmes, e.g., computer science, mathematics, geology, nano-
science, economics and multimedia. Forty percent of the students are majoring in
computer science, and they are the only group of students to continue with the
second half of CS1. The rest of the students proceed to other programming
courses related to their field (e.g., multimedia programming, scientific computing,
etc.). As opposed to the IOOP students, the dintProg students were traditional

young, full-time students with no professional experience.

5.2.4.1 Goals
The purpose of the course was for students to learn the foundation for systematic

construction of simple programs, and through this to obtain knowledge of concep-
tual modelling’s role in object-oriented programming. Another goal was that stu-
dents became familiar with a modern programming language, fundamental pro-
gramming language concepts and selected class libraries.

After the course, students would have insight into principles and techniques for
systematic construction of simple programs and practical experience with imple-
mentation of specification models using a standard programming language and
selected standard classes.

Goals: Upon completion, the students must be able to:
e apply fundamental constructs of a common programming language.
¢ identify and explain the architecture of simple programs.
¢ identify and explain the semantics of simple specification models.

e implement simple specification models in a common programming lan-

guage

e apply standard classes for implementation tasks.
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5.2.4.2 Form
The course ran for seven weeks; every week had four lecture hours and four hours

with a TA (in the instance “Abstraction Ability as an Indicator of Success for
Learning Object-Oriented Programming?”” was based on, there were two lab hours
and two class hours. In the instance where “An Investigation of Potential Success
Factors for an Introductory Model-Driven Programming Course” is based, the
students had one lab hour plus three class hours). In addition to the scheduled
hours, students worked approximately seven hours per week in study groups or on

their own.

The four lecture hours per week was used to present and discuss general concepts
and the programming process. The programming process was revealed through
live programming in front of the students in the lecture theatre using a computer
and projector, and through process recordings (narrated, screen-captured video
recordings of program development sessions); see “Revealing the Programming

Process”.

Every week (except for the first) a mandatory assignment had to be handed in to
the TA. The TA examined the assignments and gave personal, as well as collec-
tive, feedback to the students. Approval of five out of the six weekly assignments

was a prerequisite for the final exam, but did not count as part of the grade.

5.2.4.3 Content
The course content included fundamental programming language concepts, ob-

ject-orientation and techniques for the systematic construction of simple pro-

grams:

Fundamental programming language concepts: variable, value, type,
expression,  object, class, encapsulation, control  structure,

method/procedure, recursion and type hierarchies.

Object-orientation: modelling; class structures (specialization, aggrega-
tion and association); and the use of selected class libraries (in particular,

collection libraries), interfaces and abstract classes.

Systematic development of small programs: modularisation, stepwise

refinement/incremental development and testing.
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This is a logical listing of the content; it is not the order in which the content was
covered. The content was covered using a spiral approach (Bergin, n.d.); for fur-
ther details of the course’s structure and content, see Caspersen and Christensen,
(2000).

5.2.4.4 Exam
Bennedsen and Caspersen (2006b) discuss how an exam can be designed for a

model-based introductory course. The described approach, which was the form
used in dIntProg, takes into account both the product (i.e. the program) and the

process used to create it. The lab examination has as its characteristics that it:

e provides a valid and accurate evaluation of the student’s programming ca-

pabilities,
e evaluates the process as well as the product,

e encourages the students to practice programming throughout the course,

and
e can be used to assess approximately 150 students per day.

Bennedsen and Caspersen claim that traditional examination forms evaluate only

the product, and not the process the students use to create it.

5.3 Verification of Quantitative Studies

This section discusses the validity of the quantitative studies. The section starts
with a general discussion of the validity, reliability and generalizability of the
quantitative studies:

Validity: the accuracy of research findings (do the variables measure what

we claim)

Reliability: consistency of research findings (will replicated measuring

give the same result)
Generalizability: are the results transferable to new contexts

Following that is a detailed discussion of the trustworthiness of the study of tradi-

tional predictors, abstraction ability and knowledge of pedagogical patterns.
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5.3.1 Validity

Within quantitative research, the question is whether a variable actually measures
what it is supposed to. Maxim (1999) describes four categories of validity: content
validity, criterion validity, construct validity, and convergent and discriminant
validity (Maxim, 1999, p. 208).

Whether an indicator refers to what it is supposed to refer to is called content va-
lidity. In all the studies, this was addressed by discussing the questionnaires with
fellow researchers before using them in order to validate that the questions cover
the indicators and that the indicators actually refer to what they are intended to
refer to. Criterion validity “is the correspondence between an operational indicator
and its latent factor or normal definition” (Maxim, 1999, p. 209). In most of the
data we have used records from the university (e.g., the courses’ exam results),
but some data were provided by the students (e.g., their math grade). Construct
validity is the correlation between two separate notations of the same construct.
The issue where in doubt is “abstraction”. It was measured using stages of cogni-
tive development (Inhelder & Piaget, 1958). As discussed in the article, it is de-
batable whether the measurement of the stage of cognitive development is a good
construct for abstraction. Convergent and discriminant validity requires at least
two different measures of the same concept. Due to time constraints, we have not

made different measurements of the same constructs.

5.3.2 Reliability

Within quantitative research, reliability is traditionally concerned with designing a
reliable instrument. For questionnaires this boils down to the construction of ques-
tions. Fowler (1993) describes three properties that a good question has:

e The researcher’s side of the question-and-answer process is entirely
scripted, so that the questions as written fully prepare a respondent to an-

swer them.
e The question means the same thing to every respondent.

e The kinds of answers that constitute an appropriate response to the ques-

tion are communicated consistently to all respondents (p. 71).
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In the articles that use questionnaires as a data source, the questionnaires have
been discussed with fellow researchers, and pilot studies have been undertaken.

5.3.3 Generalizability

Generalization of research concerns the question of the findings’ transferability
from one context to another. It is an issue in quantitative research, where the an-
swer is to have large populations in order to minimize a single respondent’s effect.
It is furthermore included in the statistical test, which always questions a result’s
statistical significance. Statistical significant means that something is probably
true; it is expressed as a percentage, denoted by “p” and the rule of thumb is that p
must be below 5% in order for it to be valid, i.e., there is less than a 5% risk that

something occurred out of luck.

Other studies have tried to generalize to the population of either introductory pro-
gramming teachers or students. “The Dissemination of Pedagogical Patterns” ad-
dresses teachers and characterizes them with respect to their knowledge of peda-
gogical patterns. The articles “Abstraction Ability as an Indicator of Success for
Learning Object-Oriented Programming?” and “An Investigation of Potential
Success Factors for an Introductory Model-Driven Programming Course” address
students and try to describe general characteristics of successful students.

Our findings do not confirm previous findings (chapter 3.2.3); but that fact alone
does not allow us to conclude that they contradict earlier findings. That conclu-
sion would be valid only if previous findings were generalizable to our context (or
vice versa), which we cannot be sure of. A number of circumstances are suffi-

ciently different to prevent an immediate generalisation.

Even though ACM and IEEE have made curriculum recommendations, it seems
like there is no universally agreed-upon list of topics that need to be taught in an
introductory programming course. This implies that studies in one CS1 course
may not be generalizable, since the content of the course differs from the content
of other CS1 courses. This diversity has, as described in section 3.2.1, lead to
many articles at conferences which describe various approaches to a CS1 course.
Even in 2007, there are workshops with the focus of defining the goals of a CS1
course (e.g., “Every year CS departments are faced with addressing the following

issues when they plan their CS1 courses, some issues being unique to liberal arts
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schools and their goals: 1: What are the goals we want to achieve with our stu-
dents? ...” (Krone & Bressoud, 2007)). Schulte and Bennedsen (2006) have tried
to create a general, worldwide picture of teachers’ opinions about what should be
taught in introductory programming courses. This was done by focusing on three
aspects: what topics teachers believe is relevant to teach (relevance), what they
actually teach (level) and what they think students find most difficult (difficulty).
In addition, they explored how these specific topics fit into a larger conceptual
classification. Earlier studies of topics taught in introductory programming (Dale,
2006; Dale, 2005; Milne & Rowe, 2002) focus only on one dimension of a given
topic — either its relevance or difficulty. From the study, Schulte and Bennedsen
conclude that teachers covering object-oriented topics in general find the material
easier for their students, and tend to include more topics, than teachers not cover-
ing object-oriented topics do. Furthermore, they conclude that there is a big varia-
tion on what topics a CS1 course contains. This underpins the restraining of gene-

ralizing from one study to another.

Very many of the studies done in computer science research are done in the
United States. Freshmen at Danish universities are generally a few years older
than freshmen at United States colleges. The difference in age is likely to imply a
difference in maturity and degree of dependency on parents which may be re-
flected in the way students responded to the questionnaire.

In Denmark, university education is free; furthermore, students receive financial
support from the state. In the United States the average cost of a private four-year
college was 23,940 USD per year (U.S. Department of Education, 2003) and
9,828 USD per year in a public four-year college in 2003. Furthermore, parents
often contribute some or all of this cost, and support their children financially as
well. The resulting stronger dependency between United States students and their
parents may cause United States students to feel stronger pressure from their par-

ents whether the pressure is real or not.

The culture in Denmark is different from the culture in the United States. Den-
mark is a land of homogeneity and equality much more than the United States. In
Denmark it is considered important that everyone has equal rights and opportuni-
ties regardless of social background. Also, it is considered inappropriate if some-

one stands too much out from the crowd (there is a prevailing who-do-you-think-
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you-are attitude often caricatured in Danish literature); in the United States, this
character of personality seems to be encouraged and highly appreciated. Cultural
differences make it questionable whether it is possible to generalize United States
findings to a Danish context (and vice versa); consequently, we cannot conclude a

contradiction with earlier findings.

5.3.4 Traditional Predictors

In order to use the multiple regression model, five prerequisites need to be ful-
filled: linearity; normal distribution; homoscedasticity (the conditional distribu-
tion has constant standard deviation throughout the range of values of the explana-
tory variables); no collinearity (two or more variables have a strong linear rela-
tionship, i.e. explains the same); and no problematic outliers (an observation falls
far from the rest of the data and the mean is highly influenced). Scatter-plot of the
data used for “An Investigation of Potential Success Factors for an Introductory
Model-Driven Programming Course” indicates that the requirements are met.
Levene’s tests was performed for the variables (mathematical ability, the students’
work during the course, gender, intended major, number of years at the university,
and the team) and showed homogeneity of variances. Pearson correlation tests
show that none of the variables have strong linear relationships apart from team
and intended major as described in appendix 11.6.

Using regression analysis raises the question of the statistical power of the results.
In other words, given the results, what are the odds of confirming the hypothesis
correctly? Traditionally, this is discussed according to these four concepts (Cohen,
2003):

sample size (n). The number of respondents (students) accessible to the
study

effect size (%), or the salience of the treatment relative to the noise in
measurement. 0.02, 0.15, and 0.35 are considered small, medium, and

large, respectively (Cohen, 2003).

alpha level (a, or confidence level), or the odds that the observed result is
due to chance. Traditionally 0.05 (Mazen, Graf, Kellogg, & Hemmasi,
1987)
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power (1-8), or the odds that you will observe a treatment effect when it
occurs. Traditionally 0.8 (Cohen, 1988)

Given the values of three of the concepts, it is possible to calculate the fourth.

There can be two types of errors: We can reject a hypothesis when it actually is
true (called a type Il error, denoted ), or we can accept a hypothesis when it is
actually wrong (called a type | error, denoted o). In Table 7, a description of the
two types or errors can be found (the hypothesis H; is that there is a relation, the

null-hypothesis (Ho) is that there is no relation).
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In reality

What we

conclude

Ho is true (i.e. there is no
relationship — our hy-
pothesis is wrong)

Hi is true (i.e. there is a
relationship — our hy-
pothesis is correct)

We accept Hp (i.e. there

is no relationship — our

hypothesis is wrong)

1-a
The confidence level

The odds of saying there
is no relationship when

there is none.

The odds of correctly
rejecting the hypothesis.

Traditionally at least 0.95

B

Type Il error

The odds of saying there
is no relationship when

there is one.

The odds of incorrectly

rejecting the hypothesis.

Traditionally at most 0.2

We accept H; (i.e. there
is a relationship — our

hypothesis is correct)

o
Type | error

The odds of saying there
iIs a relationship when

there is none.

The odds of incorrectly
confirming the hypothe-

Sis.

Traditionally at most

0.05

1-P
Power

The odds of saying there
is a relationship when

there is one.

The odds of correctly
confirming the hypothe-

SIS.

Traditionally at least 0.8

Table 7: Type I and type Il errors

A good description of the relation between the four concepts can be found at The

Decision Matrix on Trial (Becker, 1995) web-page where the OJ Simpson trial is

used to explain the impact of manipulating the different concepts and the effect it

have on the validity of the verdict.

We can calculate the power given the observed correlation (0.241), number of

students (220) and significance (0.001) using the type two error rate calculator

(Soper, 2007). This gives a B almost equal to zero; consequently the type I and
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type Il errors in my study are almost non-existing and the results can be consid-
ered to be trustworthy.

5.3.5 Abstraction Ability

One question is whether Adey and Shayer’s scale can evaluate the group that was
this study’s focus (young people approximately 20-24 years old). Adey and
Shayer’s study was done in primary and secondary schools in England, with pu-
pils in the age range from six to 16. The concern is that the variation of results
will be very limited and therefore not useful in the statistical analysis. Epstein
(n.d.) concludes that, in general, only 34% of the eighteen year old persons have
reached the formal operational level, so for the general population this scale will

give results that can be statistically analysed.

Others have used Adey and Shayer’s scale or the more course grained scale by
Inhelder and Piaget on students in college, e.g., Nielsen and Thomsen (1983) plus
McKinnon and Renner (1971). Nielsen and Thomsen found that many students in
Danish colleges have problems with theoretical exercises and found that their
cognitive development stage could reliable be measured by Adey and Shayer’s
test. McKinnon and Renner as well as Hudak and Anderson (1990) tested Ameri-
can college students for the Piagetan cognitive development level. We therefore
conclude that the scale is useful for the selected group of first year university stu-
dents.

The distribution of the observed cognitive development level as measured by the
pendulum test is a number between 5 and 10. The actual distribution can be seen
in figure 10.
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Figure 10: Distribution of cognitive development
A Kolmogov-Smirnov test verifies that the distribution can be described as nor-
mal. The test instrument used did give scores for cognitive development useful for

statistical analysis.

5.3.6 Knowledge of Pedagogical Patterns

According to the International Association of Universities (International hand-
book of universities, 2005), there are approximately 9.000 universities all over the
world. Added to that is a large number of colleges (in United States alone, there
are almost 7.000 universities and colleges (National centre for educational statis-
tics, 2007)) Unfortunately, we do not have world wide numbers of the percentage
of universities with a computer science program, but in the United States, 649
institutions offer a bachelors or master degree in computer science or mathematics
and computer science (National centre for education statistics, 2007), i.e. 10% of
the universities and colleges offers a computer science degree. If each university
and college with a degree in computer science has 20 faculty members, the total
population of computer science university teachers in the United States is ap-
proximately 18,000. How large should the sample size be? This depends on the
level of precision (if one finds that 30% of all teachers know of pedagogical pat-
terns and the precision is 5%, then the conclusion is that between 25% and 35%
know of pedagogical patterns), the confidence level (if a 95% confidence level is
selected, 95 out of 100 samples will have the true population value within the

range of precision) and variability (the more heterogeneous a population, the larg-
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er the sample size required to obtain a given level of precision. Note that 50%
indicates a greater level of variability than either 20% or 80%. This is because
20% and 80% indicate that a large majority do not or do, respectively, have the
attribute of interest.). Yamene (1973) provides a formula to calculate the sample
size (given variability of 0.5 and a confidence level of 0.95):

N

n=—2
1+ N*g

Formula 1: sample size
where n is the sample size, N is the size of the population and e is the level of pre-

cision. In our case this gives

N 18000

— = ——— =301
1+ N*e® 1+18000 *0.05

n=

It is debatable whether the selected groups are representative of computer science
university teachers. It might be argued that teachers who participate in confer-
ences focused on teaching have a stronger interest in the field than those who do
not. However, we use the results as indicators of trends, and not as definite meas-
urements of, e.g., knowledge of pedagogical patterns. We do not claim that this
study is representative of all computer science teachers, but it is as representative
as is practically possible, and is therefore useful as an indicator of awareness.

358 answered the questionnaire. The required sample size was 391, so the preci-
sion of the research is not as high as requested. Using Formula 1, the precision is
0.053. If the group of participants were selected randomly, then the conclusion
would be that between 41% and 51% of the teachers know pedagogical patterns.
However, as argued above, the participants are not selected randomly.

The respondents came from most of the world. In figure 11 the geographical dis-
tribution of respondents is given. As can be seen from the figure, a major part was
from the United States, but in general the distribution matches the expectation for
the number of teachers around the western world; we would expect that countries
like India should be represented in order to be representative for the entire globe.
However, as described in section 5.1.2, there is no knowledge of the numbers of

computer science university teachers in the different countries.
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Figurell: The geographical distribution of respondents for knowledge of pedagogical pat-
terns

5.4 Verification of Qualitative Studies

The discussion of verification of knowledge for qualitative studies is — like quanti-
tative studies — traditionally discussed in terms of validity, reliability, and gener-
alizability. We reflect on the qualitative research studies in terms of these three

issues.

5.4.1 Validity

In quantitative research, validity is about whether a variable measures what it is
purported to measure (Maxim, 1999). In qualitative studies, validity refers to the
research findings’ accuracy (Creswell, 2002), involving issues of truth and the
nature of knowledge. Hammersley (1990) defines it as: “truth: interpreted as the
extent to which an account accurately represents the social phenomena to which it
refers” (p. 57).

Case studies can address validity by using multiple sources of evidence (Yin,
2003, p. 90) and thereby applying data triangulation. This technique was used in

the 100P03 study. Another technique to increase validity is respondent valida-
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tion; to take the findings back to the subjects being studied for review (Silverman,
2001). The I00P03 study’s findings were done mainly by Ola Berge and Annita
Fjuk, but we have discussed the findings extensively. Furthermore the provisory
findings were reported back to the participants during the course.

The extent of the data material is relevant to the validity of the research — is the
data material sufficient for exploring the topics of interest? Kvale’s advice is to
“interview as many subjects as necessary to find out what you need to know”
(Kvale, 2005, p. 108). Silverman (2001) advocates “analytic induction,” which

“boils down to two simple techniques:
e the use of the constant comparative method

e the search for deviant cases” (p. 238)

The IOOP 03 study did inform the IOOP 04 study in the sense that what we ob-
served in the IOOP 03 (namely, a missing utilization of the de-centred apprentice-
ship facet) was used as a starting point for the design experiment. In the interview
after the design experiment, we focused, among other things, on the students’

views of de-centred apprenticeship.

The validity of the research is also bolstered by providing information on the re-
search process leading to the findings, by providing rich descriptions of the re-
search setting when conveying the findings, and by providing extracts of the in-
teractions that are subject to analysis.

5.4.2 Reliability

Some authors argue that the question of reliability arises only in the quantitative
research tradition (Marshall & Rossman, 1989, p. 147; Silverman, 2001, p. 226).
However, Silverman (2001) advocates striving for an approach with high reliabil-

ity in qualitative research as well.

Reliability of research concerns the consistency of the research findings. Mer-
riam-Webster’s medical desk dictionary (Merriam-Webster’s medical desk dic-
tionary, 2002) defines reliability as “the extent to which an experiment, test or
measuring procedure yields the same results in repeated trials.” Hammersley

(1992) says that reliability “refers to the degree of consistency with which in-
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stances are assigned to the same category by different observers or by the same

observer on different occasions” (p. 67).

LeCompte and Goetz (1982) distinguish between internal and external reliability.
The first is what traditionally comes under the heading of “inter-rater reliability.”
External reliability is the replicability of an entire study — “Would other research-

ers studying the same or similar settings generate the same findings?” (Seale,
1999, p. 140).

LeCompte and Goetz (1982) say that external reliability can be improved by ad-
dressing five issues:

¢ identification of the status position of the researcher in the field,

as much information as possible about who offered the information,

information about the social context in which the research was done,

a full account of the theories and ideas that informed the study, and

a detailed account of all aspects of methods used.

In the articles using qualitative research (“Examining Social Interaction Patterns
for Online Apprenticeship Learning — Object-oriented Programming as the
Knowledge Domain”, “Examining Social Interaction Patterns for Online Appren-
ticeship Learning — Object-oriented Programming as the Knowledge Domain” and
“Categorizing Pedagogical Patterns by Teaching Activities and Pedagogical Val-

ues”), we have accounted for the above information.

Internal reliability is enhanced via the following five features (LeCompte &
Goetz, 1982):

e use low-inference descriptors

use multiple researchers

use participant researchers

use peer examination

record data mechanically

“Low-inference descriptors” (Silverman, 2001, p. 226) involve
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recording observations in terms that are as concrete as possible, including ver-
batim accounts of what people say, for example, rather than researchers’ re-
constructions of the general sense of what a person said, which would allow
researchers’ personal perspectives to influence the reporting (Seale, 1999, p.

148).

Not only the observations, but also the transcription and analysis of the data must

have low inference (Kvale, 2005).

The major part of the data material from the IOOP case study as well as the IOOP
design experiment is low inference. The video-streamed meetings, textual interac-
tions (instant messaging and discussion forum), captured collaborations, and in-
terviews all provide persistent verbatim accounts of what took place, available to
other researchers for inspection. The same is true of the comments made by teach-
ers on pedagogical patterns. The notes from the interviews are based more on in-
terpretations of what took place than on verbatim transcriptions, but these are used
as pointers into the data material, not as raw data. Similarly, the audiotaped inter-
views were analysed for the purpose of noting topics the interviewed learners
mentioned in relation to their daily working lives. We categorized these topics and
formed the following categories: content, tools and social communities. Based on
this categorization we designed an interview protocol. The categorization was
used only to construct the interview protocol. However, only small parts of the
data were selected for transcription and presentation in this dissertation. This se-
lection itself can be regarded as part of the analysis. The analyses has been carried
out in collaboration with other COOL researchers and discussed with colleagues.
Participant researchers were not used, but most of the findings have been taken
back to the participants for discussion — see Section 5.4.1.

5.4.3 Generalizability

Yin (2003) uses the term “external validity” for generalizability within qualitative
research. Many have argued that case studies cannot be generalized because they

are based only on a single case study. Yin notice that

survey research relies on statistical generalization, whereas case studies rely
on analytical generalization. In analytical generalization, the investigator is
striving to generalize a particular set of results to some broader theory (p. 36)

(italics in original).
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Silverman (2001) discusses three ways to achieve generalizability:

e combining qualitative research with quantitative measures of popula-

tions
e purposive sampling guided by time and resource

e theoretical sampling (p. 249)

In this research, we have compared the case to other findings in the field. The
IOOP 04 study finds communicative patterns similar to those found by other re-
searchers. This is one of the three ways that Hammersley (1992) suggests to im-

prove generalizability.

The selection of a case also influences the generalizability of the findings. A case
is not just selected at random, but “because it illustrates some feature or process in
which we are interested” (Silverman, 2001, p. 250). For example, the IOOP case
was selected because it represents the specific pedagogy and the target group in
focus. Theoretical sampling means that qualitative research should strive for gen-
eralizing theories, instead of generalizing from populations or universes (Bryman,
1988).

One finding from the studies includes proposals for interaction patterns in ICT-
mediated dialogue (“Examining Social Interaction Patterns for Online Apprentice-
ship Learning — Object-oriented Programming as the Knowledge Domain”).
Taken together with related research on distributed computer-supported collabora-
tive learning, these findings contribute to the generation of theory regarding
communication and learning in ICT-mediated learning environments. Another
finding is the connections between professional working life and learning object-
oriented programming (“Learning Object-Orientation by Professional Adults”).
Taken together with general research on teaching introductory programming and
adult learning, this contributes to a theory of professional adults learning object-

oriented programming.

In this chapter, we have accounted for the method used in this dissertation. We
have argumented for the research design for each research question. The research
method is a mixed method based on both quantitative and qualitative studies. We

have furthermore accounted for the data sources used for both types of studies.
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Lastely, we have accounted for the trustworthiness of the studies. This is done in
terms of the validity, reliability and generalizability of the findings.
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6 Research Findings

Man has made some machines that can answer questions
provided the facts are profusely stored in them, but we

will never be able to make a machine that will ask questions.
The ability to ask the right question is more

than half the battle of finding the answer.

Thomas J. Watson (1874-1956), President of IBM

This chapter discusses how the articles included in appendices 1-8 relate to the
research questions formulated in chapter 1. It also discusses the research findings

with respect to other relevant research in the field.
The overall research theme of this dissertation was:

What is a good approach to teaching introductory programming

using the objects-first approach?

The overall research theme is broken down into six more specific questions in
four different topic areas: model-based programming (R1), professional adults
learning introductory programming (R2a + R2b), success factors for a model-
based introductory programming course (R3), and pedagogical patterns (R4a +
R4b):

R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models as a structuring

mechanism, and coding?

R2a: How do the different aspects of a model-based programming

course influence professionals’ practice?

R2b: What are the interaction patterns for professionals learning ob-
ject-oriented programming with a focus on a systematic programming
process and conceptual models as structuring mechanisms in a tech-

nology rich distance education setting?

R3: Do model-based introductory programming courses have the same

success factors as more traditional courses?
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R4a: What are the awareness of, use of, and attitude toward pedagogi-
cal patterns among computer science university teachers around the

world?

R4b: How can pedagogical patterns be structured to make them more

useful for university teachers?

This chapter will discuss the research with respect to these four groups of ques-

tions.

6.1 A Model-Based Programming Course

This section describes the approach to teaching introductory object-oriented pro-
gramming investigated in this dissertation. It is described in the article “Program-
ming in Context: a Model-First Approach to CS1”. This article is a “Marco Polo”
style of article (Valentine, 2004). The article is enhanced in “Model-Driven Pro-
gramming” (Bennedsen & Caspersen, 2008b) to be published by Springer-Verlag
in 2008. The focus on the programming process is discussed in “Revealing the
Programming Process” (enhanced in the article “Exposing the Programming

Process” (Bennedsen & Caspersen, 2008a)).
This section gives an answer to the first research question:

R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models as a structuring

mechanism, and coding?

Many suggestions have been put forward on how to teach introductory object-
oriented programming. Most of these suggestions are structured according to the
programming language and are focused on its syntax. The model-based (model-
first is used as a synonym in the article) approach is structured according to the
complexity of the class model to be implemented. As described in chapter 1, the

four principles are:

1. Obijects from day one — in the beginning students use predefined classes to
create objects, then they imitate the implementation of a class and finally

they create classes,

2. A balanced view of the three perspectives on the role of a programming
language (Knudsen & Madsen, 1988),
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3. Enforce the use of a systematic way to implement the description of a so-

lution, and

4. An explicit focus on the programming process, not just the programming

language.

The model-based approach to teaching object-orientation has been developed for
the last 15 years together with Michael Caspersen.

6.1.1 Objects from Day One

One of the typical misconceptions students have when learning introductory
object-oriented programming is the confusion of the concepts of “object” and
“class” (Fleury, 2000; Holland, Griffiths, & Woodman, 1997). Eckerdal and
Thuné (2005) use a phenomenographic research metod to get a better
understanding of the way students understand these two concepts (a more detailed
description of the study can be found in (Eckerdal, 2004)). Eckerdal and Thuné
conclude that in their data, they can find three different understandings of the

concept of “object:”
1) Object is experienced as a piece of code.

2) As above, and in addition, object is experienced as something that is active

in the program.

3) As above, and in addition, object is experienced as a model of some real

world phenomenon (p. 91).
and three different understandings of the concept of “class:”

1) Class is experienced as an entity in the program, contributing to the

structure of the code.

2) As above, and in addition class is experienced as a description of properties

and behaviour of the object.

3) As above, and in addition class is experienced as a description of properties
and behaviour of the object, as a model of some real world phenomenon. (p.
91)

It should be noted that one of the aims of phenomenographic analysis is to
develop a hierarchy of understandings. The goal of a model-based introductory

course should be for students to understand the connection between the real world
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concept and a class in the program’s text, as well as the connection between
objects created by the program’s execution and real world phenomena. As
described below, this is done by showing the students models of the real world
(domain models), specification models and how specification models can be
implemented in a given programming language. This naturally implies a balanced
view the role of the programming language instead of a course that focuses only

on syntax and semantics of a given programming language.

The model-based approach uses a read-modify-write approach. This implies that
the student first sees and studies one or more examples of a given concept (loop,
method, class, association ...) — the reading phase — followed by changes to exist-
ing programs — the modification phase — and lastly the creation from scratch
(typically an addition to an already existing program without the concept) — the
write phase. The progression in terms of read-modify-write and the object-
oriented conceptual framework is illustrated in figure 12. The overall idea is the
following: The student starts by reading methods (and classes since methods are
in classes). When the student has read several methods, (s)he starts to modify
methods (and thereby also modify classes, but that is not the focus). After that, the
focus starts on classes (read classes and afterwards modify classes — concurrently
with write methods as modifying classes normally requires to write one or more

methods) followed by a focus on associations etc.

write A A A A

modify

read

method class  association inheritance

Figure 12: Progression in a model-based approach
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Students initially use pre-created classes to instantiate objects. This has been done
in several ways; one is using the “Shapes Demo” from ahapter 1 in (Barnes &
Kolling, 2005), another is by the use of “Turtle Graphics” (Caspersen &
Christensen, 2000).

In many courses BlueJ is used as the development environment. One of the goals
of BlueJ is to give students a clear visual understanding of objects and classes
(Kolling & Rosenberg, 2001). Even though we have not done research on the
topics, it is our firm belief that the students in general do not confuse the concepts
of “class” and “object.” It is supported by the high number of students passing the
exam where they shall create objects and implement classes (Bennedsen &
Caspersen, 2006b). This is consistent with the findings of Hagan and Markham
(2000a), who did not find that students misunderstood “object” and “class” when
they switched to BlueJ.

6.1.2 A Balanced View of the Programming Language’s Role

In the model-based approach, coding and conceptual modeling are done hand-in-
hand, with the latter leading the way. Introducing the different language
constructs is subordinate to the need to implement a given concept in the
conceptual framework. After introducing a concept from the object-oriented
conceptual framework, its representation in UML and a corresponding coding
pattern is introduced; a coding pattern is a guideline for the translation from UML
to code that implements the concept from the conceptual framework thereby
making an explicit link between the implementation view and the specification
view. In figure 13 an example of a “to-many” association at the conceptual level

and the corresponding coding pattern is given.*

26 The description could lead to the impression that the actual teaching is deductive. This is not the
case. The students abstract coding patterns from a number of concrete examples.
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import java.util.*;

A public class A {

private List<B> bs;

public A() {

bs = new ArrayList<B>();

1
IR )

bs.add (b) ;

}

public void removeB(B b) {

bs.remove (b) ;

Figure 13: A coding pattern for a ""to-many"* association
The conceptual framework for object-orientation is comprehensive; for introduc-
tory programming the coverage is restricted to association, composition and spe-
cialization, which seems to be the most used concepts in object-oriented model-
ling and programming. This restriction is a choice based on many years of teach-
ing experience; other choices and sequences of concepts are, of course, possible.

As described above, the first concept the students encounter is object. The next is
a class and its properties. One of the properties of a class can be an association to
another class; consequently, the next topic is association. This correlates nicely
with our impression from talking to many professional object-oriented software
developers that association (reference) is the most common structure between
classes (objects). Composition is a special case of association, taught in the next
round of the spiral. The last structure to be thoroughly covered is specialization.
Specialization is the least common structure in class models, but is the foundation

for, e.g., design patterns, which then could be the focus of the following course.

6.1.3 A Systematic Way to Implement a Specification

In general novices do not know how to approach a programming problem without
guidance (Barrett, 1996; Beck, 1999; Caspersen & Kolling, 2006; Gantenbein,
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1989; Gries, 1974). As Beck remembers from his first, larger programming as-

signment when he learned to program:

My process for writing the programs to solve the workbook exercises had
been to stare at the problem for a few minutes, type in the code to solve it,
then deal with whatever problem arose. So | sat confidently down to write my

game. Nothing came! (p. 43)
Caspersen and Kolling put it this way

The fact that we all start by developing sub-optimal and partial implementa-
tions on our way to a solution, which we later refine and improve, often seems

to be the best kept secret of the computing profession. (p. 892)

In the model-based approach, the programming process is made explicit. This is

done in several ways:

1. Using an explicit programming process focusing on the fact that a program
is not developed in one, big shot (as seems to be the impression students
get from the programming textbooks) but through stepwise refinement
(Wirth, 1971). For a more thorough description, see (Caspersen & Kdlling,
2006; Caspersen, 2007)

2. Focusing on programming as a skill and showing the way an experienced
programmer works; explicitate the internal cognitive processes (assump-
tions, considerations, tool use etc.) that the experienced programmer ap-
plies. This is done as cognitive apprenticeship. Revelation of the process
can be done as live programming (Alford, 2003) or as recorded sessions
(process recordings as they are termed in “Revealing the Programming

Process”) where the experience programmer “thinks aloud”.

3. Using exercises where the process is very explicit in the beginning (i.e. the
exercise is described in many small steps mimicking the development

process).In later exercises, the steps are gradually made bigger and bigger.

4. An explicit focus on different levels of abstraction and use of program-

ming techniques for each level:

a. Problem domain — model. A UML class model of the problem
domain. The UML class model is normally provided to the stu-

dents.
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b. Functionality — model: Specify properties and distribute responsi-
bility among classes. Normally included in the specification model
given to the students.

C. Model — Java code: Create a skeleton for the program using the
coding patterns.

d. Implementation of classes: Use class invariants (Meyer, 1997) de-
scribing the internal constraints that have to be fulfilled before and

after each method call.

e. Implementation of methods: Use algorithmic patterns (Muller,
2005) for traditional algorithmic problems such as searching and
sweeping. Use loop-invariants (Cormen, Leiserson, Rivest, &
Stein, 2003) to systematically construct loops. Use design by con-
tract (Bolstad, 2004; Meyer, 1992; Pedroni & Meyer, 2006) to de-
scribe the responsibilities between a method’s users and the

method itself.

Caspersen and Kolling (2006) have described a programming process that can be

used in a model-based introductory programming course.

A typical goal of a programming course is to teach the students to appreciate and
achieve good quality software. By good quality software we mean modifiable
software, i.e., readable and understandable programs with a good structure, low
coupling and high cohesion. These quality measures are by no means obvious to
newcomers, and knowing how to achieve them is even harder. We need to teach
students guidelines for achieving quality programs and a vocabulary that enables
them to talk abut their programs in order to help them build quality programs.

In an introductory programming course applying a model-based approach, the
starting point (the specification model) is normally given to the students in the
beginning. The reason for this is that the students normally find it difficult to de-
sign (Barrett, 1996; Lidtke & Zhou, 1999; Moritz, Wei, Parvez, & Blank, 2005),
and the focus is on implementation, and not description of the problem domain or
the creations of specification models (i.e., it is a programming course, not a design

and analysis course). Later on in the course (or in following courses) the students
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can start to develop specification models themselves. In this way, a “read — mod-

ify — write” approach can be taken to design as well.

Class invariants should, as with the rest of the concepts covered in a model-based
approach, be taught to help rather than burden students. This implies that the goal
is not to exercise formal, logical predicates, but to learn informally, typically in-
cluding drawings or other informal ways of describing invariants. The purpose is
to make the students aware of the state of an object represented by the values of

its attributes and the dependencies among them.

As described by Sicilia (2006, pp. 14), a simplified version of design by contract
should be taught. As he proposed, we have found that the introduction of pseudo
comment tags such as @pre and Qpost helps the students to focus on the

method’s responsibilities and the caller’s requirements.

6.1.3.1 An example of “model — Java code”
The development of a coding pattern for a zero to one association is given as an

example of this approach. Through a number of progressive examples, we illus-
trate that an association is a relation between classes (or between the same class as
in the following example), a class can have more than one association, and an

association is a dynamic relation.

Students extend a previous example of a single class Person with a recursive asso-
ciation. One example is that a person can be married_to another person or can be

another person’s lover. This results in the model in figure 14.

lover

Person

0.1 0.1

=

matried_to

Figure 14: One class with two associations
In order to implement a zero-to-one association, the student needs to know about
programming language elements (e.g., reference and the null value). This also
gives the students an understanding of interactions between objects (calling me-

thods on other objects) and reference semantics.
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Another example of a recursive association is a simple adventure game whose
rooms are connected to other rooms in different directions. This can be modelled
as follows (figure 15):

narth Room east
0.1 0.1
0.1 0.1
sauth west

Figure 15: One class with four recursive associations
Again, the idea is that the students see many implementations of the same general
concept from the conceptual framework, and realize the general coding pattern

(figure 16Figure ):

0.1 A

Figure 16: General, recursive association
This can be implemented using the following coding pattern:
public class A {

private A a;
public void setA(A a) {

this.a=a;
}
public A getA () {

return A;

}

6.1.4 The Programming Process

One of the problems students struggle with in programming is not the single ele-
ments of the programming language, but the construction process (Soloway, 1986;
Spohrer & Soloway, 1986; Spohrer & Soloway, 1986). Gries (1974) focused on

the process in the early seventies when he wrote:

Let me make an analogy to make my point clear. Suppose you attend a course
in cabinet making. The instructor briefly shows you a saw, a plane, a hammer

and a few other tools, letting you use each one for a few minutes. He next

149



shows you a beautifully-finished cabinet. Finally, he tells you to design and
build your own cabinet and bring him the finished product in a few weeks.
You would think he was crazy! (p. 82)

In “Revealing the Programming Process” we have described and evaluated a way
to make the programming process more explicit to students in the form of “proc-
ess recordings” (p. 188). We found that students found process recordings to sup-
port their learning of introductory programming. This is one way of practicing

cognitive apprenticeship by the use of technology.

In general, Michael Caspersen has in his PhD dissertation (2007) described in
more detail ways to address the problem of teaching novices a programming proc-
ess.

6.1.5 Results of Teaching Model-Based

Many teachers report high numbers of students not passing or dropping out of
CS1 courses (Andersson & Roxa, 2000; Borstler, Johansson, & Nordstrém, 2002;
Forte & Guzdial, 2005; Herrmann et al., 2003; Nagappan et al., 2003). In section
2.1, based on numbers from UNESCO, we indicated that only 27% of the students
globally complete their computer science study. Bennedsen and Caspersen
(2007b) have done an initial study in order to collect data on the average pass and
failure rates of CS1 courses; they found the average pass rate to be 67% (but the
number of respondents was low: 64).

From the above studies it is difficult to define a precise global pass and fail rate. It
is even difficult to find precise definitions of these terms. However, based on the
findings of Bennedsen and Caspersen and the numbers from UNESCO, it seems
reasonable to call a course a success with respect to pass- and fail rates if the pass

rate is above 75% (and consequently the fail + drop-out rate is below 25%).

In almost all of the studies of success factors for learning programming, the exam
result is used as success factor. We will use the same to indicate the feasibility of
a model-based approach. It should be noted that the claim is not that a model-
based approach is better than other approaches, but that it is possible to learn the

students programming using this approach.
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Bennedsen and Caspersen (2007a) evaluated the exam of a model-based introduc-
tory programming course (actually the dIntProg course, taught by Michael Cas-
persen). They found the following numbers:

2003 2004 2005 2006
Students 276 220 295 326
Abort 63 26 28 44
Exam 213 194 267 282
Exam rate 77.2% 88.2 % 90.5% 86.5 %
Skip 13 5 3 1
Fail 15 19 29 17
Pass 185 170 235 264
Pass rate 86.9 % 87.6 % 88.0 % 93.6 %
Retention rate 67.0 % 77.3% 79.7 % 81.0 %

Table 8: Results from dIntProg 2003-2006 (table 2 in (Bennedsen & Caspersen, 2007a))
Their terms are defined as follows:

Variable | Description

Students | students enrolled in the course

Abort students that aborted the course before the final exam

Exam students allowed to take the final exam

Skip students that did not show up for the final exam but was allowed to
Fail students who failed the final exam

Pass students who passed the final exam

Table 9: Definition of the variables in Table 8
The same numbers form the IOOP courses in 2003 and 2004 can be found in Ta-
ble 10
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2003 2004
Students 21 20
Abort 4 3
Exam 17 17
Exam rate 81% 85%
Skip 0 0
Fail 0 0
Pass 17 17
Pass rate 100% 100%
Retention rate 81% 85%

Table 10: Numbers for IOOP
Based on the numbers in Table 8 and Table 10, we conclude that it is possible to
teach a model-based course with the same success in terms of pass and fail rates

as traditional CS1 courses.

In “Revealing the Programming Process” the results of the evaluation of the learn-
ing outcome of process recordings was as follows: None 21%, Small 0%, Ordi-
nary: 21%, High: 14%, Very high: 44%. 58% has indicated a high or very high
learning outcome which is very encouraging. In post-course interviews, the stu-
dents generally confirmed this. Consequently, we conclude that process re-
cordings can be seen as a good way to make the programming process explicit in
a distance education setting where the students are adults with prior programming
knowledge.

6.1.6 Conclusion

The first research question was
R1: Is it possible to make a course design where the students learn a
systematic programming process, conceptual models as a structuring

mechanism, and coding?

In this chapter we have described a course design that has an explicit focus on the
programming process in two ways: Showing how a master performs when he or
she actually solves programming problems (both in a lecture hall setting and in an
e-learning setting) and teaches the students a systematic way to address program-

ming problems. The course further uses the object-oriented conceptual framework
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in a consistent way to introduce conceptual modelling and the relationship be-
tween the models and the code. Consequently, we conclude that it is possible to
design such a course. Based on the evaluations presented in article “Programming
in Context: a Model-first Approach to CS1” and “Revealing the Programming

Process”, we also conclude that it is possible to teach such a course.

The model-based approach teaches the constructs of the programming language
and the elements of the conceptual framework hand-in-hand. We find that a
model-based approach both gives the students a good understanding of the con-
ceptual framework, and gives the students competencies in the five areas du Bou-

lay describes as necessary in order to do programming (see page 35).

6.2 Professional Adults Learning Introductory Programming

This section will discuss the two research questions related to professional adults:
R2a: How do the different aspects of a model-based programming

course influence professionals’ practice?

R2b: What are the interaction patterns for professionals learning ob-
ject-oriented programming with a focus on a systematic programming
process and conceptual models as structuring mechanisms in a tech-

nology rich distance education setting?

6.2.1 Linking the Learning of Model-Based Introductory Program-
ming to Professional Practice

Research in adult learning has shown that adults are more focused than children
when learning in the sense that they typically are more selective about what they
learn. They “want their learning to help them solve problems, build new skills,
advance in their jobs, make more friends — in general, to do, produce or decide
something that is of real value to them” (WIlodkowski, 1999, p. 27), see also sec-
tion 4.7.

Benander, Benander, and Sang (2004) found that the most important factor for
learning Java was previous knowledge of object-orientation. They further found
that those “who did have some graduate education reported finding all of the
tested features less difficult to learn than did those who had no graduate educa-

tion” (p. 106). However, these two factors are precisely what do not characterize
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the above-mentioned target group. Turk (1997) advocates a smooth transition
from the procedural paradigm to the object-oriented paradigm by gradually chang-
ing a procedural solution into a more object-oriented solution. His reason is to
avoid the difficulty of creating an object-oriented design from scratch. This is
consistent with the idea of the model-based approach, which gives the learners the
design to implement. However, we find it problematic to transform a program

made in one paradigm into another.

Adults want their study program to be flexible (Lorentsen, 2004). They want to
study what they find relevant, when and where they want to. One popular way to

create flexibility for learners is to use distance education (King, 2002).

The research focuses on how a link to the learners’ prior programming experience
should be made when the learners are adults with previous programming experi-
ence, when a model-based approach is used, and when the course is net-based.
The research is positioned in research on learning object-orientation in ICT-
mediated learning environments. Previous studies have provided insights into how
adults in general connect their working practice to their learning situation. Never-
theless, few studies have addressed adults learning object-orientation in a net-
based setting. The article “Learning Object-Orientation by Professional Adults”
discusses three categories of linking: the course’s content, the programming tools
used, and the pedagogical model of the IOOP course. The research consists of two
parts: first, an analysis of the interviews from IOOP 03 in order to establish the
three categories; second, interviewing and analyzing the same learners one year
later to investigate the link to their professional practice.

The learners found that the course did impact their working life. They indicated
that the teacher’s role of performing the practice of programming by showing
which software tools to handle (e.g., BlueJ, Java, Java libraries, etc.) and what
intellectual tools were necessary (e.g., analytical skills, reasoning, trial-and-error,
combining natural and scientific language, etc,) was important for their under-

standing of object-orientation.

du Boulay (1989, p. 283) describe five overlapping areas that a learner must be
able to master: general orientation, notional machine, notation, structure, and

pragmatics (see page 35). The learners in question know a lot about the general
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orientation and some also the notation. They also know about the notional ma-
chine, structures and pragmatics in general, but not in the context of object-
orientation. One interpretation of the findings could be that the learners found the
teacher showing areas 2-5 in action was the most important aspect for their learn-
ing. As noted by, e.g., Gries (1974) and Gantenbein (1989), it is important to fo-
cus explicitly on the programming process; this was also explicitly mentioned by
the learners. In this respect, a systematic way of developing a program is included

in the pragmatic and structural areas above.

The results of the study imply that a direct link between daily work and course
content is not needed. The learners expected to easily be able to transfer the ex-
amples shown in the course to their daily working lives, and accepted that it was
their own responsibility to do so. This is in line with the arguments made by Jo-
seph and Nacu (2003) that the learners need the instruction to be aligned with

their work.

The course under study used Blueld. It is a tool designed especially for learning
object-orientation. It is much different from the feature-rich professional devel-
opment tools the learners use in their daily life. The learners did not find this to be
problematic. Rather than requiring professional programming tools to learn, they
focussed on the best tool for learning object-orientation. This could be seen in
contrast to the “functional link” described by Engestrom (1994). However, as
Wlodkowski (1999) notices, they “want to learn new skills” and apparently have
found that BlueJ helps them achieve their goal more easily than other tools. In this
respect, the goals of the BlueJ developers (K6lling & Rosenberg, 2001) are met.

The learners participated in at least two communities of practice: the community
at their workplace and the community of learners. According to the learners’ own
words, transfer from the community of learners to the community of the daily

work practice occurred both during the course and following its completion.

The research question, “How do professionals link the different aspects of a
model-based programming course to their professional practices?” cannot com-
pletely be answered. The first reason is that the research focuses on only three
aspects — content, tools, and social interaction, and other aspects need to be con-

sidered. Furthermore, the research is done in the special setting of net-based edu-
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cation. This naturally shapes the design of the course and therefore the partici-
pants’ experience. However, our research has given some indications that a direct
link between the participants’ daily work practice and the educational setting is

not needed in all cases.

6.2.2 Social Interaction Patterns for Learning Model-Based Introduc-
tory Programming

This research question is addressed in “Examining Social Interaction Patterns for
Online Apprenticeship Learning — Object-oriented Programming as the Knowl-
edge Domain”. This article is positioned in research on learning object-orientation
in ICT-mediated learning environments. Many developers of net-based learning
have a tendency to use these new technologies in traditional ways (Dehoney &
Reeves, 1999; Kearsley, 1998). Previous studies have provided insights into how
various pedagogical approaches that are grounded in co-located situations can be
applied in distributed learning settings. However, few studies have addressed
pedagogical designs based on ideas from apprenticeship learning in such contexts.
This article discusses social interaction patterns that developed during shared
events in the IOOP course. The research consists of two parts: first is a case study
of I00P 03, with focus on the online meetings. This study identifies some prob-
lematic issues. Second, a design experiment addressing the problematic issues was
carried out in IOOP 04.

Based on a cluster analysis of 569 e-learning courses’ activities, Buelens, Roosels,
Wils, and van Rentergem (2002) found that the majority (85%) of courses were
“course document oriented” (i.e., the overwhelming majority of activities learners
do are up- and downloading documents, not sending messages or other communi-
cative actions) (p. 172). Therefore, the low activity identified in the online meet-

ings could be expected.

The case study supports the preliminary findings from Fjuk et al. (2004). The low
learner activity in the online meetings indicates limited success with regard to the
de-centred facet of the apprenticeship approach. The online meetings were almost
monological and did not support the de-centred facet of apprenticeship learning.

In addition, the modest interaction is found to be problematic with respect to the
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teacher’s opportunity to obtain insights into the learners’ understanding and pro-

gress. Such insights are important for successful scaffolding from the teacher.

The design experiment was set up to explore how the de-centred facet of appren-
ticeship could be facilitated. Analysis of these small groups and problem-oriented
sessions indicates that they have the potential to resolve the issues from the case
study. The master’s meta-communicative actions are found to be essential in this
respect. The study also suggests that proposals for solutions, prepared in advance
individually by the learners, shaped the groups’ interaction patterns. These shared
artefacts (and their presentation by one member of the group) constitute important
communicative instruments for establishing productive collective activities online.
It extends the discussion of Fjuk et al. (2004) by analyzing how some design in-
tentions described in that article were carried out in practice. The analyses are
concerned with patterns of social interaction, in which the artefacts mediating
these actions are integral parts of the analyses. One finding indicates that the
online meetings adequately mediated apprenticeship’s person-centred facet, but
not its de-centred facet. The article’s second major finding is the role of the learn-

ers’ initial proposals for solutions in shaping the social interactions.

Other aspects of the design experiment are analysed in Bennedsen (2006a).

6.3 Success Factors for an Model-Based Introductory Program-
ming Course

This section address research question R3:

R3: Do model-based introductory programming courses have the same

success factors as more traditional courses?

Many studies have examined success factors in programming — see section 3.2.3

for a listing.

A model-based introductory programming course is a special type of objects-first
programming course. Within the area of success in objects-first courses, Phil Ven-
tura’s PhD study (2003) is one of the most exhaustive. He asked: “What variables
are most important for success among credit hours, hours worked at job, high
school average, high school rank, number of years of high school math, SAT

math, SAT verbal, number of office hour visits, recitation attendance, comfort
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level, critical thinking ability, programming self-efficacy, attribution for suc-
cess/failure, prior programming experience, number of labs submitted, and num-
ber of exams taken?” (Ventura, 2003, p. 57). Furthermore, he was concerned not
only with success, but also with retention rates, i.e. not only how many students
passed the introductory course but also how many students continued their study.

To measure his 39 research variables, Ventura used a battery of tests such as the
Cornell Critical Thinking Test (Level Z) developed by Ennis, Millman and
Tomko (1985), to assess the students’ critical thinking ability, and the Computer
Programming Self-Efficacy Scale developed by Ramalingam & Wiedenbeck

(1998) to measure the students’ beliefs about their own programming ability.

In neither Phil Ventura’s nor the studies reported in this dissertation did gender or
intended major predict the final grade. Concern has been increasing about fe-
males’ low enrolment in computer science (Cuny & Aspray, 2002; Margolis &
Fisher, 2003; Roberts, Kassianidou, & Irani, 2002). We find it encouraging that
the model-based approach does not discriminate against female students; it is im-
portant that an introductory programming course offers equal opportunities for
both sexes to learn successfully.

A growing number of students are learning programming but not majoring in
computer science (Rosson, Ballin, & Rode, 2005; Scaffidi, Shaw, & Myers,
2005). At the University of Aarhus, for example, only 40% of the students partici-
pating in the introductory programming course are computer science majors. This
growing student group makes it crucial that CS1 designs do not alienate non-CS
majors early on, but instead shows these students that programming is useful and
interesting. It is encouraging that the model-based approach is equally successful
for teaching students who are majoring in CS and those who are not.

One of the findings is in contrast to Ventura’s findings; he found that previous
math scores did not predict students’ success, but we found that high school math
score was the best predictor of students’ success. This difference could be the re-
sult of the data’s origin. Ventura’s and our data come from two different imple-
mentations of an objects-first introductory programming course in two different
cultural settings; we can draw conclusions only for the particular implementation

studied. Conclusions about success factors for objects-first programming courses
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in general require research to be generalizable. The generalizability of the re-
search in this dissertation is discussed in section 5.3. One example of this cultural
difference is the way that the exam result is calculated. Ventura’s study calculated
the exam result using three elements: homework and quizzes (10%), lab average
(40%) and exam component (50%); our study based the exam result solely on a
practical examination, in which the student solved nine small, progressive pro-
gramming tasks. The exam components in Ventura’s study “were two in-class
exams and a final exam. All exams were short answer format; that is, they re-
quired students to write small amounts of code, produce or modify class diagrams,
perform matching and answer True/False (with justification) questions” (Ventura
& Ramamurthy, 2004, p. 241). Care must consequently be taken when likening
one result to other results.

In partial conclusion to the research question “Do model-based introductory pro-
gramming courses have the same success factors as more traditional courses?” is —
“Yes”. From the literature review of studies in success factors we concluded that
math seemed to be a general predictor. In our study we have found the same to be

true.

6.3.1 Abstraction as Success Factor

The research did not find that abstraction ability measured as cognitive develop-
ment predicted success. This is in contrast to Cafolla (1987-88) who found that
the level of cognitive development and verbal ability accounted for 49.5% of the
variation in exam score when students were learning BASIC. Verbal ability was
the strongest predictor (R=0.62), followed by the level of cognitive development
(R=0.59). Cafolla noted, “Verbal ability may have played a large role in this study
because the final exam required interpreting written instructions that explained the
parameters of the programming problem. It may be that the final examination
measures how well students interpret written instructions, in addition to computer
programming ability” (p. 52).

The finding of no correlation between the students’ high school math grade and
their cognitive development level was surprising, but in agreement with Cafolla,
who found no correlation between the students’ cognitive development and their
mathematical ability (Cafolla, 1987-88, p. 53). Combined with the finding of a
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correlation between high school math grade and exam grade, this led to the con-
clusion that math is not just another way of expressing the cognitive development
stage, and that the correlation between math and success in programming must be
related to other aspects of math. Nothing in the course requires a mathematical
background; the lecturer explicitly stated that his examples and exercises should
be in an interesting domain that the students could identify with, and not mathe-
matical examples such as prime numbers. One reason for the correlation could be
that math, like most programming languages, is a formal language, so the ability
to use and understand formal languages correlates with math and programming
skills.

We could speculate about why abstraction ability does not correlate with the exam
score. One explanation could be the nature of the model-based approach, with its
explicit focus on coding patterns founded in the specification model. The cogni-
tive load on the students is presumably less than for traditional problem-solving
oriented courses because they do not have to worry about both the specification
models and solution domains; the former is given by the teacher. This is supported
by Détienne (2002) who emphasises that designers “use knowledge from at least
two different domains, the application (or problem) domain and the computing
domain, between which they establish a mapping” (p. 22), and consequently de-
sign is a difficult process for students.

Is an exam result an indicator of success? The obvious answer is, “Yes — of
course!” Nevertheless, this requires that the examination measure the factors that
we believe are crucial for success. We believe that most teachers have experi-
enced a student asking “Is this included in the exam?”” and if the answer is, “No,”
more than half of the students stop listening or leave the lecture hall. Rowntree
(1988) put it like this, “The spirit and style of student assessment define de facto
the curriculum” (p. 1). Ramsden (1992) makes a similar observation: “The type of

grading influences the students’ learning approach.”

The investigated variables’ low predictive power could lead to the conclusion that
there is no way to predict a student’s success. This, however, is not the case.
Chamillard (2006) advocates the use of scores in prior courses to predict success
in succeeding courses. Using those, he can predict up to 75% of a student’s score.

However, this does not help to identify factors that indicate success in an intro-
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ductory programming course. Dehnadi and Bornat (2006) conducted an initial
study which suggests that success in the first stage of an introductory program-
ming course is predictable by noting consistency in use of the mental models that
students apply to a basic programming problem even before they have had any
contact with programming notation. In their initial study, they claim to be able to
distinguish between passing and failing students: “if it [their test] were used as an
admissions barrier, and only those who scored consistently were admitted, the
pass/fail statistics would be transformed. In the total population 32 out of 61
(52%) failed; in the first-test consistent group only 6 out of 27 (22%) failed” (p.
16). Caspersen, Bennedsen and Larsen (2007) replicated the study in a model-
based course (dIntProg). They were not able to verify the findings of Dehnadi and
Bornat.

In conclusion the findings of Barker and Unger (1983) (summed up at page 77),
Ventura (2003; 2005) and Kurtz (1980) (summed up at page 77) are not supported
by this study. We must therefore partly answer the question, “Do model-based
introductory programming courses have the same success factors as more tradi-
tional courses?”” with a “no!” — abstraction ability is not an indicator of success in
this type of course, as it is in an imperative-first course.

In order to answer the more general question of success factors for an objects-first
introductory programming course, we need data from various implementations of
this teaching strategy. Furthermore, we need to be much more aware than we cur-
rently are of the different circumstances that influence the success indicator (nor-
mally the exam score). However, it seems that traditional factors are not useful as

predictors in our case.

6.4 Pedagogical Patterns

This section addresses the research questions R4a and R4b:

R4a: What are the awareness of, use of, and attitude toward pedagogi-
cal patterns among computer science university teachers around the

world?

R4b: How can pedagogical patterns be structured to make them more

useful for university teachers?
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The pedagogical patterns project tried “to capture expert knowledge of the prac-
tice of teaching and learning” in a compact and easily communicable way (The
pedagogical patterns project, n.d.). This is a worthy goal, but is it achievable?
Several authors (e.g., Fincher and Utting (2002)) claim that pedagogical patterns’

impact are very limited.

Our research found a high awareness of the concept of pedagogical patterns (a
little less than half of the respondents were aware of them). In order to describe
the teachers who were aware of pedagogical patterns, correlations between a
number of factors and the knowledge of pedagogical patterns was investigated.
None was found except that teachers in the United States seem to have a higher

awareness than teachers from the rest of the world.

Teachers have a positive attitude toward the idea of pedagogical patterns and they
believe that they can use them as a tool to develop their own teaching standards.
These findings seem to contradict the claims made by Fincher and Utting (2002)
and by Bennedsen and Eriksen (2003).

It is questionable whether these results can be directly generalized to the entire
population of university teachers because of the selection of the response group:
authors at conferences focusing on teaching computer science. We would expect
this group to have a higher interest in teaching than the average university teacher
and because of this probably also a higher awareness of concepts related to the
pedagogical field. In other words, we do not claim that almost 50% of all com-
puter science university teachers have knowledge of pedagogical patterns.

It seems that pedagogical patterns are not used in teaching or in research on teach-
ing. Since knowledge of pedagogical patterns seems to be quite high, this natu-
rally gives rise to the question, “Why not?”

In design patterns, the underlying values that all patterns strive for are low cou-
pling and high cohesion. In the software development community it is commonly
accepted that these two values are good and worth striving for. Within teaching it
is very different, because many different theories of teaching exist, each with dif-
ferent underlying values of what is considered important in teaching and learning.
So, just describing pedagogical patterns without explicitly stating what teaching

values are considered important makes it very difficult for a teacher to evaluate
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whether a given pedagogical pattern is acceptable to him/her and solves the teach-
ing problem (s)he faces.

The main contribution of the research on pedagogical patterns is a proposal for a
universal pedagogical pattern categorization based on teaching values and activi-
ties. The article argues that, with pedagogical patterns’ current structure, it is very
difficult for their supposed users (teachers) to find a pedagogical pattern that is
suitable for a given problem. The article suggest a categorization of pedagogical
patterns based on teaching values and teaching activities in the same way that de-
sign patterns (Gamma et al., 1995) are organized by two criteria: purpose and

scope. As Fincher (2006) notes, the aim is

a ‘‘structuring principle,” a meaningful organisation that will allow other

educators easier access to the knowledge the patterns contain. (p. 75)

Values of pedagogical patterns are understood in the same sense as the Agile
Manifesto’s four values of software development (Cockbumn, 2002). The Agile
Manifesto’s authors use the term “value” because they believe that the presence of
the four agile values will improve software development, with respect to both the
constructed systems’ quality and the process used for each project. Furthermore,
the values are not debatable; they are a matter of faith, like religion. Bennedsen
and Eriksen (2003) describe three pedagogical values derived from the pedagogi-
cal theories of Steen Larsen (1998):

“When teaching, we prefer:
1. Working students over listening or reading students
2. Emotional involvement over discipline and external motivation

3. Students working with tasks they almost are able to solve over students

working with routine or impossible tasks” (p. T4A-5).

Larsen’s values reflect the constructivist way of teaching (the rationalist view —
see pp. 84). Focusing on social constructivism or situated learning (the pragma-

tist-sociohistoric view see pp. 84), an additional value to the three above could be:

When teaching we prefer:

e Collaborating students over individually working students
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As for teaching activities, three categories were chosen: planning, performing and

evaluating:

Planning: working out the details of something in advance, including es-
tablishing learning goals, a schedule, evaluation criteria, and a sequence of
topics.

Performing: carrying the plan through, including lecturing, mentoring,

supervising, etc.

Evaluating: judging students’ performance in relation to the evaluation

criteria defined in the planning.

These categories are chosen mainly because they are useful for practical teaching

purposes.

Using these values and categories suggests a uniform classification of pedagogical

patterns.

Based on the findings, we conclude that the knowledge of pedagogical patterns
among computer science teachers around the world are larger than expected; we
had expected that almost no teachers knew about the concept.

We furthermore conclude that it is possible to structure pedagogical patterns in a
more uniform way via structuring mechanism based on learning theories. This
way of structuring pedagogical patterns makes it possible for a teacher — based on

a pedagogical analysis of the problem — to identify relevant patterns to use.

164



7 Implications for Practice

Creativity is not the finding of a thing,
but the making something out of it after it is found.

James Russell Lowell (1819-1891), United States Poet

This section will discuss this PhD work’s impact on the practice of teaching com-

puter science.

This PhD project’s central research focus is teaching and learning introductory
object-oriented programming. During my more than 20 years of teaching experi-
ence, | have taught object-oriented programming to many different people and in
many different settings; from traditional freshmen in semester-long university
courses held in lecture halls to three-day courses for professional programmers in
the IT industry. The model-based approach is a synthesis of all my teaching ex-
perience. It has been interesting and enlightening to evaluate this approach’s im-
pact more methodically than we have in the past.

Other approaches to teaching object-oriented programming have been proposed.
However, most, if not all, are based on the teachers’ own belief and not on me-
thodical evaluations. This dissertation is an attempt to change this and use a scien-
tific approach to evaluating a model-based approach’s impact in many settings —
from university courses in lecture halls teaching freshmen to distance education

teaching professional programmers.

Concrete teaching advice is always at high rate. One problem, however, is how to
present advice. In software design, patterns have been the answer for some time,
so it is obvious to try to do the same with teaching advice. This is what the peda-
gogical pattern project has done. Its success, however, has been limited; few arti-
cles, workshops, etc. discuss, enhance and evaluate pedagogical patterns even
though the awareness of pedagogical patterns was higher than we initially ex-
pected. In this PhD project we have proposed another way of categorizing and
describing pedagogical patterns, forming a universal pedagogical pattern categori-

zation based on teaching values and activities. This will force the teacher to state
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and address the underlying teaching values in much the same way as software
values are addressed in design patterns.

7.1 Computer Science Education Practice

Many different ways are used to teach introductory programming; this PhD work
presents one (“Programming in Context: a Model-first Approach to CS1”). This is
done in a way that other teachers can follow the ideas behind the design and,
hopefully, be inspired in their course design to focus more on object-orientation’s
conceptual modelling aspects than on the language details of the particular pro-
gramming language they use. Madsen, Nygaard and Mgller-Pedersen (1993) em-
phasise the role of conceptual modelling; the model-based approach can be seen

as one way to highlight conceptual modelling.

There is a tendency to focus on technology in net-based learning (or e-learning as
it is popularly called); pedagogical principles seem not to be included in the learn-
ing management system?’ (Bixler & Spotts, 1998; Firdyiwek, 1999). We find it
vital to balance the technology, pedagogy and learning materials when designing a
net-based course. Georgsen (2004) asserts that teachers must ask themselves the

following fundamental questions:
1. How do I wish to teach and organize the learning processes?

2. How can technology be used (if at all) to support learning, communication
and collaboration?

3. How can the learning materials be developed, made available, and distrib-
uted??® (p. 11).

This is in line with the argument of Govindasamy (2001):

Most of the pedagogical principles that apply to the traditional classroom de-
livery method also apply to e-Learning. However, these principles need to be
extended to accommodate and provide for the rapid changes in technology.

Pedagogical principles must form the very basis for inclusion of features in

2T According to Wikipedia (http://en.wikipedia.org/wiki/Learning_management_system), “A
Learning Management System (or LMS) is a software package, usually on a large scale (that scale
is decreasing rapidly), that enables the management and delivery of learning content and resources
to student.”

28 Translated from Danish by the author.
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LMS. Better still, these principles should be integrated into the LMS where
every feature included is accompanied by explicit guidelines on the best
method of their use to effect pedagogically sound instruction (p. 288).

The research on cognitive apprenticeship in a net-based setting (“Examining So-
cial Interaction Patterns for Online Apprenticeship Learning — Object-oriented
Programming as the Knowledge Domain”) can be seen as a description of one
way to implement a pedagogical principle in an e-learning course. The research
showed that the implementation was seen as successful from the students’ point of
view, but problematic from the teacher’s point of view. The design experiment
describes one possible way of giving the teacher more feedback. The research
shows that the solution to a given exercise strongly influences the progress of col-
laboration. This could give some hints to teachers on their advice to students when
they are preparing for a collaborative online session. The role of the master
(teacher) did have an important impact on the session’s structure. The research

can be used by teachers to reflect on their role in such an online meeting.

Teachers of introductory programming have strong opinions on the characteristics
of well-performing students. These, among other things, are reflected in the selec-
tion of variables that have been studied in order to predict students’ success in
introductory programming. Our studies (“Abstraction Ability as an Indicator of
Success for Learning Object-Oriented Programming?” and “An Investigation of
Potential Success Factors for an Introductory Model-Driven Programming
Course”) have found only the students’ prior math grade and their work during the
course to be influential. My colleague, Michael Caspersen, has already used the
finding of the correlation between coursework and success to motivate students to
be active, when he introduced his course in introductory programming this year.
According to him, the fact that it was a scientific result was seen by the students
as making the argument more persuasive. We hope that other teachers can use this

result in a similar way.

Many teachers see abstraction as positively influencing students learning to pro-
gram. The lack of correlation between abstraction and success in learning pro-
gramming is indeed surprising. This result could influence the way teachers think
of students and abstraction’s role in introductory programming curricula. If the

result had been the other way around, teachers could have used some of, e.g.,
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Adey and Shayer’s (1994) teaching materials to enhancing their students’ cogni-
tive level. Now it seems that this will not positively influence their success in a

first model-based programming course.

Adult, experienced procedural programmers participating in further education are
a growing student population. In “Learning Object-Orientation by Professional
Adults” we have presented the results of our investigation of how representatives
from this group connect a course in introductory object-oriented programming to
their professional life. In general, the students found it to be mainly their own re-
sponsibility to connect their learning from the course to their professional life.
One implication of this is that teachers designing courses for this particular target
group do not need to use professional programming tools, but can use pedagogical
tools such as BlueJ. The need to “speak the same language” could imply that
teachers undertaking this kind of teaching should have worked in industry at some

point in their career.

7.2 Pedagogical Pattern Practice

Design patterns have had a major impact on software design. They give designers
a common language to discuss common design problems and their solutions. This
idea has been applied to many other areas, including pedagogy. One crucial dif-
ference between design patterns and pedagogical patterns is the underlying values
that a given pattern strives for. In software the two values that most design pat-
terns aim for are coupling and cohesion. These two values are commonly accepted
in the software community, and therefore are not a centre for heated discussion.
The opposite is true in teaching, which includes many different pedagogical theo-
ries, each with its own set of values. Ignoring the values makes the discussion
difficult because a given pattern can support one participant’s values while coun-
teracting another participant’s values. Making the values explicit in the categori-
zation facilitates the discussion. It will also help the teacher to select an appropri-
ate pattern given the knowledge of his problem (i.e., what value is “problematic”-
work, involvement, upper limit or collaboration) and the situation he is in (plan-

ning, teaching or evaluating):
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MENT ENCE LEVEL, GOLD STAR,
STUDENTS DECIDE, MOCK EXAM,
REAL WORLD EXPERI- | ACQUIRE PARTICI-
ENCE, PANTS' FEEDBACK,
WAR GAME ANONYMOUS FEED-
BACK,
HONOR QUESTIONS,
TEACHER SELECT
TEAMS
ADOPT AN ARTEFACT
ROLE PLAY
LARGER THAN LIFE
UPPER | FEEDBACK, FEEDBACK
LimiIT | EMBRACE CORREC- DIFFERENTIATED
TIONS, FEEDBACK,
EARLY WARNING, TRY IT YOURSELF,
GRADE IT AGAIN SAM, | SELF TEST,
DIFFERENT EXPERI- OwN WORDS,
ENCE LEVEL, EARLY WARNING,
EXPLORE YOURSELF, CHALLENGE UNDER-
STUDY GROUPS, STANDING,
EXPAND THE KNOWN HONOR QUESTIONS,
WORLD TEST TUBE,
EXPLORE YOURSELF,
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CRITIQUE,
EXPAND THE KNOWN

WORLD
CoL- PEER FEEDBACK, PEER FEEDBACK, PEER GRADING,
LABO- GRADE IT AGAIN SAM, | ACQUIRE PARTICI- ONE GRADE FOR ALL

RATION | INVISIBLE TEACHER, PANTS' FEEDBACK,
STUDENTS DECIDE, TEACHER SELECT

GRoups WORK, TEAMS,

STUDY GROUPS, ADOPT-AN-ARTEFACT,

WAR GAME GRoOUPS WORK,
ROLE PLAY
STUDENTS DESIGN
SPRINT

Table 11: Pedagogical patterns categorized according to pedagogical values (work, involve-
ment, upper limit and collaboration) and teaching activities (planning, performing and eva-
luating). The table is from “Categorizing Pedagogical Patterns by Teaching Activities and
Pedagogical Values”

If a teacher, for example, is preparing his course and is afraid that the students
will work solo (i.e., not collaboratively), he could look at the pedagogical pattern
“Invisible Teacher” (Active Learning, n.d.) to get inspiration on how to solve this

problem.

As described above, several authors claim that pedagogical patterns do not have
widespread use. We have been able to find only a few articles (e.g., Jalloul
(2000); Haberman (2006) plus Derntl and Motschnig-Pitrik (2004)) describing or
discussing the use of pedagogical patterns for either development or documenta-
tion of pedagogical practice. Fincher (1999) claims

a Pattern Language of Pedagogy is possible and achievable and that for his-
toric and disciplinary reasons, CS is singularly well positioned to create such a

tool and a particularly fertile ground for its use (p. 331).

However, we have not found this to be the case — there is no commonly accepted
catalogue of pedagogical patterns. Fincher (1999) observes that

Most obviously in this respect they lack a cohesion of scale, encompassing
material from the use of learning theory concepts to improve the effectiveness
of lecture sessions [...] to a precise method for teaching the use of accessors

and mutators for accessing an object’s private data (p. 336).

The proposed categorisation in “Categorizing Pedagogical Patterns by Teaching

Activities and Pedagogical Values” and the accompanying template in Bennedsen
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and Eriksen (2003) should give a better and more abstract description of peda-
gogical patterns.

Derntl and Botturi (2006) describe key terms related to a pattern system and de-
scribe use cases for them. They stress that “a pedagogical pattern collection needs
to be based on some clearly expressed pedagogical baseline” (p. 139-140). The
template’s and classification’s grounding in a specific pedagogical theory (con-
structivism or social constructivism) could be seen as one solution to this, thereby

enhancing pedagogical patterns’ popularity.

One of the hypotheses in “The Dissemination of Pedagogical Patterns is that
pedagogical patterns can be used as an artefact for creating and communicating
about pedagogical practice at an institution. This is also the idea of Haberman
(2006). She describes a series of activities that use pedagogical patterns as a
means of communication about pedagogy. Her series of activities is promising,
but does not seem to address the issue of a pedagogical baseline. The respondents
in “The Dissemination of Pedagogical Patterns” also find pedagogical patterns
useful for creating and communicating about pedagogical practice at an institu-
tion. The explicit focus on the underlying pedagogical value system is important
and — using a template with an explicit focus on pedagogical values — it should
give rise to more qualified pedagogical discussions.
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8 Discussion

He that is not open to conviction, is not qualified for discussion.
Richard Whately (1787-1863), English logician

In this chapter we will discuss the research presented here in relation to some of
the current “hot topics” in the computer science education research community
today. The chapter is not intended to cover all of the hot topics, but only topics we

find relevant to comment on.

8.1 Objects-First Debate

As described in section 3.2.1, there is no common opinion of what an “objects-
first” approach is, nor is there an agreement among teachers whether an objects-
first course is an easier or harder way for students to learn programming (Lister et
al., 2006). As an example of this debate, Hu (2004) discusses in detail the useful-
ness of an objects-first approach. His conclusion is “Teaching objects-first may
well be (and in fact, is, in many schools) counter-productive and harmful.” (p.
216). He finds four problems that still need to be answered in order to use an ob-

jects-first approach:

1. The students in CS1 are not prepared for the complexity and the level of ab-

straction of OO.
2. There’s too much material for a single CS1 course to handle.

3. The weakened coverage on traditional algorithms due to the shifted empha-

sis and time constraints.

4. The concerns of less or no coverage on structured programming. (p. 210)

Indeed, these are relevant problems but — as noticed above — there is a big diver-
sity in the goals, content and teaching methods of courses using an objects-first
approach. His problems seem to be unsubstantiated claims, which may be true for
some concrete courses and students. In the implementations of the model-based
approach researched in this dissertation, Hu’s problems were not experiences as
such neither by the teacher of the course nor by the teachers of the following

courses. As stated in section 6.1, the model-based approach addresses explicitly
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the different abstraction levels in a program, uses traditional structured program-
ming principles like loop invariants, covers almost the entire book (the book used
was “Objects first with Java: a practical introduction using Blue J” (Barnes &
Kolling, 2005)) and covers traditional sweep algorithms (find one object that ful-
fills a given criteria, find all objects that fulfill a given criteria). However, there is
no coverage of traditional algorithms like binary search and sorting. The students
use standard implementations of these algorithms thereby exposing the students to
a more relevant topic: reuse of code and addressing the “not invented here” syn-
drome (Oliver & Dalbey, 1994). In short, the model-based approach fits nicely to
modern software engineering methods and the competences the students get are

useful in industry as well as in their further studies.

As the answer to research question R1 indicates, we find the model-based ap-
proach useful and the results are encouraging. It shows that it is possible to teach
introductory programming to students using an objects-first approach. However,
we do not claim that the very fine results can be ascribed only to the model-based

approach; many things influence the outcome of a student.

8.2 The Role of Conceptual Modeling in Introductory Program-

ming Courses

As descried in the introduction, Knudsen and Madsen (1988) describe three per-
spectives on the role of the programming language: Instructing the computer,
Managing the program description and Conceptual modelling. Including the con-
ceptual modelling perspective has a positive impact on the students’ skills and
their understanding of the programming process (“Revealing the Programming
Process”; “Learning Object-Orientation by Professional Adults”; Gantenbein,
1989). It is our experience that the general omission of conceptual modelling is

the major reason for the problems identified in CC2001:

Introductory programming courses often oversimplify the programming proc-
ess to make it accessible to beginning students, giving too little weight to de-
sign, analysis and testing relative to the conceptually simpler process of cod-
ing. Thus, the superficial impression students take from their mastery of pro-
gramming skills masks fundamental shortcomings that will limit their ability
to adapt to different kinds of problems and problem-solving contexts in the fu-
ture. (p. 23)
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CC2001 generally ignores conceptual modelling in the objects-first recommenda-
tions for CS1. Aspects of conceptual modelling are mentioned only briefly and the
recommended time to be spent on the subject is four core hours®!

In her PhD dissertation, Pauline H. Mosley (2002) makes a textbook analysis of
ten major selling object technology textbooks. She counted the number of pages

devoted to different topics. One of her observations is that

Approximately, 95% of the texts do not discuss the Unified Modeling Lan-
guage. The absence of the Unified Modeling Language is perhaps an indicator
of the complexity of design, or that learning about system design is something

different from learning how to program. (p. 76)

Textbooks seem to be a good indicator of the teaching taking place; Weiss,
Banilower, McMahon and Smith (2001) found that 96% of secondary science
teachers (and 94% of math teachers) used one or multiple textbooks, and Gold-
stein (1978) estimated that 75% of the classroom time and 90% of homework time
involved textbook use. The focus on “instructors’ kits” in the advertisement of
introductory programming books for university courses lead us to believe that the
same is the case for introductory programming courses at university level. We see
the absence of UML models as an indication of the focus of programming
courses. The courses focus on the semantic and syntactic details of a given pro-
gramming language and not on the given programming language as a concrete

way to express solutions in a given programming paradigm.

8.3 What are the Goals of an Introductory Programming
Course?

In general it seems like many discussions among computer science teachers boils
down to differences in the learning goals for an introductory programming course.
If, as it seems to be in many cases, the goals are not stated explicitly, the discus-

sions very quickly become unproductive and may even end in mudslinging.

2% A core hour is defined in CC2001 as “the in-class time required to present the material in a
traditional lecture-oriented format” (p. 15). ... “students are expected to devote three hours of time
outside class for each in-class hour,” (p. 16). One core-hour therefore equals four hours of student
work.
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Biggs (1996) argues for “constructive alignment”. Constructive alignment is

a marriage of the two thrusts [constructivist learning theory and instructional
design literature], constructivism being used as a framework to guide deci-
sion-making at all stages in instructional design: in deriving curriculum objec-
tives in terms of performances that represent a suitably high cognitive level, in
deciding teaching/learning activities judged to elicit those performances, and
to assess and summatively report student performance. The “performances of
understanding” nominated in the objectives are thus used to systematically

align the teaching methods and the assessment. (p. 347)

The design of teaching and learning activities are guided by the learning out-
comes, see e.g., figure 2.2 in Biggs (2003).

We hope that the interim community review of the curriculum recommendations
currently undertaken by ACM will entail that a selection of more explicitly stated
goals will be available for the designers of introductory programming courses to
choose from. It is furthermore our hope that future research in the area of intro-
ductory programming addresses the lack of explicitly stating the goals of the
course/courses under investigation, and — if the research is empirically based —
deepens on the description of the goals of the course so that the results of the re-
search better can be weighted against the readers own teaching practice and
course goals.

8.4 Computing Education Challenges

In the “grand challenges” for computing education (McGettrick et al., 2005), the
authors present a sub-challenge:

The concept of 1Q, though controversial, provides a measure, relative to the
whole population average, of innate intellectual capability, independent of
age. Similarly, we suggest a sub-challenge to develop a ‘programmers quo-
tient’ to give a measure of programming ability, relative to the whole popula-
tion, that would remain the same independent of programming experience (p.
46)

We find this an unachievable goal. As Lister (2005a) notes “One thing is certain:
there is no “silver bullet”. That is, there is no simple and accurate test for PQ. If

there was a silver bullet, then we would already have found it.” (p. 15). The stud-
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ies in this dissertation support Lister’s comments. Although we have found a cor-
relation between high-school math and programming, the correlation only ac-
counts for 16% of the exam score.

8.5 Computer Science Education Research

Generalizations in the area of educational research are difficult since many differ-
ent variables influence the students’ learning (see e.g., section 4.1 on didactical
models). The thorough description of the goals, pedagogy and content of the
courses under study in the dissertation hopefully helps other teachers to evaluate if

the findings in this research can have implications for their own teaching.

Another way to make the results more generalizable is to increase the number of
different participating entities (teachers, students, institutions, cultural contexts
etc). This is the case in the large-scale research that Adey and Shayer used to
prove that abstraction was teachable in primary school and that such teaching in-

deed enhanced the learning outcome of students.

Fincher et al. (2005) describe design considerations when designing computer
science education research projects that are multi-institutional and multi-national.
The multi-national studies aims at making the results more generalizable. Howev-
er, it might be the case that one compares “apples and oranges” since the context
of participating entities differ too much. In e.g., Lister et al (2004) they compare
students ability to trace code. However, the only discussion on differences relates
to the programming language used and the familiarity with multiple choice ques-
tions; there is no discussion on the difference between goals of the courses. It
might be the case that some courses have code tracing as an explicit goal while
others pay no attention to this at all. Again, we would hope for a more elaborate
description of the research context as seems to be the case in other areas of social

science research.

8.6 Transfer of Teaching Experiences

Transfer of experience within a community is normally highly valued. This also
seems to be the case in the community of computer science teachers where e.g.,
the nifty assignments session at SIGCSE (Parlante, 2007) is one of the most popu-

lar and well-sessions at the entire conference. However, this is only about exer-
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cises, not teaching experiences in general. The pedagogical pattern project aims at
transferring experiences; the natural question is whether this is the right way to
transfer experience (written and generalized in a particular template) or there are
too many factors involved in a teaching situation so that the “bandwidth” of the
media is simply not big enough. Are other forms like e.g. pair-teaching superior to
transferring experience by written communication? This question seems not pos-
sible to give a yes/no answer to; it seems to depend on the available resources and
the participating teachers. From our own experience pair-teaching is very effec-
tive given that the teachers respect and feel secure with each other. However, the

cost of human resources in that form of experience transfer is relatively high

Haberman (2006) argues that traditional forms of transfer of experience are un-

suitable in the case of computer science teachers:

Unlike other communities of practice, the transfer of practical expertise to
novice teachers cannot be achieved through classical ongoing ‘face-to-face’’
apprenticeship because teaching is in the end an individual activity. Usually,
teachers carry out expert — novice support as well as expert — expert coopera-
tion through sharing self-made learning materials (i.e., assignments and ex-
ams), a means of communication that does not guarantee the transfer of teach-

ing expertise. (p. 88)

We do not sanction the categorical claim made by Haberman. There are many
ways of transferring experience, each with is strength and weaknesses. The

strength of pedagogical patterns is, in our view, especially in three areas:

1. The teacher(s) creating the pedagogical pattern can use it as a reflection
tool for his/her own teaching,

2. Experiences are made public and given a name (we have e.g. often used
the word spiral approach to communicate that a given topic was covered

several times in the course, each time at a deeper level),

3. Teachers are not reliant on other teacher(s) to be present (and the use of

human resources is consequently lower).

Pedagogical patterns are not the only way to transfer experience, but we see them

as a valuable supplement to all the other ways to do this.
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9 Further Work

Prediction is very difficult, especially about the future.
Niels Bohr (188-1962), Danish physicist

This dissertation contributes to building knowledge of how to teach introductory
object-oriented programming. However, many more interesting research questions
could be answered for model-based teaching; naturally much more research needs
to be done in order to give better explanations for, and guidance on, teaching

model-based introductory programming.

It is generally accepted that it is very difficult to learn to programming. However,
the belief that there generally are high drop-out and failure rates does not seem to
originate from any official statistic or sound investigation of the subject — it is
more in the realm of folk-wisdom, and claims that have been said so often that
they are accepted as truths. The only source of information that we know of is
authors who give pass-rates for their particular introductory course in articles de-
scribing other issues (e.g., Guzdial and Forte (2005)). We find it problematic not
to have more solid evidence for this claim. False views on failure and pass rates
can have serious implications for the quality of introductory programming
courses. A lecturer with a high failure rate might accept that “this is just the way
programming courses are since all programming courses have high failure rates”
and consequently fail to take action to improve the course in order to reduce the
failure rate. It would be relevant to design a study aiming at finding the average
failure and pass rate for CS1 courses around the world so that the discussion can
be based at facts rather than folks wisdom. One suggestion could be that the ACM
Education Council and others engage in this work in order to provide reliable and

representative data from as many institutions as possible.

Focusing on the programming process is important. It could be interesting to “turn
the camera around” and have the students record their own problem solving ac-
tivities in the same way as the process recordings. In this way, the exercises could
focus on both the product (the program) and the process. By having the students

to deliver both a program and a recording of their programming process, the
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teacher has a way to evaluate and give feedback to the process used by the stu-
dents. It would be interesting to investigate this and see if it positively impacts
learning and how a practical set up can be made. Simply having the students to

hand in an entire recording of their programming process seems unproductive.

The described categorization of pedagogical patterns would indeed be interesting
to implement. It is — as described in the article — a way to restructure the peda-
gogical patterns web-site in order to give structure to the pattern catalogue. It will
be interesting to implement the suggested categorization and evaluate its useful-
ness of this. It is rare that one structure fits all, so it would be interesting to ex-
pand the implementation with the possibility for users to create their own catego-
rizations in the same way as it is possible to do “social book-marking” on

del.icio.us (http://del.icio.us/)

It seems like textbooks shape much of the teaching activities. Textbooks highly
influence the content and structure of a course (Good, 1993; Lin et al., 1999). As a
consequence, it seems necessary to produce a good textbook using the model-
based approach. Many good textbooks exist, but none is organized according to a
model-based approach and with a strong focus on the programming process.

Success (or the lack of it) in learning to program is a major concern for many re-
searchers. It seems like looking for other variables that predict success is not very
productive. The studies done as a part of this dissertation and the ones analyzed in
section 3.2.3 point in very different directions and no general conclusion is ob-
tainable. This indicates that the goal of finding general success factors for learning
to program is unachievable; we need to aim at a less general level. In this research
the level has not been learning to program in general but learning to program us-
ing a model-based approach. Another limitation is that the research is only done in
one context (University of Aarhus); it would be interesting to repeat the research

in other contexts.

As a supplement to the quantitative studies of success factors it would be relevant
to do more qualitative studies. This will give us the possibility to use a more
“open-minded” research approach indeed in the sense that it is not about answer-
ing hypotheses but creating new hypotheses and hopefully new hypotheses that

explain better why students struggle with programming and what we can do to
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help students learn programming better. We have started to do this in a small scale
by interviewing students about their own experience of why they think they
passed the introductory programming course; the results are partly documented in
(Caspersen et al., 2007), but extending this research to a larger group of students
might reveal new success factors; most likely factors that are not as easily mea-

surable as “previous math score”

When learning to program the student needs a tool to practice programming. Cur-
rently we use BlueJ, a tool that illustrate the connection between aspects of the
class model that can be derived from the code and the code itself. Yet, it is only
possible to derive a “usage” link between classes, not an association or an aggre-
gation. It would be interesting to try to extend BlueJ with a facility to show asso-
ciations/aggregations (with cardinality) and evaluate the influence of this in a
model-based programming course. Furthermore, BlueJ does not focus much on
communicating objects. Matilda Ostling (2004) has created a sequence diagram
editor for BlueJ; this could be used as a starting point for exploring the learning

outcome of usage of such a tool.

One of the topics students seem to have difficulties with is the mental model of
program execution. We have evaluated a proposed competency hierarchy regard-
ing object interaction and its role in teaching and learning (Bennedsen & Schulte,
2006), and we have evaluated the hierarchy among teachers in (Schulte & Ben-
nedsen, 2006). This hierarchy is found to be both relevant and useful. We would
like to explore the use of this hierarchy further; among other things, to try to cre-
ate validated and standardized instruments that can be used to assess a given stu-
dent’s level of competence. We also would like to evaluate the hierarchy by as-
sessing the students’ object-interaction competence in the middle of the course
and at the end of the course, to see if growth in object-interaction competency
correlates strongly with students’ overall learning and to see if students participat-

ing in a model-based course differ from other students.

Learning to program is notoriously difficult — and so is teaching it. Many students
participate in introductory programming courses so answering research questions
that can move both the theoretical and practical side of computer science educa-
tion forward is much needed. Future research must therefore be guided by a

search for new theories and answers to research questions that acknowledges both
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the theoretical and practical side of this field; research that has a solid methodo-
logical foundation and produce findings that are relevant for teachers in this field.
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