
J. Chem. Phys. 157, 084801 (2022); https://doi.org/10.1063/5.0099239 157, 084801

© 2022 Author(s).

ELECTRODE: An electrochemistry package
for atomistic simulations
Cite as: J. Chem. Phys. 157, 084801 (2022); https://doi.org/10.1063/5.0099239
Submitted: 16 May 2022 • Accepted: 25 July 2022 • Accepted Manuscript Online: 25 July 2022 •
Published Online: 25 August 2022

 Ludwig J. V. Ahrens-Iwers,  Mathijs Janssen,  Shern R. Tee, et al.

ARTICLES YOU MAY BE INTERESTED IN

Computing chemical potentials of solutions from structure factors
The Journal of Chemical Physics 157, 121101 (2022); https://doi.org/10.1063/5.0107059

Fully periodic, computationally efficient constant potential molecular dynamics simulations
of ionic liquid supercapacitors
The Journal of Chemical Physics 156, 184101 (2022); https://doi.org/10.1063/5.0086986

Constant potential simulations on a mesh
The Journal of Chemical Physics 155, 104104 (2021); https://doi.org/10.1063/5.0063381

https://images.scitation.org/redirect.spark?MID=176720&plid=1817977&setID=533015&channelID=0&CID=668198&banID=520703476&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6a06a51a28cd72ad43dfa364682722e3de2b7626&location=
https://doi.org/10.1063/5.0099239
https://doi.org/10.1063/5.0099239
https://orcid.org/0000-0003-2868-8823
https://aip.scitation.org/author/Ahrens-Iwers%2C+Ludwig+J+V
https://orcid.org/0000-0003-0743-4904
https://aip.scitation.org/author/Janssen%2C+Mathijs
https://orcid.org/0000-0003-2701-005X
https://aip.scitation.org/author/Tee%2C+Shern+R
https://doi.org/10.1063/5.0099239
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0099239
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0099239&domain=aip.scitation.org&date_stamp=2022-08-25
https://aip.scitation.org/doi/10.1063/5.0107059
https://doi.org/10.1063/5.0107059
https://aip.scitation.org/doi/10.1063/5.0086986
https://aip.scitation.org/doi/10.1063/5.0086986
https://doi.org/10.1063/5.0086986
https://aip.scitation.org/doi/10.1063/5.0063381
https://doi.org/10.1063/5.0063381


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ELECTRODE: An electrochemistry
package for atomistic simulations

Cite as: J. Chem. Phys. 157, 084801 (2022); doi: 10.1063/5.0099239
Submitted: 16 May 2022 • Accepted: 25 July 2022 •
Published Online: 25 August 2022

Ludwig J. V. Ahrens-Iwers,1 Mathijs Janssen,2 Shern R. Tee,3,a) and Robert H. Meißner4 ,5,b)

AFFILIATIONS
1 Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg, Germany
2Mechanics Division, Department of Mathematics, University of Oslo, N-0851 Oslo, Norway
3Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
4Institute of Polymers and Composites, Hamburg University of Technology, Hamburg, Germany
5Helmholtz-Zentrum Hereon, Institute of Surface Science, Geesthacht, Germany

a)Electronic mail: s.tee@uq.edu.au
b)Author to whom correspondence should be addressed: robert.meissner@tuhh.de

ABSTRACT
Constant potential methods (CPMs) enable computationally efficient simulations of the solid–liquid interface at conducting electrodes
in molecular dynamics. They have been successfully used, for example, to realistically model the behavior of ionic liquids or water-in-
salt electrolytes in supercapacitors and batteries. CPMs model conductive electrodes by updating charges of individual electrode atoms
according to the applied electric potential and the (time-dependent) local electrolyte structure. Here, we present a feature-rich CPM imple-
mentation, called ELECTRODE, for the Large-scale Atomic/Molecular Massively Parallel Simulator, which includes a constrained charge
method and a thermo-potentiostat. The ELECTRODE package also contains a finite-field approach, multiple corrections for nonperiodic
boundary conditions of the particle–particle particle–mesh solver, and a Thomas–Fermi model for using nonideal metals as electrodes.
We demonstrate the capabilities of this implementation for a parallel-plate electrical double-layer capacitor, for which we have investi-
gated the charging times with the different implemented methods and found an interesting relationship between water and ionic dipole
relaxations. To prove the validity of the one-dimensional correction for the long-range electrostatics, we estimated the vacuum capaci-
tance of two coaxial carbon nanotubes and compared it to structureless cylinders, for which an analytical expression exists. In summary,
the ELECTRODE package enables efficient electrochemical simulations using state-of-the-art methods, allowing one to simulate even hetero-
geneous electrodes. Moreover, it allows unveiling more rigorously how electrode curvature affects the capacitance with the one-dimensional
correction.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0099239

I. INTRODUCTION

A common approach to treat electrodes in atomistic simu-
lations is to assume them to be uniformly charged walls, either
structureless or atomically resolved. In the case of equilibrium elec-
trolytes near planar electrodes at low charge densities, this approach
is known to capture the electrochemical properties well. Several
studies, however, have emphasized the importance of polarization
of electrodes by the ions and molecules in their vicinity.1–5 In
more realistic electrochemical scenarios, constant potential method

(CPM) molecular dynamics (MD) results are often significantly
different from those obtained with uniformly charged electrodes.6

While the CPM7,8 is a popular tool for modeling metal elec-
trodes by dynamically updating individual charges on electrode
atoms, alternatives such as image charge methods9–12 are commonly
used to enforce a constant potential for planar electrodes. While
one of these methods can handle nonplanar surfaces by induc-
ing a charge density on the interface between two media, most of
them are limited to planar electrodes.12 Those approaches faithfully
reproduce the behavior of electrolytes near electrodes, particularly
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the correlation between thermal fluctuations in the electrolyte near
the electrode and the induced-charge polarization of the electrode,
while obtaining a realistic picture of the electrical double-layer. A
CPM MD simulation is able to capture the temporal response in
the buildup and breakdown of electric double-layer and, thereby,
allows realistic capacitor charging and discharging curves to be
generated in silico.6,13–15 Interestingly, near highly charged planar
electrodes16–18 and nonplanar electrodes (such as curved substrates
or nanoporous carbons),6,19–25 CPM MD and Monte Carlo simula-
tions26 yield a spatially specific charge polarization and a nontrivial
electrolyte structure.

Here, we present a package for treating electrodes in MD simu-
lations that interfaces with the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS).27 Our ELECTRODE package
uses the highly parallelized and efficient computational infrastruc-
ture of LAMMPS and allows interaction with many other packages
and features already available in LAMMPS. This work builds, in
part, on an earlier work in which we showed how a particle–particle
particle–mesh (P3M)-based calculation makes the electrostatic cal-
culations of a CPM simulation more efficient.28 In addition to
some new improvements to the CPM, this implementation provides
a constrained charge method (CCM) and a thermo-potentiostat
(TP).29 To capture the electronic response of nonideal metals, a
Thomas–Fermi (TF) model30 is included. Both an Ewald and a P3M
k-space solver are available for various constraints of periodicity of
the systems, such as infinite slabs, cylinders, or fully 3D periodic sys-
tems. The ELECTRODE package also contains the closely related
finite field (FF)31 and finite displacement (FD)32 methods, which
extend CPM MD with a slab geometry to fully periodic boundary
conditions for increased computational efficiency.33

A list of features in the ELECTRODE package is presented in
Sec. II, including a brief description of their theoretical background.
In Sec. III, we summarize the concept of CPM MD using data from
various CPM MD runs and rationalize it based on the charging times
of an electrical double-layer capacitor. We discuss briefly for which
situation each approach is suitable and give an overview of future
development directions and possible applications in Sec. IV.

II. FEATURES
A. Constant potential method

In atomistic electrochemical simulations, the system of interest
is often a fluid electrolyte confined between two electrodes (cf. inset
of Fig. 2). This could serve as an in silico nanoscale model of a capac-
itor, to optimize some metric, such as energy or power density, by
modifying the electrolyte composition or electrode structure.

The distinctive feature of CPM MD is the calculation of elec-
trode charges keeping electrodes at a desired electrostatic potential.
To achieve this, we first partition the potential energy, U, of an MD
simulation as follows:

U = Unon−Coul +Uelyt +Uelec. (1)

Here, Unon-Coul includes all non-Coulombic interactions, Uelyt
includes all Coulombic interactions between electrolyte particles,
and Uelec includes all Coulombic interactions involving electrode

particles (both with electrolyte particles, and with other electrode
particles). While the former are treated with regular force field
approaches, the last term is given a somewhat special treatment.
Uelec, i.e., without electrolyte–electrolyte interactions, is written in
terms of an electrode charge vector q comprising all electrode
charges as

Uelec({r}, q) = 1
2

qTAq − bT({r})q − vTq, (2)

with a matrix A, and vectors b and v, where b depends on the elec-
trolyte positions {r}. The applied potential v has an entry for every
electrode atom. The interactions between electrode atoms are rep-
resented by A, called elastance matrix due to the analogy between a
vacuum capacitor and a spring. If the electrode atoms do not move,
A can be precomputed, allowing significant computational savings.
The electrolyte vector b({r}) represents the electrostatic potential
on each electrode atom due to the electrolyte atoms.

At each step, q is updated to minimize the Coulombic energy
contribution Uelec, possibly subject to additional constraints. The
desired energy-minimizing charge vector q∗ is straightforward to
calculate,34

q∗ = A−1[b({r}) + v]. (3)

Here, the elastance has been inverted to yield A−1, which is called
the capacitance matrix in light of its role in Eq. (3): The response
of the charge vector q∗ can calculated as the product of the capac-
itance matrix with the vector of external potentials, analogously to
the well-known scalar equation Q = CV linking the capacitance C to
the charge Q.

Provided that the electrode atom positions and, thus, the vac-
uum capacitance are constant, the main computational burden is
the calculation of b({r}) at every time step, which is necessary due
to the motion of the electrolyte. The primary purpose of ELEC-
TRODE is to compute the electrode–electrolyte interaction in b
efficiently and to update the electrode charges accordingly. Alter-
natively, the electrode charges could be obtained with the conjugate
gradient method, which solves the minimization problem without
matrix inversion.35,36 Yet another approach is to treat the elec-
trode charges as additional coordinates and perform mass-zero
constrained dynamics for them.37

In MD with periodic boundary conditions, the simulation cell
ideally is charge neutral. Scalfi et al.34 showed that this constraint
could be imposed by using the symmetric matrix

S ≡ A−1 − A−1eeTA−1

eTA−1e
, eT = (1, . . . , 1) (4)

as capacitance matrix instead of A−1.
Nonideal metallic electrodes have been recently modeled by

Scalfi et al.30 using a semiclassical TF approach. We have imple-
mented this promising approach in our ELECTRODE package, as
its implementation is very similar to the self-interaction correction
of the Ewald summation38 and contains only a single summation
over the electrode atoms. An interesting alternative to effectively
model a wide range of materials between insulator and ideal metal
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was proposed by Schlaich et al.39 and involved using a virtual TF
fluid within the electrodes. However, the virtual TF fluid approach
appears computationally more expensive. Both models require free
parameters, most crucially the TF length, lTF, in Scalfi et al.30 and
(a rather artificial) parameterization of the virtual TF fluid in the
approach of Schlaich et al.39 Further, assumptions such as atom-
centered densities prohibit effects such as quantum spillover and
delocalization of the image plane. It should be noted that ELEC-
TRODE provides a more flexible implementation of the TF model,
allowing heterogeneous electrodes with different lTF for different
atom types. For more general information on CPM MD approaches,
the interested reader is referred to the excellent and thorough
review of current electrode–electrolyte simulations by Scalfi et al.,40

the well-written theory part of MetalWalls,41 or the thesis of
Gingrich.42

B. Simulating an arbitrary number of electrodes
A CPM MD simulation is typically performed with two elec-

trodes, which means there are only two possible values for each
of the n components of the potential in Eq. (2). In the ELEC-
TRODE package, an arbitrary number N of electrodes is allowed
with every electrode atom belonging to exactly one electrode. We
define an electrode-wise indicator vector gα for every electrode α
with n entries, which are equal to 1 if the respective electrode
particle belongs to that electrode and 0 otherwise. The indicator
matrix

G = [g1 g2 ⋅ ⋅ ⋅ gN] (5)

comprising the indicator vectors of all N electrodes allows us to
connect electrode-wise quantities to particle-wise quantities. From
hereon, we use tildes for electrode-wise quantities. For instance, we
define ṽ as the electrode-wise potential and use it to write the poten-
tial v = Gṽ. Likewise, energy-minimizing charges q∗ for a given set
of electrode-potentials are

q∗ = S(b + v) = Sb + SGṽ. (6)

C. Simulating electrodes at specified total charge
In the CCM, the user sets the electrode-wise total charge q̃∗

for each electrode. Such a fixed-charge setup corresponds to an
open-circuit configuration.43 This type of simulation has recently
been attempted as a variation of the finite-field method.32 Therein,
it was found that ramping the total charge up or down over
time could be considered computational amperometry, and a faster
nonequilibrium response was observed.

Working with the capacitance matrix A−1 rather than the sym-
metrized matrix S (since charge neutrality is explicitly enforced by
the appropriate choice of q̃∗), we have the following:

q̃∗ = GTq∗ = GTA−1b +GTA−1Gṽ ≡ q̃∗b + C̃ṽ. (7)

q̃∗b defines the total charge each electrode would carry at zero poten-
tial and C̃ is the electrode-wise capacitance matrix. To subsequently

estimate q̃∗b , Eq. (7) is solved for ṽ, which is then applied using
the CPM. This results in an energy minimization with respect to
the charge distribution with a constraint on the total electrode
charges. Analogous to how constant volume and constant pressure
simulations can be thermodynamically equivalent, CCM and CPM
simulations will give the same capacitances under suitable condi-
tions. However, a thorough proof of that assertion is out of scope
of this work and will be discussed in an upcoming work.

D. Simulating electrodes with a thermo-potentiostat
Deißenbeck et al.29 recently presented a thermo-potentiostat

(TP) that takes into account the fluctuation–dissipation relation of
electrode charges at a given voltage and temperature in an elec-
tronic circuit. They have also provided a TP implementation based
on a uniform charge distribution using the scripting capability of
LAMMPS.27 The ELECTRODE package provides an implementa-
tion that minimizes the energy with respect to the charge distri-
bution and conforms to the formalism described by Deißenbeck
et al.29 Our TP approach is currently limited to only two elec-
trodes, and instead of a vector of applied potentials ṽ, a potential
difference

Δv0 = vtop − vbot (8)

between two electrodes is used. At every time step, the potential
difference Δv(t) between the two electrodes is evaluated to find the
new capacitor charge according to

q(t + Δt) = q(t) − C0[Δv(t) − Δv0](1 − e−Δt/τv)

+ X
√

kBTvC0(1 − e−2Δt/τv). (9)

Here, kB is the Boltzmann constant, τv and Tv are parameters of the
TP, and X is a normally distributed random number with a mean
of 0 and a standard deviation of 1. The vacuum capacitance C0 is
obtained from the capacitance matrix34 and the effective potential
Δv(t) is computed from the electrode charges and the electrolyte
configuration [cf. Eq. (7)]. Hence, all quantities required to evaluate
Eq. (9) are readily available in the CPM. The obtained capacitor
charge ±q(t + Δt) is applied using the CCM on both electrodes,
respectively.

E. Simulations with different periodicity
The Ewald summation commonly assumes periodic boundary

conditions in all three directions and has to be modified for systems
with slab and one-dimensional periodic geometries. As shown by
Smith,44 a regular 3D Ewald summation for slab-like systems, which
are periodic in the xy-plane but confined in the z-direction, results
in a dipole term,

J2D(M) = 2π
V

M2
z . (10)

Here, Mz is the z-component of the dipole of the simulation cell.
This dipole term was subsequently used for correcting the infinite
boundary artifact of slab-like systems.45 This is known as the EW3Dc
method, which is implemented in many MD codes including
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LAMMPS.27 Several authors38,46–48 have shown that the infinite
boundary contribution in slab-like geometries can also be solved
in an exact form. This rarely implemented EW2D solver is another
cornerstone of the ELECTRODE package.

Just like slab-like geometries, systems with only one periodic
dimension require an appropriate treatment of the long-range elec-
trostatic interactions. As shown by Bródka and Śliwiński,49 the
approach of Smith44 can be generalized for an infinitely extended
one-dimensional summation,

J1D(M) = π
V
(M2

x +M2
y). (11)

Here, z is the periodic dimension and Mx and My are the respec-
tive components of the total dipole of the unit cell. Contrasting
established codes, the ELECTRODE package contains these correc-
tions for one-dimensional periodic systems. Even more crucially,
ELECTRODE is the first package (as far as we know) to imple-
ment these corrections in combination with a CPM. As an outlook,
the electrostatic layer correction50 in combination with P3M51 is
also considered for implementation as an alternative to the EW3Dc
approach.

As illustrated for slab-like two-dimensional periodic systems,
the boundary corrections can be easily incorporated into the CPM
formalism by splitting the dipole components into their electrode
and electrolyte contributions,

J2D = 2π
V
[(Melec

z )2 + 2Melec
z Melyt

z + (Melyt
z )2]

= 2π
V

⎡⎢⎢⎢⎢⎣
∑

ij
zizjqiqj + 2Melyt

z ∑
i

ziqi + (Melyt
z )2
⎤⎥⎥⎥⎥⎦

. (12)

This way, dipole corrections fit into the linear form of the Coulombic
energy in Eq. (2) that is used in the CPM and the computational
effort for the electrode–electrolyte interaction scales linearly with the
number of particles.

F. Simulating electrodes with the finite field method
In the FF method,31 the potential difference between two elec-

trodes is not directly specified using the applied potential v. Instead,
the simulation cell is periodic in the z-direction, i.e., without adding
the artificial vacuum between the slabs required otherwise. The FF
method allows efficient simulations of infinite electrode slabs, since
no additional vacuum is required. However, electrodes with com-
plex shapes or electrodes with one-dimensional periodicity cannot
be simulated with the FF method.

A potential difference Δv0 [cf. Eq. (8)] is created in the FF
method by introducing a z-directed electric (polarization) field of
magnitude −Δv0/Lz , creating a discontinuity of Δv0 across the peri-
odic z-boundary (and thus between the two electrodes on either side
of the slab). In this formulation, the electrode Coulombic energy is

Uelec =
1
2

qTAq − bT({r})q + Δv0ζTq. (13)

Here, ζ is a vector containing the normalized z-positions of each
electrode atom, viz., {z/Lz} with an offset for the bottom electrode

to make the system symmetric along the z-direction, replicating
the conductor-centered supercell in Ref. 31. The energy-minimizing
charge q∗ in this model is

q∗ = S[b({r}) − Δv0ζ], (14)

which is equivalent to that obtained from the standard CPM,
replacing v with −Δv0ζ.

III. RESULTS AND DISCUSSION
A. Charging times

A simple capacitor model is adapted from an example in the
MetalWalls repository52 and comprises a saline solution between
two gold electrodes with three layers each. To compare the equilib-
rium conditions of the CPM and CCM, we calculated the capaci-
tance per area from the averaged equilibrium charges and voltages
at an applied voltage of 2 V and charge of 4.4e, respectively. The
obtained values of 2.94 and 2.91 μF cm−2 for the CPM and CCM,
respectively, differ by only 1%, showing good agreement between the
methods at equilibrium.

When a voltage is initially applied with the CPM, the charge
induced on both electrodes is very small since the capacitance of the
electrode pair in vacuo is small.28,34 However, the electrode charges
induce the formation of a dipole in the electrolyte, which, in turn,
induces additional charge on the electrode. CPM MD, thus, models
the process of charging an electrical double layer capacitor physically
correctly, and the charging–discharging curves obtained from CPM
MD can be used to fit parameters for equivalent macroscopic elec-
trical circuits.53 Two charging times τ1 and τ2 are obtained by fitting
a bi-exponential charging function given by

Mz(t) =Meq
z [1 − c exp(−t/τ1) − (1 − c) exp(−t/τ2)] (15)

to the z-component of the electrolyte dipole.54 Meq
z is the extrap-

olated equilibrium dipole reached at late times. Comparing the
individual contributions to the total electrolytic dipole reveals that
τ1 describes relatively fast water dipole relaxations and τ2 describes
charging times related to ion diffusion. To validate this statement,
we show both individual components in Fig. 1. From the mixing
parameters c in the panels, it is clear that water dipole relaxation
dominates at the beginning, while ion diffusion prevails at later
times. τ1 of the water in Fig. 1(b) largely corresponds to that of
the total dipole at the beginning of the charging. While the ions in
Fig. 1(c) relax mainly on the slower timescale of τ2, the water dipole
decreases as the ion dipole is slowly built up.

Figure 2 compares results using CPM, CCM, and TP, the latter
with a time constant τv = 100 fs, to each other and to their uniformly
charged counterparts. We focus on the charging term with the faster
timescale τ1 because of its large contribution to the total dipole.
For the uniform variants, the charges are always evenly distributed
across the inner layers of the electrodes. The uniform methods are
in general very close to their heterogeneous counterparts, which is
consistent with previous studies that found only small differences
between a heterogeneous and uniform CPM at low voltages for
simple planar electrodes.16 The charging times obtained with CCM
appear to be too fast, since τ1 is about two orders of magnitude
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FIG. 1. Individual fitting parameters of the bi-exponential function [cf. Eq. (15)]
applied to (a) the total dipole Mtot

z , (b) the dipole of water molecules Mwat
z , and (c)

to the dipole of ions in the electrolyte Mion
z from a standard CPM simulation at 2 V.

While only five of the 100 trajectories are shown for illustration, fits are made to
the entire set of trajectories.

smaller than obtained with the potential-based methods, which is a
well-known effect6,55 that could be related to rather unphysical high
temperatures and voltages when applying an instantaneous charge
with CCM on the electrodes.6 CCM also predicts two times smaller
τ2 than other methods, while the contribution of the second expo-
nential decay is almost negligible since c = 0.98 in Eq. (15). However,
these values should be interpreted with caution, given that the bi-
exponential curve is a poor fit in the case of a CCM (cf. Fig. S2).
Using the TP, little change in the slower timescale τ2 is observed
compared to the CPM and it only weakly depends on the time con-
stant τv (cf. Table S1). In contrast, the applied voltage v0 in a CPM
has an effect on the ionic charging times τ2, and for a smaller applied
voltage of 0.3 V, τ2 drops to 50 ps (cf. Fig. S4).

Using a TF model for representing real metals impacts both
charging times and the total dipole. It is interesting to note
that while a decrease for τ1 with increasing lTF in Fig. S3(a) is
observed, interpretation of τ2 is more complex when using a TF (cf.
Table S1), especially when comparing this to a regular CPM, i.e.,
lTF = 0, at the same voltage. The small difference between a regu-
lar CPM and the TF for small lTF might be an artifact due to the
rather thin metal slab model or might be due to a complex inter-
play between charge screening in the metal and the water/ionic
relaxation and/or the smaller total dipole obtained with the TF
model.

To understand the range of the second relaxation time
τ2 ≈ 50–100 ps, it is instructive to consider the product RC of
the aforementioned areal capacitance C = 2.94 μF cm−2 and the

FIG. 2. Charging time constants τ1 and empirical standard deviations employing
different CPM approaches as denoted on the y axis. Inset shows the model system
used to compare the different approaches, consisting of an aqueous NaCl elec-
trolyte in contact with two gold surfaces. Note the different charging time constants
τ1 for the CCM and CPM approaches.

areal electrolyte resistance R. Continuum models for ion dynam-
ics have shown that the ionic relaxation time decently agrees with
RC for applied potentials up to around the thermal voltage kBT/e
≈ 25 mV;56,57 a recent dynamical density functional theory for a
dense electrolyte found that the ions relaxed with RC even around
1 V.58 In a bulk electrolyte at infinite dilution, the areal resistance
between two electrodes spaced L apart is given by R = Lρ, where
ρ = kBT/(2e2Dcb) is the ionic resistivity, kBT is the thermal energy,
e is the elementary charge, D is the ionic diffusion constant, and
cb is the salt number density.59 In our simulations, the plate sep-
aration was L = 5 nm and the salinity in the bulk phase was
≈ 0.95M, corresponding to cb ≈ 0.57 nm−3; the ion diffusivity
D ≈ 1.5 ⋅ 10−9 m2/s was obtained from a separate bulk electrolyte
simulation. Using these values, we obtained RC = 14 ps, which is
roughly seven times smaller than the largest fitted τ2. This discrep-
ancy must be due partly to our underestimation of ρ, which, at the
salinity of our interest, is larger by a factor of about 1.7;59 account-
ing for this effect yields a relaxation time of RC = 23 ps. Another
cause of the remaining factor 4 discrepancy between the largest fit-
ted τ2 and predicted ionic relaxation times is the nanoconfinement,
which could affect the diffusivity D and, in turn, the areal resistivity
R. Finally, the mentioned increase of τ2 with the applied potential
is in line with the potential dependence of the capacitance of the
Gouy–Chapman model, though in disagreement with that of the
Kilic–Bazant–Ajdari60 model. Although the analytical estimates of
RC times presented here provide starting points for further research
on the implications of nanoconfinement and finite salt concentra-
tion on charging times, these results should not be overinterpreted
as the analytical models contain simplifications that may not apply
to such nanoscopic systems.

B. Coaxial cylindrical capacitor
As a sanity check of our approach for systems that are peri-

odic in just one dimension, we study the capacitance of two coaxial
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FIG. 3. Dielectric capacitance of cylindrical capacitors for fixed ratios of R1/R2
with R1 the inner and R2 the outer tube radii. Results for coaxial carbon nanotubes
computed with MD are indicated as lines. Marks denote analytical results for a
structureless equivalent system. The difference between the radii Δr = R2 − R1
is given relative to the characteristic bond length dCC between carbon atoms in
graphene.

carbon nanotubes of radii R1 and R2, with R1 < R2 (cf. inset of Fig. 3).
The vacuum capacitance C0 of the coaxial carbon nanotubes can be
calculated from the electrode-wise capacitance C̃.34 At large radii,
the atomic structure of the tubes should have a negligible effect,
and thus the capacitance should approach that of structureless cylin-
ders. The analytical line capacitance for a given ratio of the radii is
C0/L = 2πε0/ln(R2/R1), in which ε0 is the vacuum permittivity and
L is the length of the simulation box in the periodic dimension. As
shown in Fig. 3 for various fixed ratios of the inner and outer tubes,
the capacitance indeed converges to that of a structureless cylindrical
capacitor when the radii are large compared to the bond length dCC
between carbon atoms. In the CPM, electrode atoms are assigned a
Gaussian charge distribution ρi(r) = qi(η2/π)3/2

exp[−η2(r − Ri)2]
at their position Ri with the reciprocal charge width η. In agreement
with Serva et al.,61 increased capacitances are observed for larger
Gaussian width (i.e., smaller η) in Fig. 3. However, the impact is
almost negligible.

IV. CONCLUSIONS
We presented the ELECTRODE package as an efficient imple-

mentation of the constant potential method (CPM) and closely
related methods for the popular LAMMPS simulation environment.
Initially, the main goal was to bundle many different approaches to
electrochemical simulations into one package and ensure that they
are handled in the most computationally efficient way. However,
we also found interesting relationships between the two relevant
charging time contributions, i.e., water dipole relaxation and ion
diffusion. We also implemented several new features, such as the
EW2D summation and a correction for systems periodic in just one
dimension, whose capabilities and full potential have been scarcely
explored and which also work independently of the CPM. Recent
improvements to the CPM, such as the finite field (FF) method
and a Thomas–Fermi (TF) model, were included and compared for

consistency to results found in the literature. Remarkably, using the
TF model with varying TF lengths has a surprising and complex
impact on the water and ionic relaxation times.

These results demonstrate that the ELECTRODE package can
efficiently simulate electrified interfaces, including unusual systems
such as infinitely long charged nanotubes. For a capacitor composed
of coaxial carbon nanotubes, the vacuum capacitance agrees well
within the limit of the analytical result of a structureless cylindrical
capacitor and enables future investigations of curvature-dependent
effects24,57 more rigorously by avoiding interactions between the
nanotubes through the periodic images. Moreover, the charging
process of a plate capacitor with an aqueous NaCl electrolyte in-
between vividly illustrates the differences between the range of
methods introduced here and which are used to estimate the elec-
trode charges. Interestingly, in these simulations, it was observed
that the water dipole initially responds very quickly to the applied
potential but then slowly drops off as the ionic dipole slowly builds
up, as if the water dipoles were shielded from the ions.

While the package is in a stable state, its development is still
ongoing and will include in the future features like a conjugate
gradient solver or compatibility to TIP4P water models.

SUPPLEMENTARY MATERIAL

The supplementary material provides more background on
the thermo-potentiostat (TP), boundary corrections, and the FF
method. Furthermore, a description of the package interface to
LAMMPS and an overview of the implemented classes are given.
More details on the simulations are provided, including plots of tra-
jectories and of charging times as a function of the voltage, the TF
length, and the time constant of the TP.
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