
UNIVERSITY OF OSLO
Department of Informatics

An Educational
Genome Browser

A Project in Interactive
Learning

Master’s thesis

Jørgen Hvamb Sveli

May 9, 2008

Preface

This thesis is part of the Master’s Degree in Informatics at the Department
of Informatics at the University of Oslo. The work with this thesis started
in the winter of 2006/2007 and was completed during the spring of 2008. I
would like to thank my supervisors, Professors Ole Christian Lingjærde at
the Biomedicine group and Arne Maus at the group for Object-Orientation,
Modeling and Language at the Department of Informatics at the University of
Oslo, for their patience, good advice, and encouragement during this period.
I would also like to thank Kristine Braathen Hein for contributing her ideas
for how genome browser could be used in education.

Finally, I would like to thank my family and my My Anh for, at times, much
needed personal support.

If you chase two rabbits, you will lose them both. - Native American Saying

And the users exclaimed with a laugh and a taunt: ”It’s just what we asked
for but not what we want.” - Anonymous

Never trust a computer you can’t throw out a window. - Steve Wozniak

i

Contents

1 Introduction 1
1.1 An Educational Genome Viewer 1
1.2 The Ideal Genome Viewer . 2
1.3 Structure of the Document . 3

2 Basic Molecular Biology 5
2.1 An Outline of DNA . 5

2.1.1 Initial Comments . 5
2.1.2 DNA and Heredity . 5
2.1.3 The Units of Heredity 7
2.1.4 DNA Structure . 8
2.1.5 The Genetic Code . 9
2.1.6 Expression . 10
2.1.7 Genetic Variation . 11

2.2 Biological Databases . 12
2.2.1 Sequence data . 13
2.2.2 Sequence Annotation . 14
2.2.3 Genomic Meta-Information 16
2.2.4 Details of the Human Genome 16
2.2.5 Summary . 17
2.2.6 Genome Browsers . 17

3 Introducing Genome Browsers 19
3.1 Introduction . 19
3.2 Genome Browsers . 19

3.2.1 Motivation . 19
3.2.2 Users . 20
3.2.3 Abilities and Uses . 20
3.2.4 List of Genome Browsers 21

3.3 Presenting a Selection of Browsers 22
3.4 The Ensembl Genome Browser 22

3.4.1 Using the Browser . 22
3.4.2 Interaction . 24

iii

iv CONTENTS

3.4.3 Features Visible . 24
3.4.4 Level of Detail . 26

3.5 The NCBI Map Viewer . 26
3.5.1 Using the Browser . 26
3.5.2 Interaction . 27
3.5.3 Features Visible . 27
3.5.4 Level of Detail . 27

3.6 The X:Map Genome Browser 27
3.6.1 Using X:Map . 29
3.6.2 Interaction . 29
3.6.3 Features Visible . 30
3.6.4 Level of Detail . 30

3.7 Summary and Comments . 32
3.7.1 Functionality . 32
3.7.2 Interaction . 32
3.7.3 Level of Detail . 33
3.7.4 Types of Features . 33

4 Analysis of Requirements and Domain 35
4.1 General Requirements . 35
4.2 Functionality . 36
4.3 Non-functional Requirements 37

4.3.1 Software Framework . 37
4.4 Domain Model . 38

4.4.1 First Draft . 38
4.4.2 Discussion . 40
4.4.3 Domain Model, Rev. 1 40

4.5 Arriving at a Class Model . 41
4.5.1 Introduction . 41
4.5.2 Diagrams . 42

5 Designing an Educational Browser 45
5.1 Basic functionality . 45

5.1.1 Select a Genome . 45
5.1.2 Browse Chromosomes 46
5.1.3 Explore Chromosome 46
5.1.4 Level of Detail . 48
5.1.5 Gene Information . 49

5.2 Design Choices . 50
5.2.1 Overview of Chromosomes 50
5.2.2 Exploring Chromosomes 51
5.2.3 Genes . 51
5.2.4 Exons . 51
5.2.5 SNPs . 52

CONTENTS v

5.2.6 Sketches . 52

6 Construction 55
6.1 Deciding on a Programming Language 55

6.1.1 C++ . 55
6.1.2 Python . 56
6.1.3 Java . 57
6.1.4 Conclusion . 58

6.2 Graphical Framework . 59
6.2.1 Demands . 59
6.2.2 Java 2D . 59
6.2.3 Jogl - OpenGL Bindings for Java 60
6.2.4 Other Alternatives . 61
6.2.5 Technical Comparison, Java 2D and Jogl 62
6.2.6 Comments . 63
6.2.7 Choosing Jogl over Java 2D 63

6.3 Investigation of Data Size . 64
6.3.1 Data to be Retrieved . 64
6.3.2 Chromosome Data . 64
6.3.3 Attribute Data . 65
6.3.4 Feature Data . 65
6.3.5 Summary . 65

6.4 Evaluation of Data Sources . 66
6.5 NCBI Entrez . 66
6.6 Biomart . 70
6.7 Selecting Data Provider . 71

6.7.1 Conclusion . 72
6.8 Integrating Sequence Data . 72

6.8.1 Regarding Data . 72
6.8.2 Parsing Approaches . 72
6.8.3 Sequential Read, Entire File 73
6.8.4 Random Access File . 74
6.8.5 Memory Mapped File IO 74
6.8.6 Technical Comparison 75
6.8.7 Conclusion . 76

6.9 Implementing Presentation of SNPs 76
6.9.1 Source of SNP Information 76
6.9.2 Drawing . 77

7 Introducing Sigve 79
7.1 Initial View . 79
7.2 Two-stranded View . 79
7.3 Two-stranded View, Sequence Visible 81
7.4 Phenoportal . 81

vi CONTENTS

7.5 Known Bugs . 84

8 Conclusions & Further Work 87
8.1 Conclusions . 87
8.2 Complaints . 88
8.3 Missing Features and Changes 88
8.4 Switching Graphical Framework? 89
8.5 Program Extension, through an API 89
8.6 Focus on Usability . 90

8.6.1 Perfecting the GUI . 90
8.6.2 Usability Testing . 91

8.7 Visual Appearance . 91
8.7.1 Location Probes . 91
8.7.2 Visual Indication of Zoom 91

A Sigve, Instruction Manual 95
A.1 Installation . 95
A.2 Starting the Program . 96
A.3 Finding the First Gene . 97
A.4 Using the Phenoportal . 97
A.5 Known Issues . 98

B Discrete Topics 99
B.1 Extensible Markup Language - XML 99
B.2 Virtual Memory . 100

C Acronyms and Expressions 101

List of Tables

2.1 Ensembl: Homo Sapiens Genome Statistics 17

3.1 List of genome browsers . 21
3.2 Ensembl feature data sources 25
3.3 NCBI Map Viewer: Data Columns 29

6.1 Benchmark results . 63
6.2 Data stored for a chromosome 64
6.3 Data stored for a cytoband . 65
6.4 Data stored for an attribute . 65
6.5 Data stored for a feature . 65
6.6 Average time cost of a read and standard deviation (SD) . . . 76

vii

List of Figures

2.1 Chromosomes In a Microscope 6
2.2 From DNA to Protein . 6
2.3 A gene and its constituents . 7
2.4 Schematic view of a chromosome (a), Chemical structure of

DNA (b). 8
2.5 The splice process . 11
2.6 Example of the FASTA file format 14
2.7 Example of the GenBank file format 15

3.1 Ensembl Overview of chromosome 1 (a), Ensembl Contig view
(b). 23

3.2 Ensembl: Detailed view . 25
3.3 NCBI: Genome view . 26
3.4 NCBI: Master view . 28
3.5 X:Map Starting view . 31
3.6 X:Map Details view . 31

4.1 Domain Model, 1st draft . 39
4.2 Domain Model, Revision 1. 41
4.3 Class Diagram: Attribute Hierarchy 43
4.4 Class Diagram: Comprising Classes 44

5.1 User Interface Sketch 1 . 53
5.2 User Interface Sketch 2 . 53

6.1 Algorithm used for testing RandomAccessFile and Memory Mapped
File IO . 75

7.1 Sigve: Initial View / Overview 80
7.2 Sigve: Two-stranded View . 81
7.3 Sigve: Examples of different levels of zoom 82
7.4 Sigve: Sequence View . 83
7.5 Sigve: Phenoportal . 84

A.1 1st time launch: Confirm download-dialog 96

viii

LIST OF FIGURES ix

A.2 Download and Decompression Dialogs 96

B.1 Recipe for bread encoded in XML 99

Chapter 1

Introduction

1.1 An Educational Genome Viewer

Traditionally, genome browsers have been targeted at researchers in biology
and medicine. The goal of this project is to explore a novel utilisation of such
software. Can a genome browser be used for educational purposes in educa-
tional contexts where non-experts constitute the target-group? The following
scenario elaborates further:

Knut and Kari are students of biology in upper secondary education. They
have had some lectures on the genetic material, DNA 1. They have heard that
a copy of the entire genetic code resides in the nucleus of each cell. The teacher
has explained that our DNA comprises 23 or 24 distinct chromosomes which
in turn comprises genes. They know that genes determine the way they look,
how tall a person might grow, among other things. On the most basic level
they have learnt that strands of four different molecules, called bases, form
up the DNA-molecule. Knut and Kari find this subject compelling and they
now thirst for more information, and they begin to discuss how it all connects.
Knut wonders if genes are separate molecules, like he has heard chromosomes
are. Kari comments that she has seen drawings of chromosomes but not genes.

Being an eager pair of students, Knut and Kari decide to research the topic
further. Kari finds an article on DNA from an online encyclopedia. The
article has an image of part of the DNA-spiral and the four different bases
are depicted as ball-and-stick models like the ones they remember from basic
chemistry in high school. They follow hyper links and read more about chro-
mosomes and genes. On the bottom of an article they find a project which
among other things displays chromosomes graphically on the web, Ensembl.
Excitedly, they follow the link. They choose to view the X chromosome of the
human species. A complicated screen loads. They try to discern some mean-

1DNA - Deoxyribonucelic Acid. See chapter 2 for a detailed introduction

1

2 CHAPTER 1. INTRODUCTION

ing from what they are looking at, but there are too many unfamiliar elements.

They do some searches and find something interesting, ”Simple Genome Viewer”.
It is a simple application, started from the web page with a click. They are
presented with a selection of different species, including Homo Sapiens. Again
they select the X chromosome. The screen now shows two lines running hori-
zontally across the screen, and there is a number of boxes on the lines. Knut
hovers the mouse pointer over one of the boxes and a tool-tip tells him that
this is a gene. There is a graphic that tells Knut and Kari that they are look-
ing only at a small portion of chromosome X. There are some buttons to move
along the two strands and Knut finds out he can click and drag to move the
view also. Kari wants to try now, she spotted the possibility to zoom in and
out. She finds a gene and zooms in on it. Another set of boxes appear across
the gene she is zooming in on. They are perplexed. Again a tool-tip explains,
this is an exon. They access the help function to find out more about what an
exon is. Knut takes over and zooms out, he notes that there is a lot of open
space between the genes, and even inside the genes there are stretches that
seemingly are unimportant. Then Kari points out that there is a gene on one
of the strands and a different gene on the other strand right across from it.
”There are even overlapping genes on the same strand”, Knut remarks. They
click on the two genes to read their full description. Verily, the genes have
distinct functions. Exhilarated, they continue to explore the genomes. They
can’t wait to show their class this tool.

The preceding scenario is meant to epitomise the need for an educational
genome browser. Several tools that visualise genomes can be found online
today, however they are unsuitable for use in secondary education due to the
following facts: They present a high number of details, they assume the user
possesses a high level of theoretical knowledge and there is little or no focus
on usability and ease of interaction.

In this scenario, the browser encountered is called ”Simple Genome Viewer”,
which has been the working title of the educational browser created in this
project. An abbreviation of this is ”Sigve”, a Norwegian, male first name.
Note that the objective is not a simpler genome browser. The adjective re-
flects a strive for a conceptually simpler browser, and a browser that is easier
to use. ”Simple” is not intended to insinuate plainness or a lack of finesse.

1.2 The Ideal Genome Viewer

As previously indicated, students in upper secondary education are the target
group for our genome viewer. The first year of upper secondary education,
all students learn, in a subject on Natural Sciences, about the central dogma

1.3. STRUCTURE OF THE DOCUMENT 3

of molecular biology. In the second and third year, students can choose to
specialise in biology. The adolescents in this stage of their lives are thinking
seriously about later studies. The ideal genome viewer is one that can spark
these adolescent researchers’ interest for the scientific subjects, possibly re-
sulting in an increase in students in the scientific subjects.

The ideal educational genome browser has a lower level of detail than most
existing solutions, but retains the core concepts. It can be used by the teacher
to underline essential ideas in the learning material. It can be used by the stu-
dents individually to solve tasks involving exploration of different areas of the
genome. It makes information on the roles of the individual genes available,
so that students can search for genes highly related to for example cancer.
Offering this functionality, the ideal educational genome browser ultimately
sparks the students’ interest in the natural sciences.

1.3 Structure of the Document

This is a short presentation of the intentions and contents of the remaining
chapters of the thesis. The sequential appearance of certain chapters may
cause associations with the infamous waterfall model of software development.
The actual development taken place did not follow this kind of model. A more
iterative, and occasionally impulsive, style of development took place. The
waterfall model, however, is fitted in presenting the project, as is the task of
this thesis.

Chapter 2 Basic Molecular Biology
This chapter introduces the reader to some of the biological theory asso-
ciated with the use of genome browsers. The structure of DNA, impor-
tant mechanisms involving DNA, heredity, and genetic variation, as well
as biological databases are presented. Later discussions on the creation
of an educational genome browser relies on the reader’s acquaintance
with this material.

Chapter 3 Introducing Genome Browsers
This chapter explains the purpose with- and usage of genome browsers
in more detail. An inspection of some of the many existing genome
browsers follows next. A small selection of genome browsers is presented.
Each browser is evaluated with regard to its suitability as an instrument
of learning. For each browser, comments are made on some features and
how appropriate they are in an educational browser.

Chapter 4 Analysis of Requirements and Domain
Chapter 4 starts by defining a set of user requirements and goals for the
educational genome browser. Some of these have been found following

4 CHAPTER 1. INTRODUCTION

correspondence with a teacher such as the one described in the preceding
scenario. The chapter then presents an analysis of the problem area. An
attempt to find a suitable domain model is also made.

Chapter 5 Designing an Educational Browser
Design issues- and decisions are presented in this chapter. Here, lessons
learned from looking at existing genome browsers (chapter 3) are used
to solve the requirements laid out in chapter 4.

Chapter 6 Construction
Challenges, important aspects, and decisions made in the construction
of the genome browser are presented. Firstly, some programming lan-
guages, relevant for various reasons, are introduced, and a selection is
made. Java, Python and C++ are evaluated. Next, potential graph-
ics libraries are presented, evaluated and tested. Potential data sources
are evaluated following a calculation of the size of the data required.
Finally, different programmatic techniques for handling underlying se-
quence data are presented and tested.

Chapter 7 Introducing Sigve
The end result is presented in this chapter. The functionality is de-
scribed in detail with screenshots. The chapter can be used as a supple-
ment to the instruction manual in the appendix.

Chapter 8Conclusions & Further Work
This chapter lists features and functionality that were not finished. It
also points out potentials for improvement in the browser. Some sugges-
tions for strategy changes, for example in the choice of graphics library,
are also made.

Chapter 2

Basic Molecular Biology

2.1 An Outline of DNA

This section hopes to equip the reader with some familiarity regarding DNA,
its structure and purpose. This insight is necessary ballast for effectively
reading this thesis. Readers with basic knowledge of DNA, e.g. from upper
secondary education or senior high-school, will refresh their knowledge as well
and most likely learn a few new details.

2.1.1 Initial Comments

The reader may be aware that all organisms have cells with DNA, however not
all cells are organised similarly. The cell of organisms are either prokaryotic
or eukaryotic. Cells of eukaryotes have membrane-enclosed nuclei, holding
DNA organised into chromosomes. Chromosomes are visible in a powerful
microscope, see Figure 2.1. Prokaryotic cells have no nucleus, their DNA
is organised into smaller molecules, plasmids. In addition, eukaryotes have
membranes and cytoskeletons. The remainder of the chapter focuses implic-
itly on eukaryotes: It is written with the genome of Homo Sapiens in mind.
Fundamental differences exist between eukaryotic and prokaryotic genomes,
which will not be focused upon herein.
The reader might also be aware that DNA is used to make proteins. This is

known as expression, and progresses in steps as seen in Figure 2.2. This flow
of information is the general course of events known as the Central Dogma of
Molecular Biology. subsequent sections describes this in greater detail.

2.1.2 DNA and Heredity

Every organism has genetic material, which specifies the biological information
of that organism. This material is found in our cells as DNA. Our DNA
originates from our parents. And although DNA is transferred to offspring
through a complex process, involving recombination and possibly mutations,

5

6 CHAPTER 2. BASIC MOLECULAR BIOLOGY

Figure 2.1: Stained chromosomes in condensed (compact) state of a female
human lymphocyte. http://commons.wikimedia.org/)

Figure 2.2: From DNA to protein. Part of a DNA molecule is transcribed/-
copied resulting in an RNA (can be thought of as single stranded DNA)
molecule. RNA is translated into a protein. Part of the Central Dogma
of Molecular Biology. (http://commons.wikimedia.org/)

our physical traits resemble those of our parents. Traditionally, a section
of DNA is classified as either coding or non-coding. Coding DNA encodes
recipes for proteins, while non-coding DNA has been thought of as junk DNA.
Recent research have attributed important functions to these areas. A valid

http://commons.wikimedia.org/
http://commons.wikimedia.org/

2.1. AN OUTLINE OF DNA 7

simplification was that coding DNA determined our physical traits, called
phenotypes. Some phenotypes are better understood than others, such as eye
colour. However, other phenotypes are determined by a varying number of
distinct sections of coding DNA, called genes. Figure 2.2 illustrates the path
from DNA to protein.

2.1.3 The Units of Heredity

Figure 2.3: A gene with two exons and an intron, which are constituents of
genes. (http://commons.wikimedia.org/)

Genes are the fundamental units of heredity, they are transferred between
generations through DNA and determine the physiology of the organism. A
gene consists of a coding region and a set of regulatory regions. The coding
sequence is the actual recipe for this gene’s product, typically a protein, while
the regulatory regions participate in controlling the tendency of this gene to
be transcribed. A gene can be thought of as a slot which is filled with some
content. All members of a species have the same slots, but their content may
be different, i.e. different alleles of the gene are present. In addition, the
activeness of the gene varies according to individual-specific factors, organ,
tissue type, cell type and even between cells having these characteristics in
common. A gene’s activeness may also change over time, controlled partially
by external signals to the cell.

Whenever a gene is active (expressed), copies of the gene are made, taking
the form of RNA. Some parts of the original gene, called introns, are left out,
when translating the RNA molecule into a protein. The parts of the gene that
are actually translated into a protein are called exons. Figure 2.3 shows an
example of a gene on a stretch of DNA.

http://commons.wikimedia.org/

8 CHAPTER 2. BASIC MOLECULAR BIOLOGY

2.1.4 DNA Structure

In the nuclei of our cells, lies two (slightly different) copies of our hereditary
material, DNA. It is packaged in a number of molecules known as chromo-
somes. The number varies from species to species. Female humans have 23
distinct chromosomes, while males have 24. Chromosomes can be stained by
adding a dye (a mix of methylene blue and eosin). This creates bands of
different shades of gray across the chromosome, known as Giemsa stains after
an early malariologist, Gustav Giemsa. Biologists use the names of the bands
to denote positions on the chromosome. In a strong microscope, one can see
a human chromosome in its condensed (compact), state. This structure is
schematically portrayed in figure 2.4(a). Several types of scaffolding proteins
enable almost unfathomably long DNA molecules to be packaged up in this
compact structure. On the lowest level, histones are responsible for structured
coiling of the DNA strands into stable shapes.

(a) Schematic of a chromosome. (b) Chemical structure of DNA.

Figure 2.4: (a) Schematic portrayal of a chromosome in its condensed state. 1:
One of the two identical chromatids of the chromosome. 2: The centromere,
joining point of the chromatids. 3: Short arm. 4: Long arm.
(b) Chemical structure of 4 nucleotides.
http://commons.wikimedia.org/

The DNA molecule itself is a polymer, a repeating structure of smaller molecules
forming a larger molecule. In DNA, the smaller molecules are nucleotides

http://commons.wikimedia.org/

2.1. AN OUTLINE OF DNA 9

consisting of a phosphate group, a sugar (deoxyribose), and one of 4 bases:
Either adenine (A), cytosine (C), guanine (G) or thymine (T). Nucleotides
form connections between deoxyribose and their phosphate, forming what is
referred to as a phosphate-sugar backbone. The sequence of the bases along
the phosphate-sugar backbone encodes the genetic information. The bases
are further attached to bases on a similar phosphate-sugar backbone, through
a one-to-one pairing of the bases. The pairing of bases is not random: ade-
nine pairs with thymine and cytosine pairs with guanine. This forms a lattice
structure with two complementary phosphate-sugar backbones, with attached
bases. This structure can be seen in figure 2.4(b).

The directionality of the two strands is anti-parallel, meaning the direction
in one strand is opposite to the other. So, where one strand starts, the other
ends. What is considered as the starting ends are called the 5’ ends, the end-
ings are the called 3’ ends. This naming reflect a chemical property in the
ending nucleotides.

Whenever information from the DNA is needed outside the cell nucelus, for
example in the ribosome when some part of it is to be translated into a pro-
tein, it is transcribed into RNA. RNA is quite similar to DNA, except for
some structural details: RNA is single-stranded, it contains the sugar ribose
instead of DNA’s deoxyribose, and it uses the base uracil instead of thymine.
The process of transcription is detailed further under section 2.1.6. RNA
molecules are used for a range of purposes, reflected in the many existing
naming prefixes. For example, a messenger RNA is termed mRNA.

2.1.5 The Genetic Code

A gene’s nucleotide sequence encodes a sequence of amino acids. I.E. the
result of expression of this nucleotide sequence is an amino acid sequence, a
protein. There are 20 possible amino acids, so 3 bases are required to de-
note one particular amino acid. Hence, non-overlapping groups of 3 bases
code for an amino acid. This gives 64 possible combinations, i.e. codons, to
20 amino acids, which implies some redundancy. This accommodates for a
certain amount of aberration in the code. However the codon distribution
is not entirely symmetric, and 4 codons are commonly used as indicators of
start and stop of transcription. Three amino acids have six codons while two
amino acids have only one codon. Tryptophan (IUPAC (International Union
of Pure and Applied Chemistry) code: W) has only one codon.

The fact that the genetic code uses 3 bases long, non-overlapping codons
means that a given sequence can be read in three different ways, six if we’re
considering the complementary sequence as well. The six different reading
frames potentially encode quite different proteins. Note that the differentia-

10 CHAPTER 2. BASIC MOLECULAR BIOLOGY

tion between reading frames is merely a fact of nature, not a systematic rule:
In any organism’s DNA, genes will reside in all reading frames. There may
also be overlapping genes in the same- or different reading frames. Under-
standing the concept of reading frames, it is easy to understand the higher
impact of a deletion (or insertion) type mutation as opposed to a substitution
type mutation: Insertions or deletions will affect all subsequent codons, while
substitutions only affect the single codon.

Reading frames can be exemplified using the short sequence AATTGGTG.
Sequences are measured in bases. A human gene could be 2 kilo bases (kb,
thousand bases) long, however a shorter 8 base sequence provides a clearer
illustration.

F Reading frame 1: AAT TGG TG - resulting in Asparagine (N), Tryp-
tophan (W).

F Reading frame 2: A ATT GGT G - resulting in Isoleucine (I), Glycine
(G).

F Reading frame 3: AA TTG GTG - resulting in Leucine (L), Valine
(V).

A reading frame containing a start- and stop codon is called an open read-
ing frame, ORF for short. DNA is typically full of ORFs, potential genes.
However, only a fraction are actual genes. Looking for ORF is a strategy for
finding genes, using special criteria which depend on what type of organism
the DNA is from.

2.1.6 Expression

Expression is the process in which a section of DNA is copied to mRNA, trans-
ported outside the nucleus (to the ribosomes) and translated into a protein.
That is, the copy is transported etc. not the DNA original, which never leaves
the nucleus. The copy takes the shape of an mRNA-molecule, similar to DNA
except the most important facts: that it is normally single stranded, employs
the base uracil in place of thymine, and consists of a different pentose sugar
than in DNA.

The resulting proteins have all sorts of functions depending on which gene
has been expressed. For some genes the RNA molecule is the final step in the
expression, RNA products typically have intra-cellular functions. These are
important steps in the expression of a gene:

Transcription

RNA Polymerase is the central enzyme of DNA transcription. With the help
of proteins called transcription factors, it binds to the DNA. It then reads

2.1. AN OUTLINE OF DNA 11

the strand of DNA that is complementary to the one to be copied, from 3’ to
5’, synthesising the RNA-molecule from 5’ to 3’. By doing this, it creates an
exact copy of the coding strand. The RNA molecule output of this process is
known as pre-mRNA or precursor mRNA (messenger RNA).

Post-transcriptional Modification

This process prepares the pre-mRNA for translation into a protein. The most
important modification made is the splicing of the RNA molecule, illustrated
in figure 2.5. In some cases, the splice process reshuffles the exons, or leaves an
exon out, giving rise to alternative splice variants. This heightens the efficiency
of the genetic code, increasing the number of proteins possibly produced by
each gene. Modification also adds a stabilising cap to the 5’ end, and a
signaling region to the 3’ end.

Figure 2.5: The splice process, removing introns. The leading and trailing
untranslated regions (UTRs) are not translated into amino acids, but contain
some regulatory information. (http://commons.wikimedia.org/)

Translation

The transcript has now become a mature mRNA. Translation takes place in
the cytoplasm, outside the nucleus. An RNA complex, the ribosome reads
the mRNA codon by codon and adds the corresponding amino acid to the
growing polypeptide (protein) chain.

2.1.7 Genetic Variation

Mutations may arise from a number of causes and are a source of genetic
variation. Different types of mutations exist, and can establish themselves in
the population if it is carried over to the offspring of the individual with a
mutation. A mutation that has established itself in a population becomes a
polymorphism. The impact of different types of polymorphisms upon genetic
variation is continuously researched.

http://commons.wikimedia.org/

12 CHAPTER 2. BASIC MOLECULAR BIOLOGY

Copy Number Variation

A copy number variation (CNV), is present if there is a difference in the
number of copies of a certain gene or a genetic region. If a certain CNV
establishes itself in a population, it is called a copy number polymorphism
(CNP). If the norm is two copies of a gene and a group of individuals have four
copies, that gene would potentially be doubly expressed in these individuals.
Sebat et al. [2004] and Kehrer-Sawatzki [2007], among others, report that copy
number polymorphisms contribute substantially to genetic variation.

Single Nucleotide Polymorphism

Single nucleotide polymorphisms (SNP) are differences in a single nucleotide
that have become established in a population. A criteria used for considering
a SNP as established is that it is present in 1% of the population. As an
example, in a certain base the population norm is a T, whereas some individ-
uals have C. A major source of SNP identifications, the International HapMap
Project aims to provide a complete haplotype map of the human genome, de-
scribing all common patterns of human DNA sequences.

Even though SNPs are more numerous than CNVs, it is likely that CNVs
are just as important a factor in genetic variation as SNPs. In dbSNP, a
major SNP database, there are in excess of 6 million verified SNPs in the
human genome (over 12 million in total). Compared to the number of known
CNVs, just under 9000, the amount of SNPs are staggering. Estivill and Ar-
mengol [2007] state that CNVs account for over 15% of the variance in the
assembled human genome. For SNPs this number can be calculated from the
amount of SNPs and total amount of bases to be 0.004%. SNPs have been
associated with more diseases than other types of polymorphisms, because it
has been easier to detect. In addition, SNPs are a much easier mechanism to
understand than most other kinds of changes. For this reason, for the sake
of explaining genetic variation, using SNPs as examples thereof is a good idea.

SNP information is available from many sources. The database dbSNP has
been mentioned. The web site SNPedia shares peer-reviewed scientific publi-
cations of information on phenotypes governed by SNPs.

2.2 Biological Databases

This is a small introduction to biological databases, their content and purpose,
within the realm of biological data. Biological databases play a major role in
molecular biology and bioinformatics. Much of the work done within these dis-
ciplines revolves around biological data and meta-data. Biological databases
store a range of different kinds of information, used for a variety of purposes.

2.2. BIOLOGICAL DATABASES 13

Generally, three types of biological data are stored in such databases. Primary
data, e.g. sequence data; secondary data, e.g. sequence annotations; and ter-
tiary data, which is used as a resource in whole- or multi genome comparison
and analysis. Herein, I focus on biological databases containing variants of
primary and secondary data.

2.2.1 Sequence data

An example biological database is the GenBank sequence database, which is
hosted by the National Center for Biotechnology Information (NCBI). Gen-
Bank stores the complete human genome sequences as well as sequences from
a wide range of other species. The size of the latest release of GenBank mea-
sured in base pairs is 79 billion (7.9∗1010). The human genome is one of about
700 complete genomes, a further 1300 are either incomplete or nearly com-
plete [NCBI, 2008]. In NCBI’s Taxonomy Browser, the lineage and taxonomic
position of more than 265 000 organisms can be found, that have at least one
sequence stored in GenBank. The exact amount at the time of writing was
265 071 organisms.

The Human Genome Project (HGP) which was finished in 2003, had among
other goals the intention of sequencing the entire human genome. Presently
at build 36, the nucleotide sequence of the human genome counts approxi-
mately 3.1 billion bases. The HGP enjoyed the benefits of successive advances
in whole genome sequencing techniques, and in biosciences in general. The
result of this was that the project progressed faster than initially planned
and that milestones often were reached ahead of time and with the results
holding a higher standard than was initially aimed for [Collins et al., 2003].
The post-HGP period has also been marked with great advances in whole
genome sequencing. This is reflected by the fact that the GenBank database
is growing at an exponential rate, doubling in size every 10 months. The hu-
man genome, together with sequences of other species available in GenBank,
presents a substantial amount of data. Sequence databases are not limited to
holding nucleotide sequences. In GenBank, protein sequences are also avail-
able. In fact sequence comparison using protein sequences yields more distant
relatives, called distant homologues, and is therefore more common.

Data Formats

A few different plain-text file formats for genetic sequences are used. The
FASTA format was designed as the input format to a software package for se-
quence alignment (known as FASTA or FASTP). The FASTA format encodes
a sequence of base pairs or amino acids using single-letter codes. An example
of an amino acid sequence can be seen in Figure 2.6.An initial header-line
contains version info and more. The simplicity of the FASTA format means

14 CHAPTER 2. BASIC MOLECULAR BIOLOGY

>gi|47576196|ref|NM_001000520.1|Rattus norveg. olfactory receptor 1346
ATGGCCACACAAGTGCACAGAAACGGAAGTCTCTCAGCAGTGTCCTTGCAGGGGTTCGTTCTGGTAGGGT
TTGGGGGAAGTGCAGAGACCCAAGCTCTGCTCTTTGCTGTGTTCCTAATCATGTATGTAGTTACTGTCCT
GGGCAACCTCACCATGATTGTGGTCATCACTCTGGATGCCCGCCTGCACTCCCCCATGTACTTCTTCCTC
AAGAACCTGTCCTTCGTTGACCTCTGTTACTCTTCTGTTATTGTCCCCAAAGCCATGGCCAACTTACTTT
CTTCCACTAAGGTCATCAGCTTTGCAGGATGTGCCACTCAGTTCTTCTTTTTCTCCCTTCTGGTTACTAC
TGAAAGCTTTCTATTGGCAGTCATGGCCTACGATCGCTTCATGGCCATCTGCAGTCCCCTGAGGTACCCT
GTGACCATGTGCCCTATGGCATGTGCCCGTCTGGTCCTGGGTGCCTACTGTGGTGGCTGCCTGCACTCCA
TCATAGAGAGCAGCCTCACGTTCCGGCTGCCCTTCTGCAGCTCCAACCGTATCAACCACTTCTACTGTGA
TGTGCCCCCATTGCTCCAGCTGGCCTGTGCTGACACAACTCTCAATGAGCTTGTCATGTTTGGCATCTGT
GGACTCATCATCGTGTCTACCACTCTCGTGGTCCTGGTCTCCTATGGCTACATCACAGTGACCATTCTCA
GGATGCGCTCTGGGTCAGGCCGGCACAAGCTCTTCTCTACTTGTGGTTCACACATGACAGCTGTGTCCTT
GTTTTATGGAACTGTGTTTGTCATGTATGCTCAGCCAGGCGCTCTGACATCCATGGAGCAGGGGAAAGTG
GTCTCTGTCTTCTACACCCTGGTTATCCCCATGCTGAACCCCCTCATCTACAGCCTGCGAAACAAGGATG
TGAAGGATGCCCTTAGGAGGCTGGGACAGAGGCACAGTCTTGTGAAGGAGGATGTGCAGTGA

Figure 2.6: Example of the FASTA file format, encoding a gene related to
smell in rats.

that it is easily manipulated using text processing- or scripting tools.

The GenBank format features a more extensive preamble than that of FASTA.
A GenBank record contains extensive version and species information, as well
as a large list of references as evidence for the record. Dissimilarities in the
representation of sequences between the two formats is evident in Figure 2.7.

Whose sequence is it?

The DNA sequence of Homo Sapiens found in Genbank isn’t the sequence of
a particular individual, although an unrelated release has been made of the
sequence of a known individual, James Watson. The sequence available in
Genbank is the consensus sequence of the samples sequenced and assembled
during the HGP. Collecting samples for the HGP was done by local public
advertisements around the areas of the participating laboratories. Samples
were de-labeled before selecting 5 to 10 percent of the samples for sequencing,
unbeknownst to the sample donors [NIH, 2008].

2.2.2 Sequence Annotation

Sequence annotation is an important companion to raw sequence data, in that
it adds meaning to what in itself is a sequence of characters. Sequence anno-
tation data typically describes where genes are situated, where transcription
starts or describes areas that are a source of genetic variation. Ensembl is a
database where annotation is created automatically, using statistical methods.
Sequence annotation is traditionally (and occasionally still) created manually.

2.2. BIOLOGICAL DATABASES 15

LOCUS NM_001000520 972 bp mRNA linear ROD 10-FEB-2008
DEFINITION Rattus norvegicus olfactory receptor 1346 (Olr1346), mRNA.
ACCESSION NM_001000520 XM_237406
VERSION NM_001000520.1 GI:47576196
KEYWORDS .
SOURCE Rattus norvegicus (Norway rat)
ORGANISM Rattus norvegicus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
Sciurognathi; Muroidea; Muridae; Murinae; Rattus.

...

CDS 1..972
/gene="Olr1346"
/note="olfactory receptor gene Olr1346"
/codon_start=1
/product="olfactory receptor Olr1346"
/protein_id="NP_001000520.1"
/db_xref="GI:47576197"
/db_xref="GeneID:316633"
/db_xref="RGD:1333294"
/translation="MATQVHRNGSLSAVSLQGFVLVGFGGSAETQALLFAVFLIMYVV
TVLGNLTMIVVITLDARLHSPMYFFLKNLSFVDLCYSSVIVPKAMANLLSSTKVISFA
GCATQFFFFSLLVTTESFLLAVMAYDRFMAICSPLRYPVTMCPMACARLVLGAYCGGC
LHSIIESSLTFRLPFCSSNRINHFYCDVPPLLQLACADTTLNELVMFGICGLIIVSTT
LVVLVSYGYITVTILRMRSGSGRHKLFSTCGSHMTAVSLFYGTVFVMYAQPGALTSME
QGKVVSVFYTLVIPMLNPLIYSLRNKDVKDALRRLGQRHSLVKEDVQ"

ORIGIN
1 atggccacac aagtgcacag aaacggaagt ctctcagcag tgtccttgca ggggttcgtt

61 ctggtagggt ttgggggaag tgcagagacc caagctctgc tctttgctgt gttcctaatc
121 atgtatgtag ttactgtcct gggcaacctc accatgattg tggtcatcac tctggatgcc
181 cgcctgcact cccccatgta cttcttcctc aagaacctgt ccttcgttga cctctgttac
241 tcttctgtta ttgtccccaa agccatggcc aacttacttt cttccactaa ggtcatcagc
301 tttgcaggat gtgccactca gttcttcttt ttctcccttc tggttactac tgaaagcttt
361 ctattggcag tcatggccta cgatcgcttc atggccatct gcagtcccct gaggtaccct
421 gtgaccatgt gccctatggc atgtgcccgt ctggtcctgg gtgcctactg tggtggctgc
481 ctgcactcca tcatagagag cagcctcacg ttccggctgc ccttctgcag ctccaaccgt
541 atcaaccact tctactgtga tgtgccccca ttgctccagc tggcctgtgc tgacacaact
601 ctcaatgagc ttgtcatgtt tggcatctgt ggactcatca tcgtgtctac cactctcgtg
661 gtcctggtct cctatggcta catcacagtg accattctca ggatgcgctc tgggtcaggc
721 cggcacaagc tcttctctac ttgtggttca cacatgacag ctgtgtcctt gttttatgga
781 actgtgtttg tcatgtatgc tcagccaggc gctctgacat ccatggagca ggggaaagtg
841 gtctctgtct tctacaccct ggttatcccc atgctgaacc ccctcatcta cagcctgcga
901 aacaaggatg tgaaggatgc ccttaggagg ctgggacaga ggcacagtct tgtgaaggag
961 gatgtgcagt ga

Figure 2.7: Example of the GenBank file format, encoding a gene related
to smell in rats. Portions of the preamble is omitted here. Note that the
translated amino acid sequence is included. Notice the start- and stop codons
(ATG and TGA, respectively) appearing in the same reading frame.

16 CHAPTER 2. BASIC MOLECULAR BIOLOGY

The Vertebrate Genome Annotation (VEGA) database contains manually cu-
rated sequence annotation for a selected set of species, including Homo Sapi-
ens. Therein, human annotation data is the product of the Havana group of
Wellcome Trust Sanger Institute.

2.2.3 Genomic Meta-Information

Some projects output information that describes or categorises the primary
types of genomic data. An example is Mendelian Inheritance in Man (MIM),
available electronically through NCBI in the form of Online Mendelian Inheri-
tance in Man (OMIM). It is a database cataloguing heritable, genetic diseases
related to human genes. Searching with the name of a disease as keyword,
yields records relating this disease to specific genes. A search for cancer will
result in a long list of records relating different forms of cancer to different
genes. One such record is named ”Breast Cancer”. This record summarises
many years of research into the interplay of genetic variations leading to breast
cancer.

Another meta-information project is the Gene Ontology (GO) project. This
project consist of two distinct parts. The first is an ontology, that is a con-
trolled vocabulary for describing genes and their products. The second part
is the gene annotation database linking known genes with a set of GO-terms
describing the gene or gene product’s molecular function, its role in biological
processes and localisation to cellular components.

Recall from our search in OMIM, the result ”Breast Cancer”. One gene men-
tioned in this record is BRCA1 or Breast Cancer 1. Inputting this in the
search function on the GO web site yields a list of descriptions of this gene.
Among the most interesting are these biological processes in which BRCA1 is
involved:

F DNA damage response

F chromosome segregation

F positive regulation of DNA repair

F post-replication repair

This demonstrates the value of combining searches in several databases.

2.2.4 Details of the Human Genome

Table 2.1 lists some interesting updated details of the human genome. The
number of novel-, pseudo-, and RNA genes gives a slight indication of how
complex the system is. The length of the golden path is the length of the

2.2. BIOLOGICAL DATABASES 17

Assembly: NCBI 36, Oct 2005
Genebuild: Ensembl, Dec 2006
Known protein-coding genes: 21,541
Novel protein-coding genes: 1,199
RNA genes: 4,421
Pseudogenes: 2,081
Genscan gene predictions: 69,073
Gene exons: 275,708
Gene transcripts: 48,400
SNPs: 13,099,397
Base Pairs: 3,253,037,807

Table 2.1: Ensembl: Homo Sapiens Genome Statistics. Notice relative amount
of Genscan (An algorithm that attempts to find genes in unknown sequences,
using statistical methods) gene predictions compared to amount of known
genes.

longest continuous sequence that has been sequenced (actually put together
from a set of shorter sequences, sequenced laboratorially). The golden path
is commonly shorter than the total length, because the ends and centres of
chromosomes can’t be sequenced using current methods.

2.2.5 Summary

Biological databases form much of the basis for biology, biomedicine, bioin-
formatics as well as other scientific disciplines. To biologists researching in
the fields of metabolism and evolution, biological databases are an invalu-
able source of information. The development of software for comparison and
analysis of biological data is one aspect of bioinformatics. Indeed, bioinfor-
matics arose as a discipline from the need to create large databases to store
the rapidly growing amounts of biological data.

2.2.6 Genome Browsers

Genome browsers present genomic data from sources such as those mentioned
in the preceding sections. The insurmountable data amounts defining a species
is not suited for human comprehension textually. Genome browsers help users
understand this data through visual presentation. The following chapter de-
scribes motivating factors in more detail, and then examines a few existing
browsers.

Chapter 3

Introducing Genome
Browsers

3.1 Introduction

In this chapter, the concept of genome browsers is introduced in more detail.
How-, why-, and by whom such software is used is explained. The chapter
then examines a small selection of what has become a myriad of existing
solutions for visual interaction with genomes. I observe the main features of
these solutions, discussing if they should be pursued in a new, simpler genome
viewer. The main criteria for this is suitability for learning about the genomic
structure in general.

3.2 Genome Browsers

3.2.1 Motivation

With many organisms having been completely sequenced, the need for effec-
tive presentation of these genomes has arisen. Traditionally, an organism’s
DNA was either coding or non-coding. Research has shown that the ontology
is far more complex than this binary categorisation. While the complexity
of this data is shown to be more and more complex, the human capability
for understanding remains constant. The primary motivation for visualising
genomes is therefore to help understanding more of the picture regarding a
genome.

Using the human genome as an example, 3 billion (109) base pairs as plain
text, the futility of trying to gain understanding becomes apparent. Further-
more, there are a high number of features and objects in an organism’s genome
that constitute the defining parts of that genome. Considering Homo Sapiens,
the numerousness of different features are summarised in Table 2.1. Draw-

19

20 CHAPTER 3. INTRODUCING GENOME BROWSERS

ing a comparison between genomes is even more hopeless. Genome browsers
are attempts to ameliorate the situation. Genome browsers are tools that
present genomic information visually for different purposes. Genome browsers
rely heavily on biological databases. A selection of popular existing genome
browsers is explored in following sections. On the most basic level, a genome
browser displays entire genomes, utilising sequence data from one or more
species. The usefulness of visualising a character sequence is limited, however
displaying sequence annotation data on top of this quickly communicates more
meaning. This combination gives researchers a visible map of the genome and
the structure, product-coding status, regulation in different regions. Areas of
interest can be explored in progressively greater detail, right down to the very
sequence of amino acids or even bases.

3.2.2 Users

Traditionally there have been two general types of users of genome browsers.
Experts in fields such as molecular biology, genetics or medicine and non-
expert users who come across browsers by chance. Close to all existing
browsers are created with the first group in mind.

3.2.3 Abilities and Uses

A basic genome browser displays annotation data and/or sequence data. A
visual presentation of such information can be useful to a biologist or a medi-
cal doctor in researching a particular gene. The surroundings of the gene can
be explored for related features, and the relative level of genetic variation in
the area can be assessed.

Some genome browsers also have the ability to show sequences with anno-
tation from several organisms, aligned. This is useful when investigating com-
mon features of a number of organisms.

A genome browser might also display genetic markers. Put shortly, genetic
markers are ”identifiable portions of a chromosome whose inheritance patterns
can be followed”, according to Xiong [2006]. They can be used to hunt for
the genetic cause of a hereditary disease. It is known that the closer two fea-
tures are situated on a chromosome, the more likely they are to be inherited
together. Thus, finding a specific genetic marker, it is likely that the gene we
are looking for, which hasn’t yet been localised accurately, lies in the vicinity.
Finding the genetic marker in individuals with the disease while other indi-
viduals miss it, then points to the gene being at least partly responsible for
the disease.

A special use for genome browsers can be created by combining the ”ba-

3.2. GENOME BROWSERS 21

UCSC Genome Browser http://genome.ucsc.edu/
University of California Santa Cruz has this browser. Detailed and scientific.
Several organisms.
Ensembl http://www.ensembl.org
A cooperation between the European Bioinformatics Institute and European
Molecular Biology Laboratory. Detailed and complex browser. Many organisms
available.
NCBI Entrez Map View http://www.ncbi.nlm.nih.gov/mapview/
American national centre for biotechnology provides this browser. Comprehen-
sive and detailed. Links to OMIM. Many organisms.
X:Map Genome Browser http://xmap.picr.man.ac.uk/
Created by the bioinformatics group at a cancer-research group associated with
the University of Manchester, UK. Visualises clone distribution in the human
genome.
Argo Genome Browser http://www.broad.mit.edu/annotation/argo/
Developed at Massachusetts Institute of Technology. Open source. Possibility
of browsing several different genomes.
VISTA Genome Browser http://pipeline.lbl.gov/cgi-bin/gateway2
The Lawrence Berkley Laboratory is responsible for the VISTA family of soft-
ware tools which includes a genome browser. The browser is a dynamic java
applet and many organisms are available. It can visualise alignments of multiple
genomes.

Table 3.1: List of genome browsers

sic” data with other types of data. An example of such a browser is X:Map
which is further discussed later in the chapter. This browser is useful for
designing DNA microarray experiments. DNA microarray experiments probe
the expression level of genes. A microarray is a small chip with thousands
of probes, appearing as spots, representing the expression of a single gene.
Starting with a list of genes, selecting probes is typically done by accessing
the so-called clone database of a producer of microarrays. Affymetrix is such
a producer. Using the afore-mentioned genome browser, the researcher de-
signing this experiment can find clones for the neighbouring genes or features,
that in his eyes are also interesting for the experiment.

3.2.4 List of Genome Browsers

A list of some genome browsers follows, with name, web address, and short
description of each. Appearance in the list signifies notability, according to
the author of this thesis.

http://genome.ucsc.edu/
http://www.ensembl.org
http://www.ncbi.nlm.nih.gov/mapview/
http://xmap.picr.man.ac.uk/
http://www.broad.mit.edu/annotation/argo/
http://pipeline.lbl.gov/cgi-bin/gateway2

22 CHAPTER 3. INTRODUCING GENOME BROWSERS

3.3 Presenting a Selection of Browsers

The selection of genome browsers presented herein, contains two browsers
that are the responsibility of two of the largest bioinformatics organisations.
They are therefore assumed to be among the most advanced, feature-rich and
popular browsers. They are rich in detail and functionality. The selection
contains also a less known browser, selected since it stands out from most
other browsers in its simplicity and interaction style. Selecting just a few
browsers in this way will leave many out, some of which may be just as well
known as the ones that made my selection. One such browser is the University
of California, Santa Cruz genome browser. This is a popular and well known
browser, but it does not stand out from the first two on my list, when it comes
to functionality and appearance, and is thus left out.

The first genome browser I look at is Ensembl, a European browser. It is
quite complex, consisting of multiple views with different level of detail. The
second browser is the NCBI Map Viewer. This browser has much of the same
functionality as Ensembl, presented with a very different interface. The last
browser presented is X:Map which was created by the Bioinformatics Group
at the Paterson Institute for Cancer Research, which is connected to The
University of Manchester, UK.

3.4 The Ensembl Genome Browser

Ensembl is a joint project by the European Molecular Biology Laboratory
(EMBL), the European Bioinformatics Institute (EBI) and Wellcome Trust -
Sanger Institute (WTSI), to enable automatic analysis of genomes and gener-
ation of genome annotation. Besides sequence material download opportuni-
ties, their web-based genome browser provides a means for visually exploring
the genomes in their databases.

3.4.1 Using the Browser

Genome browsing is commenced by first selecting an organism from a list on
the index page of the web site. This will load an overview of the different
units that the selected genome consist of. In case of the human genome, one
will see 25 different chromosomes (chromosome 1 - 22, X and Y, as well as
chromosome MT representing the mitochondrial DNA). Clicking on any chro-
mosome, will enter Map View, which gives some details of the chromosome
and an overview of the selected chromosome, with 3 histograms showing the
spatial distribution of genes, GC-repeats and SNPs along the chromosome. A
screen shot of this overview is shown in Figure 3.1(a).

3.4. THE ENSEMBL GENOME BROWSER 23

(a
)

E
n
se

m
b
l:

O
v
er

v
ie

w
o
f

ch
ro

m
o
so

m
e

1
(b

)
E

n
se

m
b
l:

C
o
n
ti

g
v
ie

w

F
ig

ur
e

3.
1:

(a
)

E
ns

em
bl

:
O

ve
rv

ie
w

of
ch

ro
m

os
om

e
1

sh
ow

in
g

SN
P

s,
re

pe
at

co
nt

en
t

an
d

ge
ne

de
ns

it
y

al
on

g
th

e
ch

ro
m

os
om

e.
(b

)
E

ns
em

bl
:

T
he

3
di

ffe
re

nt
vi

ew
s

co
m

pr
is

in
g

C
on

ti
g

vi
ew

:
C

hr
om

os
om

e
ov

er
vi

ew
,

O
ve

rv
ie

w
an

d
D

et
ai

le
d

vi
ew

.

24 CHAPTER 3. INTRODUCING GENOME BROWSERS

Clicking this overview will open Contig View, centred to the clicked location.
Contig View consists of up to 4 separate views: Chromosome view, Overview,
Detailed view, and Basepair view. Chromosome view is an overview of the
entire chromosome and the current position within it. Overview is simply a
smaller, local overview. Detailed view shows a stretch of the current chro-
mosome 100 000 bases or 100kb (kilobases, thousand bases) long. Basepair
can show underlying amino acid- and nucleotide sequence, but is deactivated
when not zoomed in close enough. An overview picture of Ensembl Contig
view can be seen in Figure 3.1(b).

3.4.2 Interaction

Ensembl Genome Browser employs a click-and-wait like interaction style, the
reason for which lies in its web-based nature. Data for displaying is fetched,
analysed and displayed on the go.

The user has a plethora of tools for zooming in and out. Clicking and dragging
creates a rectangle which the user can select either to zoom in on, center on
or view in Base pair view. While clicking and dragging like this in either of
the overviews, selecting too large of a section to display in Detailed view or
Base pair view, results in nothing being displayed. Furthermore, right-clicking
in any view, opens a context menu with options for zooming in- or out and
centering. There are also input fields for entering a specific interval of bases
to display. A host of buttons allow quick access to specific zoom levels, and
functions for jumping set amounts of base pairs forward or backward, as can
be seen in the screen shot in figure 3.2.

3.4.3 Features Visible

By default, Ensembl Genome Browser displays several different types of fea-
tures and structures. Features in this context, includes genes, transcripts,
markers and features in general. Structures include single nucleotide poly-
morphisms. Different types of RNA, genes and so on are displayed, if present.
Furthermore, a distinction is made on the identifying source of the displayed
features. Features are organised into tracks that can be switched on and off,
being displayed or not. Each track displays a specific type of feature from a
specific source. Table 3.2 presents a short summary of some sources.

Certain tracks are displayed (switched on) by default, but the majority are
hidden. Still, the amount of detail presented in the default view is vast. In
addition, more often than not, a feature identified by one source is identified
by the other sources as well.

3.4. THE ENSEMBL GENOME BROWSER 25

Figure 3.2: Ensembl: Detailed view

Ensembl Features identified by Ensembl model predictions,
using the gene-building procedure in the Ensembl
analysis and annotation pipeline.

Vega Havana Features manually identified by the Havana group
at WTSI, obtained from the Vega database.

Vega External Features manually identified by an external group,
obtained from the Vega database.

SNAP Features predicted ab initio by the Semi-HMM-
based Nucleic Acid Parser.

Genscan Features identified ab initio by the GENSCAN
gene prediction program.

Table 3.2: Ensembl feature data sources
.

26 CHAPTER 3. INTRODUCING GENOME BROWSERS

3.4.4 Level of Detail

As previously mentioned, Ensembl supports, through the use of separate win-
dows, zooming from entire chromosomes down to the very sequence of amino
acids and even bases.

3.5 The NCBI Map Viewer

The National Center for Biotechnology Information is a department of Na-
tional Library of Medicine, which in turn is a branch of the United States
National Institutes of Health. It was founded in 1988 and provides access to
the genomic sequences in GenBank, medical publications in PubMed as well
as other databases of biotechnically related information. It provides search
functions to these databases through the Entrez search engine. The topic of
discussion is its Map Viewer. The Map Viewer supports search and display
of genomic information by chromosomal position. Regions of interest can be
retrieved by text queries (e.g. gene or marker name) or by sequence alignment
(BLAST - Basic Local Alignment Search Tool).

3.5.1 Using the Browser

Figure 3.3: NCBI: Genome view

In much the same way as the Ensembl Genome Browser, NCBI Map Viewer
opens with a selection of different species to choose from. In addition to a
list of species, there is a tree representation, showing the species, or groups of
species in a homology tree, a tree where the root is the common ancestor of
the leaves.

Once a species is selected, its selection of chromosomes are shown, with names,

3.6. THE X:MAP GENOME BROWSER 27

and icon size demonstrating relative lengths. This overview is depicted in fig-
ure 3.3. Clicking a chromosome opens the detailed view. The detailed view
shows features in a part of the selected chromosome. The user can zoom in
and out and an ideogram or mini map lets the user see the current position of
the view. The underlying base sequence can be shown by clicking the desired
point in the sequence.

3.5.2 Interaction

NCBI Map Viewer employs a click-and-wait style of interaction similar to that
of Ensembl’s browser.

Panning and zooming is done by clicking the chromosome which makes a
small floating window to appear, letting the user select from either: recenter,
zoom in x2, zoom in x4, zoom in x6, zoom in x8, or zoom out x2. Interaction
can also be done with the other tracks visible. The user is then given addi-
tional options, e.g. to view the sequence for the clicked gene.

The Map Viewer focuses heavily on availability of information, judging from
the amount of links to different databases provided in connection with features
visible in the browser. The large amounts of text necessary to provide this,
draws attention away from the visible features themselves.

3.5.3 Features Visible

The Map Viewer’s detailed view is column-based. The view can be seen in
figure 3.4. In Table 3.3, the content of each column is listed, from left to right.

3.5.4 Level of Detail

The detailed view can be zoomed in indefinitely. No additional detail is made
visible by doing this. If users want to see the underlying base sequence, they
must click the sequence maps and select show sequence, opening the sequence
up in a new window. The sequence can easily be put into BLAST for a
homology search.

3.6 The X:Map Genome Browser

X:Map is built on top of data from Ensembl and Affymetrix Chip Defini-
tion Files. Data from Ensembl is used to visualise features, while Affymetrix
Chip Definition Files are used to indicate probeset matches along the DNA
sequences. Its browsing interface is built using the Google Maps API (Appli-
cation Programming Interface). Google Maps is an online map service much
like map services found on Norwegian sites gulesider.no and finn.no. X:Map

28 CHAPTER 3. INTRODUCING GENOME BROWSERS

F
igure

3.4:
N

C
B

I:
M

aster
view

.
T

he
entire

chrom
osom

e
X

is
show

n
vertically

on
the

left-hand
side.

E
ach

line
describes

a
gene

located
approxim

ately
in

that
position

on
the

chrom
osom

e.

3.6. THE X:MAP GENOME BROWSER 29

Ideogram Map of the section of the chromosome currently under
scrutiny.

Contig Map of the sections of DNA that has been separately se-
quenced in this range.

Gene Clusters
(UniGene)

Map of the density of sequences that have been found to
be expressed as e.g. mRNA.

Genes on Se-
quence

Map of genes in this portion of the chromosome. They are
shown graphically as boxes on either side of a vertical line,
being on the forward or reverse strand.

Selected Genes 20 of the genes located in the region in view, with names
and IDs are listed. Lines are drawn pointing to each genes
location in the graphic showing genes on sequence, in the
preceding column.

Orientation The orientation of the selected gene in this row is illus-
trated with an arrow.

Links The neighbouring columns link the selected genes to dif-
ferent databases.

Evidence The evidence locating the genes to this area.
Cyto Which cytoband this gene is positioned in.
Description The last column contains descriptive data on each selected

gene.

Table 3.3: NCBI Map Viewer: Data columns and descriptions

is interesting in this context due to its simplicity. Because of this it falls closer
to what this project tries to accomplish than any of the previously discussed
browsers.

3.6.1 Using X:Map

When loading the web page, the browser loads a detailed view of the starting
30 000 base pairs of Homo Sapiens chromosome 1. A horizontal bar illustrates
the DNA sequence, and annotated features is shown as boxes over or under
this bar, depending on the strand on which the feature is located. In a hidable
Tools-panel docked to the right of the window, drop down boxes indicate which
species and chromosome are selected. The genome browser is immediately
ready for interaction. Figur 3.5 shows the view to which X:Map opens.

3.6.2 Interaction

Clicking and dragging pans the view left or right, while Google Maps style
buttons also pan the view as well as zoom in and out. Clicking the view places
a vertical red line, called the cursor, at the clicked location. Any Features
intersected by the red line, shows up in a list in the Tools-panel. In this list

30 CHAPTER 3. INTRODUCING GENOME BROWSERS

each feature is identified by an icon describing its type, a ’G’ icon identifies
Genes and a ’P’ icon identifies Probesets, and the identity of the Feature. An
example of this identity is ENSG00000177693. This is Ensembl’s id for this
gene. Clicking a feature in the list activates a view below the browser itself.
This view is split in two, with a tree representation of the selected feature on
the left, and a list of details on the right. For ENSGG00000177693, this view
is depicted in figure 3.6.

3.6.3 Features Visible

In X:Map, genes and their sub-features (transcripts, exons) as well as are visi-
ble by default. The feature tracks ESTs (Expressed Sequence Tags), Genscan
genes and DNA repeats can be switched on.

3.6.4 Level of Detail

The browser is limited in the level of zoom. At the closest level, the browser
shows approximately 20kb in a window of size 800 times 600 pixels. At the
farthest level, this number is approximately 180kb. However at this level,
the horizontal bar illustrating the DNA sequence which has marks at certain
intervals, is barely visible, and the marks are far from legible. What is more,
the boxes illustrating genes are uncommunicative, diffuse blobs.

The browser does however offer more detail than the display is able to show,
but only for the features themselves. A tree structure represents the fact that
a gene consists of one or more transcripts, which in turn consist of one or
more exons. Clicking either of these opens a list of details regarding it in the
right-hand part of the view. For genes, transcripts and exons, the following
details are all shown:

F Name (identity)

F Chromosome

F Start Position

F End Position

F Strand

For genes and transcripts type, status and description are also shown. For ex-
ons the sequence of the exon and a list of transcripts where this exon appears
is shown. This last item illustrates the many-to-many relationship between
exons and transcripts.

Above the list of details, there are links to Ensembl Gene view, Gene Cards

3.6. THE X:MAP GENOME BROWSER 31

Figure 3.5: X:Map Starting view

Figure 3.6: X:Map Details view

32 CHAPTER 3. INTRODUCING GENOME BROWSERS

and PubMed, the last of which performs a search with the gene’s name as es-
tablished by HGNC (Human Genome Project (HUGO) Nomenclature Com-
mittee). The first two links opens web pages with details on this gene as
provided by Ensembl and Gene Cards respectively.

3.7 Summary and Comments

In this section I will sum up the chapter by recounting which aspects of the
described viewers I will move forward with.

3.7.1 Functionality

Of the functionality described in the study of Ensembl, the following will be
pursued and elaborated on:

F Select organism : The possibility of browsing the genomes of different
organism.

F Overview of chromosomes : Presentation of chromosomes of the organ-
ism.

F Chromosome meta-information : Gene density and possibly SNP density
will be informative to the target group.

F Contig view : A view of the clicked area, showing attributes in the
region.

F Base pair view : The possibility of seeing the underlying sequence of
bases.

Several of these elements can be fused into one technical solution. In Ensembl,
three windows is needed to show an overview, attributes and base pairs. In
a simpler genome viewer, this three window solution should be scrapped. A
solution where the latter two are fused together will present less of a challenge
to users when learning to use the application. The highly restricted level of
zooming allowed in X:Map should be avoided.

3.7.2 Interaction

A simpler genome viewer should be more acutely interactive, in the sense
that the viewer should respond immediately to the user moving the view.
This may allow users to more easily maintain oversight whilst navigating.
The interaction style encountered in X:Map comes a long way in fulfilling this
wish. The ability in X:Map to click and drag gives a higher sense of interacting
with the genome, and should give a more intuitive experience compared to
that of Ensembl and Entrez. Buttons for quickly moving around is suitable,

3.7. SUMMARY AND COMMENTS 33

however too many buttons as in Ensembl’s ContigView, will undoubtedly
clutter the interface and disturb the user whose attention is focused on the
data presented. A simple interface more like that of X:Map has a much lower
threshold for learning to use, and will be more suited in a genome browser
aiming at simplicity.

3.7.3 Level of Detail

In the first two genome browsers examined in this chapter, users can zoom in
all the way from an overview of the chromosomes, to looking at the sequence
of bases. I intend to match this level of detail. However, as previously stated,
I intend to accomplish this in a different way than Ensembl and NCBI does.

3.7.4 Types of Features

The array of different types of features visualised in Ensembl Genome Browser
will be meaningless to the majority of the target group. Distinguishing be-
tween the different sources of the annotation data is therefore not necessary. A
single set of confirmed protein coding genes will be of greatest use in this case.

In X:Map, genes with all transcripts, and microarray clone targets, are the
only two tracks visible by default. Microarray clones makes limited sense to
put in a simpler genome viewer, mainly because the concept is unknown to
the target group. Recall that ESTs, Genscan genes and DNA repeats can
be switched on by checking their checkboxes. Of these, only DNA repeats
is suited for inclusion in the genome browser. Genscan genes information is
redundant when in addition to known genes. ESTs are significantly beyond
the theoretical basis of the target group, and would therefore be disturbing to
the simple picture they need.

As mentioned, DNA repeats might be interesting to include. However to
simplify the picture, in the visualisation they could be shown as ”genetic
variation”. Other features could be displayed in the same category, namely
SNPs, LINEs and SINEs. LINEs and SINEs (respectively Short- and Long
Interspersed Nucleotide Elements) are interesting especially in that they are
used for genetic fingerprinting.

Chapter 4

Analysis of Requirements and
Domain

We’ve now looked at a number of existing browsers, with respective qualities
in different areas of gene browsing. It is now time to look at what qualities
the new educational browser should have, and what challenges are offered
by the domain. The requirements presented in the initial part of this chap-
ter are conclusions based partly on the curriculum of the advanced biology
course in Norwegian upper secondary education [UDIR, 2006], and partly on
correspondence with a teacher in this course.

4.1 General Requirements

The genome browser should reflect the theoretical basis of the target group,
at the same time adding to it. This means that some simplification should
be made in certain aspects. The genome browser could still move beyond the
theoretical basis of the target group to add to its understanding of certain
topics.

Understanding of the DNA Structure in General

The genome browser should create a higher understanding of the DNA struc-
ture in general. There is a gap in understanding between the DNA at its
most basic level, a sequence of four different bases, to a higher level, sepa-
rate DNA-molecules known as chromosomes containing genes. The belief is
that presenting chromosomes and how shorter and longer genes are scattered
throughout, and allowing zooming in and out, will bridge this gap. Getting
a visual impression of the amount of ”junk” DNA versus expressed DNA, is
also helpful in obtaining this kind of understanding.

35

36 CHAPTER 4. ANALYSIS OF REQUIREMENTS AND DOMAIN

Understanding of Genetic Variation

The browser should give the target group a higher understanding of genetic
variation. Through topics in the curriculum, they are familiar with some
sources of genetic variation, and their impact on biological diversity. The ex-
istence of alternative splice variants and SNPs presented as sources of genetic
variation will broaden their understanding of the topic. Other sources of ge-
netic variation, although perhaps just as important, are disregarded in order
to simplify .

Understanding Genetic Diseases

The users will have the ability to search for genes that are associated with
diseases. Looking at one such gene in the browser, the user may see that there
are sources of genetic variation within this gene. This illustrates the associ-
ation between genetic variation and phenotype variation, and may heighten
the users understanding of genetic diseases.

Knowledge of some Biological Databases

Through use of the genome browser, one will become familiar with the ex-
istence of biological databases, and come into contact with information con-
tained therein. An example of this could be information from OMIM regard-
ing a specific gene, which will serve as a real-life example of a topic from the
curriculum.

4.2 Functionality

Present Genomes

Having the possibility to inspect a gene in different forms across different
species, can be an effective learning instrument. Studying insulin genes in a
selection of species will give valuable insight into evolution and phylogeny. Ide-
ally, the browser should provide possibility for browsing all available genomes.
Looking at the same gene in different species, will give a deeper understand-
ing of evolutionary processes. Observing differences in size and complexity
between a specific gene in mouse and its homologue in other species, is un-
doubtedly more powerful than a textbook chapter explaining the same con-
cepts.

Presents Chromosomes

Presenting the chromosomes allows comparison of chromosome lengths and
gene counts. In addition the density of SNPs and genes across each chromo-
some can be shown using a histogram. Such a presentation of the chromosomes

4.3. NON-FUNCTIONAL REQUIREMENTS 37

illustrates the heterogeneity of genomes. One can take advantage of this in
designing student exercises.

Browse Features

By visualising attributes as boxes of different size and colour on either of two
strands, the following important information is encoded: position, length and
type of attribute. This type of representation appears to be the standard,
judging from what is seen in chapter 3. The two strands represent the un-
wound double helix of DNA. This is perhaps the most critical requirement of
any genome browser.

Explain Intermediate Structures

An educational browser should offer a presentation of how the DNA double
helix is packaged into chromosomes. This is abstracted away in virtually all
existing genome browsers.

Provide Information in Norwegian

Textual information as a supplement to the visual presentation should be in
the target group’s native language, Norwegian. The information presented
should hold a technical level suitable for the target group.

4.3 Non-functional Requirements

4.3.1 Software Framework

The genome browser should ideally be implemented as a relatively generic
framework for displaying genomic data and linking external sources of infor-
mation to that data.

Provide an API

By providing a simple API, user programmed objects can access the genomic
information, the browser engine etc. and create specialised presentations, data
dumps or other output. A teacher might write an object that jumps through
the genome, stopping to present genes with a high degree of genetic variation
(SNP content above some limit).

Ease of Extensibility

The browser should be designed with the possibility of adding new annotation
tracks in mind. This is a feature of many existing browsers, and will allow the
browser to be extended , so that more professional uses are possible.

38 CHAPTER 4. ANALYSIS OF REQUIREMENTS AND DOMAIN

4.4 Domain Model

The human genome, with its roughly 3 billion base pairs and therein 20- to 25
thousand genes, presents a challenge in terms of storage and object oriented
representation. Moreover, while a DNA sequence might be structurally simple
enough (alternating A,C,T and G), the function of some parts of a sequence,
stored as sequence annotations, are not. The domain model evolving in this
section is not intended to cover our full understanding of DNA, nor is it
presented as the definitive model of the problem area. It is a pragmatic
attempt to cover the concepts of the educational goals of the new genome
browser.

4.4.1 First Draft

This is the first outline of the domain of DNA relevant to this project. Figure
4.1 represents a first draft of the domain model for the concepts of eukary-
otic genomes. A short presentation of the different classes appearing in the
diagram follows:

Species
Species represents a specific species, the Genome of which we are in-
terested in browsing. Technically there are occasions where a species
may have more than one Genome, there may be an older version or a
different build. However such details are disregarded in this project.

Genome
A Genome represents the known genetic information regarding a species.
A genome can be presented as a sequence, in which case it is not the
genetic recipe for a particular individual, but rather a summary of all the
individuals who have been studied to uncover the information present
in that genome.

Chromosome
The molecules into which eukaryotic DNA is organised. Different species
have anywhere from a handful to several hundred chromosomes [Khan-
delwal, 1990].

SNP
Represents an established variation in the genetic code of this species
in one specific base pair. SNPs are highly associated with genotypic
variation. They are used in genetic fingerprinting.

Gene
Represents a sequence of bases that is expressed through transcription
of the sequence. Genes are also regarded as units of inheritance.

4.4. DOMAIN MODEL 39

Figure 4.1: Domain Model, 1st draft

40 CHAPTER 4. ANALYSIS OF REQUIREMENTS AND DOMAIN

Repetitive Element, Centromere
Other features on the chromosome.

Transcript
This represents a mature transcript, mRNA, ready to be translated. As
explained in section 2.1, a transcript always includes one or more exons,
and occasionally includes an intron. This is reflected in Transcript’s
associations with Exon and Intron respectively.

Product
The results of expression of a gene are known collectively as gene prod-
ucts or just products.

Protein
A type of product.

RNA
A type of product.

Exon
A class representing coding regions within genes.

Intron
A class representing non-coding regions within genes.

Comments

There is a one to one relationship between Species and Genome. In addition
we are only interested in the Genome of a species. This makes inclusion of
a class Species in the domain model redundant. Letting binomialName and
trivialName describe a Genome instead, I can safely exclude Species without
losing anything of significance.

The features Repetitive Element and Centromere lie outside the educational
goals of this genome browser, and will therefore be overlooked.

4.4.2 Discussion

The concepts captured in the above section are simplified, yet cover more
than the demands of the curriculum of advanced biology in Norwegian upper
secondary education.

4.4.3 Domain Model, Rev. 1

In this revision of the domain model, following the discussion in the previous
chapter, Species has been cut. Furthermore, The decision to represent protein
coding genes exclusively, obsoletes the parts of the domain model pertaining

4.5. ARRIVING AT A CLASS MODEL 41

to product types. The revised domain model hence takes the form seen in
figure 4.2

Figure 4.2: Domain Model, Revision 1.

4.5 Arriving at a Class Model

This sections presents the class model finally used. It does not presume to
have found the most elegant class model, nor the most suitable. The class
model finally used merely passed the criteria of being simple, extensible and
easy to work with, and was thus used.

4.5.1 Introduction

The class model that was ultimately used, bore little comparison to the do-
main model. A simpler more general model was used, adapted from the do-
main model. The classes Gene, Exon, Intron and Transcript were removed in

42 CHAPTER 4. ANALYSIS OF REQUIREMENTS AND DOMAIN

favour of two generic classes: Feature and Structure. They are enumerated
types, an integer signifies whether a Feature is a Gene or a different Feature.
A Structure can for instance be an Exon.

The concepts Intron and Transcript were dropped. The existence of multiple
transcripts for a gene was thought to unnecessarily complicate the picture
given to users. The important theory was thought to be better presented us-
ing literature.

The result is a class model that is more generic while still being able to
represent the necessary data. A more generic class model is favourable when
potentially using multiple data sources with data structured differently. What
is more, the model gives the possibility of adding other types of attributes at
a later point in time. This class model is also conceptually easier to work
with. Yet, this model is not as descriptive as the domain model, it will do
little to explain the domain it represents. Instead data must be adapted to the
class model. There is a neglectable danger that this will impose unintended
restrictions.

Feature
Features is a loose classification of longer genomic attributes. Genes are
part of this category. The category could also potentially include LINES
and CNVs.

Structure
Structures is the counterpart of Features, a loose category of shorter
genomic attributes. Exons, SNPs, and potentially SINES are assigned
to this category.

4.5.2 Diagrams

The diagrams in this section presents the final class model used for the domain
classes. The first diagram, figure 4.3, presented represents the class hierarchy
involving the classes Feature and Structure, mentioned in the preceding sec-
tion.

The second diagram, figure 4.4, presents the comprising classes Chromosome
and Genome. The interfaces of all classes, i.e. the methods available are spec-
ified separately throughout the domain package. This is a deliberate attempt
to keep the implementation of the classes separate from the specification of
them. All references in class implementations should then go to interfaces of
other classes.

4.5. ARRIVING AT A CLASS MODEL 43

Figure 4.3: Class Diagram: Attribute Hierarchy.

44 CHAPTER 4. ANALYSIS OF REQUIREMENTS AND DOMAIN

Figure 4.4: Class Diagram: Comprising Classes Genome and Chromosome,
with respective interfaces.

Chapter 5

Designing an Educational
Browser

With a set of requirements of an educational browser in place and having
performed a pragmatic analysis of the data domain, we now move to deciding
the actual functionality of the new educational browser. I start by discussing
functionality to include, and then discuss the appearance of the functionality
included.

5.1 Basic functionality

This section describes the desired functionality of the new simpler genome
viewer. It was decided that a minimal version should first be completed,
before adding advanced functionality. The rationale behind this is to prevent
the finished product from being a set of half-finished features. Following
this rationale, the functionalities are divided into two groups, primary and
secondary priority.

5.1.1 Select a Genome

Selecting among different genomes might not be a crucial element of an ed-
ucational browser. The human genome is the most critical and interesting,
given the browser’s intention. Another rationale behind focusing on the single
genome, is that it allows more work to be put in to the remaining function-
ality. This aspect will set the browser apart from many existing browsers,
which allow browsing the genomes of a range of organisms. However this is a
functionality which will not be missed by the target group. There is adequate
complexity and interesting learning opportunities in the human genome alone.
Therefore, implementing the possibility to browser different genomes, receives
low priority.

45

46 CHAPTER 5. DESIGNING AN EDUCATIONAL BROWSER

5.1.2 Browse Chromosomes

Seeing the chromosomes distinctly is the first conceptually concrete middle
step on the way from a whole-genome view, down to a two-strand view. The
DNA of (a eukaryotic) organism is divided into chromosomes, something which
can be seen with the naked eye in a certain stage of cell division. Listing these
separate bodies of DNA material provides a good abstraction on top of the
DNA itself, besides reporting the number and sizes of the various chromo-
somes. The browser will therefore present the human genome firstly as a list
of chromosomes. Each chromosome is presented visually along with a set of
details pertaining to each chromosome. The set of details of each chromosome
include: Chromosome name, length, cytobands, and number of known genes.
A short comment on each detail follows:

Name
Distinguishing between chromosomes is done with the names of the chro-
mosomes. The name of a human chromosome could be ’10’, ’X’ or ’MT’.
Chromosome names are universal, a piece of literature may mention
chromosome 21, e.g. in connection with a disease, the same chromo-
some will be known as 21 in all other literature and databases.

Length
In presenting chromosomes it is important to illustrate their lengths
compared to each other. The length is denoted in basepairs.

Cytobands
Looking at chromosomes under a microscope, it is necessary to add a
dye in order for the chromosome to become visible. This staining results
in the patterns of stripes normally seen in graphical representations of
chromosomes. The chromosomes will be represented with this informa-
tion.

Known Genes
Illustrating the complexity of the greater picture, it is interesting to note
the content of known, protein-coding genes in each chromosome. One
will notice that this number is not strictly dependent on chromosome
length.

5.1.3 Explore Chromosome

Exploring a chromosome, browsing the interesting contents of a chromosome,
is perhaps the primary functionality of genome browsers. Though it varies
from browser to browser what features are interesting, all provide this func-
tionality without known exceptions. In this project also, exploring chromo-
somes is necessary in some form in order to fulfill the requirement of conveying
an understanding of the general structure of DNA.

5.1. BASIC FUNCTIONALITY 47

All of the genome browsers investigated in chapter 3 implement this func-
tionality using the abstraction of locating features in either of two strands.
This abstraction appears to be a baseline feature in most genome browsers.
A genome browser presenting the contents of a chromosome without regard
to strands will neglect an important aspect of DNA structure. Imparting this
knowledge to the target group being a central requirement, the new browser
will provide this functionality in the following way: Having selected a chro-
mosome to ’zoom in’ on, users will see the distribution of features across the
chromosome, on either of two strands.

Features Visible

What types of features being visualised, varied considerably in the browsers in
chapter 3. Ensembl genome browser is representative for a range of browsers
in that it shows features as ’tracks’ or layers on top of the representation of
the physical genome. More types can be added by switching on other tracks.
Likewise, the view can be simplified by switching off tracks. In this project,
avoiding the implicit demand that users declare which types of features to see
will contribute to lowering the learning threshold for using the browser. Pro-
viding a small, fixed set of all-important features to visualise is an admissible
simplification.

While exploring a chromosome, users will have the possibility to zoom in
on features. The types of features that visualised by the application include:
Genes, exons, SNPs (as genetic variation), nucleotide sequence. A discussion
on each element follows:

Genes
Genes often constitute the main feature of genome browsers, and other
features included are often linked to them. For example in the browser
X:Map, gene chip markers are shown on top of genes, simplifying the
design of an experiment for measuring a certain gene. Looking at genes
themselves is often a motivation for using genome browsers. To the
target group this certainly is true. The simplification of only includ-
ing known, protein coding genes is justified because of the theoretical
background of the target group.

Exons
The shorter sequences within genes that are translated into a product
during expression of a gene. Showing exons as constituents of genes
contributes to the targets group understanding of the DNA structure
in general, and is an important detail in gene expression. Alternate
splice variants are an important aspect in understanding genetic varia-

48 CHAPTER 5. DESIGNING AN EDUCATIONAL BROWSER

tion. Presenting exons is vital in conveying the full picture of one gene,
multiple transcripts, using a subset of exons.

SNPs
A SNP is a type of mutation and polymorphism that is quite easy to un-
derstand. Their association with genetic variation is highly researched
over the course of what in the field is a considerable amount of time.
Many diseases and other phenotypes well known to ’normal’ people have
been shown to be associated with SNPs. SNP information is therefore
a valuable inclusion in the browser. The browser will use SNPs to il-
lustrate genetic variation. To illustrate the informational value of the
distribution of SNPs, consider a map of a city at a police station. The
concentrations of pins in different areas expose the bad neighbourhoods.
A high occurrence of SNPs within or close to a gene indicates a gene
that is highly associated with phenotype variability.

Nucleotide Sequence
The visualisation of underlying sequences is possible in the Ensembl
Genome Browser. In NCBI Map Viewer, sequences are available for
download or as a link to NCBI’s sequence viewer, a separate web appli-
cation. In this project the inclusion of underlying sequences is intended
to better the users’ understanding of the general structure of DNA. The
helpfulness of providing sequences as raw data on the side will then be
limited. Zooming in close enough, the user will eventually see the under-
lying sequence of bases. In this way one can for example ”aim” at the
starting point of a gene and zoom in to see the special starting sequence
of that gene. This opportunity will hopefully contribute to bridging the
gap in understanding between DNA at its most basic level and what the
concept of a gene represents in other contexts.

Comments

As a consequence of the above discussions, the regions within genes not cod-
ing for proteins will not be visualised. These areas are known as introns
(from intra-genic regions), and they are commonly excluded in existing genome
browser, presumably to clean up the view. Introns do appear in a more de-
tailed picture, however they can be abstracted away when the focus is on a
general understanding.

5.1.4 Level of Detail

In some browsers there are no limitations on how much the strands can be
magnified. NCBI Map Viewer is one such browser. In other browsers such as
the Ensembl Genome Browser, zooming in can only be done to a certain limit.
Such a limit should only be set at a point where zooming in further provides

5.1. BASIC FUNCTIONALITY 49

no new understanding. In the Ensembl browser, zooming in beyond viewing
one base in the entire frame is impossible. In a browser where the nucleotide
sequence is available, this is a reasonable limit. No new understanding can be
gained from zooming in on parts of bases.

The X:Map browser employs a more stringent policy on zooming. At the
closest level, the in a standard-sized (800 pixels wide) browser window, about
20000 bases are visible. This doesn’t allow much detail to be presented graph-
ically. The browser presents other details using lists and tables instead.The
new browser borrows many concepts of simplicity from the X:Map browser,
such as the style of interaction. However, it should allow for the same level
of zoom possible in the Ensembl browser, since both can present nucleotide
sequences.

Another aspect is the hiding of certain feature types above or below certain
levels of zoom. When exploring a chromosome in the new simpler genome
browser, the initial view is of a relatively long stretch of DNA. At this level
only genes are visible. The user will have the ability of zooming in and out. As
the user zooms in, at a fitting level, the constituents of genes, exons, appear.
A fitting level is one that ensures that the number of objects (genes, exons)
visible at any time does not overload the user. With exons appearing when a
only a handful genes are visible, the risk of losing overview is

5.1.5 Gene Information

Providing gene information is done to various extents in existing browsers.
The users of a simpler genome browser, must be provided some information
as assistance in understanding what they see. Finding an optimum balance
between too much and too little information will make the browser a more
effective learning tool. Having found an interesting gene, the information that
a user can obtain on it is listed here:

F Name or ID

F Length

F Description

F Gene ontology keywords

Discussion

The result is a very limited set of features that will be visualised. In fact,
many features that are interesting elements in a genome have been left out.
Genes that have been deactivated through the course of evolution, pseudo
genes, are thought to play a role in regulating gene expression, and can be

50 CHAPTER 5. DESIGNING AN EDUCATIONAL BROWSER

switched on through mutation. Pseudo genes are but one example of other
interesting features.

5.2 Design Choices

In this section, I present design choices and discussions on these, regarding
visualisation in the browser.

5.2.1 Overview of Chromosomes

In some browsers, a graphical overview of a single or all chromosome is not
available. A checkbox is used to select between them. The new browser should
present chromosomes more intuitively, since it focuses on transmitting under-
standing. A chromosome with cytobands in correct colour, narrowed at the
centromere and rounded ends, is a common representation in current genome
browsers and in relevant course literature. By presenting an overview of chro-
mosomes in this way, the user sees something recognisable, and the learning
threshold in understanding the overview is lower.

Having selected a chromosome, most browsers change immediately to a presen-
tation involving the two strands of the DNA molecule. By doing so they ignore
the intermediate structures. Completely ignoring this, important structural
details are obscured from the target group. The breakdown from chromo-
some to two-stranded DNA is a series of steps involving different scaffolding
proteins and concepts which a traditional genome browser will be inept at
explaining. The new, simpler browser can offer a video sequence or a set of
images explaining this, along with links to relevant literature.

Also, when going from the chromosome overview to the two-stranded view,
users might become lost. To prevent the user from losing track of the context,
having a miniature map resembling the chromosome as it appeared in the
overview will be helpful. The miniature map can also serve as a reference,
showing where in the larger picture the view is currently concentrated.

Cytobands

Tagging the cytobands with their respective names might be defocusing to
the users, therefore only the coloration will be added. There is a danger that
more savant users will miss these important references, however, this insight
lies outside that of the target group.

5.2. DESIGN CHOICES 51

5.2.2 Exploring Chromosomes

As previously mentioned, in almost all cases the contents of a chromosome is
visualised as objects in either of two parallel strands going across the screen.
This the conceptually closest, easily implementable representation of the dou-
ble strand. This browser will make use of this representation as well. Where
some browser splits the screen in two and having one half represent the for-
ward strand and the other- the reverse strand, this browser will use two black
lines to represent the strands. Two lines is thought to lie closer to what the
users expect: the two strands of DNA.

An important design choice in this genome browser is the application of only
one view or window for presenting the DNA. This is in contrast to the Ensembl
browser discussed in chapter 3, where as many as 5 views could be active at
certain times showing different levels of detail. Using only one window will
potentially prove challenging, however, many windows imposes tougher chal-
lenges on the users, interpreting what they see.

5.2.3 Genes

Rectangles are a commonly used representation of features. Rectangles of a
certain colour corresponds to genes. By going for this representation, users
known to genome browsers will be right at home. Also, this representation is
used throughout the genre, and choosing a different representation dissociates
this browser from existing browsers in an unfavourable way. Therefore, genes
will be visualised as rectangles on either of two strands, indicating which
strand of DNA it is located on. Gene boxes will be green, setting them apart
from other features visualised as boxes of a different colour. Genes are the
largest features of a chromosome visualised by this browser. Therefore genes
are the first features that are visible. Smaller features, e.g. exons, are not
shown until the user zooms in.

5.2.4 Exons

Following the rationale for using rectangles as representation of genes (and
features in general), Exons will be represented as rectangles as well. When the
user zooms in close enough, exons will appear. Like in NCBI and Ensembl,
looked at in chapter 3, they will not be visible until zoomed close enough.
This prevents the view from being swamped with too many objects. During
experiments, I have found that when there are only a handful genes visible,
it is suitable to let exons appear. This occurs when the relationship between
pixels and bases is about 10−3, meaning 103 bases are represented by each
pixel. Exons will in the same way as genes, be visualised as boxes inside
genes. Exon boxes will be blue.

52 CHAPTER 5. DESIGNING AN EDUCATIONAL BROWSER

5.2.5 SNPs

Using data from the Ensembl browser, SNP count for the shortest human
chromosome, number 21, is 178’438, while the total length of the chromosome
is 46944323 bases. For comparison, chromosome 21 has 284 known, protein
coding genes. So, a SNP occurs on average every 263. base. All this means
that at the same level of zoom where exons become visible, 3802 SNPs would
be visible. This must be considered when deciding how to present the presence
of SNPs visually. At this point, representing individual SNPs along the strands
will only become effective on a much closer level. At all other levels of zoom,
a diagram indicating the density of SNPs will likely be more intuitive. In
the Ensembl browser, a histogram in the form of a bar chart is used to show
the density of SNPs in different parts of the chromosome. A bar chart or
alternatively a curve chart are two options.

5.2.6 Sketches

The following section presents sketches of the browser illustrating the design
choices sketched out in the parent section. They are based in part on an early
prototype and in part on sketches.

Sketch 1

The first sketch shows a portion of a chromosome, with two horizontal lines
symbolising the DNA strands, and features of different type symbolised by
coloured rectangles.The sketch also features a bar chart histogram for indi-
cating SNP density, similar to the what is used in the Ensembl browser. The
use of a bar chart in this setting is counterintuitive because the shapes in a
bar chart coincidentally are somewhat similar to the boxes representing genes
and exons.

Sketch 2

In this sketch (figure 5.2), a curve chart represents SNP density. This repre-
sentation is more subtle than the one presented in the first sketch, and will
perhaps for that reason, be more intuitive.

5.2. DESIGN CHOICES 53

Figure 5.1: User Interface Sketch 1. Top: A bar chart histogram of SNP den-
sity. Middle: Forward strand with some genes and exons. Bottom: Reverse
strand.

Figure 5.2: User Interface Sketch 2. Second from the top: A curve chart
histogram of SNP density.

Chapter 6

Construction

This chapter presents aspects and discussions regarding the construction of
the simpler genome viewer. Put shortly, the most technically interesting areas
of the genome browser are the obtaining and handling of a large amount of
data, the display of a high number of graphical objects on the screen. These
aspects will be detailed further in this chapter.

6.1 Deciding on a Programming Language

This section discusses the choice of a language for implementing the new
genome browser. While Java, for a number of reasons, was selected early on,
a discussion of natural options is still in order. Two languages were taken into
consideration:

6.1.1 C++

For an application with emphasis on graphics, it is natural to consider C++.
Its creator Bjarne Stroustrup set out to improve C with features Simula that
he had found useful for large scale software engineering. C had been designed
with rapid execution in mind, and was a general purpose language. Tradi-
tionally one has had the idea that only a language that is sufficiently low level
will perform well enough. In C++ one has direct access to system libraries,
such as OpenGL which will be introduced later.

Virtually a dogma of programming languages is the fact that C++ is not
suited as a first language for learning programming. An argument often raised
is the type safety of pointers, which can be broken. Experienced program-
mers might use this effectively, however novice programmers experience this
feature unknowingly. A common criticism of C++ is that it supports different
programming paradigms and has a vast number of functional features, both
high-level and low-level, supported in the language, this allows programmers

55

56 CHAPTER 6. CONSTRUCTION

to solve a problem in many different ways. This is reflected upon the learning
curve which reportedly is relatively steep. Mastery of the language is said to
take several years.

The same multiplicity of possible approaches that for novice programmers
presents a significant learning barrier, is a mark of quality to more expe-
rienced programmers. It allows rapid implementation of code for a certain
problem, which may have a low degree of readability to less experienced pro-
grammers.

The standard library of C++ is a collection of classes and functions. It
contains data structures, input- and output streams, common mathemati-
cal functions, and other useful functions. It also contains the C standard
library. In addition to the standard library, there is an abundance of third
party libraries readily available. There are no language features supporting
creation of multi-threaded software. Third party libraries or system calls must
be used, potentially creating portability issues.

There still exists a performance gap between C/C++ and Java, however it is
probably less significant than most programmers realise. Optimised versions
of a Java port of Quake 2, a 3D first person shooter initially implemented in
C, have achieved 85 - 100% of the performance of the original version [Stöckel,
2006]. At a programming language comparison central (Computer Language
Benchmark Game), C++ outperforms Java by 10- to 400 percent in a range
of programs (algorithms), in terms of processing time.

The lack of portability of C++ is often pointed out as a weakness. C++
code is compiled to binary machine code executable on a particular platform.
Hence, a program must be compiled to two different targets by a compiler
in order for it to run on two different platforms, e.g. windows and a Linux
distribution. A further aspect is the lack of standards compliance among the
available c++ compilers. Even after the first ratification of the language stan-
dard in 1998, the implementation of certain features are left up to compiler
creators to decide. A consequence of this is that object code produced by dif-
ferent compilers is incompatible. In spite of this, writing portable C++ code
is possible, by following specific guidelines available from a variety of sources.

6.1.2 Python

Python is another option. It was created by Guido Van Rossum with em-
phasis on readability, simplicity and modularity. It is normally applied to
application development, scripting, and education. Python is an interpreted
language with major implementations of the interpreter implemented in C,
Java, and .NET.

6.1. DECIDING ON A PROGRAMMING LANGUAGE 57

Python aims at being the number one language for learning computer pro-
gramming. To achieve this, its syntax was designed to be highly readable.
English text is used instead of punctuation, and program blocks are denoted
by fixed-width indentations. Furthermore, Python supports language fea-
tures found in functional-, object oriented-, and imperative programming.
This ensures that a particular style of programming is not forced upon its
users. Lastly, Python’s creators argue that dynamic typing is favourable when
learning computer programming. While being able to use a statically typed
language is important in the long run, overlooking this complexity allows ad-
vances in more important areas early on.

Python sports a large standard library, often mentioned among its greatest
strengths. It includes support for a selection of formats and protocols, making
Python excel at internet oriented usage. The standard library, in addition to
facilities typically offered by other standard libraries, includes a unit testing
framework.

A feature of Python’s design is extensibility. Additions to the standard library
can be realised in either Python or C. In fact, any library in pre-compiled ma-
chine code is usable from Python. Python bindings for OpenGl are available.
In addition, higher level libraries for developing applications embedding 3D
are numerous. Several of these label themselves ’game-engines’, reflecting
their features and intended use.

An objection often raised, is the performance of Python. Being interpreted,
Python will perform considerably poorer than compiled languages like C++
and half-way compiled languages like Java. At the Programming Language
Benchmark Game, C++ is up to 277 times faster than Python (processing
time). In Memory usage, though Python suffers less, and even outperforms
Java. Poor performance is often traced to loops doing manipulation of nu-
merical data. In such situations, the use of third party, pre-compiled data
structures will remove much overhead.

6.1.3 Java

A structured, imperative, object oriented language, Java was developed by
Sun Microsystems and released in 1995. Its syntax is largely based on C and
C++, but its object model is somewhat simpler. Still, the object model of
both languages have many similarities, being reimplementations of the object
model of Simula, arguably the first object oriented programming language.

The main ideologies of the language were platform independence, network pro-
gramming support and selecting the object oriented programming paradigm.

58 CHAPTER 6. CONSTRUCTION

Platform independence is achieved through compiling Java programs half way,
to Java byte code. This byte code is then run on a virtual machine, in a sense
a program that understands Java byte code. This is a continuance of an idea
employed by e.g. Pascal. With version 1.3, Java received a new virtual ma-
chine, Java HotSpot Virtual Machine, offering just-in-time compilation. This
is a technique that reduces run-time by compiling heavily used parts of the
byte code into native-language code.
Java became increasingly popular due to several factors. Among these is the
fact that quite early, major web browsers started getting support for running
Java Applets. This allowed rapid publishing of relatively advanced applica-
tions online. The supporting library grew steadily in size from the initial
release, notable APIs added early on are Swing and Java2D, which is revis-
ited later. It saw it’s biggest expansion with the release of version 1.4 in 2002.
Among the new features were: A facility for reading and writing images in
different file formats (Image I/O), regular expressions, and an XML1 parser.
Later versions, 1.5 and 1.6 have seen even further extensions of the supporting
library and the language itself.

Another source of Java’s popularity is the fact that it is developed, starting
with version 1.4, as a community process (known formally as Java Community
Process or JCP). Proposals for new features take the form of formal documents
called Java Specification Requests, which are voted on by the JCP Executive
Committee. By mid 2007, Sun had released Java as open source software,
spawning a myriad of projects adapting and developing new implementations
of Java. A large community of developers means that help and documentation
is abundant.

6.1.4 Conclusion

Comparing C++, a multi-paradigm language to a language such as Java which
employs a narrower set of paradigms is unfair, since they are of different merit.
The conclusion is therefore not that C++ is a lesser programming language,
it is simply less suitable for use in this project, by a novice C++ programmer.

Python might have been better suited as a language to learn from scratch
than C++. However, there are no weighty technical advantages of using
Python. A personal suspicion that Python is less suited as a language for
developing large applications further excludes Python as an option.

Choosing a programming language should ideally be done in the same way as
a carpenter chooses a tool for a task. The best tool for the job is the only

1XML - Extensible Markup Language. A standard language for marking up information,
making it parsable in an implementation-independent way. Further information available in
chapter B

6.2. GRAPHICAL FRAMEWORK 59

criteria. Ultimately, ones own personal preference is a factor as well.

6.2 Graphical Framework

This section will detail the selection of a platform for the genome browser’s
graphical component. Java has built in two-dimensional graphics capability,
Java 2D. There are also alternatives to Java’s built-in graphics API (Appli-
cation Programming Interface), Jogl is one such alternative. In discussing
Java2D and Jogl, I also illustrate differences in complexity in drawing one
simple shape to the screen.

6.2.1 Demands

The desired level of interactivity demands the drawing of a high number of
graphical objects on the screen. The designed functionality of the genome
browser allows the user to arbitrarily choose level of zoom. At one extreme,
browser must display all the features on that chromosome, i.e. the entire chro-
mosome is visible. Features that are longer than the length of the chromosome
divided by the width of the browsers frame will then be displayed. This, cou-
pled with the need for processing large amounts of data in the background,
means special considerations should be taken.

6.2.2 Java 2D

The Java2D API was released with the first version of Java, version 1.0. It
has since then been optimised and given new features. Most recently it has
been made to interoperate with 3D OpenGL rendering. This allows Java 2D
graphics to be mixed with rendering created by the alternative discussed in
the next section.

The Java 2D API comprises convenience classes for displaying and manipulat-
ing a wide array of geometrical shapes, text and images. In theory, drawing
a simple line in Java 2D entails the following steps: Creating a line segment;
transforming it according to the current transform; stroking it to create a
thin rectangle; telling the shape to compute the pixels being affected, gen-
erating the pixels using java.awt.Color.BLACK, and then compositing the
results onto the screen, or to a different destination. Other destinations could
be a printer, a memory location, or an object accepting Java 2D images for
conversion into Vector Graphics files, a testament to the versatility of Java 2D.

Compared to OpenGL it provides a higher level approach to drawing.

60 CHAPTER 6. CONSTRUCTION

Drawing a Rectangle in Java 2D

Drawing a rectangle in Java 2D entails the following steps:

F Override e.g. a JPanel’s paintComponent method

F Create an instance of Rectangle2D.Double

F Use the Graphics instance (argument to method in step 1) to paint the
instance.

An illustrative code snippet is shown below:

// Declare square as a c l a s s−
// a t t r i b u t e in a s u b c l a s s o f JPanel

private Rectangle2D . Double square =
new Rectangle2D . Double (10 , 10 , 350 , 3 5 0) ;

public void paintComponent (Graphics g) {
// Clear the drawing area :
c l e a r (g) ;
// Cast to Graphics2D , has more f u n c t i o n a l i t y :
Graphics2D g2d = (Graphics2D) g ;
//Use graphics−o b j e c t to draw the square
g2d . draw (square) ;

}

Comments

The first pair of arguments to the constructor of Rectangle2D.Double are x
and y coordinates in the panel, of the upper left corner of the rectangle. The
second pair specifies width and height of the rectangle, respectively.

Java 2D was considered as the technical solution for the graphical engine,
due to its versatility and simplicity. I conducted a small-scale test to see how
it handled large amounts of objects moving on the screen.

6.2.3 Jogl - OpenGL Bindings for Java

OpenGL (Open Graphics Language) is a specification put forth in 1992 by
Silicon Graphics Inc. Its intention was to standardise access to hardware,
ameliorating the situation at the time where each graphics hardware vendor
had custom interfaces and drivers. The advent of OpenGL led to hardware
manufacturers supplying drivers which could be communicated with in the
way OpenGL specified.

6.2. GRAPHICAL FRAMEWORK 61

Jogl (Java Binding for the OpenGL API) is a project that provides Java ap-
plications access to the APIs in the OpenGL 2.0 specification, through Java
Native Interface. It is currently being developed by Sun as a Java Commu-
nity Process. Access to OpenGL APIs means that the rendering capabilities
of the graphics hardware can be utilised from within Java. Using OpenGL
standard also lets one take advantage of the documentation readily available
for OpenGL.

6.2.4 Other Alternatives

There are other alternatives for hardware-near graphics programming in Java.
Java3D is an API developed by Sun first released in a beta in 1997. It provides
abstractions on top of either OpenGL or Direct3D, Microsoft’s alternative to
OpenGL. Java3D provides an object oriented approach to 3D programming,
with drawing based upon a data structure called a scene graph. In a scene
graph, the various elements to be rendered are represented as objects in a di-
rected acyclic graph. This eases organisation of large scenes. Moving a rider
and his horse is done just by moving the horse, the rider is located after the
horse in the scene graph and inherits the horse’s position.

The lightweight java gaming library (LWJGL) is another higher level alter-
native. Developed as an open source project, the ApI has the goal of making
a number of multi-platform technologies for game programming available in
Java. These technologies include OpenGL, Open Audio Language (OpenAL),
interfaces to game controllers and joysticks, and imaging- and music libraries.
The philosophy of LWJGL is to expose these technologies, either unavailable
or poorly developed in Java, as a thin API Layer. In this respect, LWJGL
lies somewhere between Jogl and Java3D.

The added workload of learning a larger and perhaps more complicated API
could be defended by the simplicity offered. However there was a suspicion
that the drawing to be done in this project was not of a nature that would
benefit noticeably from this. A relatively simple way of presenting the vari-
ous genomic features was opted for, as explained in chapter 5. Moreover, the
authors personal interest in gaining experience with OpenGL played in. Jogl
is thus the simplest API, providing the closest mapping of OpenGL and no
abstraction to drawing.

Drawing a Rectangle in Jogl

Using Jogl, drawing anything requires roughly the following steps:

F Create a class implementing the interface GLEventListener

F Implement the 4 methods specified, among these display

62 CHAPTER 6. CONSTRUCTION

F In display, get an instance of GL

F Make 4 calls to glVertex to create the 4 vertices of the rectangle.

An example of the display method is shown below:

public void d i s p l a y (GLAutoDrawable arg0) {
GL g l = arg0 . getGL () ;

// Set the c l e a r i n g c o l o u r to whi te
g l . g lC l ea rCo lo r (1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f) ;
// Clear the necessary b u f f e r s

g l . g lC l ea r (GL.GL COLOR BUFFER BIT | GL.GL DEPTH BUFFER BIT) ;

// Let the b u f f e r know t h a t we ’ re s t a r t i n g to draw , as w e l l as what .
g l . g lBeg in (GL.GL QUADS) ;

// Set drawing c o l o u r to b l a c k .
g l . g l C o l o r 3 f (. 0 , . 0 , . 0) ;

//Draw 4 v e r t i c e s at the 4 corners o f the r e c t a n g l e .
g l . g lVe r t ex2 i (5 , 5) ;
g l . g lVe r t ex2 i (10 , 5) ;
g l . g lVe r t ex2 i (10 , 1 0) ;
g l . g lVe r t ex2 i (5 , 1 0) ;

//We’ re done , the area w i t h i n the
// v e r t i c e s are f i l l e d accord ing to the
// chosen c o l o r
g l . glEnd () ;

6.2.5 Technical Comparison, Java 2D and Jogl

In order to compare Java 2D and Jogl, a simple benchmark application was
created. A version using either platform was written. Both applications use
the same algorithm. The algorithm proceeds textually as follows:

1. Set rectangle size equal to screen size.

2. Fill screen with as many rectangles as there is space.

3. If the time taken is more than 1 second, terminate.

4. If not, reduce size of rectangles.

5. Repeat from step 2.

The application terminates when it has drawn the maximum possible amount
of rectangles on the screen within a second. The results, shown in Table 6.1,
show that Jogl outperforms Java 2D more than 15 times.

6.2. GRAPHICAL FRAMEWORK 63

Amount of Rectangles
Java 2D 774
Jogl 15446
Java 2D w/ Hardware Acceleration 3777

Table 6.1: Benchmark results

Through optimisations and putting newly developed hardware capabilities to
use, Jogl can render even faster. This is also true for Java 2D: Enabling a
feature introduced in Java 2D in mid 2007 allows Java 2D to render with
hardware acceleration. This boosts the performance of Java 2D considerably,
however it is still outperformed by Jogl.

What is presented here is the result of a highly specialised benchmark of
Java 2D and Jogl. An exhaustive test would test each API using different
render methods and filtering techniques, comparing the changes in results
across these tests. One would for example expect Java 2D to suffer less from
enabling anti-aliasing, as its graphics pipeline is specialised for these sorts of
filtering techniques. A truly exhaustive comparison of the two APIs would
require other test designs as well. Still, this test mimics the usage for which
the graphics APIs are needed, drawing a large number of rectangles. This
taken into consideration, the test gives a good indication of the performance
to be expected from the two APIs.

6.2.6 Comments

Drawing with Jogl is obviously done on a lower level, programmatically. As
opposed to Java 2D where one is working with geometrical primitives, one is
working solely with vertices (and transformations), and resolve the coordinates
required to draw the shape.

6.2.7 Choosing Jogl over Java 2D

While Jogl lacks the versatility of Java 2D as mentioned above, Jogl pro-
vides direct access to the graphics hardware, freeing the CPU of work re-
lated to drawing. Calls to OpenGL functions return instantly, allowing the
Java thread to continue, while the function called waits for execution in the
OpenGL pipeline. This opens for higher performance compared to Java 2D.
A consideration when using a non-standard library, is the impact it may have
on platform independence, and how the application is to be distributed. Jogl
requires two libraries, and a dynamic link library (DLL) in order to run. Dis-
tributing the software as a Java Web Start application (requires Java Runtime

64 CHAPTER 6. CONSTRUCTION

Environment 1.4.2 or newer), allows these resources to be automatically down-
loaded.

6.3 Investigation of Data Size

One goal of this project is for the browser to display annotation data for a
genome, initially focusing on the human genome. The browser should also
attempt to present the underlying DNA sequences. This section presents an
investigation into the total size of the data to be handled. I first summarise
what data is needed, secondly, I investigate the size of each component. Equa-
tions are presented in the summary of this section.

6.3.1 Data to be Retrieved

In chapter 5 the features to be displayed for different parts of the human
genome was presented. Here is a short summary of this.

F Chromosomes (Genome data)

F Genes (Annotation data)

F Exons (Annotation data)

F SNPs (Annotation data)

F Whole-genome sequence data (Sequence data)

An investigation into the total size of this data now follows.

6.3.2 Chromosome Data

Tables 6.2 and 6.3 sum up the data for chromosomes. A chromosome has an
average of 40 cytobands. Summing up this information, equation 6.1 reveals
the data size of chromosome information is as good as insignificant by present
standards.

Field Type Size (Bytes)
Name String 10
Length Integer 4
Amount of Genes Integer 4

Table 6.2: Data stored for a chromosome

6.3. INVESTIGATION OF DATA SIZE 65

Field Type Size (Bytes)
Cytoband name String 12
Cytoband start Integer 4
Cytoband end Integer 4
Cytoband color/shape String 16

Table 6.3: Data stored for a cytoband

Field Type Size (Bytes)
ID String 30
Starting base Integer 4
Ending base Integer 4
Strand Boolean 1 bit

Table 6.4: Data stored for an attribute

6.3.3 Attribute Data

The data in Table 6.4 is generic data stored for attributes of all kind. With the
limitations introduced in section 5.1, approximately 450 000 attributes will be
viewable. Equation 6.2 shows that although numerous, the size of attribute
data is surmountable.

6.3.4 Feature Data

In addition, attributes classified as features, e.g. genes, are further specified
by the data listed in Table 6.5. About 25000 features are also genes. Equation
6.3 shows that larger fields mean that feature data is the largest component.
Still the size is not deterring.

6.3.5 Summary

The inclusion of SNP information into the browser has been omitted due to
limited time. The following equations sum up the previous chapters:
chromosomes:

25 ∗ (10 + 4 + 4) ∗ 40 ∗ (12 + 4 + 4 + 16) = 648000 (6.1)

attributes:
450000 ∗ (30 + 4 + 4) = 17100000 (6.2)

Field Type Size (Bytes)
Name String 20
Description String 1000
Type Integer 4

Table 6.5: Data stored for a feature

66 CHAPTER 6. CONSTRUCTION

features:
23000 ∗ (20 + 1000 + 4) = 23552000 (6.3)

The total size of this data, below 50 MB, is highly manageable. In addition
to this data, is the sequence data to be displayed on high levels of zoom. A
study into the handling of this is made in section 6.8.

6.4 Evaluation of Data Sources

An important decision in this project is the source of the data to be displayed.
As seen in section 2.2, databases offering annotation data and sequence data,
are abundant. The following sections presents two alternatives that have been
considered.

6.5 NCBI Entrez

One of the major databases for sequence data is GenBank. It is hosted by
NCBI which provides tools for developers for accessing GenBank and other
databases. Entrez is NCBI’s web interface towards GenBank, and other
databases, for searching, displaying and downloading data. Entrez has a set
of development tools for building specialised data pipelines, called eUtils. One
such tool is used to search for records in specified databases, using a string, or
other type of term. The result is a list of matching records appearing in order
of relevance. Another tool can then be used to retrieve the most relevant one.
Results take the form of XML documents. A short introduction to XML can
be found in chapter B. Many different types of data are available through
the eUtils, and advanced ways of relating data are possible using the different
tools. Information in a particular database might have links to information
in other databases, enabling the creation of powerful specialised data mining
tools.

A procedure for retrieving some data using eUtils could progress in the fol-
lowing way, using the two most intuitive eUtils, ESearch and EFetch:

1. Construct a URL to the search tool (e.g. ESearch), with parameters
(eg. ?db=nucleotide).

2. Post the URL with HTTP-GET.

3. Interpret/parse the XML response, possibly obtaining a primary ID

4. Create a new URL, now to the EFetch tool, with the obtained primary
ID as an obligatory parameter.

5. Post URL and parse the XML response.

6.5. NCBI ENTREZ 67

Primary IDs

All records are denoted by a primary ID, which is returned as the results of
searches, and expected when fetching records. Primary ID is a generic name
for the ID of a record available through eUtils; For records stemming from the
taxonomy database, the primary ID is the TAXID, while the primary ID of
records in the nucleotide database is the GI number. This is important when
pipelining searches across different databases.

Databases

The databases accessible through the eUtils aren’t necessarily concrete databases.
E.g. the first database, nucleotide, contains/provides access to nucleotide se-
quences stored in several different databases. There is an interactive map of
the Entrez database model helping to understand this.

F nucleotide
Contains nucleotide sequences. Each record typically represents a sepa-
rate gene.

F genome
Contains whole chromosomes, sequence contigs and genetic- and physi-
cal maps.

F omim
Contains records for genes, and their relatedness to diseases or other
phenotypes, and records for diseases mentioning related genes.

F protein
Contains protein sequences for different genes.

F pubmed
Contains entries describing publications in the pubmed databases, with
abstracts and links to downloadable full text copy.

F taxonomy
Taxonomy database records each organism represented with sequence
data in Entrez.

eUtils tools

eUtils tools are accessed with a URL pointing to the tool script, with parame-
ters. The possible parameters differ for the respective eUtils. Some parameters
are required, while others are optional. These are the tools that make up the
eUtils, as described by Sayers and Wheeler [2007].

68 CHAPTER 6. CONSTRUCTION

F EInfo
Provides a list of all databases. If parameterised, it provides details for
the database in question (field info, update dates etc.).

F ESearch
Searches a specific database, Responds with a list of resulting IDs.
Searches PubMed by default.

F EGQuery
Tests how many hits are generated in each accessible database by a text
query.

F ESummary
Takes a list of IDs, returns the summaries of these records.

F EPost
Takes a list of IDs, saves it, and returns a query used to retrieve it.

F EFetch
Returns the data records denoted by a list of IDs. The WebEnv of a
search or other query can also be given.

F ELink
Can be used to relate records in a database to associated records in
either the same database or in another Entrez database.

An example query

An example query now follows. In this example A search for the terms ”horse”
and ”insulin” is made. Then one of the resulting records is fetched. For ref-
erence the base URL of all of the eUtils is given here:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/

The search for horse insulin is performed using the ESearch eUtil, by pa-
rameterising the HTTP request to ESearch, one can specify the search term
as well as additional directives. The URL of the ESearch call:

esearch.fcgi?db=nucleotide&term=horse+AND+insulin&usehistory=y

Notice the parameters db=nucelotide, term=horse+AND+insulin and
usehistory=y, specifying which database to search, the search term and opt-
ing to store this search on the server for easily retrieving the results. The last
option results in the addition of a WebEnv code in the result. This can be
seen as a type of browser cookie, used to remember this search.

The result is given as an xml file:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/

6.5. NCBI ENTREZ 69

<?xml version=” 1 .0 ”?>
< !DOCTYPE eSearchResu l t PUBLIC
”−//NLM//DTD eSearchResult , 11 May 2002//EN”>
<eSearchResu l t>

<Count>80</Count>
<RetMax>20</RetMax>
<RetStart>0</ RetStart>
<QueryKey>1</QueryKey>
<WebEnv>0wolhZKRxGEZ−o I 6 S i i

ZwjoS0DdBy4S9i−−KZxrDWo2xCr
jDYOptpUiMBFrwbTox5ySiuq0R
ogVz9@40510C507E9D2720 0195SID</WebEnv>

<I d L i s t>
<Id>126722830</ Id>
<Id>169264560</ Id>
<Id>169264559</ Id>
<Id>167621432</ Id>
<Id>155969720</ Id>
<Id>47523915</ Id>
<Id>126352613</ Id>
<Id>154089545</ Id>
<Id>149758908</ Id>
<Id>149758890</ Id>
<Id>149758872</ Id>
<Id>149758870</ Id>
<Id>149757787</ Id>
<Id>149757777</ Id>
<Id>149756157</ Id>
<Id>149755414</ Id>
<Id>149745103</ Id>
<Id>149745051</ Id>
<Id>149741614</ Id>
<Id>149738505</ Id>

</ I d L i s t>
<Trans la t i onSet>
</ Trans la t i onSet>
<QueryTranslat ion></ QueryTranslat ion>

</ eSearchResu l t>

Fetching these results can now be done by extracting the WebEnv and QueryKey
fields, passing these as parameters to eFetch. The lengthy WebEnv is not re-
peated here:

efetch.fcgi?database=nucleotide&WebEnv=X&query key=1

The result is a specially formatted file.

70 CHAPTER 6. CONSTRUCTION

SOAP Interface

SOAP (initially: Simple Object Access Protocol, presently no intended abbre-
viation) is a protocol defining the passing of messages between web services.
SOAP messages take the form of XML, a short introduction to which is found
in appendix B. SOAP allows a client written in Java, running in a Unix en-
vironment to interact with a server written in C#, running on a Windows
Server. Working on top of the same protocol used to transfer web content,
SOAP messages has less chance of being stopped by firewalls and security
measures than older approaches. SOAP was initially short for Simple Object
Access Protocol. This was concluded to be misleading, following a later re-
lease and consequently dropped.

eUtils also has a web service interface, accessible through exchanging SOAP
messages. Requests to the eUtils are then treated as Java (or e.g. C#-
) objects, and the URL parameters previously introduced are set as object
attributes. Results are returned with the query call, so any downtime or pro-
cessing time will block the execution of the query. Results are also represented
by objects.

Comments

Entrez eUtils is an impressive and versatile tool. However the two most im-
portant reasons for using such a tool are not prevalent in this project; firstly,
the need for continuously retrieving the latest data, secondly the need for
interactively fetching and linking data.

6.6 Biomart

Biomart is a data mining tool, created partly under the responsibility of EBI.
Biomart itself is a system that can be downloaded and configured to provide
e.g. a web interface for querying a single- or several databases. EBI has a
biomart interface to Ensembl at www.biomart.org.

Querying Biomart

To create a query, one uses the web interface to select database, dataset(e.g.
Homo Sapiens Genes), a list of attributes to include and lastly delimiting
filters. The resulting dataset can be downloaded right away, or saved. Saving
the query, as an XML document or Perl2 script, allows for downloading the
result set at a later time. Downloading the result set, one can specify format

2Perl, a versatile and now widely used scripting language.

6.7. SELECTING DATA PROVIDER 71

(HTML3, Comma spaced values, tab spaced values etc.) and whether or not
to compress the file.

Data Format, Considerations

Downloaded data sets in flat file formats containing chromosome, gene and
exon data, do contain redundancy. All information requested are included
in each line in the file. This means that if we have requested chromosome
name, gene name, gene description and exon name, and a particular gene has
3 exons, three lines in the file will be identical except in the field exon name.

6.7 Selecting Data Provider

This section discusses the advantages and disadvantages of the two sources
investigated, and leads up to the selection of one of them.

Data Quality

The only requirements made by this project concerning the quality of the
data, is that it is correct and that it can easily be linked to the corresponding
data in other databases. These requirements are fulfilled by both alternatives,
though in slightly different ways. In eUtils, facilities for linking are embedded,
though only with the supported databases. With Biomart, appropriate gene
info can be extracted and used to search any database for meta-information.

Data Expiration

A flat file downloaded through Biomart, will eventually become outdated. The
latest build of the entire human genome was released in September of 2006,
and annotations are continuously updated. In this project, however, details re-
garding for example the exact position of genes are not critical. What is more,
re-downloading the required information overcomes the problem. Querying
Entrez, one can be sure of always downloading the latest data. This being
said, a data retrieval model that is continuously downloading required infor-
mation, will be highly bandwidth intensive and not feasible. This means that
both alternatives involve downloading the information at longer intervals, e.g.
at most once a month.

Versatility

Initial development will be more rapid if opting for a flat file. It is faster to
use a simple parser for a flat file than to use a generic xml parser to convert

3HTML - Hypertext Markup Language. A language for marking up content, creating a
web page.

72 CHAPTER 6. CONSTRUCTION

data into domain objects. A tradeoff by using flat files is the need to rewrite
the parser if new fields are added to the query.

6.7.1 Conclusion

Biomart was the best option in this project, as it allowed the rapid build of
a first prototype. Furthermore, the browser is not critically dependent on the
latest genome and annotation data, hence the need for constantly fetching
fresh data is absent.

6.8 Integrating Sequence Data

At high levels of zoom, the sequence, i.e. the DNA bases will eventually
appear. The entire human DNA sequence, counting approximately 3 billion
(109) bases, has a size of ca. 2800 MB in fasta format. This section explains
difficulties, deliberations and decisions regarding this.

6.8.1 Regarding Data

Sequence data for the human genome available online stems as good as ex-
clusively from a particular build of the genome. NCBI36 is the current build,
available since the fall of 2006. Once again eUtils can be used, downloading
from the Genbank database. Ensembl provides SQL4 and FTP5 interfaces to
their data. The data stored by Ensembl is synchronised with that of Gen-
bank. Sequence files in fasta format were downloaded for each chromosome.
See section 2.2.1 for an example of the fasta format.

6.8.2 Parsing Approaches

When using the browser, the DNA sequence appears when zooming in close
enough that one base fits inside each pixel. Each base can at that point
be represented by a one pixel wide bar, coloured according to which base is
present. The following user actions shall be possible:

1. Zoom in on an arbitrary part of the chromosome to see the sequence.

2. Move the view forward, and see the sequence.

3. Move the view backward, and see the sequence.

Each action is essentially an access of a part of the file of arbitrary length and
position. Approaches for parsing the file and enabling this that have been
considered are introduced in the proceeding sections.

4SQL - Structured Query Language. A widely used language standard for accessing the
information in relational databases.

5FTP - File Transfer Protocol. A cross-platform internet protocol for effective file trans-
fer.

6.8. INTEGRATING SEQUENCE DATA 73

6.8.3 Sequential Read, Entire File

The approach familiar to most novice java programmers, reading the file com-
pletely into memory, involves the following steps:

1. Open file for reading

2. Read entire file into a suitable data structure, e.g. StringBuffer.

3. On each request for a subsequence, simply index the data structure.

Storing the each sequence symbol in char type, as is essentially done in a
String or StringBuffer, will have a file of 230MB take up 460MB of java heap
space. The reason: a char is 16bits, while an ASCII encoded6 character
is 8bits. Allowing an application to take up 500MB of memory is not a
problem in most modern machines. However, such high memory demand will
potentially restrict a number of users from running the browser. While there
is no overview of the average amount of memory in computers in Norwegian
schools, relying on 1024MB being available might be unrealistic. For this
approach to be at all relevant, each symbol A, C, T or G must be encoded in
the minimum amount of space, 2 bits. This is possible by encoding 4 symbols
using a byte. The performance of this approach will be governed by the read
operation in step 2 and is investigated in the following section.

Experiment

To test the performance of the sequential read approach, the arithmetic av-
erage of the time taken for 10 reads of chromosome 1 was calculated. Chro-
mosome 1 at 230 MB, takes a just over a minute to read on The author’s
laptop (7200RPM Hard Drive, DDR2 800MHZ memory). Only storage in a
StringBuffer is performed in the testing routine.

Encoding to 2 Bits

Compression of DNA sequences is a field of study within Bioinformatics sep-
arate from the topics of this thesis. A simple solution, encoding 4 symbols
to 1 byte, is to construct a lookup table. Each byte in the possible range is
resolved to a distinct sequence of 4 nucleotide symbols. The file is read four
bytes at a time, the corresponding byte can be found by mapping using a
hashing function.

6ASCII encoding is a standard for representing the English alphabet in digital computers,
created by the American Standard Code for Information Interchange (ASCII).

74 CHAPTER 6. CONSTRUCTION

6.8.4 Random Access File

A java RandomAccessFile (RAF) seems perfectly suited for this problem.
Instances allow file content to be accessed randomly, much like a standard
array. The index into the array is a file pointer, that can be set by calling a
method. In this way parts of a file of arbitrary length and position can be
quickly read. Setting up a RAF and reading a subsequence would progress
thusly:

1. Open RandomAccessFile for reading.

2. Seek to start of subsequence.

3. Read the n bytes.

The performance of this approach appears to be dependent on the current
position of the file pointer in relation to the last. A quick test implies that
a current position lower than last position often takes more time than the
opposite case. In addition skipping far ahead takes more time than skipping
only a little. None of the cases, however require more than 40 milliseconds.
Memory usage is also marginal. RAF thus is a relevant alternative.

6.8.5 Memory Mapped File IO

A file can be mapped into the memory. The memory mapped file (MMF) is
then a part of virtual memory, introduced in chapter B. Conceptually it is
then divided into pages. Page size varies from one operating system to the
next. Disk access is only performed when page boundaries are crossed, i.e. a
previously ’untouched’ part of the file is accessed. This is called a page fault.
Only pages that are being accessed reside in physical memory. Revisiting a
page might cause disk access if too much time has passed since the last access
of that page. These steps can be followed to read the subsequence from an
MMF:

F Create a RandomAccessFile

F Get its FileChannel (1 method call)

F Map the file channel into memory (1 method call)

F Position, then get the required amount of bytes.

The setup of an MMF is more elaborate than that of the previously discussed
approaches. The performance of this approach is governed by the time a
page fault takes to resolve. A quick test showed that this takes about 20
milliseconds. However, moving back and forth in a concentrated area takes
an immeasurable (with java timing facilities) amount of time.

6.8. INTEGRATING SEQUENCE DATA 75

I n i t i a l i s e (f i l e)
WHILE i<100 :

StartTimer ()
p o s i t i o n = RandomPosition (f i l e)
subsequence = Read(po s i t i on , 1000)
Store (subsequence)
time = StopTimer ()
AddToMean(time)

ENDWHILE
CalculateMean ()
CalculateSD ()

Figure 6.1: Algorithm used for testing RandomAccessFile and Memory
Mapped File IO

6.8.6 Technical Comparison

This section presents a technical comparison of the two approaches RAF and
Memory Mapped File IO. The algorithm used to test the approaches comprises
the following steps:

1. Initialise

2. Seek to a random location in the file.

3. Read and store 1000 characters.

4. Repeat 100 times from step 2.

5. Calculate arithmetic mean and standard deviation.

Standard deviation was calculated using the following equation:

σ̂ =

√√√√ 1
n

n∑
i=1

(xi − x̄) (6.4)

The algorithm used is given in pseudocode in figure 6.1 The test algorithm
used is only partially analogous to the usage pattern that will be present in
the genome browser. A more realistic pattern of use involves fewer separated
areas in the chromosome, and reads back and forth around these areas. The al-
gorithm was chosen so that it theoretically partially favours both approaches.
Judging from initial experiments, the RAF would incur a more or less con-
stant cost when moving forward in a file, and a higher cost when reversing.
Furthermore the MMF would incur about the same cost as RAF with the
addition of overhead caused by page faults. The MMF would incur almost no
cost when the read did not cause a page fault, the data would then already

76 CHAPTER 6. CONSTRUCTION

RandomAcecssFile Mem. Mapped File
Average, Best Run 11.25 6.25
SD, Best Run 13.6 9.6
Average, Worst Run 15.47 13.28
SD, Worst Run 19.25 17.9

Table 6.6: Average time cost of a read and standard deviation (SD)

be in RAM.

The results, seen in Table 6.6, speak in favour of memory mapped files. Sur-
prisingly, the standard deviation is higher for RAF than MMF. An investiga-
tion into this shows that the standard deviation for shifts forward in the file is
approximately 20 times larger. The mean times for shifts in either direction
only differ slightly.

6.8.7 Conclusion

Of all the approaches considered, using a random access- or memory mapped
file is the most relevant approach. Of these two, memory mapped file IO per-
forms marginally better. However, it is not beyond reproach. For some uses,
memory mapped files might not perform better than the other approaches.
Sequentially reading through a large file, there will be all page faults, no part
of the file has previously been accessed. The usage pattern is such, though,
that this drawback will be mostly avoided. A personal motivation for using
memory mapped file IO existed also. The chance to gain experience using a rel-
atively novel and technically interesting programming feature was welcomed.
Consequently, memory mapped file IO was used for handling sequence data.

6.9 Implementing Presentation of SNPs

The visualisation of SNPs in the new, simpler browser was not completed.
The informal, incremental style of development used, lead to this feature being
prioritised after the visualisation of genes, exons and nucleotide sequence. This
section presents some investigations and work that was done in preparation
of the implementation.

6.9.1 Source of SNP Information

In addition to annotation data needed for gene information etc., Biomart offers
SNP data for various genomes. More than 13 million SNPs are are available
in total, approximately 6 million are validated. Parsing a flat file with about
6 data columns per SNP would bring new challenges to this project.

6.9. IMPLEMENTING PRESENTATION OF SNPS 77

6.9.2 Drawing

The discussion in chapter 5 led up to the decision that SNPs would only be
shown individually when viewing the chromosome up close. With 10 thou-
sand bases visible, 50 SNPs would be visible. Farther away, the presence of
SNPs would be quantified using a graph indicating the density of SNPs. Bye
using a 3rd party graphing API based on Java2D, the drawing of the graph
could be automatised, and the result integrated in the browser window itself.
A package developed at the University of Southern Queensland, Australia is
capable of this.

A central technical decision is whether the class width of the histogram, rep-
resented by the graph, should be fixed or recalculated for different levels of
zoom. The latter option is favourable, allowing a reasonable resolution at
any level of zoom. Constant recalculation might hamper performance, so this
would require thorough testing and optimisation.

Chapter 7

Introducing Sigve

This chapter presents the appearance and functionality of Sigve, the new,
educational browser.

7.1 Initial View

Having started Sigve, users are faced with the view shown in Figure 7.1. Users
get an overview of the different chromosomes of the human genome, names,
the amount of genes in each chromosome, and cytoband information is visible.
Cytoband names appear in tool-tips when hovering the mouse over them.

Possible Interactions

Users can click and drag on a chromosome, creating a ’lasso’. This action
allows users to ’inspect’ part of the chromosomes, and they get a feedback
stating the length in basepairs of the inspected region and the amount of
genes in it. The details are then displayed in the subpanel titled ’Inspeksjon’
in the topmost part of Figure 7.1.

Single-clicking a chromosome, opens a two-stranded view of that chromosome.
The browser centers the view on the part of the chromosome that was clicked.
The two-stranded view opens at a fixed level of zoom, an example is shown
in Figure 7.2.

7.2 Two-stranded View

Two-stranded view (Figure 7.2) shows features and structures on a particular
chromosome. In the current version, features i.e. genes are visualised as green
rectangles whereas structures, i.e. exons are visualised as slightly narrower
rectangles. The lengths of rectangles indicate the spatial extent on the chro-
mosome, of the feature or structure represented by that rectangle.

79

80 CHAPTER 7. INTRODUCING SIGVE

Figure 7.1: Sigve: Initial View / Overview

In the bottom of the view, there is a representation of a chromosome with
a triangle indicating the current position on the selected chromosome. It also
shows the size of the displayed view relative to the entire chromosome, however
this is only intuitive at certain levels of zoom.

Possible Interactions

Zooming in and out can be done using arrow keys (up- and down) or using
the mouse wheel. The subpanel titled ’Flytt Vinduet’ can be used to pan the
view various distances to the right or to the left. The window is repainted
continuously when zooming or panning the view, yielding a higher sense of
interacting with the genetic material. In Figure 7.3, the browser is displaying
an area at three different levels of zoom.

Inspection can be made in the same way as in the initial view, by clicking
and dragging. Lassoing the DNA in this way, can be done on either- or both
strands. One will see the amount of basepairs and genes inside the lasso in
the subpanel titled ’Inspeksjon’.

7.3. TWO-STRANDED VIEW, SEQUENCE VISIBLE 81

Figure 7.2: Sigve: Two-stranded View with genes and exons visible

Users can click visible features and structures for more information on them.
Clicking a gene will insert a green element in the list in the topmost part of
the browser. This element will show gene name and description.

7.3 Two-stranded View, Sequence Visible

As the user zooms in close, the view will gradually transform into also display-
ing the nucleotide sequence. Figure 7.4 shows the leading part of the breast
cancer-associated gene BRCA1. Present features or structures can still be
seen as now larger rectangles. The same interactions are possible as for the
two-stranded view.

7.4 Phenoportal

The Phenoportal is intended as an entry point into the browser for novice
users. It provides a list of diseases and phenotypes and links them to features
that have a proven relationship to that particular phenotype. It also provides

82 CHAPTER 7. INTRODUCING SIGVE

(a) Initial Zoom Level

(b) Close Zoom Level

(c) Closer Zoom Level

(d) Even Closer Zoom Level

Figure 7.3: Sigve: Examples of different levels of zoom

7.4. PHENOPORTAL 83

(a) Sequence viewed from afar

(b) Sequence symbols visible

Figure 7.4: Sigve: Two-stranded View with nucleotide sequence of BRCA1
visible

links to literature on both the phenotype and each related gene.

The Phenoportal is opened by clicking the menu bar item ’Vis’ and then
’Fenoportal’. The user makes a selection in the list of phenotypes. This list
can be seen in the upper left part of Figure 7.5. Situated immediately to the
right, a description of the phenotype and a list of literature links will then be
refreshed. Double-clicking a link will open the default web browser on that
address. In the bottom part of the Phenoportal, the right-hand list is com-
posed of genes with a proven relationship to the selected phenotype. Clicking

84 CHAPTER 7. INTRODUCING SIGVE

the overhead button, labeled ’G̊a til/Se p̊a’, will bring the browser into focus
and display the selected gene in two-stranded view. Back in the Phenoportal,
links to literature describing each gene and its role in regulating the selected
phenotype are provided in the next list to the right.

Figure 7.5: Sigve: The Phenoportal, listing literature links and genes related
to breast cancer

7.5 Known Bugs

Inspection

There is some discrepancy in the reported amount of features and genes within
the lasso. The amounts are off by some fixed percentage of the total amount
of visible basepairs. The cause of this issue might be complex and some time
could possibly be required in order to solve it.

7.5. KNOWN BUGS 85

Cytoband Tool-tip

When hovering the mouse over a chromosome’s cytoband in the overview, a
tool-tip appears with the name and stain level of the cytoband. The tool tip
does not appear to change when moving the mouse to the next cytoband along
the chromosome. This issue may be caused by the nature of the tool-tip com-
ponent of the Java Swing GUI-toolkit (Graphical User Interface) or by errors
in calculations in the underlying procedures. Using a different component to
visualise the cytoband details could be the first step in isolating the cause of
the issue.

Chapter 8

Conclusions & Further Work

8.1 Conclusions

In this project I’ve created a genome browser with a limited set of functions
and a limited theoretical scope. The underlying idea has been that this angle
of attack would produce a browser more suitable for use in education than
existing ones. Throughout the project, focus has remained on incorporating
the key functionality of a genome browser, and providing a good user expe-
rience. Usability and considerations regarding pedagogy have received much
less focus. The idea all along has been that this project would result in a
usable prototype, which in turn could be the starting point of later Master’s
theses.

Major technical challenges in this project have been the creation of a basic
graphics engine from scratch, evolving parsing techniques to eliminate long
waiting times, keeping memory consumption down when accessing sequence
data files.

The resulting browser incorporates many of the functions expected of a genome
browser. It visualises chromosomes, genes, exons, and nucleotide sequence.
Information chromosomes, genes, exons is available. In addition Sigve has a
portal, guiding users to interesting parts of the genome, the Phenoportal.

Sigve proves the feasibility of creating a genome browser from scratch. In
doing this, one has more freedom of choice compared to opting to expand
or convert an existing (open source) browser. This freedom of choice might
hamper progress, offering many potential sidetracks and pitfalls. Devising
a detailed and confined agenda is helpful in this regard. Studying existing
browsers extensively proved very useful in this project.

I predict that some users of Sigve in the target group might benefit from

87

88 CHAPTER 8. CONCLUSIONS & FURTHER WORK

using the application. Sigve has the potential of being a tool with which
students solve a set of exercises, possibly strengthening their comprehension.
Having a relatively high learning threshold, some users might struggle more
with the application itself and thus learn little from using it. Therefore, the
statistical impact on theoretical comprehension in a test group might be so-
so. It is however, the author’s candid opinion that Sigve, with an amount of
further work, has the potential of becoming an efficient learning tool.

8.2 Complaints

Perhaps the strongest complaint regarding this project, is the fact that I’ve
attempted to create an educational genome browser with only marginal focus
on pedagogy and only minimal involvement of people with a background in
education. I haven’t made use of advanced pedagogical theory in establishing
requirements for an educational browser. Work has been based upon simple,
a priori assumptions that an educational browser at least must be less com-
prehensive and more responsive than current browsers.

Furthermore, no focus group investigation or usability testing has been per-
formed in order to establish the target group’s need for-, special requirements
for-, or benefit from an educational genome browser. All these issues should
be considered in future projects intending to perfect Sigve for use in education.

Another complaint is the little amount time that has been available for ensur-
ing a higher level of user-friendliness and usability. Throughout the project, I
have been forced to prioritise the implementation of important functionality
above these issues. In the ensuing sections, I discuss and propose functionali-
ties and other changes that can better this situation.

8.3 Missing Features and Changes

The end product, presented in the previous chapter, does not meet all the re-
quirements set for the ideal educational genome browser. There are a number
of features missing, ranging from simple to comprehensive. There are various
reasons why these features were not implemented. One of these is a limitation
in development time. Another reason is that the preparatory work did not
assure the feasibility of the feature to be implemented.

SNP Visualisation

The preparatory work presented in chapters 5 and 6 represents the progress
made in accomplishing SNP visualisation. As indicated, large amounts of data
will be involved when implementing this. Future developers in this project

8.4. SWITCHING GRAPHICAL FRAMEWORK? 89

must find an efficient way to solve this while maintaining the level of interac-
tion and response presently offered.

More Available Attribute Information

Novice users will perhaps struggle to find information on visible features. In
its present state, the browser responds with this information to mouse clicks
on visible objects. This function is too hidden and unintuitive. Work should
be put into amending this.

A More Modular Framework

The visualisation of genomic features is presently hard coded into the graph-
ics module. This technical solution somewhat obstructs the desire for a more
modular solution. However with the current graphical library used, only a
couple of parameters need to be passed to a add-on module in order to ac-
complish this. In this way, the genomic features currently visualised will form
the backdrop for visualisations made by add-on modules.

8.4 Switching Graphical Framework?

Creating a genome browser from scratch using OpenGL, a relatively low-level
API, might be disadvantageous compared to starting out with a higher-level
framework or a graphics engine. OpenGL does allow simple drawing using
a few simple calls, however the programmatic complexity increases linearly
with the complexity of the scene to be drawn. In this respect using a graphics
engine could be more accommodating when the complexity of the graphics
to be drawn increases. Such higher-level APIs have the added convenience of
facilities for user interaction, e.g. clicking objects in the scene, and access to
geometrical primitives. On the other hand, becoming proficient in using using
a larger API, requires more work.

8.5 Program Extension, through an API

Providing expert/computer savvy users with the means to develop custom
presentations will contribute in making it an effective learning tool. Provid-
ing an interface to the graphics system and the genome data are the minimum
requirements of such an API.

The idea of end-user programming was spawned by the revolution caused by
Xerox, Apple and IBM putting a computer on every desktop. The idea was
that the users would have more power and influence on their work situation
with the ability to customise their business software and that this would cause

90 CHAPTER 8. CONCLUSIONS & FURTHER WORK

the same pervasive changes in society as literacy. The optimistic outlook, char-
acteristic of these early ideas, have been replaced by more reasonable, reflected
views. Still, APIs or SDKs (Software Development Kit) are being provided
with modern software products. In a specific area of the software industry
this is more of a standard than a supplemental feature. The computer gam-
ing industry uses SDKs to ensure that their products have a longer life-span.
With end-users continuously creating new content and features for the game,
it maintains a large user-base longer. Using computer games as an example is
not entirely comparable, since many gamers have computer science education.
However there are many examples of gamers starting out with ’modding’, as
it is called, and ending up as programmers.

Python, one of the programming languages visited in the previous chapter,
was created using ideas from a project aimed at stimulating end-user pro-
gramming. It is also deemed to be a good educational language, in that it is
simple and more textual than other languages. Without doubt, Python is a
good choice as an API language. The technical issues of integrating Python
modules in a Java application can be solved using a software package based
on normal Python, which allows Python modules to be compiled to Java byte
code, usable from normal Java applications.

8.6 Focus on Usability

This important aspect of application development has been left out of the
scope of this project. The focus has been put on creating a prototype with
as many working browsing capabilities as possible. In order to accomplish a
browser such as the one envisioned in the scenario in chapter 1, much more
work need to be put in to the usability of Sigve.

8.6.1 Perfecting the GUI

Of the different components of usability the most important in this project
are perhaps the following: Learnability, efficiency and satisfaction. Promot-
ing these in Sigve will undoubtedly make it a more efficient pedagogical tool.

The learnability of Sigve is hampered first and foremost by the fact that the
users are given no introduction to the different views. Some guidance into the
colour coding of the rectangles representing attributes is a bare minimum here.

The efficiency can be strengthened by giving users more tools helping them
to find what they are looking for. A scenario is that students have been given
assignments to find e.g. the gene related to Huntington’s disease, and they are
required to use other literature instead of the Phenoportal. From other (on-
line) literature they might have found the name of the gene. Sigve presently

8.7. VISUAL APPEARANCE 91

offers no search functionality for ’jumping’ to a gene given the gene name.
This is one feature that could increase Sigve’s efficiency.

Satisfaction may or may not be adequate, as the sole developer it is hard
to analyse this aspect from the target group’s point of view. However, user
satisfaction is crucial for the user to maintain motivation when solving such
tasks as the one described above.

These three aspects are believed to be the key components of the usabil-
ity of Sigve. Hence, setting a list of usability requirements with focus on these
three should be fruitful.

8.6.2 Usability Testing

After a period of perfecting the GUI, measuring its qualities in regards to a set
of usability requirements will reveal further possible areas for improvement.
Useful results can be gained by studying actual users performing a set of
tasks, measuring the time to complete tasks, measuring the users’ level of
stress afterwards, and so on.

8.7 Visual Appearance

A number of changes and additions should be made to optimise the browsing
experience for the target group. These have received low priority in this
project and have been omitted.

8.7.1 Location Probes

According to Card et al. [1999]location probes can augment the informative
effect of visual structures. Location probes are view transformations that
present detailed data or structure and are activated upon user interaction
with special locations. The tool-tip is an example of a location probe. When
the user hovers the cursor over a gene, detailed information on the gene, could
be presented in a frame which becomes visible.

8.7.2 Visual Indication of Zoom

Except for the size of each particular feature and the mini-map, the user is
given no graphical indication of how much the chromosome is enlarged. Not
giving such an indication is thought to hamper the effectiveness of the visual
presentation. Beyond a certain level of detail, the mini-map and using the size
of features for reference becomes ineffective. There are a number of options
for improving this.

92 CHAPTER 8. CONCLUSIONS & FURTHER WORK

In order to communicate more clearly the current level of zoom, marking the
sequence at set intervals could prove useful. In a typical diagram, either axis
is marked at intervals with the amount in the relevant denomination corre-
sponding that point along the axis. Correspondingly, marking the sequence at
a fitting interval of bases will help the user orientate, and interpret the level of
zoom quicker. Simply placing such sequence milestones at fixed intervals will
be problematic for disproportionate levels of zoom, compared to the interval
used. Using a logarithmic scale allows this interval to vary, remaining infor-
mative across all levels of zoom. The challenge of differentiating the markers
when different intervals are being used then arises. Using a graphical form
to represent these sequence milestones that users are able to preattentively
process will be of great help. Preattentive processing refers to the initial cog-
nitive organisation of the visual field, that happen without focusing [Healy
et al., 1996]. The length of the markers can be used for differentiation. For
example, when the interval between markers is short, i.e. the user has zoomed
in very far, the sequence markers are longer. As the user zooms out, and the
interval lengthens, the sequence markers shrink.

Another coding that can be used to help indicate level of zoom is colour.
Using colour to differentiate the sequence markers either exclusively or in ad-
dition to using different lengths, will help users quickly understand the picture
as the view changes.

Bibliography

Stuart K. Card, Jock D. Mackinlay, and Ben Schneiderman. Readings in In-
formation Visualization: Using Vision to Think. Morgan Kaufmann Pub-
lishers, Inc, 1999.

Francis S. Collins, Michael Morgan, and Aristides Patrinos. The human
genome project: Lessons from large-scale biology. Science Magazine, 300
(5617):286 – 290, 2003.

Xavier Estivill and Llúıs Armengol. Copy number variants and common disor-
ders: Filling the gaps and exploring complexity in genome-wide association
studies. PLoS Genetics, 3(10):e190, Oct 2007. doi: 10.1371/journal.pgen.
0030190.

Christopher G. Healy, Kellogg S. Booth, and James T. Enns. High-speed
visual estimation using preattentive processing. ACM TOCHI - Association
for Computing Machinery Transactions on Human Computer Interaction,
3(2):107–135, 1996.

Hildegard Kehrer-Sawatzki. What a difference copy number variation makes.
BioEssays, 29(4):311–313, 2007.

S. Khandelwal. Chromosome evolution in the genus ophioglossum. L. Botan-
ical Journal of the Linnean Society, 1(102):205 – 221, 1990.

NCBI. Entrez genome project statistics. http: // www. ncbi. nlm. nih. gov/
genomes/ static/ gpstat. html , 2008.

National Institute of Health NIH. The human genome project completion:
Frequently asked questions. http: // www. genome. gov/ 11006943 , 2 2008.

Eric Sayers and David Wheeler. Building customized data pipelines using the
entrez programming utilities, eutils. NCBI Short Courses, 2007.

Jonathan Sebat, B. Lakshmi, Jennifer Troge, Joan Alexander, Janet Young,
Pär Lundin, Susanne Måner, Hillary Massa, Megan Walker, Maoyen Chi,
Nicholas Navin, Robert Lucito, John Healy, James Hicks, Kenny Ye, An-
drew Reiner, T. Conrad Gilliam, Barbara Trask, Nick Patterson, Anders

93

http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html
http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html
http://www.genome.gov/11006943

94 BIBLIOGRAPHY

Zetterberg, and Michael Wigler. Large-scale copy number polymorphism in
the human genome. Science Magazine, 305(5683):525–528, 06 2004.

René Stöckel. One step ahead - 3d engines with j2me. Technical report,
Bytonic Software, 2006.

Norwegian Directorate for Education & Training UDIR. Curriculum of biol-
ogy, August 2006.

Jin Xiong. Essential Bioinformatics. Cambridge University Press, 2006.

Appendix A

Sigve, Instruction Manual

A.1 Installation

Installation of Sigve is a simple process, thanks to Java Web Start. This
section guides the user through the few steps required.

Prerequisites

Before commencing installation, the user must observe these aspects:

F Installation requires Java Web Start, a launcher built into the Java Run-
time Environment as of version 1.4

F The Application requires version 1.6 of the Java Runtime Environment.

F Users with no version of Java installed, or an older version than 1.4
installed, are recommended to navigate to http://www.java.com/ and
download Java version 6, which is the recommended version.

F Users with a post-1.4 Java version installed will have the required version
of Java automatically installed by the Java Web Start launcher.

Starting the Installation

Installation is commenced by pointing a web browser to:

F http://heim.ifi.uio.no/jorgehsv/sigve/sigve.jnlp

Alternatively, there is a limited sandbox-version (requiring only 20 MB
to be downloaded) available here:

F http://heim.ifi.uio.no/jorgehsv/sigve-sandbox/sigve.jnlp

This will initialise the Jawa Web Start launching routine, downloading Java, if
necessary, and then the application. After all dependencies and the application
itself is downloaded, the application will be launched for the first time.

95

http://www.java.com/
http://heim.ifi.uio.no/jorgehsv/sigve/sigve.jnlp
http://heim.ifi.uio.no/jorgehsv/sigve-sandbox/sigve.jnlp

96 APPENDIX A. SIGVE, INSTRUCTION MANUAL

A.2 Starting the Program

1st Time Launch

Figure A.1: A dialog asking users to confirm download of 800 MB of necessary
data, or specify alternate data source

If Sigve is starting for the first time on a computer, some configuration is nec-
essary. Sigve will look for necessary files. If these are not present, it will ask
for the users permission to download necessary files, see Figure A.1. This can
be a lengthy process for users with a slow internet connection. By choosing
No, those users can specify an alternate download source, for instance remov-
able media. By choosing Yes, the download of approximately 800 MB will
commence. The download routine is relatively robust and reports progress,
as can be seen in Figure A.2(a). When the download is complete, the data
will be extracted, Figure A.2(b), and the application will start. Cancel will
abort the launch.

(a) Download Progress Indicator (b) Decompression Progress Indicator

Figure A.2: Download and Decompression Dialogs

A.3. FINDING THE FIRST GENE 97

Subsequent Launches

Subsequent application launches are done in either of the following ways:

F By clicking the desktop shortcut created by Java Web Start

F Finding ”Sigve” under ”Programs” on the Start Menu in Windows.

F By revisiting the URL mentioned in section A.1.

F By opening the Java Cache Viewer in the Java Control Panel 1

The lattermost is only necessary in rare cases where Java Web Start fails to
create shortcuts automatically.

When all necessary data is present, the application starts by displaying a
splash screen while initial data is loaded. This normally takes less than 10
seconds.

A.3 Finding the First Gene

A successful launch leads users to the screen seen in Figure 7.1. Here, an
overview of the chromosomes of Homo Sapiens is presented. By clicking a
chromosome, browsing of that chromosome starts.

In the view that opens, genes are visible right away. Panning the view left and
right, is done by right-clicking and dragging the mouse or using the buttons
in the panel above the view.

Zooming in or out is done using the mouse wheel or using the arrow up-
and arrow down keys. Information on a gene in the view can be shown by
left-clicking it. This information appears as a list-item in the area to the
above-right of the browser view.

Zooming in further, will expand the sequence and features. The black lines
representing the strands will be replaced by the drawn nucleotide sequence
eventually as the user zooms in.

Chapter 7 provides more details.

A.4 Using the Phenoportal

The Phenoportal shows a list of diseases or other phenotypes, and connects
them to known regulating genes. There are links to literature on each pheno-

1Detailed instructions available at: http://java.sun.com/docs/books/tutorial/

deployment/webstart/running.html

http://java.sun.com/docs/books/tutorial/deployment/webstart/running.html
http://java.sun.com/docs/books/tutorial/deployment/webstart/running.html

98 APPENDIX A. SIGVE, INSTRUCTION MANUAL

type, and on the related genes. By clicking the button labeled ’G̊a til/Se p̊a’,
the browser will open the containing chromosome and center on the selected
gene.

Chapter 7 provides more details.

A.5 Known Issues

Nvidia Graphics Hardware

Sigve has been tested on a limited amount of clients. A few of these are run-
ning Windows Vista. The combination of graphics hardware from the vendor
Nvidia and the operating system Windows Vista have been noted to cause
problems. In some cases unexplained crashes are experienced. In other cases
hardware rendering fails and the application falls back on software rendering.
In these cases, the application executes normally, but processor demand sky-
rockets.

The cause of this is, according to unofficial sources, limited OpenGL support
in Nvidia’s device drivers for Windows Vista.

File Association

In some cases, installation of third party software or issues with the web
browser, might have broken the Java Web Start file association with jnlp files.
In such cases the application will not start simply by visiting the internet
address given earlier. In these cases some work is required by the user to
restore the correct file association. A guide to accomplishing this, as well
as other helpful information on Java Web Start, has been written by Tobias
Dezulian of the University of Tübingen. This guide is included as part of the
appendix and will be a resource for solving the issue in question, whether on
a Linux, Mac, or Windows platform.

Appendix B

Discrete Topics

B.1 Extensible Markup Language - XML

XML is a general purpose language used to structure and encode informa-
tion. Information is surrounded by annotations, called tags. It is somewhat
erroneously said to be a markup language, however it is a tool for creat-
ing markup languages. Comparing it to HTML clearly reveals this nuance.
In HTML there is a set of tags available which are understood by the web
browser. In XML one defines ones own tags.

An example XML document, a recipe for bread, is shown in figure B.1. A
computer can understand and process the recipe for bread using an XML
parser. Using the parser well, the computer will be able to understand any
recipe. This is an important philosophy of XML.

<r e c i p e name=” bread ” prep t ime=”5 mins” cook t ime=”3 hours ”>
< t i t l e>Basic bread</ t i t l e>
< i n g r e d i e n t amount=”3” un i t=” cups ”>Flour</ i n g r e d i e n t>
< i n g r e d i e n t amount=” 0 .25 ” un i t=”ounce”>Yeast</ i n g r e d i e n t>
< i n g r e d i e n t amount=” 1 .5 ” un i t=” cups ” s t a t e=”warm”>Water</ i n g r e d i e n t>
< i n g r e d i e n t amount=”1” un i t=” teaspoon ”>Sa l t</ i n g r e d i e n t>
< i n s t r u c t i o n s>
<s tep>Mix a l l i n g r e d i e n t s toge the r .</ step>
<s tep>Knead thoroughly .</ step>
<s tep>Cover with a c loth , and l eave f o r one hour in warm room .</ step>
<s tep>Knead again .</ step>
<s tep>Place in a bread baking t i n .</ step>
<s tep>Cover with a c loth , and l eave f o r one hour in warm room .</ step>
<s tep>Bake in the oven at 350(degree s)F f o r 30 minutes .</ step>
</ i n s t r u c t i o n s>

</ r e c i p e>

Figure B.1: Recipe for bread encoded in XML

99

100 APPENDIX B. DISCRETE TOPICS

B.2 Virtual Memory

Virtual Memory is a technique implemented by operating systems to make
a larger amount of memory available to running programs than is physically
available. In principle, programs, and their data, running on a computer must
be in the main memory. Closed programs are stored on the hard drive. When
more programs run simultaneously, the main memory might be exhausted.
When the computer is out of memory, some program must be prematurely
stopped. To counter this, the operating system requisitions available space on
the hard drive. The least recently used program is moved into this portion of
the now expanded memory. The mechanism responsible for this is the oper-
ating system’s Virtual Memory Manager or VMM.

A central aspect of Virtual Memory is address translation. The computer’s
hardware components use various addresses to read data from RAM, hard
drive etc. The addresses may be of different size and ranges may overlap. The
Virtual Memory Manager makes a single, consecutive address space available
to running programs. The block of data residing at a particular virtual ad-
dress, may in fact reside on the hard drive. The VMM keeps track of this and
translates the virtual address into the actual address.

Appendix C

Acronyms and Expressions

Expression Explanation
NCBI National Center for Biotechnology
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
UCSC University of California, Santa Cruz
VEGA Vertebrate Genome Annotation, a database of

manual sequence annotations
DNA Deoxyribonucleic Acid. The molecular form of our

genetic material.
RNA Ribonucleic acid. Single stranded nucleic acid.
CNP Copy Number Polymorphism. A population sub-

group having a different number of copies of e.g. a
gene.

CNV Copy Number Variation. Also known as CNP.
LINE Long Interspersed Nucleotide Element. An RNA

reversely transcribed into the DNA (Retrotranspo-
son)

SINE Short Interspersed Nucleotide Element. A shorter
retrotransposon.

API Application Programming Interface. A set of tools
for programmers to create or expand an applica-
tion.

SDK Software Development Kit. A more extensive set of
tools than an API for crating / expanding software.

XML Extensible Markup Language. A standard for
structuring information, for easy transaction of in-
formation.

HTML Hypertext Markup Language. A markup language
for creating web pages.

101

102 APPENDIX C. ACRONYMS AND EXPRESSIONS

ASCII American Standard Code for Information Inter-
change. A specification for digital representation
of the English alphabet.

SQL Structured Query Language. A language for ac-
cessing relational databases.

FTP File Transfer Protocol. An internet protocol allow-
ing cross-platform file transfer.

Java Web Start Guide

by Tobias Dezulian

Java Web Start technology makes it possible to automatically download and start a
Java application by clicking a link in a web browser. This works because the file
ending “.jnlp” (MIME-type) is associated with the Java Web Start launcher program
(“javaws”) which is part of your Java installation.

In some cases, this association is not in place. Please find below how you can
manually set this association in your operating system. This should take less than 5
minutes.

Furthermore, this Java Web Start Guide tries to make the Java Web Start technology
a bit more transparent.

Contents

Associating Java Web Start links __ 2
Windows___ 2
Mac ___ 4
Linux __ 5

Launching the Java Control Panel ___ 7
Windows___ 7
Mac ___ 9
Linux ___ 10

Launching the Java Console ___ 11
Windows__ 11
Mac __ 12
Linux ___ 13

About Java Web Start technology___ 15
Security issues __ 16

Last update: 9.12.2005 (v004)

Associating Java Web Start links

In this section we’ll have a look at

• how to detect whether the Java Web Start file association is correctly in place
• how to associate manually otherwise.

Windows

Figure 1 Download dialog – indicating that the file association is set correctly.

After clicking the Web Start link, this download dialog (above) should appear,
indicating that the association is set correctly and the Java Web Start launcher is
downloading the application.
In the firefox browser you can view these associations by opening the following
window:
Tools -> Options

Figure 2 File associations in the firefox browser

If no association is set for the “.jnlp” file ending, your browser will ask what to do:

Figure 3 Browser asks what to do with this file type

In this case, associate the “.jnlp” file ending with your Java Web Start launcher
program (“javaws”), which is located in the “bin” directory of your Java installation,
e.g. at
C:\Programme\Java\jre1.5.0\bin\javaws.exe
You can use the windows „file search” to find the Java Web Start launcher program.

Mac

Figure 4 Download dialog – indicating that the file association is set correctly.

After clicking the Web Start link, this download dialog (above) should appear,
indicating that the association is set correctly and the Java Web Start launcher is
downloading the application.

Figure 5 Location of the Java Web Start launcher program

If the file association is not in place and your browser can not handle the file
correctly, you should associate the file ending (MIME-type) “.jnlp” with the Java Web
Start launcher found at the location shown above.

Linux

Figure 6 Download dialog – indicating that the file association is set correctly.

After clicking the Web Start link, this download dialog (above) should appear,
indicating that the association is set correctly and the Java Web Start launcher is
downloading the application.

If the association is not set correctly yet, the browser will ask what to do with the
“.jnlp” file:

Figure 7 Browser asks for an association with the .jnlp file type

You will need to associate the “.jnlp” file ending with the Java Web Start launcher
program (“javaws”) located in the “bin” directory of your java installation next to the
“java” virtual machine.

You can find it using a disk search command (e.g. “locate”) or, if the java virtual
machine (“java”) is in your path (check with the command “which”), by following the
symbolic links, see below:

Figure 8 Following symbolic links to the „bin“ directory of the Java installation

Launching the Java Control Panel

The Java Control Panel is a graphical tool that allows you to set preferences for your
Java programs – including the ones started via Java Web Start. The Java Control
Panel is included in every Java installation.
In this section, we’ll have a look at

• how to start the Java Control Panel in each operating system.

Windows

Figure 9 -- Step 1: Open the Windows control panel

Figure 10 – Step 2: Click on the Java icon

Figure 11 – Voilá: the Java Control Panel

Mac

Figure 12 – Find the Java Control Panel here

Figure 13 – The Java Control Panel

Linux

You may need to search for the Java Control Panel in a similar manner as for the
“javaws” application. Both should reside in the same directory.

Figure 14 – Searching for the Java Control Panel (“ControlPanel”) application

Figure 15 – The Java Control Panel

Launching the Java Console

The Java Console is a program that displays detailed output of a Java application
that is normally not visible. In case of trouble with e.g. a Java Web Start application it
may be useful to have a glimpse at the Java Console.
In this section, we’ll have a look at

• ways to start the Java Console.

Windows

Figure 16 – In the Java Control Panel, set the Java Console on “always visible”

And it will appear when a Java Web Start application is started the next time:

Figure 17 – The Java Console

Mac

You can enable display of the Java Console in the Java Control Panel settings:

Figure 18 – Enabling the Java Console

Linux

You can enable display of the Java Console in the Java Control Panel settings:

Figure 19 – Enabling the Java Console

Figure 20 – The Java Console

About Java Web Start technology

In short, Java Web Start is an application distribution technology that allows semi-
automatic on-demand download of Java applications to client computers using a local
cache. The first time a Java Web Start application link is clicked, the application is
downloaded and executed. Every next time, one of these actions are performed:

• if there is no internet connection, the application is started from the local cache
• if there is an internet connection, the version number of the application copy

on the net and in the cache are compared and the most recent one is started

You can have a look into this local cache by opening the Java Web Start application.
Click on the Java Web Start icon or type “javaws” on the command line (all operating
systems).

Figure 21 – Peeking into the local Java Web Start cache

Please find more information here:

All about Java Web Start technology
http://java.sun.com/products/javawebstart/

Java Web Start FAQ
http://java.sun.com/products/javawebstart/faq.html

The unofficial Java Web Start FAQs (great!)
http://webstartfaq.com/

Security issues

Java Web Start will ask you whether you trust the downloaded application that is
about to start. This is needed to allow the application to reach out of its “sandbox”
and e.g. access files on your local hard disk. The potential for harm of such an
application is identical to any executable file. Java Web Start assures that the
application will not run if you do not trust it.

Windows

Mac

Linux

	1 Introduction
	1.1 An Educational Genome Viewer
	1.2 The Ideal Genome Viewer
	1.3 Structure of the Document

	2 Basic Molecular Biology
	2.1 An Outline of DNA
	2.1.1 Initial Comments
	2.1.2 DNA and Heredity
	2.1.3 The Units of Heredity
	2.1.4 DNA Structure
	2.1.5 The Genetic Code
	2.1.6 Expression
	2.1.7 Genetic Variation

	2.2 Biological Databases
	2.2.1 Sequence data
	2.2.2 Sequence Annotation
	2.2.3 Genomic Meta-Information
	2.2.4 Details of the Human Genome
	2.2.5 Summary
	2.2.6 Genome Browsers

	3 Introducing Genome Browsers
	3.1 Introduction
	3.2 Genome Browsers
	3.2.1 Motivation
	3.2.2 Users
	3.2.3 Abilities and Uses
	3.2.4 List of Genome Browsers

	3.3 Presenting a Selection of Browsers
	3.4 The Ensembl Genome Browser
	3.4.1 Using the Browser
	3.4.2 Interaction
	3.4.3 Features Visible
	3.4.4 Level of Detail

	3.5 The NCBI Map Viewer
	3.5.1 Using the Browser
	3.5.2 Interaction
	3.5.3 Features Visible
	3.5.4 Level of Detail

	3.6 The X:Map Genome Browser
	3.6.1 Using X:Map
	3.6.2 Interaction
	3.6.3 Features Visible
	3.6.4 Level of Detail

	3.7 Summary and Comments
	3.7.1 Functionality
	3.7.2 Interaction
	3.7.3 Level of Detail
	3.7.4 Types of Features

	4 Analysis of Requirements and Domain
	4.1 General Requirements
	4.2 Functionality
	4.3 Non-functional Requirements
	4.3.1 Software Framework

	4.4 Domain Model
	4.4.1 First Draft
	4.4.2 Discussion
	4.4.3 Domain Model, Rev. 1

	4.5 Arriving at a Class Model
	4.5.1 Introduction
	4.5.2 Diagrams

	5 Designing an Educational Browser
	5.1 Basic functionality
	5.1.1 Select a Genome
	5.1.2 Browse Chromosomes
	5.1.3 Explore Chromosome
	5.1.4 Level of Detail
	5.1.5 Gene Information

	5.2 Design Choices
	5.2.1 Overview of Chromosomes
	5.2.2 Exploring Chromosomes
	5.2.3 Genes
	5.2.4 Exons
	5.2.5 SNPs
	5.2.6 Sketches

	6 Construction
	6.1 Deciding on a Programming Language
	6.1.1 C++
	6.1.2 Python
	6.1.3 Java
	6.1.4 Conclusion

	6.2 Graphical Framework
	6.2.1 Demands
	6.2.2 Java 2D
	6.2.3 Jogl - OpenGL Bindings for Java
	6.2.4 Other Alternatives
	6.2.5 Technical Comparison, Java 2D and Jogl
	6.2.6 Comments
	6.2.7 Choosing Jogl over Java 2D

	6.3 Investigation of Data Size
	6.3.1 Data to be Retrieved
	6.3.2 Chromosome Data
	6.3.3 Attribute Data
	6.3.4 Feature Data
	6.3.5 Summary

	6.4 Evaluation of Data Sources
	6.5 NCBI Entrez
	6.6 Biomart
	6.7 Selecting Data Provider
	6.7.1 Conclusion

	6.8 Integrating Sequence Data
	6.8.1 Regarding Data
	6.8.2 Parsing Approaches
	6.8.3 Sequential Read, Entire File
	6.8.4 Random Access File
	6.8.5 Memory Mapped File IO
	6.8.6 Technical Comparison
	6.8.7 Conclusion

	6.9 Implementing Presentation of SNPs
	6.9.1 Source of SNP Information
	6.9.2 Drawing

	7 Introducing Sigve
	7.1 Initial View
	7.2 Two-stranded View
	7.3 Two-stranded View, Sequence Visible
	7.4 Phenoportal
	7.5 Known Bugs

	8 Conclusions & Further Work
	8.1 Conclusions
	8.2 Complaints
	8.3 Missing Features and Changes
	8.4 Switching Graphical Framework?
	8.5 Program Extension, through an API
	8.6 Focus on Usability
	8.6.1 Perfecting the GUI
	8.6.2 Usability Testing

	8.7 Visual Appearance
	8.7.1 Location Probes
	8.7.2 Visual Indication of Zoom

	A Sigve, Instruction Manual
	A.1 Installation
	A.2 Starting the Program
	A.3 Finding the First Gene
	A.4 Using the Phenoportal
	A.5 Known Issues

	B Discrete Topics
	B.1 Extensible Markup Language - XML
	B.2 Virtual Memory

	C Acronyms and Expressions

