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Abstract— The signal-to-noise ratio of modern cameras under
normal operating conditions tends to be limited by “photon
noise” originating from the random arrival of photons. For best
signal-to-noise ratio, it is desirable to collect as much light as
possible, and to avoid losses internally in the camera. There is
currently no widely accepted metric for the resulting net light
collection, which depends on many aspects of camera design.
The IEEE Standards Association P4001 group is developing
a standard for hyperspectral imaging, including ways to fully
specify camera performance in an efficient way. Motivated by
P4001 requirements, this work proposes to specify the net light
collection in a single quantity, denoted A∗, essentially defined as
the product of nominal geometrical étendue, optics transmission,
and detector quantum efficiency. It is shown how A∗ can be
physically interpreted as the detector pixel area of an equivalent
lossless camera whose exit pupil subtends 1 sr. This article
discusses how this quantity can be used as a figure of merit
applying to hyperspectral cameras as well as to conventional
multispectral and broadband cameras and other sensing systems
employing imaging optics.

Index Terms— Camera, étendue, F-number, hyperspectral,
imaging, photography, specification, spectroscopy, standard,
T-number, throughput.

I. INTRODUCTION

CAMERAS of various types are widely used in remote
sensing applications, where there are often stringent

requirements on performance and calibration. Specification of
cameras is therefore of particular importance in the remote
sensing field. This is not least true for hyperspectral imaging,
where the quality of image processing products depends on
the integrity of spectroradiometric measurements of incoming
light in each pixel. It turns out, however, that the state of the
art of specifying commercial hyperspectral cameras currently
falls short of what is needed to convey the actual performance
to users and potential buyers [1]. Motivated in part by this
situation, the IEEE Standards Association has established
Project 4001 "Standard for Characterization and Calibration
of Ultraviolet Through Shortwave Infrared (250 to 2500 nm)
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Hyperspectral Imaging Devices" [2] (P4001), sponsored by
the IEEE Geoscience and Remote Sensing Society standards
committee. A central task for P4001 is to define a set of per-
formance characteristics which express camera performance
in a complete but nonredundant way. The P4001 standard will
consider the camera as a “black box,” and define characteristics
that are independent of the camera internals as far as possible,
in order to be applicable to a range of current and possible
future camera architectures.

Noise is a limitation on the quality of images and derived
information products. In digital cameras today, the dominating
noise is normally due to the random arrival of photons.
As outlined in Section II-A, the signal-to-noise ratio depends
on the amount of light collected by the camera. There is a
well-established formalism for modeling camera light collec-
tion in terms of the properties of optics and detector separately
[3]. With the camera considered as a “black box,” it is the
combined effect of these camera internals that is observable
externally as a net light collection determining the signal-to-
noise ratio. Therefore, P4001 requires a single characteristic
to represent this net light collection. Paradoxically, a suitable
characteristic for overall net light collection is not part of
current standardized or customary ways of characterizing a
camera.

This article introduces a way to analyze the radiometric
properties of a “black box” camera with a degree of math-
ematical rigor, to make explicit some assumptions that are
not always clearly stated, and to develop the underpinnings
of a specification of light collection in P4001. A favored
approach for expressing the net light collection is identified,
which can be used as a parameter in a signal model, as an
element of image metadata, and as a comparative figure of
merit for camera light collection. This article elaborates on
concepts discussed in conference papers [4], [5], [6], aiming to
clarify issues and questions that can arise in the use of the pro-
posed metric. The treatment applies not only to hyperspectral
cameras but also to multispectral or broadband/monochrome
cameras, as well as to other optical sensing systems employing
imaging optics.

II. BRIEF REVIEW OF RELATED WORK

A. Camera Signal Models

Conventional models for the signal from a camera, such as
in [3, Sec. 7.3], are based on the detailed properties of internal
camera components, such as imaging optics, spectrometer
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Fig. 1. Notional illustration of the signal chain in a camera (see text). Boxes
with bold outlines indicate the main signal stages.

optics, and detectors. Many textbook treatments establish
signal models which also include factors external to the
camera, such as illuminants or atmosphere. Here, only the
camera will be considered, in keeping with the needs of P4001.

With few exceptions (notably uncooled thermal cameras),
modern cameras employ image sensors (also called focal plane
arrays), where the individual elements are photon detectors
(also called quantum detectors). In such detectors, the initial
electronic signal is a count Ne of photoelectrons, excited
by incoming photons. Most cameras do not count single
electrons, but instead measure their total charge as an analog
value, which is digitized to become the raw image data.
These data, often called “digital numbers” (DN), are essen-
tially proportional to Ne, but scaled by analog gain and
digitization.

The photoelectron signal exhibits noise due to the random
arrival of photons, often referred to as “photon noise.” This
noise follows a Poisson distribution, such that the variance is
equal to the mean. An important point is that photon noise is
the dominating noise contribution under normal operation of
most modern cameras. The signal-to-noise ratio can then be
estimated from

SNR = Ne∘
Var(Ne)

= Ne∘
Ne

= √
Ne . (1)

Strictly, this equation is exact only when Ne is equal to its
expectation value, but except for very low signal levels, the
noise can be estimated to good accuracy from the actual
sampled Ne. It can be noted that such noise estimates may
have been underutilized in image processing and exploitation
[7]. An important aspect of the treatment here is to simplify
estimation of this signal-dependent noise from image data.

Fig. 1 illustrates schematically the signal chain for a
hyperspectral camera, from the incoming radiance level to
an output radiance estimate. Nominally, a single data sample
at the output represents light collected within a certain solid
angle � and area A, whose product A� is known as the
étendue. In reality, losses occur due to imperfect transmission

in the imaging optics (Topt < 1) and the spectrometer optics
(Tspect < 1). Losses also occur in the detector itself due
to nonideal quantum efficiency (QE) (ηdet < 1) and fill
factor (F F < 1). Generally, the losses depend on wave-
length λ (often strongly so, such as near the detector cut-off
wavelength).

The optical signal can be distorted by coregistration errors
or by stray light, and beyond about 2μm wavelength also by
thermally emitted radiation inside the camera. In the detector
and electronics, the electrical signal can be distorted by dark
current, offsets, or timing errors. Some of these distortions
tend to act as a constant offset, and can be measured by
momentarily blocking the light input, often with a shutter built
into the camera. The treatment here will assume that such
offsets are measured and compensated for in the output data.
Other distortions, such as those due to coregistration errors or
stray light, will depend on the incoming light, or on the camera
operating conditions, and cannot be easily corrected for. Here,
these distortions are neglected, but the P4001 standard will
include ways to specify such effects.

A lower limit on the total noise is set by the readout
noise generated in the detector and readout electronics. Here,
for simplicity, readout noise is taken to include also noise
from dark current (including contributions from any internally
emitted light), and the dependence of this noise on integration
time is ignored. The rms amplitude of this overall readout
noise is represented as an equivalent electron count denoted σr ,
which also includes quantization noise from the digitization.

The signal may also be distorted by saturation, an upper
limit on the signal range originating in the detector, in the
analog electronics, or in the digitization. In the treatment here,
saturation effects will be ignored for simplicity. The saturation
level and readout noise together determine the dynamic range
of the camera. For specification of dynamic range, the P4001
drafted method is as described in [4], which makes use of the
concepts described in more detail here.

The signal model outlined in Fig. 1 can give a complete
description of the radiometric behavior of the camera, for
example for design purposes. However, such a model is more
complex than what is needed to describe the overall “black
box” performance of a camera in a specification, or to describe
the properties of image data in accompanying metadata. For
these purposes, which are main objectives of P4001, it is
desirable to represent the camera by a minimal set of character-
istics, essentially by performing a “parameter extraction” from
the detailed model illustrated in Fig. 1. This article focuses on
parameterization of the overall light collection for a single
light sample, as one of several parameters in the P4001 signal
model.

Noting that the photoelectron Poisson noise normally dom-
inates, and also that the noise floor and saturation level can be
conveniently expressed as equivalent photoelectron counts, it is
clear that Ne is a desirable target for a camera signal model,
even if the camera output normally is scaled to represent other
quantities such as radiance, reflectance, or simply the raw
DN. Fortunately, Ne can still be estimated from output data
recorded in controlled conditions, as outlined in Section II-C.
Therefore, this article will consider models for Ne , but the
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results are still relevant for cameras where image data consist
of radiance or reflectance values, or raw digital data.

B. Camera Characteristics Currently in Use

Conventional camera specifications today tend to have some
heritage from the time when the recording medium was an
exchangeable film. The specification of a camera was then
essentially a specification of the lens. Traditionally, light
collection by a lens is specified in terms of the F-number, the
ratio of focal length to entrance pupil diameter. An alternative
quantity is the numerical aperture, which expresses the same
geometrical relation via the opening angle of the focused
light cone on the image side of the lens. More information
is contained in the T-number, which incorporates the effect of
lens transmission and expresses the net light collection as an
equivalent F-number of a lossless lens. The transmission is
sometimes also given as a separate lens characteristic.

The widely used International Organization for Standard-
ization (ISO) sensitivity rating, defined in ISO12233 [8],
characterizes the sensitivity of a camera in terms of the
amount of visible light needed at the image sensor (or film)
to record an image whose noise level is negligible for visual
viewing. Taken together with the F-number of the lens, the
ISO rating is a fairly robust measure of light collection in
photographic cameras. However, the ISO rating is specific to
visible-light photography and does not generalize readily to
other wavelength ranges or to machine vision applications.

A number of characteristics are in use for specifying light
collection by the image sensor. The pixel pitch gives the nom-
inal light collection area for a single light sample. Together
with the wavelength-dependent QE, this gives fairly com-
plete information about light collection at the image sensor.
In some cases, a fill factor must be considered to account
for the fraction of area on the image sensor that is actually
sensitive to light. Detector sensitivity is also often specified
in terms of detector noise, for example specified as readout
noise in electrons, or as a normalized detectivity D∗ [9].
However, these noise characteristics are less important in nor-
mal operating conditions where the dominating noise comes
from the incoming photon stream. The European Machine
Vision Association 1288 (EMVA1288) standard [10] defines
a comprehensive way to specify many physical characteristics
of an image sensor and its associated drive electronics.

Nowadays, in applications ranging from mobile phones to
satellites, digital cameras are integrated units containing an
image sensor and optics. This motivates the P4001 “black
box” approach to camera specification, and more generally,
it also suggests a reconsideration of how cameras are specified.
Complete cameras are often specified giving both F-number
and pixel pitch. This enables estimation of a nominal étendue,
which can be used as a rough comparative measure of light
collection. However, information about optics transmission
and detector quantum efficiency is often missing. Sometimes,
the camera is described by a “radiometric coefficient,” a ratio
between some form of output value, such as DN, and the
input radiance. See for example [11]. However, there is no
specific definition of the radiometric coefficient. Also, its value
will depend on a variety of factors, such as electronic gain,

that have no first-order impact on camera performance. The
radiometric coefficient is therefore not a suitable figure of
merit for the net light collection in a camera.

From the point of view of P4001, existing metrics for light
collection are not well suited as comparative figures of merit
for the performance of a hyperspectral camera. This situation
has motivated the work presented here.

C. Measuring Photoelectron Count by “Photon Transfer”
Consider a case where the camera output data, denoted S,

represent photoelectron counts scaled by some unknown
gain factor GS , for example to raw DN values or to radi-
ance estimates. It is possible to use the “photon transfer”
technique [12], outlined here, to retrieve the photoelectron
count Ne. By making repeated measurements of the output
value S at a constant input light level, the observed mean
signal is related to the mean photoelectron count as

S = GS N e. (2)

Also directly observable is the variance or the standard devi-
ation of S which, knowing that Ne is Poisson distributed, can
be written

Var(S) = SD(S)2 = G2
S

[
Var(Ne) + σ 2

r

] = G2
S

(
N e + σ 2

r

)
(3)

where σr is the readout noise amplitude. The signal-to-noise
ratio is then

SNR = S

SD(S)
= Ne√

N e + σ 2
r

. (4)

Under normal operation of a camera, the signal level tends to
be sufficiently high that photon noise dominates, and readout
noise is negligible. Then, the scaling factor GS is simply
determinable from (2) and (3)

Var(S)

S
= G2

S N e

GS N e
= GS . (5)

With this estimate of GS, the electron count corresponding
to an output value S can be found from Ne = S/GS .
The photoelectron count Ne can therefore be considered an
observable quantity for a “black box” camera.

A full photon transfer analysis can also determine the
readout noise, dark current, and saturation level [12].

III. SIGNAL MODEL FOR A “BLACK BOX” CAMERA

A. General Model of Camera Response
This section introduces a mathematical description of the

signal from a “black box” camera, without reference to internal
parts. Consider for simplicity a camera viewing a scene at
optical infinity, illustrated in Fig. 2. The input is then a
distribution of light over wavelength λ and over the spherical
coordinates θ , φ for angle of arrival of light, as well as over
the position of arrival x , y in the entrance pupil plane, and
over the time of arrival t . This input can be represented by a
photon spectral radiance1 Lλq(λ, θ, φ, x, y, t) with dimension

1The subscript λ is used to denote a spectral distribution (“per wavelength”),
and the subscript q indicates quantum/photon units (as opposed to energy
units).
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Fig. 2. “Black box” camera model. The camera receives a spectral photon
radiance; a distribution of light over time, wavelength, and angles of arrival,
as well as over position in the entrance aperture area. Output signals are taken
to be electron counts Ne , since this quantity can be retrieved from other types
of output by a “photon transfer” analysis.

[Lλq] = photons/(time × area × solid angle × wavelength).
Note that assuming a scene at infinity represents no loss of
generality. For a camera viewing an object at a finite distance,
the angular coordinates θ and φ can be replaced by spatial
coordinates in the object plane.

A single sampling of a light level, in the form of a pho-
toelectron count Ne,i j from a single detector element, is here
taken to represent the amount of light in a given pixel i in a
band j in the output image, recorded within a given integration
time tint. This neglects for now the possibility of binning or
resampling as part of the signal chain, which is discussed later.
The spectral, angular, spatial, and temporal selection of light
by the camera (not only the detector) can be expressed as
an overall QE ηcam,i j (λ, θ, φ, x, y, t) for band j in pixel i .
This quantity is the probability that a photon with a given
wavelength, arriving from a given angle at a given position
in the camera entrance pupil at a time t , will give rise to a
photoelectron in the signal for pixel i and band j . In other
words, ηcam,i j describes image sharpness, spectral selection,
transmission losses, etc. It is a sharply peaked function in the
angular coordinates, centered on the direction corresponding
to pixel i , and will be nonzero only within a given integration
time tint and within the entrance pupil in the (x, y) plane.
For a hyperspectral camera, the wavelength dependence of
ηcam,i j will also be sharply peaked, with the peak located
at the center wavelength of band j . Mathematically, ηcam,i j

is dimensionless, but notionally it has dimension [ηcam,i j ] =
electrons / photon.

The expectation value of the photoelectron signal can then
be written

Ne,i j =
∫

λ

∫∫
�

∫∫
A

∫
t
ηcam,i j (λ, θ, φ, x, y, t) (6)

× Lλq(λ, θ, φ, x, y, t) dt d A d� dλ

where the integrals over solid angle � and area A run over
the hemisphere in front of the camera and over an infinite
(in principle) plane containing the entrance pupil, respectively.
Similarly, the integrals over λ and t run over all wavelengths
and over all time. In this basic camera signal model, ηcam,i j

thus represents the selection of incoming light by the camera
in many dimensions. Starting the analysis at this general form,

Fig. 3. Illustration of response functions for the light collection of a camera
over many dimensions for a sampled light value in the image: (a) Collection
over integration time tint . (b) Collection within the entrance pupil area Ae of
the camera. (c) Distribution of light collection over the angular coordinates of
the scene, as described by the SPSF for a given center pixel. (d) Distribution
of light collection over wavelength, as described by the SRF for a given band.
See text.

and transforming to a more conventional camera model in the
following, will make underlying assumptions explicit.

B. Light Collection Over Time and Over Pupil Area

In the temporal dimension, the camera records an integral
of the incoming light signal over some integration time tint.
The speed and precision of image sensor electronics are such
that for most common camera applications, it is a good
approximation2 to assume a well-defined abrupt start and end
of the integration, as illustrated in Fig. 3(a). Since only the
integral is observed, not the instantaneous value, the signal
model can be formulated assuming that the light level is
constant in time and equal to its mean value over tint. The
integral over time in (6) then reduces to a multiplication
by tint.

A similar argument can be applied for light collection over
the entrance pupil plane (x, y). The observed light level is
an average over the entrance pupil area Ae. In many cases,
such as in remote sensing, the camera is receiving light from
a source with no strong directivity, located far away relative
to the entrance pupil size, such as a sunlit landscape. It is then
a good approximation to assume that the incoming light level
is constant across the entrance pupil. A calibration source will
normally also provide such uniform illumination. A further,
often tacit assumption is that the camera response is uniform
across the entrance pupil. Even in cases where this assumption
does not hold well, the camera QE can be taken as a constant
average response across the entrance pupil area as long as
the light level tends to be uniform in the pupil plane. The
signal model can then be formulated assuming that a uniform
light level illuminates an entrance pupil plane with uniform
response and with area Ae, as illustrated in Fig. 3(b). The
integration over the entrance pupil plane in (6) then reduces
to a multiplication by Ae.

2This neglects residual effects such as rise/fall times, timing jitter, “image
lag,” and “shutter efficiency.”
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With these simplifying assumptions, the signal model
becomes

Ne,i j = tint Ae

∫
λ

∫∫
�

ηcam,i j (λ, θ, φ)Lλq(λ, θ, φ) d� dλ (7)

where ηcam,i j(λ, θ, φ) denotes the average of
ηcam,i j(λ, θ, φ, x, y, t) over the integration time and over the
entrance pupil area. Similarly, Lλq(λ, θ, φ) is the input light
averaged over the integration time and entrance pupil. This
is of course an often-used simplification for expressing the
input to a camera.

C. Spectral and Spatial Response Functions

Now consider the selection of light by the camera over
wavelength and angle of arrival, described by ηcam,i j (λ, θ, φ).
The spectral and angular resolution can be described by what
can be termed the spectral–spatial sampling function (SSSF)

SSSFi j(λ, θ, φ) = 1
C ηcam,i j (λ, θ, φ) (8)

where the normalization factor

C =
∫

λ

∫∫
�

ηcam,i j(λ, θ, φ) d� dλ (9)

has physical dimension [C] = (wavelength× solid angle). The
SSSF is a distribution function representing the variation of
camera response over wavelength and angle of arrival. ( [13]
uses the term “3-D PSF.”) It has physical dimension [SSSF] =
(wavelength× solid angle)−1, and unit integral∫

λ

∫∫
�

SSSFi j(λ, θ, φ) d� dλ = 1. (10)

Angular resolution3 is determined by the angular distrib-
ution of sensitivity expressed by SSSFi j (λ, θ, φ), determined
for a large part by the point spread function (PSF) of the optics,
but also by the detector element size, and in some cases by
optical elements such as a slit. The angular distribution of
sensitivity in the scene for the sampling of radiance in a pixel
can be termed the sampling point spread function (SPSF),
defined as

SPSFi j(θ, φ) =
∫ ∞

0
SSSFi j(λ, θ, φ) dλ (11)

for pixel i and band j . From (10), the SPSF has unit integral,
and its physical dimension is [SPSF] = (solid angle)−1. The
SPSF contains full information about the angular resolution
for the given band and pixel.

Similarly, the distribution of response over wavelength, the
spectral response function (SRF), can be found by integrating
the response over all directions of arrival

SRFi j(λ) =
∫∫

�

SSSFi j(λ, θ, φ) d�. (12)

The SRF also has unit integral, and its physical dimension
is [SRF] = (wavelength)−1. For a conventional camera, the
SRF contains information about the spectral response. For a

3The term “spatial resolution” would often be used, but as illustrated in
Fig. 2, positions in a scene at optically infinite distance are strictly directions
described by polar angles. Therefore, “angular resolution” is used here,
to avoid confusion with spatial coordinates in the entrance aperture plane.

hyperspectral camera, the set of SRFs for all bands contains
information about the spectral resolution. The SPSF and SRF
are illustrated in Fig. 3.

It is convenient to assume that the SSSF is separable:

SSSFi j(λ, θ, φ) ≈ SRFi j(λ)SPSFi j(θ, φ). (13)

This is normally a good approximation and, in fact, an assump-
tion which is rarely made explicit,4 as pointed out in [13], but
some discussion is given in for example [3], [14] and [15].
The signal model can now be written in terms of the SRF and
SPSF using (9)

Ne,i j = tint AeC
∫

λ

∫∫
�

SRFi j(λ)SPSFi j(θ, φ) (14)

× Lλq(λ, θ, φ) d� dλ.

In some cases, such as when the camera is viewing a
uniform broadband calibration source, the incoming photon
radiance varies smoothly and slowly over angle of arrival and
over wavelength. The input radiance can then be taken to have
a constant value Lλq,i j , at least locally around the pixel i and
band j under consideration. This constant radiance can be
taken as a multiplicative prefactor in (14), and the integral
evaluates to 1. The signal model (14) for uniform radiance
then becomes

Ne,i j = tint AeC Lλq,i j . (15)

Here, the product AeC is an overall radiometric coefficient for
the camera.

D. Signal Model for Monochromatic Light in a Single-Band
Camera

Now consider, for a while, the simpler case of a mono-
chrome camera with some spectral distribution of sensitivity
(which can of course represent a single band in a hyperspectral
camera). Consider first the case where the incoming light is
monochromatic with wavelength λ, and uniform in an angular
region around pixel i , with an incoming photon radiance5 Lq,i .
For this single-band case, the band index j is dropped, and
an explicit wavelength dependence is included instead. For a
pixel i in the monochromatic case, (7) becomes

Ne,i = tint Ae Lq,i
∫∫

� ηcam,i (λ, θ, φ) d�. (16)

Here, the integral over ηcam,i is a constant with physical
dimension of solid angle, expressing angular light collection,
as well as losses in the camera, for this particular pixel. Note
that the signal model (16) can be established by external
measurements on the black box camera in Fig. 2. The radiance
at the camera can be measured, the entrance pupil can be
observed (by looking into the camera, or by a spot scan),
the integration time is assumed to be accurately settable,
and the electron count can be observed via photon transfer
analysis. Then, the integral

∫∫
ηcam,i (λ, θ, φ) d� is the only

4It can be noted that it has already been assumed in (7) that the depen-
dences of ηcam,i j (λ, θ, φ, x, y, t) on time t and position (x, y) are separable,
by taking Ae and tint as simple multiplicative factors. Strictly, some concepts
for spectral imaging do violate these assumptions, for example multiaperture
cameras, or cameras based on tunable filters.

5With dimension [Lλ,ph ] = photons / (time × area × solid angle).
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unknown quantity, and can be considered as an experimentally
determined calibration factor.

Since the integral in (16) accounts for both losses and
angular light collection, it would be preferable to represent
it as a product of these two effects, defined as

��iηi (λ) ≡
∫∫

�

ηcam,i(λ, θ, φ) d�. (17)

Here, ��i is an equivalent instantaneous field of view (IFOV)
for pixel i , and ηi (λ) is a factor in the range 0, . . . , 1 account-
ing for light loss at the given wavelength for this pixel. The
signal model for monochromatic light will then simplify to

Ne,i = tint Ae��iηi(λ)Lq,i . (18)

Here, we recognize the product Ae��i as the étendue, or
throughput, of the camera optics.

An issue with the form (18) is that given the observables
listed earlier, it is not possible to determine the factors ��i

and ηi (λ) independently of each other. It can be argued that
��i represents the width of the SPSF, but there is no unique
way to determine the size of the blur spot represented by the
SPSF. However, for a “black box” camera, it is still possible
to observe the pixel sampling interval in the scene. Then, it is
reasonable to define ��i as the solid angle of the region of the
field of view (FOV) bounded by lines drawn midway between
pixel centers. Thus, if the angular sampling interval for pixels
in the neighborhood of pixel i is found to be �θi along the
rows and columns of pixels then, since a pixel will have a
small angular FOV, we have

��i = �θ2
i . (19)

Of course, it is possible for the sampling intervals to be
different in the two spatial directions, defining a rectangular
pixel region. Then, ��i will be the product of these intervals.
This tends to be the case for the commonly used “imaging
spectrometer” cameras operating in “pushbroom” scanning
mode, where the pixel sampling interval is only observable in
the direction along the slit (i.e., across the scan direction). The
appropriate angle for light collection along the scan direction
can then be taken to be the projection of the slit into the
scene, which multiplied by the across-track sampling interval
�θi gives ��i . This represents a minor deviation from the
“black box” principle, since the slit width is not uniquely deter-
minable from measurements outside the camera. (Except for
cameras with exchangeable objective lenses, where the slit can
be directly observed after removing the lens.) A similar issue
arises for hyperspectral cameras based on a raster/whiskbroom
scanned spectrometer, where ��i is defined by the projection
of the aperture in the focal plane of the imaging optics through
which light is fed to the spectrometer.

Thus, all the quantities in (18) can be considered as
independently observable except ηi (λ), which becomes an
experimentally determined calibration factor. From (17), we
find

ηi (λ) = 1

��i

∫∫
�

ηcam,i(λ, θ, φ) d� = tint Ae Lq,i

��i Ne,i
. (20)

With this, the parameters in the signal model (18) can be
determined from external observables. The model can then be

used to predict the photoelectron count for a given light input,
and thereby also the corresponding noise and signal-to-noise
ratio.

Note that ��i as defined in (19) includes any insensitive
area within the pixel on the image sensor, which can be speci-
fied in terms of a fill factor F F less than unity. In the treatment
here, if the fill factor deviates from unity, it will be included
in ηi (λ), along with losses due to the optics transmission
Topt,i (λ). For hyperspectral cameras, an additional factor is the
spectrograph efficiency Tspec, j(λ) for the wavelength-selective
part of the optics. Obviously, the detector QE ηdet(λ) is also
a factor in ηi (λ), which can then be notionally expressed as

ηi(λ) = Topt,i (λ)Tspec(λ)F Fηdet(λ). (21)

Thus, ηi(λ) is a product containing all the different loss factors
affecting the net light collection.

Conventional modeling of camera signals normally includes
all the factors of (21) explicitly in (18), giving

Ne,i = tint Ae��i Topt,i(λ)Tspec(λ)F Fηdet (λ)Lq,i . (22)

This expression illustrates the potential for simplifying signal
models, and the need to do so in order to conform to the “black
box” approach of P4001.

IV. METRIC FOR OVERALL LIGHT COLLECTION: A∗

A. Definition of A∗

Real cameras span a wide range of values for all the
factors in (22). Since these are multiplicative factors, only their
product needs to be specified when a camera is characterized
as a “black box.” In practice, the camera user will often
have an interest in setting or knowing tint. The pixel IFOV
��i is important for the spatial interpretation of the image,
but normally not for radiometric characterization. The other
individual factors in (22), namely Ae, Topt,i(λ), Tspec(λ), F F ,
and ηdet(λ), are uninteresting to the camera user across a wide
range of applications. It therefore makes sense to represent
the camera light collection, in a given pixel and for a given
wavelength, as a single quantity, here denoted A∗ and defined
as

A∗
i (λ) ≡ Ae��iηi (λ). (23)

Written out more explicitly using (21), this becomes

A∗
i (λ) = Ae��i Topt,i (λ)Tspec(λ)F Fηdet(λ). (24)

Thus, A∗ is simply a product of the geometrical factors
representing light collection by the optics, and the factors
representing the loss of light through the optics and detector
(also including loss of photoelectrons, where relevant). The
signal model for monochromatic light with photon radiance
Lq,i then reduces to

Ne,i = tint A∗
i (λ)Lq,i . (25)

This shows how the quantity A∗ can represent the net light
collection by the camera in a compact way, compared to (22).

With respect to specification and testing of a camera as
a “black box,” consider the quantities in the signal model
expressed in (25). The monochromatic input radiance Lq,i can
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be measured, and the integration time ti can be accurately set,6

while the electron count Ne,i is determinable from a “photon
transfer” measurement. Thus

A∗
i (λ) = Ne,i

tint Lq,i
(26)

is experimentally determinable without knowledge of camera
internals. Measuring the wavelength-dependent A∗

i (λ) requires
a monochromatic calibration source, similar to what is required
for determination of the QE for a detector, or the SRF for
a camera. In a hyperspectral camera, each band j will have
a different A∗

i j(λ), peaking at their respective band centers,
as discussed later.

B. Physical Interpretation of A∗

The quantity A∗ can be given a physical interpretation by a
notional transformation of the camera: First, observe that the
étendue, given by Ae��i , is an invariant quantity through the
camera optics. At the image sensor, the étendue is the product
of the area of the detector element Adet and the solid angle
�det subtended by the exit pupil of the optics.7 Thus, we have
Adet�det = Ae��i . The signal model (23) can then be written

Ne,i = tint Adet�detηi (λ)Lq,i . (27)

Keep in mind that if the size of the entire camera is scaled,
angles are unchanged so that the pixel IFOV, as well as the
FOV, are unchanged, while the étendue scales with the aperture
area. Now assume the following transformation of the camera,
which in each step maintains its radiometric properties, ending
up with the same IFOV.

1) First, let losses in the camera be eliminated, and instead
scale the camera so that the detector element area is
reduced to A�

det,i = Adetηi(λ). Then, the signal model
becomes Ne,i = tint A�

det,i�detLq,i .
2) Then, let the exit pupil of the optics be circular and

subtending a solid angle such that the étendue would
change by a factor8 1 sr/�det. Change the image sensor
pixel area by the inverse of this factor to maintain
throughput. The image sensor now receives radiation
within a solid angle of 1 sr (see notes later), and the
sensor pixel area has a value equal to A∗

i (λ), giving the
signal model (25).

3) Then, maintaining �det at its notional value of 1 sr
and keeping the sensor pixel area constant, let the focal
length and diameter of the optics be scaled by the same
factor so that the pixel IFOV returns to its original value
for the new detector area.

6If needed, the integration time can also be measured, for example using a
pulsed light source with a controllable delay.

7 Adet will normally be the same for all pixels, while �det may vary
somewhat across the FOV due to projection geometry or other variations, and
therefore depend on the pixel index. The notional equivalent camera developed
here is considered ideal; hence, a pixel index is omitted for �det. Instead,
variations in light collection are incorporated in ηi (λ) so that the values of
A∗ will reflect such nonuniformities in the real camera.

8In optical systems employing optical immersion of the detector in a
medium with refractive index ndet, use a factor 1 sr/(n2

det�det), and let the
transformed camera have no immersion.

4) Let the electrical properties of the detector, such as
noise, dark current, and saturation level, be unchanged.

This transformation leads to a radiometrically equivalent cam-
era where �det is fixed at a notional value of 1 steradian seen
from the image sensor, and the light collection of the real
camera is expressed as a detector area equal in value to A∗

i (λ).
The following notes must be made about the transformation

to an equivalent camera.

1) The 1-steradian aperture is in the upper range of lens
apertures that are realized in practice, but the equivalent
camera here is only a mathematical construct.

2) In step 2 given earlier, a circular aperture subtends
1 sr if its aperture diameter is f /0.78, where f is
the focal length. However, for the normal case of a
planar detector, and the implicit assumption of planar
lens principal surfaces, projection cosines reduce the
light collection. Then, the aperture would need to be
f /0.73 to maintain throughput. Since the actual values
are determined on the object side of the optics, the
small-angle approximation suffices for determination of
the pixel IFOV ��i . The equivalent camera is only a
construct for interpretation; therefore, these finer points
are not important for the use of A∗ to quantify net light
collection.

3) Taking solid angle to be dimensionless, the physical
dimension of A∗ is an area. It is suggested to report A∗
values in units of μm2, keeping in mind the interpre-
tation given here. However, in radiometric calculations,
such as (25), A∗ values must be taken as an area–solid
angle product.

4) For most cameras, �det is smaller than that of the
equivalent camera, and A∗ will have a value smaller
than the actual pixel area, even in the absence of losses.

5) In optical systems employing optical immersion of the
detector, A∗ can account for the resulting increase in
étendue (see footnote).

The notation A∗ and the interpretation as an equivalent camera
are modeled on the established D∗ quality metric for detectors
[9]. D∗ is the signal-to-noise ratio obtained in a signal band-
width of 1 Hz with a detector with equivalent quality having
an area of 1 cm2 and receiving an optical power of 1 watt.
Similarly, A∗ is referenced to �det = 1 sr. It is noted that A∗
is also the name of a graph search algorithm, but confusion
appears unlikely.

C. A∗ as a Figure of Merit

The preceding sections have shown that A∗ can be seen as
a figure of merit for light collection in an imaging system, and
can be interpreted as the detector pixel area of a radiometri-
cally equivalent camera with no losses and with a standardized
geometry on the image sensor side of the optics. Arguably, the
definition of A∗ follows naturally from consideration of light
collection by a “black box” camera, as a parameter that can be
extracted from either a conventional signal model such as (22),
or the more general model introduced in (6). The wavelength-
dependent quantity A∗(λ) is suited for specifying the overall
spectral sensitivity characteristic of a complete camera in a
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similar way as the QE is used to characterize detectors and
image sensors.

The introduction of A∗ above considered the simple case
of a single pixel receiving monochromatic light. The full set
of A∗

i (λ) for all pixels i can represent the detailed spectral
response, as well as any response nonuniformities across the
FOV. The remainder of this article discusses how the A∗
concept can be developed into a more practical figure of merit
for different types of camera, including cameras with multiple
bands. However, the treatment here does not discuss how an
aggregated A∗ shall be reported across all pixels, which may
vary depending on context. For example, a camera datasheet
might include values for the mean and/or minimum A∗ across
all pixels. It is also possible to report the total light collection
of the camera as a sum of A∗ over all pixels. P4001 will
include guidance on how to report pixel-aggregated values. In
the following treatment, only a single pixel is considered.

D. Dependence of A∗ on Aperture, Focus, and Focal Length

The dependence of A∗ on camera settings is important to
consider. In cases where a camera has a variable aperture,
it would be reasonable to specify A∗ for the largest aperture
setting. The user can then calculate the actual light collection
for a reduced aperture setting from the nominal ratio for
different aperture settings, as is well established in classical
photography. For cameras with adjustable focus, the effective
aperture will vary with focus setting. This effect will be minor
when the object distance is large compared to the focal length.
In other cases, focus setting may need to be considered for
proper specification of A∗.

Several hyperspectral camera architectures, notably the
imaging spectrometer, consist of an objective lens (often
referred to as “foreoptics”), dispersive spectrometer optics, and
an image sensor. Many cameras have exchangeable objective
lenses, and thus can be operated with different focal lengths.
It will then be strongly preferable to use lenses whose étendue
is at least large enough to fill the étendue of the spectrograph,
regardless of the focal length. (Similarly, it tends to be wasteful
to choose an objective lens with significantly larger étendue.)
Therefore, the étendue of a hyperspectral camera will in many
cases tend to be set by the spectrometer optics, independently
of the choice of objective lens. Then, A∗ will tend to be
invariant to the choice of focal length, except in the less
common case where one lens has a much larger transmission
loss than another. Thus, since it has no first-order dependence
on focal length, A∗ can serve as a useful figure of merit for fair
comparison of hyperspectral cameras even when the cameras
have different focal lengths and pixel sizes.

V. A∗ FOR BROADBAND AND MULTISPECTRAL CAMERAS

A. A∗ Simplifies the Signal Model for a Broadband Camera

Although the main motivation for this work has been spec-
ification of hyperspectral cameras, it is instructive to first con-
sider the case of a “monochrome” camera with broad spectral
response, at the same time illustrating the potential usefulness
of the A∗ quantity for such cases. When the incoming light
is distributed over wavelength with a spectral photon radiance

Fig. 4. Illustration of A∗ for a monochrome camera and a multispectral (RGB
color) camera based on example component data. Top: Specified QE for an
image sensor (Sony IMX174) in monochrome and RGB color versions. Also
shown are transmission spectra for a lens (Schneider Cinegon 1.9/10) and an
IR cut filter (Schneider BP 515-270). Bottom: Graphs of A∗ for monochrome
and color cameras built from these components. The sum over all three color
channels is also shown, as well as the relative photon spectrum of the CIE
D65 illuminant. Overall values A∗

D65 for this illuminant are shown by the
dashed lines. Also shown is the peak value A∗

max for the monochrome case.

Lλq(λ), then the signal model (25) becomes an integral over
wavelength with A∗(λ) as a spectral weighting:

Ne = tint
∫

λ
A∗(λ)Lλq(λ)dλ. (28)

(Since only a single pixel is considered here, the pixel index
is dropped for simplicity.) Thus, given a specified A∗(λ), the
photoelectron signal, and thereby the SNR, can be estimated
for an arbitrary input spectrum in a simple way that eliminates
the need to reference the camera internals in (24).

B. Calculating A∗ From Component Properties

Values of A∗ can be determined from component properties
according to (24). Consider the example illustrated in Fig. 4
based on example data taken from commercial datasheets.
The upper plot shows the wavelength-dependent QE of a
complementary metal–oxide–semiconductor (CMOS) image
sensor in monochrome and red-green-blue (RGB) versions.
The plot also shows the transmission spectrum for a lens and
an infrared (IR)-cut filter. In this example, the pixel pitch
on the image sensor is 5.86μm, and the lens focal length is
10 mm, giving an angular IFOV of 0.59 mrad and thus ��i =
0.34 μsr. The lens F-number is 1.9 so that the entrance pupil is
5.2 mm in diameter, with an area of Ae = 22 mm2, giving an
étendue Ae��i = 7.5 μm2. The lens and the monochrome
image sensor make a camera with broad spectral response.
A graph of the resulting A∗(λ) is shown in the lower plot,
peaking at 4.3 μm2.

A three-band color camera can be made using the color
version of the same image sensor, where color filters are
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applied to individual detector pixels in a Bayer pattern. Groups
of 2 × 2 pixels then have one red, two green, and one blue
pixel, leading to average fill factors of 25%, 50%, and 25%,
respectively, assuming a uniform source, and neglecting for
simplicity the demosaicking operation. An “IR cut” filter must
be added to block the near-IR (NIR) wavelengths not absorbed
by the on-chip filters. It is evident from the lower plot in Fig. 4
that the light collection is drastically lower in the color camera,
compared to the monochrome camera. The reduction is due
a combination of light loss in the filters and the reduced fill
factor inherent in the Bayer pattern. Comparing to the specified
QE graphs for individual pixels on the image sensor, it is clear
that the representation of overall light collection offered by A∗
is informative about the relatively large differences between
these two seemingly comparable cameras.

C. Predicting Signal-to-Noise Ratio From a Specified A∗

Starting from a specified A∗, signal levels can be estimated
relatively easily. Consider imaging of a Lambertian white
surface reflecting an Mv = 100 lux illumination, for simplicity
taken to be at λ = 555 nm where the conversion factor K =
683 lumen per watt applies. The photon radiance input to the
camera becomes

L ph = λ

hc

MV

π K
= 1.30 × 1017 photons/m2sr. (29)

The A∗ of the green channel of the color camera at 555 nm is
1.7μm2. Assuming video imaging with 30 ms integration time,
(25) gives Ne = 6570 electrons, 20% of the specified saturation
level. Readout noise is then negligible, and the signal-to-noise
ratio is found from SNR = (Ne)

1/2 = 81. Observe that the
calculation of the signal level starting from a specified A∗ is
simplified by relieving the user from having to consider the
separate factors in (21) and (25).

D. Defining an Overall A∗ Value for a Camera

In some cases, it will be desirable to represent light col-
lection performance for a camera by a single number. Taking
the maximum value over all wavelengths A∗

max shown for the
monochrome case in Fig. 4 may appear optimistic. However,
this number could be seen as a fair indicator of the light
collection capability at minimum loss, and thereby a figure of
merit for the capability of the optical design. This quantity was
proposed in an earlier work [6] together with a wavelength-
dependent QE. This latter quantity is dropped in the treatment
here, and A∗ is instead defined as a wavelength-dependent
quantity.

In many cases, a more conservative measure of light col-
lection will be appropriate. Consider again the expression for
A∗ under monochromatic illumination in (26). If instead the
illumination has some standardized broadband spectrum, it is
still possible to obtain a corresponding value A∗

std, where the
subscript can indicate the particular illuminant used (such
as “A∗

D65” below). For a monochrome camera receiving a
standard illuminant represented by a photon spectral radiance
spectrum Lλq,std(λ), the signal model (28) can be written

Ne = tint

∫
λ

A∗(λ)Lλq,std(λ)dλ ≡ tint A
∗
std Lq,std. (30)

This defines A∗
std as a characteristic for overall light collection

for the standard illuminant spectrum, whose photon radiance
integrated over all wavelengths is

Lq,std =
∫

λ

Lλq,std(λ)dλ. (31)

As an example, consider International Commission on Illu-
mination (CIE) illuminant D65, shown in Fig. 4 as a relative
photon spectral radiance. The overall value for this illuminant
for the monochrome camera is A∗

D65 =2.9μm2, as indicated
by a dashed line in the figure.

In the case of a multispectral camera, light collection can
be characterized according to (30) for each band. But it is
also possible to define an overall value of A∗ for the camera
as the sum of A∗ in all bands, illustrated in Fig. 4. For a
standard illuminant Lλq,std(λ), the total signal in all bands
then becomes a sum of the responses given by A∗

j(λ) in each
band j , integrated over wavelength as in (28)

Ne = tint

∫
λ

∑
j

A∗
j(λ)Lλq,std(λ)dλ ≡ tint A

∗
std Lq,std. (32)

The overall A∗ value defined in (31) and (32) can be found
from the defined illuminant spectrum and the observed A∗(λ)
as

A∗
std = 1

Lq,std

∫
λ

∑
j

A∗
j (λ)Lλq,std(λ)dλ. (33)

This is an overall value for A∗ for all bands of a multispectral
camera, weighted by the given illuminant spectrum. Note that
this also incorporates the monochrome case in (30), for which
the sum has only a single term. The range of integration is
normally the range of wavelengths where both Lλq,std(λ) and
A∗(λ) are nonzero, but may need to be restricted to the range
over which the standard illuminant is defined.

Clearly, A∗
std is a meaningful figure of merit for comparison

of monochrome or multispectral cameras with respect to a
given application where a representative illuminant spectrum
can be defined. Notable examples would be color imaging
under one of the CIE illuminants, as well as thermal imaging
in an ambient temperature background.

In Fig. 4, dashed lines indicate the overall value for the
CIE D65 illuminant, A∗

D65, for the monochrome (2.9μm2) and
color (0.9μm2) camera configurations. With this metric, the
color camera is found to have an effective light collection
which is 31% of that of the monochrome camera. Of course,
A∗

D65 cannot alone account for the radiometric quality of a
color camera. Since the definition of D65 extends into the tails
of the eye response, it is at least also necessary to consider
the color rendering of the camera. Nonetheless, assuming
comparable color rendering, the quantity A∗

D65, or similar
quantities for different CIE illuminants, can clearly be useful
for comparing light collection between color cameras.

VI. A∗ FOR HYPERSPECTRAL CAMERAS

A. Defining Per-Band A∗
j for Hyperspectral Cameras

In hyperspectral imaging, the bandwidths are small relative
to the band center wavelength. It is then often reasonable
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to assume that the spectral photon radiance is smooth and
slowly varying within the band. In particular, this is a good
approximation for the case of a hyperspectral camera viewing a
calibration source based on thermal radiation from a tungsten
lamp, as already discussed in relation to (15). This case is
highly relevant for the P4001 standard. Here, only a single
pixel is considered, thus the pixel index is dropped, and a
single narrow band j is considered. Assume that the input is a
calibration source whose photon spectral radiance Lλq,cal(λ) is
smooth relative to the bandwidth of the hyperspectral camera.
The signal model can then be expressed as a product similar
to (30), but with the bandwidth as an explicit factor �λ j :

Ne, j = tint

∫
λ

A∗
j(λ)Lλq,cal(λ)dλ ≡ tint A

∗
j�λ j Lλq,cal

(
λ j

)
.

(34)

In this notation, A∗
j is a single number representing light

collection in band j centered at λ j instead of a wavelength-
dependent A∗

j(λ) giving a detailed band profile as in (25). Also
note that the input light is represented as a spectral photon
radiance here, not a photon radiance as in (25). The bandwidth
�λ j must be determined from the shape of A∗

j (λ) or by other
means, as discussed in Section VI-B.

Equation (34) accounts well for cases where the incoming
photon spectral radiance is approximately constant within the
band, and also for cases where the spectral radiance varies
linearly within the band and A∗

j(λ) is symmetric. These con-
ditions will tend to be well approximated by a hyperspectral
camera viewing a calibration source. Then, given a suitable
definition of bandwidth, values of A∗

j can be found from

A∗
j = Ne, j

tint�λ j Lλq,cal
(
λ j

) (35)

for band j , based on observed Ne, j for a known radiance input.
Conversely, the incoming spectral radiance can be estimated
from the signal value Ne, j using A∗

j and �λ. It can be noted
that the resulting value of photon spectral radiance at the band
center, Lλq,cal(λ j ), may be inaccurate if the radiance spectrum
is not smooth, or if A∗

j(λ) has an irregular shape. This is
of course a general limitation for a hyperspectral camera
calibrated to produce spectral radiance values.

The usefulness of A∗ for a hyperspectral camera arises
in two ways. First, A∗

j values are of interest as metadata,
since, together with the bandwidths, they allow the user to
calculate the photoelectron count accurately (regardless of
spectral shapes), and thereby estimate the signal-dependent
SNR for each radiance value in an image cube. Second,
since the bandwidth is taken as a separate factor in (34),
the A∗

j values enable direct comparison between different
hyperspectral cameras, for example represented as a graph of
A∗

j over wavelength, even if their bandwidths differ. (Such a
graph could look similar to the A∗ graph for a monochrome
camera in Fig. 4.) These two uses of A∗ are currently drafted
to be part of the P4001 standard.

B. Defining a Radiometric Bandwidth �λ j

In (34), differently from (26), measured values for Ne, j ,
tint and Lλq, j are insufficient for unique determination of A∗

j .

Only the product of A∗
j and �λ j can be determined from the

measurement, so that if the input spectrum is approximately
constant around the band center, the effect of a change in
�λ j is indistinguishable from the same relative change in A∗

j .
For the P4001 standard, this can reduce the informative value
of these characteristics, and open up possibilities for artificial
design adaptation to improve specified values of A∗

j . The
fairness of the comparison of A∗ between different cameras
therefore hinges on the method used to define bandwidth
for a given SRF. Even if the wavelength-dependent A∗

j(λ) is
measurable according to (26), and is normally sharply peaked
around the band center wavelength λ j , it is not straightforward
to define a single quantity that represents the bandwidth �λ j

in a robust manner, as needed for the standard, considering
measurement noise and the possibility of irregular peak shapes.
An important practical consideration is that measurement of
camera radiometric characteristics is significantly more con-
venient using a known broadband source (readily available)
instead of a radiometrically calibrated tunable narrowband
source (expensive, limited spectral range, limited stability,
and/or limited radiance level).

Definition of peak width is a recurring issue in many fields
(not to mention definition of “resolution”). In general, the
definition of bandwidth can be based on: 1) parameters of
a fit to a given functional form, such as a Gaussian; 2) a
descriptive metric for the SRF such as the full width at
half maximum (FWHM); or 3) the spectral sampling interval.
In the field of spectroscopy, CIE233 [16] defines bandwidth
as the width of a box-shaped SRF having the amplitude of
the actual SRF at the band center. However, this approach is
currently not part of the P4001 draft, because it would make
the width dependent on the amplitude at a single point on
the actual SRF, reducing robustness against irregular-shaped
SRFs. Also, the band center position is not explicitly defined in
CIE233.

The most common type of hyperspectral camera is based
on a line imaging (“pushbroom”) spectrometer architecture
employing dispersive optics. Then, the light collection band-
width is well defined by the maximum of projected slit width
and detector width, scaled to a wavelength interval according
to the camera dispersion [14]. The bandwidth then ideally
corresponds to the width of the spectral bins illustrated in
Fig. 5(a). This would be the spectral analog to the definition
of spatial light collection in (19). The camera then performs an
ideal averaging of the input spectrum within each band. In this
case, both the bandwidth �λ j and the band effective light
collection A∗

j can be uniquely defined from the box-shaped
SRF. However, this nominal bandwidth of a spectrometer will
be unrealistically low, since the spectrometer optics inevitably
will exhibit some degree of blur, leading to smearing of the
actual spectral response as illustrated in (b). Observe that light
lost from a given band signal due to blur is compensated
by incoming light similarly lost from other bands. Therefore,
the sum of light collection over all bands is still constant,
as illustrated by the thick blue line. The sampling interval,
equal to the nominal bin width, could then still be a reasonable
estimate of bandwidth for radiometry purposes, even if the
SRF peak is broadened.
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Fig. 5. Illustration of different cases of A∗ wavelength dependence for a
hyperspectral camera. (a) SRF for several bands in an ideal dispersive camera.
(b) SRFs for a real dispersive camera with optical blur. The thick blue line
shows the sum over all SPSFs. (c) Same as (b), but with a reduced detector
fill factor. This can also represent a tunable filter with SRF peak width smaller
than the spectral sampling interval. (d) Tunable filter camera with overlapping
bands. Thin lines illustrate notional box-shaped SPSFs overlapping.

Case (c) can represent an imaging spectrometer camera
where the detector array has a fill factor less than unity
in the spectral direction, and thus gaps of insensitive area
between detector elements. Depending on the degree of blur,
the reduced fill factor can lead to an SRF peak width smaller
than the sampling interval, as suggested in the figure, for any
reasonable definition of peak width. The spectral sampling
interval could still be taken as a reasonable definition of band-
width for radiometric modeling, since this is the spectral bin
defined by the spectrometer. The value of A∗ from (35) will
then account for the reduced response near band boundaries
due to the fill factor.

Case (c) can also represent a hyperspectral camera based
on a tunable filter, operated with a spectral sampling inter-
val larger than the SRF peak width. For such cameras, the

sampling interval is usually freely selectable by the user.
It could then seem appropriate to define bandwidth as the
width of the peak. A narrow SRF peak will then tend to
give a large value of A∗ in accordance with (35). However,
if the spectral sampling interval is much larger than the peak
width, this A∗ value would seem unreasonable, since it does
not account for the resulting undersampling of the spectral
dimension. If instead the bandwidth is taken to be the sampling
interval, the value of A∗ will reflect the gaps in the spectral
sampling.

Case (d) represents a camera where bands are overlapping,
as illustrated by the notional square response shapes. Then,
the sum of A∗(λ) over all bands can become arbitrarily
large, in principle, due to overlapping contributions from other
bands. This is apparently inconsistent with the fundamental
fact that measurement of photons is a destructive process.
However, such a situation can arise for a camera based on
tunable filters, not because photons are being measured mul-
tiple times, but because the bands are measured sequentially
in time. Thus in such a case, if the bandwidth is taken to be
the SRF peak width, values of A∗

j will give a fair indication
of the light collection capability of the camera, as long as the
user understands that bands are recorded sequentially in time.

The overall takeaway from the preceding examples is that
for A∗ values to be comparable across hyperspectral cameras
based on a range of different technologies, the bandwidth
cannot be defined as either the SRF peak width or the spectral
sampling interval. In the current P4001 draft, a pragmatic
definition is adopted as follows: For the purpose of defining
A∗, the bandwidth is taken as the maximum of the SRF peak
width and the spectral sampling interval. The exact definition
of SRF peak width to be used in P4001 is under discussion,
aiming to be robust over a range of different peak shapes.
A camera specification according to the P4001 standard will
then contain values for A∗ which are directly comparable
between cameras by being fairly well compensated for the
effect on light collection that results from differences in
bandwidth and spectral sampling.

C. Defining an Overall A∗ for a Hyperspectral Camera

The overall value of A∗
std for light collection in a broadband

or multispectral camera under a given illuminant, derived in
Section V-D, is usable as a figure of merit for a hyperspectral
camera as well. Starting from the detailed SRF shapes, the
previous expression (33) can be directly applied. The need
for a detailed SRF to determine A∗

std for a hyperspectral
camera may seem contrary to the motivation of a per-band A∗

j .
However, when preparing a camera specification according to
the P4001 standard, the detailed SRF will be needed in any
case, for determination of characteristics for spectral resolution
and coregistration. If needed, (33) can be approximated using
the set of per-band A∗

j and bandwidth:

A∗
std = 1

Lq,std

∫
λ

∑
j

A∗
j(λ)Lλq,std(λ)dλ

≈
∑

j A∗
j�λ j Lλq,std

(
λ j

)
∑

j �λ j Lλq,std
(
λ j

) . (36)



5635415 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

The reference to a particular illuminant tends to give more
weight to bands with more signal in the expression for the
overall A∗

std. In some cases, this may be inappropriate as a
figure of merit for a hyperspectral camera, for example in
applications where the camera is intended for measurement
of reflectance (as opposed to radiance). The definition of an
overall value of A∗ can be decoupled from the illuminant
spectrum by assuming a photon spectral radiance which is
constant over all bands in (36). The expression then simplifies
to

A∗
avg =

∑
j A∗

j�λ j∑
j �λ j

. (37)

This can be interpreted as an average value of A∗ over
the spectral range of the camera, which still accounts for
differences in bandwidth.

VII. A∗ FOR CAMERAS WITH RESAMPLED OUTPUT DATA

It is challenging to design optics with low distortion, not
least in the case of hyperspectral cameras, where “smile”
and “keystone” distortions are well known issues [17], [18].
At the same time, modern image sensors offer an abundance of
small pixels. It is therefore increasingly attractive to resample
the raw image data to correct for distortions in the camera
optics. Resampling will complicate the model of signal and
noise, and thus also the specification of camera performance.
In the following, it is shown that A∗ can be used as a
comparative characteristic for light collection even for cameras
employing resampling and binning schemes, under reasonable
assumptions.

A. Resampled Signal Value

Hyperspectral image data may be resampled in the spectral
or spatial dimensions, or both. The raw signal from the
detector pixels on the image sensor is represented as a set
of photoelectron counts Ne,k where k is the index of such
raw samples contributing to the output resampled value. The
resampling operation is assumed to be a linear combination
of these raw data samples with resampling coefficients aijk for
pixel i and band j producing an output value

Nr,i j =
∑

k

aijk Ne,k . (38)

This is a resampled photoelectron count with physical dimen-
sion [Nr,i j ] = electrons. This representation of the signal is
useful for the analysis here, even if this value is not an explicit
stage in the camera signal chain, since Nr,i j is proportional to
the actual values in the output image (radiance, reflectance,
DN, etc., depending on the scaling applied by the camera).
The formalism in (38) does not assume a particular type of
camera architecture, but can describe several different opera-
tions on the data, such as binning, smoothing, interpolation,
or reshaping of response functions.

For radiometric characterization, it is assumed as before
that the camera is viewing a spatially uniform, broadband
calibration source. The spectrum is assumed to be smooth,
with a small relative variation over the range of any spectral

resampling. It is also assumed that the camera properties,
such as sharpness and étendue, are smoothly and moderately
varying in the resampling region. In the limit of a uniform,
spectrally flat source, and uniform camera properties, the raw
data values Ne,k will tend to be equal. It will therefore be
assumed here that the raw data values exhibit only moderate
deviation from their mean �Ne,k 	

Ne,k ≈ �Ne,k 	. (39)

Consider first the simple case of binning. Then, raw data
points are added together by setting some of the coefficients
aijk to 1 and the remainder to zero. The resulting addition
of raw data values clearly leads to a system which is well
represented by the normal signal model, but for a correspond-
ingly larger detector area. For other resampling operations,
the coefficients can have arbitrary values, including negative
values, depending on the operation performed. Then the mean
magnitude of the resampled data may or may not be changed.
A generalized binning factor Br can be defined for the relative
increase in total signal level that may occur in a resampling
operation

Br =
∑

k

aijk. (40)

Then, with reference to (39), an approximate model for the
output value is

Nr,i j ≈ Br �Ne,k 	. (41)

B. Noise and SNR in the Resampled Data

The noise in the resampled signal can be estimated by
summation of variances. In the photon noise limit, well above
the noise floor, the Poisson-distributed raw values Ne,k are
also estimates of their variance. Using the assumption of small
differences between the raw values, we have for the resampled
signal

Var
(

Nr,i j
) =

∑
k

Var
(
ai jk Ne,k

)

=
∑

k

a2
ijkVar

(
Ne,k

) ≈ �Ne,k 	
∑

k

a2
ijk. (42)

In the low-signal limit, the photon noise level (�Ne,k 	)1/2 is
less than the detector noise σdet (dark current noise and readout
noise). In a case where all contributing raw data samples are
dominated by detector noise, we similarly find

Var
(

Nr,i j

) ≈
∑

k

a2
ijkσ

2
det = σ 2

det

∑
k

a2
ijk. (43)

Thus, in both limiting cases, the effect of the resampling
operation on noise can be represented by a noise degradation
factor Dr defined as

D2
r =

∑
k

a2
ijk. (44)

The total noise amplitude can then be approximated as

SD
(

Nr,i j
) ≈ Dr

√
�Ne,k 	 + σ 2

det. (45)
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Note that thanks to the square-root dependence of noise
on signal level, a given relative change in signal leads to
approximately half as large relative change in noise, making
the approximation in (45) less sensitive to deviations from the
assumption of equal raw signals.

The signal-to-noise ratio after resampling will be

SNRr = Nr,i j

SD
(

Nr,i j
) ≈ Br

Dr

�Ne,k 	√�Ne,k 	 + σ 2
det

=
(

Br
Dr

)2�Ne,k 	√(
Br
Dr

)2�Ne,k 	 +
(

Br
Dr

)2
σ 2

det

. (46)

Comparing to (4), note that the effect of resampling on SNR
is equivalent to a change in net light collection by a factor
(Br/Dr )

2. Thus, importantly, A∗ for a resampled camera
can still be determined using the photon transfer technique
without any change to the measurement procedure. However,
the estimated Ne will then not correspond to the actual photo-
electron count, but rather to an equivalent photoelectron count
for which the signal-dependent SNR is equal to that of the
actual camera. Thus, the same noise model can be applied for
cameras with and without resampling. This leads to the useful
conclusion that A∗derived from a photon transfer measurement
is a figure of merit that allows meaningful comparison of light
collection between “black box” cameras, regardless of whether
the signal is directly sampled or resampled.

C. Example Cases of Resampling

The effective binning factor Br and the noise degradation
factor Dr depend on the resampling scheme. Some examples
in 1-D illustrate different cases.

1) A 4× binning would have resampling coefficients
[1, 1, 1, 1] and 0 otherwise, giving B = 4 and D = 2.
From (46), SNR increases by a factor 2 as expected.

2) Resampling by linear interpolation to an output point
centered between two raw data points would have coef-
ficients [0.5, 0.5] and 0 otherwise, giving B = 1 and
D = 1/(2)1/2, thus increasing SNR by a factor (2)1/2 in
accordance with (46). In the same linear interpolation
scheme, an output point centered on a raw data point
would have B = 1 and D = 1, thus no change in SNR.

3) An operation like sharpening or deconvolution will
have both negative and positive coefficients. A sim-
ple sharpening kernel might have nonzero coefficients
[−1, 3,−1], giving B = 1 and D = (11)1/2 ≈ 3.3. SNR
is reduced by the latter factor, illustrating the possibility
of significant noise amplification and SNR degradation
in resampling.

The second example here illustrates how the effect on noise by
a resampling scheme may vary irregularly through the dataset
if the output data points do not follow the input sampling
pattern. For specification purposes, it then becomes necessary
to account for this variation, for example by specifying both
average and worst case values for the resulting A∗. When A∗
values are given as metadata for a resampling-based camera,
it may in principle be necessary to specify different values

for each pixel and band in the FOV of the camera, in order
to estimate noise with optimal accuracy. The P4001 standard
will need to specify guidelines for determination of A∗ taking
the possibility of resampling into account.

VIII. DISCUSSION

Modeling of the signal from a camera is well-established
textbook material, and it would therefore be reasonable to
question the need for a new metric for light collection, with
an arguably trivial definition, introduced here. However, in the
course of the P4001 work, it has become apparent that there
is no established way to quantify net light collection for
a “black box” camera. For P4001, it is important to avoid
unnecessary complication of the camera specification, which
will consist of more than 40 items in order to describe the
many aspects of performance for a hyperspectral camera.
Equation (24) shows clearly how A∗ can replace a number of
conventional quantities in an overall performance specification
for a camera. Also, A∗ is a figure of merit which is directly
comparable between hyperspectral cameras having different
bandwidths, focal lengths, or pixel sizes. Not least, A∗ can
be given a simple physical interpretation, which is benefi-
cial for P4001 whose readership may include nonspecialist
camera users. The use of this quantity in P4001 for camera
specification and image metadata therefore appears justified.
This article has argued that A∗ may also be useful in other
contexts.

Radiance values are most commonly given in energy units.
For calculations involving A∗, these will have to be scaled by
the wavelength-dependent photon energy into photon radiance
quantities. This may be seen as a complication. However, since
image sensors are based on photon detectors, and since photon
statistics tends to be a dominating noise contribution, the use
of photon radiance brings clear benefits.

While A∗(λ) is well defined for monochromatic light
in (26), the per-band A∗

j for a hyperspectral camera in (35)
relies on a particular definition of bandwidth �λ j . As dis-
cussed in Section VI-B, it is not generally possible to define
a unique value for the bandwidth. Therefore, values of A∗

j
in a P4001-compliant camera specification may have some
degree of variability depending on the details of the method
used to determine bandwidth from the SRF. Work is ongoing
to define a robust metric for peak width in P4001, in order to
minimize such variability. Different hyperspectral cameras will
undoubtedly tend to exhibit relative differences in A∗

j which
are large compared to the variability resulting from bandwidth
determination. Thus, values of A∗

j will still be a useful metric
for camera comparison. Observe that when A∗

j values are used
as metadata, the corresponding bandwidths �λ j will also be
given, and the product of these quantities will be as accurate
as the radiometric calibration of the camera. By comparing
(15) and (34), it is clear that a radiometric coefficient is a
less well suited figure of merit, because it incorporates the
bandwidth, and therefore will tend to favor the camera with a
larger bandwidth.

The overall A∗
std value defined in (33) is useful as a

comparative figure of merit for light collection in cases
where a particular illuminant can be defined as relevant for
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the application. For a hyperspectral camera, the illuminant-
independent average A∗

avg defined in (37) can also serve as
a single figure of merit. However, an important caveat must
be made for cameras recording multiple bands sequentially.
In that case, overlap between bands can lead to artificially
high values for the overall value. This could be avoided by
using a radiometric coefficient incorporating integration time
instead of A∗, but then many of the other benefits of A∗ would
be lost. An important consideration is that values of A∗

j for
different bands will depend strongly on wavelength due to
the properties of optics and detectors. Therefore, comparison
of cameras based on A∗

j values represented as a graph over
wavelength will be significantly more informative than A∗

std
or A∗

avg.
The uncertainty in the recorded pixel spectra from a hyper-

spectral camera can easily be dominated by errors due to
imperfect coregistration [15], [18]. These errors are in effect
a crosstalk from scene contrasts into the recorded light levels,
so that the effect of coregistration on signal integrity becomes
strongly dependent on the scene. For the present purpose
of modeling radiometric properties of a camera, it can be
noted that coregistration errors have no effect on the recorded
image data if the incoming light varies only slowly with angle
and wavelength, so that it can be taken as constant over a
region surrounding the pixel under consideration, and around
a band of a hyperspectral camera. This will be the case for
calibration measurements with typical radiometric calibration
sources, which is an underlying assumption for much of the
discussion here. A∗ can therefore be determined independently
of the degree of coregistration error.

Stray light is another nearly unavoidable imperfection in
hyperspectral cameras, and will tend to distort the values of
A∗. It is well known that radiometric calibration must take
stray light into account, for example by using a limited-size
calibration source to avoid flooding the FOV. Stray light is
beyond the scope of this article, but will be covered by P4001.

For cameras employing resampling, the value of A∗ may
have an irregular variation depending on the local values
of resampling coefficients, as discussed in Section VII. This
complicates the use of A∗ as a figure of merit, but average
values over a range of pixels or bands is still meaningful. The
P4001 camera specification is foreseen to include the average
and the worst case value. When A∗ is given as metadata for
a resampled image, separate values may have to be given for
each pixel in the camera FOV, in principle. However, since
the main use of A∗ from metadata is likely to be estimation
of noise, some approximate representation of A∗ values may
be adequate, depending on the particulars of the camera and
application.

If the resampling operation, in the sense of Section VII,
includes sharpening or similar operations, this may not be
detectable in the output data. Such operations essentially trade
an increase in noise against improvement in image sharpness.
It has been shown here that photon transfer characterization
of such cameras will yield values of A∗ which correspond
to an equivalent camera without resampling, and reflect the
increase in noise. This is beneficial for the “black box”
approach to camera characterization, and holds as long as

the resampling is linear, and the resampling coefficients are
fixed.

If instead the camera employs some form of “noise reduc-
tion” processing, or similar nonlinear processing stages, a pho-
ton transfer measurement will not yield correct results, and
A∗ becomes unobservable for a “black box” camera. This
is even more true for cameras where the image formation is
based on some form of reconstruction based on assumptions or
prior knowledge of the scene. In these cases, the reconstructed
image, as well as its level of noise and uncertainty, will tend
to depend strongly on the peculiarities of the reconstruction
method. For this and other reasons, P4001 will not apply fully
to these classes of cameras.

The definition of A∗ is motivated by its relevance to the
noise model of photon detectors. Some camera types have
a different noise model, for example those based on the
Fourier transform spectroscopy, or other transformations of the
recorded data. In those cases, A∗ will still be useful for SNR
estimation in cases where photon noise dominates, but the
noise model will be different from the direct-sampling model
(1) assumed here. In cases where other noise sources dominate,
A∗ is arguably an even more important quantity, since the SNR
will be proportional to the net light collection, not to its square
root. In such cases, a separate specification of noise is needed
to estimate SNR, however.

Finally, it can be noted that beyond cameras, it is possible
that A∗ can be a useful way to describe light collection in other
types of instruments involving imaging optics, for example
spectrometers and other optical sensing systems.

IX. SUMMARY AND CONCLUSION

Motivated by needs arising in the IEEE P4001 standard
development, and based on a generalized model of light
collection by a “black box” camera in Section III-A, a quantity
for net light collection has been proposed here, denoted A∗.
This single quantity accounts for the étendue (“A� product”)
of an imaging system, as well as losses in the optics and
detector, as shown notionally in (24). A∗ can be interpreted
as the pixel area of an equivalent lossless camera with stan-
dardized image-side geometry, as discussed in Section IV-B.
Basically, A∗ is the ratio of the photoelectron generation rate
to incoming photon radiance, expressed in (26) for the case
of monochromatic light. Since Poisson-distributed “photon
noise” tends to dominate over other noise sources in normal
operation of modern cameras, A∗ facilitates estimation of
signal-dependent SNR. Therefore, A∗ is of interest both for
camera specification and for image metadata.

This article proposes ways to specify A∗ for conventional
(Section V) and hyperspectral (Section VI-A) cameras, both
as a wavelength-dependent quantity [(26) or (35), respectively]
and as weighted averages over the spectral range (Sections V-D
and VI-C, respectively). The derivation initially considers the
signal from a single photodetector element, but it is shown in
Section VII that cameras outputting resampled image data can
be represented with the same model, using an effective value
of A∗. In keeping with the P4001 “black box” approach to
camera characterization, A∗ is measurable without reference
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to camera internals, by using the “photon transfer” method
outlined in Section II-C.

In conclusion, A∗ is a conceptually simple and physically
interpretable quantity for expressing net light collection by
a camera, with potential to make camera specifications more
informative. Also, A∗ can be useful as part of image metadata,
enabling estimation of signal-dependent noise from the image
data. A∗ is foreseen to be incorporated in the IEEE P4001
standard for hyperspectral imaging, and it may also have
potential for a wider range of uses.
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