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A B S T R A C T   

At present, climate change has brought huge challenges to vegetation and ecosystems. As the Qinghai-Tibet 
Plateau (QTP) is a sensitive area of global climate change, the dynamic assessment of its ecological vulnera-
bility is very important. In order to better quantify the relative size of the ecological vulnerability of the QTP, this 
study starts from the background characteristics and dynamic change process of the ecosystem, by fitting the 
vegetation index net primary productivity (NPP) and the temperature, precipitation and meteorological ele-
ments. The coefficients of autocorrelation multiple linear regression are used to construct an ecological 
vulnerability model from the three dimensions of “exposure-sensitivity-elasticity” to conduct a dynamic 
assessment of ecological vulnerability. Based on the evaluation results, from 2000 to 2015, the ecologically 
fragile areas were mainly distributed in the eastern and central areas of the QTP. The ecological fragility of the 
western region showed obvious discontinuities, with high and low vulnerabilities staggered. The three ecosys-
tems of forest, grassland, and bare land have significant differences in their ecological vulnerability to climate 
change, showing a clear positive correlation in the three dimensions of exposure, sensitivity, and resilience, but 
in terms of the contribution rates of the three dimensions. The performance is relatively similar, and the relative 
relationship between the three dimensions is relatively balanced. The longitude and precipitation of the sample 
points have a greater impact on ecological vulnerability and its three dimensions, and the impact of precipitation 
on ecological vulnerability is more significant than that of temperature. This research provides theoretical 
support for plateau ecological conservation and ecological security under the influence of global climate.   

1. Introduction 

The concept of vulnerability was stemmed from the realm of natural 
disasters and has been applied to disaster management, ecology, public 
health, climate change, sustainability, etc. (Zhang et al., 2017). More-
over, due to the importance of vulnerability, vulnerability was even 
considered as part of basic science, becoming the theoretical basis and 
an important tool for studying climate change and ecosystems. (Down-
ing 2000; Zhang et al., 2017). The changing patterns of projected 
climate changes in the 21st century potentially have profound impacts 

on the functioning of Earth’s ecological systems (ecosystems) (Garcia 
et al., 2014; Wu et al., 2015; Seddon et al., 2016; Zhang et al., 2018). It is 
greatly emphasized to identify ecologically sensitive areas for ecosystem 
service provision and poverty alleviation (Seddon et al., 2016). Besides, 
there still stands a critical knowledge gap that how to identify and then 
prioritize those regions which are most sensitive to climatic variability 
(Seddon et al., 2016). 

Meanwhile, vegetation, as an important component of the Earth 
system, modulates regional and global climate change by biogeochem-
ical and biophysical feedbacks (Field et al., 2007; Peñuelas et al., 2009; 
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Tan et al., 2015; Zhang et al., 2018). In the backdrop of global warming, 
significant warming processes were observed over the Qinghai-Tibet 
Plateau (QTP) (Liu and Chen, 2000) with a temperature rise of about 
0.4 ◦C per decade (Dong et al., 2012; Shen et al., 2014). This warming 
rate is believed to be higher than that in the northern and southern 
hemispheres as well as over the globe as a whole (Liu and Chen, 2000; 
Trenberth et al., 2007; Zhang et al., 2018). The QTP has a specific 
vegetation composition and climate features along with a low degree of 
human interference (e.g. Piao et al., 2011). In the QTP, intense solar 
radiation, longer sunshine duration, lower air temperature and pressure, 
less cloud cover, and discernable seasonal and spatial uneven distribu-
tion of precipitation render the QTP one of the major regional driver and 
amplifier of global climate changes (Liu and Chen, 2000; Dong et al., 
2012; Che et al., 2014; Zhang et al., 2018). Therefore, more and more 
evidences show that vegetation across QTP is of high sensitivity to 
climate change (Shen et al., 2011; Dong et al., 2012; Che et al., 2014; 
Zhang et al., 2018). In this sense, it is of great scientific and practical 
merits in understanding of the dynamic vulnerability of ecological sys-
tem over the QTP to climate changes and can also provide theoretical 
references for the evaluation of the ecological vulnerability of other 
regions over the globe to global changes and hence ecological conser-
vation as well in the backdrop of warming climate. 

However, there stand few reports addressing ecological vulnerability 
to climate changes across the QTP so far. Most previous studies con-
cerned static ecological vulnerability evaluation (Liu et al., 2017; Yao 
et al., 2018). In addition, although the contents of some studies are 
dynamic evaluated, they only show slices of ecological vulnerability at 
different times (Hou et al., 2018). While, Leichenko and O’Brien (2002) 
argued that the environmental and socioeconomic contexts that influ-
ence vulnerability are in a state of continual change (Belliveau et al., 
2006). Therefore, vulnerability should be dynamic but not a static state 
or snapshot in time (Kelly and Adger, 2000; Turner et al., 2003; O’Brien 
et al., 2004; Belliveau et al., 2006). In other words, ecological vulner-
ability should be variable and is changing as a process given changing 
natural environment and human interferences. Dynamic evaluation of 
ecological vulnerability is critical to understand eco-environment 
changes and can provide theoretical support for prediction of risks of 
ecological vulnerability. More than half of the previous related studies 
addressed future ecological risks and ecological vulnerability. While, 
<1/3 of the relevant studies are concerning dynamic evaluations of 
ecological vulnerability (e.g. Jurgilevich et al., 2017). However, recent 
years witnessed more and more researches addressing dynamic 
ecological vulnerability evaluation. Therefore, on one hand, studies 
related to dynamic ecological vulnerability evaluation are in rapid 
progress; on the other hand, there stand critical scientific issues to be 
addressed. In this sense, this study takes the dynamic ecological 
vulnerability in the QTP as a case study, shedding novel light on dy-
namic ecological vulnerability across frigid highlands. 

Vegetation is the major target in dynamic ecological vulnerability 
evaluation (Xia et al., 2021). Every vegetation indicator has its own 
strength and limitation. Different choices of vegetation indicators can 
have direct impacts on ecological vulnerability evaluation. Actually, 
there stand numerous vegetation indicators such as Normalized Differ-
ence Vegetation Index (NDVI) (Zhang et al., 2018; Hou et al., 2020), 
Enhanced Vegetation Index (EVI) (Seddon et al., 2016; Shammi and 
Meng, 2021), Leaf Area Index (LAI) (Chang et al., 2018), Net Primary 
Productivity (NPP) (Klemm et al., 2020), and Gross Primary Produc-
tivity (GPP) (Padfield et al., 2017). Wherein, NPP is a key component of 
the terrestrial carbon cycle and is believed to be the initial step of the 
carbon cycle in which atmospheric CO2 is fixed by plants (Schimel et al., 
2001; Wang et al., 2016). The responses of NPP to climate change and 
CO2 are key processes having the potential to significantly modify the 
climate-carbon feedback and future atmospheric CO2 levels (Wang et al., 
2016). In this study, we use NPP as the indicator to analyze ecological 
vulnerability to climate changes across the QTP. 

There stand a range of methods used for ecological vulnerability 

evaluation. Bourgoin et al. (2020) developed a framework to assess 
ecological vulnerability. Besides, the fuzzy analytic hierarchy process 
(Guo et al., 2020b; Hou et al., 2020), the principal component analysis 
(Jin et al., 2021), the integrated system dynamic model (Zhang et al., 
2017), and complex network approach (Wang et al., 2020) were also 
used in dynamic ecological vulnerability evaluation practice. However, 
the above research methods are mostly analyzed from the perspective of 
the integrity of the study area and rarely discussed from the perspective 
of the differences within the ecosystem. Actually, the resilience dy-
namics and response thresholds of different ecosystem types show 
different characteristics (Folke et al., 2004). If there are inherent dif-
ferences in the ecological vulnerability of different ecosystems, the 
comparison between different ecosystems will ignore the ecological 
response within the ecosystem. Ecosystem types and dominant species 
can be identified by land use, and most studies indicate that land use/ 
land cover change is one of the main drivers of terrestrial ecosystem 
productivity (Li et al., 2021; Zhang et al., 2014). 

In this study, we attempt to propose a novel analysis framework to 
evaluate ecological vulnerability across the QTP. This analysis frame-
work involves a range of techniques and models such as the piecewise 
linear regression method (Cao et al., 2018) and the multivariable linear 
regression model (Li et al., 2018), realizing the dynamic evaluation of 
ecological vulnerability over the QTP. Meanwhile, we also used the 
regular grid sample (RGS) method (Peng et al., 2014) to identify 
different ecological subsystems based on land use and land cover types 
and to evaluate ecological vulnerability for different ecological sub-
systems. We also investigate different mechanisms behind the responses 
of ecosystems to climate changes and other external factors and future 
tendencies. 

The objectives of this study: (1) we propose a novel framework to 
quantify and perform a dynamic evaluation of ecological vulnerability 
over the QTP; (2) we attempt to describe aspects of the ecological 
vulnerability for different ecosystems over the QTP in the backdrop of 
warming climate. In this case, we define different ecosystems based on 
different land use and land cover types and use the RGS method for 
dynamic evaluation of ecological vulnerability for different ecosystems 
due to changing climate. Besides, we also attempt to predict and eluci-
date the ecological vulnerability of the QTP due to future climate 
changes. Based on the analysis of this study, we also tentatively provide 
suggestions for ecological conservation of the QTP in a changing envi-
ronment with an aim to mitigate ecological degradation and alleviate 
ecological vulnerability. 

2. Data 

The NPP datasets are sourced from the National Earth System Sci-
ence Data Center, China, at http://www.geodata.cn. The NPP datasets 
are based on the data products of the GLASS (Global Land Surface Sat-
ellite) with a spatial resolution of 5 km, the LAI (leaf area index) and the 
FPAR (Fraction of Absorbed Photosynthetically Active Radiation), and 
also the ERA-Interim meteorological data (Cui et al., 2016; Yu et al., 
2018; Wang et al., 2020). The spatial resolution is also 5 km and the time 
scale is 8 days. Monthly temperature and monthly precipitation data are 
also sourced from the National Earth System Science Data Center, China, 
at http://www.geodata.cn, and the spatial resolution is 1 km. The Dig-
ital Elevation Model data (DEM) and land use data are sourced from the 
ASTER GDEM v3 and the GLOBELLAND30 of the NASA&METI at http:// 
www.globallandcover.com/home.html?type = data (Chen et al., 2014) 
and the spatial resolution is 30 m (Fig. 1). The study time interval we 
focus on in this study is during 2000–2015. This article assumes that the 
land use type at each sampling point does not change. 
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3. Methods 

3.1. Regular grid sample (RGS) method 

In this study, we use the RGC method in the identification of 
ecological system types and in the development of the model for 
ecological vulnerability evaluation (Fig. 2). The sampling method used 
in this study is similar to the sequential sampling procedure in Statistics 
(Wald, 1945). The number of the samples is not specified in advance in 
the sampling procedure, the sampling points that meet the conditions 
are selected until the sample size is reached (Peng et al., 2014). In order 
to ensure the uniformity and stationarity of the samples within the study 
region and minimize the impacts of terrain and topography on sampling 
results, we limit the altitude difference during sampling. By sampling in 
3 km × 3 km sampling grid cells every 0.1◦in the study area (Fig. 1b), we 
counted the altitude difference in each sampling grid cell. As a result, it 
is appropriate to set the altitude difference to be less than or equal to 
1000 m, because if the threshold set here is higher than 1000 m, the 
screening conditions may be meaningless. On the contrary, a small 
threshold value will cause most of the sampling points to be concen-
trated in the central and western part of the QTP, which directly affects 
the uniformity of the sampling points distribution. 

The specific steps of the RGS method are introduced here. Firstly, 
random points are generated within the study area and these random 
sample points are used as the center of the sampling region with grids 
within 3 km × 3 km zone. The screening condition is based on the 
threshold value of 1000 m. If the conditions are met and the relevant 
points are accepted sampling points, and one sample will be added to the 
total number of samples; otherwise, the candidate random point will be 
discarded and keep the total number of samples unchanged until the 
total number of samples reaches 1000. The spatial distribution of the 
final sampling points and their correspondence with DEM and land use 
types are shown in Fig. 1a and c. It can be seen that the selected sampling 
points distribute at all altitudes and land use types in the study area. In 
this case, the representativeness of the sampling points can be well 
confirmed. 

3.2. Screening out the major ecosystem types 

Based on the percentage of land use types of the study region 
(Fig. 1d), we can see that the main land use types in the QTP region are 
grassland, bare land, and forest. Therefore, here we focus on three types 
of ecosystems, i.e. grassland, bare land, and forest. The identified 
ecosystem in this study is defined as the land use types such as grassland, 
bare land, and forest types with area percentage of greater than 80% to 
the total area within 3 km of each sample point. For the sample points 
that do not meet the above conditions, they are also classified as “others” 
(Fig. 2). 

3.3. Multiple linear regression technique 

Vegetation changes are of long-term memory feature, i.e. the current 
state of the vegetation is the combined result of the current climate 
condition and the properties of the past vegetation condition (De 
Keersmaecker et al., 2015). Meanwhile, the landscape ecology itself is 
also of persistence and resistance. Therefore, considering the lagging 
response to climate changes and the importance of ecosystem persis-
tence in ecological vulnerability, here we apply AR(1) multiple linear 
regression to fit each sample point and regard NPP as the combined 
result of temperature anomalies, precipitation anomalies, and past NPP 
changes. The responses of each ecosystem to climate changes can be 
defined as: 

NPPt = α × Tempt + β × Pret + γ × NPPt− 1 + ε (1) 

Where NPPt and NPPt-1 are the standardized NPP anomalies at time t 
and t-1, respectively. Tempt is the standardized temperature anomaly at 
time t. Pret is the standardized precipitation anomaly at time t. α, β, and γ 
are the coefficients of the AR(1) multiple linear regression model. In 
order to avoid the influence of the correlations between meteorological 
variables, we perform principal components regression (PCR) with the z- 
values calculated from the monthly mean and standard deviation to 
determine the relative importance of each element. Based on the sig-
nificance test, the coefficients of the three variables are obtained (De 

Fig. 1. DEM of the sampling points (a); Histogram of altitude difference based on sampling grid cells with size of 3 km × 3 km (b); Land use types of the sampling 
point (c); Histogram of land use types over the study region, the QTP (d). 
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Keersmaecker et al., 2015; Seddon et al., 2016). In order to ensure 
comparability of the model coefficients, α, β, and γ are normalized to be 
between 0 and 1. 

3.4. Ecological vulnerability evaluation model 

We attempt to develop an ecological vulnerability index system from 
the three dimensions of “exposure-sensitivity-resilience” (De Lange 
et al., 2010). In this study, “exposure” refers to the degree to which the 
vegetation or ecosystem is influenced by climate change (Loarie et al., 
2009), which can be expressed by the rate of climate change. Sensitivity 
refers to the extent to which the ecosystem may be affected under a 
certain disturbance or pressure (Weißhuhn et al., 2018). Resilience re-
fers to the ability that one system is back to the baseline state after being 
disturbed or influenced by external factors (Turner et al., 2003). 

Exposure, sensitivity, and resilience will all bring about the spatial 
heterogeneity of ecological vulnerability (Kling et al., 2020). 

The coefficients of the multiple linear regression models are all 
related to the three dimensions of ecological vulnerability. α and β 
indicate the response or resistance matric to abnormal temperature and 
precipitation, and the higher absolute α and β values indicate lower 
resistance to climate changes and vice versa. Positive or negative α and β 
values indicate the positive and negative responses of vegetation to 
climate changes (De Keersmaecker et al., 2015). γ quantifies the simi-
larity of vegetation status between two vegetation conditions, which is 
the memory effect of the ecosystem itself. The larger γ means that the 
ecosystem needs longer time to restore to balance, that is, it is in 
negative correlation with the resilience dimension. Therefore, in this 
study, the coefficients corresponding to temperature and precipitation 
anomalies are used to characterize exposure and sensitivity (Seddon 

Fig. 2. Working procedure of this current study. (NPP: Net primary productivity anomalies; Temp: Temperature anomalies; Pre: Precipitation anomalies; PCR: 
Principal Components Regression; T_norm: normalized monthly average temperature anomaly time series; P_norm: normalized monthly average precipitation 
anomaly time series; EI: Exposure Index; SI: Sensitivity Index; RI: Resilience Index; VI: Vulnerability Index). 
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et al., 2016), and resilience can be characterized by autoregressive 
fitting coefficients related to vegetation restoration time and persistence 
(Simoniello et al., 2008; Dakos et al., 2012), being calculated from the 
fitting coefficients at the previous time (Carpenter et al., 2011). In 
addition, with reference to the definition and correlation of exposure, 
sensitivity, resilience and ecological vulnerability, the model for 
ecological vulnerability is as follows (Li et al., 2018): 

EI = α+ β (2)  

SI = α × T norm+ β × P norm (3)  

RI = 1 − γ (4)  

VI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EI × SI
1 + RI

√

(5) 

Wherein, EI is the Exposure Index; α and β are the fitting coefficients 
of temperature and precipitation anomalies, respectively; SI is the 
Sensitivity Index obtained by the weighted summation of the stan-
dardized meteorological anomalies and related fitting coefficients 
(Seddon et al., 2016). T_norm and P_norm represent the mean values of the 
normalized temperature and precipitation anomaly series, respectively; 
RI represents the Resilience Index, and γ is the approximate value of 
NPPt-1 in Eq.(1). VI is the Vulnerability Index, and EI, SI, and RI corre-
spond to the exposure, sensitivity, and resilience indexes in Eqs. (2), 3, 
and 4, respectively. For the sake of the comparative analysis between 
exposure, sensitivity, and resilience, we standardize EI, SI, RI, and VI. 

3.5. Analysis of influencing factors 

In order to identify the influencing factors of ecological vulnera-
bility, we take the longitude, latitude, and altitude related to the loca-
tion of the sample points, as well as the annual average values of the air 
temperature and precipitation at the sample points, as the variables in 
the analysis of the relations between EI, SI, RI, VI and above-mentioned 
influencing factors. In addition, the ecosystem may have discontinuous 

ecological responses to external influencing factors. Given a certain 
critical threshold, the ecological responses to external influencing fac-
tors will be subject to a shift to another response state (Groffman, et al., 
2006). We quantified relations between the above-mentioned five 
influencing factors and EI, SI, RI, and VI by the piecewise linear 
regression model. 

4. Results 

4.1. Spatial patterns of the ecological vulnerability across the QTP 

Before calculating ecological vulnerability, it is necessary to have a 
basic understanding of the temporal-spatial distribution characteristics 
of the input data: we obtained the annual average NPP, air temperature, 
and precipitation and analyzed related temporal-spatial patterns as 
shown in Fig. 3. We observed higher air temperature and larger pre-
cipitation in southeastern QTP and air temperature and precipitation are 
decreasing from southeastern QTP to northwestern QTP (Fig. 3). NNP 
follows a similar spatial pattern when compared to those of air tem-
perature and precipitation with the largest annual average NPP of 357 
gC/m2⋅d. Meanwhile, NPP and air temperature are increasing from 2000 
to 2015 with similar changing patterns (Guo et al., 2020a). Moreover, 
fluctuations of NPP and air temperature are similar, showing remarkable 
impacts of air temperature changes on NPP variations. 

Based on Fig. 2, we map the spatial pattern of EI, SI, RI, and VI across 
the QTP (Fig. 4). It can be seen from Fig. 4 that the EI is the highest in the 
northeastern part of the QTP, and is followed by the southeastern part of 
QTP. Vegetation in the northeastern part of the QTP is mainly domi-
nated by desert and temperate meadows (Zhang et al., 2018), and this 
kind of vegetation is highly sensitive to climate changes. Vegetation in 
the southeastern part of the QTP is dominated by the evergreen broad-
leaf forest and tropical rainforest. Besides, the terrain here is of 
remarkable difference in elevation. Temperature changes have profound 
impacts on vegetation changes and hence higher EI (Zhang et al., 2018). 
We observe higher SI in the eastern part of the QTP when compared to SI 
in the western part of the QTP, while higher SI in the southeastern part 

Fig. 3. Spatial pattern of annual average NPP (a, d), air temperature (b, e) and precipitation (c, f) over the study region, the QTP, during 2000–2015.  
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of the QTP than the northeastern part of QTP. Eastern QTP is dominated 
by Alpine shrub meadows and western QTP is dominated by Alpine 
steppe (Zhang et al., 2018). Higher intensity of human activities can be 
found in eastern QTP than western QTP (Guo et al., 2020a) and hence 
higher SI in eastern QTP than western QTP. RI shows obvious spatial 
heterogeneity in the northwestern QTP with most of the sample points 
with RI<0.4 and greater than 0.8, while the overall stronger flexibility 
and resilience of the ecological system in eastern QTP. Vegetation in 
eastern QTP is mainly meadow, shrub, and forests, and vegetation in 
western QTP is mainly the Alpine steppe (Zhang et al., 2018). Besides, 
higher soil moisture can be found in eastern QTP than in western and 
northwestern QTP (Fan et al., 2019). Moreover, desert is dominant in 
the northwestern QTP. All these factors combined to trigger higher RI in 
eastern QTP than in northwestern QTP. Meanwhile, VI is similar to EI in 
spatial patterns. Higher VI can be found in central and eastern QTP than 

in western QTP. The ecological vulnerability of the eastern and central 
areas of the QTP to climate change is higher than that of the western 
QTP. Although vegetation in the western QTP is less resilient and 
adaptable, lower exposure and lower sensitivity combined to drive 
lower ecological vulnerability in the western QTP. 

4.2. Comparison of ecological vulnerability 

The major ecosystem types were screened based on all convergent 
sample points, including 509 grassland ecosystem sample points, 152 
bare land ecosystem sample points, and 16 forest ecosystem sample 
points (and 240 other ecosystems). The three dimensions of ecological 
vulnerability, i.e. exposure, sensitivity, and resilience, among the major 
ecosystems are shown in Fig. 5. It can be seen from Fig. 5 that there stand 
profound differences among the three major ecosystems (p < 0.0001), 

Fig. 4. Spatial pattern of exposure index (EI, a); sensitivity index (SI, b); resilience index (RI, c) and ecological vulnerability index (VI, d) of the sampling points over 
the QT. 

Fig. 5. Boxplots for EI (a), SI (b) and RI (c) of the grassland, forest and bare land over the QTP.  
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except for the RI of forest and grassland, forest and bare land. 
The three dimensions of exposure, sensitivity, and resilience of each 

ecosystem are in obvious positive correlations, indicating that given the 
weak adaptability and resilience of the ecosystem, the exposure and 
sensitivity of the ecosystems to the increased air temperature and 
increased precipitation are also relatively low, and vice versa. As a 
result, the ecological environment in each region of the QTP could 
maintain a stable state. The EI, SI, and RI of the forest ecosystem are the 
highest among the three ecosystems and most of them are higher than 
0.5 with a smaller inter-quartile range of EI, indicating little changes in 
the exposure of the forest ecosystem. The RI of the forest ecosystem has 
poor stability, because “ecological memory” plays an important role in 
its response process to external influencing factors. The scale, frequency, 
and degree of past or recent disturbances, the interactions of multiple 
disturbances, and the response of different species to climate changes 
will affect the resilience of the forest ecosystem (e.g. Johnstone et al., 
2016). The EI, SI, and RI of the bare land ecosystem are the lowest 
among the three ecosystems. The inter-quartile ranges of the RI are 
relatively large, which means the coexistence of the high and low values 
of the RI of the bare land ecosystem on the QTP. This finding implies 
enhancement of the resilience of arid ecosystems due to warming 
climate over the QTP (Yu et al., 2021). Or two alternate stable states 
occur, enhancing the resilience of bare land ecosystems (D’Odorico 
et al., 2005; Borgogno et al., 2007). The EI, SI, and RI of the grassland 
ecosystem are between the other two ecosystems analyzed in this cur-
rent study. The RI may be closely related to the species diversity of the 
ecosystem (Pfisterer and Schmid, 2002; Geng et al., 2019), and over-
grazing does not reduce the stability of the grassland ecosystem (Gan-
jurjav et al., 2019). 

4.3. Relations amongst exposure, sensitivity and resilience 

Fig. 6 shows balanced relationships amongst all convergent sample 
points and the exposure, sensitivity, and resilience of the three ecosys-
tems considered in this study. In other words, these three ecosystems 
considered in this study have small differences in the relative contri-
bution rates of the three dimensions. The scatters in the ternary dia-
grams are roughly distributed around the center point. At the center of 
the kernel density, EI accounts for about 30% to 40%, SI accounts for 
about 20% to 40%, and RI accounts for about 20% to 40%. To a certain 
extent, this confirms the rationality that the coefficients of the three 
independent variables in the ecological vulnerability function (Eq. (5)) 
are all 1. 

In the ternary diagrams of grassland and bare land ecosystems, the 
wide distribution of scatters indicates that the structure of these eco-
systems is more diverse and there are many unstable states. The distri-
bution of scatters presents an ellipse, and the major axis of the ellipse is 
almost perpendicular to the RI axis. This shows that RI fluctuates 
greatly, and the main dimension affecting the ecological vulnerability of 
grassland and bare land can possibly be explained by resilience. 

Forests are quite different from the other two ecosystems. When 
compared to the kernel center of the ternary diagram of the grassland 
and bare land ecosystems, the core density center of the forest ecosystem 
shifts slightly to the sensitivity index. At the center of its kernel density, 
EI accounts for about 25% to 45%, SI accounts for about 30% to 40%, 
and RI bout 20%~40%, which is closer to the center of the triangle. This 
may be due to differences in the response patterns of different vegetation 
types to climate change, in which the internal sensitivity of forest eco-
systems is higher and is more susceptible to climate change (Anjos et al., 
2018). Accordingly, if ecological degradation occurs or land use types 
change, it may lead to a “flow” in the proportion of three dimensions: RI 
moves to both sides, EI gradually increases, and SI slightly decreases. 

Fig. 6. Relationships between EI, SI and RI and all sample points (a), grassland ecosystem sample points (b), bare land ecosystem sample points (c), and forest 
ecosystem sample points (d). 
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4.4. Influencing factors behind ecological vulnerability 

The piecewise linear regression model results of nonlinear fitting 
show obvious piecewise characteristics (Fig. 7). We find that the 
breakpoints are respectively at latitude 28.6◦N and 33◦N, longitude 
97◦E, altitude 3744 m, the average annual air temperature is 26-40℃/a, 
and the annual average precipitation is 515–650 mm/a (Table 1). Be-
sides, there stands a positive correlation between longitude, average 
precipitation and EI, SI, RI, VI (p < 2.2e-16), and a negative correlation 
between latitude and EI, SI, RI, VI, which further clarifies the area range 
with high ecological vulnerability in the southern region of QTP. 

As the altitude increases, EI, SI, RI, VI first increase and then 
decrease. Although the slope and intercept of the nonlinear regression 
model for the grassland and bare land ecosystems are different, the 
breakpoints are basically the same, i.e. about 3500 m in altitude (Fig. 8). 
It shows that the response processes of these two ecosystems, such as 
exposure, sensitivity, and resilience, will change at the same time after 
reaching the threshold. Due to few sample sites, the forest ecosystem 
will not be analyzed. The existence of the threshold means that changes 
in vertical zoning or non-climatic factors such as bacteria may lead to 
changes in the structure of the ecosystem (Geng et al., 2019; Hu et al., 
2020), which indirectly affects the response process of the ecosystem. It 
also helps to arouse human concerns for the area of the QTP with an 
altitude of 3400 ~ 3800 m. In addition, the average precipitation has a 
more significant correlation with the ecological vulnerability than the 
annual average temperature, indicating that the increase in ecological 
vulnerability caused by precipitation may be more sensitive than by 

temperature (Liu et al., 2013). 

4.5. Sampling technique and models 

The main advantage of the sampling technique used in this research 
is to minimize the interference and impact by abnormal data and to 
reduce the uncertainty through the selection of sample sampling points, 
the selection of main ecosystems, and the further eliminate abundant 
sampling data based on the fitting coefficients of the models. However, 
we do have certain subjectivity in the selection threshold of sample 
points, such as selecting an altitude difference of 1000 m, sampling 
range of 3 km × 3 km, and the main ecosystem satisfying land use types 
accounting for more than 80%, etc. These may affect the portability 
between different regions, and specific analyses and adjustments need to 
be made according to the characteristics of the ecological environment 
of the region itself. 

The ecological vulnerability in this study focuses on highlighting the 
dynamic change process of the ecosystem, analyzing relative ecological 
vulnerability rather than absolute ecological vulnerability, so its tem-
poral and spatial distribution characteristics may be different from 
existing studies (e.g. Xia et al., 2021). Taking the bare land ecosystem as 
an example, the climate is arid and the soil quality is poor, and it is 
basically in the final stage of ecological degradation. The absolute 
vulnerability of bare land ecosystems calculated by using methods such 
as index weights is generally higher than that of forest and grassland 
ecosystems. However, from a practical point of view, even under con-
ditions of a harsher ecological environment, the ecological pattern and 

Fig. 7. Changes of exposure index (EI), sensitivity index (SI), resilience index (RI), and ecological vulnerability index (VI) with latitude, longitude, altitude, average 
temperature, and average precipitation. (Lat.: the latitude of the sample point (unit: ◦); Lon.: the longitude of the sample point (unit: ◦): DEM: DEM data corresponds 
to the altitude at the sample point (unit: m); Tem.: the annual mean value of the temperature time series (unit: ℃/a); Pre.: the annual mean value of the precipitation 
time series at the sample point (unit: mm/a)). 
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ecological process of bare land may not have a significant impact. 
Therefore, overemphasizing the absolute vulnerability of bare land 
ecosystems actually lacks reference significance for improving the 
ecological status and proposing prevention and control measures. 

From the perspective of ecological vulnerability models, considering 
that the QTP ecosystem is still dominated by natural evolution and the 
degree of human activity disturbance is low (Zheng et al., 2000; Zhou 
et al., 2011), this study did not fully consider the impact of human ac-
tivities on ecological vulnerability. With the further development and 
implementation of urbanization and ecological protection measures in 
the QTP (Bao, 2006), ongoing research can be combined with other land 
use types within the sampling range of the main ecosystem, or explore 
the ecological vulnerability changes caused by human activities such as 
construction land and grazing. What’s more, appropriately add human 
factors to the ecological vulnerability model to improve it, such as the 
construction of ecological protection areas, returning grazing to grass-
land, urbanization, and patterns. 

4.6. Adaptive strategy 

Studies have shown that once the balance of the ecosystem is broken, 
it may lead to sudden ecological changes (Li et al., 2017). Therefore, it is 
vital and urgent to take adaptive countermeasures against the ecological 
vulnerability of the QTP in time. 

In summary, in order to maintain the ecological balance of the QTP, 
we put forward some suggestions and countermeasures for the QTP as 
follows: 

1. For bare land ecosystems, we focus on enhancing its resilience in 
response to possible changes in the ecological pattern such as the 
transition from permafrost to bare land. It is necessary to treat large 
areas of bare land and desert, and strictly control the expansion of 
desertification to prevent the connection of discontinuous bare land. 
2. Due to the poor stability of the RI of forest ecosystems, we can 
increase the species diversity of the forest ecosystem and connect 
flaky forests by planting artificial forests to change the current 

Table 1 
Threshold values of stepwise linear regression models for sampling points.   

Lat. Lon. DEM Tem. Pre. 

EI 28.639*** 33.603*** 97.853*** 3744.193*** 28.235*** - 
SI 28.644*** 32.853*** 97.249*** 3743.801 40.9* 648.423*** 

RI 28.693*** 34.481*** 97.278*** 3743.965*** 26.752*** 515.059*** 

VI 28.643*** 33.033*** 97.494*** 3745.479** 37.811** 647.042*** 

***: p < 0.001; **: p < 0.01; *: p<=0.05. Lat.: latitude; Lon.: longitude; DEM: digital elevation model; Tem.: temperature; Pre.: precipitation. 

Fig. 8. The elevation breakpoints of different ecosystems by piecewise linear regression. Fig. 8a, d show the piecewise linear fitting result of all sampling points; 
Fig. 8e, h show the piecewise linear fitting result of the grassland ecosystem sampling points; Fig. 8i, l show the piecewise linear fitting result of the bare land 
ecosystem sampling points; Fig. 8m, p show Piecewise linear fitting results for the sampling points of the forest ecosystem. 
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situation of simple ecological structure and forest fragmentation. In 
addition, due to the high exposure and sensitivity, it is necessary to 
improve the real-time monitoring level of meteorological elements 
such as temperature and precipitation in the QTP. 
In the case of exceeding the specified threshold, extreme weather 
events, fires, or meteorological and hydrological disasters, ecological 
warnings are issued in a timely manner to help local government 
personnel to be vigilant and avoid the imbalance of the forest 
ecosystem. 
3. For large areas of grassland ecosystems, the exposure, sensitivity, 
and resilience are maintained at a stable and balanced level. Only 
natural factors may not cause serious ecological and environmental 
problems. It is recommended that governments could focus on areas 
with an altitude of 3400 ~ 3800 m to reduce the negative impact of 
human activities and avoid large-scale grassland degradation caused 
by the imbalance of the ecosystem. 

5. Conclusions 

We developed an ecological vulnerability model based on three di-
mensions of “Exposure-Sensitivity-Resilience” by fitting the coefficients 
of the autocorrelation multiple linear regression of NPP, temperature, 
and precipitation. We attempt to evaluate ecological vulnerability from 
a dynamic viewpoint and we obtain some interesting and important 
findings as follows:  

(1) We successfully map the ecological vulnerability over the QTP. 
During the period from 2000 to 2015, regions with ecological 
vulnerable are found mainly in the eastern and central areas of 
the QTP. The ecological vulnerability of the western regions of 
the QTP is subject to obvious discontinuities in spatial sense and 
regions with high and low ecological vulnerabilities are spatially 
interchangeable.  

(2) Responses of the ecological vulnerability of forest, grassland, and 
bare land ecosystems to climate change are in significant differ-
ences. Each ecosystem has significant positive correlations in the 
three dimensions of exposure, sensitivity, and resilience. Besides, 
the values of EI, SI, RI show that forest ecosystem > grassland 
ecosystem > bare land ecosystem, and the resilience of forest and 
bare land ecosystem is unstable. However, the contribution of EI, 
SI, and RI to ecological vulnerability is similar.  

(3) The five influencing factors considered in this current study such 
as longitude, latitude, altitude, average temperature, and pre-
cipitation are in a piecewise linear correlation with EI, SI, RI, and 
VI. The breakpoints of the same influencing factors are basically 
the same, and precipitation has a more significant correlation 
with ecological vulnerability than temperature.  

(4) We also propose the countermeasures about how to enhance 
mitigation of ecosystems to changing climate. Bare land ecosys-
tems can improve their ecological resistance through measures 
such as desertification control to constrain the expansion of 
desertification. Forest ecosystem can increase its resilience by 
increasing species diversity and improving forest fragmentation, 
strictly control ecological thresholds, and timely issue of 
ecological warnings to deal with high exposure and high sensi-
tivity. The natural factors of the grassland ecosystem may not 
cause serious ecological and environmental problems, and the 
negative impact of human activities at the altitude of 3400 ~ 
3800 m can be mainly prevented. 
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China’s net primary production over the 21st century projected by the CMIP5 Earth 
system models. Int. J. Climatol. 36, 2323–2334. 

Wang, Y., Li, X., Zhang, F., Wang, W., Xiao, R., 2020. Effects of rapid urbanization on 
ecological functional vulnerability of the land system in Wuhan, China: A flow and 
stock perspective. J. Cleaner Prod. 248, 119284. 

Weißhuhn, P., Müller, F., Wiggering, H., 2018. Ecosystem Vulnerability Review: Proposal 
of an Interdisciplinary Ecosystem Assessment Approach. Environ. Manage. 61 (6), 
904–915. 

Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W., 2015. Time-lag 
effects of global vegetation responses to climate change. Global Change Biol. 21, 
3520–3531. 

Xia, M., Jia, K., Zhao, W., Liu, S., Wei, X., Wang, B., 2021. Spatio-temporal changes of 
ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Ind. 123, 107274. 

Yao, K., Bai, L., Li, X.J., Wang, X., 2018. Research Analysis of temporal and spatial 
characteristics of eco-environmental vulnerability in the Xianshui River basin based 
on GIS. IOP Conference Series: Earth and Environmental Science 153 (6), 062037. 

Yu, H., Liu, X., Ma, Q., Yin, Z., Wang, Y., Xu, Z., Zhou, G., 2021. Climatic warming 
enhances soil respiration resilience in an arid ecosystem. Sci. Total Environ. 756, 
144005. 

Yu, T., Sun, R., Xiao, Z.Q., Zhang, Q., Liu, G., Cui, T.X., Wang, J.M., 2018. Estimation of 
global vegetation productivity from global land surface satellite data. Remote 
Sensing 10 (2), 327. 

Zhang, F., Liu, X., Zhang, J., Wu, R., Ma, Q., Chen, Y., 2017. Ecological vulnerability 
assessment based on multi-sources data and SD model in Yinma River Basin, China. 
Ecol. Model. 349, 41–50. 

Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the 
Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. 
Meteorol. 248, 408–417. 

Zhang, Y., Song, C., Zhang, K., Cheng, X., Band, L.E., Zhang, Q., 2014. Effects of land use 
land cover and climate changes on terrestrial net primary productivity in the 
Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosci. 119 (6), 
1092–1109. 

Zheng, D., Zhang, Q., Wu, S., 2000. Mountain Geoecology and Sustainable Development 
of the Tibetan Plateau. Kluwer Academic Publishers, Springer, Netherlands.  

Zhou, X., Yan, Y., Wang, H., Zhang, F., Wu, L., Ren, J., 2011. Assessment of eco- 
environment vulnerability in the northeastern margin of the Qinghai-Tibetan 
Plateau. China. Environmental Earth Sciences 63 (4), 667–674. 

Q. Zhang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1470-160X(21)01148-1/h0100
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0100
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0100
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0105
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0105
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0105
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0105
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0110
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0110
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0115
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0115
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0115
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0120
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0120
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0120
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0120
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0120
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0125
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0125
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0125
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0125
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0130
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0130
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0130
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0135
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0135
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0135
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0140
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0140
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0140
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0145
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0145
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0145
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0145
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0150
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0150
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0150
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0155
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0155
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0155
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0155
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0160
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0160
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0160
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0165
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0165
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0170
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0170
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0170
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0175
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0175
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0180
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0180
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0185
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0185
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0190
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0190
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0190
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0195
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0195
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0195
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0200
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0200
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0200
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0200
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0205
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0205
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0210
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0210
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0215
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0215
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0220
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0220
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0220
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0220
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0225
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0225
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0225
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0225
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0230
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0230
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0230
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0235
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0235
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0240
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0240
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0245
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0245
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0245
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0250
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0255
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0255
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0260
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0260
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0265
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0265
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0265
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0265
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0270
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0270
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0270
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0275
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0275
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0275
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0280
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0280
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0280
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0280
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0285
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0285
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0285
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0285
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0285
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0285
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0290
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0290
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0290
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0290
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0295
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0295
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0300
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0300
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0300
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0305
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0305
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0305
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0310
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0310
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0310
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0315
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0315
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0315
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0320
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0320
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0325
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0325
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0325
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0330
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0330
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0330
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0335
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0335
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0335
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0340
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0340
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0340
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0345
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0345
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0345
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0350
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0350
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0350
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0350
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0355
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0355
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0360
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0360
http://refhub.elsevier.com/S1470-160X(21)01148-1/h0360

	Dynamic vulnerability of ecological systems to climate changes across the Qinghai-Tibet Plateau, China
	1 Introduction
	2 Data
	3 Methods
	3.1 Regular grid sample (RGS) method
	3.2 Screening out the major ecosystem types
	3.3 Multiple linear regression technique
	3.4 Ecological vulnerability evaluation model
	3.5 Analysis of influencing factors

	4 Results
	4.1 Spatial patterns of the ecological vulnerability across the QTP
	4.2 Comparison of ecological vulnerability
	4.3 Relations amongst exposure, sensitivity and resilience
	4.4 Influencing factors behind ecological vulnerability
	4.5 Sampling technique and models
	4.6 Adaptive strategy

	5 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	References


