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Abstract
Nested case-control and case-cohort studies are useful
for studying associations between covariates and
time-to-event when some covariates are expensive to
measure. Full covariate information is collected in the
nested case-control or case-cohort sample only, while
cheaply measured covariates are often observed for
the full cohort. Standard analysis of such case-control
samples ignores any full cohort data. Previous work
has shown how data for the full cohort can be used
efficiently by multiple imputation of the expensive
covariate(s), followed by a full-cohort analysis. For large
cohorts this is computationally expensive or even infea-
sible. An alternative is to supplement the case-control
samples with additional controls on which cheaply mea-
sured covariates are observed. We show how multiple
imputation can be used for analysis of such supersam-
pled data. Simulations show that this brings efficiency
gains relative to a traditional analysis and that the effi-
ciency loss relative to using the full cohort data is not
substantial.
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2 BORGAN et al.

1 INTRODUCTION

Large cohort studies are widely used in epidemiology to investigate the effect of risk factors and
other covariates on the time to an event of interest, like disease diagnosis or death. Cox regres-
sion is commonly used to analyze data from such studies. Estimation for Cox’s model requires
information on risk factors and other covariates for all individuals in the cohort, also for rare dis-
eases where most individuals will not experience the event of interest. To avoid the collection
of expensive covariate information, such as biological measurements, for all individuals in the
cohort, it may be advantageous to adopt a cohort sampling design. For these designs, informa-
tion on risk factors and other covariates are recorded for all individuals who experience the event
of interest (“cases”), but only for a sample of the individuals who do not experience the event
(“controls”).

There are two main types of cohort sampling designs: nested case-control studies and
case-cohort studies. The two types of cohort sampling designs differ in the way controls are
selected. For nested case-control sampling (Thomas, 1977), one for each case selects at random
a small number of controls from those at risk at the case’s event time, and a new sample of con-
trols is selected for each case. For case-cohort sampling (Prentice, 1986), a subcohort is selected
at random from the full cohort at the outset of the study, and the individuals in the subcohort are
used as controls at all event times when they are at risk.

As described in Section 2, the traditional analyses of nested case-control and case-cohort data
only use information for individuals in the case-control sample, that is, for the cases and con-
trols/subcohort. However, while expensive covariate measurements may be available only for the
case-control sample, there may be other cheaply measured covariates that are available for all
individuals in the full cohort. The traditional analyses of sampled cohort data ignore this infor-
mation. The sampled cohort plus the additional data available on the remainder of the full cohort
may be viewed as a full cohort study with a large missing data problem, in which the expensive
covariate measurements are missing by design for individuals outside the case-control sample.
One approach for handling this missing data problem, is maximum likelihood estimation for the
full cohort; see, for example, Scheike and Martinussen (2004), Scheike and Juul (2004), Saarela
et al. (2008), and Zeng and Lin (2014, 2018). The paper by Kulathinal and Arjas (2006) is also
worth mentioning. They consider a Bayesian analysis of case-cohort data using the full cohort
likelihood and Bayesian data augmentation. Another popular approach for handling missing data
problems, is multiple imputation (MI), which essentially is an approximation to a full Bayesian
analysis. MI has good frequentist properties, and it is easier to implement than a full Bayesian
analysis. In the context of Cox regression for sampled cohort data, MI has been studied by Keogh
and White (2013) and Keogh et al. (2018); see also the review by Keogh (2018).

In studies with very large cohorts, maximum likelihood estimation or the use of MI for the
entire cohort may be computationally very demanding or even infeasible. Focusing on MI, we
in this paper investigate a middle way between a traditional sampled cohort study and a sam-
pled cohort study with MI for the full cohort. The idea is to select a supersample of the sampled
cohort by adding more controls to a nested case-control study and enlarging the subcohort for a
case-cohort study. The expensive covariate measurements are imputed for the individuals in the
supersample who are not in the original case-control sample, but not for the other individuals in
the full cohort. The data for the imputed supersample may then be analyzed using the traditional
methods for analysing sampled cohort data.

The outline of the paper is as follows. In Section 2 we briefly describe Cox’s regression model
for the full cohort, and review the traditional ways of analyzing sampled cohort data using this
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BORGAN et al. 3

model. MI in Cox regression with cohort data and sampled cohort data is reviewed in Section 3,
and in Section 4 we describe how MI may be modified when imputation is only performed for
individuals in the supersample. In Section 5 we present a simulation study that illustrates how
MI for the supersample compares with MI for the full cohort and the traditional methods for
analysing sampled cohort data. Finally, in Section 6, we discuss our results and point out some
directions for further research. Some simulation results that supplement those of Section 5 are
given as Supporting Information on the journal’s web page.

2 TRADITIONAL ANALYSIS OF SAMPLED COHORT DATA

We start out with a review of the traditional ways of analyzing sampled cohort data. For ease of
presentation, we assume that there is a single covariate X that is expensive to measure, while Z is
a vector of cheaply measured covariates. The situation with more than one expensive covariate is
briefly discussed in Section 6. The hazard rate for an individual with covariate values X = x and
Z = z is denoted h(t | x, z). The time variable t may be age, time since the onset of a disease, or
some other time scale relevant to the problem at hand. We assume that the covariates are related
to the hazard rate by Cox’s proportional hazards model

h(t | x, z) = h0(t) exp
(

x𝛽 + zT
𝜸
)
. (1)

Here 𝛽 and 𝜸 are regression coefficients that describe the effects of the covariates on the hazard,
while the baseline hazard h0(t) corresponds to the hazard of an individual with all covariates equal
to zero.

We consider a cohort  = {1, 2,…,N} of N independent individuals, and suppose for a
moment that both X and Z are observed for the full cohort. The values of (X ,Z) for individual i
are denoted (xi, zi). We do not observe the event of interest for all individuals. Due to censoring,
we for each individual i ∈  only observe (Ti,Di), where Ti is the minimum of an event time and
a censoring time, and Di = 1 if the event is observed, and Di = 0 otherwise. The values of Ti and
Di are denoted ti and di. We assume throughout that the censoring and event times for individual
i are independent given Xi,Zi, and that the censoring time and Xi are independent given Zi. The
latter assumption is not required for the methods in this section, but it is needed when using MI
in Sections 3 and 4.

Then for the full cohort, the regression coefficients 𝛽 and 𝜸 in (1) are estimated by the values
̂
𝛽 and �̂� that maximize Cox’s partial likelihood

Lcoh(𝛽, 𝜸) =
∏

i∈

exp
(

xi𝛽 + zT
i 𝜸
)

∑
j∈(ti)

exp
(

xj𝛽 + zT
j 𝜸
) . (2)

Here (t) = {j | tj ≥ t} is the risk set at time t, and  = {j | dj = 1} is the set of all cases. Fur-
ther the Breslow estimator of the cumulative baseline hazard H0(t) = ∫

t
0 h0(u)du may be given as

̂H0,coh(t; ̂𝛽, �̂�), where

̂H0,coh(t; 𝛽, 𝜸) =
∑

ti≤t

di
∑

j∈(ti)
exp

(

xj𝛽 + zT
j 𝜸
) . (3)
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4 BORGAN et al.

It is well known that the maximum partial likelihood estimators for the full cohort have similar
properties as ordinary maximum likelihood estimators (Andersen & Gill, 1982). In particular, SEs
of the parameter estimates may be obtained from the observed information matrix.

As described below, nested case-control and case-cohort data are traditionally analyzed using
modified versions of Cox’s partial likelihood and the Breslow estimator.

2.1 Nested case-control studies

The controls in a nested case-control study are selected as follows. If the event of interest is
observed for an individual i at time ti, one selects at random a small number m of controls from
(ti) ⧵ {i}, that is, the risk set with the case excluded. The set of size m + 1 that consists of the
case and the sampled controls is denoted a sampled risk set and denoted ̃(ti). The expensive
covariate is measured for the individuals in the sampled risk sets, but it is not needed for the other
individuals in the full cohort.

Traditionally, estimation of the regression coefficients in a nested case-control study is based
on the partial likelihood

Lncc(𝜷, 𝜸) =
∏

i∈

exp
(

xi𝛽 + zT
i 𝜸
)

∑
j∈̃(ti)

exp
(

xj𝛽 + zT
j 𝜸
) . (4)

Note that (4) is similar to the full cohort partial likelihood (2), except that the sum in the denomi-
nator is only over individuals in a sampled risk set. For computing one may use standard software
for Cox regression, like coxph in the survival library in R, formally treating the label of the sampled
risk sets as a stratification variable in the Cox regression.

The cumulative baseline hazard may be estimated by a Breslow-type estimator given as
̂H0,ncc(t; ̂𝛽, �̂�), where

̂H0,ncc(t; 𝛽, 𝜸) =
∑

ti≤t

di
∑

j∈̃(ti)
w(ti) exp

(

xj𝛽 + zT
j 𝜸
) , (5)

and ̂
𝛽 and �̂� are obtained by maximizing (4). In (5), the weights are w(ti) = N(ti)∕(m + 1), where

N(t) = |(t)| is the number of individuals at risk at time t.
The maximum partial likelihood estimators ̂𝛽 and �̂� obtained by maximizing (4) enjoy sim-

ilar large sample properties as ordinary maximum likelihood estimators (Borgan et al., 1995;
Goldstein & Langholz, 1992).

2.2 Case-cohort studies

For the case-cohort design, a subcohort ̃ of size n is selected at random from the full cohort at
the outset of the study. The individuals in the subcohort are used as controls at all event times
when they are at risk. The expensive covariate is measured for all individuals in the subcohort as
well as for cases occurring outside the subcohort, but it is not needed for the other individuals in
the full cohort.

Different methods have been suggested for estimating the regression coefficients for
case-cohort data. The methods are based on weighted pseudo-likelihoods of the form
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BORGAN et al. 5

Lcch(𝛽, 𝜸) =
∏

i∈

exp
(

xi𝛽 + zT
i 𝜸
)

∑
j∈ ̃(ti)

wj exp
(

xj𝛽 + zT
j 𝜸
) , (6)

but the methods differ in the choice of weights wj and sampled risk sets ̃(ti).
For Prentice’s original pseudo-likelihood, all weights are one and ̃(ti) = (ti) ∪ {i}, where

(ti) = {j | tj ≥ ti, j ∈ ̃} is the set of all subcohort individuals at risk at time ti. Self and
Prentice (1988) considered the modification where ̃(ti) = (ti) also when the case is not in the
subcohort.

In Prentice’s pseudo-likelihood, a case outside the subcohort only makes a contribution at its
event time. In order to make use of the information from the cases at all times when they are
at risk, we may adopt an inverse probability weighted (IPW) pseudo-likelihood (Kalbfleisch &
Lawless, 1988). Then we let ̃(ti) = {j | tj ≥ ti, j ∈ ̃ ∪ }, where  is the set of all cases. So now
̃(ti) consists of all subcohort individuals at risk at time ti together with all cases who are at risk
at that time. The weights are given as wj = 1∕pj, where pj is the probability that individual j is
included in the case-control sample. The cases are included with probability one, so the weights
are wj = 1 for all cases (whether they are in the subcohort or not). We let N(0) and n(0) be the
number of individuals in the cohort and subcohort, respectively, who do not experience the event
of interest. Then an individual who is not a case, is included in the subcohort with probability
pj = n(0)∕N(0), and hence may be given the weight wj = N(0)∕n(0).

Pseudo-likelihoods of the form (6) are not partial likelihoods, so the maximum
pseudo-likelihood estimators do not enjoy similar large sample properties as ordinary maxi-
mum likelihood estimators. In particular, SEs cannot be computed directly from the observed
pseudo-information matrix. But it has been shown that the maximum pseudo-likelihood
estimators are approximately multivariate normally distributed, and estimators for their
variance-covariance matrices have been worked out; see, for example, Self and Prentice (1988),
Therneau and Li (1999), Borgan et al. (2000), and Samuelsen et al. (2007). The estimators
based on (6) may be computed using the cch-command in the survival package in R. Here
method=“Prentice,” method=“SelfPrentice,” and method = “LinYing” give the three estimators
mentioned above.

For case-cohort data we may estimate the cumulative baseline hazard by a Breslow-type
estimator given as ̂H0,cch(t; ̂𝛽, �̂�), where

̂H0,cch(t; 𝛽, 𝜸) =
∑

ti≤t

di
∑

j∈ ̃(ti)
w̃j exp

(

xj𝛽 + zT
j 𝜸
) , (7)

and ̂
𝛽 and �̂� are obtained by maximizing (6). For the IPW estimator, the sampled risk sets ̃(ti)

and weights in (7) are as given above, so w̃j = 1 for cases and w̃j = N(0)∕n(0) for noncases. For the
Prentice estimator, we may use w̃j = N∕n for all individuals in the subcohort and let ̃(ti) = (ti)
(Prentice, 1986, p. 6).

3 MI IN COX REGRESSION

In this section we outline methods for MI of missing covariate data in Cox regression in analysis
of cohort data, and their extension to sampled cohort data in which an expensive covariate is
missing for everyone outside the case-control sample. We assume data are missing at random
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6 BORGAN et al.

(MAR), which can be expressed as the assumption that the probability of missingness in a given
variable is independent of missing data conditional on observed data (Rubin, 1987; Carpenter &
Kenward, 2013, chapter 1).

3.1 MI in full cohort studies

We refer to the book of Carpenter and Kenward (2013), for example, for an overview of the the-
ory of MI, and here focus on its use when the analysis model is a Cox regression. In brief, the MI
procedure involves imputing missing values in covariates by taking a random draw from the esti-
mated posterior distribution of the missing data given the observed data (including the outcome).
This is repeated K times to give K “complete” imputed data sets in which missing values in covari-
ates are filled in. The analysis model, in our case a Cox regression, is then fitted to each of the K
imputed data sets to give K estimates of the regression coefficients. Pooled estimates and a corre-
sponding variance–covariance matrix are then obtained using “Rubin’s rules” (e.g., Carpenter &
Kenward, 2013, pp. 45-46).

First consider a full cohort study in which a single covariate X has missing data, and Z denotes
a vector of fully observed covariates. It is assumed that outcome information (T,D) is observed for
all individuals in the cohort. The aim in MI is therefore to impute missing values of X from the
conditional distribution of X given Z = z, T = t and D = d. It has been shown that when the anal-
ysis model is a Cox regression, as in (1), this conditional distribution is not of any standard form,
such as a normal distribution, which presents a challenge for obtaining imputations. To address
this, two main approaches have been described for imputation of missing data on covariates in
Cox regression.

The first is that of White and Royston (2009) who derived an approximate form for the impu-
tation model, which is a regression of X on z, d, and ̂H(t), where ̂H(t) denotes the Nelson–Aalen
estimate of the cumulative hazard at the individual’s event or censoring time t. We refer to this
approach as MI-Approx.

The second approach, described by Bartlett et al. (2015), uses rejection sampling and an itera-
tive procedure to impute missing values of X from the conditional distribution that is compatible
with the outcome (or “substantive”) model, which here is a Cox proportional hazards model. The
basis of the method of Bartlett et al. (2015) is that we, for each iteration, draw a potential value
for X from a “proposal distribution,” and then use a “rejection rule” to decide whether to accept
the potential value as a draw from the distribution of interest, that is, the conditional distribution
of X given Z = z, T = t and D = d. In a given iteration, the rejection rule is to accept a potential
value x∗ as an imputed value for a missing value of X if

U ≤ exp
{

−H∗
0 (t)e

x∗𝛽∗+zT
𝜸
∗
}

if d = 0,

U ≤ H∗
0 (t) exp

{

1 + x∗𝛽∗ + zT
𝜸
∗ −H∗

0 (t)e
x∗𝛽∗+zT

𝜸
∗
}

if d = 1. (8)

Here U denotes a random draw from a standard uniform distribution, 𝛽∗, 𝜸∗ denote posterior
draws of the model parameters, obtained after fitting the Cox regression analysis model to the cur-
rent imputed data, and H∗

0 (t) = ̂H0,coh(t; 𝛽∗, 𝜸∗) denotes the cumulative baseline hazard obtained
using these parameter draws; compare formula (3). This approach is referred to as the “substan-
tive model compatible full conditional specification” (SMC-FCS) method. Following earlier work,
we refer to it as MI-SMC.
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BORGAN et al. 7

MI-Approx involves specification of the model for each covariate with missingness given
the other covariates and the outcome, which in our context is f (X|Z,T,D). For continuous
X a conditional normal distribution is often assumed as an approximation. This approxima-
tion is derived from assuming X is normally distributed conditional on Z, in the case of
continuous X . MI-SMC requires specification of the model f (X|Z), which typically takes a
more standard form than f (X|Z,T,D). For a continuous X it is common to assumes that
f (X|Z) is a normal distribution. Because MI-SMC accommodates nonlinear terms in the Cox
regression model, it is possible under this approach to instead specify a distribution for a
transformation g(X) (e.g. g(X) = log X) given Z, with the imputations of g(X) then being
back-transformed for use in the Cox regression including X and Z. We refer to Bartlett
et al. (2015) for a detailed discussion of compatibility of models used in MI and imputation model
mis-specification, including extensions to the situation in which there is more than one covariate
with missingness.

For overviews of the MI-Approx and MI-SMC methods in the content of Cox regression, see
Carpenter & Kenward (2013, chapter 8), Keogh et al. (2018), and Keogh (2018). The MI-Approx
method has been found to perform well in a range of circumstances, in particular for rare
events. But it does not apply when there are nonlinear terms involving the missing covariate X
in the proportional hazards model, including interactions between X and Z. MI-SMC accom-
modates nonlinear terms (including interactions) because it obtains draws of X in such as way
that they are drawn from a distribution that is compatible with the proportional hazards model.
MI-approx can be implemented using the mice package in R and MI-SMC using the smcfcs
package.

3.2 MI in sampled cohort studies

Nested case-control and case-cohort studies can be viewed as full cohort studies with data missing
for the expensive covariate X . The methods for MI in a full cohort study outlined in the preceding
Section 3.1 can be applied directly to impute missing values of X for individuals in the full cohort
who were not sampled to the nested case-control or case-cohort study. The use of MI in this way
for both nested case-control and case-cohort studies was described by Keogh and White (2013),
who assessed the two imputation approaches using simulation studies.

There are two main ways in which the use of MI in this setting differs from its use in a more
standard missing data setting. Firstly, for sampled cohort data the expensive covariate is typi-
cally unmeasured for a very large proportion of the full cohort. This approach therefore involves
imputing a large proportion of values for the expensive covariate, and one might expect that the
consequences of mis-specifying the imputation model could be severe in this situation. Secondly,
in the standard MI setting, the assumption that data are MAR is a crucial assumption that we
cannot be certain is met. However, the MAR assumption for sampled cohort data follows by the
design of the studies, and in this sense the use of MI in this situation is “safer” than in the standard
setting.

4 SUPERSAMPLING OF SAMPLED COHORTS

We now describe more in detail how we obtain a supersample for nested case-control and
case-cohort data, and how we may use MI to impute missing covariate values for the supersample.
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8 BORGAN et al.

In general, a supersampled nested case-control study is a standard nested case-control study
augmented with additional controls for each case, and a supersampled case-cohort study is a
standard case-cohort study augmented with an additional random subcohort. In both types of
study, the expensive covariate X is observed only for individuals in the original case-control
sample, whereas Z, T, and D are observed for all individuals in the supersample. The anal-
ysis makes use of the individuals in the supersample, but it does not use the remaining
individuals in the full cohort. We start out by considering a supersampled case-cohort study
since imputation is more straightforward for this design than for the nested case-control
design.

4.1 Supersampling for case-cohort data

For a case-cohort study, we have a subcohort ̃ of size n selected by simple random sampling
from the full cohort . The expensive covariate is measured for individuals in the case-control
sample ̃ ∪ {j | dj = 1}, but not for the remaining individuals in the cohort. We now select another
random sample ∗ of size n∗ from  ⧵ ̃, that is, from the individuals in the cohort who are not in
the original subcohort. In this way we obtain a supersampled case-cohort study with subcohort
̃ ∪ ∗ of size n + n∗. Note that for the supersampled case-cohort data, the expensive covariate
X is not measured for individuals in ∗ ∩ {j | dj = 0}, that is, for individuals in the supersample
who are not in the original case-cohort sample. The inexpensive covariate, Z, is observed for all
individuals in the supersample. Because X is missing for individuals in ∗ ∩ {j | dj = 0} we use
MI to impute it.

In Section 3.2 we outlined how a case-cohort study within a full cohort may be viewed as a
full cohort study with missing data, and imputation methods for full cohort data can therefore
be used. The supersampled case-cohort data is not a full cohort study, and therefore a modi-
fied approach is needed to perform the imputation. Keogh et al. (2018) have discussed how the
MI-Approx and MI-SMC methods can be used for imputing missing data on covariates within
a case-cohort sample, assuming missingness is at random. The supersampled case-cohort study
represents a similar situation, except that the data on X are missing by design and therefore the
missingness in X is at random. Hence we may use the imputation methods described by Keogh
et al. (2018) as summarized in the following paragraphs.

In MI-Approx the imputation model is a regression of X on z, d, and ̂H(t). Here ̂H(t) is
the Nelson–Aalen estimate of the cumulative hazard at the individual’s event or censoring
time t. Since the Nelson–Aalen estimate only depends on the Ti’s and Di’s, it may be com-
puted from the available data for the full cohort, and it is not computationally intensive to
obtain for large cohorts. The MI-Approx method can then be applied directly in a supersam-
pled case-cohort study, by fitting the imputation model using all individuals in the supersampled
data.

The MI-SMC approach requires an estimate H∗
0 (t) of the cumulative baseline hazard at each

person’s event or censoring time; compare formula (8). As outlined in Section 2.2, the cumula-
tive baseline hazard can be estimated from a case-cohort study using ̂H0,cch(t; 𝛽, 𝜸) as given in
equation (7). This estimator can also be applied to the supersampled case-cohort data. For the
MI-SMC approach we then use H∗

0 (t) = ̂H0,cch(t; 𝛽∗, 𝜸∗) computed at each iteration of the MI-SMC
procedure using posterior draws 𝛽∗, 𝜸∗ of the model parameters and the most recent set of imputed
values of X . The MI-SMC approach also involves estimating the distribution of X|Z, as draws
of X from this distribution are used as potential imputed values in the rejection sampling. The
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BORGAN et al. 9

parameters of the distribution of X|Z can be estimated from the supersampled subcohort, which
is a random sample from the full cohort.

After obtaining imputed values of X for individuals in the supersample using MI-Approx or
MI-SMC, a standard case-cohort analysis is applied to each imputed data set and the parameter
estimates and their standard errors combined using Rubin’s rules.

4.2 Supersampling for nested case-control data

In a nested case-control study, we for each i ∈  select at random m controls from (ti) ⧵ {i}.
The sampled risk set ̃(ti) consists of the case i and its sampled controls. The expensive covari-
ate is measured for individuals in the case-control sample ∪i∈ ̃(ti), but not for the remaining
individuals in the cohort. For each i ∈  we now add more controls by selecting at random m∗

individuals from (ti) ⧵ ̃(ti). The set of these additional controls is denoted ∗(ti). In this way
we obtain a supersampled nested case-control study with sampled risk sets ̃(ti) ∪∗(ti) of size
m +m∗. Note that for the supersampled nested case-control data, the expensive covariate is not
measured for individuals in (∪i∈

∗(ti)) ∩ {j | dj = 0}, that is, for individuals in the supersample
who are not in the original case-control sample.

As described in Section 3.1, the aim of MI for cohort data is to impute a missing value of X
from the conditional distribution of X given the observed data Z = z, T = t and D = d, and this
may be achieved using the exact or an approximate conditional distribution. As the extended
subcohort ̃ ∪ ∗ for supersampled case-cohort data is a random sample from the full cohort, this
also applies (with d = 0) for supersampled case-cohort data (Section 4.1). However, the controls
in a supersampled nested case-control study are not a random sample from the full cohort. Rather,
if an event occurs at time s, all individuals with T > s are potential controls, including individuals
who later become a case. Therefore, in a supersampled nested case-control study, the missing
value of X for a control at time s should be imputed from the conditional distribution of X given
Z = z and T > s.

To see how this imputation model relates to the one for the full cohort and supersampled
case-cohort data, we may for an individual with T > s introduce T(s) = s and D(s) = 0, correspond-
ing to the censored event time and event indicator we would have if the individual had been
censored at time s. Then the imputation model for a control at time s may be given as the condi-
tional distribution of X given Z = z, T(s) = s and D(s) = 0. This is similar to the imputation model
for the full cohort and supersampled case-cohort data, but we condition on T(s) = s and D(s) = 0
rather than T = t and D = d. Thus, for MI-Approx, we should use the Nelson–Aalen estimate eval-
uated at the time of the case to which a control is matched, and not the control’s own censoring
time.

To apply MI-SMC in a supersampled nested case-control study, we can use the cumulative
baseline hazard estimator (5). To obtain imputations for control individuals it is appropriate to use
the estimate H∗

0 (s) = ̂H0,ncc(s; 𝛽∗, 𝜸∗) obtained at the event time s of the case to which the control
is matched. We also require estimates of the parameters of the distribution of X|Z, which can be
obtained from a regression of X on Z in the controls.

Some individuals can feature as controls for more than one case, and in both MI-approx and
MI-SMC we then obtain a new imputed value for each duplicate. After obtaining imputed val-
ues of X for individuals in the supersample, a standard nested case-control analysis is applied
to each imputed data set and the parameter estimates and their standard errors combined using
Rubin’s rules.
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10 BORGAN et al.

5 SIMULATION STUDY

5.1 Simulation aims and implementation

We use a simulation study to illustrate the methods described above and to assess their
performance. The simulation study is structured following the guidance by Morris et al. (2019).

5.1.1 Aims

The aims of the simulation study are to illustrate the proposed MI methods for analysis of super-
sampled nested case-control and case-cohort studies. Specifically we wish to check that the
methods give approximately unbiased estimates of the parameters of interest where expected,
and to investigate the efficiency gains from the use of supersampled data compared with the orig-
inal study data. We also wish to check that the standard errors obtained by Rubin’s rules are
approximately unbiased, and that the estimates have good coverage.

5.1.2 Data-generating mechanisms

Data are generated for a full cohort of N individuals. Three covariates, (X ,Z1,Z2), are generated
for each individual. X is the expensive covariate, which we will later assume is observed only
in the nested case-control or case-cohort study, and (Z1,Z2) are cheaply measured covariates.
We generated Z1 from a standard normal distribution, and independently Z2 from a Bernoulli
distribution with probability 0.5. The expensive covariate X was generated by

X = 0.25Z1 + 0.25Z2 + 𝜀, (9)

where 𝜀, independent of Z1 and Z2, is a random variable with mean 0 and variance 1. The dis-
tribution of 𝜀 was assumed to follow a normal distribution or a log-normal distribution (shifted
to have mean 0). The latter was generated as 𝜀 = eY − e𝜎2∕2, where Y is N(0, 𝜎2)-distributed with
𝜎 = 0.694. Event times TE were generated from the Weibull hazard model

h(t|x, z1, z2) = 𝜆E𝜅t𝜅−1e𝛽X x+𝛽Z1z1+𝛽Z2z2+𝛽XZ1xz1
.

We used shape parameter 𝜅 = 4 and values of the scale parameter 𝜆E as described below, and con-
sidered a scenario with no interaction between X and Z1 using 𝛽X = 1, 𝛽Z1 = 0.5, 𝛽Z2 = 1, 𝛽XZ1 = 0,
and a scenario with an interaction between X and Z1 using 𝛽X = 1, 𝛽Z1 = 0.5, 𝛽Z2 = 1, 𝛽XZ1 = 0.5.
The scenario with interaction was only considered when 𝜀 in (9) was normally distributed. Cen-
soring times TC were generated from a Weibull hazard model using shape and scale parameter
values 𝜅 = 4 and 𝜆C, and independent of the covariates. Administrative censoring was imposed
at time 15 years. The observed time for each individual is therefore T = min(TE,TC, 15) and D
denotes the event indicator.

We consider two sample sizes for the cohort of N = 5000 and N = 25, 000. For all six scenarios
(two sample sizes, two distributions of X without interaction with Z1, one distribution of X with
interaction with Z1), the values of 𝜆E and 𝜆C were chosen to give approximately 250 cases in
the cohort (5% of individuals having the event when N = 5000 and 1% having the event when
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BORGAN et al. 11

N = 25,000) and approximately 35% of the individuals administratively censored at time 15 years.
Values used for 𝜆E and 𝜆C are shown in Table S1 in the Supporting Information.

A nested case-control sample was obtained within the full cohort using all cases and one con-
trol per case. A case-cohort sample was obtained by including all cases and a random subcohort
of 5% of the individuals when N = 5000 and 1% when N = 25, 000, resulting in the subco-
hort being approximately the same size as the number of controls in the nested case-control
sample.

For both study designs we obtained a small superset sample and a large superset sample.
For the nested case-control study we obtained a small superset sample by selecting three addi-
tional controls for each case, giving four controls per case in total. For the large superset sample
we selected an additional 11 controls for each case, giving 12 controls per case in total. For the
case-cohort study we obtained a small superset sample by adding an additional random subco-
hort of 15% of the individuals when N = 5000 and an additional random subcohort of 3% of the
individuals when N = 25, 000, both of which correspond to a four-fold increase in the size of the
subcohort. The large superset sample was obtained by increasing the size of the subcohort 12
fold, corresponding to an additional 55% of individuals when N = 5000 and an additional 11% of
individuals when N = 25, 000.

In each simulated cohort, the covariate X was set to be missing for individuals not in the
original nested case-control or case-cohort data sets, except for when a full-cohort analysis is being
performed.

5.1.3 Target of analysis

The estimands of interest for the simulation study are the log hazard ratios (log HRs) 𝛽X , 𝛽Z1, 𝛽Z2,
and 𝛽XZ1 (in scenarios with the interaction), and their SEs.

5.1.4 Methods

For each simulated full cohort we performed the following analyses:

(i) a full cohort analysis assuming X ,Z1,Z2 are fully observed on all individuals;
(ii) a traditional analysis of the nested case-control study and of the case-cohort study, excluding

individuals outside the case-control sample;
(iii) an analysis of the nested case-control or case-cohort sample in addition to the rest of the

cohort, assuming X is observed only in the nested case-control or case-cohort sample and
imputing X for individuals in the remainder of the full cohort using the methods described
in Section 3.2;

(iv) an analysis of the supersampled nested case-control or case-cohort study using a small super-
set, assuming X is missing for the individuals in the superset who are not in the original
nested case-control or case-cohort study, and using the imputation methods described in
Section 4;

(v) as in (iv) but using the large superset.

In (iii) (Z1,Z2) are fully observed for individuals in the full cohort who are not in the nested
case-control or case-cohort study. In (iv) and (v) (Z1,Z2) are fully observed in the supersampled
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12 BORGAN et al.

nested case-control or case-cohort study. In all MI analyses we use 10 imputed data sets. In the
MI-SMC analyses we used 500 iterations, and found that using a lower number (200 iterations
for example) could lead to bias; in particular for situation (iii) with cohort size N = 25, 000. In the
case-cohort study analyses we obtained estimates using both the Prentice and IPW estimators.
When the Prentice estimator was used in the analysis, we also used the Prentice method to obtain
the cumulative baseline hazard estimates in MI-SMC, and similarly for the IPW estimator; see
the final paragraph of Section 2.2.

5.1.5 Performance measures

We generated nsim = 1000 data sets for each of the six full cohort scenarios. In each analysis we
obtain estimates of the log HRs 𝛽X , 𝛽Z1, 𝛽Z2, and 𝛽XZ1 (in scenarios including the interaction term),
and their model-based SEs and 95% confidence intervals (CIs). For each log HR we obtain an esti-

mate of the bias n−1
sim

∑nsim
j=1 ( ̂𝛽 j − 𝛽) and the empirical SD (‘Emp SE’)

√

(nsim − 1)−1∑nsim
j=1 ( ̂𝛽 j −

̄
̂
𝛽)2,

where ̂
𝛽 j denotes the estimate from the jth simulated data set, 𝛽 denotes the true value, and

̄
̂
𝛽 denotes the average of the nsim estimates. We also obtained the average of the model-based
estimates of the SEs (“Model SE”) of the log HR estimates, and the 95% coverage, meaning the
percentage of the nsim 95% CIs that contain the true value. A well-performing method would have
bias close to zero, Emp SE similar to Model SE, and coverage close to the nominal level of 95%.
To ease the comparison of the analysis methods, we for each method also report the root mean
squared error (“RMSE”) and the relative efficiency (“Rel Eff”) of the log HR estimates relative to
a full cohort analysis. RMSE is given as the square root of the sum of the squared bias and Emp
SE2, and it provides information about the bias-variance trade-off for a method. Rel Eff is defined
as the empirical variance from a full cohort analysis (Emp SE2) divided by the empirical variance
from a given analysis method. For methods that are approximately unbiased, Rel Eff informs us
how a method compares to a full cohort analysis. For each performance measure we estimated
the Monte Carlo SEs (Morris et al., 2019).

5.1.6 Software

The simulation was conducted in R and code enabling the simulation to be replicated are pro-
vided at https://github.com/ruthkeogh/supersampling. We used the survival package, including
the cch function for analysis of case-cohort studies. The MI for the MI-Approx method was imple-
mented using mice. For the MI-SMC imputation approach we used a modified version of the
smcfcs function. For use with a case-cohort study (standard or supersampled) modifications were
made to smcfcs to allow an analysis using the Prentice or IPW estimators. For use with a nested
case-control study (standard or supersampled) modifications were made to smcfcs so that poten-
tial imputations of X considered in the rejection sampling are obtained from a regression of X on
(Z1,Z2) using data from the controls (which includes some cases) instead of noncases. A further
modification is that the cumulative baseline hazard estimate used in the imputation procedure
is obtained at the event time of the case in each individual’s matched set, rather than at their
own censoring time. The modified version of smcfcs also restricts the function to those compo-
nents required for the analyses performed in this simulation, which can help others to more easily
follow the code to gain a better understanding of the analysis.
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BORGAN et al. 13

5.2 Simulation results

Tables 1 and 2 show the results for the full cohort of size 25,000 for the nested case-control
study for the situations without the X × Z1 interaction and with the X × Z1 interaction when 𝜀
in (9) is normally distributed. The results when there is no interaction and 𝜀 follows a lognormal
distribution (shifted to have mean zero) are given in Table 3. Note that for the situations of
Tables 1 and 2, the imputation model is correctly specified, while it is mis-specified for the sit-
uation of Table 3. Tables 4–6 show the corresponding results for the case-cohort setting using a
full cohort of size 25,000. In the main text we show results from case-cohort analyses obtained
using the IPW estimator. Results using the Prentice estimator were also obtained and are shown
in Tables S2–S4. Results for the full cohort of size 5000 are shown in Tables S5–S7 for nested
case-control and Tables S8–S10 for case-cohort Table numbers starting with S are given in the
Supporting Information.

As we expect, the full cohort analysis gives unbiased log HR estimates, correct SEs (comparing
Emp SE with Model SE) and coverage at the nominal level.

5.2.1 Nested case-control results

We first consider the situation without interaction (Table 1) when the imputation model is cor-
rectly specified. Here a traditional nested case-control analysis gives a minor bias in the estimates
for all parameters. But the root mean square errors are very close to the empirical SEs, so the bias is
of little importance compared to the variability of the estimates. The averages of the model-based
SEs (‘Model SE’) are close to the empirical SDs of the estimates (‘Emp SE’), and the method has
coverage around 95%. The relative efficiency of the log HR estimates relative to the full cohort
estimates is somewhat below 20% for ̂𝛽X and ̂

𝛽Z1 and somewhat below 30% for ̂𝛽Z2.
Method (iii), which uses the full cohort with X imputed for the individuals who are not in the

nested case-control sample, gives unbiased log HR estimates, correct SEs and fairly good coverage.
The results are very similar using MI-Approx and MI-SMC. Method (iii) results in substantial
gains in efficiency relative to the traditional analysis; the relative efficiencies are about 30% for ̂𝛽X
and about 70% for ̂𝛽Z1 and ̂

𝛽Z2. Thus, as known from earlier work, the gain in efficiency is largest
for the coefficients of Z1 and Z2 which are assumed observed in the full cohort.

The methods using a supersampled nested case-control study perform well using both
MI-Approx and MI-SMC, giving approximately unbiased log HR estimates both for a small and a
large superset. The SEs are mainly correct and the coverage is close to 95%. An exception is the
MI-SMC estimate of 𝛽X , where the empirical SE is somewhat larger than the model-based SE and
the coverage is 90%.

As may be expected, the efficiencies for the supersampled nested case-control studies relative
to a full cohort analysis are between the relative efficiencies for the traditional nested case-control
analysis and method (iii) with imputation for the full cohort. More specifically, we find that
MI-Approx with a small/large superset was 79%/82% efficient for estimation of 𝛽X relative to
method (iii). For 𝛽Z1 the corresponding relative efficiencies were 57%/76%, and for 𝛽Z2 they were
80%/92%. This shows that a large part of the information contained in the full cohort may be
extracted by using a supersample. Not surprisingly, using a large superset typically results in
smaller SEs and higher relative efficiencies, especially for the coefficients of Z1 and Z2, though the
gains in efficiency are not substantial. Again an exception is the MI-SMC estimate of 𝛽X , where
the empirical SE is slightly larger for the large superset than the small superset.
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14 BORGAN et al.

T A B L E 1 Nested case-control: Results for scenario with full cohort size N = 25, 000 and no interaction
between X and Z1

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for 𝛽X

Full cohort — 0.002 0.060 0.059 0.943 1.000 0.060

Traditional NCC — 0.029 0.152 0.148 0.945 0.155 0.154

NCC within full cohort MI approx −0.012 0.105 0.105 0.931 0.323 0.105

NCC within full cohort MI SMC 0.004 0.108 0.104 0.926 0.304 0.108

SS NCC, small superset MI approx 0.017 0.119 0.122 0.954 0.251 0.120

SS NCC, small superset MI SMC 0.010 0.125 0.125 0.950 0.229 0.125

SS NCC, large superset MI approx 0.010 0.116 0.112 0.931 0.265 0.116

SS NCC, large superset MI SMC −0.002 0.132 0.117 0.901 0.205 0.132

Results for 𝛽Z1

Full cohort — −0.000 0.059 0.060 0.946 1.000 0.059

Traditional NCC — 0.010 0.139 0.135 0.944 0.180 0.140

NCC within full cohort MI approx −0.009 0.069 0.073 0.957 0.726 0.070

NCC within full cohort MI SMC 0.002 0.071 0.073 0.956 0.704 0.071

SS NCC, small superset MI approx 0.004 0.091 0.094 0.950 0.420 0.091

SS NCC, small superset MI SMC 0.004 0.092 0.096 0.949 0.415 0.092

SS NCC, large superset MI approx 0.001 0.079 0.081 0.960 0.557 0.079

SS NCC, large superset MI SMC 0.003 0.084 0.084 0.949 0.493 0.084

Results for 𝛽Z2

Full cohort — 0.005 0.153 0.151 0.942 1.000 0.153

Traditional NCC — 0.015 0.282 0.280 0.955 0.293 0.282

NCC within full cohort MI approx −0.011 0.182 0.177 0.938 0.706 0.182

NCC within full cohort MI SMC 0.000 0.183 0.177 0.939 0.693 0.183

SS NCC, small superset MI approx −0.002 0.204 0.206 0.953 0.561 0.204

SS NCC, small superset MI SMC 0.002 0.209 0.209 0.953 0.535 0.209

SS NCC, large superset MI approx −0.007 0.190 0.185 0.940 0.648 0.190

SS NCC, large superset MI SMC −0.002 0.197 0.193 0.944 0.604 0.197

Note: MC errors were: ≤ 0.009 for Bias, ≤ 0.006 for EmpSE, ≤ 0.005 for Model SE, ≤ 0.009 for Coverage, ≤ 0.046 for Rel Eff.
Abbreviation: SS, supersampled.

We then consider the situation with interaction (Table 2). Here a traditional nested
case-control analysis gives somewhat biased estimates for all parameters, except for the interac-
tion parameter 𝛽XZ1. But the root mean square errors are fairly close to the empirical SEs, so the
biases are clearly of less importance than the variability of the estimates. The model SEs tend to
be slightly too small, but coverage is close to 95%. The relative efficiency of the log HR estimates
relative to the full cohort estimates are all between 8% and 17%.
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BORGAN et al. 15

T A B L E 2 Nested case-control: Results for scenario with full cohort size N = 25, 000 and interaction
between X and Z1

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for 𝛽X

Full cohort — 0.009 0.093 0.091 0.946 1.000 0.094

Traditional NCC — 0.081 0.262 0.240 0.953 0.127 0.274

NCC within full cohort MI approx 0.254 0.146 0.152 0.623 0.409 0.292

NCC within full cohort MI SMC 0.011 0.115 0.116 0.951 0.652 0.116

SS NCC, small superset MI approx 0.096 0.174 0.182 0.955 0.286 0.199

SS NCC, small superset MI SMC 0.037 0.166 0.179 0.964 0.313 0.170

SS NCC, large superset MI approx 0.133 0.164 0.156 0.872 0.321 0.212

SS NCC, large superset MI SMC 0.028 0.151 0.152 0.945 0.381 0.153
Results for 𝛽Z1

Full cohort — 0.014 0.119 0.121 0.957 1.000 0.119

Traditional NCC — 0.070 0.291 0.278 0.947 0.166 0.300

NCC within full cohort MI approx 0.453 0.125 0.191 0.267 0.896 0.470

NCC within full cohort MI SMC 0.015 0.124 0.126 0.963 0.922 0.125

SS NCC, small superset MI approx 0.097 0.186 0.208 0.962 0.407 0.210

SS NCC, small superset MI SMC 0.058 0.186 0.199 0.966 0.406 0.195

SS NCC, large superset MI approx 0.153 0.159 0.184 0.922 0.554 0.221

SS NCC, large superset MI SMC 0.073 0.167 0.171 0.945 0.506 0.182
Results for 𝛽Z2

Full cohort — 0.006 0.147 0.146 0.953 1.000 0.147

Traditional NCC — 0.057 0.431 0.412 0.954 0.116 0.434

NCC within full cohort MI approx −0.051 0.180 0.192 0.943 0.664 0.187

NCC within full cohort MI SMC 0.000 0.195 0.190 0.945 0.565 0.195

SS NCC, small superset MI approx 0.025 0.260 0.277 0.971 0.319 0.261

SS NCC, small superset MI SMC 0.010 0.267 0.284 0.970 0.303 0.267

SS NCC, large superset MI approx 0.012 0.221 0.226 0.952 0.440 0.222

SS NCC, large superset MI SMC −0.010 0.229 0.239 0.955 0.410 0.229
Results for 𝛽XZ1

Full cohort — −0.005 0.062 0.062 0.954 1.000 0.063

Traditional NCC — −0.000 0.219 0.212 0.951 0.081 0.219

NCC within full cohort MI approx −0.422 0.057 0.115 0.006 1.196 0.426

NCC within full cohort MI SMC −0.006 0.068 0.069 0.956 0.843 0.068

SS NCC, small superset MI approx −0.116 0.118 0.159 0.943 0.278 0.166

SS NCC, small superset MI SMC −0.032 0.139 0.155 0.962 0.201 0.143

SS NCC, large superset MI approx −0.184 0.094 0.129 0.753 0.440 0.207

SS NCC, large superset MI SMC −0.054 0.123 0.126 0.928 0.256 0.134
Notes: MC errors were: ≤ 0.014 for Bias, ≤ 0.010 for EmpSE, ≤ 0.007 for Model SE, ≤ 0.015 for Coverage, ≤ 0.076 for Rel Eff.
Abbreviation: SS, supersampled.
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16 BORGAN et al.

T A B L E 3 Nested case-control: Results for scenario with N = 25, 000 and no interaction between X and Z1,
when X|Z1,Z2 has a nonnormal distribution

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for 𝛽X

Full cohort — 0.002 0.027 0.026 0.945 1.000 0.027

Traditional NCC — 0.052 0.172 0.160 0.950 0.025 0.179

NCC within full cohort MI approx −0.311 0.064 0.054 0.000 0.180 0.317

NCC within full cohort MI SMC −0.260 0.058 0.047 0.000 0.220 0.266

SS NCC, small superset MI approx −0.332 0.061 0.073 0.008 0.197 0.337

SS NCC, small superset MI SMC 0.020 0.110 0.102 0.937 0.061 0.112

SS NCC, large superset MI approx −0.365 0.059 0.055 0.001 0.213 0.369

SS NCC, large superset MI SMC −0.038 0.101 0.072 0.784 0.072 0.108

Results for 𝛽Z1

Full cohort — −0.001 0.060 0.060 0.952 1.000 0.060

Traditional NCC — 0.028 0.184 0.175 0.955 0.108 0.186

NCC within full cohort MI approx 0.120 0.083 0.088 0.733 0.527 0.146

NCC within full cohort MI SMC 0.171 0.088 0.089 0.526 0.469 0.193

SS NCC, small superset MI approx 0.154 0.104 0.112 0.762 0.339 0.186

SS NCC, small superset MI SMC −0.003 0.113 0.117 0.956 0.287 0.113

SS NCC, large superset MI approx 0.165 0.092 0.093 0.592 0.434 0.189

SS NCC, large superset MI SMC −0.024 0.098 0.099 0.937 0.379 0.101

Results for 𝛽Z2

Full cohort — 0.006 0.138 0.140 0.960 1.000 0.138

Traditional NCC — 0.037 0.377 0.364 0.955 0.134 0.378

NCC within full cohort MI approx 0.197 0.189 0.196 0.843 0.531 0.273

NCC within full cohort MI SMC 0.290 0.205 0.200 0.698 0.449 0.355

SS NCC, small superset MI approx 0.294 0.239 0.242 0.809 0.331 0.379

SS NCC, small superset MI SMC −0.028 0.252 0.255 0.945 0.299 0.254

SS NCC, large superset MI approx 0.297 0.220 0.206 0.708 0.393 0.370

SS NCC, large superset MI SMC −0.088 0.221 0.218 0.932 0.387 0.238

Note: MI-Approx assumes a normal distribution for X|Z1,Z2, ̂H0(s) and MI-SMC assumes a normal distribution for X|Z1,Z2.
Abbreviation: SS, supersampled.

As noted in the last paragraph of Section 3.1, MI-approx does not apply for the interaction
model. This is the reason why this imputation method gives substantial bias in parameter esti-
mates (for the full cohort and the supersamples) for all parameters except 𝛽Z2. But MI-SMC
performs well for the interaction model. Method (iii) with MI-SMC imputation for the full cohort
gives unbiased estimates, correct SEs and good coverage. Further, there is a huge gain in effi-
ciency relative to the traditional analysis; the relative efficiencies are around 60% for ̂𝛽X and ̂

𝛽Z2,
and around 90% for ̂𝛽Z1 and ̂

𝛽XZ1.
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BORGAN et al. 17

The supersampled nested case-control studies perform fairly well for the interaction model
when using MI-SMC. There is a small bias in the estimates of 𝛽X , 𝛽Z1 and 𝛽XZ1, and the model
SEs tend to be slightly too large for the small superset. The coverage is fairly close to 95% for all
parameters, but a bit higher for the small than the large superset. The relative efficiencies for the
small superset are about 30% for ̂𝛽X and ̂

𝛽Z2, 40% for ̂𝛽Z1, and 20% for ̂𝛽XZ1. For the large superset
the corresponding values are about 40%, 50%, and 25%. These relative efficiencies are clearly lower
than those of method (iii). But the relative efficiencies for the small superset are about 2.5 times
higher than those of the traditional nested case-control analysis, while they are at least three times
higher for the large superset. So there is a lot to gain by using a supersampled nested case-control
study compared to a traditional analysis.

Finally, we consider the situation where there is no interaction, but the imputation model
is mis-specified (Table 3). Here a full cohort analysis gives similar results as for the correctly
specified imputation model, except that the estimate of 𝛽X has clearly lower SE than in Table 1.
Also a traditional nested case-control analysis gives similar results as for the correctly specified
imputation model, but the estimates are a bit more biased and the SEs are somewhat larger
than in Table 1. Imputation using MI-Approx gives substantial bias for all parameter estimates
both when X is imputed for the full cohort (method (iii)) and when imputation is restricted to a
supersample (methods (iv) and (v)). Method (iii) with MI-SMC imputation for the full cohort
also gives a substantial bias. But method (iv), which uses MI-SMC imputation with a small
superset, gives almost unbiased estimates, correct SEs, and coverage close to 95%. Further, the rel-
ative efficiencies of method (iv) are more than twice those of the traditional nested case-control
analysis. MI-SMC imputation with the large superset (method (v)) gives somewhat larger biases,
and the model SE for the estimate of 𝛽X is too low, which results in poor coverage for this
parameter.

For the situation without interaction, the results for cohort size 5000 (Table S5) are quite simi-
lar to those obtained with cohort size 25,000. For the situation with interaction, the broad picture
for cohort size 5000 (Table S6) is similar to that for cohort size 25,000. But the traditional method
has slightly less bias for cohort size 5000 and most SEs are a bit smaller. The relative efficiencies
of the supersampling methods using MI-SMC are similar or larger for cohort size 5000 compared
to cohort size 25,000. Finally, when the imputation model is mis-specified, the results for cohort
size 5000 (Table S7) are broadly speaking similar to those obtained with cohort size 25,000. But
using MI-SMC with a large superset results in a larger bias for estimation of 𝛽X and a smaller bias
for estimation of 𝛽Z2.

5.2.2 Case-cohort results

We first consider the situation without interaction (Table 4). Here the traditional IPW estimator
for case-cohort data gives a fairly large bias in the estimate of 𝛽X and some bias in the estimate of
𝛽Z1. The model SEs tend to be too small, and coverage is too low, in particular for 𝛽X and 𝛽Z1.

Method (iii), which uses the full cohort with X imputed for the individuals who are not in the
case-cohort sample, gives result which are close to those obtained with method (iii) for nested
case-control data (Table 1). Thus, both for MI-Approx and MI-SMC, we obtain unbiased log HR
estimates, correct SEs and good coverage. Also the relative efficiencies are close to those obtained
with method (iii) for nested case-control data.

The methods using supersampled case-cohort data give approximately unbiased estimates
for all parameters. For estimation of 𝛽Z1 and 𝛽Z2, the empirical SEs are fairly close to those
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18 BORGAN et al.

T A B L E 4 Case-cohort with inverse probability weighted estimator: Results for scenario with full cohort
size N = 25, 000 and no interaction between X and Z1

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for 𝛽X

Full cohort — 0.002 0.060 0.059 0.943 1.000 0.060

Traditional case-cohort — 0.081 0.209 0.159 0.821 0.082 0.224

Case-cohort within full cohort MI approx −0.012 0.107 0.111 0.931 0.309 0.108

Case-cohort within full cohort MI SMC 0.004 0.109 0.110 0.931 0.301 0.109

SS case-cohort, small superset MI approx 0.015 0.121 0.160 0.988 0.242 0.122

SS case-cohort, small superset MI SMC 0.031 0.156 0.163 0.934 0.147 0.159

SS case-cohort, large superset MI approx −0.004 0.111 0.133 0.968 0.286 0.111

SS case-cohort, large superset MI SMC 0.005 0.153 0.142 0.901 0.153 0.153

Results for 𝛽Z1

Full cohort — −0.000 0.059 0.060 0.946 1.000 0.059

Traditional case-cohort — 0.036 0.191 0.158 0.877 0.096 0.194

Case-cohort within full cohort MI approx −0.009 0.074 0.074 0.940 0.635 0.075

Case-cohort within full cohort MI SMC 0.002 0.075 0.074 0.948 0.623 0.075

SS case-cohort, small superset MI approx 0.007 0.105 0.121 0.978 0.321 0.105

SS case-cohort, small superset MI SMC 0.014 0.113 0.123 0.957 0.274 0.114

SS case-cohort, large superset MI approx −0.005 0.083 0.094 0.970 0.509 0.083

SS case-cohort, large superset MI SMC 0.005 0.092 0.099 0.961 0.413 0.092

Results for 𝛽Z2

Full cohort — 0.005 0.153 0.151 0.942 1.000 0.153

Traditional case-cohort — 0.021 0.340 0.306 0.926 0.202 0.340

Case-cohort within full cohort MI approx −0.006 0.185 0.180 0.935 0.681 0.185

Case-cohort within full cohort MI SMC 0.007 0.183 0.181 0.943 0.698 0.183

SS case-cohort, small superset MI approx 0.003 0.211 0.236 0.961 0.526 0.211

SS case-cohort, small superset MI SMC 0.015 0.227 0.245 0.969 0.451 0.228

SS case-cohort, large superset MI approx −0.005 0.191 0.200 0.956 0.639 0.191

SS case-cohort, large superset MI SMC 0.011 0.209 0.213 0.950 0.535 0.209

Note: MC errors were: ≤ 0.011 for Bias, ≤ 0.008 for EmpSE, ≤ 0.005 for Model SE, ≤ 0.012 for Coverage, ≤ 0.040 for Rel Eff.
Abbreviation: SS, supersampled.

obtained for the supersampled nested case-control studies. But the model SEs are slightly
larger, and as a consequence of this the coverages are a bit higher than 95%. For estimation
of 𝛽X , the empirical SEs are higher for MI-SMC than MI-Approx, but the model SEs are quite
similar.

For the situation with interaction (Table 5), the traditional IPW estimator gives a fairly large
bias in the estimates of 𝛽X and 𝛽Z1, and the model SEs are too small for all estimates. As for nested
case-control studies, MI-Approx gives substantial bias for the interaction model. But MI-SMC per-
forms well, and for method (iii) with MI-SMC imputation for the full cohort we obtain results
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BORGAN et al. 19

T A B L E 5 Case-cohort with inverse probability weighted estimator: Results for scenario with full cohort
size N = 25000 and interaction between X and Z1

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE

Results for 𝛽X

Full cohort — 0.009 0.093 0.091 0.946 1.000 0.094

Traditional case-cohort — 0.106 0.276 0.210 0.822 0.114 0.296

Case-cohort within full cohort MI approx 0.270 0.153 0.156 0.584 0.369 0.310

Case-cohort within full cohort MI SMC 0.009 0.121 0.120 0.951 0.596 0.121

SS case-cohort, small superset MI approx 0.160 0.186 0.265 0.976 0.250 0.245

SS case-cohort, small superset MI SMC 0.035 0.182 0.211 0.970 0.263 0.185

SS case-cohort, large superset MI approx 0.212 0.163 0.227 0.926 0.327 0.267

SS case-cohort, large superset MI SMC −0.008 0.160 0.176 0.963 0.340 0.160
Results for 𝛽Z1

Full cohort — 0.014 0.119 0.122 0.957 1.000 0.120

Traditional case-cohort — 0.112 0.308 0.256 0.890 0.150 0.328

Case-cohort within full cohort MI approx 0.452 0.130 0.192 0.271 0.845 0.470

Case-cohort within full cohort MI SMC 0.016 0.125 0.127 0.957 0.914 0.126

SS case-cohort, small superset MI approx 0.233 0.176 0.358 0.984 0.460 0.292

SS case-cohort, small superset MI SMC 0.066 0.177 0.217 0.971 0.452 0.189

SS case-cohort, large superset MI approx 0.334 0.148 0.313 0.961 0.649 0.365

SS case-cohort, large superset MI SMC 0.052 0.145 0.179 0.984 0.673 0.154
Results for 𝛽Z2

Full cohort — 0.006 0.147 0.147 0.953 1.000 0.147

Traditional case-cohort — 0.002 0.490 0.384 0.854 0.091 0.489

Case-cohort within full cohort MI approx −0.037 0.190 0.198 0.952 0.604 0.193

Case-cohort within full cohort MI SMC 0.007 0.200 0.194 0.943 0.544 0.200

SS case-cohort, small superset MI approx −0.005 0.269 0.399 0.994 0.299 0.269

SS case-cohort, small superset MI SMC 0.008 0.281 0.372 0.990 0.275 0.281

SS case-cohort, large superset MI approx −0.025 0.221 0.298 0.988 0.447 0.222

SS case-cohort, large superset MI SMC 0.005 0.237 0.294 0.985 0.387 0.237
Results for 𝛽XZ1

Full cohort — −0.005 0.063 0.062 0.954 1.000 0.063

Traditional case-cohort — −0.021 0.148 0.122 0.894 0.180 0.149

Case-cohort within full cohort MI approx −0.426 0.058 0.115 0.005 1.149 0.430

Case-cohort within full cohort MI SMC −0.005 0.070 0.070 0.950 0.794 0.070

SS case-cohort, small superset MI approx −0.217 0.104 0.250 0.994 0.364 0.241

SS case-cohort, small superset MI SMC −0.025 0.091 0.128 0.992 0.475 0.094

SS case-cohort, large superset MI approx −0.329 0.087 0.215 0.821 0.522 0.340

SS case-cohort, large superset MI SMC −0.032 0.084 0.110 0.989 0.553 0.090
Note: MC errors were: ≤ 0.015 for Bias, ≤ 0.011 for EmpSE, ≤ 0.007 for Model SE, ≤ 0.016 for Coverage, ≤ 0.053 for Rel Eff.
Abbreviation: SS, supersampled.
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20 BORGAN et al.

T A B L E 6 Case-cohort: Results for scenario with N = 25, 000 and no interaction between X and Z1, when
X|Z1,Z2 has a nonnormal distribution

Method MI method Bias Emp SE Model SE Coverage Rel eff RMSE
Results for 𝛽X

Full cohort — 0.002 0.027 0.026 0.944 1.000 0.027

Traditional case-cohort — 0.040 0.069 0.046 0.642 0.157 0.079

Case-cohort within full cohort MI approx −0.340 0.065 0.055 0.000 0.175 0.346

Case-cohort within full cohort MI SMC −0.276 0.060 0.049 0.000 0.206 0.283

SS case-cohort, small superset MI approx −0.260 0.071 0.103 0.229 0.147 0.269

SS case-cohort, small superset MI SMC 0.052 0.053 0.043 0.637 0.264 0.074

SS case-cohort, large superset MI approx −0.314 0.068 0.078 0.015 0.161 0.321

SS case-cohort, large superset MI SMC −0.025 0.079 0.050 0.824 0.118 0.083

Results for 𝛽Z1

Full cohort — −0.001 0.061 0.060 0.951 1.000 0.061

Traditional case-cohort — 0.020 0.192 0.147 0.858 0.099 0.193

Case-cohort within full cohort MI approx 0.131 0.087 0.090 0.705 0.489 0.157

Case-cohort within full cohort MI SMC 0.187 0.092 0.091 0.455 0.433 0.209

SS case-cohort, small superset MI approx 0.141 0.109 0.175 0.963 0.309 0.178

SS case-cohort, small superset MI SMC −0.050 0.113 0.126 0.945 0.289 0.123

SS case-cohort, large superset MI approx 0.134 0.095 0.128 0.887 0.406 0.165

SS case-cohort, large superset MI SMC −0.049 0.104 0.118 0.939 0.339 0.115

Results for 𝛽Z2

Full cohort — 0.006 0.138 0.140 0.960 1.000 0.138

Traditional case-cohort — 0.006 0.446 0.330 0.852 0.096 0.446

Case-cohort within full cohort MI approx 0.225 0.195 0.197 0.802 0.503 0.297

Case-cohort within full cohort MI SMC 0.328 0.215 0.205 0.635 0.413 0.393

SS case-cohort, small superset MI approx 0.220 0.228 0.359 0.986 0.367 0.317

SS case-cohort, small superset MI SMC −0.126 0.239 0.249 0.922 0.334 0.270

SS case-cohort, large superset MI approx 0.225 0.205 0.260 0.923 0.456 0.304

SS case-cohort, large superset MI SMC −0.144 0.219 0.239 0.902 0.397 0.262
Note: MI-Approx assumes a normal distribution for X|Z1,Z2, ̂H(t) and MI-SMC assumes a normal distribution for X|Z1,Z2.
Abbreviation: SS, supersampled.

that are close to those obtained with nested case-control data. For supersampled case-cohort
data using MI-SMC, the model SEs tend to be somewhat too large and coverage too high. The
empirical SEs are about the same as those obtained with supersampled nested case-control
data, except for estimation of the interaction parameter 𝛽XZ1 where the empirical SEs for
supersampled nested case-control data are about 50% larger than for supersampled case-cohort
data.

The results when there is no interaction, but the imputation model is mis-specified (Table 6),
are fairly similar to those for nested case-control sampling. But the classical method for
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BORGAN et al. 21

case-cohort has lower SEs for estimation of 𝛽X than nested case-control, and the supersampled
case-cohort data give a substantial bias in the estimate of 𝛽Z2 both for a small and a large
superset.

For cohort size 5000 and no interaction (Table S8), the traditional IPW estimator typically
gives less biased estimates with smaller SEs compared to the results for cohort size 25,000.
However, the estimates for the supersampling methods tend to be slightly more biased when
N = 5000 than for N = 25000. But also for these estimates, the SEs tend to be somewhat smaller
for N = 5000 than for N = 25, 000. For the situation with interaction (Table S9), both the tra-
ditional estimates and the supersampling estimates tend to be somewhat less biased and have
smaller SEs for cohort size 5000 than for cohorts size 25,000. The relative efficiencies of the super-
sampling methods using MI-SMC are somewhat larger for cohort size 5000 compared to cohort
size 25,000.

Tables S2–S4 show results from case-cohort analyses using the Prentice estimator. These show
that typically the traditional Prentice estimator gives less bias, but larger SEs than the IPW esti-
mator. For supersampled data there is no systematic difference in the biases of the two methods,
but the IPW estimator gives clearly lower SEs than Prentice’s estimator.

6 DISCUSSION

In this paper we have proposed a supersampling approach for nested case-control and case-cohort
studies, in which a nested case-control or case-cohort sample is supplemented with addi-
tional controls. An expensive covariate is assumed to be measured only on the original nested
case-control or case-cohort sample, but cheaply measured covariates are measured for all indi-
viduals in the supersample.

We outlined a method for analysis of supersampled data, which involves imputing missing
data on the expensive covariate for the individuals in the supersample who are not in the orig-
inal nested case-control or case-cohort sample. Our focus was on two MI methods, one using
an approximate imputation model (MI-Approx) and one that uses rejection sampling to obtain
draws of the missing covariate from a posterior distribution that is compatible with the Cox pro-
portional hazards model used for the main analysis (MI-SMC). Both imputation approaches were
originally proposed to enable imputation of missing covariate data in Cox regression analyses
based on full cohorts under a MAR assumption (Bartlett et al., 2015; White & Royston, 2009),
before being modified for use in nested case-control and case-cohort samples with missing data
(Keogh et al., 2018). The supersampled nested case-control or case-cohort study can be considered
as a nested case-control or case-cohort study with a larger number of controls and with missing
data on the expensive covariate. Hence the MI-Approx and MI-SMC methods described by Keogh
et al. (2018) can be applied. However, when imputing in a supersampled nested case-control
study, one should use the time of the case to which a control is matched and not the control’s own
censoring time.

We used a simulation study to assess the proposed imputation methods for analysis of super-
sampled nested case-control and case-cohort studies, focusing on a large underlying cohort with
a low event rate, which is realistic for situations in which these study designs are likely to be used.
Small and large supersets were considered, in which the number of controls per case (nested
case-control study) or the size of the subcohort (case-cohort study) was increased four fold or
12 fold compared with the original sample. We compared analyses of supersampled data using
MI-Approx and MI-SMC with a full cohort analysis, with a traditional analysis of the original
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22 BORGAN et al.

nested case-control or case-cohort data, and with an MI analysis of the nested case-control or
case-cohort data where the expensive covariate is imputed for all individuals in the cohort who
are not in the original nested case-control or case-cohort data sample. The supersampled data
sets with small and large supersets can be viewed as lying in between the extremes of using the
original sample with no information from the rest of the cohort, and using all available
information from the rest of the cohort.

In the absence of an interaction term in the analysis model the MI-Approx and MI-SMC
analyses of the supersampled studies both perform well when the imputation model is correctly
specified, giving approximately unbiased estimates of association and approximately correct SEs
and coverage. This was true for both nested case-control and case-cohort studies. The good per-
formance of MI-Approx in these situations could be expected, since we consider a situation with a
low event rate. We showed substantial gains in efficiency in the supersample analyses compared
with the traditional analyses of nested case-control and case-cohort data. These gains were greater
for the fully observed covariates compared to the covariate missing by design and imputed for the
individuals in the supersample who were not in the original nested case-control or case-cohort
sample.

Our simulation results for a correctly specified imputation model further showed that when
the analysis model includes an interaction between the covariate with missingness and another
covariate, MI-Approx gives biased estimates while MI-SMC gives approximately unbiased esti-
mates. This was expected and has been shown in other studies using the two methods. Theory
shows the MI-Approx method does not work well in combination with nonlinear terms in the
analysis model, whereas MI-SMC handles this situation because the imputations are drawn
from a distribution that is compatible with the analysis model. MI-Approx also gives biased
estimates in the absence of an interaction term when the imputation model is mis-specified.
For this situation also MI-SMC imputation for the full cohort gives a substantial bias. This
illustrates that the consequences of mis-specifying the imputation model may be severe when
imputing the X-values for a large cohort. But MI-SMC imputation for supersampled data gives
quite good results, in particular for nested case-control for the small superset. Thus one advan-
tage of supersampling compared with using information from the full cohort, is that the impact
of a mis-specified imputation model will be less severe as a lower proportion of the data
is imputed.

When the distribution of X given Z is skewed, as is the case for our mis-specified imputation
model scenario, in additional investigations we explored whether the performance of MI-SMC
imputation may be improved by assuming log X |Z to be normally distributed when perform-
ing the imputations, which approximately matches the data generating distribution for X . Then,
as shown in Tables S11 and S12, results from MI-SMC imputation are improved for full cohort
imputation method for both nested case-control and case-cohort studies. However, the estimates
obtained for the supersampled data when using this model in the MI-SMC imputation tend to
have more bias. We note that the true distribution of X|Z differs in the full cohort and in the
supersampled data. These findings demonstrate the importance of checking that the assumed
imputation model is approximately correctly specified.

The MI-SMC approach required a large number of iterations, and it is considerably more
computationally intensive than MI-Approx; see Table S13 for an example of computing times for
the various methods. Thus computational efficiency is an advantage of the MI-Approx method
when there are no interactions (or other nonlinear terms). We used 500 iterations for the
MI-SMC method, which is considerably larger than the standard 10 iterations that are typically
used in MI in a general context. Nevertheless, small biases from the MI-SMC approach may
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be attributed to minor lack of convergence. It would be advantageous if the software could be
extended to incorporate straightforward ways of assessing convergence in MI-SMC. When using
MI-SMC we recommend using imputed values from MI-Approx as starting values for the iterative
procedure.

In our description of the methods and in the simulation study we focused on a setting in which
there is a single expensive covariate, X , that is observed only in the original nested case-control
or case-cohort sample. The imputation methods used therefore only needed to impute a sin-
gle covariate. In general there may be more than one covariate that can only be observed on
the original sample. Both imputation methods used (MI-Approx and MI-SMC) extend easily to
allow several covariates to be imputed, and both do this using the chained equations approach
(Carpenter & Kenward, 2013; White et al., 2011).

There are a number of further investigations that would be of interest to consider in future
work. We did not consider auxiliary variables that are correlated with the expensive missing
covariate, but which are not of independent interest as covariates in the analysis model. Inclu-
sion of such auxiliary variables in the imputation model has previously been found to improve
efficiency of estimates of the coefficient for the expensive covariate, and would be of interest to
consider in further work in the supersampling context. Further, we have only considered the clas-
sical versions of the nested case-control and case-cohort designs, where the controls/subcohort
are selected by simple random sampling (Prentice, 1986; Thomas, 1977). Langholz and
Borgan (1995) and Borgan et al. (2000) have developed stratified versions of the cohort sampling
designs that make it possible to incorporate information on auxillary variabes into the sampling
process in order to obtain more informative samples of controls/subcohort. One then classifies
the cohort individuals into a number of strata according to their values of the auxiliary variables,
and selects the controls/subcohort by stratified random sampling. In this way, one may increase
the variation of the expensive covariate in the case-control sample, and thereby achieve a more
efficient estimation of the effect of this covariate. It would be of interest to study the use of MI
for supersampled cohort data, where the original sample and/or the supersample is selected by
stratified random sampling.

To enable efficient use of data in supersampled nested case-control and case-cohort studies
we focused on the use of MI. Alternative methods of analysis for supersampled studies would
be of interest to consider. The supersampling approach could be viewed as a two-stage design in
which a nested case-control or case-cohort sample is obtained (Phase I sample) and then certain
information is only obtained in a Phase II sample, and one possible alternative analysis approach
would be to use inverse probability weighting.

In summary, use of supersampling in nested case-control and case-cohort studies, com-
bined with an MI analysis, can enable gains in efficiency over traditional analyses of these
sampled cohort studies, which ignore information available on individuals in the cohort but
not in the case-control sample. In many situations the cohort underlying a nested case-control
or case-cohort sample is very large. Making use of data for the full cohort on cheaply mea-
sured covariates using MI may be extremely computationally expensive or even infeasible
in this case. It may also result in bias if the imputation model is mis-specified. Supersam-
pling provides a practical alternative which combines computational feasibility and robust-
ness for mis-specified imputation models with good efficiency relative to using the full cohort
information.
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