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Angular and linear speed cells in the
parahippocampal circuits
Davide Spalla 1, Alessandro Treves 1 & Charlotte N. Boccara 2✉

An essential role of the hippocampal region is to integrate information to compute and

update representations. How this transpires is highly debated. Many theories hinge on the

integration of self-motion signals and the existence of continuous attractor networks (CAN).

CAN models hypothesise that neurons coding for navigational correlates – such as position

and direction – receive inputs from cells conjunctively coding for position, direction, and self-

motion. As yet, very little data exist on such conjunctive coding in the hippocampal region.

Here, we report neurons coding for angular and linear velocity, uniformly distributed across

the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for

MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet

lacked a structured organisation. These results offer insights as to how linear/angular speed –

derivative in time of position/direction – may allow the updating of spatial representations,

possibly uncovering a generalised algorithm to update any representation.
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The brain is constantly bombarded with all types of infor-
mation that need to be related to each other in order to
build a coherent picture of one’s surroundings (or of the

situation one is experiencing at a given time). A broad range of
studies have indicated that one of the main roles of the hippo-
campal region is to do that: integrate multimodal information –
coming from a variety of sensory and associative cortices, as well
as deeper structures – to build a dynamic representation of an
environment or an event1–4. The accurate updating of these
representations – and their comparison with previously stored
representations as well as projections of likely near futures –
could allow one to evaluate the outcome of a range of decisions in
order to react adequately. In the context of spatial cognition,
information integration is implemented in interconnected sub-
areas of the hippocampal region5,6 through neurons coding for
specific instantaneous navigational features such as position
(place cells)7, direction (head direction cells)8, local metrics (grid
cells)9 and boundaries (border cells)10,11. Successful navigation is
also thought to depend on the accurate updating of spatial
representations, which themselves would hinge on self-motion
signals and their integration with both positional and directional
information12–15. Despite their crucial role, where and how self-
motion signals are integrated remains largely elusive.

Linear speed modulation has so far mainly been reported in the
CA1 region of the hippocampus and the medial entorhinal cortex
(MEC) in conjunction with positional information or as a non-
conjunctive code (speed cells)16,17. In addition, speed has been
reported to influence oscillatory activity recorded in the hippo-
campal field potential where the theta power seems correlated to
locomotory activity18–20. In contrast, angular velocity coding has
not been yet established in principal neurons of the hippocampal
region as a non-conjunctive code. A recent report has shed light
on a few cells (7%, 12 units) in the superficial layers of the MEC,
modulated by angular head velocity in conjunction with other
spatial correlates, hinting at the presence of angular coding in this
region21. Yet, these results need to be confirmed and the existence
of angular velocity in the hippocampal region independently of
spatial or directional coding remains to be established. Reports of
angular velocity modulation have – so far – mostly come from
recordings of subcortical structures (e.g., lateral mammillary
nuclei, dorsal tegmental nucleus), linked to the processing of
vestibular information, the retrosplenial cortex or as a modulating
factor of head direction coding22–27.

Most crucially, it has remained unclear whether angular velo-
city coding requires precisely tuned connectivity structures. In
fact, some theoretical models within the class of continuous
attractor networks (CANs)13,15,28–32 assume a precise wiring
diagram, in which neurons coding for instantaneous navigational
correlates – such as position and/or direction – typically receive
inputs from cells conjunctively coding for position, direction and
self-motion13,15,28–33. These conjunctive cells – sometimes
referred to as the ‘hidden layer’ – are hypothesised to mediate the
shift of activity from position (or direction) at time t to the next
position (or direction) at time t+1 (Figs. 1c and 2b). Exciting
evidence compatible with such CAN models was recently pro-
vided by investigations of the Drosophila melanogaster central
complex, where head direction cells whose activity was modulated
by angular velocity were shown to be organised in a ring
according to their preferred direction34,35. It is, however, unclear
whether such precisely organised connections could be found in
more complex species, or for functions other than directional
coding.

To understand the circuit mechanism by which spatial repre-
sentations can be updated in mammals, we carefully mapped
the activity of individual neurons recorded in all the layers of
three main areas of the rat parahippocampal region: the MEC, the

parasubiculum and the presubiculum. We specifically investigated
whether these neurons could respond to both linear and angular
self-motions signals. Our study reveals the existence of para-
hippocampal neurons coding conjunctively for direction, position
and self-motion, possible evidence for the elusive ‘hidden layer’,
pillar of many CAN models13. Such a hidden layer would for
example consist of a population of cells simultaneously sensitive
to head direction and angular head velocity. However, the thor-
ough examination of self-motion neurons did not indicate any
logical scheme that could be realised through a specific wiring
diagram. It appears that direction, position and speed selectivity
are randomly admixed with each other, lacking any obvious
structure in the coding properties of individual cells. In addition,
we observed a continuous and almost homogenous distribution of
properties across brain regions, without evidence of topographical
or physiological clustering.

Results
To understand whether and how both linear and angular speed
modulation are integrated in the hippocampal circuits, we ana-
lysed the activity of 1436 principal neurons recorded in all layers
of three interconnected subareas of the parahippocampal region
of rats freely exploring open environments of various sizes (MEC:
396 cells; presubiculum: 605 cells; parasubiculum: 435 cells,
Fig. 1a)36.

Angular velocity coding in the parahippocampal region. First,
we sought to determine whether parahippocampal neurons
responded to the angular head velocity (AHV) signal, which is the
derivative of head direction in time. To that end, we computed,
for each cell, its angular velocity score as the Pearson product
moment correlation between the instantaneous value of angular
velocity and the firing rate of the cell across the recording session
(see Methods and Supplementary Fig. 3a). We defined cells as
AHV modulated when their score was greater than the 99th
percentile of the shuffled distribution. This method led us to
classify a total of 246 cells as angular head velocity cells,
amounting to about one sixth of all parahippocampal cells (MEC:
16.9%; Prs: 17.0%; PaS: 17.2%; Fig. 1b–e and Supplementary
Fig. 1a–d). We chose a region-wise shuffle, in which shuffles from
all cells in the same region are pooled together (see Methods),
based on the uniformity of behaviour and firing rate across ses-
sions and neurons, as well as to offer a point of comparison with
previously published studies17,36. However, to exclude the pos-
sibility of session- or cell rate-based artifacts, we verified that we
found similar results with a within-cell shuffle analyses (see
Methods and Supplementary Fig. 2d–f). AHV modulation was
uniformly distributed across all layers of each region, except in
MEC LII, which showed no such modulation, regardless of the
shuffling method used (Kolmogorov–Smirnov test, p < 0.001,
Supplementary Fig. 2).

As per our definition, AHV cells are neurons whose firing rate is
positively modulated by angular velocity, meaning that these cells are
more active when the animal is turning its head. About half of the
AHV cells had their activity modulated solely when the animal had
its head turning only in one direction, either clockwise (CW) or
counterclockwise (CCW). The other half of the AHV cells were
bidirectional (BiDir) and modulated by angular motions in both
directions (MEC: 26.8% CW, 31.0% CCW, 58.2% BiDir; Prs: 25.9%
CW, 23.1% CCW, 64.4% BiDir; PaS: 32.0% CW, 30.0% CCW, 52.0%
BiDir; Fig. 1d and Supplementary Fig. 1a–d, note that the
percentages do not sum to 100%, since unidirectional and
bidirectional scores are not mutually exclusive, overlaps are
represented in darker shades in the figures, see Methods). All layers
of each region presented similar proportions of CW, CCW and
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bidirectional AHV cells (Kolmogorov–Smirnov test, p < 0.001,
Supplementary Fig. 2a–c) with the exception of MEC layer II who
did not present any AHV modulation. The use of a within-cell
shuffle threshold did not significantly impact CW, CCW and BiDir
percentages (Binomial test, p < 0.001, Supplementary Fig. 2). AHV
modulation appeared stable in time across all regions, and we
observed no change in modulation intensity (AHV score) while
comparing successive half-sessions (Pearson correlation ⍴= 0.52,
p < 0.001, Fig. 1h). When calculating the Pearson product moment
correlation, we found a small percentage of negatively modulated –

or anticorrelated – AHV cells, distributed across all regions and all
layers (MEC: 2.5%; Prs: 6.1%; PaS: 6.4%; see methods for definition
of anticorrelated cells and Supplementary Fig. 3 for examples). This
cell population was analysed separately, taking into account that
anticorrelated AHV cell may reflect a modulation not related to
AHV, but rather a process that takes places only when the head of
the animal is still.

To account for nonlinear coding and compare our results with
recent reports21, we further analysed all recorded cells with a
generalised linear model (GLM) approach16 for which neuron firing

ed

c

AHV CCW CW BiDir

F
ir

in
g

 r
at

e 
(H

z)
F

ir
in

g
 r

at
e 

(H
z)

Angular velocity (rad/s) Angular velocity (rad/s) Angular velocity (rad/s) Directional angular velocity score (a.u.) Bidirectional angular velocity score (a.u.)

0.00

0.04

0.08

0.12

0.16

UniDir

1.0 mm

1.0 mm

1.0 mm

AHV CCW CW BiDir
0.00

0.04

0.08

0.12

0.16

UniDir

AHV CCW CW BiDir
0.00

0.04

0.08

0.12

0.16

UniDir

F
ir

in
g

 r
at

e 
(H

z)

P
ro

b
ab

ili
ty

 d
en

si
ty

 in
 M

E
C

BiDir

-0.2 -0.1 0.0 0.1 0.2 0.3

1.5

3.5

P
ro

p
o

rt
io

n
s 

in
 M

E
C

0.2

0.4

0.6

1.0

1.5

2.0

CCW CW

P
ro

b
ab

ili
ty

 d
en

si
ty

 in
 P

aS

0

5

10

15

20

-0.3 -0.1 0.0 0.1 0.3

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

BiDir

3.5

4.5

0.4

0.8

1.2

4.0

5.0

6.0

P
ro

p
o

rt
io

n
s 

in
 P

aS
P

ro
p

o
rt

io
n

s 
in

 P
rS

P
ro

b
ab

ili
ty

 d
en

si
ty

 in
 P

rS
0

10

15

5

-0.2 -0.1 0.0 0.1 0.2

CCW CW BiDir

-0.2 -0.1 0.0 0.1 0.2

0.4

0.8

1.2

1.0

3.0

5.0

5.5

6.5

8.5

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

g h

A
n

g
u

la
r 

ve
lo

ci
ty

 s
co

re
(s

ec
o

n
d

 p
er

io
d

)

Angular velocity score
(first period)

-0.4 -0.2 0.0 0.2 0.4
-0.4

-0.2

0.0

0.2

0.4

A
n

g
u

lar velo
city

(n
o

rm
alised

)

0 20 40 60 80

Time (msec)

a b

f

2.5

2.5

2.5

1.0

7.5

N
o

rm
al

is
ed

 r
at

e

0

2

4

-2

0

2

4

-2

cell 1 cell 2 cell 3

cell 4 cell 5 cell 6

cell 7 cell 8 cell 9

cell 3

-0.09 0.12 0.16

0.160.10-0.19

-0.09 0.090.15

t t+1

-0.2 0.2

CCW CW

0

5

10

15

20

-0.4 -0.2 0.0 0.2 0.4

Angular velocity score
(first period)

-0.4 -0.2 0.0 0.2 0.4

Fig. 1 Angular velocity cell in the parahippocampal cortex. a Whole rat brain, with partially removed left hemisphere to enable a midsagittal view of the
right hemisphere and outlines of hippocampal formation (yellow), presubiculum (blue), parasubiculum (pink) and MEC (green). Adapted from36

(b) Schematic representation of three type of angular head velocity (AHV) movement, from left to right: counterclockwise (CCW, dark pink), clockwise
(CW, light pink) and bidirectional (BiDir, purple). c Schematics ring attractor depicting theoretical updating of head direction code from position at time t

(left) to position at a later time t+1 (right) following angular movement (middle). The outer layer of head direction (HD) cells is connected to a ‘hidden’
inner layer of conjunctive HD-by-AHV cells. The colour represents neural activation from maximum (red) to minimum (blue). d Proportions of AHV cells
within MEC (top), PaS (middle) and PrS (bottom). From left to right: all AHV cells (fuchsia, MEC:17%, n= 67; PaS:17%, n= 75; PrS:17%, n= 104), CCW-
AHV cells (dark pink, MEC:5%; PaS: 5%; PrS:4%), CW-AHV cells (light pink, MEC:5%; PaS: 6%; PrS: 5%), and BiDir-AHV cells (purple, MEC:10%; PaS:9%;
PrS:11%). The shaded areas represent the intersection between AHV-CCW & AHV-BiDir (darker shade) or between AHV-CW & AHV-BiDir (lighter
shade). Upper right corner boxes: representative Nissl-stained sagittal section showing example recorded track for each area. e Example AHV cells in MEC
(top), PaS (middle) and PrS (bottom) showing firing rate as a distribution of angular velocity (in rad/s), score in upper right corner. From left to right: CW-
AHV (dark pink), CCW-AHV (light pink) and BiDir-AHV (purple). f Distribution of unidirectional (left) and bidirectional (right) AHV scores across MEC
(top), PaS (middle) and PrS (bottom) cell population comparing observed (coloured curve) and shuffled data (grey bars). Dashed lines represent 99
percentile thresholds for CCW- and CW-AHV (left) and Bidir-AHV (right). g Snapshot comparison between z-scored firing rate of an example AHV cell
(pink curve) and instantaneous angular head velocity (black curve). h Scatter plots showing the correlation between the AHV scores calculated in the first
and second half of each recording sessions (Left: unidirectional, CW- and CCW-AHV cells in pink; Right: bidirectional, BiDir-AHV cells in purple; rho
stability= 0.52). Credits to Silvia Girardi for schematics and drawings.
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profiles are calculated as a function of velocity. For this approach,
velocity values were treated as categorical variables and would allow,
for example, to select cells responding to a specific speed band (see
Methods and Supplementary Fig. 3b). While the cell populations
yielded by the two methods were significantly overlapping (Binomial
test, p < 0.001, Supplementary Fig. 3c), a substantial fraction of AHV
modulated cells were only captured by one or the other method. Out
of 182 AHV cells solely picked up by the GLMmethod, about half of
them (54%) were anticorrelated, significantly overlapping with the
cell population showing a negative Pearson score (Binomial test, p
value < 0.001; see Supplementary Fig. 3d). Only a small number of
AHV cells solely picked up by the GLM method (11%) were
responsive to a particular value of angular head velocity (measured
with a gaussian fit), while the rest either did not show a modulation
profile with a simple shape or presented a weak linear correlation
(i.e., just below the Pearson threshold; see Supplementary Fig. 3d).
The choice of method had little impact on the uniform distribution
across regions, except for MEC layer II (see Supplementary Fig. 3d).
Given the possible ambiguity linked to negative modulation, the
dominance of linear (or pseudo-linear) coding in positively
modulated AHV (see Supplementary Fig. 4) and to facilitate the
comparison with linear speed analyses17, we decided to present in
the main figures the results obtained with the more conservative
Pearson scoring methods. Yet, we systematically reported in the text
or in the supplementary figures the results for the GLM-only
population – i.e., cell classified as AHV by the GLM method and
non-AHV by the Pearson scoring method.

Parahippocampal neurons upstream of the entorhinal cortex
code for linear speed. Once established that angular velocity

coding was widespread across several parahippocampal areas,
we tested whether linear speed coding could also extend beyond
the medial entorhinal cortex (MEC). To that end, we determined
the speed score of each cell as a Pearson product moment corre-
lation between the instantaneous value of rectilinear speed and the
firing rate of the cells across the recording session (see Methods and
Supplementary Fig. 3a). We classified a total of 277 speed cells with
a region-wise threshold and 295 with a within-cell threshold. Our
results confirmed the existence of speed cells uniformly in all layers
of the MEC in similar proportions to what was previously
reported17 (MEC all: 16.7%, LII: 23.9%, LIII: 18.7%, LV: 12.7% and
LVI: 13.7%; Fig. 2a–e and Supplementary Figs. 1a, b and 2a). In
addition, we observed that rectilinear speed signals could be found
upstream of the MEC, in about one fifth of both PrS and PaS cells
(Prs: 20.6%; PaS: 19,8%, Fig. 2a–e and Supplementary Fig. 1c–d).
Speed cells were uniformly distributed across all layers in each area
regardless of the shuffling method (Kolmogorov–Smirnov test, p
value < 0.001; Supplementary Fig. 2a–c). As for AHV cells, speed
cells were stable across time (Fig. 2f). We also observed a significant
proportion of cells negatively modulated by speed – cells whose
firing was maximal at low speed and minimal a high speed. Such
anticorrelated cells were distributed across all regions and all layers
(MEC: 4.5%; Prs: 4.1%; PaS: 5.5%; see Supplementary Fig. 3e). For
similar reasons to those given when reporting anticorrelated AHV
cell, this cell population was treated separately in subsequent
analyses.

Like for AHV cells, we further analysed speed modulation with
a GLM approach, detecting a population of speed cells
significantly overlapping with this obtained with the Pearson
scoring method (binomial test, p value < 0.001; Supplementary
Fig. 3c). Contrary to AHV scoring, the GLM method yielded a
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Fig. 2 Speed cells are distributed across the parahippocampal cortex. a Schematic representation of linear velocity movement (b) Schematics partial ring
attractor depicting theoretical updating of positional code from position at time t (left) to position at a later time t+1 (right) following linear movement
(middle). The outer layer of conjunctive grid-by-HD cells is connected to a ‘hidden’ inner layer of conjunctive grid-by-HD-by-speed cells. The colour
represents neural activation from maximum (red) to minimum (blue). c Proportions of speed cells in MEC (left, 16.7%, n= 66), PaS (middle, 19.8%,
n= 86) and PrS (right, 20.1%, n= 125). These proportions are not significantly different. d Example speed cells (left) and general distribution of speed
scores (right) in MEC (left panel), PaS (middle panel) and PrS (right panel). The example tuning curve on the left plot shows the mean firing rate (red) as a
function of speed, between 2 cm/s and 50 cm/s. Scores are in the upper right corner. The histograms on the right compare the observed (coloured curve)
and shuffle data (grey bars), dashed lines represent the 99-percentile threshold. e Snapshot comparison between z-scored firing rate of an example speed
cell (red curve) and instantaneous linear speed (black curve). f Scatterplot showing the correlation between the speed score calculated in the first and
second half of the recording session (speed cells in red, rho stability= 0.61). Credits to Silvia Girardi for schematics and drawings.
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much higher number of speed-modulated neurons (551 selected
neurons). Out of 296 speed-modulated cells solely picked up by
the GLM method, about one fifth were anticorrelated with the
absolute value of speed, significantly overlapping with the cells
selected on a negative Pearson score (Binomial test, p value <
0.001; see Supplementary Fig. 3e). Only a very small number of
them (8%) were responsive to a particular speed band (measured
with a gaussian fit), while the rest either did not show a simple-
shape modulation profile or presented a weak linear correlation
(i.e., just below the Pearson threshold; see Supplementary Fig. 3e).
None of the speed cells solely picked up by the GLM method
presented a steep sigmoid shape. Given that the Pearson methods
allow some deviation from a strict linear coding and in order to
allow for comparison with seminal reports of speed cells in the
MEC17, we decided to use the more conservative Pearson scoring
methods for further analyses reported in the main figures. Yet,
like for AHV modulated cells, any divergent results with cell
classified as speed cells by the GLM method are reported in
the text.

Conjunctive coding of primary (place, direction) and deriva-
tive (velocity) signals. Because angular head velocity (AHV) and

speed are the derivative in time of head direction and position,
respectively, we defined positional and directional signals as
primary and self-motion signals as derivative.

Given the key role of a ‘hidden layer’ of cells presenting
conjunctive coding for continuous attractor network (CAN)
theories, we next sought to determine to which degree self-motion
signals are co-existing in conjunction with other types of coding at
the unit level. To that end, we computed the grid and head direction
(HD) scores of each recorded unit. We labelled as ‘significantly
modulated’, cells whose score exceeded the 99th percentile of the
score distribution calculated on shuffled data (region-wise shuffles,
see Methods). According to these parameters, the majority (80.4%)
of AHV cells coded for at least one other feature (HD: 55.2%; grid:
13.4%; grid-by-HD: 5.6%; rectilinear speed: 33.7%; Figs. 3a, b, e and
4a–c). These percentages were similar to the percentages observed in
the general population (HD: 53.3%; grid: 17.8%; grid-by-HD: 7.7%;
rectilinear speed: 19,2%; Fig. 3a). A similar distribution of
conjunctive coding was observed among speed cells apart from a
decrease in HD modulation (HD: 35.4%; grid: 18.7%; grid-by-HD:
3.2%; AHV: 29.9%; Figs. 3c, d, f and 4a–c). The GLM method
yielded very similar results (AHV cell population: HD: 50.6%; grid:
17.6%; grid-by-HD: 6.4%, speed cell population: HD: 45.6%; grid:
17.9%; grid-by-HD: 4.4%). The use of within-cell shuffles resulted in
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higher percentages of HD and lower grid modulation in the general
population (HD: 67%; grid: 9.1%; grid-by-HD: 4.1%). This tendency
was also observed among the AHV and speed cell populations
(AHV cell population: HD: 74.5%; grid: 4%; grid-by-HD: 3.5%,
speed cell population: HD: 56.7%; grid: 10%; grid-by-HD: 2.7%).
Regardless of the method used, we observed all possible types of
conjunction of code including AHV-by-HD (the hidden layer of
directional CAN models) and grid-by-HD-by-speed (the hidden
layer of positional CAN models). These results contrasted with
previously published studies of self-motion coding in the superficial
layers of the MEC, that were either reporting a predominantly non-
conjunctive code in speed cells when using a Pearson score17 or a
sparse and uniquely conjunctive AHV code when using a GLM
approach21. Our analyses revealed a more balanced picture in which
the majority of self-motion cells are conjunctive while 20% remains
non-conjunctive.

To test whether the higher number of conjunctive speed
modulated cells and higher proportions of AHV cells in our
database could be explained by regional variations and/or an
over-representation of MEC LII cells in previous reports, we
compared the percentage of conjunctive cells across all layers of
MEC, presubiculum and parasubiculum. We found similar
percentage of conjunctive cells in all layers (Supplementary
Fig. 5a–c), except for MEC LII, where the percentage of cells
coding conjunctively for a primary and a derivative signal (3%)
was significantly lower than the one in the general population
(18%, proportion z-test, p value < 0.05). The scores (grid, HD,
AHV and linear speed score) were mostly independent from each
other, and we did not observe any significant correlation between
them, except for a relatively small correlation between speed and
bidirectional AHV scores (Pearson r= 0.29, p value < 0.001) and
a small anticorrelation between speed and HD scores (Pearson
r=− 0.14, p value < 0.001). Such distribution of mixed selectivity
is compatible with a simple hypothesis of independent assign-
ment of each of the coding properties in the general population:
cells coding for different behavioural features neither segregate,
nor cluster together. This was true for all conjunction combina-
tions and all layers, except for PrS deep layers and MEC LIII, in
which an under representation of speed x HD cells was found
(binomial test, p value < 0.05 for MEC LIII, p value < 0.01 for PrS
deep). Both within-cell shuffle thresholding and GLM methods
resulted in similar homogenous distribution of conjunctive
coding across all layers (KS tests yield p values < 0.001).
Furthermore, the within-cell shuffle thresholding confirmed the
virtual absence of HD or AHV coding in MEC LII, while the
GLM method detected a very small number of AHV modulated
cells in MEC LII (5 cells), often in conjunction with grid coding.

That self-motion information is integrated at the unit level in all
cell types and all tested layers (with the notable exception of MEC
LII) is at odd with current CAN model and calls for their
adjustment.

Derivative signals seemed encoded differently than primary
signals. To grasp whether derivative signals (i.e., speed and AHV
modulation) were encoded in a similar fashion as primary signals
(i.e., position and direction modulation), we compared the firing
properties of each class of neurons. We observed that cells coding
for derivative signals exhibited higher average firing rates than
cells coding for primary signals (Mann–Whitney u-test: p
value < 0.001; Fig. 5a). They also showed a shorter average inter-
spike interval (t-test: p value < 0.001; Fig. 5c) and a larger peak
firing (defined as the fifth quintile of the rate distribution,
Mann–Whitney u-test: p value < 0.001; Fig. 5b). It is important to
notice that, contrary to what would be expected from CAN
models, unidirectional AHV cells were not silent when the rats
were not turning their head. Instead, they decrease their rate in
response to movement in one direction and increase it in the
other. The differences in firing properties between primary and
derivative neurons could be explained by the fact that the
monotonic firing profiles, often encoding motion signals, are less
sparse than the receptive-field coding of grid and HD cells which
are largely silent outside their firing field. To test this hypothesis,
we calculated the percentage of the correlate values at which each
cell fired more than its average firing rate (see Methods and
Fig. 5d). Derivative cells showed a significantly larger percentage
(mean: 61.3%, std: 15%) than primary cells (mean: 29.8%, std:
9.4%; Mann–Whitney u-test: p value < 0.001). All analyses to
compare the firing properties of primary and derivative cells were
done on so-called ‘pure’ cells (i.e., non-conjunctive) in order to
have a meaningful comparison between non-overlapping popu-
lations. Yet, all the reported effects remained when we included
conjunctive cells to our analyses. Furthermore, the use of within-
cell shuffle thresholding or GLM methods did not impact any of
these results.

To further characterise how derivative signals are encoded in
the parahippocampal region, we fitted the rate-response tuning
curve of both AHV- and speed modulated neurons with either a
linear or a sigmoid function (see Methods). Regardless of the
shuffling method, the majority of AHV cells (68 %) were better
described by a linear fit, compared to a sigmoidal fit
(Supplementary Fig. 4a–c). As the steepness parameter of the
sigmoidal fits was generally low (mean: 0.47 (rad/s)−1, std: 0.16
(rad/s)−1), we concluded that most AHV cells followed a quasi-

a

0.4

0.3

0.2

0.1

0.0

c

speed

1.0

AHV

S
p

ee
d

 s
co

re

Bidirectional AVC scoreUnidirectional AVC score

0.4

0.2

0.0

-0.2

-0.4

P
ro

p
o

rt
io

n

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

Speed (cm/s) Angular velocity (rad/s)

5.5Hz

2.5Hz

5.5Hz

2.0Hz

Speed (cm/s) Angular velocity (rad/s)

4.0Hz

1.5Hz

3.2Hz

2.0Hz

b

3-3 3-3500 500

Fig. 4 Intersection between angular head velocity and speed cells. a The bar shows the proportions of cells in the whole population. Pink: cells coding
only for AHV (11.3%); Red: cells coding only for speed (13.5%); Purple: cells coding for speed and AHV (5.8%); Grey: cells neither coding for AHV nor
speed. b The scatterplots show the intersection between AHV and speed scores in the population. Plot on the left: unidirectional – UniDir – AHV: i.e.,
CCW-AHV and CW-AHV. Plot on the right: bidirectional – BiDir– AHV. Colour code as in (a). Dotted lines represent region-averaged classification
thresholds. c Examples of two kind of conjunctive AHV X speed cells. Plots show the firing rate as a function of the angular velocity (pink) or speed (red).
Left panel: speed x UniDir-AHV cell. Right panel: speed x BiDir-AHV cell.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29583-z

6 NATURE COMMUNICATIONS |         (2022) 13:1907 | https://doi.org/10.1038/s41467-022-29583-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


linear rate function. In contrast with the AHV population, the
sigmoidal fit with low steepness was slightly more predominant
among speed cells (56%). While this result fits with previous
reports37, we suspect that the rate saturation observed in our data
at high speed may be due to the low sampling in that speed band
(Supplementary Fig. 4a–c). Regardless, given the low steepness
observed among sigmoid fits (mean: 0.05 cm/s−1, std: 0.025 cm/s
−1), we concluded that the majority of so-called speed cells
followed a quasi-linear rate function. The use of a within-cell
shuffle thresholding method did not impact any of these results.

Velocity coding is independent of theta modulation. Because
the theta rhythm of the local field potential has historically been
strongly associated to running speed, we investigated whether
both AHV and speed cells had their activity modulated by theta.
Following previous work36, we defined that a cell is theta
modulated when its mean spectral power around the peak in the
5–11 Hz range was at least fivefold greater than the average
spectral power in the 0–125 Hz range (see Methods). We
observed that only 40% of the AHV and the speed cells passed
these criteria for theta modulation (Fig. 6a), while many of the
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remaining cells did not show any modulation by theta (Fig. 6b–c).
This agrees with previous reports of non-theta modulated speed
cells in the MEC37. The theta modulation of AHV/speed cells was
observed in comparable proportions to those observed in the
general population (Fig. 6e). There was no significant correlation
between AHV score and theta score, or between speed score and
theta score (Pearson correlation: p value > 0.05). Conjunctive
coding for grid or head direction did not influence the propor-
tions of velocity cells that were theta modulated (Fig. 6f, pro-
portion z-test: p value < 0.05). Theta modulation was uniformly
distributed across all layers of each area except for MEC LII,
which showed more theta modulation and MEC LVI, which
showed less (Supplementary Fig. 6a, proportion z-test: p value <
0.01). The proportion of velocity cells theta modulated in each
layer did not differ from what was expected based on the theta
modulation observed in the general population, except for MEC
LVI speed cells, which showed less theta modulation than
expected (Supplementary Fig. 6b–c, proportion z-test: p value <

0.05). Neither single cell shuffle thresholding methods nor GLM
classification significantly impacted these results. Together, these
results suggest that the code for self-motion in the para-
hippocampal region seems largely independent of theta mod-
ulation at the single cell level.

Discussion
Here, we reveal the existence of a network of parahippocampal
principal neurons whose activity is modulated by angular and
linear self-motion signals. Extensive mapping of the rat para-
hippocampal region showed that this network was spread
homogenously across all layers of several interconnected areas
upstream of the hippocampal formation: the medial entorhinal
cortex (MEC), the presubiculum and the parasubiculum. We
observed that some self-motion neurons seemed to only respond
to either angular head velocity or linear speed (i.e., an apparent
non-conjunctive code), while a larger proportion was also
responding to spatial and/or directional information (i.e., a

e

Speed

BiDir

UniDir

0.0

0.1

0.2

0.3

0.4

P
ro

p
o

rt
io

n
 in

 t
h

e 
g

en
er

al
 p

o
p

u
la

ti
o

n

a

AHVSpeed Grid HDall theta

0.0

0.2

0.4

0.6

P
ro

p
o

rt
io

n
 a

m
o

n
g

 A
H

V
 o

r 
sp

ee
d

 c
el

ls

AHV (UniDir + BiDir)Speed

Grid HD
NonGrid
Non HD Grid HD

NonGrid
Non HD

f

b d

0

11.0

7.5F
ir

in
g

 r
at

e 
(H

z)

0.05

0.00

P
o

w
er

5

0

Angular velocity (rad/s) Time lag (ms) Frequency (Hz) Frequency (Hz)
3-3

6.5

4.0F
ir

in
g

 r
at

e 
(H

z) 0.14

0.00

5000

P
o

w
er

10

0

200 2000

T
h

et
a 

sc
o

re

10

20

30

40

50

Bidirectional AVC score
-0.4 -0.2 0.0 0.2 0.4

12

6

F
ir

in
g

 r
at

e 
(H

z) 0.40

0.00

P
o

w
er

200

0

Speed (cm/s) Time lag (ms) Frequency (Hz) Frequency (Hz)
500

6

1

F
ir

in
g

 r
at

e 
(H

z) 0.06

0.00

5000

P
o

w
er

2

0

200 2000

T
h

et
a 

sc
o

re

10

20

30

40

50

Speed score
-0.4 -0.2 0.0 0.2 0.4

0

c

0.0

0.2

0.6
P

ro
p

o
rt

io
n

 a
m

o
n

g
 d

er
iv

at
iv

e 
ce

lls 0.5

Non 

0.4

0.0

0.2

0.6

P
ro

p
o

rt
io

n
 a

m
o

n
g

 d
er

iv
at

iv
e 

ce
lls

0.4

0.0

0.2

0.6

P
ro

p
o

rt
io

n
 a

m
o

n
g

 d
er

iv
at

iv
e 

ce
lls

0.4

2.2

1.2F
ir

in
g

 r
at

e 
(H

z) 0.15

0.00

P
o

w
er

25

0

Angular velocity (rad/s) Time lag (ms) Frequency (Hz) Frequency (Hz)
3-3

5.0

1.0F
ir

in
g

 r
at

e 
(H

z)

0.10

0.00

5000

P
o

w
er

7

0

200 2000

T
h

et
a 

sc
o

re

10

20

30

40

50

Unidirectional AVC score
-0.4 -0.2 0.0 0.2 0.4

0

Fig. 6 Speed and angular velocity coding are independent from theta modulation. a Proportions of unidirectional AHV cells (first row, 31.1%, n= 137),
bidirectional AHV cells (second row, 32.9%, n= 145) and speed cells (third row, 62.9%, n= 277) within the population of derivative cells. Dashed bars
represent the fraction of theta modulated cells. UniDir-AHV: 12.5%, n= 55; BiDir-AHV: 12.2%, n= 54; speed: 25.9%, n= 114. b Examples of theta
modulated (bottom row of each section) and non-modulated (top row each section) derivative cells. The first column shows the firing rate as a function of
the angular velocity or speed, the second column shows the time autocorrelogram of the firing rate of the cell. c Power spectrum of cells in (b). First
column: power in the range 0–20 Hz; second column: full spectrum (0–200Hz) (d) Scatterplots of the distribution of theta scores and unidirectional AHV
scores (first row), bidirectional AHV scores (second row) and speed scores (third row) in the population. Full black dots represent cell that are theta-
modulated but not modulated by AHV or speed; Full coloured dots represent cells modulated by AHV (pink) or speed (red), but not by theta; coloured dots
with black contour are cells modulated by both theta and AHV (pink) or speed (red); grey dots represent unclassified cells. e Distribution of speed cells
(red, 19.3%), AHV cells (pink, 17.1%), grid cells (yellow, 17.8%), HD cells (blue, 53.3%) and unclassified cells (grey, 30.0%, n= 432) in the whole
population. Dashed bars represent the proportions of theta modulated cells in the whole population (white shaded, 42.1%), and in conjunction with speed
cells (8.0%), AHV cells (6.6%), grid cells (10.1%), HD cells (24.6%) and unclassified cells (11.1%). f Proportions of theta modulated cells among speed
cells (left, red background) and AHV cells (right, pink background). Cells are divided by type: ‘pure speed’ (red, 38.2%), ‘pure AHV’ (pink, 28.6%),
conjunctive grid x speed (yellow left, 51.9%), conjunctive grid x AHV (yellow right, 60.6%), conjunctive HD x speed (blue left, 41.8%) and conjunctive HD
x AHV (blue right, 43.4%).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29583-z

8 NATURE COMMUNICATIONS |         (2022) 13:1907 | https://doi.org/10.1038/s41467-022-29583-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


conjunctive code). Such integration at the unit level may be a
crucial mechanism underlying the representation and the
updating of position (place and grid cells) and direction (head
direction cells) in the hippocampal/parahippocampal circuits.

Our results contribute to a fertile line of research devoted to
understanding how space and movement in space are encoded in
the hippocampal region. Speed had so far been investigated as a
modulating factor of firing rate within grid and place cells38, or as
a non-conjunctive code in the superficial layers of the MEC17,37.
Here, we systematically investigated movement, spatial, and
direction correlates in all layers of multiple parahippocampal
regions, without pre-selecting specific cell types. Running a
comprehensive unbiased analysis with complementary metho-
dological approaches allowed us to investigate features previously
inaccessible – see Supplementary Fig. 3 for extended discussion
and comparison between methods. Specifically, we discovered an
almost complete lack of differentiation across brain regions or
selectivity types. Contrary to previous studies describing an
overabundance of conjunctive code16,21,38, we observed that
many self-motion cells did not respond to either spatial or
directional signals. We hypothesise that such studies may have
depicted an incomplete picture by limiting their investigations to
grid cells or to the superficial layers of the MEC. Our analyses
revealed that, in fact, MEC layer II computations are very much at
odds with those of all the other parahippocampal sub-areas.

Given that linear and angular speed are the derivative in time
of position and direction, respectively, we propose that our results
may uncover a general algorithm for the updating of any type of
information. In support of the idea of a general parahippocampal
mechanism that could compute the derivative in time of other
correlates, we demonstrated that angular and linear self-motion
(derivative) signals were encoded in a different manner with
respect to positional and directional (primary) signals, this
regardless of the scoring method used. It is well documented that
head direction, grid, and place cells tend to be active only when
an individual is either in a given position or with its head in a
given direction. In contrast, we showed that only a very small
proportion of self-motion neurons responded preferentially for a
given speed (8%). Most presented a relatively high baseline
activity that was linearly (or quasi-linearly) ramped up in
response to increasing speed. This could be the hallmark of a
general strategy in the parahippocampal region for the neural
coding of scalar quantities whose magnitude has a well-defined
meaning – speed and angular velocity are, for instance, set by
physical constraints on how fast the animal can move – as
opposed to neural activity manifolds used to encode position and
direction, where coordinates are relative to a reference frame.
Since position and orientation are far from the only ‘primary’
signals encoded in these regions, we wonder: could we find a
similar phenomenon for the encoding – or updating – of other
signals such as the position in a cognitive space39 or the repre-
sentation of a tune frequency40?

Previously, angular head velocity (AHV) cells had been
mainly characterised upstream of the hippocampal circuits, in
less-integrated subcortical structures linked to the processing of
vestibular information (e.g., lateral mammillary nuclei, dorsal
tegmental nucleus, thalamic nuclei and striatum)22–25,41,42 and in
the retrosplenial cortex26,27. Besides, a few hippocampal neurons
modulated by whole body motion had been reported in the
primate43. AHV has been shown to influence the preferred
orientation, pitch or azimuth of some presubicular head direction
cells, as well as to modulate the firing rate of a few presubicular
interneurons44. A very recent report showed coding for head
pitch and roll in the superficial layers of the MEC, as well as a
sparse conjunctive AHV code. Conversely, we report here a large
proportion of neurons modulated by both bilateral and unilateral

(i.e., CW and CCW) AHV and distributed over the presubiculum,
the parasubiculum and the MEC. We hypothesise that such
widespread signals were not previously reported either because of
a restricted scope in analyses or because of recordings clustered in
the most dorsolateral presubiculum or in the superficial MEC. To
avoid such bias, we recorded from a much larger population
spread across the medio-lateral and antero-posterior axis.
Nevertheless, we found no topographic organisation, except for
MEC layer II. Such lack of topography near the top of the cortical
hierarchy is consistent with AHV being one of potentially several
high-level signals, which could be extracted by derivation with
respect to time45. In line with this idea, we observed lower cor-
relation scores than those reported for subcortical AHV cells22.
We hypothesise that – contrary to subcortical areas, which could
be viewed as specialised to signal movement – parahippocampal
areas are high-level cortical structures, integrating self-motion
information with other factors, only a few of which we can test
for. As such, we expect that each correlate only explains a fraction
of the variance of the firing rate, leading to smaller scores.

Since the discovery of grid cells, many have attempted to
understand how such a strikingly regular signal could be gener-
ated by individual neurons13,28,46–49. A speed code is central to
much of this theoretical work, and a break-through was the
characterisation of speed cells and speed modulation in the
MEC16,17,37,38,50,51. Here, we report for the first-time speed cells
in the pre- and parasubiculum. Interestingly, recent experimental
work has demonstrated that grid cell activity is dependent on the
integrity of the speed signal52, which itself seems driven by the
brainstem locomotor circuit53. Likewise, the stability in head
direction coding seems dependent on AHV54 and vestibular
inputs23,55. Therefore, self-motion signals could be similarly
involved in the generation and the maintenance of both position
and direction signals.

Our findings offer robust experimental evidence particularly
relevant for the reappraisal of theories describing navigation
based on grid and head direction cells interacting in continuous
attractor neural networks (CAN). CAN are popular theoretical
models of how reciprocally interconnected neurons may extract,
refine and sustain stable representations of continuous beha-
vioural variables. This function is particularly crucial when
afferent signals are weak, noisy and/or intermittent. How can
such representations be updated? A common view is that neurons
coding for ‘primary’ navigational variables – such as position and
direction – are connected by a so-called ‘hidden layer’ of cells
conjunctively coding for position, direction and self-motion. This
conjunctive layer is postulated to drive the activity of the output
layer to remain congruent, at any time, with the external world.
Although several variants of these mechanisms have been pro-
posed, in general they posit a categorical division of labour
between the output units representing the instantaneous variables
and the hidden units updating them28,56. Recent studies in dro-
sophila melanogaster have shown that a ring attractor network
with local excitation and global inhibition underlies the repre-
sentation of head direction34,35. It is possible that similar
mechanisms operate in mammals as hinted by a recent report of
toroidal topology of population activity in grid cells57. Yet, it is
unclear whether a mammalian brain, highly plastic and possibly
lacking topography, could accommodate a neatly laid out and
hard-wired ring attractor such as the one in the fly brain.

Here, we report the existence of cells conjunctively coding for
position, direction and self-motion not just in MEC16,21,38, but
also in pre- and parasubiculum. Our findings can be interpreted
as clear evidence of the existence of hidden layers in the para-
hippocampal region, yet they also challenge some of the postu-
lates currently assumed by CAN models, which favour specific
connectivity rules and segregated coding13. First, the continuous
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– rather than bimodal – distribution of degrees of selectivity to
any correlate is incongruous with a structured connectivity.
Indeed, if we consider a simple HD ring attractor, it relies on
three cell population: a principal attractor of HD cells and two
‘steering’ populations – or hidden layers – of conjunctive HD-by-
AHV cells, in the CW and CCW directions, respectively. While
anatomical intermingling is not completely proscribed here,
structure maintenance would require delicate fine tuning, such as
a systematic offset between input and output connections to each
of the steering populations. Furthermore, it is problematic that we
found a large majority of self-motion cells that are not silent in
the absence of movement, especially given that two steering
populations would have to constantly level their inputs for the
activity bump to remain still. Such interactions have – so far – not
been successfully included in functioning CAN models. We also
observed a considerable amount of non-conjunctive, bidirectional
and anticorrelated self-motion cells whose role is unaccounted
for. Finally, our data cast doubts on the notion of distinct
attractors, one for position and one for direction. Under which
conditions CANs may operate when a given conjunctive cell
belong to two attractors is an interesting open question.

We emphasise that distinct types of selectivity, not only
appeared randomly admixed, but also failed to present clear-cut
categorical distinctions between conjunctive and non-conjunctive
cells. We observed an absence of correlation between scores (i.e.,
grid, HD, AHV and speed score) compatible with a scenario of
independent assignment of coding properties. As such, the
probability to observe, for example, a cell conjunctively coding for
HD and CCW-AHV in region X is given by the product of the
probabilities of coding for HD and for AHV, irrespective of X.
These results are more consistent with un-organised or perhaps
self-organising models than with precisely engineered ones49,58

and agrees with recent evidence of mixed selectivity in the hip-
pocampal formation59. One exception to this independence was
the absence of AHV and HD cells in MEC LII, a layer that also
shows a higher proportion of spatially modulated cells. This could
suggest that the AHV signal is needed locally, among the same
cells coding for the primary signal it serves to update. However,
one should note that HD cells are present in large number in the
mouse MEC LII60. Given the unlikelihood that spatial coding
would follow different computational principles in related species
like the mouse and the rat, such differences may be linked to
divergences in connectivity. Moreover, areas known to be
involved in the coding for movement – such as the peri- and
postrhinal cortices, the retrosplenial cortex, the cerebellum, the
thalamus and the septum61–63 – all project similarly, either
directly (or indirectly in the case of the cerebellum) to the MEC,
the PrS and the PaS5,64–68. Further connectivity analyses are
needed to specifically assess the differences in connectivity
strength and relative influence of these inputs on hippocampal
computations.

Historically, running speed has been reported to show a strong
correlation with the amplitude of theta oscillations recorded in
the local field potential (LFP) of freely behaving rodents18–20.
Likewise, many place and grid cells exhibit a strong modulation of
their firing rate following those theta oscillations, either in a
phase-locked or in a phase-precessing manner69–71. In line with
these observations, many models point to theta oscillations as
inherent to the generation of the grid signal72. Among them, the
oscillatory interference-based models assume a velocity input to
the grid network composed of translational speed and movement
direction46,48. Here, we show that only 40% of self-motion cells
show a strong theta-modulation, a percentage compatible with
independent assignment of theta- and self-motion modulation.
This apparent decoupling may seem surprising, since it suggests a
scaled back role of the theta frequency in locomotion. However,

the role of theta in spatial coding had already been recently
challenged by several lines of evidence. One is that modulation of
the septal oscillatory activity had no apparent consequence on
grid signal maintenance73, therefore suggesting that non-theta
septum correlates – such as attention – were involved in the grid
cell signal disruption observed after septal inactivation74,75.
Another is that no stable theta oscillation has been recorded in
the hippocampal LFP of bats, who do exhibit both place and grid
coding76. Even though recent results showed that bats seem to
exhibit theta-band modulation of grid firing and matching phase
precession when considering a non-stable theta frequency77, it is
clear that a robust spatial code can be built without regular
oscillatory activity. It was recently proposed that theta may have
a relationship to self-motion different in the LFP from the indi-
vidual cell level37. Here, our results suggest a weak relationship
at the individual cell level, but do not conclude as to the LFP.
Of specific interest is a recent study showing that theta mod-
ulation – both at the LFP and individual cell level – is more
closely associated with acceleration than speed78. Further targeted
interventional studies would be essential to dissect the ambiguous
role of theta in the generation and maintenance of positional,
directional and self-motion signals79. Discriminating between the
theta and non-theta modulated self-motion neurons, revealed by
our work, would be a chief target for this type of studies.

In conclusion, we provide clear evidence of a widespread
parahippocampal network involved in linear and angular speed
coding that could have a crucial role in the updating of the
cognitive map, or perhaps be part of the map itself. The existence
in the hippocampal region of neurons conjunctively coding for
self-motion, position and direction would prima facie appear to
fill a gap in the framework of continuous attractor network
models. Yet, our comprehensive analysis reveals an apparent lack
of organisation, calling for the revision of such models so that
they can (i) express dynamical intertwined continuous attractors
and (ii) account for the apparent random nature of the spatial
code, as well as its peculiar lack of a clear organisation. We
hypothesise that derivative algorithms may have a generalised
role in the updating of continuously varying information, not just
of a spatial nature. Further studies, with either targeted inacti-
vation of neurons or testing of non-spatial correlates will
be necessary to establish whether one of the main roles of the
parahippocampal region is to ensure the accurate updating of the
hippocampal representation.

Methods
Subject and surgeries. All the data presented here have been previously
published36 but was re-analysed for this manuscript. The neuronal activity was
recorded from 28 male Long-Evans rats (3–5 months old, 350–450 g at implan-
tation, housed and food deprived as in described previously). All experiments were
approved by the National Animal Research Authority of Norway. Tetrode con-
figuration and surgical implantations are described in previously published work30.

Data acquisition and training procedures. General data acquisition procedures
have been described previously36. In brief, rats were trained to collect food crumbs
thrown randomly into a 50-cm-high square or circular box with black floor and
black walls surrounded by black curtains. Each trial lasted 10 min. Behaviour was
relatively uniform between sessions and animals36.

Spike sorting. The spike detection in the local field potential and sorting were
performed as previously described36. Spike sorting was performed offline using
graphical cluster-cutting software.

Estimation of the behavioural correlates
Position. The position of the animal was estimated from the coordinates of two
light-emitting diodes (LEDs) on the head of the animal. The X and Y coordinates
of both the LEDs where smoothed with a gaussian filter with a 250 ms standard
deviation, chosen to match the smoothing performed on the firing rate (see below),
and the average between the two LED positions was used as the position of the
animal. The data previously published36 included some sessions with only one
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LED. These sessions were excluded from the current dataset – hence a discrepancy
of neurons reported between the studies.

Head Direction. The head direction (HD) was calculated as the angle between the
line connecting the small LED to the big LED and the x axis. HD is expressed in
radians, 0 meaning that the rat head is aligned with the x-axis, facing right.

Linear speed and angular head velocity. Speed was calculated as the modulus of the
vector difference between the smoothed position at time t and the position at time
t+1. Angular head velocity was calculated as the signed difference between the head
direction at time t and the head direction at time t+1.

The absolute value of the angular head velocity was used for the scoring of
bidirectional angular head velocity cells (see below). No further smoothing was
applied.

Firing rate calculation. Instantaneous firing rate was obtained dividing the whole
session in bins of 20 ms, coinciding with the frames of the tracking cameras. The
spike count in each time bin was then calculated and divided by the temporal width
to obtain the rate. The rate profile was smoothed with a 250 ms wide Gaussian
filter.

Speed filtering. The analysis on speed and angular velocity was performed on
movement periods, defined as the ones in which the animal speed was >2 cm/s. A
speed filter was applied on the timeseries of each correlate, discarding the time
points for which the instantaneous speed was below 2 cm/s, that were excluded in
the subsequent analysis.

Rate maps and tuning curves
Spatial rate maps. The histograms for spike count and time spent in each location
were constructed using equally spaced bins of 2 cm linear size. Each bin of the rate
map was obtained as the ratio between spike count and time spent, smoothed with
a Gaussian filter with standard deviation of 4 cm.

Directional rate maps. The histograms for spike count and time spent facing each
direction were constructed using equally spaced bins of size 6 degrees. Each bin of
the rate map was obtained as the ratio between spike count and time spent,
smoothed with a Gaussian filter with standard deviation of 6 degrees.

Speed and angular velocity tuning curves. For tuning curve construction, the cor-
relate was divided in equally spaced bins. For speed, 20 bins spanned the range
between 2- and 50 cm/s (bin width: 2.4 cm/s), for angular velocity the range −3-,
+3-rad/s was again divided into 20 bins (bin width: 0.15 rad/s). The firing rate in
each bin was calculated as the average of the instantaneous firing rate values falling
in the each given bin. A gaussian smoothing window with standard deviation
0.15 rad/s for angular velocity and 2.4 cm/s for speed was applied.

Shuffling. Chance-level statistics was calculated for a given variable W through a
shuffling procedure. For each repetition, the firing rate time series was time shifted
of a random interval of at least 30 s, with the end of the trial wrapped to the
beginning.

In the region-wise shuffling, this procedure was repeated 100 times for each cell,
and the shuffled score for variable W was calculated for each instance to compose
the chance-level statistics. Cells from the same regions where then pooled together
to obtain the null distribution for the score values. In the within-cell shuffling, the
procedure was instead repeated 1000 times for each cell, and no pooling was
performed: each cells had its own associated null distribution of score values.

For cell classification, the 99th percentile of the shuffled distribution was used as
a classification threshold in both procedures.

Measure used for cell type classification
Speed Score. Following Kropff et al.17, the speed score was defined as the Pearson
product-moment correlation between the cell’s instantaneous firing rate and the
instantaneous speed of the animal, across the whole recording session. This yields a
score ranging from −1 to +1.

Unidirectional angular velocity score. The unidirectional angular velocity score was
defined as the Pearson product-moment correlation between the cell’s instanta-
neous firing rate and the instantaneous angular velocity of the animal. Positive
values of angular velocity correspond to clockwise head movement. Cells that had a
score greater than the 99th percentile of the shuffled distribution were classified as
clockwise modulated (CW), while cells whose score was lower than the 1st per-
centile were classified as counterclockwise modulated (CCW): they significantly
code for head movement in the counterclockwise direction. CW and CCW
populations are mutually exclusive by construction.

Bidirectional angular velocity score. The bidirectional angular velocity score was
defined as the Pearson product-moment correlation between the cell’s

instantaneous firing rate and the absolute value of the instantaneous angular
velocity of the animal. Cells in this population increase their firing rate in response
to head movement regardless of the direction. The unidirectional and bidirectional
angular velocity scores are not mutually exclusive by construction. A cell with a
strong ramping up of the activity for positive value of AHV, and a mild sensitivity
to negative values, for example, could be selected as both a bidirectional and a
unidirectional CW cell. A strong modulation from both negative and positive
angular velocities would be picked up only by the bidirectional score, while a
strictly monotonic increase (or decrease) along the whole range of velocities would
give a high unidirectional score.

Mean vector length (head-direction score). The mean vector length score is calcu-
lated from the head-direction tuning map of a given cell as the sum:

Sλi e
iθi

Sλi

�
�
�

�
�
�, where θi is the orientation in radians associated with bin i and λiis the

firing rate in the bin. The sums run over all N directional bins, and the modulus of
the resulting complex number is taken. Head direction was binned in bins of 6
degrees and smoothed with a gaussian filter with a standard deviation of 6 degrees.

Grid score. The grid score was calculated from the spatial autocorrelogram of a
given cell with a procedure similar to80. After exclusion of the centre of the
autocorrelogram, the Pearson correlation of the autocorrelogram rotated by 30, 60,
90, 120 and 15 degrees (+− 3 degrees offsets) was considered. Only bins closer to
the centre than an outer radius s were included in the calculation of the correlation.
Given s, the grid score was defined as the difference between the average of the
maximum correlations around 60 and 120 degrees (+− 3 degrees offsets) and the
average of the minimum correlations around 30, 90 and 150 degrees (+− 3 degrees
offsets). The final grid score of the cell was then defined as the maximum grid score
over values of s ranging from twenty to forty bins, computed at intervals of one bin.

Theta index. Theta modulation of individual cells was estimated from the fre-
quency power spectrum of the spike-train autocorrelation histogram of the cell.

A cell was defined to be theta modulated if the mean power in a 2 Hz window
centred in the peak in the 5- to 11 Hz frequency range was at least fivefold greater
than the mean spectral power in the 0- to 125 Hz range.

Estimation of the significance of overlaps between cell populations. The
observed overlaps between cell populations were compared to the ones that would
result from the statistical null hypothesis of independent random assignment with
a two-sided binomial test. The probability of observing an overlap of size k between
two populations of sizes Na and Nb , independently drawn from a total number of
cell N is given by

pðkÞ ¼ N!
k!ðN � kÞ! p

k
abð1� pabÞN�k

Where pab ¼ paxpb and pa ¼ Na=N , pb ¼ Nb=N .

Information analysis. The information per spike conveyed by each cell about the
correlate of interest (speed or angular head velocity) was calculated using the
formula:

I ¼ 1
λ
Σiλipilog2

�
λi
λ

�

Where i is the index of the correlate bin, pi is the probability of observing the
correlate in bin i (i.e., the normalised occupancy), λi is the average firing rate of the
cell in bin i, and λis the average firing rate of the cell.

Speed was divided in 2 cm/s bins in the range 2–50 cm/s (as in all analysis,
stillness periods were excluded), while angular head velocity was divided in 0.5 rad/
s bins, in the range −5–5 rad/s.

Cells were considered to carry significant information about the correlate if the
observed information rate exceeded the 99th percentile threshold of the null
distribution obtained by shuffling the cell firing rate values (1000 shuffles per cell).

Generalised linear model (GLM) analysis. We analysed the effect of each cor-
relate (speed and angular head velocity) with a linear-nonlinear Poisson spiking
GLM model.

This model assumes that the firing rate of the cell depends on the value of the
correlate as

rðtÞ ¼ expðSiXðtÞiTwiÞ=dt

Where XiðtÞ is a one-hot vector (i.e., a vector with only one non-null element)
indexing which value the correlate is taking at time t, and wi are the coefficients of a
linear filter quantifying the contribution of each value of the correlate to the firing
rate of the cells.

The model is fitted using the python module statsmodel.api, which finds the set
of parameters wi maximising the log-likelihood of the observed spikes, subject to
an elastic-net regularisation constraint.
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To perform the fitting procedure, the speed values have been binned in 10 bins
in the range 2–50 cm/s, and the angular velocity values divided in 10 bins in the
range −3–3 rad/s.

Cells were considered significantly modulated by a correlate if the log-likelihood
of the best fit was significantly larger than the value obtained with only the average
firing rate as a predictor. Significance was estimated with a 10–fold bootstrapping
procedure to extract the confidence interval of the observed log-likelihood.

Tuning curve fitting. Two different functional forms were fitted and compared to
the tuning curve of modulated cells.

A linear model:

r ¼ ax þ b

And a sigmoid model:

r ¼ 1
1þ expð�aðx � bÞÞ

Here, x is the value of the correlate (speed or angular head velocity) and r is the
average firing rate of the cell at that value of x. Tuning curves were rescaled by their
maximum value, in order to match the two model by number of parameters.

The R2 fitting scores were then compared for each cell. Cells with a linear R2
greater than the sigmoid R2 were classified as linear, and vice versa.

To quantify the number of cells that showed modular coding (i.e., an increased
rate in a particular speed or angular velocity band), we fitted their rescaled tuning
curves with a gaussian profile:

r ¼ exp
� x � að Þ2

2b

� �

Cells were labelled as gaussian if the fit yielded a R2 score >0.5 and the average a
of the gaussian laid within the tuning curve interval (2–50 cm/s for speed, −3–3
rad/s for AHV).

Sparsity calculation. To quantify the sparsity of the firing of primary and deri-
vative cells, we calculated their tuning curves (as described above) as a function of
speed (for speed cells), of AHV (for AHV cells), head direction (for HD cells) and
position (for grid cells).

We then calculated as the sparsity the percentage of the bins of the tuning curve
that had a firing rate value larger than the average overall firing rate of the cell.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data is available upon request, given that there is shared ownership of this data
distributed over several laboratories. Please contact charlotte.boccara@medisin.uio.no for
any requests. An answer will be given within 2 weeks of email reception. Source data are
provided with this paper.

Code availability
The code can be found at https://github.com/davidespalla/code_ahv_speed_cells, and
cited as: Davide Spalla, ‘Angular and linear speed cells in the parahippocampal circuits’,
code_ahv_speed_cells, https://doi.org/10.5281/zenodo.5834018, 2022.
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