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Causal discovery for the microbiome 
Jukka Corander, William P Hanage, Johan Pensar

Measurement and manipulation of the microbiome is generally considered to have great potential for understanding 
the causes of complex diseases in humans, developing new therapies, and finding preventive measures. Many studies 
have found significant associations between the microbiome and various diseases; however, Koch’s classical postulates 
remind us about the importance of causative reasoning when considering the relationship between microbes and a 
disease manifestation. Although causal discovery in observational microbiome data faces many challenges, 
methodological advances in causal structure learning have improved the potential of data-driven prediction of causal 
effects in large-scale biological systems. In this Personal View, we show the capability of existing methods for inferring 
causal effects from metagenomic data, and we highlight ways in which the introduction of causal structures that are 
more flexible than existing structures offers new opportunities for causal reasoning. Our observations suggest that 
microbiome research can further benefit from tools developed in the past 5 years in causal discovery and learn from 
their applications elsewhere.

Introduction 
Microbiome science has found many associations linking 
the communities of microorganisms that live on and in 
humans with varying states of health and disease.1 
However, further work to define the precise mechanisms 
by which microbiome communities influence health 
outcomes has been much more difficult.2 There are 
several reasons for this challenge, pre-eminently the 
problem of causation; we do not know whether the 
community produced the outcome, or whether the 
outcome selected for the community. Direction of 
causation is not the only obstacle that researchers have 
when seeking a biological mechanism from a collection 
of metagenomic datasets that show a difference between 
cases and controls, no matter how significant. Microbiome 
data are extremely high-dimensional, such that thousands 
of taxa might be in a sample, and the abundance of each 
taxon is often only assayed as proportions of the total, 
rather than absolute abundances. Whether only one of 
the taxa present is responsible, or the community as a 
whole, or a combination of both, is often unclear. These 
fundamental barriers are most readily overcome by 
experiments, such as the transfer of gut microbiomes to 
germ-free mice, and questioning whether this transfer 
leads to different outcomes, which reflects the basis of 
Koch’s classical postulates.3 Such studies are expensive, 
and although they can offer substantial insight on health 
outcomes, they might struggle to define the precise taxa 
or mechanisms involved because animal models do not 
generally enable accurate translation to human disease.4

The use of metagenomic non-experimental data from 
the microbiome to identify plausible causal interactions 
is desirable on multiple grounds. Firstly, it has the 
potential to identify plausible disease mechanisms and 
potential interventions. Secondly, even if  causal discovery 
from non-experimental data is only partly possible, it can 
still reduce the number of experiments needed to 
securely assign the true causal factors. For example, if a 
causal discovery method highlights the individual taxa 
associated with the outcome, these can be tested 
separately, rather than the whole community. Finally, 

many causal discovery applications would require a 
framework able to handle the dynamic changes in 
composition that are thought to characterise many 
microbiome-mediated outcomes.5

We approach this problem by first defining terms for 
causal reasoning in the microbiome with the established 
framework of directed acyclic graphs (DAGs), and 
applying a method for causal discovery in high-
dimensional cross-sectional data to accurately identify 
causal relationships in simulated metagenomic data. We 
then discuss an extension of standard causal graphs, 
labelled DAGs (LDAGs), which improve inference about 
the direction of causality.

DAG for causal reasoning in the microbiome 
The most widely established language for causal 
reasoning is that of DAGs.6 A causal DAG consists of 
system variables, shown as nodes, together with arrows 
between them illustrating causal relationships and their 
direction. Indirect and direct causes of the state of a 
variable can hence be readily communicated (figure 1). 
We started by defining three variables: the status of a 
microbiome community (C), an environmental factor E, 
and an outcome of interest O, which could be the 
presence of symptoms, or other measures (eg, BMI). 
Variable C might be defined at varying levels of 
resolution, from the presence of a specific species, or 
other operational taxonomic unit (OTU), to a specific 
community of OTUs. A major challenge for causal 
analysis of the microbiome and disease is the fact that 
the appropriate DAG must be learned from the data. 
Learning of DAGs is generally referred to as causal 
discovery from observational data. This step is a 
prerequisite for a statistical test of a causal hypothesis 
based on interventions, which can then be analysed with 
the do calculus pioneered by Pearl.6

Figure 1A shows a causal DAG structure, in which the 
edge C → O corresponds to the community, having a 
direct causal effect on the outcome. The environmental 
factor functions as a confounding factor, having a direct 
causal effect on the microbiome community and the 
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Figure 1: Two DAGs describing different causal structures
The DAGs describe different causal structures (A, B) for a system involving a 
microbiome community (C), an outcome node of interest (O), and an 
environmental or confounding factor (E). The directed edges represent causal 
relationships between the variables. DAGs=directed acyclic graph.
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E

disease status. By a causal effect, we mean any measure 
that can be calculated from p(O|do[C]), where the do 
operator represents an intervention being done on C.6

With a DAG, such as one of the graphs shown in 
figure 1A and a set of observational data, consistently 
estimating the causal effects between the variables is 
possible (figure 1A).6 We can rewrite the distribution of O 
under an intervention on C as:
 This formula adjusts for the confounding factor E, 

which corresponds to blocking all backdoor paths (ie, the 
non-causal path C ← E → O; figure 1) in the graph. Of 
note, the probabilities on the right-hand side in the 
expression do not contain the do operator; therefore, they 
do not imply an intervention and can be estimated from 
observational data. Similar treatment of the DAG shown 
in figure 1B, in which there is no effect of the microbiome 
community on the presence of the outcome, yet the two 
remain correlated because of causation in the reverse 
direction, yields: p(O|do[C])=p(O).

Although DAGs can be inferred from observational 
data with conditional independence statements, this is 
only possible up to the Markov equivalence class, which 
is the set of DAGs that contains the same dependence 
structure. For example, the DAGs in figure 1 are in the 
same Markov equivalence class but have very different 
causal implications, which is a formal way of stating 
the familiar problem in distinguishing cause from 
correlation. We can illustrate the problem using a 
method, known as intervention calculus when the DAG 
is absent (IDA), specifically developed for the analysis of 
high-dimensional data, such as networks of gene 
expression, in which the DAG is initially unknown.7,8 
IDA both learns the Markov equivalence class and then 
estimates the possible causal effects for each DAG within 
it. IDA needs to make rather strong assumptions that   
the joint distribution over the variables in the considered 
system is multivariate normal (with a DAG-based 
covariance structure) and that there are no hidden 
confounding variables. Even if these assumptions are 

unlikely to be completely fulfilled by real datasets, proof-
of-concept results have already shown the usefulness of 
IDA (and a variant of it) on large-scale biological systems 
involving gene expression data.8,9 We further illustrate the 
potential of IDA and its limitations for causal inference 
from microbiome data in a controlled setting, with 
simulations reflecting an ideal situation in which the 
assumptions are valid.

Causal inference from cross-sectional 
microbiome data 
We considered a single outcome node O and 100 OTUs, 
C1 to C100, which has a coexistence pattern described by a 
DAG-based multivariate normal distribution. The OTU 
nodes represent relative abundances, mimicking log-
transformed and normalised titre values on the basis of 
either 16S rRNA or shotgun metagenomics, and the 
outcome node represents a continuous valued phenotype 
of interest. The simulated system was specified to model 
symbiotic relationships of varying strength between 
pairs of OTUs, corresponding to positive correlations 
between OTU abundances, but we could equally have 
allowed for antagonistic relationships, or negative 
correlations. The aim of the experiment was to estimate 
the causal effect of a randomly chosen OTU C* 
(ie, C1 to C100) on the outcome node. The sample size in 
any of these experiments refers to the number of people 
from which metagenomic profiles are available. 
The structure of the DAG for the OTUs was generated 
randomly, such that the number of neighbours of an 
OTU was three, and we considered three different 
scenarios (figure 2) for the link between the outcome 
node and the microbiome. In the simplest scenario in 
figure 2A, the outcome node is directly linked to a single 
OTU. The other two scenarios in figure 2B, C extend this 
causal dependence to a simple community consisting of 
two OTUs that are either directly linked (figure 2B) or 
not directly linked (figure 2C). For each scenario, we 
considered both the situation in which the microbiome 
is a cause of the outcome node and the reversed situation 
in which the outcome is affecting the status of the 
microbiome, which allowed us to assess the accuracy of 
IDA both in terms of true positives and false positives. 
For each scenario, the presented results are averages 
from 1000 randomly generated models. Since IDA 
outputs a set of estimates, we summarised the output by 
the minimum absolute value, which can be considered a 
lower bound on the causal effect. We used the R package 
(version 2.7) pcalg to generate the random DAGs and run 
the IDA algorithm.10

The results of the experiments are summarised by the 
box–bar plot in figure 2. In the first scenario (figure 2A), 
we see that IDA reaches a true discovery rate of around 
50% for a sample size of 400; however, the rate does not 
improve when increasing the sample size to 1600. In fact, 
the rate would not improve substantially even with access 
to infinitely large samples. The theoretical upper limit on 

p(O|do[C]) = Σ p(O|C,E)p(E)
e
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the discovery rate, which was 52·6% in this simulation, 
depends on the specific structures in the randomly 
generated systems; to infer the direction of C* → O, the 
algorithm exploits the direction of other edges. More 
specifically, an incoming edge to C* from any other OTU 
must exist, for the statistical reasons that we discuss later 
in this Personal View. From the biological perspective, the 
outcome and OTU covariation have an indistinguishable 
pattern under either direction of causality in the first 
scenario (figure 2A). Other notable observations are that 
the magnitude of the causal effect is quite accurately 
estimated for the non-zero effects, and that the false 
positive rate is low for all sample sizes greater than 100.

In the second scenario (figure 2B), the theoretically 
optimal true discovery rate was 83·6%; however, IDA 
clearly requires larger samples to infer the slightly more 
complex link between the outcome node and the 
microbiome, which is reflected not only by a lower 
relative true discovery rate, but also by an increase in the 
false discovery rate. Additionally, there is an increased 
uncertainty in the estimation of the magnitude of the 
causal effect. For consistent estimation of the causal 
effect, the method must not only infer the direction of 
C* → O, but also C → C*, since the backdoor path 
C* ← C → O otherwise remains open, introducing bias 
to the estimate.

The third scenario (figure 2C) represents a situation in 
which consistent causal discovery of the C* → O 
mechanism is possible regardless of the structure of the 
rest of the system because C* → O ← C forms a so-called 
v-structure, in which C* and C are not directly connected. 
In biological terms, this v-structure corresponds to two 
causal OTUs which have relative abundances that are 
not directly influencing each other. In contrast to the 
previous scenarios, IDA reaches a true discovery rate 
close to 100%, with a very low false discovery rate, 
already for a sample size of 400. Compared with the first 
scenario (figure 2A), the uncertainty in estimating the 
magnitude of the effect is slightly higher, which is the 
result of backdoor paths from C* to O via C that are 
incorrectly inferred to be open, introducing bias to the 
estimate.

These simulations (figure 2) highlight both the potential 
and limitations of DAG-based causal discovery. An 
obvious limitation is the rather strong assumptions, 
which are difficult to verify in practice, yet necessary for 
the approach to work, even in theory. However, the 
simulations show that when we have a situation in which 
the assumptions are fulfilled, IDA can be quite accurate 
for samples of a size that could be experimentally 
achieved, at least when compared with the theoretically 
optimal limit. This point brings us to another critical 

Figure 2: Lower bound of the causal effect of on
Causal effect estimated by intervention calculus when the directed acyclic graph is absent under three different scenarios (A–C) illustrated by the graph structures.
The red arrows represent the causal mechanism in which the microbiome affects the outcome status (true effect=0·75) and the blue arrows represent the reversed 
causal mechanism in which the outcome status affects the microbiome (true effect=0). The dashed arrows represent potential interactions between C, C*, and the 
rest of the operational taxonomic units. The box–bar plots summarise the results of the simulations obtained for different sample sizes shown on the horizontal axis. 
The bars show the proportion of non-zero estimates (right vertical axis) and the boxes show the distributions of the of the non-zero estimates. C=microbiome 
community.
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limitation: whether or not causal discovery is possible 
ultimately depends on the structure of the actual system. 
Again, this limitation is not strictly because of a problem 
in the DAG-based approach, but rather a more funda-
mental issue highlighting the insufficiency of 
observational data when it comes to drawing causal 
conclusions. Nonetheless, IDA and similar types of 
methods can provide a useful tool for doing an initial 
causal analysis on observational microbiome data, 
leading to hypotheses that can be attempted to be verified 
experimentally.

LDAGs to improve causal reasoning
The class of LDAGs introduces a general representation 
of context-specific independence in Bayesian networks.11 
An LDAG adheres to the Markov properties of traditional 
DAGs; however, in addition to conditional independence, 
it encodes particular context-specific independence 
statements through labels attached to the edges. If the 
context of a label is satisfied, the dependence conveyed 
by the associated edge is removed. In other words, 
LDAGs provide a more expressive class of dependence 
structures than traditional DAGs.

The application of LDAGs is illustrated by an analysis 
of Clostridioides difficile associated diarrhoea (CDAD), 
which is a microbiome mediated disease for which we 
have relatively secure causal understanding. Although 
C difficile is often found in the microbiome of healthy 
people, it is present in small quantities. However, after 
disruption of the gut microbiome community by 
antibiotic treatment, C difficile can grow to a higher titre, 
resulting in diarrhoea.12 Although the infection can be 

treated with antibiotics, C difficile forms hard, resistant 
spores that can survive the treatment, and so the disease 
becomes chronic and resumes when antibiotics are 
withdrawn. To emphasise this situation as a case of a 
microbiome-mediated disease in which the community 
is important, CDAD can be successfully treated with 
faecal microbiome transplants from healthy individuals.13

The causal structure of CDAD can be described by an 
LDAG in figure 3. Although a DAG can represent the 
cause of diarrhoea, it hides the explicit role of the antibiotic 
treatment (E) in irreversibly altering the microbiome 
community (C), which is encoded by the context-specific 
independence represented as the label on the edge from 
antibiotic treatment to the persistent diarrhoea in the 
LDAG. Assuming that we are given observational data 
from this system and that we have previous knowledge 
of E being a direct cause of C and O (ie, C ← E → O), from 
the data we can infer the presence of an edge between C 
and O, but not the direction of the edge, which translates 
into an ambiguity about whether the observed microbiome 
status causes the disease or is a consequence of the 
disease. From a structure learning perspective, we cannot 
establish the direction of the final edge between C and O, 
since the two possible DAGs (figure 1A, B) belong to the 
same Markov equivalence class. However, with LDAGs, 
the existing context-specific independence would provide 
enough information to deduce the direction of the final 
edge. For C to be able to affect the relationship between E 
and O, it must be a cause of either E or O, and since we 
know that C is an effect of E, it must consequently be a 
cause of O (ie, C → O).

LDAGs are also capable of detecting causal interactions 
that arise when multiple taxa are necessary for an 
outcome. Although much recent work on the microbiome 
has involved narrowing down mechanisms to individual 
taxa, the ability to establish the effects of communities, in 
particular emergent properties, would be a great 
advantage.2  We modelled an intentionally simple example 
of community effect using just two OTUs, C1 and C2 
(figure 4). Both OTUs are direct causes of a disease O and 
are marginally dependent, either directly by an edge or 
indirectly by an unobserved confounding factor, which is 
shown by the undirected line between them (figure 4A). 
In this simple example, we defined the OTUs as either not 
present (0) or present (1), and defined the outcome O as 
either asymptomatic (0) or symptomatic (1). Our aim was 
to infer the causal mechanism C1→ O ←C2 from 
observational data, without any prior information. As 
explained earlier, conventional DAGs cannot be used in 
this scenario. However, if the joint causal effect of C1 
and C2 is only seen when both OTUs are present, an 
LDAG can correctly represent and estimate it from the 
data (figure 4B).

Using simulations, we generated the joint distribution 
of C1 and C2 so that the OTUs showed a coexistence 
pattern favouring configurations in which both or 
neither of the OTUs were present. We modelled the 

Figure 3: A labelled directed acyclic graph describing the causal structure of 
Clostridioides difficile
C represents a person’s microbiome community, which is either dominated 
(C=1) or not dominated (C=0) by C difficile; E represents whether or not the 
person receives antibiotic treatment. O represents whether or not the person has 
persistent diarrhoea. The directed edges represent causal relationships between 
the variables; and the label implies that the causal direct effect (E to O) vanishes 
when the microbiome community is dominated by C difficile (ie, when C=1).

C O

C=1

E
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tendency of C1 and C2 to cooccur with a tuning parameter 
α; as α increases, the two OTUs are more likely to be 
found together (for example, because of cross feeding or 
other metabolic interactions).13 We set the baseline 
probability of developing the disease to 0·05 and 
examined the combined effect of relative risk or risk 
ratio and the coexistence tendency α, on the true causal 
discovery rate for various sample sizes under both the 
DAG-based and LDAG-based framework. The causal 
structures of the respective model class were evaluated 
with the Bayesian score,11 after which the highest 
scoring equivalence class was selected. If all structures 
in the inferred equivalence class contained the causal 
mechanism C1 → O ← C2, the result was considered 
correct, otherwise it was considered incorrect. For each 
setting, we generated 1000 models and corresponding 
datasets for which the results were summarised as 
discovery rates.

As expected, the true discovery rate of the DAG-based 
approach is zero (figure 4C), whereas the LDAG-based 
method successfully learns the underlying causal 
structure with an increasing probability as a function of 
the sample size and risk ratio. Nevertheless, the 
discovery rate decreases dramatically when the 
α-parameter is also increased, which is a consequence 
of its effect on the distribution over C1 and C2. In 
particular, as the parameter tends to infinity, the 
dependence between C1 and C2 becomes perfect (or 
deterministic), which corresponds to a situation with 
only one binary cause C=(C1, C2), and we cannot infer 
whether C → O or C ← O, since the two DAGs are 
Markov equivalent.

Discussion 
In this Personal View, we have discussed causal 
discovery using the DAG-based framework, in which 
one attempts to characterise the Markov equivalence 
class of causal structures from observational data. We 
have shown that identifiability of a causal effect of 
interest generally requires the direction of additional 
edges (figure 2A, B), but might not be possible in many 
cases, since characterising the Markov equivalence 
from observational data requires specific information of 
the direction of additional edges involving the relevant 
community or the diseases. However, we also showed 
that DAGs can have potential for microbiome data, as 
shown by the scenario in which two OTUs, which have 
relative abundances that are not directly connected, 
both have a causal effect (figure 2C). Consistent causal 
discovery is possible no matter the direction of the rest 
of the dependencies, provided that the biases in the 
measurement process or the assumed quantitative 
model do not obscure the true effects.

We showed that by switching to a more expressive 
class of models than DAGs, such as LDAGs, we can 
extract more information from the data, which can 
subsequently improve inference about the direction of 

causality. The advantage of LDAGs is the ability to 
encode context-specific independencies, such as the 
effect of antibiotic use in CDAD. We also showed that 
LDAGs can detect causal interactions that arise when 
multiple taxa are necessary for an outcome. In this 
Personal View, we focused on the scenario in which two 
taxa are required for disease, relevant to a circumstance 
in which the pathology is caused by multiple factors in 
the community. This causal network is readily and 
reliably identified depending on the sample size and the 
risk ratio, as we might expect from intuition. However, 
more crucially, if the causal taxa tend to coexist in the 
same community, our ability to detect the true effect 
and direction of causation is effectively reduced 
(figure 4C).

A critical assumption made throughout this work is 
that there are no hidden confounding factors, which is 
one of the reasons warranting the experimental approach 
to causal effect estimation, since they can be accounted 
for by appropriate randomisation procedures. We are also 
only considering statistical issues of the estimator (bias 
and variance) in a setting in which the assumptions are 
satisfied, and not potential problems (eg, contamination) 
with sample preparation and contamination, which are 
very important,14,15 but beyond the scope of this work. 
Generally, predictions based on purely observational 
data should not be seen as a replacement of intervention 
experiments, but they should instead be used as a tool for 
generating causal hypotheses that can guide in the design 
of follow-up experiments.

Other methods exist besides the ones we have 
considered and deserve attention. In particular, Mendelian 

Figure 4: Causal structures and results of the LDAG simulation
The discovery rate (vertical axis) is the proportion of cases in which either method successfully discovered the 
causal mechanism: LDAG-based method (blue), DAG-based method (red). The different plots correspond to 
different a-values and the different curves within each plot correspond to different RRs. C=microbiome 
community. DAG=directed acyclic graph. LDAG=labelled DAG. O=outcome node of interest. RR=risk ratio.

A B

C

100 200 400 800 1600

Sample size (n)

0

0·2

0·4

0·6

0·8

1·0

Di
sc

ov
er

y 
ra

te

α=10

RR=2

RR=4

RR=8

RR=16

100 200 400 800 1600

Sample size (n)

α=100

RR=2
RR=4

RR=8

RR=16

100 200 400 800 1600

Sample size (n)

α=1000

RR=8
RR=16

C1 C2

O

C1

C1=0C2=0

C2

O



e886 www.thelancet.com/microbe   Vol 3   November 2022

Personal View

randomisation is a popular and widely used instrumental 
variable method that exploits genetic variation as an 
instrument for analysing the causal effect of an exposure 
on an outcome of interest.16,17 Under some key instrumental 
variable assumptions, including the existence of a genetic 
variant associated with the exposure (ie, the instrument), 
the method is able to reduce both reverse causation and 
confounding, yet violations of the assumptions might lead 
to severe biases.18 The linear non-Gaussian acyclic model 
algorithm offers another interesting structure learning 
alternative that guarantees identifiability of the whole 
DAG under the specified assumptions.19 Other alternative 
causal inference methods include the cavity method for 
dynamic physical systems,20 and approximate Bayesian 
computation-based inference for statistical simulator 
models.21 All of these methods can complement the 
approach we have described.

The focus of this Personal View has been on cross-
sectional data, which is more abundant than 
longitudinal data since longitudinal studies are more 
expensive and time consuming than cross-sectional 
studies. However, the DAG-based framework can also 
be extended to the longitudinal setting by introducing 
time-specific variables;22,23 in fact, the temporal ordering 
of the variables might even facilitate detection of causal 
relationships from longitudinal data.24 Finally, a 
particularly beneficial class of methods are those that 
combine observational and experimental data. In the 
structure learning framework, intervention experiments 
improve identifiability by narrowing down the class of 
possible causal structures.25–27 A method exploiting a 
general invariance principle of causal systems was 
developed and applied to gene expression data,28,29 which 
contained both observational samples and interventional 
samples obtained through perturbation by single gene 
knockouts. Provided that a plausible animal model of 
the disease is available, and one can systematically 
knock out components of the microbiome community, 
this kind of approach might open up new frontiers.

For simplicity, we focused on the original IDA method 
in the high-dimensional OTU simulation. However, since 
the pioneering work by Maathuis and colleagues,7,8 a line 
of research has given rise to several extensions and 
improvements of the original method, and we expect to 
see further methodological developments in the near 
future. Previous advancements include extending IDA to 
joint interventions,30 improving its accuracy by more 
careful selection of adjustment sets,31,32 and improving its 
scalability through local structure learning.33 In addition, 
one of the main limitations of the original IDA method is 
its restricted ability to account for the typically 
considerable amount of uncertainty involved in inference 
procedure. To address this restriction, IDA has been 
combined with frequentist resampling techniques,9,34 and 
also extended to the Bayesian setting.35,36 The Bayesian 
approach, in particular, has shown promising results in 
terms of accuracy, albeit is currently limited to 

medium-sized systems for computational reasons. There 
have also been several advancements in identification of 
valid adjustment sets in causally insufficient systems, 
thus enabling causal effect estimation in some cases 
when latent confounders are allowed.37,38 Although such a 
setting is more realistic for most real-world scenarios, it is 
also considerably more challenging because of issues 
related to identifiability and computational complexity, 
and practical applications are, therefore, still scarce, 
especially in the high-dimensional setting.

Our consideration of the causal discovery problem 
focused on the core challenge of identifying causal 
relationships between OTUs and outcomes of interest 
with metagenomics. However, increase in the use of 
multiple omics in microbiome research, such as 
metatranscriptomics and metabolomics in conjugation 
with metagenomics,39 suggest that more precise causal 
discovery could be made by developing hierarchical 
models that are capable of integrating such data and 
feeding relevant, existing biological knowledge about 
possible directions of system variable relationships into 
the inference process. We have implicitly emphasised 
situations with high biomass samples, as is typical with 
gut microbiome studies. Low biomass settings, such as 
lung and skin, will come with their own specific challenges 
because generating robust molecular data from such 
samples is generally more difficult. However, the level of 
microbial complexity tends to be lower in low biomass 
settings than in the gut, which would generally reduce the 
risk of discovering spurious causal relationships because 
the curse of dimensionality would be substantially 
reduced compared with the gut microbiome.

Overall, we conclude that combining better means of 
characterising causal structures, together with 
experimental models of disease, will help to make the 
future of the microbiome research even brighter than the 
present.
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