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ABSTRACT

Cosmological models beyond ΛCDM, such as those featuring massive neutrinos or modifications of gravity, often display a character-
istic change (scale-dependent suppression or enhancement) in the matter power spectrum when compared to a six-parameter ΛCDM
baseline. It is therefore a widely held view that constraints on those models can be obtained by searching for such features in the
clustering statistics of large-scale structure. However, when using biased tracers of matter in the analysis, the situation is complicated
by the fact that the bias also depends on cosmology. Here we investigate how the selection of tracers affects the observed signatures for
two examples of beyond-ΛCDM cosmologies: massive neutrinos and clustering dark energy (k-essence). We study the signatures in
the monopole, quadrupole, and hexadecapole of the redshift-space power spectra for halo catalogues from large N-body simulations
and argue that a fixed selection criterion based on local attributes, such as tracer mass, leads to a near loss of signal in most cases.
Instead, the full signal is recovered only if the selection of tracers is done at fixed bias. This emphasises the need to model or measure
the bias parameters accurately in order to get meaningful constraints on the cosmological model.
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1. Introduction

The six-parameter Λ-cold-dark-matter (ΛCDM) model
of cosmology fits most current cosmological observa-
tions (Riess et al. 1998; Perlmutter et al. 1999; Alam et al.
2017; Planck Collaboration VI 2020) but it relies on two
unexplained ingredients, dark matter (DM) and dark energy (Λ),
which make up about 95% of the energy budget of the Universe.
For this reason, cosmologists are investigating alternative
models of dark energy and DM and also theories of gravity
which deviate from general relativity on large scales. In the
coming years, the next generation of large-scale structure (LSS)
surveys (Amendola et al. 2018; Laureijs et al. 2011; Abell et al.
2009) will reach an extraordinary statistical power that will
allow us to discriminate between different theories and possibly
reveal the nature of the dark components. These surveys will
map the three-dimensional galaxy distribution up to redshift
z ' 2. Under the assumption that galaxies and their host halos
trace the underlying DM distribution, we can measure the
three-dimensional mass distribution in the Universe.

To keep up with these future observations we need suffi-
ciently accurate theoretical predictions for the models we wish
to study. While perturbation theory is sufficient to model the
anisotropies of the cosmic microwave background (CMB), the
galaxy distribution is more complicated and must be mod-
elled with cosmological N-body simulations that also pro-
vide access to a large number of modes in the non-linear
regime (Angulo & Hahn 2021). As a result, N-body simula-
tions of so-called non-standard cosmologies have been devel-
oped over recent years (Baldi et al. 2010; Barreira et al. 2013;
Llinares et al. 2014; Adamek et al. 2017; Li 2018; Hassani et al.
2019; Hassani & Lombriser 2020). While far from exhausting

all possibilities, these help us to place stringent constraints on
modified theories of gravity or models of dark energy and DM
by comparing the details of structure formation in the different
scenarios.

At the most basic level, such a comparison often starts with
the matter power spectrum. The different scenarios typically lead
to a scale-dependent and redshift-dependent modification of the
power spectrum when compared to a ΛCDM baseline, and this
signature can then be used to constrain the models. When apply-
ing this reasoning to observed clustering in LSS, which is always
measured from biased tracers of matter such as galaxies, one
needs to keep in mind that the bias of a fixed type of tracer is not
independent of cosmology either. In the simplest halo bias model
(Kaiser 1984), the linear bias parameter for a fixed halo mass is
approximately inversely proportional to the amplitude of fluctu-
ations. This is because it becomes proportionally more difficult
to form objects of a given mass when the initial fluctuations are
smaller. Consequently, for a fixed type of halo defined through a
mass threshold, a change in matter power is expected to be par-
tially compensated by a change in bias, such that the clustering
of the tracer is less affected by a change in cosmology.

Here, we present a study of this issue in the context of two
beyond-ΛCDM scenarios: a cosmology with massive neutrinos
and a cosmology with k-essence-type clustering dark energy. In
the first case, the matter power gets suppressed on small scales
due to the free streaming of neutrinos that make up a certain
fraction of the matter as determined by their mass. In the second
case, the growth rate gets modified at all scales due to a change in
the expansion history of the late Universe. Additionally, the clus-
tering of dark energy leaves a certain scale-dependent imprint.
We use large N-body simulations to produce halo catalogues
for the different scenarios and show that the model-specific

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.

A56, page 1 of 5

https://doi.org/10.1051/0004-6361/202244405
https://www.aanda.org
http://orcid.org/0000-0003-2640-4460
http://orcid.org/0000-0002-0723-6740
http://orcid.org/0000-0001-9833-2086
mailto:farbod.hassani@astro.uio.no
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


A&A 668, A56 (2022)

10−2 10−1 100

k[h/Mpc]

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

b(
k

)

Ph×m/Pmm
Phh/Ph×m√
Phh/Pmm

Fig. 1. Halo bias obtained at redshift z = 0 from three different
definitions for a ΛCDM simulation with box size 4032 Mpc h−1 and
Np = 46083 particles. The bias is computed for halos with mass
Mh ≥ 2 × 1013 M� h−1. Bands show the confidence intervals for the
linear bias b1.

signatures get almost completely wiped out in the halo power
spectra if the comparison is carried out using halo populations
with a fixed mass threshold. We further show, rather trivially,
that the expected signal is recovered if the comparison is instead
carried out at fixed bias value. What is perhaps less trivial is that
these statements also apply for the multipoles of the power spec-
tra in redshift space, and we demonstrate this for the monopole,
quadrupole, and hexadecapole.

2. Theory

We define the halo bias at a given wave number as

b(k) = b1 + bNL(k) =

√
Phh(k)
Pmm(k)

, (1)

where Phh(k) and Pmm(k) are, respectively, the halo and matter
density power spectra without redshift-space distortions (RSDs),
and b1 is the linear bias parameter that captures the bias at large
scales where matter and halo distributions are maximally corre-
lated. At these scales, the non-linear bias bNL(k) → 0. The bias
b(k) is a measure of how well the halo density field traces the
underlying matter density at a given scale; see Desjacques et al.
(2018) for a review. Alternative definitions would be b(k) =
Pmh(k)/Pmm(k) or b(k) = Phh(k)/Pmh(k), where Pmh(k) is the
matter-halo cross power spectrum. We note that in order to sup-
press the shot noise in our halo power spectra we employ a sim-
ple jack-knife method as described for example in Inman et al.
(2015). In Fig. 1 we show the bias as a function of wavenumber
obtained from these different definitions for a ΛCDM simula-
tion. While the non-linear bias depends on the definition because
of the non-trivial correlation between matter and halos on small
scales, the linear bias is almost the same within statistical error
bars, for all definitions. In our simulations, we measure the lin-
ear bias by taking averages over b(k) on modes in the linear and
quasi-linear regime.

We consider two different selection procedures for the halo
populations. In the first case, the population is selected according

to a fixed mass threshold. We should note that our particle-mesh
N-body simulations have a fixed effective force resolution (no
adaptive mesh refinement) and the measured mass of the halos is
not expected to be fully converged numerically. The quoted value
of the mass threshold should therefore not be taken too literally,
but rather considered a mass proxy. The important point is that
the force resolution was not changed between runs of different
cosmologies, and hence the mass proxies can be considered com-
parable. This selection method therefore selects, in some specific
sense, the same types of objects across different models.

In the second case, we want to select the halo populations at
a fixed value of the linear bias. This is achieved by measuring
the bias for several choices of mass threshold, and then fitting
for the threshold value that provides the desired bias. This selec-
tion procedure guarantees that any modifications of the matter
power spectrum will appear in the corresponding halo power
spectrum on all scales where the linear bias model is accurate.
We note that carrying out a similar selection in a catalogue from
an actual LSS survey would require some procedure for measur-
ing the bias from observations.

3. Non-standard cosmologies

The two non-standard scenarios we consider in this work
are massive neutrino cosmology and clustering dark energy
(k-essence). In both cases, we use existing simulation suites that
include suitable ΛCDM reference runs such that the impact of
the non-standard scenarios on the clustering statistics can be
quantified. To minimise the contamination from cosmic vari-
ance, the simulations are initialised on the same realisation of
the Gaussian random field that sets the initial perturbations.

Massive neutrinos. Laboratory measurements of neutrino
flavour oscillations show that neutrinos have mass (Esteban et al.
2019). However, the absolute neutrino mass scale has not
yet been determined, but only mass differences are known.
It is expected that we will obtain the strongest constraints
on the sum of neutrino masses through cosmological probes
(Lesgourgues & Pastor 2006). This motivates cosmologists to
study the impact of massive neutrinos on LSS through N-body
simulations. In this work we use a suite of large N-body sim-
ulations from Adamek et al. (2017) that include neutrinos with
the sum of masses given by 0, 0.06, 0.2, and 0.3 eV. These sim-
ulations have a box size of 2048 Mpc h−1 with 40963 particles,
corresponding to a spatial resolution of 0.5 Mpc h−1 and mass
resolution of about 1010 M� h−1. The ΛCDM baseline model in
this case is the one with vanishing neutrino masses.

k-essence dark energy. The k-essence model is a
viable candidate for the late-time accelerated expan-
sion of the Universe. This model was first introduced in
Armendariz-Picon et al. (2001) to avoid problems such as fine
tuning, coincidence, or anthropic reasoning. The expansion
history is slightly different from ΛCDM at low redshift due
to the fact that k-essence has an effective equation of state
of w , −1. Moreover, the k-essence field clusters around
matter over-densities depending on its speed of sound. This
model was studied thoroughly by Hassani et al. (2019, 2020b,a)
using cosmological N-body simulations based on the code
k-evolution. Here we use two of these simulations with a fixed
equation of state parameter w = −0.9 and two choices of the
speed of sound, c2

s = 1 and c2
s = 10−4. The simulations have a

box size of 4032 Mpc h−1 with 46083 particles, corresponding
to a spatial resolution of 0.875 Mpc h−1 and mass resolution of
about 6 × 1010 M� h−1.
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4. Results

In this section, we discuss the signatures of the k-essence and
massive neutrino models in the matter and halo power spectra.
We study the even moments of the spectra in redshift space,
that is, the monopole, quadrupole, and hexadecapole, which
contain the most information about clustering (including bias)
and standard RSDs on linear and quasi-linear scales (Kaiser
1987). The spectra are computed using the code Pylians31 on
the snapshots at z = 0, and Doppler RSD are included using
the distant-observer approximation where the velocity-induced
shifts in redshift are parallel to one of the coordinate axes.
Our halo catalogues are produced with the Rockstar halo finder
(Behroozi et al. 2013). From each halo catalogue, we select two
samples as explained in Sect. 2: one using a fixed mass threshold,
and one using a fixed bias value by adjusting the mass thresh-
old accordingly. For the matter power spectra, as well as for the
halo power spectra from each selection method, we compute the
ratios with respect to the one found in the corresponding ΛCDM
simulation. As the initial conditions were chosen to be perfectly
correlated across simulations, cosmic variance largely drops out
in these ratios.

In Fig. 2 we show the results for the monopole power spec-
tra from the k-essence simulations. Blue colour is used to show
the case where c2

s = 1 and orange colour is used for the case
where c2

s = 10−4. The stars correspond to the samples selected at
fixed bias while the circles are for halos with fixed mass thresh-
old. The figure shows clearly that the first selection can recover
the signature in the monopole of the power spectrum very well
in the linear and quasi-linear regime, k . 0.1 h Mpc−1. On the
other hand, in the power spectra of the halos selected according
to fixed mass threshold, the signal is completely removed and
the ratio of the spectra is close to unity. We observe a similar
behaviour for the other moments of the power spectrum for the
k-essence models, which, on the other hand, is less visible due
to the weakness of the effect and to the large noise in the higher
multipoles.

In Fig. 3 we show the results for the monopole spectra of
the massive neutrino models with the sum of neutrino masses∑

mν = 0.06 eV, 0.2 eV, and 0.3 eV in blue, orange, and green,
respectively. Similar to the k-essence model, comparing halos
selected by the same mass threshold within different models
obscures the difference to ΛCDM at the intermediate scales,
0.03 h Mpc−1 . k . 0.3 h Mpc−1, where clustering measure-
ments are most sensitive. While some differences are noticeable
at larger and smaller scales, they bear no resemblance to the
signatures seen in the matter, apparently even reversing some
of the usual trends. These differences are somewhat difficult to
interpret due to the relatively large contribution from RSD. On
the other hand, a comparison within the fixed bias halo sam-
ples recovers the signature of the matter power spectrum at the
intermediate scales which is also where the bias is measured.
We also find the same behaviour in the higher moments of the
power spectra as shown in Figs. 4 and 5. We see that compar-
ing quadrupole and hexadecapole for the fixed bias halo selec-
tion recovers the signatures found in matter, although less clearly
than in the monopole. This is mainly due to the larger uncertain-
ties in the measurements of these higher moments which have
significantly smaller amplitudes. On the other hand, we do not
see any significant effect from different neutrino masses when
we consider a fixed mass selection in different theories. It is also
interesting to note that the ratios of the quadrupoles and hexade-
capoles at fixed bias value agree relatively well with the ones of
1 https://pylians3.readthedocs.io/en/master/
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Fig. 2. Ratio of k-essence to ΛCDM halo monopole power spectrum
(symbols) compared to the ratio of the corresponding matter power
spectra (solid lines). The stars represent the result for the fixed bias
selection, while the circles correspond to the selection at fixed mass
threshold.
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Fig. 3. Same as Fig. 2, but comparing models with different neutrino
masses to ΛCDM (where neutrinos are massless). Only a halo selection
at fixed bias (stars) recovers the monopole power ratio of matter (solid
lines) on intermediate scales. Bias values and mass thresholds are cho-
sen in a different way to in the k-essence comparison because of the
better mass resolution.

matter even in the nonlinear regime, k > 0.2 h Mpc−1, where the
corresponding monopole ratios deviate.

From the bias definition in Eq. (1) we can understand why
comparing fixed bias halo samples in different models can
recover the behaviour of matter at least for the scales on which
the bias is linear. By selecting halo samples in ΛCDM and in
model X at the same bias value, we can write

PΛCDM
hh (k)

PΛCDM
mm (k)

=
PX

hh(k)

PX
mm(k)

⇒
PX

hh(k)

PΛCDM
hh (k)

=
PX

mm(k)
PΛCDM

mm (k)
. (2)
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Fig. 4. Ratio with respect to the massless case (ΛCDM) of the
quadrupole of the halo power spectra (symbols with error bars) com-
pared to the corresponding ratios for matter (solid lines) for different
neutrino masses. The stars represent the result for the fixed bias selec-
tion, while the circles correspond to the selection at fixed mass thresh-
old. The divergence at k ' 0.3 h−1 Mpc is caused by a zero-crossing of
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Fig. 5. Same as Fig. 4, but for the hexadecapole of the power spectra.

This relation is valid on scales where the linear bias model is
a good description in both cosmologies, and it can explain the
results seen in Figs. 2 and 3 at linear and mildly non-linear
scales, except that they show the monopole in redshift space
which includes RSD. In linear theory, the RSD can be modelled
following Kaiser (1987), leading to the well-known expressions
for the multipoles of the power spectrum

P(0)(k) =

(
1 +

2
3
β +

1
5
β2

)
P(k), (3)

P(2)(k) =

(
4
3
β +

4
7
β2

)
P(k), (4)

P(4)(k) =
8
35
β2P(k), (5)

where β = f /b1 and f is the logarithmic growth rate in linear
theory. Having fixed b1 we can see from Eq. (2) that the halo
power spectrum ratio would deviate from the matter power spec-
trum ratio by less than 2

3 ∆ f for the monopole, by less than 3
7 ∆ f

for the quadrupole, and the hexadecapole ratio remains unaf-
fected. Here, ∆ f is the change in the growth rate between the
two cosmologies. Large changes in the growth rate might there-
fore affect the monopole and quadrupole ratios, but for the mod-
els studied here we have ∆ f of approximately a few percent at
most, and therefore smaller than the typical change of bias when
considering a fixed type of tracer. It should also be noted that the
linear RSD model is not very accurate, and becomes completely
useless at short distance scales where the so-called fingers-of-
God effect becomes relevant. It is therefore interesting to see our
results play out on those non-linear scales.

5. Conclusions

Near-future LSS surveys will put very tight bounds on cosmo-
logical parameters. They will measure the sum of the neutrino
masses and will help us to understand the nature of dark energy.
To exploit the full potential of these surveys in better constrain-
ing our theories using biased tracers, we need to understand how
a signal in the matter distribution is translated into the halo and
the galaxy clustering statistics.

In this work, we show for the first time that a naive selec-
tion of the halo sample based on a fixed mass threshold within
different theories leads to the almost complete removal of the
signature in the halo power spectrum. For this purpose, we used
suites of large-scale cosmological simulations for two different
models, namely k-essence and massive neutrinos. We demon-
strate that, even in the higher moments of the power spectra, one
sees a removal of signal for a fixed mass selection. On the other
hand, when considering a selection at fixed value of the linear
bias, the signal is recovered in the halo power spectra. The sim-
ple argument leading to this conclusion is summarised in Eq. (2)
and we expect it to also hold for other model comparisons. On
non-linear scales, the relation between the matter power spec-
trum and the halo power spectrum is difficult to model and is
beyond the scope of this paper.

The results of this paper also show the importance of mod-
elling or measuring the bias accurately. The bias can in principle
be measured by correlating weak lensing shear (which depends
on total matter) and clustering statistics of the tracers, but the
current sensitivity is still rather poor. Using a measured bias, we
can construct the tracer catalogue accordingly such that we see
the expected effect in the tracer clustering.
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