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Abstract
We prove the integral Hodge conjecture for curve classes
on smooth varieties of dimension at least three con-
structed as a complete intersection of ample hypersur-
faces in a smooth projective toric variety, such that the
anticanonical divisor is the restriction of a nef divisor. In
particular, this includes the case of smooth anticanon-
ical hypersurfaces in toric Fano varieties. In fact, using
results of Casagrande and the toric minimal model pro-
gram, we prove that in each case, 𝐻2(𝑋, ℤ) is generated
by classes of rational curves.
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1 INTRODUCTION

On a smooth complex projective variety of dimension 𝑛, the vector space𝐻𝑘(𝑋, ℂ) admits aHodge
decomposition into subspaces𝐻𝑝,𝑞(𝑋, ℂ), with 𝑝 + 𝑞 = 𝑘. The integral Hodge classes𝐻𝑘,𝑘(𝑋, ℤ)

are the classes in𝐻2𝑘(𝑋, ℤ) which map to 𝐻𝑘,𝑘(𝑋, ℂ) under the natural map

𝐻2𝑘(𝑋, ℤ) → 𝐻2𝑘(𝑋, ℂ),

and the class of any algebraic subvariety is an integral Hodge class. The integral Hodge conjecture
asks whether the classes of algebraic subvarieties generate the integral Hodge classes as a group.
A basic result in this direction is the Lefschetz (1,1)-theorem. This theorem states that the inte-

gral Hodge conjecture holds for codimension 1 classes. By the Hard Lefschetz theorem, this also
implies that Hodge conjecture holds for degree 2𝑛 − 2 classes, that is, classes of algebraic curves
generate𝐻𝑛−1,𝑛−1(𝑋,ℚ) as a vector space.

© 2022 The Authors. Bulletin of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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2 SKAULI

However the integral Hodge conjecturemight still fail for𝐻𝑛−1,𝑛−1(𝑋, ℤ). Muchwork has been
done exploring how this failure might occur, especially through constructing counterexamples to
the integral Hodge conjecture for degree 2𝑛 − 2 classes. There are two ways in which the inte-
gral Hodge conjecture can fail and there are counterexamples illustrating both. The first way is
through torsion classes in 𝐻𝑘,𝑘(𝑋, ℤ). Any torsion class is an integral Hodge class, and one can
find counterexamples to the integral Hodge conjecture for curves by finding a torsion class in
𝐻𝑘,𝑘(𝑋, ℤ) which is not algebraic. In fact, the first counterexample to the integral Hodge conjec-
ture was of this form. In [1], Atiyah and Hirzebruch construct a projective variety with a degree 4
torsion class that is nonalgebraic.
The integral Hodge conjecture for curves can even fail modulo torsion. In [2], Kollár constructs

counterexamples on projective hypersurfaces inℙ4 of high degree, onwhich there is a nontorsion,
nonalgebraic class in𝐻𝑛−1,𝑛−1(𝑋, ℤ).
On the other hand, by imposing restrictions on the geometry of the variety 𝑋, many positive

results in the direction of the integral Hodge conjecture have also been found. In [12], Voisin
proves that for a complex projective threefold 𝑋 that is either uniruled or satisfies 𝐾𝑋 = O𝑋 and
𝐻2(𝑋,O𝑋) = 0 the integral Hodge conjecture for curves holds. In [11], Totaro shows more gener-
ally that it holds for all threefolds of Kodaira dimension 0 with𝐻0(𝑋,O(𝐾𝑋)) ≠ 0. In [3], Benoist
and Ottem construct a threefold 𝑋 such that 2𝐾𝑋 = 0, and 𝑋 does not satisfy the integral Hodge
conjecture, which shows that there is an important difference between assuming Kodaira dimen-
sion 0 and assuming that the canonical divisor is trivial. In [12], Voisin also raises the question of
whether the integral Hodge conjecture for curves holds for rationally connected varieties.
One reason for the interest in the integral Hodge conjecture for curves is to construct sta-

ble birational invariants of smooth projective varieties. Voisin introduced the group 𝑍2𝑛−2 =
𝐻𝑛−1,𝑛−1(𝑋, ℤ)∕𝐻𝑛−1,𝑛−1(𝑋, ℤ)𝑎𝑙g (see [10], [12], [6], and [13]) which is a stable birational invari-
ant, and is the trivial group for rational varieties. There are also other cases where the integral
Hodge conjecture for varieties with trivial canonical divisor can give answers to other geometric
questions. For instance, in [14] Voisin relates the question of stable rationality of a cubic threefold
to the question of whether a particular class in the intermediate Jacobian, an abelian variety of
dimension 5, is algebraic.
In this paper, we will prove that the integral Hodge conjecture for curves holds on certain

Calabi–Yau varieties constructed as smooth complete intersections in smooth projective toric
Fano varieties. The result will in fact hold more generally when the anticanonical divisor of
the complete intersection 𝑋 is the restriction of a nef divisor on the ambient variety. The only
condition on the dimension of 𝑋 is that it must be at least 3. The main result is as follows.

Theorem 1.1. Let 𝑌 be a smooth projective toric variety and let 𝑋 ⊂ 𝑌 be a smooth complete
intersection of ample hypersurfaces 𝐻1,… ,𝐻𝑘 , with dim𝑋 at least 3. Assume furthermore that
−𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖 is nef on𝑌, so in particular−𝐾𝑋 is nef. Then the integral Hodge conjecture for curves

holds for 𝑋. More precisely,𝐻2(𝑋, ℤ) is generated by classes of rational curves.

In the process of proving this theorem, we will also show the following proposition.

Proposition 1.2. Let 𝑌 be a smooth projective toric variety and let 𝑋 ⊂ 𝑌 be a smooth complete
intersection of ample hypersurfaces 𝐻1,… ,𝐻𝑘 , with dim𝑋 at least 3. Assume furthermore that
−𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖 is nef on 𝑌. Then the semigroup of effective curve classes on 𝑌 is generated over ℤ by

rational curves contained in the complete intersection 𝑋.
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CURVE CLASSES ON CALABI–YAU COMPLETE INTERSECTIONS IN TORIC VARIETIES 3

Themain challenge in proving the integral Hodge conjecture for curves is finding algebraic rep-
resentatives of generators of the group 𝐻2(𝑋, ℤ). In [5], Casagrande proves that for the ambient
toric variety 𝑌, the group 𝐻2(𝑌, ℤ) is generated by the classes of so-called contractible curves,
which are algebraic. So we will prove that 𝐻2(𝑋, ℤ) also contains algebraic representatives of
classes of contractible curves. The proof of Theorem 1.1 is inspired by an argument given by Kollár
in an appendix to [4], where he proves that for an anticanonical hypersurface 𝑋 in a Fano variety
𝑌, the cones of effective curves NE(𝑋) and NE(𝑌) coincide.
The structure of the paper is as follows: We first recall the main definitions and results used in

this paper, in particular the results from [5] in Section 2. Then in Section 3 we will give a proof of
Theorem 1.1. The main result in [5] is that on smooth projective toric varieties, the semigroup of
effective curve classes is generated over ℤ by contractible classes. To prove Theorem 1.1 we will
prove that, with assumptions as in the theorem, the complete intersection contains curves in each
contractible class. To prove this, we will for a given contractible class construct a vector bundle
such that the zero set of a section corresponds to curves of the given contractible class contained
in 𝑋. We will then use ampleness of the hypersurfaces defining 𝑋 to check that the top Chern
class of this bundle is nonzero.

2 PRELIMINARIES

Let 𝑋 be a smooth projective variety over ℂ of dimension 𝑛. The integral Hodge classes
𝐻𝑘−1,𝑘−1(𝑋, ℤ) are the classes in 𝐻2𝑘(𝑋, ℤ) that map to the subspace 𝐻𝑘,𝑘(𝑋, ℂ) of the Hodge
decomposition of𝐻2𝑘(𝑋, ℂ) under the natural map

𝐻2𝑘(𝑋, ℤ) → 𝐻2𝑘(𝑋, ℂ).

Wewill write𝐻2𝑘(𝑋, ℤ)𝑎𝑙g for the subgroup of𝐻2𝑘(𝑋, ℤ) generated by classes of algebraic subva-
rieties of𝑋. The integral Hodge conjecture asks if any integral Hodge class is a linear combination
of classes of algebraic varieties, in other words if 𝐻2𝑘(𝑋, ℤ)𝑎𝑙g = 𝐻𝑘,𝑘(𝑋, ℤ).
We will focus on the integral Hodge conjecture for curves, which is the statement that

𝐻𝑛−1,𝑛−1(𝑋, ℤ) is generated by the classes of algebraic curves contained in 𝑋. Recall that on a
smooth, projective toric, or more generally rational, variety 𝑌, dim𝐻𝑖(𝑌,O𝑌) = 0 for 𝑖 > 0, and
𝐻2(𝑌, ℤ) is torsion free. As a consequence,

𝐻𝑛−1,𝑛−1(𝑌, ℤ) ≃ 𝐻2(𝑌, ℤ).

By the Lefschetz hyperplane theorem, the same is true for an ample hypersurface 𝑋 ⊂ 𝑌 of
dimension at least 3.
We also recall the definition of the Neron–Severi space 𝑁1(𝑋), the space of 1-cycles modulo

numerical equivalence.

Definition 2.1. Let 𝑋 be a smooth projective complete variety. We define the vector space

𝑁1(𝑋) ∶= {1-cycles in X}∕ ≡𝑛𝑢𝑚 ⊗ℝ.

The varieties we study in this paper are constructed starting from toric varieties. For a general
introduction to toric varieties, one can see, for example, [7]. We will recall some facts about toric
varieties that we will use throughout.
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4 SKAULI

A toric variety 𝑌 corresponds to a fan Σ in a real vector space 𝑁ℝ, and many geometric prop-
erties of 𝑌 are encoded by combinatorial properties of Σ. On a smooth, projective toric variety
𝑌 defined by a fan Σ, the group generated by curve classes up to numerical equivalence is iso-
morphic to the integral relations between primitive generators 𝑥𝑖 of the rays of Σ. The relations
corresponding to torus invariant curves are called wall relations. Furthermore, the intersection
number 𝐷𝑖 ⋅ 𝐶 between a torus-invariant divisor 𝐷𝑖 , corresponding to the ray spanned by 𝑥𝑖 , and
a curve 𝐶 corresponding to a wall relation 𝑎1𝑥1 +⋯ + 𝑎𝑛+1𝑥𝑛+1 = 0 is the coefficient 𝑎𝑖 (thus 0 if
the generator of the ray does not occur in the wall relation). Here 𝑛 is the dimension of𝑁ℝ, which
also equals dim𝑌. We will also need the observation that since the anticanonical divisor −𝐾𝑌 is
the sum of all the torus-invariant divisors, the intersection number −𝐾𝑌 ⋅ 𝐶 equals the sum of all
coefficients in the wall relation.

Proposition 2.2 [7, Proposition 6.4.1]. Let Σ be a simplicial fan in 𝑁ℝ with convex support of full
dimension. Then there are dual exact sequences:

0 → 𝑀ℝ

𝛼
#→ ℝΣ(1)

𝛽
#→ Pic(𝑌Σ) ⊗ ℝ → 0,

0 → 𝑁1(𝑌Σ)
𝛽∗

##→ ℝΣ(1)
𝛼∗

##→ 𝑁ℝ → 0,

where
𝛼∗(𝑒𝜌) = 𝑢𝜌,

𝛽∗([𝐶]) = (𝐷𝜌 ⋅ 𝐶)𝜌∈Σ(1).

We write Σ(1) for the rays of Σ,𝑀ℝ is the dual space to𝑁ℝ, 𝑒𝜌 the standard basis vectors of ℝΣ(1), 𝑢𝜌
the primitive generator of the ray 𝜌 ∈ Σ(1), and 𝐶 ⊂ 𝑌Σ a complete irreducible curve.

In the case where 𝑌 is a smooth projective toric variety, 𝑁1(𝑌) is isomorphic to 𝐻2(𝑌, ℤ) ⊗ ℝ

and 𝐻2(𝑌, ℤ) embeds into 𝑁1(𝑌). Furthermore, on a smooth projective toric variety, 𝐻2(𝑌, ℤ) is
generated by the classes of torus-invariant curves. This is a special consequence of a theorem of
Jurkiewicz and Danilov [7, Theorem 12.4.4]

2.1 Contractible classes of a toric variety

Because𝐻2(𝑋, ℤ) embeds into𝑁1(𝑋), we can use tools from theMinimalModel Program to study
the question of the integral Hodge conjecture, in particular the results of Casagrande (see [5]).

Definition 2.3 [5, Definition 2.3]. A primitive curve class 𝛾 ∈ 𝐻2(𝑌, ℤ), where 𝑌 is a complete,
smooth toric variety, is called contractible if there exists an equivariant toric morphism 𝜋∶ 𝑌 → 𝑍

with connected fibers such that for every irreducible curve 𝐶 ⊂ 𝑌,

𝜋(𝐶) = {𝑝𝑡} ⟺ [𝐶] ∈ ℚ⩾0𝛾.

Recall that a class 𝛾 ∈ 𝐻2(𝑌, ℤ) is primitive if it is not a positive integer multiple of any other
class. We will call a curve 𝐶 ⊂ 𝑌 contractible if its class in 𝐻2(𝑌, ℤ) is a contractible class. In
particular, a contractible curve will always have a class that is primitive in𝐻2(𝑌, ℤ).
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CURVE CLASSES ON CALABI–YAU COMPLETE INTERSECTIONS IN TORIC VARIETIES 5

The structure of a contraction of a contractible class is described by the following result.

Proposition 2.4 [5, Corollary 2.4]. Let 𝑌 be a smooth complete toric variety of dimension 𝑛, 𝛾 ∈
NE(𝑌) a contractible class, and 𝜋∶ 𝑌 → 𝑍 the associated contraction.
Suppose first that 𝛾 is nef, so that its wall relation is:

𝑥1 +⋯ + 𝑥𝑒 = 0.

Then 𝑍 is smooth of dimension 𝑛 − 𝑒 + 1 and 𝜋∶ 𝑌 → 𝑍 is a ℙ𝑒−1-bundle.
Suppose now that 𝛾 is not nef, so that its wall relation is:

𝑥1 +⋯ + 𝑥𝑒 − 𝑎1𝑦1 −⋯ − 𝑎𝑟𝑦𝑟 = 0 𝑟 > 0.

Then𝜋 is birational, with exceptional loci𝐸 ⊂ 𝑌,𝐵 ⊂ 𝑍, dim𝐸 = 𝑛 − 𝑟, dim𝐵 = 𝑛 − 𝑒 − 𝑟 + 1, and
𝜋|𝐸 ∶ 𝐸 → 𝐵 is a ℙ𝑒−1-bundle.

By ℙ𝑒−1-bundle we mean a bundle that is locally trivial in the Zariski topology. In particular,
there is a vector bundle E on 𝐵 such that 𝐸 = ℙ(E ).

Remark 2.5. If 𝛾 is nef, that is, 𝛾 ⋅ 𝐷 ⩾ 0 for all divisors𝐷, then fromhow intersection numbers can
be computed from thewall relation corresponding to 𝛾, the wall relation cannot have any negative
coefficients. The positive coefficients in a wall relation corresponding to a contractible curve are
all equal to 1. It must therefore have the form described in the theorem. This happens precisely
when curves of class 𝛾 move to cover the entire toric variety.

In contrast to contractions of extremal rays, if 𝜋∶ 𝑌 → 𝑍 is a contraction of a contractible class,
the target variety 𝑍 is not necessarily projective even if𝑌 is projective. In fact, 𝑍 is projective if and
only if the contraction is a contraction of an extremal ray. However, the exceptional locus of the
contraction of a contractible class has the structure of a projective bundle over a projective variety.
The reason we wish to consider contractible classes, as opposed to only extremal ones, is the

following result by Casagrande, which says that these rays generate the subgroup𝐻2(𝑌, ℤ)𝑎𝑙g , the
subgroup of𝐻2(𝑌, ℤ) generated by classes of algebraic curves.

Theorem 2.6 [5, Theorem 4.1]. Let 𝑌 be a smooth projective toric variety. Then for every 𝜂 ∈
𝐻2(𝑌, ℤ)𝑎𝑙g ∩ 𝑁𝐸(𝑌) there is a decomposition:

𝜂 = 𝑚1𝛾1 +⋯ +𝑚𝑟𝛾𝑟

with 𝛾𝑖 contractible and𝑚𝑖 ∈ ℤ>0 for all 𝑖 = 1, … , 𝑟.

As an immediate consequence of this and the fact that 𝐻2(𝑌, ℤ)𝑎𝑙g = 𝐻2(𝑌, ℤ), we see that
𝐻2(𝑌, ℤ) is also generated by the classes of contractible curves.

2.2 Ample vector bundles and positivity of Chern classes

We recall some basic definitions and central results on Chern classes of ample vector bundles,
which will be useful later. Throughout the paper, we will use the convention that a projective
bundle ℙ(E ) parameterizes one-dimensional quotients of E .
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6 SKAULI

The central fact we will use is that nef (ample) vector bundles have effective (and nonzero)
Chern classes.

Theorem 2.7 [9; Theorem 8.2.1, 9, Corollary 8.2.2]. Let 𝑋 be an irreducible projective variety or
scheme of dimension 𝑛 and let 𝐸 be a nef vector bundle on 𝑋. Then

∫𝑋 𝑐𝑛(𝐸) ⩾ 0

The same statement holds of 𝐸 is replaced by a nef ℚ-twisted bundle 𝐸<𝛿>. If 𝐸 is ample the
inequality is strict.

It is a straightforward consequence of this theorem that for a nef vector bundle and 𝑗 ⩽ 𝑛, we
have 𝑐𝑗(𝐸) ⩾ 0, with strict inequality if the bundle is ample.

3 COMPLETE INTERSECTIONS

Let 𝑌 be a smooth projective toric variety and𝐻1,… ,𝐻𝑘 ample hypersurfaces, such that

𝑋 ∶= 𝐻1 ∩⋯ ∩ 𝐻𝑘

is a smooth complete intersection. Furthermore, we will assume that 𝑋 has dimension at least 3;
hence, 𝑌 must have dimension at least 𝑘 + 3. Under these assumptions, a generalization of the
Lefschetz hyperplane theorem (see [9, Remark 3.1.32]) shows that

𝐻2(𝑋, ℤ) ≃ 𝐻2(𝑌, ℤ). (1)

Togetherwith Theorem2.6, this suggests a strategy for proving the integralHodge conjecture on
complete intersections of ample hypersurfaces in a smooth projective toric variety. If we can prove
that 𝑋 contains a representative of each contractible class, these curve classes generate 𝐻2(𝑌, ℤ)

by Theorem 2.6. Hence they generate 𝐻2(𝑋, ℤ) by (1), so the integral Hodge conjecture holds for
𝑋.
When 𝑋 is a hypersurface and the contraction of the contractible class is a ℙ1-bundle, the

following result by Kollár from the appendix to [4] is an example of this strategy.

Lemma 3.1. Let 𝐵 be a normal projective variety.

(i) Let g ∶ 𝐸 → 𝐵 be aℙ1-bundle. Let𝑋 ⊂ 𝐸 be a subvariety such that g|𝑋 ∶ 𝑋 → 𝐵 is finite of degree
1. If 𝑋 is ample, then dim𝐵 ⩽ 1

(ii) Let g ∶ 𝐸 → 𝐵 be a conic bundle. Let 𝑋 be a subvariety such that g|𝑋 ∶ 𝑋 → 𝐵 is finite of degree
⩽ 2. If 𝑋 is ample, then dim𝐵 ⩽ 2.

Clearly, if the restriction g|𝑋 is not finite, then 𝑋 contains a fiber of g , which is a contractible
curve. Kollár proves Lemma 3.1 by constructing a vector bundle E such that if g|𝑋 is finite, then
the top Chern class of E is zero. Ampleness, together with Theorem 2.7, then gives a contradiction
if dim𝐵 ⩾ 1. We will use a similar idea to prove Theorem 1.1. First we relate contractible curves
on 𝑋 to Chern classes of a vector bundle, and then we use Theorem 2.7 to prove that the Chern
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CURVE CLASSES ON CALABI–YAU COMPLETE INTERSECTIONS IN TORIC VARIETIES 7

classes are nonzero. However, straightforwardly applying Theorem 2.7 will not be sufficient, since
the relevant vector bundles are nef, but not necessarily ample.

3.1 Setup

Fix a contractible class [𝐶] in the toric ambient variety 𝑌. Let 𝐸 = ℙ(E ) → 𝐵 be the exceptional
locus of the contraction of [𝐶] on 𝑌. The goal is to prove that 𝑋 contains a curve 𝐶 of this class,
which is the class of a line in a fiber of 𝜋∶ 𝐸 → 𝐵. To do this, we construct and study a vector
bundle on the relative GrassmannianGr(2,E ), which defines the relative Fano scheme of lines of
the complete intersection 𝑋.
Let the complete intersection 𝑋 be defined by the intersection of the ample hypersurfaces

𝐻1,… ,𝐻𝑘. For 𝑖 = 1, … , 𝑘, 𝑑𝑖 ⩾ 1 are integers, and L𝑖 are line bundles on 𝐵, such that the line
bundle Oℙ(E )(𝐻𝑖) is isomorphic to Oℙ(E )(𝑑𝑖) ⊗ 𝜋∗L𝑖 . The lines in the fibers of ℙ(E ) → 𝐵 are
parameterized by the relative GrassmannianGr(2,E ), with projectionmap 𝑝∶ Gr(2,E ) → 𝐵. We
will denote the tautological rank 2 subbundle on Gr(2,E ) by  ⊂ 𝑝∗E .

Definition 3.2. With notation as above, for a complete intersection 𝑋 and contraction of a
contractible class [𝐶], we define the following vector bundle on Gr(2,E ).

M𝑋,𝐶 ∶=

𝑘⨁
𝑖=1

Sym𝑑𝑖 ∗ ⊗ 𝑝∗L𝑖 . (2)

We use the subscripts when we wish to indicate the dependence on the contraction of [𝐶], and
the line bundles O(𝐻𝑖), where𝐻𝑖 are the hypersurfaces defining 𝑋.

This is a bundle on Gr(2,E ) of rank 𝑟 =
∑𝑘
𝑖=1(𝑑𝑖 + 1), and is a quotient of

𝑘⨁
𝑖=1

Sym𝑑𝑖 (𝑝∗E ) ⊗ 𝑝∗L𝑖 = 𝑝∗

(
𝑘⨁
𝑖=1

Sym𝑑𝑖 E ⊗L𝑖

)
.

Furthermore, the complete intersection 𝑋 = 𝐻1 ∩⋯ ∩ 𝐻𝑘 induces a section of M𝑋,𝐶 . The sec-
tion of M𝑋,𝐶 induced by 𝑋 vanishes precisely at the lines in fibers of 𝜋∶ 𝐸 → 𝐵 contained in 𝑋.
Therefore, if the top Chern class 𝑐𝑟(M𝑋,𝐶) is nonzero, then any section, and in particular the sec-
tion induced by𝑋, must vanish at some point ofGr(2, 𝑛 + 1). So our goal in this section is to prove
that 𝑐𝑟(M𝑋,𝐶) is nonzero.
It will be useful that this vector bundle has the following positivity property.

Lemma 3.3. Assume O(𝑑𝑖) ⊗ 𝜋∗L𝑖 , 𝑖 = 1, … , 𝑘 are ample line bundles on 𝜋∶ ℙ(E ) → 𝐵. Let M
be the vector bundle

⨁𝑘
𝑖=1 Sym

𝑑𝑖 ∗ ⊗ 𝑝∗L𝑖 on the relative Grassmannian 𝑝∶ Gr(2,E ) → 𝐵. Then
for any line bundleA on 𝐵,M ⊗ 𝜖𝑝∗A is nef for all sufficiently small positive 𝜖.

Proof. We first consider the case 𝑘 = 1. After a suitableℚ-twist ofE , wemay assume thatL1 = O𝐵,
and since Oℙ(E )(𝑑1) ⊗ 𝜋∗L1 = Oℙ(E )(𝑑1) is ample, the vector bundle E will be ample as well.
For this E , the bundle M is equal to Sym𝑑1(∗), so M ⊗ 𝜖𝑝∗A = Sym𝑑1(∗) ⊗ 𝜖𝑝∗A , which
is a quotient of 𝑝∗(Sym𝑑1 E ) ⊗ 𝜖𝑝∗A . Since E is an ample vector bundle on 𝐵, so is Sym𝑑1(E ).
Hence, for any line bundleA on𝐵 and all sufficiently small positive 𝜖, Sym𝑑1 E ⊗ 𝜖A is an ample

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12758 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 SKAULI

ℚ-vector bundle on 𝐵. The vector bundle

𝑝∗
(
Sym𝑑1 E ⊗ 𝜖A

)
is a pullback of an ample vector bundle, hence nef. SinceM ⊗ 𝜖𝑝∗A is a quotient of this bundle,
it is also nef.
For 𝑘 > 1, the argument for 𝑘 = 1 shows that for any line bundleA on 𝐵 and all 𝑖 = 1, … , 𝑘, the

vector bundle Sym𝑑𝑖 (∗) ⊗ 𝑝∗L𝑖 ⊗ 𝜖𝑖𝑝
∗A is nef for all sufficiently small 𝜖𝑖 . So for 𝜖 sufficiently

small, Sym𝑑𝑖 (∗) ⊗ 𝑝∗L𝑖 ⊗ 𝜖𝑝∗A is nef for all 𝑖. Hence M is a direct sum of nef vector bundles
and therefore nef. □

The special case A = O𝐵 shows that in particular M𝑋,𝐶 is nef.

3.2 Rank and dimension

The first thing to check is that the rank ofM𝑋,𝐶 is less than or equal to the dimension ofGr(2,E ),
so it is possible for the top Chern class of M𝑋,𝐶 to be nonzero. We will see that when the divisor
−𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖 intersects the contractible curve nonnegatively, it imposes bounds on the relevant

dimensions and degrees. These bounds ensure that the rank of M𝑋,𝐶 is at most dimGr(2,E ).

Proposition 3.4. Let 𝐻1,… ,𝐻𝑘 be ample divisors in a smooth projective toric variety 𝑌, and let
𝜋∶ 𝐸 = ℙ(E ) → 𝐵 be the exceptional locus of the contraction of a contractible class [𝐶]. Let𝑑𝑖 be inte-
gers, andL𝑖 be line bundles on𝐵, chosen such thatOℙ(E )(𝐻𝑖) ≃ O(𝑑𝑖) ⊗ 𝜋∗L𝑖 . Assume furthermore
that (−𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖) ⋅ 𝐶 ⩾ 0. Then we have the following inequality:

dim𝐹 + dim𝐸 ⩾ dim𝑌 +

𝑘∑
𝑖=1

𝑑𝑖 − 1. (3)

Proof. Let

𝑥1 +⋯ + 𝑥𝑒 − 𝑎1𝑦1 −⋯ − 𝑎𝑟𝑦𝑟 = 0

be the wall relation corresponding 𝐶, where the 𝑥𝑖 and 𝑦𝑗 are the generators of rays in the fan of
𝑌. Using Proposition 2.4 we find that (3) is equivalent to the inequality:

𝑒 − 1 + 𝑛 − 𝑟 ⩾ 𝑛 +

𝑟∑
𝑖=1

𝑑𝑖 − 1.

It therefore suffices to prove the inequality 𝑒 − 𝑟 ⩾
∑𝑟
𝑖=1 𝑑𝑖 . Note that

𝑒 −

𝑟∑
𝑖=1

𝑎𝑖 = −𝐾𝑌 ⋅ 𝐶 =

𝑘∑
𝑗=1

𝑑𝑗 + (−𝐾𝑌 −

𝑘∑
𝑖=1

𝐻𝑖) ⋅ 𝐶.

By assumption, (−𝐾𝑌 −
∑𝑘
𝑖=1 𝐻𝑖) ⋅ 𝐶 ⩾ 0, hence 𝑒 −

∑
𝑖 𝑎𝑖 ⩾

∑
𝑗 𝑑𝑗 . Since the 𝑎𝑖 are positive

integers, we get 𝑒 − 𝑟 ⩾ 𝑒 −
∑
𝑖 𝑎𝑖 ⩾

∑
𝑗 𝑑𝑗 as desired. □
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CURVE CLASSES ON CALABI–YAU COMPLETE INTERSECTIONS IN TORIC VARIETIES 9

Remark 3.5. In [15], Wiśniewski proves a similar inequality for extremal contractions of smooth,
not necessarily toric, varieties.

We can now find conditions such that the rank of the bundle M𝑋,𝐶 in (2) does not exceed the
dimension of Gr(2,E ).

Corollary 3.6. Let𝑋 = 𝐻1 ∩⋯ ∩ 𝐻𝑘 , be a complete intersection of ample divisors in a smooth pro-
jective toric variety𝑌 of dimension 𝑛, with 𝑛 ⩾ 𝑘 + 3. Let 𝜋∶ 𝐸 = ℙ(E ) → 𝐵 be the exceptional locus
of the contraction of a contractible class [𝐶], and assume that (−𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖) ⋅ 𝐶 ⩾ 0. Then the

bundleM𝑋,𝐶 from Definition 3.2 has rank at most dimGr(2,E ).

Proof. The rank of M𝑋,𝐶 is
∑𝑘
𝑖=1(𝑑𝑖 + 1), so we must prove the inequality:

𝑘∑
𝑖=1

(𝑑𝑖 + 1) ⩽ dimGr(2,E ) = 2(rkE − 2) + dim𝐵. (4)

We wish to apply Proposition 3.4. Using Proposition 2.4 we have, in the notation from (3),

dimGr(2,E ) = dim𝐹 + dim𝐸 − 2.

This gives the chain of inequalities

dimGr(2,E ) = dim𝐹 + dim𝐸 − 2 ⩾ dim𝑌 +

𝑘∑
𝑖=1

𝑑𝑖 − 3

⩾ 3 + 𝑘 +

𝑘∑
𝑖=1

𝑑𝑖 − 3 =

𝑘∑
𝑖=1

(𝑑𝑖 + 1),

where the first inequality follows from (3) and the second uses that by assumption dim𝑋 ⩾ 3,
hence dim𝑌 ⩾ 3 + 𝑘. □

In other words, when 𝑋 = 𝐻1 ∩⋯ ∩ 𝐻𝑘 is a complete intersection of ample hypersurfaces of
dimension at least 3, and ℙ(E ) → 𝐵 is a contraction of a contractible class [𝐶] such that (−𝐾𝑌 −∑𝑘
𝑖=1 𝐻𝑖) ⋅ 𝐶 ⩾ 0, a dimension estimate leads us to expect that 𝑋 contains curves of class [𝐶]. In

fact, for general choices of the𝐻𝑖, the Fano schemeparameterizing these curveswill have expected
dimension.Wewill prove this here under the assumption that the Fano scheme is nonempty. This
assumption holds by Proposition 3.8 in the next section.

Proposition 3.7. Assume that 𝐻1,𝐻2, … ,𝐻𝑘 are ample and general in their respective linear sys-
tems. Assume further that the relative Fano scheme of the intersection 𝑋 ∶= 𝐻1 ∩⋯ ∩ 𝐻𝑘 , with
respect to a given contraction with exceptional locus 𝐸 = ℙ(E ) → 𝐵, is nonempty. Then the relative
Fano scheme of 𝑋 has the expected dimension.

Proof. Let 𝑉 ∶= 𝐻0(Oℙ(E )(𝐻1)) ×⋯ × 𝐻0(Oℙ(E )(𝐻𝑘)), and let 𝐼 be the incidence correspondence
𝐼 ∶= {(𝑙, 𝑓1, … , 𝑓𝑘)|𝑙 ⊂ (𝑓1 = ⋯ = 𝑓𝑘 = 0)} ⊂ Gr(2,E ) × 𝑉. We first check that 𝐼 has the expected
codimension,

∑𝑘
𝑖=1(𝑑𝑖 + 1). We can check this by considering the fiber of 𝐼 → Gr(2,E ), which
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10 SKAULI

has codimension
∑𝑘
𝑖=1(𝑑𝑖 + 1) in 𝑉. Since by assumption the projection 𝐼 → 𝑉 is dominant, the

general fiber of this projection must have codimension
∑𝑘
𝑖=1(𝑑𝑖 + 1) in Gr(2,E ). □

3.3 Positivity

Our goal is to prove the following proposition, showing that the top Chern class of M𝑋,𝐶 from
Definition 3.2 is not merely effective, but in fact nonzero.

Proposition 3.8. Let 𝐸 = ℙ(E ) → 𝐵 be the exceptional locus of a contraction of a contractible
class [𝐶] on a smooth projective toric variety 𝑌 of dimension 𝑛 ⩾ 3 + 𝑘. Let 𝑋 = 𝐻1 ∩⋯ ∩ 𝐻𝑘

be a complete intersection of ample divisors on 𝑌. Let M𝑋,𝐶 be as in Definition 3.2, and assume
that (−𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖) ⋅ 𝐶 ⩾ 0. Then the top Chern class 𝑐𝑟(M𝑋,𝐶) is nonzero and effective, where

𝑟 =
∑𝑘
𝑖=1(𝑑𝑖 + 1) is the rank ofM𝑋,𝐶 .

Before we prove this result, we need some preliminary results on Chern classes of symmetric
powers. In particular, we will to prove that the Chern classes of the 𝑑th symmetric power of the
rank 2 tautological subbundle on Gr(2, 𝑛 + 1) are effective and nonzero.

Lemma 3.9. Let R be a rank 2 bundle. Then for any symmetric power Sym𝑑 R, with 𝑑 ⩾ 2, for
𝑗 ⩽ 𝑑 the 𝑗th Chern class of Sym𝑑 R is of the form

𝑐𝑗(Sym
𝑑 R) = 𝑎𝑗𝑐1(R)𝑗 + 𝑃𝑗(𝑐1(R), 𝑐2(R)),

where 𝑃𝑗 is a polynomial with nonnegative integral coefficients and 𝑎𝑗 > 0 for 𝑗 ⩽ 𝑑. The top Chern
class 𝑐𝑑+1(Sym𝑑 R) is of the form:

𝑐𝑑+1(Sym
𝑑 R) = 𝑎𝑑+1𝑐1(R)𝑑−1𝑐2(R) + 𝑃𝑑+1(𝑐1(R), 𝑐2(R)),

where 𝑃𝑑+1 is a polynomial with nonnegative integral coefficients and 𝑎𝑑+1 > 0.

Proof. Let 𝛼, 𝛽 be the Chern roots ofR. If 𝑑 is odd, the Chern polynomial 𝑐(Sym𝑑 R) is given by:

Π𝑑
𝑖=0
(1 + (𝑑 − 𝑖)𝛼 + 𝑖𝛽)

= Π
𝑖<𝑑

2

(1 + (𝑑 − 𝑖)𝛼 + 𝑖𝛽)(1 + 𝑖𝛼 + (𝑑 − 𝑖)𝛽)

= Π
𝑖<𝑑

2

(1 + 𝑑(𝛼 + 𝛽) + 𝑖(𝑑 − 𝑖)(𝛼 + 𝛽)2 + (𝑑 − 2𝑖)2𝛼𝛽)

= Π
𝑖<𝑑

2

(1 + 𝑑𝑐1(R) + 𝑖(𝑑 − 𝑖)𝑐1(R)2 + (𝑑 − 2𝑖)2𝑐2(R)).

If 𝑑 is even, the Chern polynomial 𝑐(Sym𝑑 R) is given by:

Π𝑑
𝑖=0
(1 + (𝑑 − 𝑖)𝛼 + 𝑖𝛽)

=

(
1 +

𝑑

2
𝛼 +

𝑑

2
𝛽

)
Π
𝑖<𝑑

2

(1 + (𝑑 − 𝑖)𝛼 + 𝑖𝛽)(1 + 𝑖𝛼 + (𝑑 − 𝑖)𝛽)
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CURVE CLASSES ON CALABI–YAU COMPLETE INTERSECTIONS IN TORIC VARIETIES 11

=

(
1 +

𝑑

2
𝛼 +

𝑑

2
𝛽

)
Π
𝑖<𝑑

2

(
1 + 𝑑(𝛼 + 𝛽) + 𝑖(𝑑 − 𝑖)(𝛼 + 𝛽)2 + (𝑑 − 2𝑖)2𝛼𝛽

)
=

(
1 +

𝑑

2
𝑐1(R)

)
Π
𝑖<𝑑

2

(
1 + 𝑑𝑐1(R) + 𝑖(𝑑 − 𝑖)𝑐1(R)2 + (𝑑 − 2𝑖)2𝑐2(R)

)
.

From this description we see that as long as 𝑗 < 𝑑 + 1, 𝑐𝑗(Sym𝑑 R) will have the form:

𝑐𝑗(Sym
𝑑 R) = 𝑎𝑗𝑐1(R)𝑗 + 𝑃𝑗(𝑐1(R), 𝑐2(R))

with 𝑎𝑗 > 0 for 𝑗 < 𝑑 + 1, and all coefficients of 𝑃𝑗 nonnegative integers. The top Chern class will
be of the form:

𝑐𝑑+1(Sym
𝑑 R) = 𝑎𝑑+1𝑐1(R)𝑑−1𝑐2(R) + 𝑃𝑑+1(𝑐1(R), 𝑐2(R))

with 𝑎𝑑+1 > 0 and all coefficients of 𝑃𝑑+1 nonnegative integers. □

Recall that if 𝑋 is an𝑁-dimensional variety, we call that a class 𝛼 ∈ 𝐻2𝑘(𝑋, ℤ) is called nef if it
has nonnegative intersection with the class of every (𝑁 − 𝑘)-dimensional subvariety of 𝑋. Using
Lemma 3.9, we can give the following description of the Chern classes of Sym𝑑 ∗.
Lemma 3.10. Let 𝐺𝑟(2, 𝑛 + 1) be the Grassmannian of lines in ℙ𝑛, let  be the rank 2 tautological
subbundle. Then for 1 ⩽ 𝑗 < 𝑑 + 1, the Chern class 𝑐𝑗(Sym𝑑 ∗) can be written as the sum of two
terms

𝑐𝑗(Sym
𝑑 ∗) = 𝑎𝑗(𝑐1(∗))𝑗 + 𝛼𝑗,

and 𝑐1(∗) is the class of an ample divisor, and 𝛼𝑗 is a nef and effective class. The top Chern class
𝑐𝑑+1(Sym

𝑑 ∗) can be written as
𝑐𝑑+1(Sym

𝑑 ∗) = 𝑎𝑑+1(𝑐1(∗))𝑑−1𝑐2(∗) + 𝛼𝑑+1,
with 𝑎𝑑+1 > 0, where 𝛼𝑑+1 is a nef and effective class.

Proof. The Chern class of ∗ is the sum of Schubert cycles: 𝑐(∗) = 1 + 𝜎1 + 𝜎11. The class 𝜎1
is an ample divisor class on Gr(2, 𝑛 + 1) since it is the pullback of a hyperplane via the Plücker
embedding. Furthermore, 𝜎11 is the Schubert cycle of lines contained in a hyperplane 𝐻 ⊂ ℙ𝑛.
It follows that on the Grassmannian of lines in ℙ𝑛, any monomial in 𝜎1 and 𝜎11 is a nef and
effective cycle.
We then apply Lemma 3.9 to see that for 𝑗 ⩽ 𝑑,

𝑐𝑗(Sym
𝑑 ∗) = 𝑎𝑗𝑐1(∗)𝑗 + effective and nef cycles,

with 𝑎𝑗 > 0, and the top Chern class

𝑐𝑑+1(Sym
𝑑 ∗) = 𝑎𝑑+1𝑐1(∗)𝑑−1𝑐2(∗) + effective and nef cycles. □

Corollary 3.11. All Chern classes of the bundle
⨁𝑘

𝑖=1 Sym
𝑑𝑖 (∗) are effective on Gr(2, 𝑛 + 1) the

Grassmannian of lines in projective space. Furthermore, if 0 ⩽ 𝑗 ⩽ min(
∑𝑘
𝑖=1(𝑑𝑖 + 1), dimGr(2, 𝑛 +

1)), the Chern class 𝑐𝑗(
⨁𝑘

𝑖=1 Sym
𝑑𝑖 (∗)) is nonzero.
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12 SKAULI

Proof. The Chern polynomial of a direct sum is the product of the Chern polynomial of the
summands. Lemma 3.10 describes the form of these Chern polynomials. In particular, we see
that the 𝑗th Chern classes contain a term of the form 𝑏𝑐1(∗)𝛼𝑐2(∗)𝛽 , with 𝛼 + 2𝛽 = 𝑗, and the
coefficient 𝑏 is strictly greater than 0. Furthermore, if 𝛼 + 2𝛽 = 𝑗 ⩽ dimGr(2, 𝑛 + 1), we see that
𝑐1(∗)𝛼𝑐2(∗)𝛽 > 0 by computing with the relevant Schubert cycles. □

It follows from these results that when restricted to a fiber of 𝑝∶ Gr(2,E ) → 𝐵, the Chern
classes of M𝑋,𝐶 are strictly positive, unless they vanish for dimensional reasons.
With this we are ready to prove Proposition 3.8 using a perturbation argument, based on

Lemma 3.3

Proof of Proposition 3.8. Set 𝑏 ∶= dim𝐵, and recall that 𝑟 =
∑𝑘
𝑖=1(𝑑𝑖 + 1) is the rank of the bundle

M𝑋,𝐶 . Let 𝐷′ ⊂ 𝐵 be a smooth ample divisor, and set 𝐷 ∶= 𝑝∗𝐷′. By Lemma 3.3, M𝑋,𝐶 ⊗ −𝜖𝐷

remains a nef vector bundle for sufficiently small 𝜖. So M𝑋,𝐶 ⊗ −𝜖𝐷 has effective Chern classes.
The top Chern class ofM𝑋,𝐶 ⊗ −𝜖𝐷 can be expressed as

𝑐𝑟(M𝑋,𝐶 ⊗ −𝜖𝐷) = 𝑐𝑟(M𝑋,𝐶) − 𝜖𝐷 ⋅ 𝑐𝑟−1(M𝑋,𝐶) +⋯ + (−1)𝑏𝜖𝑏𝐷𝑏 ⋅ 𝑐𝑟−𝑏(M𝑋,𝐶).

Assume for contradiction that 𝑐𝑟(M𝑋,𝐶) = 0. Then since 𝐷 ⋅ 𝑐𝑟−1(M𝑋,𝐶) is effective, we must
have 𝐷 ⋅ 𝑐𝑟−1(M𝑋,𝐶) = 0. Otherwise, 𝑐𝑟(M𝑋,𝐶 ⊗ −𝜖𝐷) would not be effective for some small
𝜖, contradicting nefness of M𝑋,𝐶 ⊗ −𝜖𝐷. Let 𝐵1 be the hypersurface 𝐷′. Then we must
have 𝑐𝑟−1(M𝑋,𝐶|𝑝−1(𝐵1)) = 0. If dim𝐵1 = 0, then 𝑝−1(𝐵1) is a union of fibers 𝐹1, … , 𝐹𝑁 of 𝑝,
and by Corollary 3.6, 𝑟 − 1 ⩽ dim(𝐹𝑖). So on each fiber 𝐹𝑖 , 𝑀|𝐹𝑖 has strictly positive Chern
classes by Corollary 3.11. Hence 𝑐𝑟−1(M𝑋,𝐶|𝑝−1(𝐵1)) must also be strictly positive. This gives
our contradiction.
If dim𝐵1 ⩾ 1, we repeat the argument. We find that

𝑐𝑟−1(M𝑋,𝐶
||𝐵1 ⊗ −𝜖𝐷) = 𝑐𝑟−1(M𝑋,𝐶

||𝐵1)
− 𝜖𝐷 ⋅ 𝑐𝑟−2(M𝑋,𝐶

||𝐵1) +⋯ + (−1)𝑏−1𝜖𝑏−1𝐷𝑏−1 ⋅ 𝑐𝑟−𝑏(M𝑋,𝐶
||𝐵1) ⩾ 0

for all sufficiently small 𝜖. In particular, we must have 𝐷 ⋅ 𝑐𝑟−2(M𝑋,𝐶|𝐵1) = 0. So
𝑐𝑟−2(M𝑋,𝐶|𝑝−1(𝐵2)) must be 0, where 𝐵2 ⊂ 𝐵1 is a smooth subvariety representing the divisor
𝐷′|𝐵1 . Repeating this construction if necessary, eventually we reach either 𝑐𝑟−𝑏((M𝑋,𝐶|𝑝−1(𝐵𝑏)))
if 𝑟 > 𝑏, where 𝐵𝑏 is nonempty and has dimension 0, or 𝑐0((M𝑋,𝐶|𝑝−1(𝐵𝑟)) if 𝑟 ⩽ 𝑏. So if
𝑐𝑟(M𝑋,𝐶) = 0, we must also have 𝑐𝑟−𝑏((M𝑋,𝐶|𝑝−1(𝐵𝑏))) = 0 or 𝑐0((M𝑋,𝐶|𝑝−1(𝐵𝑟)) = 0. The latter
is impossible. In the former case, we conclude from Corollary 3.6 that since 𝑟 ⩽ dim(Gr(2,E )),
also 𝑟 − 𝑏 ⩽ dim(𝑝−1(𝐵𝑏)). We can therefore apply Corollary 3.11 and find that 𝑐𝑟−𝑏((M𝑋,𝐶|𝐵𝑏 ))
is strictly positive. Since this is a contradiction, we conclude that 𝑐𝑟(M𝑋,𝐶)must be effective and
nonzero. □

Using Proposition 3.8, we get a condition for when a complete intersection of ample hypersur-
faces 𝐻𝑖 of dimension at least 3 in a smooth projective toric variety contains a curve of a given
contractible class.

Corollary 3.12. Let 𝑋 = 𝐻1 ∩⋯ ∩ 𝐻𝑘 be a smooth complete intersection of ample hypersurfaces
in a smooth projective toric variety 𝑌, and assume dim𝑋 ⩾ 3. Let 𝑌 → 𝑍 be the contraction of a
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CURVE CLASSES ON CALABI–YAU COMPLETE INTERSECTIONS IN TORIC VARIETIES 13

contractible class [𝐶], with exceptional locus 𝐸 = ℙ(E ) → 𝐵. If (−𝐾𝑌 −
∑𝑘
𝑖=1 𝐻𝑖) ⋅ 𝐶 ⩾ 0, then 𝑋

contains a curve with class [𝐶] in𝑁1(𝑋).

Proof. The complete intersection 𝑋 induces a section of the bundle

M𝑋,𝐶 =

𝑘⨁
𝑖=1

Sym𝑑𝑖 (∗) ⊗ 𝑝∗L𝑖

onGr(2,E ) → 𝐵. From Proposition 3.8 we see that the top Chern class is effective and nonzero. So
any section ofM𝑋,𝐶 must vanish at some point. Since the section ofM𝑋,𝐶 induced by 𝑋 vanishes
precisely at curves of class [𝐶] contained in 𝑋, we may conclude. □

If the divisors 𝐻𝑖 defining 𝑋 are general in their respective linear systems, then by Propo-
sition 3.7, the contractible curves contained in 𝑋 are parameterized by a space of expected
dimension. If the 𝐻𝑖 are not general, the space of contractible curves contained in 𝑋 will have
at least expected dimension, but is potentially larger.

Remark 3.13. Compare this result to [8, Theorem 4.3], which applies to the similar setting where
𝑋 ⊂ 𝑌 is a smooth ample divisor in a smooth variety of dimension at least 4, and 𝐶 is an extremal
curve class with −𝐾𝑋 ⋅ 𝐶 ⩾ 0. Then [8, Theorem 4.3] implies that 𝑋 contains a curve whose class
in 𝑁1(𝑋) is some multiple of 𝐶.

Theorem 1.1 follows easily from Corollary 3.12.

Theorem3.14 (=Theorem 1.1). Let𝑌 be a smooth projective toric variety, and let𝑋 ⊂ 𝑌 be a smooth
complete intersection of ample hypersurfaces𝐻1,… ,𝐻𝑘 , with dim𝑋 at least 3. Assume furthermore
that −𝐾𝑌 −

∑𝑘
𝑖=1 𝐻𝑖 is nef. Then the integral Hodge conjecture for curves holds for 𝑋, and in fact

𝐻2(𝑋, ℤ) is generated by classes of rational curves.

Proof. By assumption −𝐾𝑌 −
∑𝑘
𝑖=1 𝐻𝑖 is nef, so for any contractible class [𝐶] in 𝐻2(𝑌, ℤ), the

hypotheses of Corollary 3.12 is satisfied. Thus, 𝑋 contains representatives of all contractible
classes. Since the classes of contractible curves span 𝐻2(𝑋, ℤ) by Theorem 2.6, we can conclude
that the integral Hodge conjecture holds for 𝑋. Since all contractible curves are rational, the
second statement also follows. □

More precisely, this proves Proposition 1.2 from the Introduction.

3.4 Example

We end with an example, which illustrates Theorem 3.14 and its proof in a simple case. Let 𝑙 ⊂ ℙ4

be a torus-invariant line, and let𝑌 be the blow-up ofℙ4 along 𝑙. The Picard group of𝑌 is generated
by 𝐻, the pullback of the hyperplane class in ℙ4, and the exceptional divisor 𝐸. The homology
group 𝐻2(𝑌, ℤ) is generated by ℎ, the pullback of a general line in ℙ4, and 𝑒, the class of a line
in a positive-dimensional fiber of the blow-up map. The cone of curves on 𝑌 is generated by the
extremal classes 𝑒 and ℎ − 𝑒 , with contractions given by the blow-up map 𝑏∶ 𝑌 → ℙ4 and the
resolution of the projection of ℙ4 from 𝑙, 𝑝∶ 𝑌 → ℙ2, respectively.
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14 SKAULI

The toric variety 𝑌 is smooth, projective, and Fano, with anticanonical divisor 5𝐻 − 2𝐸. Let
𝑋 be a general smooth anticanonical hypersurface. Then 𝑋 is the strict transform of a quintic
hypersurface containing the line 𝑙 with multiplicity two. By the Lefschetz hyperplane theorem,
𝐻2(𝑋, ℤ) ≃ 𝐻2(𝑌, ℤ), which is generated by the extremal curve classes on𝑌. To check the integral
Hodge conjecture for curves on 𝑋 we should therefore check that 𝑋 contains representatives of
each of these curve classes. We will look at each of these in turn.

Claim 3.15. The anticanonical hypersurface 𝑋 contains a curve with class 𝑒.

Proof. Consider the exceptional locus 𝐸 of the blow-up map 𝑏∶ 𝑌 → ℙ4. Then 𝐸 is isomorphic
to ℙ2 × ℙ1, with the blow-up map as the second projection. As a divisor, 𝑋 restricts to a divisor
of class O(2, 3) on 𝐸. On each fiber of this bundle, 𝑋 restricts to a plane conic, and some of these
plane conics will be reducible. In fact, one can check that there will be nine reducible fibers when
𝑋 is general. A line in any of these reducible fibers is a curve in 𝑋 of class 𝑒. □

Claim 3.16. The anticanonical hypersurface 𝑋 contains a curve with class ℎ − 𝑒.

Proof. Consider the extremal contraction 𝑝∶ 𝑌 → ℙ2. This gives 𝑌 the structure of the projective
bundle 𝑝∶ ℙ(O⊕2

ℙ2
⊕ Oℙ2(1)) → ℙ2, with fibers isomorphic to ℙ2. If we denote by 𝜁 the divisor

corresponding to the line bundle O
ℙ(O⊕2

ℙ2
⊕O

ℙ2 (1))
(1), 𝑋 is linearly equivalent to the divisor 3𝜁 +

2𝑝∗𝐻ℙ2 , and restricts to cubic curves on the fibers of 𝑝. For a plane cubic curve to contain a line
is a codimension 2 condition, so we would expect 𝑋 to contain lines in the fibers of 𝑝. In fact, one
can check that a general anticanoncial hypersurface 𝑋 will contain 234 lines in fibers of 𝑝. This
line is a curve of class ℎ − 𝑒 contained in 𝑋. □
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