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Abstract: The Svalbard Composite Tectono-Sedimentary Element (SCTSE) is located on the northwestern corner of the Barents Shelf and
comprises a Carboniferous—Pleistocene sedimentary succession. Due to Cenozoic uplift, the succession is subaerially exposed in the Svalbard
archipelago. The oldest parts of the succession consist of Carboniferous—Permian mixed siliciclastic, carbonate and evaporite, and spiculitic
sediments that developed during multiple phases of extension. The majority of the Mesozoic succession is composed of siliciclastic deposits
formed in sag basins and continental platforms. Episodes of Late Jurassic and Early Cretaceous contraction are evident in the eastern part of the
archipelago and in nearby offshore areas. Differential uplift related to the opening of the Amerasian Basin and the Cretaceous emplacement of
the High Arctic Large Igneous Province created a major hiatus spanning from the Late Cretaceous and early Danian throughout the Svalbard
CTSE. The West Spitsbergen Fold and Thrust Belt and the associated foreland basin in central Spitsbergen (Central Tertiary Basin) formed as a
response to the Eurekan Orogeny and the progressive northward opening of the North Atlantic during the Paleogene. This event was followed
by the formation of yet another major hiatus spanning the Oligocene—Pliocene. Multiple reservoir and source-rock units exposed in Svalbard
provide analogues to the prolific offshore acreages in the SW Barents Sea, and are important for the de-risking of plays and prospects. However,
the archipelago itself is regarded as a high-risk acreage for petroleum exploration. This is due to Paleogene contraction and late Neogene uplift
of the western and central parts in particular. There is an absence of mature source rocks in the east, and the entire region is subjected to strict
environmental protection.

Supplementary material: Supplementary material 1-5 containing photographs and descriptions of tectono-stratigraphic elements 1-7 are

available at https://doi.org/10.6084/m9.figshare.c.6404502.

Located at the northwestern corner of the Eurasian continental
plate (Enclosure D), the Norwegian High-Arctic Svalbard
archipelago represents an uplifted and exposed part of the
western Barents Shelf (Fig. 1). Because of its position, the
archipelago offers insights into the structural evolution of
the western Barents Shelf margin and adjacent Arctic regions,
such as NE Greenland. In particular, the rocks in Svalbard
record the events related to the opening of the NE Atlantic
and Arctic oceans. The Carboniferous—Paleogene sedimentary
succession provides analogues to the age-equivalent strata in
the basins offshore. Geological and geophysical data from
the archipelago are frequently used in regional resource esti-
mates and to de-risk prospects on the Barents Shelf. Despite
the many similarities, especially in the Upper Paleozoic—
Mesozoic platform successions, the structural evolution of
Svalbard differs from the oil- and gas-bearing offshore basins
by the absence of extensional tectonics related to the develop-
ment of the Late Jurassic North Atlantic rift system and the
presence of thrust tectonics related to the Eurekan Orogeny.
Industrial commercial petroleum exploration in Norway
started in Svalbard in the early 1960s, before the first North
Sea concession round in 1965. No commercial discoveries
were made on the archipelago (Senger er al. 2019) — which
is arguably positive in hindsight, given the unique and fragile
ecosystem of Svalbard. Nonetheless, Svalbard’s outcrops
have been instrumental in training petroleum geologists
from Norway and elsewhere to decipher petroleum system

elements better and in improving understanding of other
parts of the Norwegian Continental Shelf.

In the Svalbard Composite Tectono-Sedimentary Element
(SCTSE), as in the southwestern Barents Sea (SWBS), deep
burial, probably at its maximum during the late Paleogene, fol-
lowed by severe uplift during the late Neogene (Nyland ef al.
1992; Dimakis et al. 1998; Lasabuda et al. 2018, 2021) in
combination with Pleistocene glaciations are probably the
biggest risk for commercial oil and gas accumulations. Sval-
bard itself is an extremely high-risk exploration area for oil
and gas.

In contrast to the unsuccessful oil exploration, coal mining
has been the most important industrial activity in Svalbard for
more than a century. Predominantly Russian and Norwegian
companies have been mining Paleogene and Carboniferous
coal, with ¢. 78 Mt (million metric tons) of Paleocene and
c. 9 Mt of Mississippian coal having been produced in the
archipelago since the beginning of industrial mining (Joc-
hmann et al. 2015). Today, there is one active coal mine in
Barentsburg and one in Longyearbyen, where Paleocene,
high-volatile, bituminous coal is extracted.

In this chapter, we present a comprehensive and up-to-date
overview of the geology and petroleum geology of the
SCTSE, herein defined as the Carboniferous—Paleogene sedi-
mentary rock succession and its associated structural ele-
ments. As such, the underlying economic basement
consisting of Devonian and older sedimentary rocks, as well
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Fig. 1. (a) Structural framework of the Svalbard Composite Tectono-Sedimentary Element. (b) Geological map of Svalbard excluding Bjgrngya. Only the area within the black line in (a) and stippled line in (b) is discussed in this
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paper. AB, Agardhbukta; BAB, Barentsburg; KV, Kvalvigen; LYB, Longyearbyen; NYA, Ny Alesund; PYM, Pyramiden; SVE, Svea. Source: geological maps from Dallmann (2015) and the Norwegian Polar Institute.
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Svalbard CTSE

as Precambrian igneous and metamorphic rocks, are not con-
sidered. The SCTSE (Fig. 1a, b) is located between approxi-
mately 76° and 80° N and 12° and 30° E, and covers an area
of c. 121 000 km?. The offshore areas adjacent to the
SCTSE (Enclosure E) are presented in the North Barents
CTSE chapter (Lundschien ez al. 2023) while the western mar-
gin, including the WSFTB, is discussed in the West Barents
Sheared Margin CTSE chapter (Faleide et al. in review).

Age

The Carboniferous—Lower Cretaceous succession is strati-
graphically almost complete, whereas the younger succession
is stratigraphically less complete with a major regional hiatus
spanning the latest middle Albian—latest Danian (Steel and
Worsley 1984; Jochmann et al. 2020). Although not substan-
tiated by any biostratigraphic data, a possible Oligocene age
has previously been suggested for the youngest part of the
Paleogene succession of the Central Tertiary Basin (CTB).
In addition, a sliver of middle Oligocene marine mudstone
occurs in a fault-bound basin within the West Spitsbergen
Fold and Thrust Belt (WSFTB: Schaaf er al. 2021).

Geographical location and dimensions

The Svalbard archipelago, which includes all islands between
71°-81° N and 10°-35° E, is bounded in the west and north by
Cenozoic passive continental margins facing the NE Atlantic
and Arctic oceans, respectively (Fig. 1a; Enclosure A) (Faleide
et al. 2008; Piepjohn et al. 2016). Nearly 60% of the exposed
landmasses of the Svalbard archipelago is covered by glaciers
(slightly less extensive glacier cover within the SCTSE). The
basement provinces and WSFTB in Svalbard are characterized
by an alpine topography with rugged peaks ranging up to
1700 m above sea level, whereas the landscape within the
SCTSE is dominated by lower and less alpine ‘table-top’
mountains reflecting the presence of layered sedimentary
strata. The sparse high-Arctic vegetation in combination
with current retreating glaciers enable detailed outcrop inves-
tigations. The nearby offshore areas are generally very shallow
(typically 50-150 m water depths), whereas most of the larger
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fjords tend to be deeper, recording a significant deepening in
their outer parts (e.g. outer Isfjorden: >400 m deep).

Principal datasets

The principal datasets used and reviewed in this paper include
large amounts of conventional outcrop data (i.e. sedimento-
logical, stratigraphical and structural data) derived from pub-
lished papers and recent unpublished studies, well data
including core and wireline logs, onshore and offshore 2D
reflection seismic, and potential field data (magnetic and
gravimetric data). The locations of wells and seismic lines
are shown in Figure 2.

Wells

This study utilizes available data from 18 petroleum explora-
tion wells drilled in Svalbard from 1961 to 1994 (Table 1)
(Ngttvedt er al. 1993; Senger et al. 2019), research boreholes
in Adventdalen (DH1-DHS8: Olaussen er al. 2019) and
Nathorst Land (well BH 10-2008 ‘Sysselmannbreen’: Johan-
sen et al. 2011; Johannessen et al. 2011), and selected coal
exploration boreholes drilled by the Norwegian coal mining
company Store Norske Spitsbergen Kullkompani (SNSK).

Seismic data

Figure 2 shows the 2D reflection seismic data coverage, both
onshore and offshore. Seismic imaging and resolution, as
exemplified in Figure 3, are major problems offshore the west-
ern part of the SCTSE due to high velocities (>4-5 km s™') in
strongly lithified sediments on the seafloor (Eiken 1985, 1994).

Onshore, problems arise from the heterogeneous permafrost
(Johansen et al. 2003). Seismic profiles are confined to the
main fjords, and the onshore seismic data are restricted to
the main valleys of Nordenskiold Land (B&lum and Braathen
2012; Braathen et al. 2012) and Nathorst Land (Johansen et al.
2011). Seismic data have been presented by Eiken (1994),
Bergh et al. (1997), Grogan et al. (1999, 2000), Johannessen
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Fig. 2. Principal datasets. 2D conventional
seismic lines are shown as grey lines.
Hydrocarbon exploration wells are marked
with numbers 7nnn/n-n and follow the
annotation recommended by the Norwegian
Petroleum Directorate (NPD). Others are coal
drilling or R&D wells. The red line at 7816/
12-1 is the location of the seismic
cross-section in Figure 8. The green hachured
areas are national parks, while red hachured
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Table 1. Exploration boreholes from 1961 to the last exploration, which was well drilled in 1994

No. NPD well ID Easting Longitude Spudded Operating  Elevation Youngest age Oldest age Likely reservoir target Likely reason for drilling and
company KB (m) other comments
Borehole name Northing Latitude Completed Total depth  Youngest formation Oldest formation Tectono-stratigraphic
(m MD) element (TSE)
0 - 422970 11°23°23"  summer 1961 NPN 0 Early Permian Pre-Devonian Surface mapping with some oil stains
Kvadehuken I 8766727  78°57°03"  6/16/1963 479 Gipshuken Fm Hecla Hoek TSE 3 from airport planning. Easily
accessible coastal area.
1 7714/2-1 484198 14°20°36"  6/9/1963 NPN 7.5 Early Cretaceous Late Triassic Wilhelmgya Subgroup Surface mapping. Structurally
Grgnnfjorden I 8654805  77°57°34"  8/12/1967 971.6 Carolinefjellet Fm De Geerdalen Fm TSE 4 complex area in WSFB.
2 7715/3-1 522340 15°58°00"  8/1/1965 Amoseas 18 Paleocene Early Permian Numerous potential reservoirs Surface mapping, but drilled on an
Ishggda I* 8640201  77°50°22"  3/15/1966 3304 Grumantbyen Fm Gipshuken Fm TSE 3, TSE 4 offset structure as confirmed by
later 2D seismic acquisition. First
true deep wildcat.
3 7714/3-1 493959 14°46°00"  8/23/1967 NPN 0 Late Jurassic ? Wilhelmgya Subgroup? Surface mapping and some gas
Bellsund I 8634503  77°47°00"  8/10/1981 405 Agardhfjellet Fm ? TSE 4 seepage onshore. Easily accessible
coastal area.
4 7625/7-1 761068 25°01°45"  8/11/1971 Fina 9.1 Late Triassic Middle Triassic ? Surface mapping.
Hopen I* 8507624  76°26°55"  9/29/1971 908 De Geerdalen Fm Botneheia Fm TSE 4
5 7722/3-1 678904 22°41°50"  4/2/1972 CFP 84 Late Permian Ordovician ? Surface mapping. Regional
geophysical data.
Raddedalen 8660316  77°54’10"  7/12/1972 2823 Kapp Starostin Fm Horbyebreen Fm TSE 1, TSE 3
6 7721/6-1 659992 21°50°00"  6/29/1972 Fina 144.6 Middle Triassic Pre-Devonian ? Surface mapping. Regional
geophysical data.
Plurdalen 8638282  77°44’33"  10/12/1972 2351 Botneheia Fm ? TSE 0, TSE 1, TSE 3
7 7811/2-1 422970 11°23°23"  9/1/1972 NPN 0 Early Permian Pre-Devonian ? Surface mapping.
Kvadehuken II 8766727  78°57°03"  6/19/1973 479 Gipshuken Fm Hecla Hoek TSE 0, TSE 3
8 7625/5-1 767641 25°28°00"  6/20/1973 Fina 314.7 Late Triassic-Middle Middle Carboniferous ~ Numerous potential reservoirs ~ Some limited offset 2D seismic
Jurassic offshore Hopen. Otherwise surface
Hopen IT* 8535807  76°41°15"  10/20/1973 2840 Wilhelmgya Subgroup  Ebbadalen Fm TSE 2, TSE 3, TSE 4 mapping.
9 7811/2-2 424853 11°33°11"  8/13/1973 NPN 0 Early Permian ? ? Surface mapping.
Kvadehuken IIT 8764140  78°55’32"  6/16/1974 394 Gipshuken Fm ? TSE 0, TSE 3
10 7811/5-1 422845 11°28°40"  8/15/1974 NPN 5 Oligocene Pre-Devonian ? Surface mapping. Easy access to drill
site
Sarstangen: 8741814  78°43’36" 12/1/1974 1113 Sarstangen Hecla Hoek TSE 6
conglomerate
11 7815/10-1 500325 15°02°00"  11/13/1974 TA 12 Paleocene Early Permian Numerous potential reservoirs Surface mapping. Easy access to drill
Colesbukta 8671916  78°07°00"  12/1/1975 3180 Basilika Fm Gipshuken Fm TSE 3, TSE 4 site and logistics, at a Russian coal
mining settlement.
12 7617/1-1 552582 17°05°30"  9/11/1976 NPN 6.7 Early Cretaceous Late Triassic-Middle Wilhelmgya Subgroup Surface mapping.
Jurassic
Tromsgbreen I 8533670  76°52’31"  9/19/1977 990 Carolinefjellet Fm Wilhelmgya Subgroup  TSE 4
13 7715/1-1 503990 15°11°15"  1/10/1985 TA 15.13 Eocene Carboniferous (?) Numerous potential reservoirs Surface mapping.
Vassdalen I 8639407  77°49’57"  7/14/1987 2481 Frysjaodden Fm Billefjorden Gp (?) TSE 1 (?), TSE 3, TSE 4
14 7617/1-2 552650 17°05°38"  7/20/1987 T-PG 6.7 Early Cretaceous Early Permian Numerous potential reservoirs  Surface mapping.
Tromsgbreen 113 8533700  76°52°31"  8/24/1988 2337 Carolinefjellet Fm Gipshuken Fm TSE 2, TSE 3, TSE 4
15 7715/1-2 503990 15°11°15"  2/28/1988 TA 15.13 Eocene Middle Triassic Numerous potential reservoirs Surface mapping.
Vassdalen IILE 8639407  77°49°57"  9/1/1989 2352 Frysjaodden Fm Botneheia Fm TSE 3, TSE 4
16  7816/12-1 544775 16°56°31"  1/17/1991 NH/SNSK 182.5 Early Cretaceous Middle Carboniferous ~ Numerous potential reservoirs Sparse 2D seismic acquisition prior
Reindalspasset I* 8665611  78°03°28"  4/11/1991 2315 Carolinefjellet Fm Hultberget Fm TSE 1, TSE 3, TSE 4 to drilling. Comprehensive surface
mapping.
17 7814/12-1 493560 14°53°38"  2/22/1994 SNSK/TA/ 5 Paleocene Early Cretaceous Helvetiafjellet Formation Surface mapping. Nearby coal
NH exploration.
Kapp Laila I* 8671260  78°06°52"  5/8/1994 503.5 Basilika Fm Carolinefjellet Fm TSE 4

*wells with reported gas shows

Fwells that tested gas in producible quantities
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etal. (2011), Blinova et al. (2013), Senger et al. (2013), Anell
et al. (2014a, b, c) and Roy et al. (2015).

Six of the exploration wells (Reindalspasset, Colesbukta,
Kapp Laila, Vassdalen II and III, and Ishggda) and two
research boreholes (Sysselmannbreen DH 2 and DH4) can
be tied to 2D seismic data (Fig. 3). Only the prospect in the
Reindalspasset well 7816/12-1 was drilled based on sparse
2D acquisition and limited seismic mapping, and tested a con-
ventional play model (Senger et al. 2019).

Outcrop and subsurface studies

There has been a long history of geological investigations in
Svalbard, with much of the early work focusing particularly
on lithological and structural mapping, palaeontology, and var-
ious stratigraphic aspects of the sedimentary rock succession.
This work has been summarized by a series of geological
maps published by the Norwegian Polar Institute (NPI) and in
numerous articles and books (e.g. Steel and Worsley 1984; Har-
land 1997; Dallmann et al. 1999; Vigran et al. 2014; Dallmann
2015). Digital outcrop models, particularly from drone-based
acquisition, are increasingly available and shared via the Sval-
box repository (Senger et al. 2021). The efforts of previous
investigations thus form the framework for this paper.

Gravity and magnetic data were acquired and compiled by
the Geological Survey of Norway and are presented in Nasuti
et al. (2015). The regional aeromagnetic data were acquired
with relatively large line spacing (2—8 km) and high sensor
elevation (250-1550 m), and are supplemented by ship-based
magnetic data in Isfjorden (Senger et al. 2013). Gravity data
incorporate both relatively dense surface stations, especially
along the coastlines, and marine surveys around Svalbard.

Regional magnetotelluric (MT) profiles were acquired to
characterize the geothermal potential of Nordenskicld Land
(Beka et al. 2016, 2017b) and Brgggerhalvgya (Beka et al.
2017a), and provide additional constraints on the regional tec-
tonic structure of the area through subsurface conductivity
profiles.

Tectonic setting, boundaries and main tectonic/
erosional /depositional phases

The Latest Devonian Cenozoic evolution of the SCTSE is
grouped into seven separate tectono-sedimentary elements
(TSE 1-TSE 7). The main tectonic events, lithostratigraphic

subdivision of the investigated succession and the hydrocar-
bon play elements are summarized in Figure 4.

The western boundary of the SCTSE is bounded along the
eastern margin of the highly deformed WSFTB, which locally
includes overthrusted Precambrian—Paleogene successions.
The inverted Carboniferous Capria Ridge and southern rim of
the Hopen High (Anell e al. 2016) mark the southern edge of
the SCTSE (Fig. 1a). The Carboniferous and part of the Perm-
ian are mainly fault bounded to basement in the north and NE,
which defines the northern boundary of the SCTSE. Elsewhere,
the northern boundary is defined by the last cropping out Car-
boniferous—Paleogene strata overlying the economic base-
ment. Initial subsidence during the earliest Mississippian,
locally late Fammenian, promoted the development of an inte-
rior continental basin within a continental platform (TSE 1).
The basin fill is assigned to the Billefjorden Group. The devel-
opment during this phase is partly disputed, with the discussion
evolving around a pre- or synkinematic structural regime.
Extensional basins are suggested in the southern and western
parts of Spitsbergen (Cutbill and Challinor 1965; Holliday
and Cutbill 1972; Gjelberg and Steel 1981; Braathen et al.
2011; Maher and Braathen 2011; Smyrak-Sikora et al. 2021).

The Late Mississippian—Middle Pennsylvanian rifting
resulted in the formation of a series of elongated, north—south-
orientated fault-bounded basins on Spitsbergen (McCann and
Dallmann 1996; Braathen et al. 2011; Maher and Braathen
2011; B@lum and Braathen 2012; Smyrak-Sikora et al.
2019,2021). This synrift tectono-sedimentary element (TSE 2)
is well documented in the Billefjorden Trough of central Spits-
bergen (Fig. 1b).

Waning fault activity and regional subsidence during the
Late Pennsylvanian—Early Permian in combination with con-
tinued northward continental drift promoted the development
of an extensive and long-lived carbonate platform (TSE 3:
Fig. 4) (Stemmerik and Worsley 2005). This post-rift TSE 3
comprises the upper part of the Gipsdalen Group (Fig. 4).

Renewed extension in the late Early Permian (Artinskian) is
linked to the Permian—Triassic development of the North
Atlantic rift system along the western margin of the Barents
Sea and East Greenland (Seidler et al. 2004; Riis et al.
2008; Clark et al. 2014; Anell et al. 2016; Tsikalas et al.
2021). A cool-water carbonate platform developed during
this synrift phase (TSE 4: Fig. 4). Fault-related uplift of the
basin margins controlled the facies and thickness variations
of the spiculite, carbonate and siliciclastic facies in the Tem-
pelfjorden Group.
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Fig. 4. Composite summary of chronostratigraphy /lithostratigraphy, tectonic events and petroleum systems (i.e. previous petroleum systems) of the
tectono-sedimentary sequences (TSE 1-TSE 6) documented in this study. The geological timescale is after Gradstein and Ogg (2020: https://
timescalefoundation.org). The column is based on the most recent stratigraphic work available, including that of Vigran et al. (2014), Paterson et al. (2016),
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FG, Forlandsundet Graben; Fi, Firkanten Fm; Fl, Flatsalen Fm; Fr, Frysjaodden Fm; Gi, Gipshuken Fm; Gr, Grumantbyen Fm; He, Helvetiafjellet Fm; Hg,
Hgrbybreen Fm; Hu, Hultberget; KKL lava flows, Kong Karls Land lava flows; Ko, Kongsgya Fm; Ks, Kapp Starostin Fm; MB, Myklegardfjellet Bed; Mi,
Minkenfjellet Fm; Mu, Mumien Fm; Ru, Rurikfjellet Fm; SB, Slottet Bed; Sv, Svenskgya Fm; Ts, Tschermakfjellet Fm; Tv, Tvillingodden Fm; Va,
Vardebukta Fm; Vi, Vikinghggda Fm; Vg, Vgringen Member; Wo, Wordiekammen Fm.
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Fig. 4. Continued.

Early Triassic—Middle Jurassic regional subsidence resulted
in the development of a sag basin dominated by siliciclastic
deposition (TSE 5: Fig. 4). The Middle Triassic—Upper Trias-
sic NW-prograding delta sourced from the denudation from
the Uralide mountains and Fennoscandian Shield reach Spits-
bergen in the Carnian (Anell et al. 2014a; Klausen et al. 2019).
In addition, a less prominent western source contributed to
deposition in the western and southern parts of the SCTSE
(Mgrk et al. 1982; Krajewski and Weitschat 2015; Czarniecka
et al. 2020). A condensed Norian—Pliensbachian succession,
<10 m thick and with numerous internal hiatuses in the
west, thickens eastwards to a >200 m-thick, stratigraphically
almost complete, succession (Fig. 4). The subsidence of the
succession in the east is suggested to be linked to the Novaya
Zemlya Orogen. (Olaussen et al. 2018; Miiller et al. 2019).

Late Middle Jurassic—Early Cretaceous regional subsidence
with uplift in the north and NW formed a continental, siliciclas-
tic platform (TSE 6: Fig. 4). Early Cretaceous circum-Arctic
magmatism resulted in the emplacement of the High Arctic
Large Igneous province (HALIP), which eventually became a
prominent sediment source from the Barremian onwards
(Maher 2001; Grantz et al. 2011; Polteau et al. 2016). Local
extensional faulting occurred on Spitsbergen (Onderdonk and
Midtkandal 2010) and some minor contraction took place in
the east, at Kong Karls Land and Kong Karls Land Platform
(Grogan et al. 1999, 2000; Olaussen et al. 2018).

The latest middle Albian—latest Danian hiatus records exhu-
mation of the entire SCTSE with a significant component of
northerly uplift, probably induced by magmatism and the open-
ing of the Amerasian Basin north of Svalbard (Maher 2001).
Plate tectonic reorganization initiated by the opening of the
North Atlantic Ocean may also have contributed to the uplift
and the development of this major hiatus (e.g. Faleide et al.
2008). The occurrence of Late Cretaceous terrestrial and
marine microfloras in Paleocene strata in southern Spitsbergen
indicates erosion and reworking of previous deposited Upper
Cretaceous strata (Smelror and Larssen 2016).

North-directed opening of the North Atlantic Ocean culmi-
nated with the formation of a transform fault along the De
Geer Zone, linking the Atlantic and Arctic basins. This zone
had a major impact on the Paleogene development of the
SCTSE. During the Paleocene, dextral movement between
the Eurasian and Greenland plates caused transpression-
induced crustal shortening (e.g. Bergh et al. 1997; Leever
et al. 2011), with the formation of the WSFTB and its flanking
foreland basin, the CTB (Steel er al. 1981; Helland-Hansen
1990; Braathen e al. 1999; Helland-Hansen and Grundvag
2020). The foreland basin fill is assigned to TSE 7 (Fig. 4)
and further suggests that the main phase of contraction-driven
uplift in the west, along the De Geer Zone, appeared in the
Eocene (TSE 7: Fig. 4). Subsequent graben formation within
the De Geer Zone and WSFTB during the late Eocene—

Oligocene indicates a shift from transpression to transtension
driven by changes in plate motion (Maher et al. 1997, 2020;
Braathen et al. 1999).
Finally, the current Neogene passive-margin development
was accompanied by recurrent periods of uplift, erosion and
glaciation from 3.6 Ma (Knies et al. 2009). Crustal thinning
and the onset of oceanic spreading close to western Spitsbergen
probably governed the development of a Neogene hiatus across
the Svalbard archipelago and the surrounding shelf areas
(Green and Duddy 2010).
The central and western parts of the archipelago and the
northwestern part of the Barents shelf margin in particular
have been subjected to significant uplift over the last few mil-
lion years (Dimakis er al. 1998; Henriksen et al. 201 1a; Lasa-
buda et al. 2018), and the presence of thick pre-glacial
(probably Miocene and Pliocene) and glacial (late Pliocene
and Pleistocene) clastic wedges offshore west Spitsbergen
(Hjelstuen er al. 1996) suggests a net denudation of ¢. 3 km
(Riis and Fjeldskaar 1992). This is in overall agreement with
uplift estimates in the range 2.5-3.5 km based on organic geo-
chemical studies (Throndsen 1982; Marshall et al. 2015; Olaus-
sen et al. 2019). However, the westernmost margin of the
SCTSE might have been subjected to a higher magnitude of
uplift or a higher temperature gradient. Remnants of Pleisto-
cene glacial deposits occur locally onshore Spitsbergen, indi-
cating multiple glaciations (Ing6lfsson and Landvik 2013).
Uplift of 9 mm a~' is ongoing at present in central western
Spitsbergen. However, only I mma™" of this is attributed to iso-
static rebound due to deglaciation following the Late Weichse-
lian glaciation (Kierulf ef al. 2022). TSEs 1-7 are summarized
below (see Supplementary material 1-7 for outcrop examples):
(1) Uppermost Devonian to Lower Mississippian TSE 1
deposited in an interior continental sag basin possibly
related to initial rift stage in SW;

(2) Serpukhovian to Moscovian synrift TSE 2;

(3) Upper Pennsylvanian to Lower Permian — postrift sag/
platform TSE 3;

(4) Lower Permian (Artinskian) to the base Triassic synrift
TSE 4;

(5) Base Triassic to lower Middle Jurassic — sag basin TSE 5;

(6) Upper Middle Jurassic to Lower Cretaceous — continen-
tal platform TSE 6;

(7) Paleogene — foreland basin TSE 7.

Underlying and overlying rock assemblages

Age of underlying basement (consolidated crust) or youngest
sedimentary unit

The oldest crystalline basement rocks in Svalbard are dated to
2709 + 28 Ma (U-Pb zircon ion microprobe: Hellman et al.
2001). The youngest rocks below the SCTSE are the metasedi-
ments of Middle Fammenian age. Tournaisian—Visean strata
exhibit a metasedimentary character in the WSFTB.

Some exploration wells were drilled into metamorphic
rocks of Caledonian age (Senger ef al. 2019) and on Edgegya
an exploration well drilled into carbonate beds of disputed age,
possibly being of either Late Devonian or Silurian—Ordovician
age at a total drilling depth (TD) of 2283 m (cf. Harland and
Kelly 1997). Based on the relatively poor quality of reflection
seismic imaging of deeper strata, we suggest that the economic
basement in the nearby offshore areas is most likely to be sim-
ilar to that proven in the onshore areas (Faleide et al. 2017).

Age of oldest overlying sedimentary units

The oldest overlying sediments are late Pliocene glacial
deposits.
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Subdivision and internal structure

One of the main structural characteristics of the SCTSE is the
north—south-trending Pennsylvanian rift basins situated along
prominent fault zones. In addition, Mesozoic sag basins and
platforms, together with the CTB, define the main internal
structures of the SCTSE (Fig. 1).

Carboniferous north—south-trending rift basins

The best-exposed example of a north—south rift basin is the
Billefjorden Trough between Billefjorden and Austfjorden
(Fig. 1b). It is a c¢. 25 km-wide, westward-dipping and
southward-plunging half-graben with main the extensional
phases occurring during the Serpukhovian—-Moscovian
(Maher and Braathen 2011; Smyrak-Sikora et al. 2019,
2021). The preserved basin fill forms a westward-thickening
wedge, up to 2 km thick on the hanging wall of the north—
south-striking, eastward-dipping Billefjorden Fault Zone.
Reactivation of normal faulting occurred in the Permian and
possibly also during the Early Triassic. The southward contin-
uation of the north—south-trending Carboniferous rift basins is
documented by exploration well 7816/12-1 (Fig. 2).

Along the northern part of the complex Lomfjorden Fault
Zone, a westward-dipping wedge-shaped Lower Carbonifer-
ous basin fill occurs in the Lomfjorden Trough (Fig. 1b) (Gjel-
berg and Steel 1981; Harland 1997; Blomeier ez al. 2009). The
Lomfjorden Trough is bounded to the west by the north—
south-striking basement-dominated high: the Ny Friesland
High (Figs 1b, 5 & 6). We speculate that the Ny Friesland
High is a Carboniferous horst structure and that the

Lomfjorden Trough represents the remnants of a larger Car-
boniferous graben (Fig. 6).

Permian reactivation

Reactivation of the north—south-trending faults was important
for later structuring in the SCTSE. Renewed rifting occurred in
the late Early Permian. This is particularly evident in southern
Spitsbergen, where Upper Permian strata are thin and pinch
out across the Sgrkapp—Hornsund High. In addition, Artin-
skian—uppermost Permian deposits appear to be downfaulted
(by c. 400 m) on the southwestern tip of Sgrkapp (Dallmann
2015), thus recording Late Permian fault activity. Thickness
variations of the Upper Permian strata demonstrating local
fault activity are also observed on the Nordfjorden High
(Fig. 6) and Sgrkapp—Hornsund High (Hellem 1980; Knag
1980; Blomeier et al. 2011; Bond et al. 2017) and probably
lasted until the early Middle Triassic (Krajewski and Weit-
schat 2015; Czarniecka et al. 2020).

Mesozoic basins and platforms

The Svalbard Platform and the northern part of the Kong Karls
Land Platform are the two main internal Mesozoic structures
in the SCTSE. Following cessation of Late Paleozoic tectonic
activity of the Edgegya Basin, the Hopen High merged with
the Edgegya Platform to form the Mesozoic Svalbard Platform
(Anell et al. 2016). Due to poor seismic coverage, its eastern
boundary towards the Kong Karls Land Platform is difficult
to define. Large, NE-striking Mesozoic synforms and anti-
forms with Late Mesozoic and Tertiary reverse faults and
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as a Carboniferous horst is somewhat speculative.

Lower Cretaceous intrusive or extrusive volcanic rocks char-
acterize the Kong Karls Land Platform (Grogan et al. 1999),
and gently folded strata with lower Cretaceous volcanic
rocks are seen onshore Kong Karls Land (Grogan et al.
2000). Two periods of Mesozoic contraction are suggested
on Kong Karls Land: one event in the Late Jurassic, probably
Kimmeridgian or early Volgian, followed by rejuvenation in
the Barremian—Aptian (Olaussen er al. 2018). Small-scale
rotated fault blocks in the Barremian strata at Kvalvagen sug-
gest instability caused by short-lived tectonic activity along
the Lomfjorden Fault Zone.

Reverse faults cutting Permian and the Mesozoic strata are
well documented in the Billefjorden Fault Zone at the outer tip
of Billefjorden and south of Isfjorden. Haremo and Andresen
(1992) showed that the Lomfjorden Fault Zone, west of
Agardhbukta, was reactivated by Eocene reverse faulting.

Paleogene basin

The CTB forms an elongated NNW-SSE-orientated syncline
that covers an area of ¢. 5000 km? in southern and central Spits-
bergen. Its margins were initially bounded by a series of north—
south-orientated faults. Uplifted terranes to the north and east
were the main source areas for the Paleocene basin fill (e.g.
Steel et al. 1981, 1985; Bruhn and Steel 2003; Petersen et al.
2016). Structural outliers containing correlative Paleocene
strata at Brgggerhalvgya (and elsewhere) may indicate that
the Paleocene basin was covering a much larger area than pres-
ently preserved (Jochmann ez al. 2020). During the contraction
in Eocene, the WSFTB continued to rise, and flexural loading
along the western basin margin thus assisted in maintaining the

asymmetrical basin shape, being deepest in the west and shal-
lowing significantly eastwards (Helland-Hansen and Grund-
vag 2020). The Paleogene deformed Storfjorden Basin is
fault bounded by the Sgrkapp—Hornsund High and the anticli-
nal structure above the Capri Ridge (Anell et al. 2016).

The CTB probably developed into a wedge-top basin during
the final stages of crustal deformation. The extent of the
Eocene basin to the south and east is unknown but it is most
likely to have continued far beyond its present-day extent.

After the main transpressional phase in the Eocene, trans-
tensional movements along the Hornsund Fault Zone resulted
in the formation of a series of basins along western Spitsber-
gen, including the Forlandsundet Graben.

Sedimentary fill
Total thickness

The thickness of the Carboniferous—Permian successions
(TSE 1-TSE 4: Fig. 4) varies from 380 to 1800 m, whereas
the Mesozoic successions (TSE 5-TSE 6: Fig. 4) vary from
1480 to 2370 m, thus adding up to 1860 and 4170 m, respec-
tively. The Paleogene succession (TSE 7: Fig. 4) is only pre-
served in western and central Spitsbergen (Fig. 1a, b) where it
varies from O to 1700 m. As such, the total thickness of the
SCTSE may reach 5870 m. However, this number is some-
what uncertain due to Paleogene shortening of pre-Paleogene
strata, particularly in western Spitsbergen (Braathen er al
1999).

None of the nearby seismic lines that were available for this
study has been depth converted due to uncertain interval
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velocities, which may cause large uncertainties during
attempts to estimate thicknesses.

Lithostratigraphy and depositional systems

TSE 1: Tournaisian—Visean Billefjorden Group. The conti-
nental sediments of the Billefjorden Group mark the onset
of the Mississippian, locally possiblly late Fammenian, depo-
sition in the SCTSE. The basal surface is a first-order sequence
boundary (cf. Embry 2009), recording large-scale tectonic
reorganization (i.e. from the Svalbardian deformation to an
interior continental basin). In central Spitsbergen, the basal
unconformity is overlain by a ¢. 100 m-thick coarse-grained
unit of fluvial and lacustrine deposits assigned to the lower
part of the Hgrbybreen Formation (Fig. 4). In western Spits-
bergen, deposition started later with the accumulation of
fine-grained floodplain deposits assigned to the Tournaisian
Orustdalen Formation. Lopes er al. (2018) suggested a late
Tournaisian—late Visean hiatus in the Hgrbybreen Formation.
This coincides with a shift in depositional environments from
a coarse-grained sand- and gravel-dominated braidplain to a
fine-grained, vegetated floodplain dissected by meandering
rivers (e.g. Steel and Gjelberg 1981). In the Billefjorden
Trough, coarse-grained braided stream deposits are locally
overlain by heterolithic and coal-bearing floodplain fines.
This formation thickens northwards along the Billefjorden
Fault Zone and pinches out towards the underlying basement
in the east. The gradual transition from deposits consistent
with wetlands into floodplain red beds with calcrete in the
Serpukhovian—Bashkirian Hultberget Formation records a
change from humid to semi-arid or arid tropical climate. A
more detailed description of TSE 1 is available in Supplemen-
tary material 1.

TSE 2: Serpukhovian—Moscovian lower Gipsdalen Group.
Deposition of the lower Gipsdalen Group took place in a series
of narrow, north—south-elongated rift basins under overall arid
to semi-arid climatic conditions. In the Billefjorden Trough,
deposition occurred in three distinctive phases. The basal,
fluvial-dominated Hultberget Formation and the paralic
Ebbaelva Member of the Ebbadalen Formation were deposited
during early rifting in an overall symmetrical basin (Johannes-
sen and Steel 1992; Smyrak-Sikora et al. 2019). During the
main extensional phase and half-graben development, wedge-
shaped alluvial fans of the Ebbadalen Formation prograded
basinwards from the footwall in the west, interfingering with
mixed carbonates, siliciclastics and evaporites in more distal
locations to the east. During the late rift and early post-rift
stages, shallow-marine siliciclastics and carbonates of the
Moscovian Minkinfjellet Formation were deposited along
the eastern and western basin margins, whereas interbedded
gypsum and carbonate accumulated in the central parts of
the basin (Fig. 4) (Smyrak-Sikora et al. 2021). Cyclicity and
facies changes were due to a combination of tectonically
induced subsidence and eustatic sea-level changes governed
by the global icehouse conditions at these times (Ahlborn
and Stemmerik 2015; Smyrak-Sikora er al. 2019, 2021). A
more detailed description of TSE 2 is available in Supplemen-
tary material 1.

TSE 3: upper Moscovian—Lower Permian upper Gipsdalen
Group. The upper Pennsylvanian and Lower Permian succes-
sions represent a distinctive element in the evolution of the
SCTSE with the development of an extensive and long-lived
carbonate platform, reflecting a combination of regional sub-
sidence, waning extensional tectonics and eustatic sea level
(Stemmerik and Worsley 2005).

Strata included in the Moscovian—lower Sakmarian part of
the Gipsdalen Group are assigned to the Wordiekammen For-
mation, which formed a shallow-marine carbonate platform
across the SCTSE. Condensed and amalgamated shallow-
marine facies successions dominate across the underlying
structural highs such as the well-studied eastern Nordfjorden
High (Fig. 6). Thicker, non-amalgamated successions domi-
nate in areas overlying the previous rift-basin centre (Ahlborn
and Stemmerik 2015; Sorento et al. 2020). Deposition at this
time was also strongly influenced by frequent, high-amplitude
glacio-eustatically driven relative sea-level fluctuations gov-
erned by waxing and waning of ice sheets in the southern
hemisphere. A more detailed description of TSE 3 is available
in Supplementary material 2.

TSE 4: upper Lower—Upper Permian Tempelfjorden Group.
Deposits of the Gipshuken Formation reflect a transition
from gypsum deposition in a shallow extensive salina system
to deeper, cooler-water carbonate shelf deposition (Sorento
et al. 2020). The structural control becomes evident in the
Artinskian by the uplift of prominent highs such as Nordfjor-
den High and the Sgrkapp—Hornsund High (Hellem 1980;
Knag 1980; Matysik et al. 2017). The basal Vgringen Member
forms a distinctive brachiopod packstone-dominated trans-
gressive sheet-like unit (e.g. Uchman ef al. 2016). Thickness
and facies variations of the Tempelfjorden Group are linked
to the Late Permian rift event along the western Barents shelf
margin. On the SCTSE, an extensive, cool-water carbonate
platform succession developed, assigned to the Tempelfjorden
Group (Fig. 4). Spiculites and shale dominates the deeper part
of the basin, whereas cool-water carbonates and glauconitic
sandstones of shallow-marine (i.e. inner-shelf) origin occur
along the basin margins and in the proximity to structural
highs (e.g. Blomeier et al. 2011, 2013; Bond et al. 2017; Uch-
man et al. 2016). Sandstone wedges in the southern part of
Spitsbergen are banked onto the Sgrkapp—Hornsund High
(Knag 1980) and are consistent with an active synrift basin
fill. Regional subsidence in combination with a eustatic sea-
level rise resulted in deepening of the SCTSE. In addition, con-
tinued northward continental drift promoted climatic cooling
in concert with globally high-silica production in the oceans.
A more detailed description of TSE4 is available in Supple-
mentary material 2.

TSE 5: Triassic-Middle Jurassic Sassendalen and Kapp
Toscana groups. The base of the Mesozoic in a shale interval
near the base of the Sassendalen Group (Zuchuat ef al. 2020)
marks a regional shift from carbonate and silica/spiculite dep-
osition to siliciclastic deposition across the SCTSE. The
Early-Middle Triassic Vardebukta, Tvillingodden and Brav-
aisberget formations that crop out in western Spitsbergen
include coarser-grained, shallow-marine and deltaic wedges
that built into the basin from the west (Fig. 4) (Mgrk et al.
1982; Czarniecka et al. 2020). These deposits transition east-
wards into offshore mudstones of the Lower Triassic Viking-
hggda Formation and the overlying Botneheia Formation
(Fig. 4) Mgrk et al. 1999; Vigran et al. 2014; Wesenlund
et al. 2022).

During deposition of the Kapp Toscana Group, the sedi-
ment supplied to the SCTSE was mainly sourced from the
ESE, recording the distal part of a northwestward-prograding
deltaic clinoform system approaching from the Uralian moun-
tains and the northeastern part of the Baltic Shield (Riis ez al.
2008; Smelror et al. 2009; Glgrstad-Clark ez al. 2011; Hgy and
Lundschien 2011; Klausen ez al. 2014, 2017, 2019; Gilmullina
et al. 2021). The northward progradation of this system was
initiated during the latest Permian along the Fennoscandian
coastline but did not reach the SCTSE before the Ladinian
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(Riis et al. 2008; Lundschien er al. 2014; Lord et al. 2017).
Local highs throughout the eastern part of the SCTSE existed
with the Induan part of the succession missing in many places
Motk et al. 1999; Vigran et al. 2014; Lord et al. 2017). The
prodeltaic part of this delta system is represented by the
Tschermakfjellet Formation (Ladinian—early Carnian),
whereas the overlying De Geerdalen Formation (Carnian—
early Norian) represents distal delta front to delta/coastal
deposits (Fig. 4) (Klausen and Mgrk 2014; Lord et al. 2014,
2017; Rgd et al. 2014; Anell et al. 2020). Growth faults and
delta collapse are recorded on the west coast of Edggya
(Edwards 1976; Smyrak-Sikora et al. 2020). Facies become
generally more sandstone rich and increasingly more proximal
in the eastern part of the SCTSE (e.g. Hopen, Edgegya, Wil-
helmgya and Barentsgya) than in Spitsbergen (Mgrk et al.
1982; Lord et al. 2017). In the upper part of the formation in
Spitsbergen and on Wilhelmgya, the Isfjorden Member con-
sists of heterolithic, intercalated beds of shale, siltstone and
sandstone. Red beds with immature to decimetre-thick mature
calcrete soil profiles (i.e. hard pans) interbedded with 1-2 m-
thick mouth-bar and meandering channel deposits are present,
as are calcareous and non-calcareous soil profiles giving the
unit a distinctive red and green coloration (Lord ez al. 2022).
These facies indicate that the Isfjorden Member represents a
delta-top environment. These more condensed successions
and prevalent localized subaerial exposure surfaces at the
top of the De Geerdalen Formation are consistent with a pro-
posed reduction in subsidence at the transition to the Norian
and Early Jurassic (cf. Ryseth 2014). On Hopen to the SE in
the SCTSE, the Hopen Member represents a shallow-marine
interval that can be traced east of Svalbard (Lundschien
et al. 2014). This is likely to indicate early onset of basin
sag and the development of a seaway in this area prior to the
Norian flooding at the base of the Wilhelmgya Subgroup. It
is presently unclear whether the Hopen and Isfjorden members
are time-equivalent units as extensive erosion at the base of the
Wilhelmgya Subgroup has recently been reported and the unit
may simply be absent on Spitsbergen (Hounslow et al. 2022;
Klausen et al. 2022).

The basal boundary of the lower Norian—lower Bathonian
Wilhelmgya Subgroup represents a regional unconformity sur-
face overlain by the conglomeratic Slottet Bed that was depos-
ited during a pan-Arctic Norian flooding event (cf. Embry
1997). In the SCTSE, the basal boundary of the Wilhelmgya
Subgroup also marks a change from immature sandstones to
more quartz-rich sandstones (Mgrk 2013; Lord et al. 2019),
possibly recording a regional change in the provenance area
and the reworking of older sedimentary rocks in concert with
a change from semi-arid to more humid climatic conditions.

The Wilhelmgya Subgroup is subdivided into three forma-
tions, where the lower mudstone-dominated Flatsalen Forma-
tion represents widespread prograding offshore to delta-front
deposits. A major subaerial sequence boundary occurs near
the base of the Rhaetian, informally referred to as ‘the Rhae-
tian unconformity’ (cf. Embry 2009; Lord et al. 2019).
While the Rhaetian—Pliensbachian paralic Svensk@ya Forma-
tion comprises an almost 200 m-thick succession in Kong
Karls Land, it forms a 5-20 m-thick condensed, shallow-
marine succession with numerous hiatuses in central and west-
ern Spitsbergen (Olaussen et al. 2018; Rismyhr et al. 2018).
Similar thickness trends and hiatuses occur in the SWBS
(e.g. Miiller et al. 2019). It has been suggested that both trends
are linked to the tectonism of the Novaya Zemlya Orogen
(Klausen et al. 2022). By the Toarcian, the variations in thick-
ness were mostly levelled out throughout the archipelago. The
upper part of the Wilhelmgya Subgroup is represented by the
widespread Toarcian—Bathonian Kongsgya Formation. This
formation is highly condensed and dominated by shoreface
deposits, commonly separated by offshore sandstones and

shales. The uppermost unit of the Kongsgya Formation is
the Bathonian Brentskardhaugen Bed (Fig. 4). It represents a
regional transgression and is composed of a polymictic phos-
phatic conglomerate containing reworked Toarcian—?Bajo-
cian fossils (Bickstrom and Nagy 1985; Rismyhr er al.
2018). A more detailed description of TSE 5 is available in
Supplementary material 3.

TSE 6: Middle Jurassic—-Lower Cretaceous Adventdalen
Group. The group records other dramatic switches in palaeo-
drainage and source area related to uplift in the west and NW
of Svalbard, and later volcanic activity in the north and to
the east.

Organic-rich shales in the Agardhfjellet Formation (Fig. 4)
were deposited on a shallow shelf under variable oxic, dysoxic
and anoxic seafloor conditions (Nagy ez al. 2009). Distal delta-
front or lower-shoreface deposits occur within the otherwise
shale-dominated unit in western Spitsbergen, recording the
initial arrival of sediments sourced from terranes NW and
west of Spitsbergen (Dypvik and Zakharov 2012; Koevoets
et al. 2018). The Slottsmgya Member, the uppermost member
of the Agardhfjellet Formation, has recently emerged as one of
the world’s richest sources of Jurassic ichthyosaur and plesio-
saur fossils (Delsett ef al. 2016).

The overlying upper Ryazanian/Valanginian—lower Barre-
mian Rurikfjellet Formation forms a 200-300 m-thick
coarsening- and shallowing-upward succession (Grundvag
et al. 2019; Jelby et al. 2020; Sliwinska er al. 2020). A
basal, condensed glauconitic clay unit — the Myklegardfjellet
Bed — formed during maximum flooding of the shelf (Dypvik
et al. 1992) and represents the onshore equivalent of
similar-aged, condensed carbonates of the Klippfisk Forma-
tion offshore, whose base is defined by the Base Cretaceous
Unconformity (Smelror ef al. 1998). The lower part of the Rur-
ikfjellet Formation is shale dominated and represents deposi-
tion on an open-marine shelf (Grundvag et al. 2017, 2019).
Thick successions of gravity-flow deposits occur locally in
the NW (Grundvag et al. 2019). The upper part of the forma-
tion consists of shallow-marine to deltaic sandstones forming
two separate wedges: central and southern Spitsbergen,
respectively (Dypvik er al. 1991; Grundvag and Olaussen
2017; Grundvag et al. 2019; Jelby et al. 2020).

The overlying up to 120 m-thick fluvio-deltaic succession is
assigned to the Barremian—lower Aptian Helvetiafjellet For-
mation (Fig. 4) (Midtkandal and Nystuen 2009; Grundvag
et al. 2017, 2019). The lower part consists of a regionally
extensive, cross-bedded sandstone sheet of braided stream
affinity (i.e. the Festningen Member), which locally fills
incised valleys. The Helvetiafjellet Formation exhibits a trans-
gressive trend, with fluvial deposits in the lower part being
overlain by coastal/delta-plain barrier and wave-dominated
delta-front sandstones (Nemec e al. 1988; Grundvag et al.
2019). The main source area for this fluvio-deltaic system
was the exhumed terranes north and west of the SCTSE
with depocentres on the shelf further to the south and SE (Gjel-
berg and Steel 1995; Midtkandal and Nystuen 2009; Grund-
vag and Olaussen 2017). A regional provenance switch,
however, is documented in the middle part of the formation
attributed to the emerging volcanic terrains of the HALIP to
the east (Edwards 1979; Maher 2001; Maher et al. 2004).

The conformably overlying Carolinefjellet Formation of
early Aptian—late middle Albian age is up to 1200 m thick
and represents the youngest preserved Mesozoic strata in Sval-
bard (Fig. 4) (Maher et al. 2004; Grundvag et al. 2019, 2020).
The base of the formation is defined by a regionally extensive
lower Aptian organic-rich shale unit deposited during the final
drowning of the retreating Helvetiafjellet Formation delta
(Midtkandal et al. 2016; Grundvag et al. 2019). The remaining
part of the Carolinefjellet Formation was generally deposited


https://doi.org/10.6084/m9.figshare.c.6404502

Downloaded from https://www.lyellcollection.org by Universitetet i Oslo Biblioteket on Aug 11, 2023

S. Olaussen ef al.

in an open-marine, storm-dominated shelf setting, and consists
of alternating inner-shelf sandstone sheets and offshore mud-
stone units (Grundvag et al. 2020). A more detailed descrip-
tion of TSE 6 is available in Supplementary material 4.

TSE 7: Paleocene—Eocene Van Mijenfjorden Group. The up
to 1.9 km-thick Paleogene Van Mijenfjorden Group in the
CTB consists of a Paleocene and an Eocene to possibly
Early Oligocene succession.

Bentonite (tephra) layers sampled from the Firkanten, Frys-
jaodden and Basilika formations in the CTB yield U-Pb ages
of 61.6, 59.3 and 55.8 Ma, respectively (Charles et al. 2011,
Jones et al. 2017; Jochmann et al. 2020). The oldest bentonite
bed, at the base of the Firkanten Formation, can be traced lat-
erally for almost 100 km from north to south within the basin
(Jochmann et al. 2020). Geochemical fingerprinting suggests
the Kapp Washington volcanic rocks in North Greenland as
the source for the oldest bentonite bed, while the younger
beds are likely to represent volcanism in the Nares Strait, Arc-
tic Canada (Jones et al. 2016, 2017). The youngest dated ben-
tonite in the CTB has been used to refine the absolute age of
the Paleocene—Eocene Thermal Maximum (PETM: Charles
et al. 2011).

The Paleocene succession accumulated in a fault-bounded
basin, and consists of offshore shale (the Basilika Formation)
and intercalated sandstone wedges of shallow-marine to para-
lic origin (i.e. the Firkanten, Grumantbyen and Hollendardalen
formations). The paralic lower part of the Firkanten Formation
represents the most important coal-bearing unit in Svalbard
(Ngttvedt 1985; Liithje et al. 2020).

The Eocene basin fill accumulated in a foreland basin that
formed in response to the development of the WSFTB. It rep-
resents an overall regressive megasequence comprising sev-
eral hundred metres of thick basin-floor shale of the
Frysjaodden Formation at the base, gradually passing upwards
into shallow-marine to deltaic sandstones of the Battfjellet
Formation, and eventually alluvial deposits of the Aspelintop-
pen Formation (Helland-Hansen 2010; Grundvag ez al. 2014a;
Helland-Hansen and Grundvag 2020). The Paleocene succes-
sion was largely sourced from the east, whereas the overlying
Eocene to possible early Oligocene succession saw a major
change to westerly derived sediments in response to the grow-
ing WSFTB (Steel et al. 1985; Helland-Hansen 1990; Bruhn
and Steel 2003; Petersen et al. 2016).

Paleogene outliers also occur in several smaller structurally
confined basins within the WSFTB (e.g. Blinova et al. 2013;
Smelror and Larssen 2016; Jochmann er al. 2020; Schaaf
etal 2021). A more detailed description of TSE 7 is available
in Supplementary material 5.

Magmatism
Carboniferous

A vertical NE-SE-striking monchiquite (lamprophyre) dyke
occurs at Krosspynten in Wijdefjorden, Spitsbergen (Gayer
et al. 1966). It is approximately 0.9 m wide, and clearly cross-
cuts folded Devonian sandstones and shales. It has a vertically
zoned appearance with alternating fine- and coarse-grained
crystals, and exhibits vertical and horizontal fractures. Kra-
sil’shchikov (1964) obtained a K—Ar age of 309 + 5 Ma for
the dyke, suggesting a Late Carboniferous basic magmatism
(Gayer et al. 1966). However, an ongoing study, applying the
“OAr/*°Ar step heating method, indicates an older, possible
late Mississippian age for the intrusion (Morgan Ganergd
pers. comm. 2019).

Early Cretaceous

In Svalbard, Early Cretaceous mafic rocks related to the
HALIP are assigned to the Diabasodden Suite (Dallmann
et al. 1999; Senger et al. 2014a, b), which comprises both
doleritic sills and dykes throughout Svalbard, and basaltic
lava flows on Kong Karls Land (Smith er al. 1976; Bailey
and Rasmussen 1997; Olaussen et al. 2018). The intrusions
are emplaced in a wide range of lithologies and stratigraphic
intervals. In Spitsbergen, Edgegya and Barentsgya, they are
preferentially located in Triassic shales (early phase of TSE
4), whereas further east (i.e. at Kong Karls Land) they appear
in Upper Jurassic shales and Lower Cretaceous sandstones
(late phase of TSE 4). U-Pb dating of several sills suggests
a short-lived magma emplacement pulse at c¢. 124.5 Ma
(Corfu et al. 2013). On Kong Karls Land, tholeiitic plateau
flood basalts are resting on, or interfingering with, the fluvio-
deltaic Helvetiafjellet Formation (which at this location is sug-
gested to be of an Aptian age: Smelror et al. 2018), and volca-
noclastic material locally occurs in fluvial-channel deposits
within the unit (Olaussen et al. 2018). Ongoing studies
using the 40Ar/ 3Ar step heating method gave a maximum
age for lava flows of 126.1 + 1.7 Ma (Morgan Ganergd pers.
comm. 2020).

Heat flow

The current geothermal gradient and heat flow vary from 25 to
55°C km™" and from 65 to 70 W m™2, respectively (Fig. 7)
(Betlem er al. 2018). The base of the Paleocene Firkanten
Formation in the central parts of the CTB were subjected to
temperatures of 120°C, reflecting a geothermal gradient of
approximately 50°C km™' in the Eocene—Oligocene. The
local variations in geothermal conditions across the archipel-
ago, at least partially, may be explained by the present
out-of-equilibrium conditions due to Neogene pre-glacial
and glacial loading, unloading, and erosion rates (Lucazeau
2019).

Localized Neogene—Quaternary volcanism reported in
northwestern Spitsbergen (Dallmann 2015), fluid migration
along pre-existing fault zones and effects from the astheno-
sphere (e.g. Minakov 2018) may all have contributed to the
documented thermal heterogeneity.
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Fig. 7. Temperature gradients from exploration and research wells.
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Fig. 8. The only example of a drilled
prospect based on subsurface mapping in
Svalbard, Reindalspasset, well 7816/12-1.
The target was a play with a Pennsylvanian
rotated fault block as the trap, and

postrift sandstone and carbonates as the reservoir,
which were sourced from Mississippian
coal and shales. BCU, Base Cretaceous
Unconformity (i.e. Base Rurikfjellet
Formation); TD, terminal depth; TWT,
two-way travel time. Colour legend for the
seismic reflectors: brown, intra-Permian
reflector; red, near top Permian (i.e. top
Kapp Starostin Formation); violet blue,
BCU; dark green, Base Helvetiafjellet
Formation; light green, base Carolinefjellet
Formation. See Figure 4 for

Petroleum geology

Discovered and potential petroleum resources

No economic discoveries have been made onshore Svalbard,
although small technical discoveries are reported from oil
and gas exploration, coal exploration, and scientific drilling
(Senger et al. 2019). Most drilled prospects in Svalbard
were de-risked based on the surface geology, mapping and
stratigraphy. The exception to this is the 7816/12-1 Reindal-
spasset well, which drilled a prospect defined on 2D seismic
data (Fig. 8).

Current exploration status

There has been no hydrocarbon exploration in the Svalbard
archipelago or the surrounding territorial waters (12 nm
from the coastline) since 1995. The very high technical risk
of making economic discoveries is combined with several
logistical challenges: the remoteness of the high Arctic, strict
environmental regulations and numerous protected areas
throughout the archipelago. Because of this, any future explo-
ration in the archipelago is inconceivable.

Hydrocarbon systems and plays

Although there are no indications of economically valuable
oil or gas accumulations in the SCTSE, unconventional hydro-
carbons in the form of shale gas have been proven in the
Agardhfjellet Formation in Adventdalen in the vicinity of
Longyearbyen, possibly representing a local energy source
for the future (Ohm er al. 2019). Bituminous-stained sand-
stones and carbonates occurring in several stratigraphic levels
of the SCTSE indicate the presence of multiple source rocks
and migration phases that record secondary oil migration
and dismigration into previously efficient traps (Fig. 4). Palae-
ohydrocarbon accumulations sourced from Carboniferous and
Lower Permian lacustrine mudstones, coals and carbonates
(TSE 1 and TSE 2) have probably been efficiently sealed by
mudstones or evaporites in central parts of the archipelago
(Nicolaisen et al. 2019). Furthermore, recent studies of
bitumen-stained Mesozoic sandstones (Abay er al. 2017) sug-
gest that oil has migrated from the organic-rich mudstones of
the Middle Triassic Botneheia Formation (TSE 5) and the

the stratigraphy.

Middle Jurassic-Lower Cretaceous Agardhfjellet Formation
(TSE 6). The first phase of migration from these Mesozoic
source rocks and the succeeding accumulation in porous
sandstones probably occurred prior to the regional Neogene
uplift. This palaeohydrocarbon system is analogous to
age-equivalent, prolific plays in the SWBS, where the Stein-
kobbe and Hekkingen formations act as source rocks. Discov-
ery of non-biodegraded bituminous sandstones in the Lower
Jurassic Svenskgya Formation (lower part of TSE 4) on the
east coast of Spitsbergen also points to a second, and more
recent, migration phase, probably related to late Neogene uplift
and erosion (Abay et al. 2017). Roy et al. (2019) documented
ongoing near-shore gas seepage in northern Isfjorden, while
Hodson et al. (2020) illustrated methane seepage through pin-
gos onshore Nordenskiold Land. In many places throughout
Svalbard, gas accumulations have been trapped at the base of
permafrost. At Kapp Amsterdam near Svea, a significant shal-
low gas accumulation at the base of permafrost was encoun-
tered in a terminal moraine that is only 600 years old — also
evidence of ongoing hydrocarbon migration at present. The
out-of-equilibrium system may also result in hard-to-predict
hydrodynamically trapped hydrocarbon accumulations.

A major factor of the hydrocarbon system in the SCTSE is
the pore pressure. Due to the out-of-equilibrium conditions,
the pore-pressure regimes are diverse throughout Svalbard,
ranging from severe underpressure to mild overpressure.
While the overpressure can be explained by topography-driven
flow or gas buoyancy, the more severe cases of underpressure
cannot. The most reliable quantitative pressure data are derived
from the Longyearbyen CO, Lab boreholes in Adventdalen
(Braathen et al. 2012; Olaussen et al. 2019), where long-term
pressures were recorded (Birchall et al. 2020). Parts of the
Mesozoic succession are severely underpressured, with pres-
sures up to 60 bar below hydrostatic recorded in the Wilhemgya
Subgroup and in the lower parts of the regional cap-rock unit,
the Agardhfjellet Formation (Fig. 4) (Birchall et al. 2020).
Studies show that this condition formed recently and is in a
state of disequilibrium (Wangen ef al. 2016; Birchall et al.
2020). These geologically recent changes in pressure—vol-
ume—temperature (PVT) conditions almost certainly promote
active ongoing migration (Birchall ef al. 2020), which is also
supported by numerous seeps, flares and shows throughout
the archipelago (Senger et al. 2019 and references therein).

Source rocks. Source-rock units occur at multiple strati-
graphic levels within the SCTSE (Fig. 4). Below follows an
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overview of the most important and relevant source-rock units,
particularly those relevant for exploration in the SWBS.

Carboniferous and Permian (TSE 1-TSE 4). Organic-rich
mudstones and coals in the Billefjorden (TSE 1) and Gipsda-
len (TSE 2 and TSE 3) groups are proven potential source rock
units in central Spitsbergen (van Koeverden ef al. 2011; Nic-
olaisen et al. 2019). A normal distribution of T,,,, of 440°C
suggests maturation in the late oil window (Nicolaisen et al.
2019). Coaly mudstones and organic-rich floodplain deposits
to lacustrine mudstone in the Mississippian Billefjorden
Group in central Spitsbergen have reported total organic car-
bon (TOC) values of 11-28 wt%, and a hydrogen index (HI)
of ¢. 160-350 mgHC g~ TOC, and a mixture of Type II
and III kerogen. These fine-grained organic-rich units might
add up to ¢. 100 m in cumulative thickness. The interbedded
coal seams yield both gas and oil (Abdullah et al. 1988; van
Koeverden and Karlsen 2011).

Organic-rich marine calcareous mudstones in the Gipsdalen
Group occur as either thin beds intersecting carbonates or
evaporites, or as a thicker (up to 10 m) unit of fusulinid-rich
shaly limestone: the Lower Permian Brucebyen Bed (Nico-
laisen et al. 2019). The thin interbeds have an average TOC
of 1-10 wt% and HI values of 200-400 mgHC g~ TOC.
The beds seldom reach a thickness above 30-40 cm but
might add up to ¢. 10 m in the Minkinfjellet and Gipshuken
formations. In comparison, the Brucebyen Bed reach an aver-
age TOC of 2.4 wt% and a HI index ranging from 100 to 350
mgHC g~' TOC (Nicolaisen er al. 2019), thus forming the
most significant source rock in the Gipsdalen Group.

Mesozoic (TSE 5 and TSE 6). The two most important
regional source rocks in the SCTSE are the organic-rich
marine mudstone (OMM) from the Middle Triassic Botne-
heia Formation (TSE 5) and the Middle Jurassic—Lower Cre-
taceous Agardhfjellet Formation (TSE 6). Their offshore
near time-equivalent counterparts, the Steinkobbe and Hek-
kingen formations, respectively, are both known to charge
numerous fields in the Norwegian Barents Sea (Leith
et al. 1993; Ohm et al. 2008; Henriksen et al. 2011b;
Abay et al. 2018). Both the Botneheia and Agardhfjellet for-
mations were deposited in relatively shallow shelf waters,
periodically under anoxic seafloor conditions, in distal pro-
deltaic settings in front of large, prograding delta systems
(Glgrstad-Clark er al. 2011; Anell et al. 2014a, ¢, 2016;
Koevoets et al. 2018; Wesenlund ef al. 2022). Bitumen in
Mesozoic sandstones from outcrops and cored boreholes
indicate that both OMM units were once active source
rocks (Abay et al. 2017). The maturation of the Mesozoic
OMM within the SCTSE records a west—east trend from
burned out/overmature in the SW to late oil window in
the west via peak oil window in central parts to immature
in the east. The same trend is seen in the sandstone diagen-
esis from tight in the west and south to unconsolidated
Mesozoic sand on Kong Karls Land to the east. These
trends are shown in Figure 9. Local intrusive Cretaceous
volcanic rocks may influence this trend (Senger er al
2013; Brekke er al. 2014; Olaussen et al. 2018).

The Botneheia Formation ranges from 80 to 160 m in thick-
ness, and contains dominantly kerogen type Il in its upper part
and type III in its lower part, with TOC values ranging from
c. 1to 11 wt%, with the Blanknuten Member in the upper part
of the formation exhibiting the highest organic content (Mgrk
and Bjorgy 1984; Krajewski 2013; Wesenlund er al. 2021,
2022). On NW Edgegya and south Barentsgya, this part of
the formation is in the oil window (Fig. 9) and is an excellent
potential oil-prone source rock with ¢ median TOC value of
8.10+1.06 wt% and a HI value of 538 +42 mgHC g™
TOC (Wesenlund er al. 2021). This upper member is also

typically rich in phosphate, suggesting an influence from
upwelling and subsequent high rates of primary production,
which eventually promoted oxygen deficiency in the water
column (Krajewski 2013; Wesenlund et al. 2021). Integrated
geochemical studies by Wesenlund ez al. (2021, 2022) suggest
that the lower part of the Botneheia Formation is expected to
generate mixed oil and gas (during conditions equivalent to
peak oil generation) with relatively greater amounts of satu-
rated v. aromatic hydrocarbons compared to the oil-prone,
phosphate-bearing upper part of the unit.

In western Spitsbergen, 20-30 m-thick OMM in the lower
part of the Bravaisberget Formation (Fig. 4) is correlative
with the Botneheia Formation and may locally hold some
source potential (Mgrk ez al. 1999).

The Agardhfjellet Formation is an up to 240 m-thick Batho-
nian—Ryazanian organic-rich mudstone-dominated formation
containing >100 m-thick OMM (accumulative) with a TOC
that ranges from 2 to 15% (Hvoslef et al. 1986; Leith et al.
1993; Koevoets et al. 2018; Ohm et al. 2019).

Core data from Adventdalen, central Spitsbergen, show that
the formation contains a mixture of type II and type III kero-
gen, a TOC of 6-10% and a HI of 50-200 mgHC g~' TOC.
Tmax varies from 275 to 455°C in the black paper shale in
the lower part of the Agardhfjellet Formation (Koevoets
et al. 2016). In the east, the formation is largely missing due
to erosion related to Late Jurassic and Early Cretaceous inver-
sion (Grogan et al. 1999). However, the lowermost part is
immature, with vitrinite reflectance values (VR) of 0.38 to
0.42%, a Tax of 410°C and TOC values of up to 40% (Olaus-
sen et al. 2018).

Another regionally extensive organic-rich mudstone unit
with some source potential occurs in the basal part of the
lower Aptian—middle Albian Carolinefjellet Formation
(uppermost TSE 4: Fig. 4) on Spitsbergen (Midtkandal et al.
2016; Grundvag et al. 2019). This 5-30 m-thick potential
source-rock unit accumulated during a regional transgression
of the underlying delta plain of the Helvetiafjellet Formation
in the early Aptian and was evidently influenced by a global
oceanic anoxic event (OAEla) (Midtkandal et al. 2016;
Zhang et al. 2021). Analyses of core material from central
Spitsbergen indicate that this unit is dominated by kerogen
type III with TOC values up to 2.1 wt% and a HI of 180
mgHC ¢! TOC (Grundvag et al. 2019). An Aptian
source-rock unit is proven in the SWBS but here is a potential
for oil generation (Hagset et al. 2022).

Paleogene (TSE 7). The Paleogene succession in central
and western Spitsbergen holds good potential for oil- and
gas-prone source rocks, primarily due to the abundance of
thick coal seams in the Firkanten Formation (Orheim et al.
2007; Marshall et al. 2015; Uguna et al. 2017). Because of
past and ongoing mining, the Paleocene coals have received
considerable attention. Maceral analysis of the Firkanten For-
mation coals document type III kerogen (whereas van Kreve-
len equivalent diagrams show plots between II and III
kerogen) and HI values ranging between 151 and 410 mgHC
¢! TOC (Uguna ez al. 2017). Distillation of coal yields up to
28% crude oil from pure coal (Orvin 1934), whereas recent
analysis by hydrous pyrolysis showed a bitumen yield of up
to 320 mg g~ TOC (Marshall e al. 2015). The bitumen has
thus migrated, enriching the upper parts of the investigated
coal seams and in part the immediate overlying sandstone
(Marshall et al. 2015). The coals represent thick accumula-
tions of marine-influenced peat deposits, and have better
source-rock potential and oil-generating properties than the
closely associated organic-rich floodplain deposits. The coal-
bearing strata have locally significant amounts of gas, which
were regularly encountered as a hazard during coal
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exploration drillings in the past, thus representing risk-
management challenges to the local mining industry.

Reservoirs. Potential reservoir rocks occur in several of the
TSEs described in this study, spanning the Lower Carbonifer-
ous (TSE 1) through the Mesozoic (TSE 4) to the Paleogene
successions (TSE 5). Based on maturation trends of
organic-rich mudstones or coal, the porosity and, in part, the
permeability trends of the Upper Paleozoic and Mesozoic
sandstones are predictable. The highly diverse reservoirs
range from unconventional reservoir units consisting of

fractured tight sandstone in the west (e.g. previously deeply
buried below the CTB) to poorly unconsolidated sandstone
and unconsolidated sand in the easternmost areas (Mgrk
2013; Haile et al. 2018; Olaussen et al. 2018). Upper Carbon-
iferous—Permian carbonate and silica-rich deposits (TSE 3 and
TSE 4) are less predictable in an east-west trend, and are
largely dependent on the depositional environment, the chem-
ical history of the fluids (related to the burial and uplift his-
tory), Kkarstification and dolomitization (Stemmerik and
Worsley 1995; Ehrenberg et al. 2001; Blomeier et al. 2009;
Sorento et al. 2020). Triassic sandstones (TSE 4) in the east
potentially exhibit moderate porosities (12—-18%) but low
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permeabilities due to poor sorting, immature mineralogy,
pore-filling clay minerals and common carbonate
cementation.

Carboniferous—Permian (TSE 1-TSE 4). In TSE 1, poten-
tial reservoir rocks include various alluvial/fluvial to lacus-
trine and paralic sandstone units of the Billefjorden Group.
The sandstone /shale ratio is highly variable, typically ranging
from 0.2 to 0.5. However, higher values are recorded in sand-
stones up to 100 m thick in the area around the Billefjorden
Trough and in the >700 m-thick Orustdalen Formation in
west Spitsbergen.

The distribution of reservoir units in TSE 2 is best docu-
mented in the Billefjorden Trough. Individual reservoir bodies
are typically 10-12 m thick, consisting of fine- to coarse-
grained sandstones of paralic origin, and include meandering
fluvial-channel fills and braidplain deposits overlain by shore-
line and delta-front sandstone units and alluvial fans banked to
the master faults (Johannessen and Steel 1992; Braathen et al.
2011; Smyrak-Sikora et al. 2019).

Potential carbonate reservoir units include >10 m-thick
oolitic grainstone units of the Minkinfjellet Formation,
which occur along the basin margins and accumulated during
the final phase of rifting. Secondary breccias linked to a later
event of evaporite dissolution also hold some reservoir poten-
tial (Eliassen and Talbot 2005).

The platform carbonates of the Gipsdalen Group have good
visible porosity (Ahlborn and Stemmerik 2015). The best
porosity, up to 20%, is recorded in carbonate build-ups of
localized distribution and considerably less rock volume
than in their offshore counterpart in the @rn Formation in
the SWBS (Larssen et al. 2002). In the middle part of TSE 3,
corresponding to the Gipshuken Formation (Figs 4 & 9), good
visible vuggy, mouldic and cavernous porosity is present in
the platform carbonates, and dissolution breccias can be traced
laterally for several kilometres, in amongst others in the Lomf-
jorden area. Petrographical analyses have documented both
inter- and intra-particle porosities of 15-17% in grainstones
and intra-crystalline porosity of 20% in dolomites. The porous
platform units are sheet like and persist laterally over several
kilometres. The Upper Permian, spiculitic, part of TSE 3 has
undergone a complex diagenetic transformation that locally
resulted in units with porosities (at best) of up to 12-25%
and permeabilities of up to 100 mD (Ehrenberg er al. 2001,
Matysik et al. 2017). Localized Upper Permian glauconitic
sandstones occurring along the basin margin may hold some
potential, as they are sporadic and seen as partly
unconsolidated.

Triassic—Middle Jurassic (TSE 5). The Lower Triassic
Vardebukta Formation in the eastern part of the SCTSE fea-
tures an upwards-coarsening parasequence that terminates in
a series of upper-shoreface to fluvial-channel units that may
provide good reservoir properties (Mgork et al. 1982).

The key Triassic reservoir interval occurs in the De Geerda-
len Formation. The sandstone/shale net-to-gross (N/G) of the
De Geerdalen Formation (and the age- and facies-equivalent
Snadd Formation offshore) increases significantly to the east
and SE throughout the SCTSE, reflecting more proximal set-
tings in those directions. Hopen is a key area in highlighting
the nature of the Late Triassic reservoir interval throughout
the SCTSE and its equivalent units in the Barents Sea (Klau-
sen and Mgrk 2014). The well-preserved fluvial-channel-fill
sandstone bodies are prominently exposed in the steep cliff
sides of the island. Whilst these are relatively isolated in
their stratigraphic position and are encased in a highly hetero-
lithic succession, they clearly indicate the presence of rela-
tively good reservoir-quality rocks in the region (Lord et al.
2014, 2017).

The Wilhelmg@ya Subgroup is the onshore analogue to the
most prolific hydrocarbon reservoir in the SWBS (i.e. the
Realgrunnen Subgroup: Worsley 2008). On Spitsbergen,
the Wilhelmgya Subgroup forms a thin Norian—Bathonian
condensed paralic sandstone unit, typically <20 m thick, ‘tight’
sandstone and with numerous hiatuses (Backstrom and Nagy
1985; Rismyhr er al. 2018:). This subgroup has been sug-
gested to be a potential CO, storage unit, forming an uncon-
ventional reservoir that relies on a permeable fracture system
(Braathen et al. 2012; Ogata et al. 2012, 2014; Senger et al.
2015; Mulrooney et al. 2018; Olaussen et al. 2019).

In the eastern SCTSE (i.e. Kong Karls Land), the Wil-
helmgya Subgroup thickens to ¢. 200 m. Here, the reservoir
sandstones are poorly consolidated, occasionally occurring
as loose sand, and appear to be porous and permeable (Olaus-
sen et al. 2018). The preserved strata are comparable to the
age- and facies-equivalent Realgrunnen Subgroup offshore.
The Flatsalen Formation, which is partly analogous to the Fru-
holmen Formation offshore, has no reservoir potential in
Spitsbergen but may hold some potential in eastern Svalbard,
with a 0.2-0.3 N/G sandstone/shale ratio. The overlying
amalgamated 12-30 m-thick channelized Norian—Rhaetian
part of the Sjggrenfjellet Member of the Svenskgya Formation
in Kong Karls Land and Hopen has good reservoir potential
with an estimated sandstone/shale ratio of 0.9-1 (Lord et al.
2019). The remaining part of the heterolithic deposits of the
Hettangian—lower Pliensbachian Sjggrenfjellet Member
shows a variation in the sandstone/shale ratio, ranging from
0.5t 0.7.

The 20-50 m-thick upper Pliensbachian—upper Toarcian
Mohnhggda Member of the Svenskgya and the upper Toar-
cian—Aalenian Kongsgya Formation shows a sandstone/
shale ratio that ranges from 1 in central Spitsbergen to 0.7—
0.8 in the east. On the islands of Kong Karls Land, sandstones
of the Kongsgya Formation shale-out towards the east (i.e.
from Kongs@ya to Svenskgya). This also indicates in a prom-
inent palaeodrainage shift towards a source located more to
the east.

Middle Jurassic—Lower Cretaceous (TSE 6). In western
Spitsbergen, the Kimmeridgian Oppdalsita Member of the
Agardhfjellet Formation comprises four or five 10—15 m-thick
shallowing-upward sequences with a sandstone/shale ratio
ranging from 0.3 to 0.5 and visible porosity (Koevoets et al.
2018).

In southern Spitsbergen, the Valanginian—Barremian Rur-
ikfjellet Formation may offer some reservoir potential, as its
upper part contains a c. 150 m-thick succession of stacked
coarsening-upward delta-front units. This succession appears
to continue southwards into the offshore area of the SCTSE
(Grundvédg and Olaussen 2017). We estimate that the sand-
stone/shale ratio of this succession in the south ranges from
¢. 0.5 in its lower part to 0.8 in its upper part.

One of the most prominent sandstone units in Spitsbergen
and Kong Karls Land is the fluvio-deltaic Barremian—Aptian
Helvetiafjellet Formation (Fig. 4). The thickness of the unit
varies from 45 to >150 m, reflecting deposition within large-
scale incised valleys (Gjelberg and Steel 1995; Midtkandal
et al. 2008; Midtkandal and Nystuen 2009; Olaussen et al.
2018; Grundvag et al. 2019), as well as syntectonic move-
ments in the Barremian (Nemec et al. 1988; Onderdonk and
Midtkandal 2010). The lowermost sandstone unit, the Festnin-
gen Member, is a regionally extensive 5-15 m-thick cross-
bedded sandstone sheet of braidplain origin. The sandstone/
shale ratio is generally high, ranging from 0.6 to 0.9.

Despite low porosities of 6—8% in central Spitsbergen, mea-
sured permeabilities are remarkably high (c. 80—100 mD) as
demonstrated by aquifer flow from this interval during drilling
of the Longyearbyen CO2 Lab (Braathen et al. 2012) and in
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numerous coal exploration boreholes in the Longyearbyen
vicinity. The overlying Carolinefjellet Formation contains
some sandstone-dominated intervals of mostly shallow-
marine origin (Grundvag et al. 2020). However, their reservoir
potential is strongly hampered by early diagenetic calcite
cementation (Maher et al. 2004) and various carbonates pre-
cipitated during deeper burial.

Paleogene (TSE 7). In TSE 7, the nearly 2 km-thick Van
Mijenfjorden Group in the CTB (Fig. 4) contains several
units with reservoir potential, although visible porosity is gen-
erally very low.

The lowermost reservoir unit is the 100—170 m-thick Fir-
kanten Formation (Paleocene) that exhibits both shoestring
and sheet-like reservoir bodies deposited in a paralic deposi-
tional environment. There is an upward increase in the N/G
ratio corresponding to a transition from a heterolithic fluvial
succession in the lower part to shoreface sandstones with a
N/G ratio of 0.9 in the upper part. The Hollendardalen Forma-
tion (uppermost Paleocene—lowermost Eocene) forms an up to
150 m-thick, eastward-thinning tidally influenced deltaic
wedge confined to the western margin of the CTB. Internally,
the wedge is organized into c¢. 10 m-thick coarsening-upward
units with a particularly high sandstone/shale ratio in their
upper parts.

The Battfjellet Formation and the overlying Aspelintoppen
Formation (Eocene to possibly Oligocene?) also hold some
reservoir potential. The main reservoir bodies of the Battfjellet
Formation comprise a series of shingled, shallow-marine to
deltaic units representing a southeastward-prograding shelf-
prism clinoform system (Grundvag et al. 2014a; Helland-
Hansen and Grundvag 2020). Sandstone-rich turbidite
deposits (with high N/G ratios) encased in basin-floor mud-
stones (i.e. the Frysjaodden Formation) may offer the possibil-
ity of stratigraphic traps (Grundvag et al. 2014b; Spychala
et al. 2021). Reservoir units of the Aspelintoppen Formation
consist of ribbon-shaped fluvial-channel sandstone bodies
and crevasse splay units encased in overbank fines (Grundvag
et al. 2014a).

Seals. Conventional seals are offered by Paleozoic carbonates
and evaporites, thick black shales in the Triassic—Jurassic, and
silty shales in the Cretaceous—Paleogene (Fig. 4) (Ngttvedt
et al. 1993). The sealing capability of potential sealing rocks
in the SCTSE is complicated by their laterally heterogenous
nature and recent uplift.

The sequence of the Hekkingen and Fuglen formations pro-
vides the most important cap rock in the Barents Sea (Ohm
et al. 2008; Paulsen et al. 2022). In Svalbard, the Agardhfjellet
Formation forms a time-equivalent cap rock; this is fully cored
by four research boreholes of the Longyearbyen CO2 Lab in
Adventdalen, and has previously been characterized in terms
of sedimentology, mineralogy and geochemistry (Koevoets
et al. 2016, 2018; Abay et al. 2017; Ohm et al. 2019).

The rheological impacts of Cenozoic uplift may be profound
in cap-rock effectiveness. Previous deep burial has left the
potential seals mechanically and chemically overcompacted
for their present-day depths. This may enhance some mechan-
ical properties, as is evident from the extremely high leak-off
pressures in the Fuglen Formation offshore (Paulsen et al.
2022), often more that the lithostatic pressure. Conversely, it
may also make the cap rock more prone to brittle failure,
with fault zones being a particular risk (Paulsen ef al. 2022).

Additional possible seals may be offered by faults, igneous
intrusions, diagenetic tight sedimentary rocks, evaporites, per-
mafrost and associated gas hydrates (Senger et al. 2013; Mul-
rooney et al. 2018; Betlem et al. 2019). In particular,
permafrost appears to be an efficient shallow seal, as is evident

from the thermogenic gas found trapped immediately below
the permafrost during several drilling operations in Svalbard.

Migration is obviously ongoing in at least central and east-
ern parts of Spitsbergen, and is likely elsewhere, as demon-
strated by numerous active seeps and flares (Abay et al
2017). The occurrence of a large gas accumulation (and blow-
out) below permafrost in moraine sediments that are 600 years
old at Kapp Amsterdam also provides evidence of ongoing
migration.

Traps. The diverse tectonic history of the SCTSE has resulted
in the formation of many potential trapping mechanisms. From
extensional faulting in the Paleozoic, producing half-graben or
rollover structures, to numerous compression and transpres-
sion events, resulting in large gentle anticlines in addition to
regional decollement zones (e.g. Ngttvedt e al. 1993).
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