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Abstract

Matrix majorization is a generalization of the classical majoriza-
tion for vectors. We study several basic questions concerning ma-
trix majorization for (0,±1)-matrices, i.e., matrices whose entries are
restricted to 0, 1 and −1. In particular, we characterize when the
zero vector is weakly majorized by a matrix, and show related re-
sults. Connections to linear programming are discussed. We obtain
simpler characterizations of majorization under different assumptions.
Also, several results on directional and strong majorization for (0,±1)-
matrices are shown.
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1 Introduction

The notion of majorization is of great importance in several mathematical
areas, such as analysis, probability and combinatorics. It deals with an order
notion reflecting “spread”, and it is a basis for a theory of mathematical in-
equalities. As an example, the famous Gale-Ryser theorem on the existence
of a (0, 1)-matrix with given row and column sums is formulated as a ma-
jorization condition, i.e., certain inequalities on the spread of all the given
numbers. Some central books on majorization are [15] (a basic reference for
theory and applications), [3] (connections to combinatorics and matrix the-
ory), [18] (generalizations and information theory in statistics) and [12] (a
classical text on inequalities). In recent years many papers have been writ-
ten on majorization, by extending the notion and connecting it to various
other mathematical questions, see e.g. [6, 7, 8, 9, 13] and references therein.
Among the goals of our paper there are

• Investigate the borderline between general results on matrix majoriza-
tion, typically related to linear optimization duality, and specific com-
binatorial results obtained for constrained situations where entries are
in the set {0,±1}.

• Establish connections to other notions, such as totally unimodular ma-
trices and network flows, and to qualitative matrix theory.

• Study the combinatorics of strong matrix majorization.

The set of all real m × n matrices with every element in a set X ⊆ R is
denoted by Mm,n(X). In particular, we investigate Mm,n(0,±1), Mm,n(0, 1),
Mm,n(0,−1) and Mm,n(±1). We denote Mm,n = Mm,n(R).

For a matrix A its j’th column is denoted by A(j) and its i’th row is
denoted by A(i). Note that we view real n-vectors as column vectors and
identify them with the corresponding n-tuples. Let R(A) denote the set of
rows of a matrix A. Let A ∈Mm,n and I ⊆ {1, 2, . . . ,m}, J ⊆ {1, 2, . . . , n}.
We let A(J ) denote the m × |J | submatrix of A obtained by deleting all
columns of A that are not indexed by J . A(I) denotes the same for rows.
A(\I) denotes the submatrix obtained by deleting the I-indexed rows from A.

Finally, A
(J )
(I) denotes the submatrix of A obtained as the intersection of rows

of A indexed by I and columns of A indexed by J .
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I denotes the identity matrix, O denotes the zero matrix, and we indicate
dimensions by subscripts, if needed. An all ones vector is denoted by e, and
the j’th coordinate vector in Rn is denoted by ej, so e =

∑n
j=1 ej. A zero

vector of size n is denoted by 0n, or simply 0, if n is clear from the context.
Let Ωn, Ωrow

n and Ωrow
m,n denote, respectively, the sets of all n × n doubly

stochastic matrices, the n × n row stochastic matrices and the m × n row
stochastic matrices. The transpose of a matrix A is denoted by At. The j’th
largest component of a vector x = [x1 x2 · · · xn]t is denoted by x[j] (j ≤ n).
The set of all n × n permutation matrices is denoted by P (n). The convex
hull of a set X ⊆ Rn is denoted by conv(X).

We recall some main notions of majorization from the literature.

(i) Let a, b ∈ Rn:

• Vector majorization is defined as follows: a � b if
∑k

j=1 a[j] ≤
∑k

j=1 b[j]
for any k = 1, . . . , n− 1 and

∑n
j=1 aj =

∑n
j=1 bj.

(ii) Let A ∈Mm1,n and B ∈Mm2,n:

• Weak matrix majorization: A �w B if there exists R ∈ Ωrow
m1,m2

such
that A = RB. Note that this definition only requires that A and B
have the same number of columns. Thus, the number of rows may be
different, and we shall permit this in the following.

(iii) Let A,B ∈Mm,n:

• Directional majorization: A �d B if Av � Bv for all v ∈ Rn.

• Strong majorization: A �s B if there existsD ∈ Ωm such thatA = DB.

It is known that strong majorization implies directional majorization, and
directional implies weak. None of the reverse implications holds in general,
see Examples 1 and 2 in [16].

Weak matrix majorization has a convenient geometrical characterization.

Proposition 1.1 Let A ∈Mm1,n, B ∈Mm2,n. Then

A �w B if and only if R(A) ⊆ conv(R(B)).
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This result was proved in [16, Proposition 3.3] for m1 = m2. The case
m1 6= m2 can be proved essentially in the same way.

The remaining paper is organized as follows. In Section 2 we establish
several criteria that allow us to check whether the zero matrix is weakly
majorized by a given matrix. These criteria are based on matrix theory, graph
theory, and optimization. In Section 3 we investigate when a (row) vector
is majorized by a given matrix and study the structure of the row vector
realizing this majorization. In particular, we consider totally unimodular
matrices and obtain some special results for them. In Section 4 we present a
quantitative approach to the above majorization problems. Section 5 deals
with directional and strong majorizations.

We use the standard notations R, Z and N for the set of real, integer and
natural numbers, respectively.

2 Basic weak majorization

In this section, we consider the notion of weak majorization. The focus is on
results for a basic question concerning majorization – when is the zero (row)
vector weakly majorized by a given matrix?

First, we explain the fundamental role of this question. Proposition 1.1
shows that checking if A �w B can be reduced to checking if each row of
A lies in the convex hull of the rows of B. Thus, we have problems of the
form: given a (column) vector a, check if at �w B holds. This problem can
be “reduced” even further.

Lemma 2.1 Let a ∈ Rn, B ∈Mm,n. Then at �w B if and only if 0tn �w B − eat.

Proof. The majorization at �w B means that at =
∑

i xiB(i) where xi ≥ 0
(i ≤ m) and

∑
i xi = 1. Now,

∑
i xiB(i) = at =

∑
i xia

t is equivalent to

0tn =
∑
i

xi(B(i) − at) =
∑
i

xi(B − eat)(i)

and the result follows.

Thus, weak matrix majorization reduces to basic majorization, i.e., check-
ing if the zero row vector is weakly majorized by a certain matrix. By the
definition of weak majorization, 0t �w B means that xtB = 0t for some
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xt = [x1 x2 · · · xm] satisfying
∑

i xi = 1 and xi ≥ 0 (i ≤ m). This im-
mediately shows that the rows of B are linearly dependent when 0t �w B
holds.

A useful tool applied in this paper is the classical Farkas’ lemma [17,
Section 7.3] which we state next.

Lemma 2.2 (Farkas’ lemma) Let A ∈ Mm,n and b ∈ Rn. Then exactly
one of the following two assertions is true:

(i) There exists x ∈ Rn such that Ax = b and x ≥ 0n.
(ii) There exists y ∈ Rm such that Aty ≤ 0m and bty > 0.

Corollary 2.3 Let B ∈ Mm,n. Then 0tn �w B if and only if the column
space of B does not contain a positive vector.

Proof. By definition of weak majorization, 0tn �w B if and only if xtB = 0tn,
where xt = [x1 x2 · · · xm] satisfies

∑
i xi = 1 and xi ≥ 0 (i ≤ m).

Let A =

[
Bt

et

]
∈ Mn+1,m. That is, A is a matrix obtained from Bt by

concatenating a row of ones. Then 0tn �w B if and only if Ax = en+1 for
some x ≥ 0m. By Farkas’ lemma the latter holds if and only if there is no
y′ ∈ Rn+1 such that Aty′ ≤ 0 and etn+1y

′ > 0.
Observe that etn+1y

′ > 0 if and only if y′n+1 > 0. Thus the following
conditions are equivalent:

• there is no y′ ∈ Rn+1 such that Aty′ =
[
B e

]
y′ ≤ 0 and etn+1y

′ > 0,

• there is no y ∈ Rn such that By < 0,

• there is no z ∈ Rn such that Bz > 0.

The last condition means that the column space of B does not contain a
positive vector.

We remark that the previous result may also be proved using Proposition
1.1, expressed in terms of support functions, see [16, Corollary 3.11].

The majorization question above is closely related to a notion of interest
in qualitative matrix theory (QMT) [5]. In QMT one studies linear algebraic
properties that depend on the entries of matrices (or vectors) only via their
sign. The area was initiated by the economist Paul Samuelson and motivated
by qualitative questions in economics. By sign here we mean +, − or 0. The
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qualitative class Q(A) of a matrix A consists of all matrices of the same size
and with the same sign in every entry as that of A. An important concept in
QMT is the following: consider a (consistent) linear system Ax = b, where
A is m × n and b ∈ Rm. We say Ax = b is sign-solvable if for every system
Ãx̃ = b̃ where Q(Ã) = Q(A) and Q(b̃) = Q(b), every solution x̃ (so Ãx̃ = b̃)
satisfies Q(x̃) = Q(x).

Next, let B be a real m × n matrix. Then B is called central ([5]) if it
has a nonzero nonnegative vector in its null space, i.e., there is an x ≥ 0n
with x 6= 0n and Bx = 0m. Moreover, B is sign-central provided that every
matrix B̃ ∈ Q(B) is central. A characterization of sign-centrality was given
in Theorem 5.4.1 in [5], and a closely related notion was investigated in [4].

We now connect this to our majorization results. If B is central, there
exists an x ≥ 0n with x 6= 0n and Bx = 0m. We may scale such a vector x so
that its sum is 1. Therefore, the definition means that the origin 0m is some
convex combination of the columns of B, i.e., 0m lies in the convex hull of
the columns of B. Thus, by Proposition 1.1, we have the following corollary.

Corollary 2.4 Let B ∈ Mm,n. Then 0tn �w B if and only if the matrix Bt

is central.

We can combine the last two assertions as follows:

Corollary 2.5 Let B ∈Mm,n. Then the following are equivalent:

1. 0tn � B.

2. The null space V0 of Bt contains a nonzero nonnegative vector.

3. The column space V1 of B does not contain a positive vector.

Proof. Item 1. is equivalent to Item 2. by Corollary 2.3. Also Item 1. is
equivalent to Item 3. by Corollary 2.4.

Recall that a linear programming problem (LP) is an optimization prob-
lem where we want to maximize (or minimize) a linear function f of finitely
many (decision) variables, where the variables are subject to finitely many
linear inequalities/equalities. The function f is usually referred to as the ob-
jective function. Often we have nonnegativity constraints on the variables.

Computationally one can check efficiently whether 0tn �w B holds by
solving the LP problem
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max{ctx : Btx = 0n, x ≥ 0m,
∑
j

xj = 1} (1)

where B is the givenm×nmatrix. The vector c and the objective function
ctx plays no role, as the purpose is to decide if there are feasible solutions,
i.e., solutions of the system Btx = 0n that satisfy all constraints, in our case
x ≥ 0m,

∑
j xj = 1. So, if there exists a nonnegative x with Btx = 0n

and
∑

j xj = 1, then 0tn �w B; otherwise the majorization does not hold.
Also, if the majorization holds, it follows from LP theory, or Carathéodory’s
theorem, that 0tn may be written as a convex combination of at most n + 1
rows in B. For instance, the simplex method for LP will find such n+1 rows
as there is always an optimal basic feasible solution when the LP has feasible
solutions. Alternatively, the LP in the next lemma may be used to check the
majorization 0tn �w B.

Lemma 2.6 Let B ∈Mm,n. Then 0tn �w B if and only if

max{etx : Btx = 0n, x ≥ 0m } =∞, (2)

i.e., this LP has optimal value which is infinite.

Proof. If 0tn �w B, then by the definition of weak majorization there exists
x ∈ Rm such that x ≥ 0m, etx = 1 and Btx = 0n. Then for any α > 0
the vector αx satisfies the constraints of the linear program (2) and as a
consequence the optimal value is infinite.

Conversely, if this optimal value is infinite, there must exist an x with
Btx = 0n, x ≥ 0m and etx > 0. By positive scaling of x we obtain a
nonnegative vector x′ with Btx′ = 0n and etx′ = 1, providing 0tn �w B.

The majorization result above has a connection to the theory of network
flows, as we now discuss. Let G = (V,E) be a directed graph with vertex set
V = {v1, v2, . . . , vm} and edge set E, n = |E|. Let A ∈ Mm,n be its vertex-
edge incidence matrix. Thus, we order vertices and edges, and associate
these with rows and columns of A, respectively. The column associated with
the edge (vi, vj) has two nonzero entries: −1 in row vi and 1 in row vj. In
particular, A is a (0,±1)-matrix.

Recall that a circulation in G is a function x : E → R satisfying∑
e∈δ+(v)

xe =
∑

e∈δ−(v)

xe (v ∈ V )
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where δ+(v) (resp. δ−(v)) is the set of edges with v as initial vertex (resp.
terminal vertex), and we write xe = x(e).

Proposition 2.7 Let A ∈ Mm,n be the vertex-edge incidence matrix of a
directed graph G, as above. Then the following statements are equivalent:

(i) 0tm �w At;
(ii) G has a nonzero nonnegative circulation;
(iii) G has a directed cycle.

Proof. For x ∈ Rn the equation xtAt = 0tm means that x is a circulation,
and the equivalence of (i) and (ii) follows, since a nonzero nonnegative cir-
culation x can be scaled so that

∑
e xe = 1. Next, assume (ii) holds. Then

xe1 > 0 for some edge e1 = (vi, vj). Since x is a circulation there is an
edge e2 = (vj, vk) with xe2 > 0. We continue like this and eventually find a
directed cycle C where each edge has a positive x-value, so (iii) holds. Fi-
nally, assume G has a directed cycle C. Define x by xe = 1 for each e ∈ C
and xf = 0 otherwise. Then x is a nonnegative nonzero circulation, and (ii)
holds.

We may always assume that columns of B are linearly independent, as
described next.

Lemma 2.8 Let B ∈Mm,n, rankB = r and let C be an m× r submatrix of
B with rankC = r. Then 0tn �w B if and only if 0tr �w C.

Proof. Let T ∈Mn be such invertible matrix that BT = [C Om,n−r].
Assume first that 0tn �w B. Then 0tn = xtB, where xt = [x1 x2 · · · xm],∑
i xi = 1 and xi ≥ 0 (i ≤ m). Then 0tn = 0tnT = xtBT . Thus 0tn �w BT =

[C Om,n−r]. It follows that 0tr �w C.
Next, assume that 0tr �w C. Then 0tn �w [C Om,n−r] = BT . It follows

that 0tn = 0tnT
−1 �w BTT−1 = B.

3 Reductions and combinatorial results

We continue the study of the basic majorization 0tn �w B, and the more
general majorization at �w B. A goal is to show how these problems may be
simplified.

The next lemma follows directly from the definition and our discussion
above.
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Lemma 3.1 Let B ∈ Mm,n. Then 0tn �w B if and only if there exist non-
negative reals x1, x2, . . . , xm such that x1B(1) + x2B(2) + · · · + xmB(m) = 0tn
and xj > 0 for some j ≤ m.

We shall call the following elementary row operations positive:

1. Row interchange. A row in the matrix can be interchanged with another
row : B(i) ↔ B(j).

2. Positive row multiplication. Each element in a row can be multiplied
by a positive constant : B(i) becomes λB(i), where λ > 0.

3. Positive row addition. A row can be replaced by the sum of that row
and a positive multiple of another row: B(i) is replaced by B(i) +λB(j),
where λ > 0.

Lemma 3.2 Let B ∈ Mm,n and let B′ ∈ Mm,n be obtained from B via
positive elementary row operations. If 0tn �w B′, then 0tn �w B.

Proof. For positive elementary row operations of types 1 and 2 the result
clearly holds, so we need to show the result for a single positive row addition.
Let B′ be obtained from B by adding λB(j) to i’th row of B, where λ > 0.
Without loss of generality assume that i = 1 and j = 2.

Suppose that 0tn �w B′. By Lemma 3.1 there exist nonnegative real
numbers x1, x2, . . . , xm such that x1(B(1)+λB(2))+x2B(2)+· · ·+xmB(m) = 0tn.
Then x1B(1)+(x2+x1λ)B(2)+x2B(2)+· · ·+xmB(m) = 0tn, so, again by Lemma
3.1, 0tn �w B.

Example 3.3 Let

B =

 1 0
−1 1
−1 −1

 +−→

 2 0
−1 1
−1 −1

 +−→

 1 1
−1 1
−1 −1

 +−→

 1 1
−1 1

0 0

 = B′.

Here 0tn �w B′ as B′ contains a zero row. Then, by Lemma 3.2, 0tn �w B.

As it was stated in Section 2, when investigating weak matrix majoriza-
tion A �w B, it suffices to consider the case where the matrix A has a single
row.
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For (0,±1)-vector a = [a1 a2 · · · an]t define its “support” sets

supp+(a) = {j : aj = 1},
supp−(a) = {j : aj = −1}, and

supp0(a) = {j : aj = 0}.

We use the same notation for row-vectors.
For a pair consisting of a vector a ∈ {0,±1}n and a matrixB ∈Mm,n(0,±1)

we associate the following set of positive integers:

I(B; a) = {i ≤ m : supp+(a) ⊆ supp+(B(i)), supp−(a) ⊆ supp−(B(i))} ⊆ N.

Remark 3.4 Observe that i ∈ I(B; a) if and only if for any j ≤ n with
aj 6= 0 we have bij = aj.

Remark 3.5 Let a ∈ {±1}n and B ∈ Mm,n(0,±1). Then I(B; a) = {i ≤
m : B(i) = at}.

Lemma 3.6 Let a ∈ {0,±1}n and B ∈ Mm,n(0,±1). Let I = I(B; a),
J = supp0(a). Then the following holds:

1. If I = ∅, then at 6�w B.

2. If I 6= ∅ and J = ∅, then at �w B.

3. If I 6= ∅ and J 6= ∅, then at �w B if and only if 0t|I| �w B
(J )
(I) .

Proof. By the definition of weak majorization at �w B if and only if
xtB = at, for some xt = [x1 x2 · · · xm] satisfying

∑
i xi = 1 and xi ≥ 0

(i ≤ m). Observe that if i 6∈ I = I(B; a), then the only possibility is
xi = 0. Indeed, to obtain 1 as a convex combination of numbers ≤ 1 we can
use positive weights only for numbers being 1. Similarly, to obtain −1 as a
convex combination of numbers ≥ −1 we can use positive weights only for
numbers being −1. Thus I must be nonempty for at �w B to hold, since
otherwise x = 0t. This proves Item 1.

If J = ∅, then a ∈ {±1}n and by Remark 3.5 I is nonempty if and only
if at is a row of B. This proves Item 2.

If I and J are nonempty, then at �w B if and only if at is a convex
combination of rows of B indexed by I(B; a). It follows that at �w B if and

only if 0t|I| �w B
(J )
(I) .
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Example 3.7 Let a = [1 1 0 0 − 1 − 1], and

B =


1 1 1 0 −1 −1
1 1 −1 0 −1 −1
1 1 0 0 −1 −1
1 0 1 0 0 −1
1 1 0 0 1 −1
−1 −1 0 0 −1 −1

 .

Here I = {1, 2, 3} and J = {3, 4}. Then a �w B if and only if

[0 0] �w B(J )
(I) =

 1 0
−1 0

0 0

 ,
and this majorization clearly holds, so a �w B.

Lemma 3.8 Let B ∈ Mm,n. If there exists I ⊆ {1, 2, . . . ,m} such that∑
i∈I

B(i) = 0tn, then 0tn �w B.

Proof. This is clear, as the assumption means that xtB = 0tn for xt =
[x1 x2 · · · xm] ∈ Rm given by xi = 1 when i ∈ I and xi = 0 otherwise.

The lemma above is a rather weak sufficient condition in the general
case. We note that even in the case B ∈ Mm,n(0,±1) this condition is not
necessary, as the next example shows.

Example 3.9

[
0 0

]
�w

 1 0
−1 1
−1 −1

 and
[

0 0 0
]
�w


1 0 1
1 1 0
0 1 1
−1 −1 −1

 .

In Lemma 3.8 one needs to find, if possible, a nonzero (0, 1)-vector x satisfying
xtB = 0tn. This leads, however, to a hard combinatorial problem.

Proposition 3.10 The problem of deciding, for a given B ∈ Mm,n, if there
exists a nonzero (0, 1)-vector x satisfying xtB = 0tn is NP-hard. The same is
true when B is restricted to be a (0,±1)-matrix.
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Proof. It suffices to prove the second statement. Let B = [bij] ∈ Mm,n

be a (0,±1)-matrix whose last row is −e and the submatrix B′ obtained by
deleting the last row is a (0, 1)-matrix with no zero row. Any (0, 1)-vector x
with xtB = 0tn must satisfy xm = 1. Indeed, otherwise xm = 0 and xi = 1
for some i < m, and then xtB 6= 0tn as B′ is a (0, 1)-matrix and B(i) = B′(i)
is nonzero.

Thus, there exists a nonzero vector x ∈ {0, 1}m satisfying xtB = 0tn if and
only if there exists a nonzero vector x′ ∈ {0, 1}m−1 satisfying (x′)tB′ = e.
The last statement is equivalent to deciding if some subclass of the support
sets Si = {j ≤ n : bij = 1} (i < m) is a partition of {1, 2, . . . , n}, and this
is the general exact cover problem [14, Problem 14], [10, page 53], which is
known to be NP-hard.

However, the next lemma shows that if 0tn �w B for a rational-valued
matrix B ∈ Mm,n(Q), then we can always find a convex combination with
rational coefficients. For more details on linear algebraic problems with ra-
tional data, see [17].

Lemma 3.11 Let B ∈ Mm,n(Q). Then 0tn �w B if and only if there exist
nonnegative λ1, λ2, . . . , λm ∈ Q such that λ1B(1) +λ2B(2) + · · ·+λmB(m) = 0tn
and λj > 0 for some j ≤ m.

Proof. This follows, e.g., from our earlier observation that finding an x ≥
0m such that xtB = 0tn and

∑
i xi = 1 can be done by linear programming.

When B is rational, an optimal basic feasible solution x is also rational. This
follows from Cramer’s rule.

A natural question is to estimate the denominators of x1, x2, . . . , xm ∈ Q
satisfying 0tn = xtB, xte = 1. In particular, in Example 3.9 we may use
xt = [1

2
1
4

1
4
] and [1

6
1
6

1
6

1
2
], respectively. If there is a finite set of denominators,

then there is a finite exhaustive search.

Let ∆B denote the maximal possible absolute value of any minor in

[
Bt

et

]
.

Lemma 3.12 Let B ∈ Mm,n(Z) and a ∈ Zn. If at �w B, then there exists
an integer β ∈ {1, 2, . . . ,∆B} such that at = λ1B(1) + λ2B(2) + · · ·+ λmB(m)

for some λi ∈ { 0β ,
1
β
, . . . , β−1

β
, 1} with

m∑
i=1

λi = 1.
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Proof. We have at �w B if and only if the linear programming problem (1)
max{etx : Btx = a, etx = 1, x ≥ 0m} has a feasible solution. Its feasible

region is given by {Ax = b, x ≥ 0m}, where A =

[
Bt

et

]
, b =

[
a
1

]
.

If rankA < rank [A b], then there are no feasible solutions. Otherwise we
exclude redundant equations to assume without loss of generality that rows

of A =

[
Bt

et

]
are linearly independent.

If this linear problem is feasible, then there exists a basic feasible solution
y ∈ Rm. By the definition of a basic feasible solution the vector z of nonzero

coordinates of y is a solution to Cx =

[
a
1

]
for some nonsingular square

submatrix C of

[
Bt

et

]
. Let β = | det(C)|. Observe that β ∈ Z, β > 0 and

β ≤ ∆B. Then, due to the Cramer’s rule, we have yi = αi

β
for some αi ∈ Z.

Finally, conditions ety = 1 and yi ≥ 0 imply that αi ∈ {0, 1, . . . , β}.

If B ∈Mm,n(0,±1), then we can estimate the maximal possible absolute
value of minors of B. The following is the Hadamard determinant bound.

Theorem 3.13 [11, Paragraphes 2–4] Let A be an n×n matrix with entries
from the complex unit disk. Then | det(A)| ≤ nn/2.

This bound is attainable for Hadamard matrices. A Hadamard matrix is
a square (±1)-matrix whose rows are mutually orthogonal. The order of a
Hadamard matrix must be 1, 2, or a multiple of 4 and it is conjectured that
Hadamard matrices exist for all these orders. More detailed information can
be found in a recent survey [1].

Corollary 3.14 Let B ∈Mm,n(0,±1). Then ∆B ≤ rr/2, where r = rank

[
Bt

et

]
.

The following class of (0,±1)-matrices plays an important role in com-
binatorial optimization since they give a quick way to verify that a linear
program has an integral optimum, when any optimum exists.

Definition 3.15 A totally unimodular matrix is a matrix for which every
square submatrix has determinant 0 or ±1. In particular, a totally unimod-
ular matrix is a (0,±1)-matrix.
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Specifically, if A is totally unimodular, and b is integral, then linear pro-
grams of forms like min{ctx : Ax ≥ b, x ≥ 0} or max{ctx : Ax ≤ b} have
integral optima, for any c, provided that b is integral and optimal solutions
exist. Hence if A is totally unimodular and b is integral, then every extreme
point of the feasible region (e.g., {x : Ax ≤ b}) is integral and thus the
feasible region is an integral polyhedron.

Totally unimodular matrices appear in many combinatorial problems and
graph theory, see [17]. For example, the incidence matrices of directed graphs
or undirected bipartite graphs are totally unimodular [2, Lemma 2.6].

Lemma 3.16 Let B ∈Mm,n be a totally unimodular matrix. Then the max-

imal absolute value of all minors of

[
Bt

et

]
does not exceed rank

[
Bt

et

]
.

Proof. Let C be an arbitrary r× r submatrix of

[
Bt

et

]
for some r ≤ n,m.

If det(C) 6= 0, then r ≤ rank

[
Bt

et

]
.

If C is a submatrix of B, then det(C) ∈ {0,±1} since B is totally uni-
modular. Otherwise we can expand det(C) along the row et to obtain that
−r ≤ det(C) ≤ r.

The following example shows that the upper bound in Lemma 3.16 is
attained.

Example 3.17 It is easy to see that the matrices [ 1 −1 ] and
[
1 0 −1
0 1 −1

]
are to-

tally unimodular. Direct computations show that det [ 1 −11 1 ] = 2 = rank [ 1 −11 1 ]

and det
[
1 0 −1
0 1 −1
1 1 1

]
= 3 = rank

[
1 0 −1
0 1 −1
1 1 1

]
.

We can generalize this example to the matrices of arbitrary size in the
following way.

Lemma 3.18 Let n ∈ N and define Bn =
[
In−1 −e

]
∈ Mn−1,n. Then the

following holds:

1. Bn is totally unimodular.

2. det

[
Bn

et

]
= n.

14



Proof. 1. Consider arbitrary square submatrix B′ = Bn
(J )
(I) of Bn, where

I ∈ {1, 2, . . . , n − 1} and J ∈ {1, 2, . . . , n} with |I| = |J |. If n 6∈ J , then
B′ is a submatrix of In−1 and therefore det(B′) ∈ {0, 1}.

Assume that n ∈ J . In this case there exists i ∈ I such that i 6∈ J . As
a consequence, some row of B′ is −et|I| =

[
0 · · · 0 −1

]
. Then expansion

along this row implies that det(B′) ∈ {± det(Bn
(J\{n})
(I\{i}) )} ∈ {0,±1} since

Bn
(J\{n})
(I\{i}) is a submatrix of In−1.

2. If we subtract first n− 1 rows of

[
Bn

et

]
from the last one, we obtain

that det

[
Bn

et

]
= det

[
In−1 −e

0 n

]
= n.

Applying Lemma 3.16 to the result of Lemma 3.12 we obtain the follow-
ing.

Corollary 3.19 Let B ∈ Mm,n be a totally unimodular matrix and a ∈ Zn.

Let r = rank

[
Bt

et

]
. Then at �w B implies that there exists β ∈ {1, 2, . . . , r}

such that at = λ1B(1)+λ2B(2)+ · · ·+λmB(m) for some λi ∈ { 0β ,
1
β
, . . . , β−1

β
, 1}

with
m∑
i=1

λi = 1.

Lemma 3.20 Let B ∈ Mm,n be a totally unimodular matrix and let a ∈
{0,±1}n. Then the problem of determining whether at �w B holds can be
reduced to a linear program with a totally unimodular coefficient matrix.

More specifically, there exists a totally unimodular k × l submatrix A of
B such that at �w B if and only if the linear program

max{etx : Atx = 0l, x ≥ 0k }

has unbounded optimal value.

Proof. Lemma 3.6 provides a way to find such k × l submatrix A of B
that at �w B if and only if 0tl �w A. Note that A is totally unimodular as a
submatrix of a totally unimodular matrix B.

Finally, by Lemma 2.6 0tl �w A if and only if the linear program max{etx :
Atx = 0l, x ≥ 0k } has unbounded optimal value.

Lemma 3.21 Let B ∈ Mm,n(0,±1). Let j ≤ n be such that B(j) 6= ±e and
B(j) contains no zeros. Then the following conditions are equivalent.
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1. 0tn �w B.

2. There exists a ∈ {±1}n such that

at �w B(supp+(B(j))) and −at �w B(supp−(B(j))).

Proof. Define I = supp+(B(j)) = {i ≤ m : bij = 1}. Observe that the sets
supp+(B(j)) and supp−(B(j)) are nonempty by the choice of B(j).

Assume that Item 2. holds. Then at =
∑
i∈I

αiB(i) = −
∑
s6∈I

αsB(s) for some

α1, α2, . . . , αm ∈ R with αi ≥ 0 and
∑
i∈I

αi =
∑
s6∈I

αs = 1.

Then

1

2

m∑
i=1

αi = 1 and
1

2

∑
i∈I

αiB(i) +
1

2

∑
s6∈I

αsB(s) =
1

2
(at − at) = 0tn.

Thus 0tn �w B.
Assume that Item 1. holds. Then 0tn =

∑
i

αiB(i) for some α1, α2, . . . , αm ∈

R with αi ≥ 0 and
∑

i αi = 1. In particular, 0 =
∑

i αibij =
∑
i∈I

αi −
∑
s6∈I

αs.

It follows that
∑
i∈I

αi =
∑
s6∈I

αs = 1
2
.

Also

0tn =
m∑
i=1

αiB(i) =
∑
i∈I

αiB(i) +
∑
s6∈I

αsB(s).

Thus
∑
i∈I

αiB(i) = −
∑
s6∈I

αsB(s). Let at = 2
∑
i∈I

αiB(i) = −2
∑
s6∈I

αsB(s).

Finally, at �w B(supp+(B(j))) and −at �w B(supp−(B(j))) by Proposition 1.1.
Also a ∈ {±1}n.

4 Criteria based on the number of rows

Lemma 4.1 Let B ∈ Mm,n(0,±1) be such that rows of B are distinct and
m > (3n − 1)/2. Then 0tn �w B.

Proof. If 0tn is a row in B, then clearly 0tn �w B. Assume next that 0tn
is not a row in B. The set S of nonzero (0,±1)-vectors of length n has
cardinality 3n − 1, and it is symmetric in the sense that, for each x ∈ S we
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have −x ∈ S. So S may be partitioned as S = S1 ∪ S2 where S1 and S2 are
disjoint, each set has cardinality (1/2)(3n − 1) and S2 = {−x : x ∈ S1}. As
m ≥ (1/2)(3n−1), B must contain some x ∈ S1 and also −x ∈ S2. But then
0tn = (1/2)x+ (1/2)(−x), so 0tn �w B.

For instance, if n = 2 and B ∈ Mm,2(0,±1) has at least 5 distinct rows,
then 0t2 �w B. This bound is attained as the following example shows.

Example 4.2 Let n = 2. Then for m = (3n − 1)/2 = 4 we consider B2 ∈
M4,2(0,±1) having the rows [1 1], [1 0], [1 − 1], [0 1]. Then 0t2 is not a
convex combination of these points, so 0t2 6�w B2.

Let n = 3. Then for m = (3n − 1)/2 = 13 we consider

B3 =

[
1 1 1 1 1 1 1 1 1 0 0 0 0
−1 −1 −1 0 0 0 1 1 1 1 1 1 0
−1 0 1 −1 0 1 −1 0 1 −1 0 1 1

]t
∈M13,3.

Then all 13 rows of B3 are distinct and [0 0 0] 6�w B3.

Let n ≥ 1 and define

γ̂(n) = max{m : 0tn 6�w B for some B ∈Mm,n(0,±1) with distinct rows}.

We generalize Example 4.2 in order to compute γ̂(n) exactly and show
that the bound from Lemma 4.1 is attained for all n ≥ 1.

Theorem 4.3 For each n ≥ 1 it holds that γ̂(n) = (3n − 1)/2.

Proof. By Lemma 4.1, γ̂(n) ≤ (3n − 1)/2. Thus we only need to find a
matrix B ∈M(3n−1)/2,n with distinct rows such that 0tn 6�w B.

Let B1 = [1] ∈ M1,1. Observe that (31 − 1)/2 = 1 and 0 6�w B1. For
i = 2, 3, . . . , n we construct Bi ∈M(3i−1)/2,i in the following way. Let the first
3i−1 rows of Bi be all (0,±1)-vectors x of length i with x1 = 1. Indeed, there
are 3i−1 of them. Let the last (3i−1−1)/2 rows of Bi be the rows of the matrix[
0 3i−1

2

Bi−1

]
. Then the total number of rows in Bi is 3i−1 + (3i−1 − 1)/2 =

(3i − 1)/2.
We show that 0ti 6�w Bi. For fixed i define N = (3i − 1)/2. Assume

that xtBi = 0ti, where xt = [x1 x2 · · · xN ], xj ≥ 0 and
∑

j xj = 1. Then
x1 = x2 = · · · = x3i−1 = 0; otherwise (xBi)1 > 0. Thus 0ti �w [0i−1 Bi−1] and
that is equivalent to 0ti−1 �w Bi−1, a contradiction.

Finally, 0tn 6�w Bn, Bn ∈ M(3n−1)/2,n and the rows of Bn are distinct. It
follows that γ̂(n) = (3n − 1)/2.

The argument in Lemma 4.1 and Theorem 4.3 can be further generalized.
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Lemma 4.4 Let K ⊆ R be such that 0 ∈ K, −K = K and k := |K| < ∞.
Let B ∈Mm,n(K) be such that the rows of B are distinct and m > (kn−1)/2.
Then 0tn �w B.

Proof. If 0tn is a row in B, then clearly 0tn �w B. Assume next that 0tn is
not a row in B. The set S of nonzero K-vectors of length n has cardinality
kn − 1, and it is symmetric in the sense that, for each x ∈ S we have
−x ∈ S. So S may be partitioned as S = S1 ∪ S2 where S1 and S2 are
disjoint, each set has cardinality (1/2)(kn − 1) and S2 = {−x : x ∈ S1}. As
m > (1/2)(kn−1), B must contain some x ∈ S1 and also −x ∈ S2. But then
0tn = (1/2)x+ (1/2)(−x), so 0tn �w B.

Let n ≥ 1 and K ⊆ R. We define

γ̂K(n) = max{m : 0tn 6�w B for some B ∈Mm,n(K) with distinct rows}.

Theorem 4.5 Let K ⊆ R be such that 0 ∈ K, −K = K and k := |K| < ∞.
Then γ̂K(n) = (kn − 1)/2 for any n ≥ 1.

Proof. By Lemma 4.4 we obtain that γ̂(n) ≤ (kn − 1)/2. Thus we only
have to find such matrix B ∈ M(kn−1)/2,n that rows of B are distinct and
0tn 6�w B.

Let B1 ∈M k−1
2
,1 be such that rows of B1 are all distinct positive elements

of K. Then indeed B1 contains (k − 1)/2 distinct rows and 0 6�w B1. For
i = 2, 3, . . . , n let us construct Bi ∈ M(ki−1)/2,i the following way. Let the
first k−1

2
ki−1 rows of Bi be all K-vectors x with x1 > 0. Indeed, there are

k−1
2
ki−1 of them. Let the last ki−1−1

2
rows of Bi be the rows of the matrix[

0 3i−1

2

Bi−1

]
. Then the total number of rows of Bi is k−1

2
ki−1+ ki−1−1

2
= ki−1

2
.

We show that 0ti 6�w Bi. Let N = ki−1
2

. Assume that xtBi = 0ti, where
x = [x1 x2 · · · xN ], xj ≥ 0 and

∑
j xj = 1. Then x1 = · · · = xki−1 = 0.

Indeed, otherwise ([x1 x2 · · · xN ]Bi)1 > 0. Thus 0ti �w [0i−1 Bi−1] and that
is equivalent to 0ti−1 �w Bi−1, a contradiction.

Finally, 0tn 6�w Bn, Bn ∈ M(kn−1)/2,n and rows of Bn are distinct. It
follows that γ̂K(n) = (kn − 1)/2.

We illustrate the main construction in the above proof by the following
example.
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Example 4.6 For n = 2 and K = {0,±1,±2} let

B =
[

2 2 2 2 2 1 1 1 1 1 0 0
−2 −1 0 1 2 −2 −1 0 1 2 1 2

]t
∈M12,2(K).

Then B has 12 = (52 − 1)/2 distinct rows and it is straightforward to check
that [0 0] 6�w B.

5 Strong and directional majorization

We now turn to other majorization results, both for other types of majoriza-
tion and for more general matrices.

Lemma 5.1 Let A,B ∈Mm,n such that A �d B. Then etA = etB.

Proof. If A �d B, then for every j ∈ {1, 2, . . . , n} A(j) = Aej � Bej = B(j).
Hence by the definition of vector majorization etA(j) = etB(j).

Lemma 5.2 Let B ∈Mm,n. Then the following are equivalent.

1. Om,n �s B.

2. Om,n �d B.

3. etB = 0tn.

Proof. Assume that Om,n �s B. Then Om,n �d B and, from this, etOm,n =
0tn = etB by Lemma 5.1. Assume that etB = 0tn. Then Om,n = 1

m
JB and

O �s B.

Lemma 5.3 Let A,B ∈ Mm,n(±1, 0) and A �w B. Then the following
holds:

1. If B ∈Mm,n(0, 1), then A ∈Mm,n(0, 1).

2. If B ∈Mm,n(0,−1), then A ∈Mm,n(0,−1).

Proof. This follows from Proposition 1.1.

The next example shows that a similar result to Lemma 5.3 does not hold
for (±1)-matrices.
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Example 5.4 [
0 0
1 −1

]
�w

[
−1 1

1 −1

]

Recall that for x ∈ {0,±1}n and A ∈Mm,n(0,±1) we defined

I(A;x) = {i ≤ m : supp+(x) ⊆ supp+(A(i)), supp−(x) ⊆ supp−(A(i))}.

• For x ∈ {0,±1}n and A ∈Mm,n(0,±1) we denote x'A = |I(A;x)|.

• For x ∈ Rn and A ∈ Mm,n let x=A = |{i ≤ m : A(i) = xt}|, the number
of rows in A that are equal to xt.

We use the same notations I(A;x), x=A and x'A for a row-vector x.

Remark 5.5 Let x ∈ {0,±1}n and A ∈Mm,n(0,±1). Then

• x'A = |{i ≤ m : for all j ≤ n either xj = 0 or aij = xj}|.

• If x ∈ {±1}n, then x'A = x=A.

• If x = 0n, then x'A = m.

Example 5.6 Let x =

 1
0
−1

, A =


1 0 −1
1 1 −1
1 1 −1
0 0 −1

.

Here x=A = |{1}| = 1 and x'A = |{1, 2, 3}| = 3.

We now show that the number x=A plays a role for directional majorization,
in a necessary condition.

Lemma 5.7 Let A,B ∈ Mm,n(0,±1) and A �d B. Let x ∈ {±1}n. Then
x=A ≤ x=B.

Proof. Let y be a (0,±1)-vector of length n. It is straightforward to see
that ytx ≤ xtx = n and ytx = xtx = n if and only if x = y. It follows
that the maximal possible entries of Ax and Bx are n and the number of
such entries in Ax (respectively, Bx) is precisely x=A (respectively, x=B). Since
Ax � Bx, we may conclude that x=A ≤ x=B. Indeed, otherwise x=A > 0 and
x=A∑
i=1

(Ax)[i] >
x=A∑
i=1

(Bx)[i], a contradiction.

Recall that the set of all m×m permutation matrices is denoted by P (m).
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Corollary 5.8 Let A ∈ Mm,n(±1) and B ∈ Mm,n(0,±1). Then A �d B if
and only if A = PB for some P ∈ P (m).

The following example shows that the inequality in Lemma 5.7 can be
strict for (0,±1)-vectors.

Example 5.9 Let B =

[
1 −1
−1 1

]
. Then (1

2
J2)B = O. In particular,

O �s B and, as a consequence, O �d B. Let x =
[

1 −1
]
. Then x=O = 0 <

x=B = 1.

Remark 5.10 Example 5.9 shows that Corollary 5.8 may not hold if A ∈
Mm,n(0, 1) or A ∈Mm,n(0,−1).

It turns out that Lemma 5.7 remains true for (0,±1)-vectors if we sub-
stitute x= by x'.

Lemma 5.11 Let A,B ∈ Mm,n(0,±1) and A �d B. Let x ∈ {0,±1}n.
Then x'A ≤ x'B.

Proof. Let y ∈ {0,±1}n. It is straightforward to see that ytx ≤ xtx and
ytx = xtx if and only if for any k ≤ n xk 6= 0 implies that yk = xk. It follows
that the maximal possible entry of Ax and Bx is xtx and the number of
such entries in Ax (respectively, Bx) is precisely x'A (respectively, x'B). Since
Ax � Bx, we may conclude that x'A ≤ x'B. Indeed, otherwise x'A > 0 and
x'A∑
i=1

(Ax)[i] >
x'A∑
i=1

(Bx)[i], a contradiction.

The same is true for strong majorization since A �s B implies A �d B:

Corollary 5.12 Let A,B ∈ Mm,n(0,±1) and A �s B. Let x ∈ {0,±1}n.
Then x'A ≤ x'B.

The following lemma allows us to reduce the problem for strong majoriza-
tion to the case x'A < x'B for any x with x'A > 0. This is a strong condition,
especially together with the equality etA = etB.

For A ∈ Mn1 and B ∈ Mn2 the matrix A ⊕ B denotes the direct sum of
the matrices, i.e., the block-diagonal matrix[

A O
O B

]
∈Mn1+n2 .
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Lemma 5.13 Let x ∈ {0,±1}n and A,B ∈Mm,n(0,±1). Assume that m >
x'A = x'B > 0. Then A �s B if and only if

A(I(A;x)) �s B(I(B;x)) and A(\I(A;x)) �s B(\I(B;x)).

Proof. Let k = x'A. Without loss of generality we may assume that
I(A;x) = I(B;x) = {1, 2, . . . , k}.

Assume that A(I(A;x)) �s B(I(B;x)) and A(\I(A;x)) �s B(\I(B;x)). It follows
that A(I(A;x)) = Q1B(I(B;x)) and A(\I(A;x)) = Q2B(\I(B;x)) for some Q1 ∈ Ωk

and Q2 ∈ Ωm−k. Then A = (Q1 ⊕Q2)B and Q1 ⊕Q2 ∈ Ωm.
Assume that A �s B. Then A = QB for some Q ∈ Ωm. We show that Q

is block-diagonal. Consider an arbitrary i ≤ k. Then A(i) =
m∑
s=1

qisB(s).

Let l ∈ {k + 1, k + 2, . . . ,m}. Then B(l) 6∈ I(B;x). It follows that for
some j ≤ n we have xj 6= 0 and xj 6= blj. We show that qil = 0. Without
loss of generality assume that xj = 1. If xj = −1, then the same arguments
apply. Thus aij = 1 since i ∈ I(A;x) and blj ≤ 0. It follows that

aij =
m∑
s=1

qisbsj =
m∑

s=1,s6=l

qisbsj + qilblj ≤
m∑

s=1,s6=l

qis + qilblj.

If qil 6= 0, then
m∑

s=1,s6=l
qis < 1 and aij ≤

m∑
s=1,s 6=l

qis + qilblj ≤
m∑

s=1,s6=l
qis < 1, a

contradiction.

Finally, for any i ≤ k we have
k∑
s=1

qis = 1. It follows that
k∑
i=1

k∑
s=1

qis = k,

that is, the top-left k× k-submatrix Q1 of Q is doubly stochastic. Hence the
bottom-right (m− k)× (m− k)-submatrix Q2 of Q is also doubly stochastic
and Q = Q1 ⊕ Q2. It follows that A(I(A;x)) = Q1B(I(B;x)) and A(\I(A;x)) =
Q2B(\I(B;x)) for Q1 ∈ Ωk and Q2 ∈ Ωm−k.

Example 5.14 Let

A =


1 0 −1
1 0 −1
−1 0 0

0 0 1

 and B =


−1 0 1

0 0 0
1 1 −1
1 −1 −1

 .
Then B 6�s A because for x = [1 1 − 1] we have x'B = 1 6≤ x'A = 0.
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Consider x = [1 0 − 1]. Then x'A = x'B = 2. Thus, by Lemma 5.13,
A �s B if and only if

A(I(A;x)) =

[
1 0 −1
1 0 −1

]
�s B(I(B;x)) =

[
1 1 −1
1 −1 −1

]
and

A2 := A(\I(A;x)) =

[
−1 0 0

0 0 1

]
�s B2 := B(\I(B;x)) =

[
−1 0 1

0 0 0

]
Consider x = [−1 0 0]. Then x'A2

= x'B2
. Thus A2 � B2 if and only if

[−1 0 0] �s [−1 0 1] and [0 0 1] �s [0 0 0]. The latter does not hold.
Therefore, A 6�s B.

Lemma 5.15 Let A,B ∈ Mm,n. Assume that A(j) = B(j) = αe for some
j ≤ n and α ∈ R. Then A �s B if and only if A(\{j}) �s B(\{j}).

Proof. Let Q ∈ Ωm. Then A = QB if and only if A(\{j}) = QB(\{j}).

Lemma 5.15 allows us to assume in Lemma 5.13 that, for x 6= 0, x'A 6= m.
Indeed, assume that x'A = m. If x'B < m, then A 6�s B by Corollary
5.12. Otherwise x'A = x'B = m and for any j ≤ n with xj 6= 0 we have
A(j) = B(j) = xje.

Classical majorization for (0,±1)-vectors can be characterized as follows.

Lemma 5.16 Let a, b ∈ {0,±1}n. Then a � b if and only if eta = etb and
|supp+(a)| ≤ |supp+(b)|.

Proof. Define sa = |supp+(a)| and sb = |supp+(b)|. If a � b, then eta = etb
by the definition of vector majorization, and sa ≤ sb by Lemma 5.7.

Conversely, assume that eta = etb and sa ≤ sb. Then
k∑
i=1

a[i] ≤
k∑
i=1

b[i] for

any k = {1, . . . , n} and a � b by the definition.

The following example illustrates Lemma 5.16.

Example 5.17 1
0
0

 �
 1

1
−1

 and


1
−1

0
0

 �


1
1
−1
−1

 .
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.

Example 5.18 Consider

A =


1 1
−1 1

0 0
0 0
0 0
0 0

 , B =


1 1
−1 1

1 1
−1 1

0 −1
0 −1

 .

Here etA = etB and xA < xB for any nonzero x ∈ {0,±1}m with xA 6= 0. In
this case A �s B since A = (I2,2 ⊕ 1

4
J4,4)B.

Theorem 5.19 [16, Theorem 3.9], [6, Corollary 3.5] Let A,B ∈ Mm,n.
Then A �s B if and only if for every convex function f : V → R we have

m∑
j=1

f(A(j)) ≤
m∑
j=1

f(B(j)),

where V ⊆ Rn is a convex set such that R(A) ∪ R(B) ⊆ V . Here the row
space of a matrix is considered as a subspace of Rn.

Corollary 5.20 Let A,B ∈ Mm,n. Assume that A(i) = B(i′) for some i, i′ ∈
{1, 2, . . . ,m}. Then A �s B if and only if A(\{i}) �s B(\{i′}).

Example 5.21 Consider

A =


1 0
1 0
0 0
0 0

 and B =


1 1
1 1
1 −1
−1 −1

 .

Then A =


1
2

0 1
2

0
0 1

2
1
2

0
1
2

0 0 1
2

0 1
2

0 1
2

B and A �s B.

Observe that etA = etB and xA < xB for any nonzero x ∈ {0,±1} with
xA 6= 0.
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Example 5.22 Consider

A1 =

 1 0
0 −1
0 0

 , B1 =

 1 −1
−1 1

1 −1

 .

A2 =


0 1
0 1
1 0
0 0

 , B2 =


1 1
1 1
−1 1

0 −1

 .
Here for i = 1, 2 etAi = etBi and xAi

< xBi
for any nonzero x ∈ {0,±1}m

with xAi
6= 0. Also, no row of Ai is a row of Bi. But Ai 6�s Bi because the

row [1 0] ∈ R(Ai) does not lie in conv(R(Bi)).

Acknowledgments

The authors are grateful to the referee for the useful comments. The work of
the third author is financially supported by the Russian Science Foundation
under the grant 21-11-00283.

References

[1] P. Browne, R. Egan, F. Hegarty, P. Catháin, A Survey of the Hadamard
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