
European Sociological Review, 2022, XX, 1–15
https://doi.org/10.1093/esr/jcac052
Advance access publication 9 November 2022
Original Article

Received: January 2022; revised: August 2022; accepted: September 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly 
cited.

Quantile regression estimands and models: 
revisiting the motherhood wage penalty debate
Nicolai T. Borgen,1,2,*,  Andreas Haupt3,  and Øyvind Nicolay Wiborg2,

1Department of Special Needs Education, University of Oslo, Norway
2Department of Sociology and Human Geography, University of Oslo, Norway
3Institute of Sociology, Media and Cultural Studies, Karlsruhe Institute of Technology, Germany
*Corresponding author. Email: n.t.borgen@isp.uio.no

Abstract 
This paper discusses the crucial but sometimes neglected differences between unconditional quantile regression (UQR) mod-
els and quantile treatment effects (QTE) models. We argue that there is a frequent mismatch between the aim of the quantile 
regression analysis and the quantitative toolkit used in much of the applied literature, including the motherhood wage penalty 
literature. This mismatch may result in wrong conclusions being drawn from the data, and in the end, misguided theories. In 
this paper, we clarify the crucial conceptual distinction between influences on quantiles of the overall distributions, which we 
term population-level influences, and individual-level QTEs. Further, we use data simulations to illustrate that various classes 
of quantile regression models may, in some instances, give entirely different conclusions (to different questions). Finally, we 
compare quantile regression estimates using real data examples, showing that UQR and QTE models differ sometimes but 
not always. Still, the conceptual and empirical distinctions between quantile regression models underline the need to match 
the correct model to the specific research questions. We conclude the paper with a few practical guidelines for researchers.

Introduction
The development of the counterfactual model of causal-
ity alongside new statistical methods, enhanced compu-
tational power, continuous software development, and 
increasing data availability has allowed for exploring 
new research questions and getting better answers to old 
ones. At the same time, the complexity of some of these 
models makes them vulnerable to misinterpretation and 
misuse. One prime example is the exciting innovations of 
the quantile regression framework that has taken place 
over the last decade. The development of the uncondi-
tional quantile regression (UQR) model (Firpo, Fortin 
and Lemieux, 2009) and the somewhat less-known quan-
tile treatment effects (QTE) models (Firpo, 2007; Powell, 
2020; Borgen, Haupt and Wiborg, 2021b) has the poten-
tial for novel findings. However, the complexity of quan-
tile regression models has made them poorly understood 
in much of the applied social science literature (Wenz, 
2019; Rios-Avila and Maroto, 2020).

This paper focuses on the crucial differences 
between UQR and QTE models. We believe that there 

is a frequent mismatch between the aim of the quan-
tile regression analysis and the quantitative toolkit 
used in much of the applied literature; quantile treat-
ment effects have gained popularity as estimand on 
a theoretical level since the 2000s, whereas uncon-
ditional quantile regression has been on the rise on 
a methodological level. As an illustration, consider 
the recent debate on the motherhood wage penalty, 
published in top-rated journals such as American 
Sociological Review (Killewald and Bearak, 2014; 
England et al., 2016), European Sociological Review 
(Cooke, 2014), and Demography (Glauber, 2018). 
Whether the motherhood disadvantage increases or 
decreases across the wage distribution is a question 
of quantile treatment effects. Yet, studies have used 
UQR to examine these wage gaps rather than QTE 
models.

Regarding the motherhood wage penalty, a cross-sec-
tional UQR model studies how changes in the share 
of mothers in the workforce would alter quantile val-
ues of women’s overall wage distribution. Using such 
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estimates, we can infer whether wage changes due to 
motherhood increase wage inequality between women. 
However, this is an entirely different research question 
than what the motherhood penalty literature sets out 
to study. The UQR model examines how, for exam-
ple, the median of all women’s wages would change if 
the share of mothers relative to all women increases. 
In contrast, QTE models investigate the differences in 
median wages between mothers and childless women.

The origin of this mismatch builds upon a misun-
derstanding that UQR solves an issue of the tradi-
tional conditional quantile regression (CQR) model 
(Koenker and Bassett Jr, 1978; Koenker, 2005). The 
CQR model estimates differences between conditional 
quantile values. For example, the 90th percentile of 
the wage distribution is considerably higher for white 
women with an advanced college degree and ample 
work experience than young black women without 
high school. When controlling for education, race, 
and experience, the CQR model removes the influence 
of such variables and estimates motherhood effects 
on conditionally high or low quantiles. Since the 
estimates of a CQR model alone do not provide any 
information about the location of the group-specific 
percentile values within the overall distribution, its 
use for estimating quantile treatment effects is often 
limited (Melly and Wüthrich, 2017; but see Machado 
and Mata 2005; Melly 2005a). Concerning this point, 
the seminal paper of Killewald and Bearak (2014), 
and the later paper of Wenz (2019), was timely and 
vital in increasing the awareness of how CQR models 
should be interpreted.

However, the approach that replaced the CQR model 
in many research streams is ill-suited to investigate 
quantile treatment effects. Despite an early proposal for 
estimating the QTE model by Firpo (2007), the UQR 
model gained massive popularity across several disci-
plines because it seemingly tackled the CQR model’s 
problem of localizing outcome differentials across the 
distribution (Killewald and Bearak, 2014; Wenz, 2019). 
However, the UQR model was developed to infer how 
changes in the independent variables influence uncondi-
tional quantile values (Firpo et al., 2009). The strength 
of an influence on the overall distribution is conditional 
on the independent variables’ composition, the distri-
bution of the outcome variable, and the unconditional 
quantile treatment effects. The UQR model’s coefficients 
capture these factors’ combined effect – called uncon-
ditional quantile partial effects (UQPE). Thus, the typ-
ical interpretation and use of UQR to estimate QTE 
within, for example, parts of the sociology literature 
(Budig and Hodges, 2014; Cooke, 2014; Killewald and 
Bearak, 2014; England et al., 2016; Glauber, 2018; Lin 
and Weiss, 2019; Wenz, 2019), the education literature 
(Porter, 2015), and the economics literature (Lindqvist 

and Vestman, 2011; Havnes and Mogstad, 2015) is 
insufficient, and in worst case erroneous.

The purpose of this paper is to provide a gentle 
introduction to the differences between UQR and 
QTE models. As noted above, there is still confusion 
surrounding quantile regressions in the applied liter-
ature. Therefore, this paper fills a vital knowledge gap 
by highlighting what research questions these different 
models can answer. The first part of the paper addresses 
the conceptual difference between individual-level 
quantile treatment effects and influences on overall 
distributions, which we call population-level influ-
ences. Note that although we place both approaches 
in the context of causal analysis, the general ideas and 
insights apply equally to non-causally oriented analy-
ses, such as purely descriptive studies.

The second part of the paper illustrates these concep-
tual differences between UQR and QTE models using a 
simple randomized experimental design setting (where 
control variables are not needed). The purpose is not 
to provide an exhaustive list of all scenarios in which 
quantile regression models differ. Instead, we pick two 
easy-to-communicate aspects that highlight the crucial 
differences between the models. Specifically, we show 
that UQR models respond differently than QTE mod-
els to variations of the treatment group’s share and 
the shape of the overall outcome distribution (nor-
mal distribution vs. right-skewed distribution). The 
simulations convincingly demonstrate that the UQR 
model answers another type of question than the QTE 
models, even in a simple setting such as a randomized 
controlled trial, where there is no need to account for 
confounders.

The conceptual and empirical differences between 
various quantile regression models underline the need 
to match the correct quantile regression model to the 
specific research question. Thus, this paper adds to the 
growing awareness that failure to match research ques-
tions with the proper analytical strategies can lead to 
deeply misleading conclusions (Lundberg, Johnson and 
Stewart, 2021). Nevertheless, a key question from an 
empirical point of view is whether published studies 
using UQR have indeed drawn the wrong conclusions 
from their data. To check this, we compare quantile 
regression estimates on the motherhood wage pen-
alty, family background effects, and scarring effects of 
unemployment.

Most importantly, we revisit the innovative mother-
hood wage penalty studies published in the American 
Sociological Review, which arguably sparked the use of 
UQR within sociological research (Budig and Hodges, 
2010, 2014; Killewald and Bearak, 2014; England et 
al., 2016). Reassuringly, using two-way fixed effects 
models on a pooled panel data sample from the 
National Longitudinal Study of Youth (NLSY79), we 
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find that population-level influences of motherhood 
(estimated using UQR) are similar to the impact on 
individual-level wage penalties (estimated using QTE 
models). In contrast, differences are large in the two 
other examples. We end the paper by discussing why 
different quantile regression models’ estimates diverge 
sometimes but not always, and conclude by providing 
some practical suggestions for future research.

Individual-Level Treatment Effects and 
Influences on the Overall Distribution
Individual-level: Average treatment effects 
and quantile treatment effects
Clarity about the research’s target of inquiry, known 
as estimand, is paramount for the research contrib-
uting to knowledge accumulation, and the targeted 
estimand guides which estimation procedure is needed 
(Lundberg et al., 2021). A key difference between QTE 
and UQR models is that they are developed to esti-
mate different estimands; the former concerns indi-
vidual-level treatment effects, while the latter captures 
population-level effects. In this section, we introduce 
the concept of individual-level QTEs by contrasting it 
to the much more commonly used average treatment 
effect (ATE), whereas the next section contrasts these 
individual-level effects (QTE and ATE) with their pop-
ulation-level counterparts. We begin this section by 
focusing on the conceptual distinction between QTE 
and ATE based on examples with random treatment 
assignments before briefly commenting on how to esti-
mate these quantities in more realistic settings.

Let us begin by defining the core concepts before 
illustrating these concepts using simulated data. In the 
potential outcomes framework (Morgan and Winship, 
2007), the causal effect of a treatment for a single unit 
is defined as:

δi = yi,1 − yi,0 [1]

with yi,1 as the outcome for observation i given the 
treatment and yi,0 for the same observation i without 
the treatment.

Using all observations within their two potential 
states, we could calculate the commonly used ATE 
as the difference between the average outcome given 
treatment and the average outcome (for the same indi-
viduals) given no treatment:

ATE =
n∑

i=1

δi
n

= yi,1 − yi,0
[2]

Causal effects are defined based on hypothetical states 
in a thought experiment, and observing both condi-
tions for each individual at once is obviously impossi-
ble in reality (Holland, 1986). Nevertheless, although 
one of the outcomes is always missing, we can estimate 

ATE by comparing the expected difference in the out-
come between treated and non-treated under certain 
assumptions, such as unconfoundedness and the sta-
ble unit treatment value assumption (here T  stands for 
treatment).

AT̂E = E [Y1]− E [Y0] = E[Y| T = 1]− E[Y | T = 0]
[3]

Thus, the estimated ATE is calculated as the difference 
between the average of treated units’ outcomes and 
the average outcome of non-treated ones. Notably, the 
assumptions needed depend on the chosen estimator; 
for example, when ATE of a binary treatment variable 
is estimated using OLS (rather than, for example, pro-
pensity score matching), average treatment effects on 
the treated and untreated must be identical to avoid 
bias (unless treatment and control groups are equally 
sized) (Słoczyński, 2022).

The QTE differs primarily from ATE in that it com-
pares quantile values rather than means; otherwise, it is 
based on a similar line of thought as the ATE. If we know 
the whole distribution of the potential outcomes under 
the treated and untreated conditions, then we can com-
pare quantile values in these potential outcome distribu-
tions. For example, we can compare the median of the 
outcome in the treated condition with the median in the 
non-treated condition to examine treatment strength at 
the median. (For now, we assume that both units would 
have the same rank within the counterfactual distribu-
tion in the absence of the treatment effect.) Thus, we can 
replace means, which are used to estimate ATE, with 
quantile values to calculate the QTE:

QTEτ = Qτ ,Y1 −Qτ ,Y0 [4]

where Qτ ,Y1 and Qτ ,Y0 are the values of the quantile τ  
for potential outcome distributions given the treatment 
condition and the no-treatment condition (Frölich and 
Melly, 2008; Melly and Wüthrich, 2017).

As noted above, since the counterfactual outcomes 
are unobserved, we need to compare treated and 
untreated units to estimate QTEs. Building upon the 
same generic assumptions as with ATE, we can esti-
mate the QTE by comparing the realized outcome 
distribution of the treated with the corresponding out-
come distribution of the non-treated:

’QTEτ = Qτ ,Y1 −Qτ ,Y0 = (Qτ|T = 1)− (Qτ|T = 0)
[5]

For example, we can calculate the QTE for the 95th 
percentile by comparing the value of the 95th percen-
tile among treated individuals to the 95th percentile 
among the untreated, much the same as we calculate 
ATE by comparing the mean of the outcome in the 
treated and untreated group. In fact, without any con-
trol variables, this is what the CQR model estimates.1
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Unlike ATE, QTEs can provide information about 
treatment effects for individuals located in differ-
ent parts of the outcome distribution, given that an 
assumption called rank invariance, or the somewhat 
weaker assumption of rank similarity, holds (Dong and 
Shen, 2018; Frandsen and Lefgren, 2018). Rank invar-
iance means that individuals maintain their expected 
ranks in the potential outcomes distributions. In that 
case, QTEs can be interpreted as treatment effects for 
individuals at quantile τ . For example, the estimated 
motherhood penalty at the 95th quantile identifies the 
motherhood impact for women that would have occu-
pied the 95th quantile in the absence of motherhood.

The plausibility of the rank invariance assumption 
depends on the specific research question. However, 
although the rank invariance assumption enriches the 
interpretation of quantile regression results, it can often 
be relaxed. Specifically, the QTEs can be interpreted 
as comparing the same quantile in the treated and 
untreated distributions, rather than individuals occu-
pying different positions within the potential outcomes 
distributions (Firpo, 2007; Melly and Wüthrich, 2017). 
Concerning the motherhood example, this would mean 
comparing the 95th percentile wages among mothers 
with the corresponding 95th percentile in the con-
trafactual childless scenario, where the same women 
may or may not occupy the 95th percentile in the two 
potential outcomes distributions.2

Estimating quantile treatment effects
Identifying QTEs is challenging in real-world settings 
without random assignment to the treatment or where 
we, for some other reasons, want to include control 
variables. Several scholars have noted that CQR is 
not well-suited to identify unconditional QTEs in the 
presence of control variables (Firpo, 2007; Killewald 
and Bearak, 2014; Porter, 2015; Wenz, 2019). There 
are, however, a few available approaches that identify 
unconditional QTEs adjusting for control variables.

To begin, Firpo (2007) provided an early two-step 
solution to estimating QTEs with a binary treatment 
variable and selection-on-observables, building on the 
propensity score matching framework. In the first step, 
a logistic or probit regression is used to estimate the 
likelihood of being treated. Then, a weighted CQR 
model is estimated in the second step, with weights 
identical to the inverse probability of being treated. 
Frölich and Melly (2010) extended Firpo (2007)’s 
approach, allowing for instrumental variables.

 More recent approaches have provided solutions 
to non-binary treatment variables and fixed effects. 
Powell (2020) has developed the generalized quantile 
regression (GQR) model that allows for categorical 
and continuous variables and instrumental variables. 
Finally, Borgen et al. (2021b) have developed the 

residualized quantile regression (RQR) model, which 
in addition to handling all treatment variables, is com-
putationally fast and can include high-dimensional 
fixed effects (Borgen, Haupt and Wiborg, 2021a). The 
RQR model solves the selection problem by regressing 
the treatment variable on the observed control varia-
bles, including fixed effects, using OLS. Then, the OLS 
residuals from the first step are used as the treatment 
variable in the second step CQR model.

It is beyond the aim of this paper to discuss these 
various estimation approaches in more detail. Here, 
our goal is to highlight the conceptual differences 
between different quantile regression models so that 
scholars can use the correct methodological tool for 
their research questions. Sociologists have a rich tool-
box for estimating QTEs if that is their goal, with flex-
ible, fast, and easy-to-implement models. Therefore, if 
the goal is to estimate QTEs, there is no reason to use 
the UQR model, which was not developed to estimate 
QTEs.

Population-level: Changes of the 
unconditional distribution
Individual-level treatment effects concern differences 
in outcomes between the same individual units given 
two treatment states. In contrast, population-level 
influences concern the consequences of the treatment 
on the outcome distribution, such as the overall ine-
quality level (Bloome and Schrage, 2019). For example, 
we could ask how much the motherhood wage penalty 
contributes to the observed level of wage inequality. 
This question’s answer depends partly on the share 
of mothers within a given population, as a sizeable 
penalty for a tiny group obviously results in a negli-
gible influence on the overall distribution. However, 
in contrast to changes to the overall mean, which is 
straightforward to infer from individual-level treat-
ment effects, the consequences on overall distributions 
are far more complex.

To illustrate the distinction between changes in pop-
ulation-level means and quantile values, we simulate 
two scenarios with random assignment to the treat-
ment, where one-third of the individuals are treated. 
In both scenarios, the ATE is equal to four. However, 
while the treatment effect is constant across all individ-
uals in the first scenario (Figure 1), it depends on the 
location of the treated within the outcome distribution 
(before the treatment) in the second one (Figure 2).

To begin with, let us examine how to translate the 
ATE into its population-level equivalence based on 
the simulated data in Figures 1 and 2. Panel A shows  
the potential outcomes under the treated and untreated 
conditions, and the average difference across the poten-
tial outcomes is four (i.e., ATE = 4). However, since 
only a third of the population receives the treatment 
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in this example, the treatment cannot increase the 
observed outcome distribution’s overall average by 
four units. Instead, the change of the overall mean 
from the counterfactual state in which no one was 
treated to the observed state (with 1/3 treated) is equal 
to the changes of the means caused by treatment status, 
weighted by the probability of being a member of the 
treatment or control group.

∆ Y = (Yi1 − Yi0) ∗ P (T = 1) + (Yi0 − Yi0) ∗ P (T = 0)
[6]

In both of our simulation scenarios, the treatment 
shifted the overall mean of the outcome distribution 
upwards by 1.333 since the treatment affected a third 
of the units and the average treatment strength was 
equal to four for all units.3

Unfortunately, the same simple logic cannot be 
applied to translate individual-level treatment effects 
into population-level effects on quantile values. Let us 

show this fact empirically before providing an intuition 
of why influences on quantile values are more com-
plicated than influences on means. Panel B of Figures 
1 and 2 show the counterfactual distribution without 
treatment (dashed line) and the observed distribution, 
consisting of a mix of treated and untreated individ-
uals (solid line). Moreover, it displays changes in the 
mean, 5th percentile, and 95th percentile of the over-
all outcome distribution. Even with uniform treat-
ment effects across all units (Figure 1), the treatment 
increases the 5th and 95th percentile values by 0.8 and 
2.0, respectively. Importantly, these different popula-
tion-level effects on quantile values appear despite the 
same quantile treatment effects for all and a random 
treatment assignment.

There are two important takeaway points from 
panels A and B of Figure 1. First, the treatment’s 
effect on the individual level differs markedly from 
its consequences on the population level, even in a 
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Scenario 1: Uniform treatment effect

Figure 1 Simulated data to illustrate the distinction between individual-level effects and population-level effects in a scenario with 
uniform treatment effect. Note: The data in this graph consists of one draw of a sample of 20,000 individuals i . The simulated data is 
generated in the following manner: First, we draw a random pre-treatment outcome variable that is normally distributed with a mean 
of 0 and a standard deviation of 5 (y0

i ∼ N(0, 5)). Second, we randomly assign the binary treatment Ti  to 1/3 of the sample. Third, we 
define the post-treatment outcome variable as y1

i = y0
i + η ∗ Ti , where the treatment strength η is 4 for all units. Note that we consider 

the case with full compliance and do not simulate stochastic deviations of treatment effects. ‘No one treated’ in panels A–C refers to a 
population where none have received the treatment. ‘All treated’ in panel A refers to a population where everyone is treated, whereas 
‘Observed (Treated & Not treated)’ refers to a population where 1/3 are treated. The supplementary online appendix includes Stata 
do-files to reproduce the graph.
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simplistic scenario. Second, since the treatment effect 
is constrained to be the same for all units, the treat-
ment’s increasing influence on the unconditional 
quantile value is not based on a rising quantile treat-
ment effect. This conclusion warrants the question of 
why a uniform treatment effect translates into het-
erogeneous impacts on the unconditional outcome 
distribution.

Compared to the counterfactual state where 
none is treated, treating a third of the population 
changes many of the individuals’ ranks throughout 
the observed outcome distribution. (Note that this is 
not the same as rank invariance, which is ranks in 
potential outcome distributions.) Let us revisit the 
potential outcomes framework and consider the case 
of the 95th percentile value. A third of all units with 
an outcome equal to or larger than the 95th percen-
tile in the counterfactual state where none is treated 
will later receive the treatment because of the random 
assignment (i.e., (Y1, Y0)⊥T ). However, once a third 

of the population is treated, giving us the observed 
outcome distribution, the share of treated units at 
the 95th percentile or above changes. As illustrated 
in panel D of Figure 1, the share of treated units 
between the 95th and 96th percentile is about 75% 
in the observed distribution (compared to 33% to-be-
treated in the counterfactual one). Thus, the treatment 
increased the treated’s outcomes and, in the process, 
changed their rank from the pre-treatment counter-
factual distribution to the observed distribution. If 
the treatment pushes treated into the upper 5%, some 
untreated must leave the upper 5% – otherwise, the 
95th percentile would no longer be a separator for 
the upper 5%. The newly entered treated units typi-
cally have higher outcomes than the upper 5% of the 
counterfactual distribution without treatment. Thus, 
the treatment increased the overall bar to be part of 
the top 5% of the observed outcome distribution.

The case for the fifth percentile value is even 
more complex. The treatment increased individuals’ 
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Scenario 2: Increasing treatment effect across the distribtion

Figure 2 Simulated data to illustrate the distinction between individual-level effects and population-level effects in a scenario with 
increasing treatment effects across the distribution. Note: The simulated data in this graph is generated similarly as in scenario 1 (see 
table note in Figure 1), except the post-treatment outcome variable is defined as y1

i = y0
i + η ∗ Ti , where η = 1+ 6 ∗ ri  and ri  defines 

the rank of the individual i  in the pre-treatment outcome distribution y0
i  and follows a discrete uniform distribution that ranges from 0 to 

1 (ri ∼ U[0, 1]). As an illustration, the treatment strength (η) is equal to 1+ 6 ∗ .05 = 1.3 for units located at the 5th percentile of the pre-
treatment outcome distribution and 1+ 6 ∗ .95 = 6.7 for units located at its 95th percentile. The average treatment strength summed 
over all quantiles is 4.0, as in scenario 1. The supplementary online appendix includes Stata do-files to reproduce the graph.
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outcomes with low pre-treatment outcomes by four 
units, placing them towards the middle of the observed 
distribution and reducing the share of treated units 
within the lower 5% of the observed distribution 
sharply (Panel D of Figure 1). In the upper 5% case, 
the treatment increased outcomes, thereby reducing 
the likelihood of the non-treated being part of the 
upper 5%. In contrast, the treatment pushed almost all 
treated units out of the lower 5%.

Still, the outcomes of the non-treated did not change, 
which are now the majority within the lower 5% (and 
the majority in the population). The value separating 
the lowest 5% of all units increases slightly, as the 
lower 5% of the observed distribution includes some 
non-treated with higher outcomes; nevertheless, it 
grows less than one would expect given the quantile 
treatment effect only. The low impact of the treatment 
on the lower end of the outcome distribution is because 
relatively few units are treated overall (33%). Thus, the 
movement of some treated out of the lower 5% does 
not influence the overall distribution as much as the 
massive inflow of treated into the upper rungs. This 
comparison highlights the importance of the treated 
group’s size for the influence on the overall distribu-
tion. At this point, it is worth mentioning that the com-
position effect disappears when all units are treated, in 
which case the population-level influence on quantile 
values coincides perfectly with the QTE. This similarity 
is because the underlying individual-level effect does 
not lead to a resorting of ranks.

Above, we discussed the case of a constant treat-
ment effect; we now briefly consider the case of an 
increasing quantile treatment effect (Figure 2). On 
the population level, increasing QTEs changes the 
share of the treated across the distribution differently 
compared to the uniform treatment effect (contrast 
panel D in Figures 1 and 2). In the second scenario, 
we observe more treated units in the lower and upper 
parts of the distribution. Thus, the second scenario’s 
increasing QTEs influence the lower parts of the out-
come distribution less and the upper parts more than 
the first scenario’s uniform QTEs.

The paragraphs above highlight that we cannot 
calculate the population-level changes in the overall 
quantile values based on the QTE and treated share. 
Scholars need to take into account that the treatment 
influences parts of the distribution differently – even if 
the treatment has a uniform impact on the individual 
level. Thus, to model the consequence of the treatment 
on the overall distribution, we need a method that cap-
tures the treatment’s entire influence on the population 
level. This influence depends on the treatment effect, 
but it also depends on the distribution of the treated 
and the unconditional distribution’s density at particu-
lar quantiles of interest.

Estimating influences on unconditional 
quantile values
Firpo et al. (2009) introduced the UQR model as a 
solution to estimate influences on unconditional dis-
tributions, which they call the unconditional quan-
tile partial effect (UQPE). They proposed a two-step 
approach where scholars (1) re-center the influence 
function (RIF) and (2) regress the RIF on the independ-
ent variables in an OLS model.4 The RIF is defined as

RIF (y;Qτ ) = Qτ +
τ − I (y ≤ Qτ)

fY (Qτ) [7]

with I describing the indicator function,5 fY (Qτ )refer-
ring to the density of the outcome at quantile τ , and 
Qτ to the sample quantile value of τ . The RIF has only 
two values, one for units with an outcome value below 
or equal to the quantile value Qτ and one for units 
with an outcome value large than Qτ. Regressing the 
RIF at a specific quantile on the independent variables 
gives the UQPEs, further detailed in Appendix A.

β̂ = E [RIF (y;Qτ ) | T = 1]− E [RIF (y;Qτ ) | T = 0]
[8]

From a technical point of view, UQR compares two coun-
terfactual distributions: one where all units are treated 
and one where none are treated. Thus, the UQR coeffi-
cient refers to changes from 0 to 100% treated. However, 
most scholars estimating UQPEs using the UQR model 
are not interested in such counterfactuals. Instead, they 
want to know how some groups contributed to the over-
all outcome distribution, such as overall wage inequality. 
The treatment’s contribution to the observed distribu-
tion can partly be recovered by multiplying the UQR 
coefficients by the proportion treated (Fortin, Lemieux 
and Firpo, 2011; Rios-Avila, 2020). That said, the UQR 
model may produce biased estimates of the UQPE when 
used to study considerable changes in the distribution of 
the independent variables, which is particularly relevant 
for binary predictors (Firpo et al., 2009; Rothe, 2009, 
2012; Firpo and Pinto, 2016; Rios-Avila, 2020).

The various sources of potential bias in the estimated 
UQPEs and QTEs, including confounding, are outside 
the scope of this paper; our main aim is to highlight the 
crucial difference between individual-level QTEs and 
population-level UQPEs. Thus, in the following data 
simulations, we ignore potential bias in the UQPE and 
emphasize the differences in raw coefficients.

Illustrating the Difference Between the 
UQR Model and QTE Models Using 
Simulated Data
Data generating process
This section illustrates the differences between the 
individual-level quantile treatment effects estimated by 
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QTE models and the population-level influences esti-
mated by the UQR model using further data simula-
tions. In the data simulations, we vary the distribution 
of the treatment variable and the outcome variable’s 
distribution, which are two key parameters that may 
cause UQPE to differ from QTE. Applications of UQR 
differ in the size of the treatment group (migrants, gen-
der, policy changes for all) or the distribution of interest 
(bell-shaped, like income or test scores, or skewed, like 
wealth or health measures). We suspect that erroneous 
conclusions in studies that have used UQR to study 
QTE can likely be traced back to treatment group size 
or distributional shape.

In the main simulations, all treatment variables are 
binary (d p

i ). We vary the probability p of the dummy 
treatment variable d p being equal to 1 from 90 to 
10%.6 The data simulation consists of running 1,000 
draws of N = 1,000 for four simulation scenarios.

In scenario 1, we generate data where the QTE does 
not vary over the outcome distribution (i.e., d p

i  pro-
duces a location shift only) and where, accordingly, 
the QTEs are identical to the average treatment effects 
(ATE) from OLS for all quantiles (QTEτ = OLS ∀ τ ). 
First, we draw a random pre-treatment outcome vari-
able that is normally distributed with a mean of 0 and 
a standard deviation of 1 (y0i ∼ N(0, 1)). Second, we 
assign the binary treatment variable d p

i  to p percent 
of the sample. Third, we define the post-treatment out-
come variable yi, which will serve as the outcome in the 
simulation analyses below, as:7

yi = y0i + β ∗ d p
i ; where y0i ∼ N (0, 1) and β = 1

[9]
In scenario 2, we generate data where the QTEs vary 

over the outcome distribution. We do this by allowing 
the strength of the treatment variable (d p

i ) to depend 
on the individual i’s percentile rank (ri) in the pre-treat-
ment outcome distribution (y0i ).

8

yi = y0i + (2 ∗ β ∗ ri) d p
i ;where y0 ∼ N (0, 1)

and ri ∼ U[0, 1] [10]

The setup in scenarios 3 and 4 is the same as in 
scenarios 1 and 2, respectively, except the outcome 
is a right-skewed variable. In scenarios 3 and 4, we 
replace y0i ∼ N(0, 1) from equations 9 and 10 with 
y0i ∼ Gamma(1, 2). The outcome variable’s distribu-
tional shape influence the density of the distribution at 
various quantiles. The density matters because the treat-
ment’s influence on an overall quantile value increases 
the lower the density around the quantile is. Suppose 
we have a skewed distribution such as wealth, where 
large parts have low density, and others have sizeable 
densities. In that case, a uniform QTE would likely 
translate into a differential UQPE across the outcome 
distribution.

We compare coefficients using the UQR model with 
coefficients using the CQR model in all four scenar-
ios. Note that while methods to identify unconditional 
QTEs in the presence of control variables have been 
developed (Firpo, 2007; Frölich and Melly, 2010; 
Powell, 2020; Borgen et al., 2021b), these methods 
trivially provide the same point estimates as the CQR 
model without any control variables. However, as the 
simulations demonstrate, the same is not the case for 
the UQR model since this model identifies influences 
on overall quantile values (i.e., UQPE) rather than 
individual-level QTEs.

The backdrop of this paper is the widespread use of 
the UQR model to estimate QTEs. Given this practice, 
the main objective of the simulations is to highlight 
that individual-level quantile treatment effects esti-
mated by QTE models differ from the population-level 
influences estimated by the UQR model. These coeffi-
cient differences reflect the fact that population-level 
influences differ from individual-level QTEs.

We perform all simulations in Stata 16.1 and use the 
rifreg command to estimate UQR coefficients (i.e., RIF-
OLS) and the qreg command to estimate QTE coef-
ficients. Supplementary Online Appendix D includes 
Stata codes to reproduce the results.

Share of treated individuals and the 
distribution of the outcome
Figure 3 presents the main simulation results from sce-
narios 1 to 4 with the QTE coefficients in the top row 
and the UQR coefficients in the bottom row. Under the 
faulty assumption that the UQR model identifies the 
same estimand as a QTE model, the top row results 
should be identical to the bottom row results. However, 
a quick inspection of Figure 3 shows that this clearly 
is not the case.

In simulation scenario 1, the QTE is equal to 1 at all 
quantiles, as shown by the QTE coefficients (panel A). 
Contrary to this, a constant QTE leads to a highly asym-
metric influence on overall quantile values (i.e., UQPE) 
across the distribution, as estimated by UQR (panel E). 
The UQR coefficients vary across the outcome distribu-
tion, with the trends being diametrically opposite depend-
ing on the treatment group’s size; the UQR coefficients 
decrease across the outcome distribution when 10% is 
treated and increase when 90% is treated. Thus, we can-
not infer from the structure of the UQR results on QTEs, 
which showcases the risk of misinterpreting the results 
when using UQR to study QTEs. Importantly, this is the 
case even in the simplistic scenario with a random assign-
ment to the treatment variable, a normally distributed 
outcome variable, and a treatment effect that is restricted 
to be identical for all.

In scenario 2, we simulate data where QTE increases 
monotonically across the outcome distribution. Again, 
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9QUANTILE REGRESSION ESTIMANDS AND MODELS

the estimated UQPE (panel F) differs considerably 
from the estimated QTE (panel B). When 10 or 25% is 
treated, UQR coefficients increase across the outcome 
distribution but in a much more dramatic fashion than 
for QTE. Interestingly, comparing the UQR coefficients 
in scenarios 1 and 2 highlights that we cannot use the 
UQR model to inform whether the QTEs are uniform 
(scenario 1) or increasing (scenario 2) when the share 
of treated is few. Turning to the case where 75% or 
90% is treated, the UQR coefficients show an inverted 
U-shape. In sum, different treatment composition leads 
to substantially different results.

In scenario 3, where the outcome is right-skewed, 
the QTE is again restricted to be the same across all 
quantiles. The estimated UQPEs (panel G) differ from 
the estimated QTEs (panel C), especially in the bot-
tom third of the outcome distribution, and the share 
of the treated individuals affects the estimated UQPE. 
The UQR estimates in panels G and E also differ fun-
damentally – despite the same underlying QTE. The 
differences highlight the importance of the density for 
the treated’s influence on unconditional quantile val-
ues, which is an important part of the construction of 

the RIFs. This result should further caution against an 
inference from UQR results to QTEs. The same QTEs 
may translate into vastly different UQPEs depending 
on the outcome variable’s distributional shape. Finally, 
in scenario 4, the QTEs increase monotonically across 
the outcome distribution (panel D) while the UQPE 
differs somewhat depending on the size of the treated 
group (panel H), although less than in the other three 
scenarios.

Treatment strength
The simulation results above illustrate that UQR 
estimates may differ from QTE estimates. However, 
the differences are not always as striking. Recall that 
a key reason why the UQR model differs from the 
QTE models is that the ranking of the individuals 
differs in the counterfactual distributions; for exam-
ple, the treatment pushes some treated individuals 
out of the bottom 5% of the outcome distribution 
and raises the bar to be among the top 5%. In this 
respect, the treatment strength matters because 
changes in the ranking are less likely if the treatment 
effects are small.
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Figure 3 Comparing the QTE model (Panels A-D) and UQR model (Panels E-H) from 1,000 draws of N = 1,000 from scenarios 1–4 
(scenarios 1 & 2: normally distributed outcome; scenarios 3 & 4: skewed outcome). Each line represents a dummy variable with 10, 25, 
50, 75, or 90% having the value 1, and is estimated in separate models. Note: See Online Appendix Table B1 for detailed coefficients, 
including the standard deviation of the coefficients from the random draws, and Appendix Figures B1 and B2 for the distribution of 
coefficients for selected quantiles.
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To illustrate this point, we have re-run simulation 
scenario 1 (described above), holding treatment effects 
fixed but varying the proportion of the variance in 
the outcome explained by the treatment (by varying 
the residual variation in the outcome) (Figure 4). This 
exercise shows that the differences between UQR and 
QTE coefficients increase when the relative strength 
of the treatment increases, with differences in this spe-
cific data simulation being mostly negligible when the 
treatment explains less than 1% of the variance in the 
outcome.

The Motherhood Wage Penalty Revisited
The oft-overlooked distinctions between quantile 
regression models are not merely technical, trivial dif-
ferences. Failure to match the correct quantile regres-
sion approach to the specific research question may, in 
some cases, result in wrong conclusions being drawn 
from the data and, in the end, misguided theories. The 
simulations above showed that the conceptual and 
methodological differences between quantile regres-
sion models could manifest themselves in diverging 

empirical patterns. This section revisits the mother-
hood wage penalty to examine whether the frequent 
use of the UQR model in this literature has led to 
wrong conclusions.

The motherhood wage penalty example is not chosen 
at random. The novel motherhood wage penalty stud-
ies sparked the use of UQR within broader sociologi-
cal research (Budig and Hodges, 2010, 2014; Killewald 
& Bearak, 2014; England et al., 2016). These studies 
used two-way fixed effects models on pooled panel 
data from the National Longitudinal Study of Youth 
(NLSY79). It started with Budig and Hodges (2010), 
who used CQR to show that the motherhood wage 
penalty is larger at the bottom of the earnings distribu-
tion than at the top. Killewald and Bearak (2014) later 
(correctly) criticized their use of CQR and (incorrectly) 
proposed to use the UQR model to estimate how the 
motherhood gap varies across the unconditional wage 
distribution. They found the largest penalties at the 
middle of the distribution and the smallest at the top, 
while Budig and Hodges (2014), in their reanalysis 
using the UQR model, found the largest penalties in 
the bottom half.
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Figure 4 Comparing UQR (panel A) and QTE (panels B) coefficients of a binary treatment variable (10% = 1) in simulation scenarios 
with varying treatment effects in terms of the treatment’s partial R2 (2,000 draws of N = 1,000). Each line represents coefficients 
in simulation scenarios with a given treatment strength, expressed as the proportion of the outcome’s variance explained by the 
treatment. Note: The simulation setup is similar to simulation scenario 1 (see equation 9), except that the residual variance across the 
simulations is set to 0.902 (R2 =0.10), 1.32 (R2 = 0.051), 22 (R2 = 0.023), 32 (R2 = 0.011), 52 (R2 = 0.005), and 92 (R2 = 0.002). In the main 
text, the residual variance was 1, which translated into a partial R2 of 0.082.
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We contribute to the motherhood wage penalty 
discussion by matching the estimand with a correct 
quantile regression estimator. As noted in the intro-
ductory section, the motherhood wage penalty is best 
answered based on individual-level QTEs. Scholars 
want to know whether the wage gap between moth-
ers and childless women differs across the wage 
distribution. The UQR model informs on popula-
tion-level influences on the unconditional wage dis-
tribution rather than such individual-level wage 
gaps. Furthermore, at the time of the ASR publica-
tions, methods that estimated QTEs in the presence 
of high-dimensional fixed effects did not exist. Since 
then, quantile extensions of classical fixed effects 
models have been developed (Borgen et al., 2021a, 
2021b). These developments allow us to account for 
unobservable time-constant individual traits within 
a QTE framework, which has yet to be done in the 
motherhood wage penalty literature.

Using the pooled NLSY79 panel data provided by 
England et al. (2016), we estimate quantile regres-
sions with individual-level fixed effects on a sample of 
non-Hispanic white women in the 1979–2010 waves 
(see note in Figure 5 for details). Our model specifica-
tion resembles that of England et al. (2016) but is more 
parsimonious, and the results are not meant as a strict 
replication. Moreover, we focus solely on the choice of 
quantile regression estimator and ignore several other 

unresolved challenges. First, our specification includes 
post-treatment variables that could be affected by the 
treatment, which may bias the penalties due to over-
control and collider bias (Elwert and Winship, 2014). 
Furthermore, our specification ignores the dynamics 
over time in wage growth (Ludwig and Brüderl, 2018), 
and it ignores potential challenges that could arise by 
pooling data over many years.9 Future empirical appli-
cations should tackle these challenges using an appro-
priate quantile regression model to identify unbiased 
motherhood QTEs.

Reassuringly, unlike the simulation results above, 
the motherhood QTE and UQR coefficients follow the 
same pattern across the wage distribution (Figure 5). 
Using both models, we find that the effects of number of 
children (continuous predictor) and motherhood status 
(binary predictor) are large for low-wage women but 
close to zero for high-earners (except in the very top, 
where the penalty again increases). For a woman with 
a wage equal to the 5th percentile, becoming a mother 
reduces her wages by about 15% for each additional 
child. The corresponding figure for a woman at the 
median or higher is less than 5%. These patterns across 
the distribution are consistent with Budig and Hodges 
(2010)’s initial results (see also Budig and Hodges, 
2014; Killewald and Bearak, 2014) but are not com-
patible with the claim that high-skilled, high-income 
women face the largest motherhood penalty.
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Figure 5 The estimated size of the motherhood wage penalty using an unconditional QTE model (RQR) and the UQR model in a sample 
of non-Hispanic white women from the NLSY79 (N = 3313 persons with 43.768 person-years). Note: Scatter points represent the 
estimated UQR (red dots) and RQR (blue dots) coefficients for quantiles 1–99 in steps of 1. The red and blue lines plot a local polynomial 
smooth of the coefficient on quantile. All models are estimated with controls for education, experience, tenure, usual work hours, 
full-time worker, age, enrolled in school, marital status, spouse’s earnings, spouse’s work hours per week, region, and rural region. The 
UQR coefficients are estimated using the rifhdreg command (Rios-Avila, 2020), and the RQR coefficients are estimated using the rqr 
command (Borgen et al., 2021a). Supplementary Appendix D includes information to reproduce our results.
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The striking similarity of the motherhood UQR and 
QTE coefficients raises the question of why these mod-
els differ sometimes but not always. Although several 
factors may come into play, one key reason is the rela-
tive treatment strength. The sizeable motherhood wage 
gap is important from theoretical and policy perspec-
tives; yet, motherhood still explains only a small frac-
tion of the variation in wages among white women. 
As illustrated in the simulations above, the differences 
between UQR and QTE estimates are negligible when 
the relative treatment strength is small.

However, the motherhood wage penalty example 
does not imply that one should infer QTEs from the 
UQR model. Overall, the simulation results illustrate 
that UQR estimates differ from QTE depending on 
the treated group’s size and the distribution of the out-
come variable. The Online Appendix C supplements 
this story by showing two empirical examples where 
the proportion treated and the outcome distribution’s 
shape impacts the differences between UQR and QTE 
coefficients. While the motherhood case was chosen 
because much of the sociological conversation around 
quantile regression has been spurred by this field, the 
two supplementary cases are chosen because they 
highlight how UQR and QTE coefficients may differ 
in real-world applications. The first case concerns soci-
oeconomic differences in academic achievements in 
the Panel Study of Income Dynamics data (Appendix 
Figure C1). UQR and QTE models give opposite pat-
terns across the achievement distribution when com-
paring children with high socioeconomic backgrounds 
with other children (similar to panels A-B and E-F in 
Figure 3). The second concerns the scarring effects 
of unemployment on tenure in General Social Survey 
data, where tenure is a heavily right-skewed variable 
(Appendix Figure C2). At the top of the distribution, 
the estimated unemployment coefficients using UQR 
differ markedly from those using QTE.

Discussion
Although several studies have emphasized the typical 
misinterpretation of the CQR model in the last dec-
ade (Killewald and Bearak, 2014; Porter, 2015; Wenz, 
2019), the crucial distinction between the UQR model 
and QTE models has received little attention across a 
range of disciplines. Consequently, there is a mismatch 
between the quantile regression models used in many 
studies (the UQR model) and these studies’ aims (iden-
tify unconditional QTEs). Failure to link the relevant 
estimand to the correct estimation strategy could lead 
to misleading conclusions and eventually misguided 
theories (Lundberg, Johnson and Stewart, 2020). This 
paper has clarified the conceptual distinction between 
the individual-level quantile treatment effect identified 

by QTE models (Firpo, 2007; Powell, 2020; Borgen et 
al., 2021b) and population-level influences on quantile 
value identified by the UQR model (Firpo et al., 2009). 
This concluding section discusses the implications for 
studies that have erroneously used the UQR model and 
provides guidelines for future work.

Although the UQR model was not designed to iden-
tify individual-level quantile treatment effects, a key 
question from an empirical point of view is whether 
published studies using UQR have indeed drawn the 
wrong conclusions from their data. Our data simula-
tions illustrate the importance of matching the specific 
research question to the correct quantile regression 
approach, as different classes of quantile regression 
models may give entirely different results (to different 
questions). Nevertheless, the absolute difference in the 
estimated coefficients from these approaches may, to 
some extent, depend on the relative strength of the 
treatment on the outcome variable. The differences 
between QTE and UQR coefficients diminish as the 
individual-level treatment effects shrink toward zero.

That said, we firmly believe that future research 
should match the research question to the correct 
quantile regression toolkit. Admittedly, the chief aim 
from an applied perspective is to provide the correct 
answer to some research question, and to that end, 
some ‘methodological pragmatism’ may be a strength. 
However, for researchers interested in QTEs, there is 
no need to take the risk of biased estimates, as methods 
exist that allow for the inclusion of covariates with-
out changing the coefficients’ interpretation (discussed 
below). Further, this study has not provided an exhaus-
tive list of all scenarios, and predicting the implications 
in complicated model specifications is difficult.

For that reason, we strongly recommend replicating 
key studies that have used UQR to estimate uncondi-
tional QTEs to check whether the results are sensitive 
to the choice of quantile regression estimator. Our rea-
nalyses of the motherhood wage penalty in the NLSY79 
data showed that QTE and UQR models lead to simi-
lar conclusions concerning how low- and high-earners 
are affected by motherhood. However, socioeconomic 
achievement gradients and scarring effects of unem-
ployment are examples where we show that mapping 
the correct method to the research question is essential 
(see Online Appendix C).

It may be tempting to read this paper as a caution-
ary tale about how the decade-long spread of UQR 
within sociology and related fields to study individu-
al-level treatment effects showcases the potential per-
ils of easy access to advanced regression techniques. 
However, such reading undervalues the powerful rip-
ple effects of novel methods use. The initial quantile 
regression paper in the American Sociological Review 
(Budig and Hodges, 2010) and the subsequent quantile 
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regression debate (Budig and Hodges, 2014; Killewald 
and Bearak, 2014; England et al., 2016) stimulated 
other researchers to go beyond averages to get com-
plete views of associations between variables. The 
quantile regression approach’s surging popularity 
contributed to substantial attention being directed 
towards further developing these methods. In the end, 
the reward is better empirical predictions and ways of 
testing theories against data.

In conclusion, we offer some general practical guide-
lines that help researchers match the research question 
to one of the three overall classes of quantile regres-
sion estimators. (For an overview of Stata packages to 
estimate the models, see Borgen et al., 2021a). First, 
research questions related to the payoff to characteris-
tics across the unconditional outcome distribution fall 
under the category of unconditional QTEs and should 
be studied using QTE models. Besides the parenthood 
wage penalty example discussed above, other examples 
of such research questions are whether the benefit of 
payroll taxation rules across the income distribution 
(Haupt and Nollmann, 2021), wage returns to edu-
cation (Borgen, 2015; Balestra and Backes-Gellner, 
2017), and socioeconomic achievement gradients 
(Grätz and Wiborg, 2020).

The estimation of such unconditional QTEs depends 
on the model specification. In models without any con-
trol variables, different QTE models trivially produce 
the same results, and one could use the standard CQR 
algorithm (Koenker, 2005). In the presence of control 
variables, unconditional QTEs can be estimated using 
the propensity score framework introduced by Firpo 
(2007) if the treatment is binary (Frölich and Melly, 
2010). In contrast, the generalized quantile regres-
sion (GQR) model of Powell (2020) and the residu-
alized quantile regression (RQR) model of Borgen et 
al. (2021b) can be used with all types of treatment 
variables (Borgen et al., 2021a). Note that including 
high-dimensional fixed effects may be problematic in 
a propensity score framework. In such cases, the RQR 
model provides a straightforward extension of classi-
cal linear fixed effects models, whereas one could use 
the GQR panel estimator of Powell (2022) to include 
non-additive fixed effects.

Second, research questions examining influences 
on unconditional distributions fall under the uncon-
ditional quantile partial effects category and could 
be analyzed using the UQR model. A few examples 
are analysis of factors influencing income inequality 
(Biewen and Seckler, 2019), comparisons of student 
achievement distributions (Loyalka et al., 2019), or 
studies into how countries differ regarding the gen-
dered division of housework time (Moreno-Colom, 
2017). The UQR model could be used to examine 
influences on distributions irrespective of the types of 

included control variables (Firpo et al., 2009; Borgen, 
2016; Rios-Avila, 2020).

Finally, some research questions aim at examin-
ing differences in distributions between groups, such 
as whether wages of public-sector workers are more 
homogenously distributed compared to private-sector 
ones (Melly, 2005b) or whether we can explain dif-
ferences in regional driving fatality distributions with 
differences in drinking and driving policies (Ying, Wu 
and Chang, 2013). Studies interested in such between-
group differences in quantile values should employ the 
traditional CQR model (Koenker and Bassett Jr, 1978; 
Koenker and Hallock, 2001).

Notes
1	 Comparable to OLS, we can also use quantile regressions 

for more descriptive purposes, with or without control var-
iables. For example, with gender as the independent varia-
ble, quantile regression coefficients give the differences in 
quantile values (e.g., the 90th percentile) between men and 
women.

2	 Notably, in contrast to CQR, a QTE model with a relaxed 
rank invariance assumption would still localize the treat-
ment effect within the overall distribution.

3	 ∆Y = 4.0 ∗ 1
3 ++0.00 ∗ 2

3 = 1.333.
4	 The seminal paper of Firpo et al. (2009) introduces three 

ways to estimate UQR models: RIF-OLS, RIF-logit, and 
RIF-NP. These three different estimators often produce 
similar results (Firpo et al., 2009, p. 966), and the RIF-
OLS model is preferred because of its ease of estimation 
and computational efficiency. The RIF-OLS approach 
builds upon the common ‘folk wisdom’ that a linear 
probability model (LPM) yields very similar estimates of 
average marginal effects (AME) as logit and probit mod-
els, and therefore does not need to estimate AME directly 
(Firpo, Fortin and Lemieux, 2007). Note also that the 
kernel density estimate depends on the bandwidth and 
kernel, which introduces some uncertainty that should be 
accounted for in the estimation of standard errors. These 
issues are not essential to our argument and will not be 
discussed here.

5	 An indicator function is a function that checks whether a 
statement is true under a given condition and returns the 
value 1 in this case and 0 in all other cases. It is thus just 
a statement about the construction of a dummy variable.

6	 In the Online Appendix Table B1, we also present simula-
tion results with a uniformly distributed continuous treat-
ment variable (∼ U (0, 1)), a categorical treatment variable 
(4 equally sized categories), and a skewed treatment variable 
(∼ Beta(2, 25)). Using a uniformly distributed continuous 
variable or categorical variable leads to similar results as 
with the evenly split binary variable (d50

i ), while the skewed 
variable does not.

7	 Across all simulation scenarios, the model assumes homosce-
dasticity (Var(y0i |d

p
i ) = σ2). Further, the increasing QTEs in 

scenarios 2 and 4 does not increase the variance of the error 
term (y0i ) compared to scenarios 1 and 3, respectively.
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8	 We multiply β wiith 2 in scenario 2 to make sure that the 
average treatment effect is equal to 1 in both scenario 1 and 
scenario 2.

9	 Some applications of UQR use pooled samples (as in our 
example). One potential pitfall is that in UQR, the depend-
ent variable is constructed using quantiles and densities 
from the pooled sample. If the outcome distributions change 
strongly over time, for example due to recessions, the quan-
tile values and densities of the time-specific and the pooled 
sample do not align. An UQR model then captures the 
influence of covariates, like year dummies, on this overall, 
pooled distribution, in which time-specific distributions are 
located at different points.

Supplementary Data
Supplementary data are available at ESR online.
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