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a b s t r a c t 

It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in 

cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 

(p-tau) and the 42 amino acid form of amyloid- β (A β42) biomarkers, and which neural substrates 

may drive these associations. We addressed these questions in 2 samples of cognitively healthy older 

adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart- 

type fatty-acid binding protein (FABP3) = , total-tau, neurogranin, and neurofilament light (NFL) (n = 189, 

scans = 721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hip- 

pocampal atrophy. Brain atrophy was not moderated by A β42 and the associations between NFL and 

FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associ- 

ated with the biomarkers overlapped with neurogenetic profiles associated with expression in the ax- 

onal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are 

useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau 

pathology biomarkers. 

© 2022 The Author(s). Published by Elsevier Inc. 
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1. Introduction 

Longitudinal structural magnetic resonance imaging (MRI) mea-

sures such as hippocampal (HC) shrinkage and entorhinal cortex

(EC) thinning are seen both in cognitively healthy older adults

(OA) and in Alzheimer’s Disease (AD). In OA, these MRI metrics

are related to intraindividual variability in cognition, especially in

memory ( Gorbach et al., 2017 ). In AD, these indices are widely

used as biomarkers of neurodegeneration providing nonspecific in-

formation about neuronal injury and neurodegenerative change,
n open access article under the CC BY license 
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aligning closely to cognitive decline and dementia, and forming

part of diagnostic guidelines and consensus AD criteria ( Hill et al.,

2014 ; Jack et al., 2018 ). However, cross-sectional MRI measures

have limited validity as indices of brain atrophy particularly in OA

( Joie et al., 2020 ; Vidal-Pineiro et al., 2021 ) since lifelong differ-

ences - that is intercept differences – and not ongoing neurode-

generation - slope changes - are the main source of interindivid-

ual variability in brain structure ( Tucker-Drob, 2019 ). Presently, we

have access to multiple CSF biomarkers that are thought to reflect

ongoing neurodegeneration. It is thus important to determine how

different CSF biomarkers of neurodegeneration in OA are related

to brain atrophy as measured by serial MRI if the relationship be-

tween these biomarkers and atrophy are moderated by the core

AD biomarkers of Amyloid- βeta (A β) and phosphorylated tau181

(p-tau), and which cellular and molecular substrates might drive

biomarker-related changes in cortical thinning. Thus, we aimed to,

first, assess the relationship between 4 different cerebrospinal fluid

(CSF) (FABP3, t-tau, neurogranin, and NFL) markers – at baseline -

capturing different aspects of neurodegeneration and prospective

hippocampus (HC) atrophy and entorhinal cortex (EC) thinning -

up to 7 years. Second, assess whether these biomarker-brain rela-

tionships are moderated by core AD biomarkers p-tau and A β and

the presence of the apolipoprotein ε4 (APOE ε4) allele. Third, in-

form on tentative neural substrates underlying biomarker-related

changes in cortical thinning through the use of neurogenetic anal-

yses ( Groot et al., 2021 ). 

Different aspects of neurodegeneration that appear with ad-

vancing age and with the development of AD can be measured

via CSF markers ( DeKosky and Golde, 2016 ; Obrocki et al., 2020 ;

Pereira et al., 2021 ; Wyss-Coray, 2016 ). Heart-type fatty acid-

binding protein 3 (FABP3 [also known as HFABP]) is a protein

involved in the metabolism and transport of fatty acids ( Moullé

et al., 2012 ) and is expressed in the brain neurons ( Pelsers et al.,

2004 ). CSF FABP3 is considered a biomarker of neuronal dam-

age as it is released following cellular injury, possibly reflecting

lipid dyshomeostasis ( Desikan et al., 2013 ; Dhiman et al., 2019 ).

Neurofilament light chain protein (NFL) is a protein of the neu-

ral cytoskeleton involved in axonal and dendritic homeostasis and

synaptic transmission ( Khalil et al., 2018 ; Lépinoux-Chambaud and

Eyer, 2013 ; Petzold, 2005 ). CSF NFL is considered a marker of

neuroaxonal damage ( Bridel et al., 2019 ). Neurogranin (Ng) is a

calmodulin-binding post-synaptic protein, expressed in dendritic

spines and memory processing regions, involved in long-term po-

tentiation and memory consolidation ( Díez-Guerra, 2010 ; Pak et al.,

20 0 0 ). CSF total tau (t-tau) is generally considered a marker of

neuronal damage, released with cell death and injury, though

in OA is often closely associated with the levels of hyperphos-

phorylated Tau (p-tau) which is regarded as a more specific AD

biomarker ( Hampel et al., 2010 ; Zetterberg and Blennow, 2018 ). 

In OA, it is still unclear whether these CSF biomarkers

mostly capture neurodegenerative changes associated with early

AD pathology or reflect manifold biological events co-occurring

in the aging brain ( Boyle et al., 2021 , 2018 ). On one side, lev-

els of these CSF biomarkers are increased throughout different AD

stages, predicting clinical progression and severity, and being asso-

ciated with cross-sectional brain features as well as brain atrophy

( Desikan et al., 2013 ; Dhiman et al., 2019 ; Gangishetti et al., 2018 ;

Iturria-Medina et al., 2016 ; Pereira et al., 2021 ; Portelius et al.,

2015 ). However, in OA, some of these CSF biomarkers may be un-

specific to AD, as they increase with age independently of amyloid

deposition ( Idland et al., 2020 ) and are also present in other age-

related pathologies ( Chiasserini et al., 2017 ; Gattringer et al., 2017 ).

Although these CSF biomarkers are moderately to highly correlated

in OA ( Idland et al., 2020 ), they yield information about different

mechanisms and processes. This knowledge can be used to better
understand the biological basis of structural MRI changes in OA,

the leading hypothesis being that it mostly reflects neuropil loss

( Márquez and Yassa, 2019 ). 

Here we addressed the following questions: First, we tested

whether CSF biomarkers of neurodegeneration predict longitudi-

nal atrophy in brain structures with high vulnerability to neu-

rodegeneration (i.e., hippocampal [HC] volume loss and thinning

of the entorhinal cortex [EC]). We addressed this question using a

2-fold approach: employing traditional linear mixed model analy-

ses and using Generalized Additive Mixed Models (GAMM) to study

possible non-linear relationships between the CSF and longitudi-

nal MRI indices. Second, we studied to which degree the relation-

ships between CSF biomarkers and brain atrophy were explained

or moderated by the core AD biomarkers the 42 amino acid form

of amyloid- β (A β42) and p-tau as well as by carrying the APOE

ε4 allele. We studied whether A β42 status and carrying an APOE

ε4 allele moderated the relationship between CSF biomarkers and

brain atrophy and whether the relationships could be explained by

introducing p-tau in the models. We also used machine learning

to identify the markers that most closely explained brain atrophy.

Third, we tested whether the CSF biomarkers reflect different cel-

lular aspects of brain atrophy to inform on normal-aging processes

associated with cortical atrophy. We compared the spatial patterns

of cortical atrophy associated with each biomarker with the spatial

patterns of gene expression associated with specific cellular com-

ponents. 

2. Methods 

2.1. Participants 

A total of 189 cognitively healthy older individuals (mean

age = 74.8 [SD = 5.2] years) were included in the study. Individu-

als belonged to 2 different cohorts: The COGNORM Cohort ( Idland

et al., 2017 ) (n = 85) and the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) ( Mueller et al., 2005 ) (n = 104). Both studies were

conducted in accordance with the Declaration of Helsinki and ap-

proved by the appropriate ethical committees. All participants in-

cluded in the present study provided written consent. To be in-

cluded, participants were required to be ≥ 65 years old, cognitively

healthy based on multiple neuropsychological criteria (e.g., mem-

ory scales, Mini Mental State Examination [MMSE] [Folstein et al.,

1975] , Clinical Dementia Rating [CDR] scale [Morris, 1993] ), and

have available baseline CSF data at baseline as well as MRI and

cognitive follow-ups. Participants that converted to mild cogni-

tive impairment (MCI) or AD during the MRI follow-up were ex-

cluded from the analysis, thus retaining only asymptomatic indi-

viduals at the time of the last follow-up. See the main sociode-

mographic and cohort characteristics in Table 1 . ADNI participants

were, on average, slightly older ( � 2.2 years), had more education

( � 1.6 years), had fewer APOE ε4 carriers, and lower percentage of

amyloid-positive individuals. See specific definitions of cognitively

healthy participants, recruitment details, and inclusion criteria in

each cohort in Supplementary Methods. Change in cognition over

time was within the expected range. Episodic memory was stable

over time; global cognitive function showed a very modest decline,

while executive function worsened over time in both cohorts. Note

that test-retest effects likely affect the longitudinal trajectories of

cognition. The cognitive trajectories are described in Supplemen-

tary Results and Fig. S1. 

2.2. MRI acquisition and preprocessing 

T1-weighted (T1w) magnetization prepared rapid gradient echo

(MPRAGE) sequences were obtained for all participants. In COG-
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Table 1 

Data overview grouped by cohort. 

COGNORM N/ ̄M (SD) ADNI N/ ̄M (SD) ALL N/ ̄M (SD) Cohort diff. χ 2 [p]) / (t[p]) 

Participants (n) 85 104 189 –

MRI obs. (n) 250 471 721 –

Age 73.6 (6.8) 75.8 (5.2) 74.8 (5.2) 2.41 (.02) 

Sex (M:F) 42:43 50:53 96:93 0.00 (1.00) 

Education (yrs) 14.1 (3.4) 15.7 (2.9) 15.0 (3.2) 3.3 (.001) 

MRI follow-up 4.3 (2.2) 2.9 (1.5) 3.5 (1.9) -5.1 ( < .001) 

MMSE 29.1(1.1) 29.1(1.0) 29.1(1.1) 0.51 (.61) 

APOE ε4 a 48:30 82:21 119:45 6.50 (.01) 

A β42 status ( ±) b 29:56 15:88 44:144 10.00 (.002) 

APOE ε4 (non-carrier:carrier). A β42 status (A β+ :A β-). Cohort differences are assessed using chi-squared tests ( χ 2 [p]) for dichotomous variables and t-tests 

(t[p]) for continuous. 

Key: Obs., observations; diff. = differences; MMSE, Mini Mental State Examination. 
a 4 participants had missing APOE ε4 data in the COGNORM and 1 in the ADNI cohort. 
b 1 participant with missing data in the ADNI cohort. Sex (Male:Female). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NORM, T1w sequences were acquired with a 1.5T Siemens

Avanto (Siemens Medical Solution) with the following parame-

ters: TR/TE/TI = 240 0 ms/3.79 ms/10 0 0 ms, FOV = 240, sagittal

slices with voxel size = 1.25 × 1.25 × 1.2 mm, 12-channel head

coil. ADNI participants included in the analyses were scanned us-

ing 1.5T scanners. The T1w MPRAGE parameters slightly varied

due to differences in scanners and vendors. MRI image selection

was based on the ADNIMERGE.csv file. See more information at

http://adni.loni.usc.edu/methods/mri- tool/mri- analysis . 

Data were processed on the Colossus processing cluster, Uni-

versity of Oslo. We used the longitudinal FreeSurfer v.6.0. stream

( Reuter et al., 2012 ) for cortical reconstruction of the structural

T1w data ( http://surfer.nmr.mgh.harvard.edu/fswiki ) ( Dale et al.,

1999 ; Fischl et al., 1999 ). See preprocessing details in Supplemen-

tary Methods. We selected HC (volume) and EC (thickness) as re-

gions of interest (ROI) (averaged across hemispheres) for further

analysis as they are highly vulnerable to both AD and aging. For

comparison with gene expression data, we extracted thickness data

from the n = 34 bilateral cortical ROIs of the Desikan-Kiliany atlas

( Desikan et al., 2006 ), averaged across hemispheres. 

2.3. CSF collection and analysis 

COGNORM: CSF acquisition details are described elsewhere

( Idland et al., 2020 , 2017 ). Briefly, samples were analyzed in the

Clinical Neurochemistry Laboratory at Sahlgrenska University Hos-

pital, Mölndal, Sweden. CSF A β42, t-tau, and p-tau concentrations

were measured using INNOTEST enzyme-linked immunosorbent

assay (ELISA; Fujirebio, Ghent, Belgium), CSF NFL concentrations

using a commercial ELISA (Uman Diagnostics, Sweden), CSF FABP3

concentrations using an immunoassay with electrochemilumines-

cence detection (MSD Human FABP3 kit; Meso Scale Discovery,

Gaithersburg, MD) and CSF Ng concentrations using an in-house

ELISA, as previously described ( Portelius et al., 2015 ). Intra assay

coefficients of variation were 9%–13%. ADNI: CSF acquisition de-

tails are described elsewhere ( Shaw et al., 2011 , 2009 ) (see also

http://www.adni-info.org ). Briefly, samples were analyzed by the

ADNI Biomarker Core laboratory at the University of Pennsylvania

Medical Center on dry ice. CSF A β42, t-tau, and p-tau biomark-

ers were measured using Elecsys total-tau, phosphorylated-tau 181

(p-tau), and β-amyloid (1–42) CSF immunoassays ( Bittner et al.,

2016 ; Hansson et al., 2018 ) ( UPENNBIOMK9.csv ADNI file). Val-

ues above the upper technical limit were recalculated based on

the calibration curve ( ≥1700 pg/ml for A β42 [n = 19]). CSF

FABP3 was quantified with a multiplex-based immunoassay panel,

based on Luminex xMAP immunoassay technology and devel-

oped by Rules Based Medicine (MyriadMBM) ( Olsson et al., 2013 )

( CSF_QC_Multiplex_Data.csv ADNI file). Ng ( BlennowCSFNG.csv ADNI
file) and NFL ( BlennowCSFNFL.csv ADNI file) were quantified at

the Clinical Neurochemistry Laboratory, University of Gothenburg,

Sweden, with commercial ELISA for NFL (NF-light ELISA, UmanDi-

agnostics, Sweden) ( Zetterberg et al., 2016 ) and a CSF Ng in-house

ELISA. Missing data was n = 1 for A β , p-tau, t-tau, and NFL; n = 3

for NG; and n = 20 for FABP3. See CSF values grouped by cohort

in Table S1. 

2.4. Statistical Analysis 

CSF values were Z-standardized within each cohort to remove

possible differences in CSF concentration quantification. We visu-

ally inspected the density plots to ensure CSF values were – to

a certain extent – normally distributed. A β status was obtained

by dichotomizing A β into A β+ < 550 pg/mL ≥ and A β– groups

in both cohorts. Female, COGNORM, and A β– were established as

the reference levels. All analyses were run in the R-environment

(R Development Core Team, 2012) ( https://www.r-project.org ). All

linear mixed models included Sex, Baseline age, and Cohort as co-

variates and participant identifiers as random intercepts (estimated

intracranial volume [eICV] was also included as a covariate for HC).

Note that our study had a descriptive character. For this reason, we

did not address the issue of multiple comparisons across biomark-

ers (n = 4) or brain regions (n = 2). Rather, we corrected for mul-

tiple comparisons when multiple tests were carried out to answer

the same question (e.g., Biomarker × A β interactions using differ-

ent thresholds for defining A β positivity). 

2.4.1. Correlations between CSF biomarkers and MRI features at 

baseline 

We computed the (unadjusted) Spearman’s ρ cross-correlation

matrices between age, the AD core biomarkers (p-tau, A β), the

neurodegeneration CSF biomarkers, and brain volume and/or thick-

ness at baseline. We used the participant’s random intercept as

the EC thickness and HC volume estimates based on linear mixed

models that also included Cohort as fixed effects. Further, the same

Spearman’s ρ cross-correlation matrix between MRI and CSF mark-

ers was obtained after adjusting for Age and Sex. Both the adjusted

and unadjusted matrices were also obtained separately for each

cohort. The similarity between the matrices was assessed using a

Mantel test and 10.0 0 0 permutations. 

2.4.2. Effects of CSF neurodegeneration markers on brain features at 

baseline and brain atrophy 

We assessed the associations between the CSF neurodegener-

ation biomarkers with EC thickness and HC volume using lin-

ear mixed-effects models as implemented in the nlme R-package.

The linear mixed-effects models fitted EC thickness and HC
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Table 2 

Cross-Correlation Biomarker matrix. 

Age A β p-tau t-tau NFL NG FABP3 EC HC 

Age — — — — — — — — —

A β -.04 — .10 .12 .05 .16 .10 .06 .09 

p-tau .20 .10 — .97 .34 .82 .69 .00 .03 

t-tau .23 .12 .97 — .36 .83 .69 .00 .04 

NFL .40 .03 .41 .44 — .26 .36 -.10 -.11 

NG .14 .15 .83 .85 .32 — .60 -.07 .01 

FABP3 .25 .10 .69 .69 .43 .61 — -.10 -.03 

EC -.38 .04 -.06 -.08 -.24 -.09 -.17 — .16 

HC -.54 .07 -.09 -.09 -.29 -.06 -.14 .36 —

All samples included (n = 189). Spearman’s ρ correlation between Baseline age, CSF, 

and MRI biomarkers. The lower and upper triangular matrix shows unadjusted and 

Sex, Age-adjusted correlations, respectively. HC volume was additionally corrected 

for estimated intracranial volume (eICV). p < 0.05 correlations are highlighted. 

Key: NFL, Neurofilament light; NG, Neurogranin; FABP3, Heart-type fatty acid- 

binding protein 3; EC, Entorhinal cortex thickness; HC, Hippocampal volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

volume on Biomarker (t-tau, NFL, Ng, FABP3), Time, and the

Time × Biomarker interaction. For interpretation purposes, we re-

port Time × Biomarker effects as % of change of ± 1SD in the

biomarker compared to mean decline and Biomarker effects as % of

the difference of ±1SD in the biomarker compared to mean thick-

ness/volume. Finally, the same models were run using a general-

ized additive mixed models (GAMM) framework as implemented in

the gamm4 R-package (https://cran.r-project.org>package = gamm4)

which is capable of fitting nonlinear relationships through local

smoothing effects ( Sørensen et al., 2021 ). We used 5 knots and

thin plate smoothing splines to fit the smoothed effects of Time,

Biomarker, and Time × Biomarker interaction. To assess non-linear

trends on the Time × Biomarker contrast, we focused on the esti-

mated degrees of freedom (edf) of the interaction term which in-

forms about the degree of complexity of a curve. 

2.4.3. Impact of A β and p-tau, and APOE ε4 on the relationship 

between CSF markers of neurodegeneration and brain atrophy 

We performed 3 different analyses to understand the role of

AD pathology on the relationship between the CSF biomarkers and

brain atrophy. First, we assessed whether A β status interacted with

the neurodegeneration CSF biomarkers in predicting brain volume

and/or thickness at baseline and brain atrophy. We used similar

models as above, additionally including A β status in the model as

well as its interaction with Time and the neurodegeneration CSF

biomarkers. As post-hoc analyses, we re-ran the analyses using dif-

ferent thresholds to define A β positivity (12 thresholds, based on

sample quantiles [0.05,0.5, 0.025]). We used a resampling-based

approach that accounted for the dependency of the data as the dif-

ferent tests with varying A β positivity thresholds are not indepen-

dent. In brief, a null distribution (n = 50 0 0) was obtained by se-

lecting, for each permutation, the lowest p -value amongst n = 12

identical analyses run with a different A β status definition. Sec-

ond, we introduced APOE ε4 in the previous models. Third, we

assessed whether p-tau accounted for the relationships between

the CSF biomarkers and brain atrophy. We used similar models as

above additionally including p-tau and p-tau × Time in the model.

Note that we did not include a triple order interaction in the model

(i.e., Biomarker × p-tau × Time). Forth, we used a LASSO algo-

rithm ( Tibshirani, 1996 ) as implemented in the glmnet R-package

to select the CSF biomarkers that best predicted hippocampal and

entorhinal decline. LASSO is a regression-based machine learning

analysis that performs variable selection (and regularization) to

maximize prediction accuracy (see Supplementary Methods for de-

tails). 

2.4.5. Effects of CSF neurodegeneration markers on whole-brain 

volumes 

As suggested by a reviewer, we performed all the above-

mentioned linear mixed-effect analyses using whole-brain mea-

sures. Specifically, we used cortex volume and supratentorial vol-

ume, that is, white, and grey matter volume after excluding the

brain stem and the cerebellum. See results in Supplementary Re-

sults and Table S2. 

2.4.6. Spatial association between cellular-component specific gene 

expression and the cortical thinning maps associated with CSF 

biomarkers 

We compared the spatial maps of cortical decline associated

with each CSF biomarker of neurodegeneration and the spatial

patterns of gene expression associated with specific cellular com-

ponents. To obtain the cortical signatures associated with CSF

biomarkers, we applied the main model described above to n = 34

bilateral cortical ROIs. For each region, the Time × CSF estimate
was considered as the index of interest. For completeness, the full-

brain models were rerun using A β status and p-tau as described

above (Fig. S2). The spatial similarity between the CSF-related cor-

tical thinning maps was assessed using a Spearman’s ρ cross-

correlation matrix. 

See full description of gene expression preprocessing and anal-

yses in Supplementary Methods. Briefly, gene expression maps

were computed based on microarray expression data provided

by the Allen Human Brain Atlas ( https://human.brain-map.org )

( Hawrylycz et al., 2012 ). Data were processed with the abagen tool-

box ( https://github.com/rmarkello/abagen ) ( Markello et al., 2021 ).

The aggregate metric was set to the median while samples were

mirrored bidirectionally across hemispheres ( Romero-Garcia et al.,

2018 ). The remaining parameters were left to default. Data from

bilateral ROIs were combined yielding a regional expression ma-

trix with 34 brain regions and 15.633 retained genes. Note, that

the analysis was restricted to the cerebral cortex due to the relative

heterogeneity compared to subcortical structures ( Hawrylycz et al.,

2012 ). Next, we assessed the correlation between the spatial

maps associated with CSF-related cortical thinning and gene ex-

pression for specific cellular components based on the gene on-

tology from MsigDB ( http://www.gsea-msigdb.org/gsea/index.jsp )

( Subramanian et al., 2005 ) yielding n = 467 gene sets reflecting

different aspects of cellular anatomy. We computed the Pearsons’s

spatial correlation between the CSF-related cortical thinning maps

and each gene and combined the mean scores of genes annotated

to each category. Statistical significance was assessed using a per-

mutation test that compared the empirical correlation of each gene

set to a null distribution that maintained the spatial relationship

of the empirical phenotype (cortical thinning maps) (n = 40.0 0 0)

( BrainSMASH package) ( Burt et al., 2020 ). In essence, we tested for

spatial specificity; that is, are genes expressed in a specific cellu-

lar component more correlated to the CSF-related cortical thinning

maps than to random spatially autocorrelated phenotypes? The top

5-hits were reported, together with either a False discovery rate

(FDR) correction for multiple comparisons or the uncorrected p-

values. 

3. Results 

3.1. CSF biomarkers correlations 

Table 2 shows the ranked cross-correlation between the CSF

markers of neurodegeneration, age, and baseline estimates of EC

thickness and HC volume both unadjusted and adjusted by age

and sex. The 4 CSF markers of neurodegeneration were correlated

with each other (Spearman’s ρ ranging from .26 to .85) and with
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Table 3 

Effects of neurodegeneration CSF biomarkers on brain atrophy (Time × Biomarker interaction) and brain at baseline (Biomarker effect). 

MRI Biomarker Biomarker Time × Biomarker 

β(SE) t(df,p) β(SE) t(df,p) 

EC t-tau -0.14(.54) -0.26(183,.79) -19.81(8.62) -2.30(526,.02) 

NFL -0.41(.60) -0.69(183,.49) -31.84(8.32) -3.83(526, < .001) 

NG -0.63(.55) -1.14(181,.26) -11.52(8.83) -1.30(521,.19) 

FABP3 -0.66(.60) -1.10(164,.27) -23.58(8.65) -2.72(477,.006) 

HC t-tau 0.23(.68) 0.33(183,.74) -14.38(3.60) -4.00(525, < .001) 

NFL -0.27(.75) -0.36(183,.72) -13.13(3.50) -3.75(525, < .001) 

NG -0.09(.70) -0.13(181,.90) -5.16(3.65) -1.41(524,.15) 

FABP3 -0.12(.74) -0.17(164,.87) -8.04(3.79) -2.12(476,.03) 

β-estimates for the Time × Biomarker effects reflect the % of change of ±1SD in the Biomarker compared to mean decline. β-estimates for the Biomarker 

effects reflect the % of difference of ±1SD in the biomarker compared to mean thickness/volume. 

Key: df, degrees of freedom; SE, standard error; NFL, Neurofilament light; NG, Neurogranin; FABP3, Heart-type fatty acid-binding protein 3; EC, Entorhinal 

Cortical Thickness; HC, Hippocampal volume. See Fig. 1 for a visual representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-tau but not A β (except Ng [ ρ = .15/.16 unadjusted and/or age,

sex-adjusted]). When adjusted for Age and Sex, HC volume and

EC thickness at baseline were not significantly related neither to

the CSF markers of neurodegeneration nor to the AD core biomark-

ers. The cross-correlation biomarker matrices for the ADNI and the

COGNORM cohorts were comparable as assessed by Mantel tests

( r = 0.64, p = 0.005/ r = 0.66, p = 0.002 for unadjusted and/or

sex, age-adjusted ranked distances). Both were comparable to the

cross-correlation matrix for the whole sample ( r ≥ 0.84, p < 0.001

in all tests). See ADNI and COGNORM cross-correlation matrices in

Tables S3 and S4. 

3.2. Effects of CSF neurodegeneration markers on brain atrophy 

3.2.1. Brain atrophy over time 

Linear mixed-models controlling for Age at baseline, Sex, and

Cohort and random intercepts for participants, showed significant

loss of HC volume (t = -28.5; p < 0.001) and thinning of the EC

(t = -12.0; p < 0.001). The mean annual decline of HC volume and

EC thickness was 1.15% and 0.57%, respectively. The Cohort (ADNI

vs. COGNORM) was not significantly related neither to HC volume

nor EC thickness at baseline or their change ( p > 0.05). 

3.2.2. Relationship between CSF biomarkers and brain atrophy: linear 

mixed models 

Linear mixed models showed that higher NFL, FABP3, and t-tau

CSF values were associated with steeper EC thinning and more HC

atrophy ( p < 0.05), while CSF Ng was unrelated to brain change.

See the Biomarker and the Time × Biomarker effects detailed in

Table 3 . See a visual representation of the effects in Fig. 1 . 

3.2.3. Relationship between CSF biomarkers and brain atrophy: 

GAMM models 

We re-ran the same model in a GAMM framework, that al-

lows for non-linear relationships between Time, Biomarker, and

Time × Biomarker and brain atrophy. See stats in Table S5. As

expected, GAMMs also showed Time × Biomarker interactions

for t-tau, NFL, and FABP3. However, the results also suggested

most interactions showed non-linear trends such as the case of

NFL and FABP3 on EC (edf = 3.15, 3.81) and NFL and t-tau on

HC (edf = 3.09, 2.77). Fig. 2 for a visual representation. These

trends indicate that the relationship between CSF biomarkers and

accelerated brain atrophy only exists at high CSF biomarker values;

approximately from values > 1SD onwards. Below this threshold,

variations in the CSF biomarkers were less strongly related to
prospective brain atrophy. 
3.3. CSF markers of Neurodegeneration and core AD biomarkers A β
and p-tau and APOE ε4 allele 

3.3.1. Is the relationship between CSF and brain integrity moderated 

by Amyloid- β status? 

Next, we tested whether the relationship between neurodegen-

eration CSF biomarkers and brain atrophy was moderated by the

presence of amyloid- β deposition as quantified by A β status. We

ran linear mixed-effects models with Time, Biomarker, and A β sta-

tus and their interactions as the effects of interest. The results did

not reveal significant interaction effects of neurodegeneration CSF

biomarker and A β status neither on brain integrity at baseline nor

prospective brain atrophy ( p ≥ 0.08) (Table S6). A β+ was related to

more EC thinning ( p ≈ 0.01–0.05 depending on the model) but not

to HC atrophy nor brain volume/ thickness at baseline ( p ≥ 0.5).

See a visual representation of the results in Fig. 3 . 

We repeated the analysis using different A β status threshold

criteria, that is, considering more lenient or more stringent cri-

teria for A β positivity ( Fig. 4 ). When using more lenient criteria

for defining individuals as A β+ , we found evidence of a signifi-

cant interaction between FABP3 and A β for predicting Entorhinal

cortex thinning. Similarly, the interaction of t-tau and A β signifi-

cantly predicted hippocampal atrophy. The remaining tests did not

surpass the adjusted criteria for statistical significance. However,

the patterns suggest that using more lenient criteria for defining

individuals with A β+ may reveal additional interactions between

biomarkers when predicting brain atrophy in cognitively healthy

OA. 

3.3.2. Is the relationship between CSF and brain integrity moderated 

by the presence of the APOE ε4 allele? 

Next, we tested whether the relationships between CSF and

brain integrity differed between APOE ε4 carriers and non-carriers.

No significant Biomarker × APOE ε4 were found on entorhi-

nal thickness or hippocampal volume ( p > 0.05). However, t-

tau × APOE ε4 ( p = 0.02) and Ng × APOE ε4 ( p = 0.03) interac-

tions were significantly associated with hippocampal decline over

time (Table S7). In both cases, APOE ε4 non-carriers with low CSF

biomarker load showed less hippocampal atrophy over time. No

significant Biomarker × APOE ε4 × A β status interactions on brain

atrophy were found when both APOE ε4 and A β status were intro-

duced in the model ( p > 0.05). 

3.3.3. Does p-tau explain the relationship between CSF and brain 

atrophy? 

We then tested whether the relationship between neurodegen-

eration CSF biomarkers and brain atrophy could be explained by

the effects of p-tau on brain atrophy over time. We ran linear
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Fig. 1. Relationship between CSF biomarkers of Neurodegeneration and brain atrophy. Scaled CSF biomarkers are shown in a green-magenta scale (saturated at 1 SD). For 

visualizing an interaction between 2 continuous variables, we sampled the trajectories of each neurodegeneration CSF biomarker on brain values – as a function of time - at 

mean CSF ±1 SD using the predict function (green/magenta = -1 SD/ + 1 SD, i.e., low/high CSF values). Points represent single observations united within participants by grey 

lines. Observations are adjusted by the covariates of no-interest and the participant-identifier fixed effects. Ribbons reflect standard errors of the mean (SEM). Abbreviations: 

NFL, Neurofilament light; NG, Neurogranin; FABP3, Heart-type fatty acid-binding protein 3; Cth, Cortical Thickness; Vol, Volume. See Table 3 for stats. (For interpretation of 

the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. GAMM fits; Time × Biomarker interactions on brain atrophy. The figure shows the Time (x-axis) × CSF biomarker (y-axis; scaled) interaction on Entorhinal thickness 

(upper panels) and Hippocampal volume (lower panels) shown on the z-axis as a yellow-green-blue scale. Abbreviations: NFL, Neurofilament light; NG, Neurogranin; FABP3, 

Heart-type fatty acid-binding protein 3; Cth, Cortical Thickness; Vol, Volume. White lines were drawn as contours for illustrative purposes. See stats in Table S5. (For 

interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mixed-effects models as described above additionally controlling

for p-tau and Time × p-tau effects. The relationships between

CSF NFL with both EC thinning and HC atrophy remained signif-

icant when controlling for p-tau effects (EC: t = -3.27, p = 0.001;

HC: t = -2.91, p = 0.004). CSF FABP3 was also significantly as-

sociated with EC thinning (t = -1.98, p = 0.05) when controlling

for p-tau. The remaining comparisons were not statistically signif-

icant ( p > 0.25) except in the case of CSF Ng, which predicted

preservation of HC volume over time ( p = 0.009). See full stats in

Table S8. 
3.3.4. LASSO feature selection: When combined, which biomarkers 

better predict brain atrophy? 

Finally, we used a LASSO algorithm to select the CSF biomark-

ers that best predicted hippocampal atrophy and entorhinal cor-

tical thinning. We used Age, Sex, the AD biomarkers A β and p-

tau, and the 4 CSF biomarkers of neurodegeneration as variables

of interest. An optimal λ = 1.28 for EC and 2.70 for HC predic-

tions were first defined using cross-validation. The optimal model

for EC thinning included Age, t-tau and NFL as predictors ( β = -

0.80 −3 , -0.73 −3 , -2.50 −3 mm). The optimal model for HC atrophy
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Fig. 3. Interaction between CSF biomarkers of Neurodegeneration and A β42 on brain atrophy. Scaled CSF biomarkers are shown in a green-magenta scale (saturated at 1 

SD). A β+ /A β− status is shown as dashed and/or solid lines and triangles and/or circles. For visualizing an interaction between 2 continuous variables, we sampled the 

trajectories of each neurodegeneration CSF biomarker on brain values – as a function of time - at mean CSF ±1 SD using the predict function (green/magenta = -1 SD/ + 1 

SD, i.e., low/high CSF values). Points represent single observations united within participants by grey lines. Observations are adjusted by the covariates of no-interest and 

the participant-identifier fixed effects. Ribbons reflect standard errors of the mean (SEM). Abbreviations: NFL, Neurofilament light; NG, Neurogranin; FABP3, Heart-type fatty 

acid-binding protein 3; Cth, Cortical Thickness; Vol, Volume. See Table S6 for stats. (For interpretation of the references to color in this figure legend, the reader is referred 

to the Web version of this article.) 

Fig. 4. Effects of varying A β42 threshold positivity on brain integrity. p -values for 

Time × Biomarker × A β and Biomarker × A β on Entorhinal Cortex thickness and 

Hippocampal volume using different criteria for defining individuals with positive 

A β status. p-unc = 0.05, p-adj ≈ 0.003 (Bonferroni-like adjustment). Abbreviations: 

NFL, Neurofilament light; NG, Neurogranin; FABP3, Heart-type fatty acid-binding 

protein 3; CSF, Cerebrospinal fluid; Cth, Cortical Thickness; Vol, Volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

included Age, A β , t-tau, NFL, and FABP3 as independent predictors

( β = -0.62, 4.02, -2.77, -2.09 mm 

3 ). Note that β-coefficients rep-

resent annualized change and the model’s selection of t-tau over

p-tau is possibly arbitrary due to their high correlation. 

3.4. Are spatial patterns of CSF biomarker-related cortical thinning 

related to gene expression of specific cellular components? 

3.4.1. Spatial patterns of CSF biomarker-related cortical thinning 

First, we obtained the cortical signatures of the different CSF

biomarkers of neurodegeneration by extending the main analysis

to the n = 34 bilateral ROIs. See the relationship between CSF

biomarkers and cortical thinning in Fig. 5 A. For completeness, we
repeated the analyses using A β as moderator and controlling for

p-tau (Fig. S2). The spatial correlation amongst biomarker-related

cortical thinning is shown in Fig. 5 B. 

3.4.2. Spatial patterns of CSF biomarker-related cortical thinning 

relate to gene expression patterns for specific cellular components 

Finally, to shed light on the biological substrates underpinning

cortical thinning in each biomarker, we compared the spatial sig-

natures of cortical decline associated with each biomarker with the

spatial patterns of gene expression associated with specific cellu-

lar components. The pattern of cortical thinning associated with

baseline t-tau resembled most those of genes expressed in the ax-

onal growth cone ( r = -0.50, p unc = 0.002, n genes = 27), the AMPA

glutamate receptor complex ( r = -0.50, p unc = 0.002, n genes = 24),

the neurotransmitter receptor complex ( r = -0.47, p unc = 0.003,

n genes = 47), and the excitatory synapse ( r = -0.46, p unc = 0.004,

n genes = 44). For NFL, genes expressed in the cortical cytoskele-

ton ( r = -0.61, p fdr < 0.001, n genes = 86), the cortical actin cy-

toskeleton ( r = -0.60, p fdr = 0.005, n genes = 64), and the Ruffle

membrane ( r = -0.57, p fdr = 0.006, n genes = 84) were the most

strongly associated with the spatial patterns of cortical thinning.

For Ng, genes expressed in the dendritic shaft ( r = -0.40, p unc <

0.009, n genes = 31) were the most strongly associated with the

spatial patterns of cortical thinning. Finally, for FABP3, genes ex-

pressed in the RNA polymerase II holoenzyme ( r = -0.53, p unc <

0.001, n genes = 68), the rough endoplasmatic reticulum membrane

( r = -0.48, p unc = 0.003, n genes = 25), the anaphase promoting com-

plex ( r = -0.48, p fdr = 0.003, n genes = 20), and the triglyceride rich

plasma lipoprotein particle ( r = -0.46, p fdr = 0.004, n genes = 11)

were amongst the most strongly associated with the spatial pat-

terns of cortical thinning. See top terms in Fig. S3. In summary,

the patterns of cortical thinning associated with the CSF biomark-

ers of neurodegeneration overlap with genes expressed in specific

cellular components, which grossly match the putative biological

substrates of the biomarkers (e.g., for t-tau axonal damage and ex-

citatory neurons, for NFL compromised cytoskeleton, Ng as marker

of postsynaptic function, and FABP3 as a marker of lipid dyshome-

ostasis). Note that due to stringent multiple comparison correction,

corrected results are only found for the NFL patterns. 
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Fig. 5. Relationship between CSF biomarkers of Neurodegeneration and cortical thinning. (A) Effects of CSF biomarkers on cortical thinning (Time × Biomarker effect) shown 

in a blue-brown-yellow scale where yellow represents steeper thinning with higher levels of the biomarker. For visualization purposes, ROIs with effects p < 0.05 are drawn 

with red lines. (B) Spatial correlation between CSF biomarker-related maps of cortical thinning. The upper triangular matrix shows the Spearman ( ρ) correlation between 

cortical maps. The lower triangular matrix displays the same correlation using a scatter plot where each point represents the t-value for a unique cortical region. The 

diagonal shows the probability density function for each CSF biomarker. That is, for each biomarker, it shows the distribution of the effects (t-values) throughout all the 

cortical regions. Abbreviations: NFL, Neurofilament light; NG, Neurogranin; FABP3, Heart-type fatty acid-binding protein 3. (For interpretation of the references to color in 

this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

The results showed that the neurodegeneration biomarkers NFL,

t-tau, and FABP3 - but not Ng - predicted both HC atrophy and

thinning of the EC. The association of NFL - and to a lesser degree,

FABP3 - with brain atrophy was not moderated by A β42 nor ex-

plained by p-tau. The patterns of cortical thinning corresponding

to each CSF biomarker were related to distinct neurogenetic pro-

files associated with specific cellular substrates such as axonal or

dendritic components. The implications of these findings are dis-

cussed below. 

4.1. NFL is related to brain atrophy in cognitively healthy older adults

regardless of amyloid and tau pathology 

The relationship between NFL and brain atrophy in aging, and

its independence from amyloid and tau pathology biomarkers,

fits well with the existing literature ( Hansson, 2021 ). Increased

levels of NFL in both CSF and blood are found with higher age -

even when controlling for concomitant neurodegenerative diseases

( Idland et al., 2017 ; Khalil et al., 2018 ; Vågberg et al., 2015 ). Varia-

tions in baseline NFL often relate to the slope of brain atrophy and

cognitive decline in many conditions such as AD, frontotemporal

dementia, and vascular disease ( Egle et al., 2021 ; Mattsson et al.,

2017 ; Rohrer et al., 2016 ) but also in cognitively healthy OA sam-

ples ( Idland et al., 2017 ; Khalil et al., 2020 ). Further, longitudinal

change in plasma NFL parallels brain changes both in cognitively

healthy OA ( Khalil et al., 2020 ), and AD patients ( Mattsson et al.,

2019 ) while reductions in NFL are associated with treatment

effectiveness in several diseases ( Olsson et al., 2019 ). Overall, our

results indicate that cross-sectional CSF NFL is a good predictor

of brain atrophy in cognitively healthy OA, capturing relatively

unspecific accumulation of diverse subclinical - and preclinical -

brain damage related to axonal alterations ( Khalil et al., 2018 ).

The neurodegenerative mechanisms behind increased NFL in

cognitively healthy OA are unclear, however, they most likely over-

lap with those underlying specific diseases to some degree. Top

candidate etiologies are cerebrovascular pathology ( Nyberg et al.,

2020 ) and tau-related damage ( Mattsson et al., 2019 ). It is uncer-

tain whether NFL captures normal age-related myelin alterations

( Peters and Sethares, 2002 ) as they do not include extensive ax-

onal degeneration. One speculation is that CSF NFL in cognitively

healthy OA relates to decreased neurofilament phosphorylation,
which renders axonal neurofilament more vulnerable to break-

down ( de Waegh et al., 1992 ). The neurogenetic analysis pointed

in this direction as NFL-related cortical thinning overlapped with

the topography of genes expressed in the cytoskeleton. This is in

agreement with NFL being a key protein in the neural cytoskele-

ton, a marker of neuroaxonal damage in CSF ( Khalil et al., 2018 ;

Lépinoux-Chambaud and Eyer, 2013 ), and evidence that myelina-

tion contributes strongly to the T1-weighted signal ( Eickhoff et al.,

2005 ). Considering NFL can also be reliably quantified in blood,

this biomarker has substantial clinical utility as it can detect ongo-

ing neurodegenerative changes in cognitively healthy individuals.

In combination with other biomarkers, it can improve predictions

and select individuals with a higher risk of future cognitive decline.

4.2. FABP3 relates to brain atrophy in cognitively healthy older adults

and is partially independent of core AD biomarkers 

CSF FABP3 was also associated with brain atrophy in the EC

and this relationship remained significant when controlling for

levels of p-tau. The literature on FABP3 in aging and demen-

tia is still scarce. Here, we provide first-time evidence of a re-

lationship between temporal lobe atrophy and FABP3 in cogni-

tively healthy older adults. Using ADNI, FABP3 has been associated

with atrophy of EC and other AD-vulnerable regions in a previous

study that included both demented and non-demented individuals

( Desikan et al., 2013 ). This relationship was moderated by A β sta-

tus, and only individuals with low CSF A β and high levels of FABP3

showed steeper cortical thinning. Using a clustering approach with

the COGNORM dataset, Idland and colleagues (2020) found that

individuals with high tau, p-tau, and FABP3 levels showed more

temporal lobe atrophy independently of A β levels. Similarly, our

results did not support A β as a moderator of the relationship be-

tween FABP3 and brain atrophy, though ultimately this interac-

tion might be dependent on the threshold for defining A β status

and the presence of dementia. Interestingly though, FABP3 often

emerges as a relevant biomarker in machine learning approaches

in the context of aging and neurodegenerative diseases. For exam-

ple, FABP3 was a top biomarker for predicting AD ( O’Bryant et al.,

2013 ), was an important predictor of conversion and diagnostic ac-

curacy ( Chiasserini et al., 2017 ), and appeared as the most abnor-

mal CSF biospecimen in the healthy aging-AD continuum ( Iturria-

Medina et al., 2016 ). These findings align with our feature selec-

tion results showing FABP3 as an independent contributor to hip-
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pocampal decline. The source of FABP3 in CSF in older individu-

als is still uncertain but has been interpreted as reflecting vascu-

lar dysregulation, metabolic integrity, membrane integrity, and cell

dysfunction. In the brain, FABP3 is involved in the transport of fatty

acids and thus plays a role in maintaining neuronal membrane in-

tegrity, neurite growth, and synapse formation ( Janssen and Kili-

aan, 2014 ). The neurogenetic analyses suggested that FABP3-related

cortical thinning captures primary loss of lipid integrity and/or

downstream effects mediated by fatty acid control of gene expres-

sion ( Pégorier et al., 2004 ). The results suggest FABP3 can capture

brain decline in cognitively healthy OA that is partly independent

of pathological processes associated with AD. 

4.3. Ng and t-tau do not relate to brain atrophy in cognitively 

healthy older adults independently from core AD biomarkers 

CSF levels of Neurogranin (Ng) were unrelated to brain atro-

phy. Associations of Ng with brain integrity have only been ob-

served in previous studies using ADNI data in individuals with A β
pathology or presenting MCI ( Pereira et al., 2017 ; Portelius et al.,

2015 ). Likewise, abnormal Ng levels are seen both in undemented

A β+ and MCI individuals ( Pereira et al., 2021 ; Portelius et al.,

2015 ), but are normal in most neurodegenerative conditions, sug-

gesting that Ng reflects AD-specific post-synaptic dysfunction. In

a community-based sample, Ng levels were elevated in A β+ indi-

viduals but otherwise were largely unrelated to cognitive function

and health status (age and sex-adjusted) ( Mielke et al., 2019 ). Our

findings are thus in line with this literature suggesting that, while

Ng is a useful marker of neurodegeneration in early AD, it is not a

(very) sensitive biomarker of brain atrophy in non-demented pop-

ulations. The neurogenetic analyses suggest a relationship between

Neurogranin-related cortical thinning and post-synaptic dysfunc-

tion - as associated with genes expressed in the dendritic shaft -

in agreement with existing literature. 

We considered t-tau as a marker of neurodegeneration as it is

unspecific to AD and is high in other neurodegenerative diseases

and brain conditions ( Hansson, 2021 ; Jack et al., 2018 ). The re-

sults, however, showed a high correlation between p-tau and t-tau

and that t-tau-related brain atrophy was not independent of p-tau.

Thus, we conclude that in the context of cognitively healthy ag-

ing, p-tau and t-tau are mostly interchangeable and t-tau-related

brain atrophy is closely linked to tau-phosphorylation. The neu-

rogenetic analyses showed t-tau-related cortical thinning was as-

sociated with gene expression in the axonal part ( axonal growth

cone ) consistent with tau proteins being a key structural and func-

tional element of axons. The relationship of both t-tau and Ng

was moderated by the presence of – at least, 1 – APOE ε4 allele.

These results suggest that in cognitively healthy OA both biomark-

ers may inform on brain changes that are often associated with

AD pathology and are in line with the notion of APOE ε4 being a

key for understanding neuropathological variability in OA and AD

( Frisoni et al., 2022 ). 

4.4. Limitations and technical considerations 

Several limitations and technical aspects associated with this

study need to be addressed. The sample in the present study

had idiosyncratic characteristics due to (1) the inclusion of older

adults that remained cognitively healthy during follow-up, and (2)

the combination of the COGNORM and ADNI cohorts. Selection

bias is a well-known concern and an inherent problem in aging

studies ( Hardy et al., 2009 ). Individuals need to survive and be

healthy enough to satisfy inclusion criteria up until old age and, in

longitudinal studies, come back repeatedly for follow-up testing.

The decision of excluding converters was motivated by the need
to understand the trajectories of brain atrophy in relation to CSF

biomarkers in cognitively healthy older individuals. The develop-

ment of reliable markers of neurodegeneration in this population

is key for early prediction and early therapeutic interventions

before the presence of widespread brain and cognitive decline. Yet,

this decision increased sample bias towards a “healthy(ier) volun-

teer” profile. The different composition of samples across studies

is likely an important factor in explaining the heterogeneity of the

results. To consider here is a non-significant interaction between t-

tau and A β status on longitudinal brain atrophy. It is possible that

the inclusion of participants closer to cognitive decline, which – on

average - would present low CSF A β , high CSF t-tau (and NG), and

steep atrophy, would have caused this interaction to be significant.

Here we combined 2 different sam ples of cognitively healthy

OA to increase power. Combining different cohorts may create new

sources of error due to differences in the populations or the mea-

surements ( Zuo et al., 2019 ). Here, differences in recruitment, CSF

collection procedures, MRI acquisition sequences, and duration of

the follow-up are potential sources of systematic noise. To mini-

mize this problem, we scaled the CSF biomarkers within each co-

hort and introduced cohort as a covariate in all analyses. While

the cohorts differed in the proportion of A β+ and APOE ε4 car-

riers, they showed comparable rates of brain atrophy and a simi-

lar structure of correlation between biomarkers. The emergence of

several other independent datasets characterized by available CSF

- and plasma - biomarkers at baseline and longitudinal MRI ob-

servations will enable reliability testing in future work. Finally, we

must highlight that the correlational nature of the analyses does

not warrant causality or directionality claims. While the inclusion

of prospective longitudinal MRI data provides a greater degree of

confidence, the constrain is especially poignant in the neurogenetic

analyses. The spatial correlations cannot differentiate between up-

stream and downstream effects, nor one can fully exclude the im-

pact of unaccounted variables. 

5. Conclusions 

This study sheds light on the relationship between baseline

CSF biomarkers and prospective longitudinal decline in cognitively

healthy older individuals with a relatively low burden of neurode-

generation. We found that NFL and FABP3 predict brain atrophy

independently of biomarkers for brain amyloidosis and tau pathol-

ogy. Since these biomarkers reflect partially different biological

processes, we suggest that in combination they can improve the

accuracy of individual predictions of brain atrophy and its topog-

raphy in cognitively healthy older adults. 
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