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Abstract 

Radiation therapy (RT) is often included in, or used as a stand-alone, treatment of cancer in the 

head and neck region (HNC). The salivary glands (SGs) are often in close proximity to the 

tumour and are therefore not always possible to spare from irradiation when using RT to treat 

HNC. The response of the SGs to irradiation show variations between patients, indicating that 

some are more radiosensitive than others. Incorporating more patient-specific biomarkers into 

treatment planning and evaluations during fractionated radiotherapy are needed to establish a 

precision oncology framework for mitigation of side-effects such as xerostomia (dry mouth).  

Radiomic image features from medical imaging have previously shown potential as biomarkers 

for risk of developing xerostomia post-RT. Radiomics is a high-throughput method of extracting 

quantitative information from such images and the features may be broadly categorized as shape-

based, first-order, and texture-based. This work evaluated the relation between 828 radiomic 

features calculated from 2D regions of interests (ROIs) in either T1- or T2-weighted magnetic 

resonance images (MRI) to known biological changes in the SGs due to damage by ionizing 

radiation. C57BL/6J mice were used, where 72 individuals were irradiated while 40 belonged to 

a control group. 

The developed radiomic workflow includes creation of ROIs for each image (segmentation), 

preprocessing, feature extraction, feature selection, and modelling. Radiomic studies are known 

to have an issue with reproducibility and feature robustness, and therefore all steps in the 

workflow are evaluated and described in detail. Intensity normalization was performed on a 

feature-specific level.  

The segmented ROIs were evaluated against sublingual gland (SLG) and submandibular gland 

(SMG) areas from 9 surgical specimens. While the SLG areas had higher correlation to the 

image-segmented ROIs than the SMG areas (𝜌 = 0.71 and 0.36, respectively), the two types of 

glands could not be differentiated in the images due to being fused in mice. Saliva production 

was found to be significantly lower in irradiated individuals relative control comparing data from 

between day 26 and 105 post-irradiation. Xerostomia was defined into a binary outcome variable 

by thresholding.  

Using only image features from T1 images proved to be significantly better predictors of 

xerostomia than the T2 features when evaluated on the same data. The relative difference in a T2 

first-order feature before and after pilocarpine injections for saliva measurements, delta-p 

energy, was shown to be a high-performing predictor of xerostomia evaluated on the same day as 

the MR imaging. Overall, 2D features from the right SG-subunit proved to be higher-performing 

features than the left subunit, possibly due to some differences in delivered dose.  

Both T1 and T2 features obtained from MRI after irradiation were good predictors of late 

xerostomia, but only T1 features showed a possible predictive ability at baseline. The relative 

difference in a shape-feature before and after irradiation (delta-feature) showed promise of 

predicting late xerostomia. Multiple textural features from both T1 and T2 images were good 

predictors of late xerostomia, possibly related to changes in vascularity or increased fatty tissue 

in the glands post-irradiation. 
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The radiomic image features were able to predict saliva production in C57BL/6J mice with 

varying accuracy. 14 features significantly improved upon models only using time and dose as 

predictors, indicating that certain features contained information relating to the inter-mouse 

variations affecting saliva production. However, none of the features were significant under 

Bonferroni corrected p-threshold, emphasizing the need for validating studies on external data.  
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Abbreviations 

- CFRT (RT):  Conformal radiotherapy – dose optimization technique by shaping the 

   irradiation field(s) to the PTV, thus reducing delivered dose to healthy 

   tissue and OARs 

- CLAHE:   Contrast Limited Adaptive Histogram Equalization – method of increasing 

   the contrast in an image while suppressing noise 

- FBC:  Fixed bin count - method of image intensity discretization 

- FBW:  Fixed bin width - method of image intensity discretization 

- FID (NMR): Free Induction Decay – basic concept in NMR 

- FSE (MRI):  Fast Spin Echo – rapid image acquisition technique in MRI 

- GTV (RT):  TV + subclinical carcinoma 

- HN:   Head and neck (region) 

- HNC:   Head and neck cancer / carcinoma in the HN region 

- IMRT (RT): Intensity modulated radiotherapy – type of CFRT where the beam   

   intensity is varied during the RT to achieve an optimal dose distribution in 

   the PTV 

- IQR:   Interquartile range – statistical term 

- MRI:   Magnetic Resonance Imaging 

- MRMR:   Maximum-relevance minimum-redundancy – method of feature selection 

- N4:   Non-parametric image processing method to counteract bias field artifacts 

   in MRI 

- NMR:   Nuclear Magnetic Resonance – the basis for MRI 

- OAR (RT):  Organ at risk (due to RT of PTV in its proximity) 

- PG:   parotid gland – type of SG 

- PROCCA:  Protons Contra Cancer – interdisciplinary research environment   

   considering the biological short- and long-term effects following RT of 

   HNC, which this work is a part of 

- PTV (RT):  Planning tumour volume (what to irradiate) 

- QIBA:   The Quantitative Image Biomarker Association – North American   

   association attempting to standardize the process of imaging biomarker 

   identification and clinical implementation 

- RARE (MRI): Rapid acquisition with refocused echoes – today referred to as FSE 

- RF:   radiofrequency – non-ionizing radiation 

- ROI:   Region of interest – subset of pixels in a 2D image  

- RT:   Radiotherapy 

- SD:   Standard deviation – statistical concept 

- SE (MRI):  Spin echo - MR-imaging pulse sequence where spins are refocused by a  

   180-degree pulse producing an “echo” 

- SG:   Salivary gland 
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- SLG:   Sublingual gland - type of SG 

- SMG:   Submandibular gland - type of SG 

- SNR (MRI):  Signal to noise ratio 

- TE (MRI):  Echo time - time from centre of RF-pulse to centre of the signal echo  

- TR (MRI):  Repetition time - time between centres of consecutive RF-pulses 

- TV (RT):   Tumour volume (“true” volume of tumour) 

- VOI:  Volume of interest – subset of voxels in a 3D image 
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1 Introduction 

Cancer is a pathologic term describing groups of cells displaying abnormal growth in some way, 

characterized by uncontrolled proliferation [1]. In 2020, cancer in the head and neck region 

(HNC) made up about 800 new cases each year in Norway [2]. 

Radiotherapy (RT) employs ionizing radiation, typically high-energy X-rays, impinging on the 

tumour from many angles. The aim is to eradicate the cancer by inactivating all malignant 

tumour cells. However, irradiation of healthy normal tissue is largely unavoidable and may cause 

side effects. RT is in many cases central for treating HNC and may be used in combination with 

other modalities to increase the likelihood of patient survival. RT may be used alone or after 

surgical resection of the tumour. For the latter, RT aims to eliminate microscopic remains of the 

tumour, thus reducing the risk of recurrence [3].  

However, radiotherapy of cancer in the head and neck region is known to induce side effects 

such as xerostomia (dry mouth) due to the tumours’ proximity to healthy tissue and organs such 

as the salivary glands (SGs) [4].  

Information before start of treatment about the patient currently includes a computed tomography 

(CT) scan of the head and neck region, where the tumour and organs at risk are delineated. The 

CT images and the delineated volumes, together with physics-based radiation transport model 

and optimization techniques, are used to derive e.g. the dose-volume relationships. This is then 

used to plan the delivery and evaluate the probability of complications in the healthy tissue. 

However, the SG dose-response have shown high variation between patients and studies have 

indicated the need for incorporating more patient-specific data into the treatment planning and 

follow-up to mitigate radiation-induced side effects [5]. Taking such individual patient variations 

into account is often referred to as precision oncology.  

Medical imaging data from e.g. CT or magnetic resonance imaging (MRI) may contain patient-

specific information with potential applications in precision oncology. Also, medical imaging is 

inherently non-invasive, which is an advantage over methods requiring tissue sampling. 

Radiomics attempts to find relationships between medical imaging biomarkers (radiomic 

features) and some biological phenomenon while also taking inter-patient variations into 

account. Identified radiomic features may therefore be viable biomarkers for use in precision 

oncology, as a tool for decision-making and risk assessment both in treatment planning and 

during the delivery of fractionated RT. This may in turn improve patient care and treatment 

outcomes [6]. 

The work described in this thesis extracts radiomic features from MR images that may be used to 

predict xerostomia, following irradiation of the salivary glands in C57BL/6J mice. The radiomic 

features are hypothesized to contain information about the inter- and inter-mice variations in 

saliva production, which this thesis attempts to validate. The radiomics workflow includes 

segmentation, feature extraction, feature selection, and modelling [7]–[9].  

The segmentation procedure used for creating 2-dimensional regions of interests (ROIs) of the 

salivary glands was a semi-automatic method using a watershed approach. Various steps in 

image preprocessing, before extraction of radiomic features, are evaluated and implemented into 



6 

 

the developed radiomics pipeline. Preprocessing includes MRI bias-field correction, intensity 

normalization, re-segmentation, and discretization by fixed bin widths. The type of normalization 

is chosen on a feature-specific basis.  

As the MR-images were taken over time the radiomic features are evaluated on their ability to 

predict saliva amounts measured on the same day as the images were acquired, or forward in 

time. Saliva production was measured after injecting each mouse with pilocarpine. Taking the 

relative difference between each image feature from before and after irradiation, known as delta-

radiomics, have shown previous success with predicting late xerostomia [10] and is also 

evaluated in this work.  

Different types of radiomic features were evaluated in this work. Standard radiomic features 

were extracted from either T1 or T2-weighted MR-images and two variations of relative 

differences between features were also derived. The previously established delta-features being 

the relative difference in time, and the proposed delta-p features being the relative difference 

before and after pilocarpine injections (i.e. saliva extraction). The two latter types of relative 

differences in radiomic features are only based on T2-images due to a higher amount of data than 

the T1-images.  

Multiple linear and random forest regression were used to predict the continuous saliva amounts, 

using the four feature-types. Similarly, a logistic regression and a random forest classifier were 

used to predict binary outcomes representing xerostomia, found by thresholding based on the 

expectation values from the control individuals over time. Models were evaluated by either 

splitting the data into a train and test set, or by resampling methods such as k-fold or leave one 

out cross-validation (LOOCV).  
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2 Theory and background 

2.1 Radiotherapy of cancer in the head and neck 

region 

As mentioned in section 1, radiotherapy (RT) of head and neck cancer (HNC) is known to induce 

side effects. Such effects may be either acute or long term, dependent on the RT delivery 

(radiation dose and technique) and the tissue or organs present in the irradiation fields. In many 

cases the tumour is located in near vicinity to the salivary glands (SGs), making them difficult to 

spare from the ionizing radiation. A high dose delivered to the SGs may cause injuries which 

may be irreparable. Such irradiation-induced injuries to the SGs remains an area of active 

research, as it is of clinical interest to mitigate such effects [4]. 

This section describes the basics in radiation physics and radiobiology with implications for 

radiotherapy, before describing the biology of the healthy and irradiated salivary glands. 

2.1.1 An overview of radiation physics and dosimetry 

The following chapter is written using Introduction to Radiological Physics and Radiation 

Dosimetry (Attix, 1986 [11]) as source. 

Ionizing radiation is defined by the radiation’s ability to excite and ionize atoms of the matter 

with which it interacts. The radiation may be made up of electromagnetic waves (photons), 

charged particles (electrons, protons, heavier nuclei), or neutrons.  

Two main types of interactions may occur between the photon and an atom of molecule in the 

irradiated medium (target): scattering and absorption. In a coherent (Rayleigh) scattering event 

the photon does not lose energy, while in an incoherent (Compton) scattering event some energy 

is transferred from the photon to the target particle. The photoelectric effect is another type of 

interaction where an absorption of a photon induces either an excited state (causing the emission 

of a new characteristic photon or the release of an auger electron during de-excitation) or a 

direct liberation of an electron (ionization). The final interaction possibility for transferring 

energy directly from photons to electrons is though pair production – the absorption of a photon 

in the target’s coulomb field with a following creation of an electron and a positron.  

Whether any single interaction between the radiation particle and a particle in the irradiated 

material (target) occurs is of a stochastic nature (due to these being quantum mechanical 

processes) and may be described probabilistically using the cross-section. The total mass 

attenuation, describing the loss of fluence (number of particles per unit area) in a photon beam 

going through some material, becomes a linear combination of each interaction cross-section. 

The dominant interaction is dependent on the atomic number of the target, as well as the energy 

of the incoming photon (see Figure 2-1). 
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Figure 2-1: Dominant electron-releasing interaction for varying photon energy and atomic number Z in target. 𝜎, 𝜏, 𝜅 are the 

cross-sections for Compton scattering, photoelectric effect, and pair production, respectively. Image is from [11]. 

 

The production of x-rays, either by a x-ray tube or linear accelerator, involves accelerating 

electrons before they collide with a heavy element (target). The rapid retardation of electrons in 

collision with the target, brehmsstrahlung (braking-radiation), causes an induction of high-

frequency EM waves: x-rays. The quality of the produced x-rays, being a metric describing some 

aspect of the x-ray beam’s energy distribution, may be manipulated by beam filtering through 

some metal.  

Knowing how much imparted energy, of which the expectation value per unit mass becomes 

dose, a specific region of a material has received due to irradiation is a question of dosimetry. 

Ionometry correlates the dose to a measurement of the number of ionizations within some 

enclosed area (e.g. measured using an electrometer), being an example of absolute dosimetry as 

the method does not require external information for calculation of the dose. However, in 

practice the method is often used for relative dosimetry requiring a calibration of the ion 

chamber at some conditions where the dose is known (e.g. the dose to a known mass of water at 

ambient conditions).  

 

2.1.2 A brief overview of radiobiology and radiotherapy 

This majority of this section is based on the 2019 book Radiobiology for the radiologist by Eric 

J. Hall [12]. 

Contained in a double layered lipid membrane, the cell nucleus, the DNA is considered the 

radiosensitive biomolecule of the cell. The DNA contains all genetic information for production 

of necessary proteins in the human body. 

Corresponding to the molecular structure of a specific protein, the information in a gene is 

transcribed onto a messenger RNA (mRNA) before the information is translated into the protein 

outside the cell nucleus. 
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The self-replication of cells in done by the doubling of all necessary proteins for sustaining both 

the old and new cell, in addition to copying the whole DNA (DNA replication), before division 

into two separate cells. The part of the cell cycle where the cell divides is known as mitosis, or 

M-phase. The cell grows and prepares for division during interphase, during which the DNA is 

accessible for transcription, which is further subdivided into the three phases G1, S, and G2. 

Cellular growth occurs during the G-phases, while the DNA replication occurs in S-phase. 

Before mitosis, the DNA is efficiently packed into a coil known as the chromosome. After DNA 

replication a sister chromatid is connected to the original chromosome at the centromere, 

containing all genetic information to sustain further cell life following the cell division during 

mitosis. 

While charged particles have a higher probability of directly ionizing a biomolecule in an 

interaction event, x-rays deposit their energy in proximity creating free radicals. The free 

radicals, or the ionizing irradiation directly, damages or inactivates the cell by altering the DNA.  

Ionizing irradiation may alter the structure of the DNA in a damaging way by either depositing 

energy directly onto the DNA, or by induction of reactive free-radicals in the nearby 

environment. The damage is characterized by discontinuities in the DNA stand (strand breaks). 

The severity of the damage, and the cell’s potential for repair, differs for a single strand break 

(SSB) and a double strand break (DSB). The damage may be lethal for the cell but may also be 

possible to be repair. Following a DSB, the possible reparation mechanisms vary based on where 

in the cell cycle the cell is. If the cell is in late G2 or S-phase, the DNA may be completely 

restored by using information available in the sister chromatid. This is known as homologous 

recombination (HR). If the cell is in G1 an attempt to repair the cell is by non-homologous end-

joining (NHEJ). The separated DNA-strands are re-attached at the site of the strand breaks, 

leading to a potential loss of genetic information.  

Following an incomplete reparation of irradiation-induced DNA damage, a mutation may occur 

as a change in the genomic structure. If the cell is able to divide and survive with said mutation 

the risk of cancer may increase, or the function of physiological systems may become affected. 

Cellular mechanisms exists to mitigate mutations following irradiation damage, such as 

controlled cell death (apoptosis) or an irreversible arrest in the G1 or S-phase [13]. If the cell is 

lacking the apoptotic response pathways, the sister chromatids may become inseparable during 

mitosis leading to incomplete division and uncontrolled cell death. The latter is known as the 

mitotic catastrophe, or mitotic cell death.  

The standard for modelling cell culture survival following ionizing irradiation is by using the 

linear quadratic (LQ) model. The LQ-model assumes an exponential decrease in number of 

surviving cells with increased dose, based on a second-order polynomial in the exponent. 

ln(𝑆) =  −(𝛼𝐷 + 𝛽𝐷2) 

2.1-1. 

 

The two parameters in the LQ-model, seen as alpha and beta in equation 2.1-1, are cell-specific. 

Their ratio describes the radiosensitivity for a cell type characterized by an early or late response 
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to irradiation [14]. As tumour cells usually have a higher alpha / beta ratio compared to the 

healthy surrounding tissue, they are more sensitive to multiple small irradiation doses delivered 

over a large time-span than early responders having a lower alpha / beta ratio. Temporally 

fractionated dose-delivery regimes are therefore used to maximize the killing of cancer cells, 

mathematically formulated through the tumour control probability (TCP)  ̧while maintaining a 

low normal tissue complication probability (NTCP).  

The maximization of TCP while keeping NTCP low is a key component of radiotherapy. 

Another important aspect for consideration to increase the probability of a complication-free cure 

using RT, are organs positioned close to the tumour. Their close proximity to the tumour, and 

therefore potentially in the irradiation field, makes them organs at risk (OAR). Special 

techniques for optimizing the dose distribution within a patient with respect to lowering the dose 

to OARs exists, such as conformal radiotherapy (CFRT) and intensity-modulated radiotherapy 

(IMRT) [15].  

 

Figure 2-2: Example of a RT plan for treatment of HNC, showing the expected dose distributions in the transversal (left), sagittal 

(middle), and coronal (right) planes. Image from [16]. 

 

When using RT for treatment of HNC, the salivary glands are often considered OARs. However, 

even when using CFRT or IMRT in the dose planning process, the sparing of SGs is not always 

possible for all patients as seen in Figure 2-2. The understanding of radiation-induced biologic 

responses in the SGs is therefore of clinical importance [4].  

While the radiosensitivity between cell types is described mathematically by the LQ-model, 

inter-patient differences are present in their response to similar doses [17]. As the human body is 

a complex system, macroscopic clinical factors such as overall health and age have great impact 

on overall survival and the potential for late-effects following RT.  

 

2.1.3 The salivary glands 

Saliva is functionally important for various bodily functions such as speech, digestion, control of 

the body’s water balance (absence of saliva causes a thirst sensation), and protecting the teeth 
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from decaying [18]. Saliva is produced by the salivary glands (SGs) and is composed of water, 

mucus, proteins, minerals, salts, and the enzyme amylase. Humans have three paired major 

salivary glands: the parotid gland (PG), sublingual gland (SLG), and submandibular gland 

(SMG). These exocrine glands secrete either serous (liquid), mucous (slimy and thick substance), 

or seromucous (a mixture of the two) solutions [19].  

The healthy SGs consists of three main cell types: acinar cells producing fluids and proteins for 

saliva (serous or mucus), ductal cells making up the transporting ducts for transporting and 

modifying the saliva, and myoepithelial cells. The latter wraps around acinar cells at the terminal 

ends and the proximal segments of the ducts before appearing to contract, furthering the saliva 

secretion into lumens (cavity of a tubular structure) of branching networks [20]. Together, the 

cells make up the generic epithelial architecture of the salivary glands illustrated in Figure 2-3. 

 

 

Figure 2-3: The generic epithelial architecture of the salivary glands. Serous or mucous solutions are created by the acini, 

before being transported into the ductal network for secretion. Myoepithelial cells contracts around the acini furthering saliva 

flow. Image from [21]. 

 

2.1.3.1  Comparing the salivary glands in mice and humans 

The SMG consists of a pair of seromucous glands located on the side of the lower jawbone in 

humans. The produced solution is secreted through excretion ducts known as the submandibular 

duct (Wharton duct in humans) which opens into a junction at the base of the tongue (sublingual 

caruncle). While the SMG is the second largest major SG in humans it is the largest among mice 

making it suitable for translational salivary gland research in mice. While being separate 

structures in humans, the SL and the SMG are fused in mice [20].  
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Figure 2-4: Overview of the anatomical position for the salivary glands in humans (left, coronal plane) and mice (right, 

transversal plane). Image from [20]. 

 

 

Figure 2-5: Overview of the vascular, nervous, and ductal structures in the HN region of the mouse in the sagittal plane. Image 

from [20]. 

 

2.1.4 Radiation-induced effects on the salivary glands 

During RT of HNC the SGs may receive a high dose causing irreversible damage, which may 

impair their functioning. A common side effect of HNC RT is a reduction in the saliva flow both 

acutely following RT and as a long-term side effect. Xerostomia (Greek for “dry mouth”) is 

defined by the Great Norwegian Encyclopaedia as a special case of hyposalivation, having at 
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least 50% reduction in saliva secretion [22]. This may potentially lead to further severe long-

term oral injuries and the quality of life may be severely impacted for HNC survivors. As 

management of xerostomia rarely is effective, the best measure is prevention [4]. The salivary 

stem cells mechanisms is a current topic of research, where an increased understanding may have 

implications for future therapeutic methods to optimize the regenerative abilities of the SGs post-

irradiation [21].  

A paper from 1992 showed patients having both acute and long-term reduction in saliva in 

response to RT of HNC, especially for patient receiving doses to the HN region above 45 Gy. If 

both of the paired SL glands were irradiated patients showed a much higher problem with 

dryness, compared to only irradiating one [23]. A similar trend for saliva reduction have been 

observed in rats receiving a single dose of 15 Gy, with a second dip at 180 days maintained at 

360 days. Loss of SG mass was also observed in the rats, along changes in epithelial architecture 

such as a changed proportion between ductal and acinar cells, vacuolization, and interstitial 

fibrosis (scar tissue in the close-proximity extra-cellular environment) [24].  

A 2011 review study article assesses the changes in the SGs post-RT observed in earlier works 

[25]. Histological analysis confirms the changes in epithelial architecture, with observed loss of 

acini and increased presence of ductal cells. The increase in ductal cells might either be due to 

increased proliferation, or a combination of ductal dilations with loss of gland mass leading to an 

increased number of ducts per unit volume. An increase in adipose (fatty) tissue is observed 

along interstitial fibrosis, and infiltration of inflammatory cells. The histological changes were 

reported to be more prominent in the SMGs than the PGs, but the difference in radiosensitivity 

between the glands is a controversial topic with conflicting results. 

By ultrasonographic evaluation the irradiated glandular tissue is seen to exhibit higher 

heterogeneity relative the healthy tissue, along increased vascular resistance (changes in the 

blood vessel composition reducing the blood flow). Some evaluations of the SGs by magnetic 

resonance imaging (MRI) reports a decrease in signal intensity while other studies report an 

increase, both using T2-weighted MRI (see section 2.2.3). The increase in signal is hypothesized 

to be related to oedemas (fluid build-ups) damaging the blood and lymph vessels, accumulating 

interstitial fluids.  

 

2.2 Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) uses non-ionizing radiation in addition a strong magnetic 

field to produce images with a high contrast between soft tissues of similar densities. This non-

invasive imaging technique is an extremely versatile diagnostic tool in medicine and is only 

transferring heat as the physical by-product in the patient. As the image acquisition process is 

complex and dependent on an ensemble of factors the unit for pixel intensities in the MR-image 

are often considered arbitrary. 
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The following chapters are mainly based on Atle Bjørnerud’s compendium in the course FYS- 

4740: The Physics of Magnetic Resonance Imaging [26].  

 

2.2.1 Nuclear magnetic resonance (NMR) as basis for MRI 

The phenomenon known as nuclear magnetic resonance (NMR) provides the basis for all MRI. 

Proton NMR is the foundation for almost all clinical usage of MRI as hydrogen atoms, having a 

single proton as its nucleus, are abundant in human tissue consisting of water or fat. 

Atomic nuclei with non-zero spin interacts with magnetic fields. If placed in a strong constant 

external magnetic field 𝐵0
⃗⃗⃗⃗ , the nuclei try to align with the field but due to having non-zero 

angular momentum they have a precession along the axis of the magnetic field’s direction. The 

precession frequency is referred to as the Larmor frequency which follows the linear 

relationship: 

𝜔0 = 𝛾𝐵0 

2.2-1. 

 

The gyromagnetic ratio 𝛾 is unique for all nuclear isotopes of non-zero spin, which for the 

hydrogen isotope of mass number 1 (1H protium; the nuclei being a single proton) is 𝛾 =

 2.68 × 108 Hz / Tesla.  

The wavefunction for a single proton in a static magnetic field consists of a linear combination 

(superposition) of two possible quantum spin states which is referred to as parallel and anti-

parallel states being the low and high energy eigenstates respectively - referencing their 

alignment possibilities when in a static B-field [27].  

While the field interactions affecting the proton spin states is a quantum mechanical 

phenomenon (each proton wave function collapsing into one of the two aforementioned states 

when measured) the distribution of an ensemble of proton spins affected by the B-field may be 

described classically using the Boltzmann factor: 

𝑁+

𝑁−
= exp (

Δ𝐸

𝑘𝐵𝑇
) = exp (

𝛾ℏ𝐵0

𝑘𝐵𝑇
) 

2.2-2. 

 

 Where 𝑁+ describes the number of protons being in the low-energy state of spin “up” (parallel 

to the B-field axis), 𝑁− the number of protons in the high-energy state “down” (anti-parallel). 

The difference in energy between these energy states is Δ𝐸 = 𝛾ℏ𝐵0. ℏ (h-bar) is the reduced 

Planck constant, 𝑘𝐵 is the Boltzmann constant, T is temperature in Kelvin. 

The macroscopic (Boltzmann) net magnetization, the sum of all magnetic moment contributions 

in a sample �⃗⃗� = ∑ 𝜇𝑖⃗⃗  ⃗𝑖  representing the induced polarization of the material, have zero-valued 

components perpendicular to the static B-field while being in equilibrium due to the incoherence 
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of the individual magnetic moment precessions cancelling out. Expanding equation 2.2-2. as a 

first-order Maclaurin series and using that 𝜇 = ℏ𝑆𝛾 = ±
𝛾ℏ

2
 (spin state 𝑆 is either +1/2 or -1/2) 

for protons, the component of the magnetization vector parallel to the B-field becomes: 

�⃗⃗� ∥ 𝐵0
⃗⃗⃗⃗ =  ∑𝜇 = 𝑁0𝐵0

⃗⃗⃗⃗  (
𝛾ℏ

2
)
2

/ 𝑘𝐵𝑇 

2.2-3. 

 

By sending an electromagnetic pulse in the radio-frequency spectrum (RF-pulse) at the energy 

Δ𝐸 = 𝛾ℏ𝐵0, photons matching the Larmor frequency in equation 2.2-1. will induce a 

perturbation in the polarized medium. This frequency matching is referred to as resonance and 

“pushes” the magnetization vector from the longitudinal 𝐵0
⃗⃗⃗⃗ -field direction (z) towards the 

orthogonal plane referred to as the transversal direction (xy). After the pulse the magnetization 

moves back towards equilibrium, and the change in magnetic flux Φ may be observed as an 

induced current (Faraday’s law of induction) in a receiver coil (Rx) perpendicular to the B0-field 

direction.  

Thus, the potential strength of the measured signal is directly proportional on the strength of the 

magnetization vector which, following equation 2.2-3., increases with 𝐵0 and 𝛾2. As 1H are 

abundant and have the highest 𝛾-factor of signal-yielding isotopes in the human body it is a 

highly detectable nuclei and is therefore used in all clinical MR-imaging (excluding 

spectroscopy).  

The change in Boltzmann magnetization due to the oscillatory B-field contained in a RF-pulse 

(B1) in addition to the static B-field (B0) may be derived from the Bloch equation:  

𝑑�⃗⃗� 

𝑑𝑡
= 𝛾�⃗⃗� × �⃗�  

2.2-4. 

 

Immediately following the RF-pulse �⃗⃗�  have some non-zero component in the transversal plane 

(non-equilibrium), dependent on the angle between �⃗⃗�  and the longitudinal (z) direction known 

as the flip angle 𝛼. The observed signal in a Rx-coil perpendicular to 𝑧, as �⃗⃗�  moves back 

towards equilibrium losing its transversal component, is known as the free induction decay 

(FID). As the individual spin precessions synchronizes and are in phase right after the pulse the 

summed magnetization vector also have a precession [28], meaning the FID signal oscillates 

with the Larmor frequency. Due to molecular field variations the exact resonance frequency 

differs slightly for the signal-yielding protons causing the spins to go back to decoherence. This 

is known as spin-spin (T2) relaxation. The decay rate of the FID is slightly faster than T2, as it 

turns out that bulk inhomogeneities in the B0-field (denoted Δ𝐵0) will amplify the spin 

dephasing. This measured decay time is known as T2*. 
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𝑇2∗ = (
1

𝑇2
+ 𝛾Δ𝐵0)

−1

 

2.2-5. 

 

An additional component of returning to thermal equilibrium, in addition to the loss of 

transversal magnetization, is the recovery of the longitudinal magnetization. Stimulated emission 

by having EM-field variations at slightly differing Larmor frequencies cause the excited protons 

in the high-energy spin down state to dissipate their energy through phonon emissions to the 

surrounding material (thermal dissipation). This relaxation is therefore referred to as spin-lattice 

relaxation or simply T1-relaxation.  

Solving the Bloch equation (2.2-4.) yields the exponential equations for Mz recovery and Mxy 

decay with respect to the tissue dependent time constants T1 and T2: 

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0) exp(−𝑡/𝑇2∗) 

𝑀𝑧(𝑡) =  𝑀0 [1 − exp (−
𝑡

𝑇1
)] + 𝑀𝑧(0)exp (−

𝑡

𝑇1
) 

2.2-6. 

 

 

Figure 2-6: Left: decay of transversal magnetization due to spin-spin relaxation, divided into measured (T2*, FID) and ideal spin 

decoherence time (T2, given no bulk inhomogeneities in 𝐵0). Right: Recovery of longitudinal magnetization through spin-lattice 

(T1) relaxation. Image source: [26]. 
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2.2.2 Slice selection and k-space 

By adding a space-dependent gradient 𝐺  to the static B0-field a certain part of the body may be 

selected for imaging. The gradient makes the Larmor frequency (equation 2.2-1.) a function of 

position, such that the resonance condition is only fulfilled within some region determined by the 

RF pulse. Usually a slice, this region is then the only place where protons become significantly 

affected by the RF-pulse of a certain shape.  

The RF pulse, responsible for a time-dependent secondary magnetic field B1, have a bandwidth 

Δ𝜔 resulting in a thickness of the selected slice Δ𝑧 = Δ𝜔/(𝛾𝐺). The gradient’s effect on the 

transverse magnetization due to an excitation pulse, neglecting relaxation effects (the RF pulse 

duration is only a couple ms compared to T1 and T2 on the time-scale of 100-1000 ms), may be 

determined using the Bloch equation (2.2-4.): 

𝑑𝑀𝑇
⃗⃗ ⃗⃗  ⃗

𝑑𝑡
= −𝑖𝛾(𝐺 ∙ 𝑟 ) + 𝑖𝛾𝐵1𝑀0 

2.2-7. 

 

The transversal magnetization is now a complex vector 𝑀𝑇
⃗⃗ ⃗⃗  ⃗ = 𝑀𝑥

⃗⃗ ⃗⃗  ⃗ + 𝑖 𝑀𝑌
⃗⃗ ⃗⃗  ⃗. Having the RF-pulse 

last for T seconds, where the gradient 𝐺 (𝑡)  =  𝐺𝑧�̂� changes polarity after T/2 seconds to correct 

for phase dispersion, the RF-pulse’s effect on the transversal magnetization may be solved by 

integrating equation 2.2-7.: 

𝑀𝑇(𝑇, 𝑧) = 𝑖𝑀0 ∫
𝐵1(𝑘)

𝐺𝑧

𝑘𝑇

−𝑘𝑇 

exp(𝑖𝑘𝑧) 𝑑𝑘 

2.2-8. 

 

Using the one-dimensional k-space variable 𝑘 ≔ 𝛾𝐺𝑧𝑡 equation 2.2-8. is equivalent to a Fourier 

transform of B1 [29]. Wanting to keep the RF-pulse effect on 𝑀𝑇 as homogenous as possible, i.e. 

a block function with height 𝑀0 sin(𝛼) within Δ𝑧 (from -d/2 to d/2), the temporal dependence of 

B1 (i.e. the shape of the RF pulse signal) is acquired by solving equation 2.2-8. using the inverse 

Fourier integral: 

𝐵1(𝑡) = 𝐺𝑧 ∫ exp(𝑖𝛾𝐺𝑧𝑡 𝑧) 𝑑𝑧 =
𝑑/2

−𝑑/2

𝐺𝑧𝑑
sin (𝛾𝐺𝑧𝑡 𝑑/2)

𝛾𝐺𝑧𝑡 𝑑/2
 

2.2-9. 

 

To achieve a perfect block-function shape for 𝑀𝑇 the sinc-shaped RF-pulse in equation 2.2-9. 

would have to span for an infinite amount of time. This is unachievable in practice, meaning the 

RF-pulse is truncated in time. The transversal magnetization in the excited slice will therefore 

not be a perfect block function but have some discrepancies, especially at the edges of the slice. 

To spatially separate the distribution of signal-yielding 1H nuclei in the selected slice – the spin 

density 𝜌(𝑟 ), and thus be able to reconstruct the MR image as intensities within some voxel 
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space, some information for back-tracking the contributing signals must be encoded into the 

measured signal. This is done using additional time-dependent gradients timed with some 

relation to the excitation pulse (see section 2.2.3). The way such gradients are applied across the 

RF-pulse and signal acquisition (sampling), differentiates between frequency-encoding and 

phase-encoding gradients. The induced phase shift for a certain voxel given a gradient becomes 

𝛼(𝑟 , 𝑡) = −𝛾 ∫ 𝐺 (𝜏) ∙ 𝑟  𝑑𝜏
𝑡

0
 after the gradient have been on a time t. Defining the k-space 

variable for multiple dimensions as �⃗� = 𝛾 ∫ 𝐺 (𝜏)𝑑𝜏
𝑡

0
 the signal-yielding magnetization 𝑀𝑇 may 

be related to the spin density through the Fourier transform - and vice versa by the inverse 

transform: 

𝑀𝑇(𝑡) = ∬𝜌(𝑟 ) exp(−𝑖�⃗� ∙ 𝑟 ) 𝑑𝑟  

𝜌(𝑟 ) =
1

2𝜋
∬𝑀𝑇(�⃗� ) exp (𝑖(�⃗� ∙ 𝑟 )) 𝑑�⃗�  

2.2-10. 

 

This result is the logical basis for sampling the MRI-signal in k-space, before creating the 

anatomical MR-image as the Fourier transform of the measured signal.  

The sampled k-space variable may be interpreted as containing information about spatial 

frequencies in the acquired MR-image, where the lowest spatial frequencies correspond to the 

centre of k-space and the highest frequencies to the periphery. Thus, the signal sampled into the 

central k-space is largely responsible for the contrasts in the image, while the periphery 

corresponds to high-frequency parts of the image (edges) making up details (see Figure 2-7).  

 

Figure 2-7: Parts of the MRI-signal, sampled into k-space, responsible for contrast (center) and details (periphery) of the MR-

image. Image source: [30]. 
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2.2.3 The spin echo pulse sequence and image weighing 

In practice two types of spatially encoding gradients (related to the spin density distribution, see 

section 2.2.2) are often distinguished by how they are designed: to either affect the spin phases, 

or shift the Larmor frequency. The gradients are independently applied during RF-excitation, 

during signal sampling, or in-between. Using a gradient to induce a shift in the spin phases right 

after excitation, before signal acquisition, is referred to as the phase-encoding gradient (or 

preparation gradient) [31]. The phase gradient is normally applied with a y-direction 

dependence, initiating 𝑘𝑦 for sampling the acquired signal into k-space. Another gradient is 

usually applied in the x-direction at the time of acquisition, making the Larmor frequency a 

linear function of position, relating the 𝑘𝑥 value to sample as a function of time. The latter is 

referred to as the frequency-encoding or read-out gradient [32].  

 

 

Figure 2-8: The spin echo (SE) sequence. Slice selection is done by having a Gz gradient at both the 90-degree RF pulse for 

excitation, and the 180-degree pulse responsible for the echo. A phase-encoding gradient Gy in addition to a phase-encoding 

gradient Gx prepares the signal before sampling all kx values at a ky row during the echo, before re-applying Gx during signal 

acquisition. This creates a movement to the right in k-space while sampling. Image source: [26]. 

 

While one may acquire an MR-image by sending a new RF-pulse for each point in k-space 

individually, it would be an impractically time-consuming process. To shorten the image 

acquisition time pulse sequences are utilized, enabling a sampling of multiple points in k-space 

after a single excitation pulse. The spin echo (SE) sequence samples a row in k-space, 

corresponding to a phase-gradient, for each excitatory RF-pulse. A “echo” of the initial 

excitation pulse having a 90° flip angle, is created by applying a second RF-pulse with a 180° 
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flip angle. This causes the spins to rephase a second time after the initial excitation pulse, 

creating the echo. By applying both a phase-encoding and frequency-encoding gradient before 

the 180° pulse a point (𝑘𝑥 , 𝑘𝑦) in k-space is initialized. The signal is sampled at the 

corresponding 𝑘𝑦-row while re-applying a frequency gradient at the read-out – thus sampling all 

the 𝑘𝑥 values at a row corresponding to a single 𝑘𝑦 value (Bjørnerud, chapter 6.2 [26]). The SE 

sequence is illustrated in Figure 2-8. 

 

Biological tissue has varying relaxation times (T1, T2, and T2* as described in section 2.2.1), 

even while being of similar density, which is the basic fact exploited to achieve contrast between 

soft tissues in MRI. Depending on the time between each excitation pulse (repetition time TR), 

and the time from the RF-pulse to the maximal sampled signal at the echo (echo time TE), the 

longitudinal and transverse components of �⃗⃗�  have reached different values due to tissues having 

varying relaxation constants (equation 2.2-6.). By applying another excitation pulse before the 

longitudinal magnetization is back at equilibrium for all tissues, an image contrast between soft 

tissues based on the relaxation times is achieved. T1 contrast, or weighing (T1w), is achieved by 

having a long enough TR to ensure tissues with high T1 have not regained full longitudinal 

magnetization compared to tissues with shorter T1. T2 contrast (T2w) is achieved by having a 

long enough TE such that the transverse magnetization for some tissues gets close to zero due to 

spin dephasing compared to tissues having a longer T2. 

Concerning the interpretation of MR-images being either T1- or T2-weighted, the T1 images 

reflects signals from fatty tissue while T2-images reflects signals from both water and fat [33]. 

A SE sequence preceded by a 180-degree pulse is known as inversion recovery (IR), flipping the 

longitudinal magnetization. The IR sequence may be used for fat suppression by applying the 

90-degree excitation pulse at the exact time the longitudinal magnetization from the fatty tissue 

reaches zero during recovery. Assuming fat to have spin-lattice relaxation 𝑇1,𝑓𝑎𝑡, the time to 

inversion (TI) for fat suppression becomes 𝑇𝐼 = ln(2) 𝑇1,𝑓𝑎𝑡 [34]. 

 

2.2.4 Accelerated k-space sampling by rapid acquisition with 

refocused echoes (RARE) 

As the standard SE sequence only samples a single row in k-space for each RF-pulse, the total 

acquisition time becomes large when increasing the k-space matrix size or decreasing the slice 

thickness. By refocusing the echo multiple times after a single excitation pulse, in addition to 

changing the phase encoding gradient between each echo, multiple rows in k-space may be 

sampled between each RF-pulse separated by the time TR. The rapid acquisition methods differ 

mainly in how the multiple echoes are produced. When using gradients for refocusing it is 

known as Echo Planar imaging, and when using multiple 180° RF-pulses it is known as the fast 

spin echo (FSE) sequence. The FSE sequence is traditionally known as Rapid Acquisition with 

Relaxation Enhancement (RARE) [35] (Bjørnerud, chapter 9 [26]).  
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Concerning the FSE sequence some parameters to notice are the echo train length (ETL) and the 

effective TE (TEeff). The ETL, or the turbo factor, is the number of 180° refocusing pulses 

between each TR – describing the relative decrease in acquisition time relative the standard SE 

sequence (per definition having ETL = 1). TEeff is the time between the 90° excitation pulse and 

the echo being sampled closest to the centre of k-space, and is the echo with highest amplitude 

due to having a minimal (or zero) phase encoding gradient. As the signal sampled into the centre 

of k-space largely determines the contrast of the image (section 2.2.2) the image weighing in a 

FSE sequence becomes a function of TEeff (section 2.2.3). It is however important to notice that 

all rows in k-space contributes to the image contrast in total, and therefore the total weighting. If 

ETL = 𝑁𝑦 (having a k-space matrix of size 𝑁𝑥 × 𝑁𝑦), known as a single-shot FSE as all of k-

space is sampled following a single excitation pulse, the rows will have largely different TE’s. 

The difference in TE between the rows are all (more or less) contributing to the total weighing of 

the image, producing an image with some differences in contrast relative a standard SE image. 

 

Figure 2-9: Pulse sequences making up the fast spin echo sequence. Following a single 90-degree excitation pulse, multiple 180-

degree pulses each creates an echo sampled into various rows in k-space due to varying phase-encoding gradients. 

 

2.2.5 MRI artifacts 

The complexity of the MRI acquisition process (including image reconstruction) introduces 

multiple sources of systematic error. Special cases of such errors are known as artifacts. The 

artifacts may originate from either the patient or the MRI system, and may be visible in the 

image as geometrical deformations or periodic intensity patterns [36].  
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Low-frequency periodic error in image intensity is known as a bias field, present as changes in 

image intensities not being related to the imaged tissues. Such an artificial inhomogeneity in the 

intensities may be caused by one or multiple underlying factors: instrumental factors as 

inhomogeneities in the static B-field (B0) or the RF B-field (B1), or patient movements during 

acquisition [37]. 

Gibbs ringing is an artifact recognized by parallel lines appearing close to high-contrast 

transitions in the image. In a similar fashion to the truncation of the RF-pulse for slice selection 

(section 2.2.2) an over- or undershoot occurs at the edge of the discretely sampled signal (as the 

excited slice is not a perfect block function in time). As lower spatial frequencies in the image 

are less affected by this sampling truncation, being closer to the “true” signal with less 

components in the sampled Fourier-series, the artifact is mainly visible at high-contrast edges 

[38] (Bjørnerud, chapter 5.3 [26]). 

Very small perturbations in the effective B-field (Δ𝐵) relative the voxel sizes may cause a 

dephasing of the magnetization within a single image voxel. This loss of signal is known as 

intra-voxel dephasing. Similarly, having very large perturbations in the B-field within a voxel 

may shift the effective B-field to not correspond with the assumed resonance conditions, known 

as off-resonance effects. Both cases are responsible for susceptibility artifacts, which in practice 

may be caused by a combination of the two cases (Bjørnerud, chapter 12.2 [26]). Compounds in 

the anatomy affecting the B-field may for example be weak diamagnets (water), or strong 

ferromagnets (iron in braces). The susceptibility artifacts are usually seen as high-intensities in 

some areas of the image, or a vanishing signal [39]. 

 

Figure 2-10 Top: Intra-voxel dephasing due to big voxel size (dependent on bandwidth) compared to local field perturbations. 

Bottom: opposite case causing off-resonance effects. (Source: Bjørnerud, chapter 12 [26]) 
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2.3  Radiomics 

Radiomics utilizes machine-learning (ML) concepts to extract and find quantitative information 

from medical images such as computed tomography (CT) images or MRI, with some relation to 

a biological phenomenon. Cancer treatment is heading towards a more personalised approach 

(precision oncology), taking more patient variations into account. While genetic and biochemical 

markers are considered the driving forces behind precision oncology, radiomic features have 

shown promise in this context and are increasingly considered in clinical studies [6]. 

From a two- or three-dimensional region of interest (ROI, or volume of interest - VOI) image 

features are extracted which may contain phenotypic information (imaging biomarkers) that is 

invisible to the naked eye [40]. As the radiomic features are based on non-invasive medical 

images, identification of robust imaging biomarkers may limit the use of invasive techniques 

such as biopsy based molecular assays in the clinical setting [9].  

How the features are extracted from the images, the core of the radiomic process, may broadly 

divide radiomics into two categories: hand-crafted radiomics, or deep radiomics [6]. Where 

hand-crafted radiomics rely on well-defined mathematical operations and matrices, deep 

radiomics utilizes neural networks for unsupervised extraction. Due to the flexible nature of deep 

neural networks the features may take on almost any perceivable shape based on the weighted 

connections within the neural network, but are therefore harder to interpret than hand-crafted 

features.  

Radiomics is a high-throughput method, providing many features per image - usually a much 

larger number of features than sample size. The feature selection process is therefore integral for 

identification of important features having some relation to the research question (or clinical 

decision). Using the selected features the last part of the radiomics pipeline considers predictive 

modelling of some biological or clinically interesting outcome [41]. 

Radiomic image features have been shown to reflect the intratumor heterogeneity on a cellular 

level [42] which have been strongly correlated to patient survival and tumour control (section 

2.1.2) [43]. Radiomic studies have been published with an increasing frequency the last 7 years. 

Radiomic studies in oncology considers features extracted from tumours in the brain, head and 

neck region, lungs, breasts, gastrointestinal, cervix, prostate, and colon [6]. Changes in radiomic 

features over time, delta radiomics, have shown predictive abilities of outcomes in lung cancer 

patients such as survival and distant metastases [44]. Delta-radiomics have also been shown to 

improve the prediction of late xerostomia (section 2.1.4) after RT of HNC using shape-based 

features extracted from the parotid glands [10].  

A big issue within radiomics is the reproducibility and replicability of results, as the majority of 

radiomic features have been shown to have stability issues. This is often accredited to scanner 

differences, acquisition protocols, and the software used for feature extraction [45]. What steps, 

and their order, included in the preprocessing of MR-acquired images have been shown to affect 
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feature repeatability (stability of features acquired from the same set of data) [46], [47]. The 

Image Biomarker Standardization Initiative (IBSI) collaboration initiative attempts to address 

said issues by standardizing the computation workflow (feature extraction) for a set of 169 

radiomic features (Figure 2-11)[7]. An extension of this initiative (IBSI 2) attempts to include 

the standardization of convolutional image filters applied before feature extraction, which may 

highlight specific characteristics in the images. IBSI 2 is a work still in process [48]. 

 

 

Figure 2-11: The workflow proposed by the second iteration of the image biomarker standardization initiative (IBSI 2) for 

calculation of features of varying types [48] . 

 

For single-channel 2D images consisting of 𝑀 × 𝑁 pixels, the extraction of 𝑑 image features per 

image may be seen as a dimensionality reduction from the image space to the feature space 

(assuming 𝑀 × 𝑁 > 𝑑). The hand-crafted radiomic features attempts to capture relevant 

information from the original image, while being interpretable in relation to phenotypic 
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properties for the tissues / organ delineated by the ROI. The three main classes of hand-crafted 

image features in radiomics following IBSI are shape-based, first-order statistics, and texture-

based [7].  

 

2.3.1 First-order features 

Let the grey-levels intensities corresponding to the 𝑁𝑣 pixels in the ROI of the image be denoted 

as 𝑋𝑔𝑙 = {𝑋𝑔𝑙,1, 𝑋𝑔𝑙,2, … , 𝑋𝑔𝑙,𝑁𝑣
}. Features calculated directly from this set are the intensity-

based statistical features, or first-order features, describing the various properties of the image 

intensity distribution [49].  

First-order features include the intensity mean, median, variance, minimum, maximum, and the 

coefficient of variation (CV). Features based on percentile values in 𝑋𝑔𝑙 include the inter-quartile 

range (IQR), quartile coefficient of dispersion, and the robust mean absolute deviation. The 

shape of the intensity distribution is described by features such as the kurtosis or skewness – 

representing the flatness and asymmetry of the distribution, respectively [50].  

Other first-order features require the creation of an intensity histogram for calculation. The 

continuous intensity distribution, from which 𝑋𝑔𝑙 may be assumed to be sampled from, is divided 

into 𝑁𝑔 bins providing a discretized set of gray levels 𝑋𝑑 = {𝑋𝑑,1, 𝑋𝑑,2, … , 𝑋𝑑,𝑁𝑔
}. The frequency 

of each value from 𝑋𝑑 within the discretized image is the histogram. Examples of first-order 

intensity histogram features requiring such a discretization before calculation include the entropy 

and uniformity.  

 

2.3.2 Shape-based features 

The shape-based features represent the morphologic characteristics of the ROI, such as surface 

area, sphericity, and lengths along the major and minor axis or their proportion (elongation). The 

features are calculated only using the ROI (denoted morphological mask in Figure 2-11), without 

any dependence on image intensities.  

 

2.3.3 Texture-based features 

Sometimes referred to as the second-order statistics, texture-based radiomic features describe the 

spatial relations and patterns found between pixel intensities in the ROI [50]. The radiomic 

framework presented here considers texture features calculated from five different matrices. 

Each texture matrix is calculated from the discretized set of 𝑁𝑔 intensity values in the ROI, 

following their definitions in IBSI [49]. 

The gray level co-occurrence matrix (GLCM) counts the occurrences of each pair of discretized 

intensity values at a pixel-distance 𝛿 in the direction 𝜃. Entry (𝑖, 𝑗) in the GLCM is the count of 
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how many times in the image the discretized intensity 𝑋𝑑,𝑗 appears 𝛿 pixels away from 𝑋𝑑,𝑖 in 

direction 𝜃. The set of possibilities for 𝜃 is dependent on 𝛿 by its connectivity: for a 2D image 

having 𝛿 = 1 each pixel has 8 neighbours and thus possibilities for 𝜃, each corresponding to a 

differently calculated GLCM [51]. The shape of the GLCM is dependent on the number of 

discretized gray levels, with dimensions 𝑁𝑔 × 𝑁𝑔. 

 

Figure 2-12: Calculating the GLCM for a discretized image of 𝑁𝑔 = 5 gray levels (left), resulting in a 5 × 5 GLCM (right). 

Having 3 instances of gray level 𝑖 = 2 neighbouring the same value (𝑗 = 2) at distance 𝛿 = 1 in the right horizontal direction 

𝜃 = 0, yields entry (𝑖, 𝑗) = 3 in the GLCM. Image created by the author using the python package pyRadiomics [52]. 

 

The gray level run length matrix (GLRLM) quantifies the length of consecutive gray levels 

(runs) in the direction 𝜃. The (𝑖, 𝑗)’th element of GLRLM is a count of how many times gray 

level 𝑋𝑑,𝑖 appears next to itself 𝑗 times in direction 𝜃 [53].  

 

Figure 2-13: GLRLM entry (2, 3) = 1 represents the single instance of three consecutive appearances of gray level 𝑖 = 2 in the 

right (𝜃 = 0) direction.  
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Defining a zone as the number of connected pixels of the same gray level in all ordinal (8-

connected) directions, the gray level size zone matrix (GLSZM) quantifies the number of pixels 

in each zone for a gray value 𝑋𝑑,𝑖. The matrix is rotationally invariant, i.e. no 𝜃-dependence for 

the entries, in contrast to the GLCM and the GLRLM [54]. 

 

Figure 2-14: GLSZM entry (2, 3) = 2 represents the two instances in the image where gray level 𝑖 = 2 creates a zone of size 𝑗 =
3. 

 

The gray level dependency matrix (GLDM) counts the number of pixels at a distance 𝛿 

considered dependent, in all directions. Pixel 𝑖 is defined as dependent on a neighbouring pixel 𝑗 

if |𝑋𝑑,𝑖 − 𝑋𝑑,𝑗| ≤ 𝛼. Entry (𝑖, 𝑗) in the GLDM counts the number of instances where gray level 𝑖 

is dependent on 𝑗 neighbouring pixels in the image [55].  

 

Figure 2-15: GLDM entry (2, 2) = 4, representing the four instances where gray level 𝑖 = 2 is dependent (𝛼 = 0) on 𝑗 = 2 

neighbours in the nearest vicinity (𝛿 = 1). 
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Introduced as an alternative to the GLCM, the neighbouring gray tone difference matrix 

(NGTDM) calculates the sum of absolute differences between each discretized pixel of gray 

level 𝑖 and the corresponding average of the neighbouring pixels at distance 𝛿 [56]. The 

proportion 𝑛𝑖 is the number of instances of gray level 𝑖 in the ROI, 𝑝𝑖 = 𝑛𝑖/𝑁𝑣 is the fraction of 

said instances, and 𝑠𝑖 is the sum of absolute differences between 𝑋𝑑,𝑖 and their average 

neighbouring values as seen in Figure 2-16. Features calculated from the NGTDM include 

coarseness, contrast, busyness, and complexity.  

 

Figure 2-16: Illustration of the NGTDM calculation from a discretized image having 5 gray levels. Gray level 𝑖 = 5 have 𝑛5 = 2 

instances, yielding the fraction 𝑝5 =
2

16
= 0.125. Their corresponding neighbours at 𝛿 = 1 is shown as red arrows, making 𝑠5 =

|5 −
2+2+2+1+4

5
| + |5 −

4+1+1+2+2

5
| = 2.8 + 3 = 5.8. 

 

2.3.4 Image filtering in radiomics 

All features, except shape-based, may reveal new or amplify existing relationships within the 

image by calculation after applying some image filter. Such features may be referred to as 

“higher-order statistics” [50], but will for simplicity here be referred to as first-order or texture 

features calculated after filtering. The following filter definitions are based on the pyRadiomics 

package [52], unless other is specified. 

 

 

 

 

 

 

 



29 

 

Some filters which are easy to define using simple mathematics, are seen in equation 2.3-1. The 

square root and logarithm filters assume 𝑥 ≥ 0, having slight variations when 𝑥 < 0 to avoid 

complex pixel intensities after filtering.  

Square filter:             𝑓(𝑥) = (𝑐𝑥)2   where   𝑐 = (max(|𝑥|))−
1
2 

Square root filter:   𝑓(𝑥) = √𝑐𝑥    where    𝑐 = max(|𝑥|) 

Logarithm:                𝑓(𝑥) = 𝑐 log(𝑥 + 1)   where   𝑐 =
max(|𝑥|)

log(max(|𝑥|) + 1)
 

Exponential:             𝑓(𝑥) =  𝑒𝑐𝑥    where    𝑐 =
log(max(|𝑥|))

max(|𝑥|)
 

2.3-1. 

 

The gradient filter (∇𝑓) describe the rate of change in pixel intensities in across the image, 

emphasizing edges and details. The gradient filter is further defined in section 3.2.2.  

The local binary pattern of an image is a rotationally invariant texture descriptor, emphasizing 

the relationships between pixels in some neighbourhood. Given P neighbours surrounding the 

center pixel 𝑔𝑐 at a distance R, the local binary pattern becomes: 

𝐿𝐵𝑃(𝑃, 𝑅) = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝

𝑃−1

𝑝=0

 

2.3-2. 

 

Where 𝑠(… ) is the sign operator, evaluating the differences between the center pixel to each 

neighbour [57]. 

The wavelet filter is in some sense similar to the Fourier transform, based on a scaling and time-

shift factor instead of frequency. The wavelet transform decomposes a signal into lower 

resolution at multiple levels [58]. In the pyRadiomics package [52], the 2D wavelet filter is 

differentiated by a high (H) and low (L) version.  

 

2.3.5 Feature selection 

The second grand step in the radiomics pipeline, after the image features have been extracted, is 

the selection of the most relevant features with respect to the research question and outcome. 

Due to the high quantity of radiomic features extracted per image, usually much more than the 

number of images in total, this step of dimensionality reduction is critical. The optimal feature 

selection method reduces the feature set into the smallest possible subset of uncorrelated 

features, maintaining the highest possible amount of relevant information while excluding the 

noise. A smaller subset of features reduces the complexity of the models, lowering bias (chance 

of overfitting, see section 2.4) but increases the interpretability of the models. 
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In a clinical setting is the identification of the most relevant and robust radiomic features (as 

potential imaging biomarkers) an important part of radiomic research, in addition to predictive 

modelling [6].  

Using patterns within the feature-space without any relation to outcome for feature selection, is 

denoted unsupervised selection. Examples include multi-dimensional clustering methods as k-

means, or principal component analysis (PCA) reducing the feature-set to linear combinations of 

features maximizing the explained variability [59].  

Utilizing some outcome variable in the selection process is known as supervised feature selection 

and may be broadly divided into three categories: filter, wrapper, and embedded selection 

methods. Filter methods becomes a part of the preprocessing independent of the machine-

learning methods used for modelling, e.g. by ranking the variables univariately by their 

correlation to the outcome. Wrappers use a specific model to rank the predictive abilities of each 

feature in relation to some outcome, e.g. by scoring the features univariately by the coefficient of 

determination (R2, section 2.4.6) following a simple linear regression to a continuous outcome. 

Embedded methods select the best features within the training process in a ML modelling 

framework, effectively combining the filtering and wrapper methods. Embedded methods may 

use a model with some regularization parameters for iterative elimination of unimportant 

features, such as the LASSO operator or random forests [60]. Random forests are further 

discussed in detail in section 2.4.3. 

While correlation is often used as a metric to describe redundancy in a feature-space, a high 

correlation between features does not necessarily mean they do not contain complementary 

information which may be of interest [60] (except of course when having perfectly correlated 

features). 

 

2.3.6 Earlier work using radiomic features to predict xerostomia 

Models predicting xerostomia as a late response following RT of HNC have been in use for 

many years as the normal tissue complication probability (NTCP) model, assessing patient risk 

for side-effects (section 2.1.2). NTCP-models for xerostomia utilize dose-volume histogram 

(DVH) parameters in addition to patient reporting, often being baseline information during dose 

planning [61]. In a 2018 study van Dijk et al. incorporated more patient-specific responses to the 

RT, obtained during the treatment in addition to baseline [10]. Using radiomic features extracted 

from the parotid glands (PGs) in CT images, the relative change from baseline in each feature 

was calculated at various time-points (delta-radiomics). The delta-features were used to predict 

xerostomia 12 months after RT, and shape-based features were found to be the strongest 

predictors (specifically, the relative change in the PG area between baseline and after 3 weeks). 

However, a 2022 replication study did not manage to obtain univariate significance for the shape 

features - emphasizing the need for external validation before claiming a generalized result in 

radiomics-based research [62]. The replication study found instead the maximum Hounsfield 

units (HU) value within the ROI to be significant for prediction of late xerostomia in patients 

with intact SMGs. 
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Another 2018 study used CT-based radiomics on the PGs to create probability models for 

xerostomia 6 months post-treatment, where clinical variables such as smoking, age, and total 

delivered dose was included in the model [63]. 5 radiomic features were selected by univariate 

spearman correlation to the outcome with a threshold at 0.7, being texture-based features in 

addition to VOI size. Three logistic regression models were created using baseline features, mid-

RT delta-features, and a model emphasizing the temporal trajectory of the features. While 

models using only using image features performed worse than the clinical variables, models 

combining both performed the best – indicating the radiomic features contained additional 

relevant information. A third 2018 study also studying PG-features from CT images found 

organ- and dose-shape features to improve NTCP-models for prediction of xerostomia at 

multiple time-points post-treatment (0-6 months, 6-15 months, or 15-24 months) [64]. 

As mentioned in section 2.1.4 the tissue of the salivary glands (SGs) has been shown to become 

more heterogenous after ionizing irradiation. While not denoted as radiomic research, earlier 

studies have investigated whether textural image features have any relation to the probability of 

developing complications in the SGs post-RT. A study by van Dijk in 2016 showed that textural 

biomarkers calculated from CT images of the PGs and SMGs inhibited predictive performance 

for xerostomia [61]. While the maximum CT intensity was the best predictor from the SMG 

(being a first-order feature), the short run emphasis (SRE) calculated from the GLRLM in the PG 

was shown to increase with heterogeneity. By visual inspection the high-SRE images was 

assumed to be related to fat saturation in the PGs after irradiation, affecting heterogeneity. 

Another study concerning HNC patients treated with IMRT, analyzed CT images and found the 

GLCM correlation and GLRLM run-length non-uniformity to be significantly different for 

xerostomic patients [65]. The study hypothesized a relation between the texture-features and an 

increased radiosensitivity, reduction in vascularization, or an increase in adipose tissue.  

 

2.4 Data modelling and statistical learning 

Being the foundational framework in machine learning (ML), statistical learning utilizes methods 

from both statistics and functional analysis. It is broadly categorized into supervised and 

unsupervised learning. Supervised learning relates the output to the input data using statistical 

modelling which estimate, or predict, the outcome based on the input. Unsupervised learning 

have no such “a priori” knowledge of what the input data (all the data in the unsupervised case) 

should relate to, and instead tries to find some underlying patterns within the data [66].  

The input data is referred to as input variables, predictors, independent variables, or features. In 

supervised learning the outcome data is referred to as output, outcome, or response variables. It 

is generally assumed that the output 𝑌 follows some pattern relating to the input 𝑋, but not in a 

perfect manner due to noise in the outcome (denoted 𝜖 in equation 2.4-1) 
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𝑌 = 𝑓(𝑋) + 𝜖 

2.4-1. 

 

Supervised statistical learning is largely concerned with finding a response function 𝑓, used to 

estimate the response �̂� = 𝑓(𝑋). Whether the output is a continuous variable or restricted to 

discrete values representing class labels differentiates this search for 𝑓 into regression and 

classification problems. Assuming the response function to follow some specific functional form 

(e.g. linear, polynomial, or logistic functions) necessitates the estimation of some functional 

parameters, while other methods makes no such assumption and is therefore known as non-

parametric methods (e.g. b-splines or decision trees) [66].  

When evaluating how well the predictors match the response data for a given estimated function, 

some quantitative metric is needed to assign the quality of fit. For regression problems the mean 

squared error is a commonly used metric, found by summing the average squared differences 

between the predicted and observed outcome values for all 𝑛 instances in the data set (equation 

2.4-2). 

𝑀𝑆𝐸 ∶=
1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

 

2.4-2. 

 

For classification tasks the error rate is defined, using the indicator variable 𝐼, as: 

𝐼(𝑦𝑖 ≠ �̂�𝑖) = {
1 if 𝑦𝑖 ≠ �̂�𝑖

0 if 𝑦𝑖 = �̂�𝑖
 

Error rate ∶=
1

𝑛
∑𝐼(𝑦𝑖 ≠ �̂�𝑖)

𝑛

𝑖=1

 

2.4-3. 

 

Using a subset of the total available data in the search for the response function 𝑓, while 

preserving the remaining data for testing, is known as train test splitting. Calculating an error 

metric using the test data is known as test error, or generalization error as it describes the 

model’s performance on unseen instances. The generalization error may be divided into three 

contributing factors: bias, variance, and the irreducible error. While the irreducible error relates 

to the variabilities contained in the data itself (e.g. a broken sensor or natural underlying 

variations) the balancing between bias and variance is important when choosing and tuning the 

modelling framework – referred to as the bias variance trade-off [67]. Having a higher bias, thus 

lower variance, imply the model produces more similar and less accurate results when applied to 

varying data. This is known as underfitting. When underfitting the underlying pattern in the data 

is not properly captured by the model, which may be due to choosing a model with a too low 

complexity compared to the patterns (such as fitting a linear curve to a periodic signal). 

Overfitting is the other end of the trade-off, meaning the model is overly sensitive to small 
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changes in the data and is characterized by higher variance and lower bias. A model overfitting 

the data may seem very accurate when evaluated on the training data but will quickly produce 

less accurate estimates when evaluated on the unseen test data. Choosing the proper model is 

therefore an optimization problem between these two extremes where the loss of generality due 

to high variance is not sacrificed for loss of useful information (high bias) – illustrated as the 

stippled vertical line in Figure 2-17. 

 

 

Figure 2-17: Illustration of the bias-variance trade-off. The model variance increases, while the bias decreases, with increased 

model complexity. The vertical black line represents the optimal model complexity. Image from [68].  

 

2.4.1 Validation methods using cross validation 

As discussed in the previous chapter the calculated error for the test and training sets may yield 

different results, more so if the model is overfitting the data. Methods exists to address this 

discrepancy and are often more relevant if there is little available data for study. While 

mathematical methods exist to penalize the error estimate for overfitting (regularization) 

different ways of dividing the available data into training and test sets may also address this 

issue. If a subset of the training data is held out during the model training, it may be used as a 

more accurate generalization error estimate for validation of model choice or tuning of model 

parameters (hyperparameter tuning) and is therefore known as the hold-out or validation set. The 

validation error tends to overestimate the test error and have a high variation, issues which cross 

validation (CV) methods try to mitigate.  

K-fold cross validation divides the training data into k approximately equally sized subsets 

(folds), where k-1 of the folds is used for training and the remaining fold estimates the validation 
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error. This process is repeated 𝑘 times such that each fold is used as the validation set once, and 

the final CV error is calculated as the average of the 𝑘 error estimates. Simply choosing 𝑘 = 2 

corresponds to the single train / validation split, while 𝑘 = n (where n is the training sample size) 

is known as leave-one-out cross validation (LOOCV).  

The choice of 𝑘 is also related to the bias variance trade-off as the training sample size affects 

the model’s bias. LOOCV have a basically unchanged training sample size (𝑛 − 1) and may 

therefore be considered to have low bias (see Figure 2-17), while the opposite is true for a single 

validation split. A choice of 𝑘 = 5 or 𝑘 = 10 is common, which empirically have been shown to 

lead to an appropriate amount of model bias [66].  

The whole k-fold CV process may be repeated multiple times before averaging the results, 

leading to repeated cross validation. Balancing the folds by having similar proportions of some 

categorical variable (e.g. a binary outcome) is known as stratified cross validation [67].  

 

2.4.2 Bootstrapping and bagging 

Being an extremely versatile resampling method, the bootstrap is a commonly used tool in 

statistical learning. Having 𝑁 samples in the original dataset 𝐵 new resampled sets are created 

each containing 𝑁 samples. For each picked observation from the original set to the resampled 

set the pick is “returned” to the original set, such that instances occurring only once in the 

original set may appear multiple times in the resampled set. This is known as resampling with 

replacement [66]. As this resampling from the original set mimics drawing new samples from 

the original population one may argue that the method yields a more accurate picture of the 

underlying distribution from which the original data is assumed to be drawn – increasing the 

accuracy of the computed statistic of interest [69].  

In a machine learning approach this resampling method may be used to train 𝐵 independent 

predictors – one for each bootstrapped set from the training data. The predicted response to an 

observation is found by averaging over the predictions from the 𝐵 predictors in the regression 

case or choosing the most predicted class (majority vote) when performing classification. The 

method of using such an ensemble of bootstrapped predictors to achieve a single prediction is 

known as bootstrap aggregation – or simply bagging [70]. This method is practical among 

models trending towards high variance as averaging a set of observations (or in this case 

predictions) reduces the variance [66].  
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Figure 2-18: Illustrating the bootstrap aggregating (bagging) technique, from [67]. 𝐵 bootstrapped datasets are created using 

the original training set, used for training a similar number of models (ensemble). 

As each bootstrap sample on average contains about 2/3 of the original 𝑛 observations, the 

remaining 𝑛/3 observations (known as the out-of-bag (OOB) set) may be used for evaluation of 

the corresponding bagging predictor – giving an estimate for the bagged model accuracy without 

the need for evaluating on the testing data. For an instance 𝑖 in the original training data all 

predictors having this instance in the OOB set, the ~𝐵/3 predictors not using instance 𝑖 for 

predictor training, are used in the aforementioned aggregated way to make a prediction for the 

instance. Calculating the MSE (for regression, equation 2.4-2.) or classification error (equation 

2.4-3.) for the 𝑛 OOB predictions yields the out-of-bag error (OOB error). 

 

2.4.3 Tree-based methods 

Decision trees are the basis for a group of non-parametric modelling techniques which may 

capture complex non-linear relationships between multiple input variables and the outcome 

space. The whole decision space may be visualized as a graph, known as a “tree”. The predictor 

space is divided into regions by binary decision boundaries, such as a threshold value for a 

continuous variable, at the internal nodes (vertices in graph theory). Connected by branches 

(edges), the internal nodes keep dividing the predictor space into subregions until the final node 

representing the predicted outcome is reached – the terminal node (or leaf) [66]. Such trees may 

be used for either regression to a continuous outcome variable or classification of discrete 

outcomes (class labels).  
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Figure 2-19: Single decision tree shown as a tree-graph visualization (left) with its decision boundaries and resulting subregions 

in the predictor space (right). Image from [66]. 

 

2.4.3.1  Regression Trees 

Dividing the predictor space into 𝐽 high-dimensional rectangular partitions (boxes), the 

optimized subregions 𝑅1, 𝑅2, . . , 𝑅𝐽 are found by minimizing the residual sum of squares (RSS): 

𝑅𝑆𝑆 =  ∑ ∑ (𝑦𝑖 − �̂�𝑅𝑗
)
2

𝑖∈𝑅𝐽

𝐽

𝑗=1

 

2.4-4. 

 

𝑦𝑖 is the observed outcome, and �̂�𝑅𝑗
 is the mean response values from the training data within 

box 𝑅𝑗. As considering all possible subregions would be computationally demanding, the trees 

are usually trained using a top-down approach known as recursive binary splitting. Beginning 

with a single best split of the input space, the top of the tree, the remaining regions are 

successively split creating the branches - moving down the decision tree. Considering all the 𝑝 

predictors with their corresponding cut-off values, the combination yielding the lowest RSS is 

chosen. The process is repeated, considering one of the previously split regions instead of the 

entire predictor space, in a recursive manner 𝐽 partitions are reached.  

While the trained decision trees may give good predictions onto the outcome space, the trees 

quickly becomes highly complex and therefore prone to overfitting [66]. To mitigate this a large 

tree 𝑇0 is initially made before it is pruned back to a less complex sub-tree. The process of cost-

complexity pruning involves adding a regularization parameter 𝛼 to the optimization criterion 

(RSS in equation 2.4-4.). The values for 𝛼 are used to find corresponding optimal sub-trees given 



37 

 

this regularization criterion, of which the best may be chosen by k-fold cross validation on the 

training data. 

 

2.4.3.2  Classification Trees 

While regression trees predict outcomes which may have “any” continuous value, the 

classification tree predictions are restricted to a discrete set of certain values – labels representing 

the possible outcome classes. Binary classification is the simplest case where the outcome 

variable is either true (�̂� = 1) or false (�̂� = 0). For an observation within some input space 

subregion (defined by the decision boundaries) the predicted class label is simply the label with 

the most occurrences along the training data within this region. The classification trees are grown 

similarly as regression trees using the recursive binary splitting technique described in chapter 

2.4.3.1, but with some other optimization criterion than the RSS. One of two standard criterion 

measures is normally used: either the Gini index or the cross-entropy. Having 𝐾 classes the 

measures are defined by the following equations [66]: 

Gini index: 𝐺 = ∑ �̂�𝑚𝑘

𝐾

𝑘=1

(1 − �̂�𝑚𝑘) 

Cross entropy: 𝐷 = − ∑ �̂�𝑚𝑘

𝐾

𝑘=1

log (�̂�𝑚𝑘) 

2.4-5. 

 

�̂�𝑚𝑘 is the fraction of training samples within subregion 𝑚 belonging to class 𝑘. One may 

interpret the Gini index as a measure of the total variance across all 𝐾 classes, referred to as node 

purity. As the Gini index becomes small if �̂�𝑚𝑘 is close to either 1 or 0, almost all cases at the 

terminal node falls into a single category (i.e. the decision tree is pure). The cross entropy goes 

to zero as �̂�𝑚𝑘 approaches 1 or 0, similarly to the Gini index, but using cross entropy as the tree 

growing criterion tends to yield more balanced trees while the Gini index trends towards 

isolating the most frequent class in its branches of the tree [67]. If prediction accuracy is the most 

important goal for the tree-based model one may alternatively use the classification error 𝐸 =

1 − max
k

(�̂�𝑚𝑘) for pruning.  

 

2.4.3.3  Bagged trees and random forests 

As the decision tree methods discussed in the previous chapters are known to have high variance 

(see bias variance trade-off in chapter 2.4) a natural extension is to consider many trees before 

averaging the resulting predictions. If each tree is trained on a bootstrapped sample from the 

original dataset the resulting ensemble predictor is known as bagged trees (see section 2.4.2). 

While growing a single decision tree to high complexity may lead to loss of generalization, the 
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ensemble method allows for higher complexity in the individual trees with less effect on the 

generalization – leading more robust models [71].  

An improvement to this ensemble method is made by restricting the predictors considered per 

tree to a subspace of the total amount of predictors, with a different subspace of similar sizes for 

each tree. This improved ensemble method is known as a random forest and lowers the 

correlation between the trees allowing for a higher complexity per tree without loss of generality 

in the ensemble. Having 𝑝 predictors in total the size of the predictor subset 𝑚 is normally 

chosen to be some function of 𝑝, such as 𝑚 ≈ √𝑝 or 𝑚 ≈ log2(𝑝), while using 𝑚 = 𝑝 

corresponds to the aforementioned bagged trees [66]. 

While bagged trees and random forest models might be hard to interpret, as they may not be 

visualized as simply as a single decision tree, they may produce a measure of the importance of 

each individual input feature in the model (feature importance). Using an appropriate model 

metric as mentioned in the previous chapter (RSS, Gini index) the decrease in the model metric 

is averaged over all decision splits in the 𝐵 trees at the same feature, providing a measure of the 

feature’s contribution to the model - its importance [66].  

 

2.4.4 Multiple linear regression 

Using multiple explanatory variables to explain a continuous outcome variable as a weighted 

sum is known as multiple linear regression. Given an p-dimensional observation 𝑥𝑖⃗⃗  ⃗ =

[𝑥1𝑖, 𝑥2𝑖 , … , 𝑥𝑝𝑖]
𝑇
 (the feature-space) the predicted outcome becomes: 

𝑦�̂� = 𝛽0̂ + 𝛽1̂𝑥1𝑖 + ⋯+ 𝛽�̂�𝑥𝑝𝑖 

2.4-6. 

 

The estimation of the 𝑝 + 1 regression parameters 𝛽 ̂ = [�̂�0, �̂�1, … , �̂�𝑝]
𝑇
(where 𝛽0 is the 

intercept), is done by minimizing the squared error across all observations (the residual sum of 

squares RSS). This procedure is known as least squared error (LSE) estimation [66]. The RSS in 

this parametric setting is similar to equation 2.4-4: 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

 

2.4-7. 

 

Where N is the number of training observations used to fit the regression parameters.  
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2.4.5 Logistic regression with ridge (𝒍𝟐) regularization 

Multiple logistic regression is a parametric model using a weighted sum of predictors (the 

systematic part) to express a continuous value between 0 and 1. The estimated outcome is often 

interpreted as the class probability for a binary outcome making it suitable for classification. 

Given an observation number 𝑖 consisting of 𝑑 features, 𝑥 𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑]
𝑇, the systematic 

component 𝜂(𝑥 𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑑𝑥𝑖𝑑 utilizes the 𝑑 features as predictors in a logistic 

model as: 

𝑓(𝑥 𝑖) =
1

1 + exp (−𝜂(𝑥 𝑖))
=

1

1 +  exp (−𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑑
𝑗=1 )

 

2.4-8. 

 

The shape of this function is sigmoidal and produces outcomes between 0 and 1 given real values 

of 𝛽𝑗 and 𝑥𝑖𝑗. Given a binary outcome the estimated probability that the outcome 𝑦𝑖 belongs to 

one of the classes (usually 𝑦𝑖 = 1) becomes: �̂�𝑖 = 𝑃(𝑦𝑖 = 1|𝑥 𝑖) = 𝑓(𝑥 𝑖). The distribution of 𝑦𝑖 

then becomes binomial as 𝑃(𝑦𝑖|𝑥 𝑖) = 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖. 

The regression parameters 𝛽 ̂ are estimated using the likelihood 𝐿, defined as the product of the 

observed distributions: 

               𝐿 = ∏𝑃(

𝑛

𝑖=1

𝑦𝑖|𝑥𝑖) = ∏𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖

𝑛

𝑖=1

 

⇒  ln(𝐿) =  ∑ [𝑦𝑖ln(𝑝𝑖) + (1 − 𝑦𝑖)ln (1 − 𝑝𝑖)]
𝑛

𝑖=1
 

2.4-9. 

 

Maximizing 𝐿, or equivalently the natural logarithm of the likelihood ln(𝐿), to estimate the 

regression parameters is known as maximum likelihood estimation (MLE) [66].  

To mitigate overfitting a regularization parameter 𝜆 is introduced, penalizing the usage of more 

predictors. Adding the penalization term to log(L) seen in equation 2.4-10 is known as ridge 

regularization, or 𝑙2 regularization as it is proportional to the sum of squared coefficients. The 

penalization strength depends on both 𝜆 and the number of predictors 𝑑 and overall lowers the 

estimations of the parameters (shrinkage) [72]. 

�̂�𝑀𝐿𝐸
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = argmax

�⃗⃗� 
(log(𝐿)) 

�̂�𝑙2
⃗⃗⃗⃗  ⃗     = argmax

�⃗⃗� 
(log(𝐿) −

𝜆

2
∑ 𝛽𝑗

2
𝑑

𝑗=1
) 

2.4-10. 
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After the estimation of regression parameters (training), the fitted model may be used for 

classification. Given a classification threshold 𝑝𝑡ℎ𝑟𝑒𝑠ℎ an observation is assumed to belong to 

class 𝑦 = 1 if the estimated probability is above said threshold. 

�̂�𝑖 = {
1     if    𝑝�̂� = 𝑓(𝑥𝑖⃗⃗  ⃗) > 𝑝𝑡ℎ𝑟𝑒𝑠ℎ

0     if    𝑝�̂� = 𝑓(𝑥𝑖⃗⃗  ⃗) ≤ 𝑝𝑡ℎ𝑟𝑒𝑠ℎ

 

2.4-11. 

 

 

2.4.6 Metrics for model assessment & statistical methods 

The coefficient of determination (𝑅2) is a metric describing the proportion of the variability in an 

outcome variable explained by a regression model. The theoretical maximum 𝑅2 = 1.0 means 

the model estimation follows the outcome perfectly [66]. The general definition of  𝑅2 is: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
=  1 −

∑(𝑦𝑖 − 𝑦�̂�)
2

∑(𝑦𝑖 − �̅�𝑖)2
 

2.4-12. 

 

RSS and TSS is the residual and total sum of squares, respectively. Using this definition 𝑅2 may 

become less than zero, indicating that the model performs worse than a constant guess at the 

expectation value of the outcome (which would make 𝑅2 = 0) [73].  

 

For classification purposes the area under the receiver operating characteristic curve (ROC AUC, 

or simply AUC) is often used as a metric for evaluating classification models. AUC is always 

between 0 and 1, where the latter indicates a perfect model. The curve in ROC-space is created 

by plotting the true positive rate (𝑡𝑝𝑟 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑎𝑙𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) against the false positive rate 

(𝑓𝑝𝑟 =  
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑎𝑙𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
), while varying the classification threshold (such that all prediction 

probabilities above this threshold is classified as true). As such each point in ROC-space 

represents a confusion matrix describing the goodness of the model’s predictions [66]. An AUC 

score of 0.50 indicates that the model is not able to distinguish between the binary classes in any 

way and is equivalent to randomly guessing. The predictive performance of radiomics-based 

models is often evaluated and compared by the AUC [10], [41], [74].  

However, the AUC has some drawbacks. The metric does not account for the stability of a 

predictor in ROC space, as two very different ROC-curves may have equal area. Sensitivity 

(TPR) and specificity (TNR = 1 – FPR) are also equally weighted which may not always be 

feasible, such as when considering detection of pathogens with pandemic potential demanding a 

very high sensitivity will less emphasis on specificity [75]. AUC may also be unfeasible when 

comparing different types of classifiers, as the metric is based on the intrinsic properties of the 

classifier [76].  
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The brier score (BS) is a probability-based metric for evaluating classification models, 

equivalent to the MSE for binary outcomes. For N binary outcomes 𝑦𝑖 and estimated class 

probabilities 𝑝�̂�, the BS is defined as: 

𝐵𝑆 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑁

𝑖=1
 

2.4-13. 

 

Independent of the prevalence of 𝑦𝑖 the BS obtains a score of 0.25 given constant probability 

estimates at 0.5 (random guesses). A lower BS indicates better model performance. The model 

assumes no threshold-based classification inference, and is as such used much is probabilistic 

forecasting such as weather prediction [77]. While not heavily emphasised as a scoring metric in 

radiomics publications, it is utilized in [78].  

 

3 Methods 

As part of the research convergence environment PROtons Contra CAncer (PROCCA [79]) a 

pre-clinical study was performed to evaluate the long and short term effects of X-ray irradiation 

in mice.  The radiomics-based image analysis in this thesis was performed using MR-images 

obtained in this study, with measured saliva production from the same mice used as a functional 

endpoint. Regions of interest of the left and right unit of the submandibular gland were 

segmented using a semi-automatic segmentation procedure. As method development was a key 

part of the study, it was warranted to include some discussion in this chapter on the various steps 

in the pipeline. 

All programs created for this work is found in the GitHub repository: 

https://github.com/mrbrodude/PROCCA 

 

3.1 Data acquisition 

The following chapter about how the data used in the radiomic investigation was acquired is 

written using excerpts from the study publication [80] where a complete description of all 

methods in the study is given in more detail. The study consisted of four experiments, including 

a pilot, with some variations in the study design. Data from all experiments are used in this 

study. 

Mice from the same genetic line (C57BL/6J) was kept in a 12h dark / light cycle, pathogen-free 

conditions, and fed a commercially available fodder with no restrictions on water availability. 

The mice were 12 weeks old at the onset of each experiment, referred to as baseline at either day 

https://github.com/mrbrodude/PROCCA
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-7 or day -3 in the experiments, and at this time baseline measurements were sampled. The time 

when the irradiation schedule was initiated is referred to as day 0 for all experiments – meaning 

the mice received the first irradiation fraction(s) on this day (see Figure 3-1). All experiments 

were approved by the Norwegian Food Safety Authority and performed in accordance with 

directive 2010/63/EU on animal protection for scientific purposes [81]. The mice were 

anesthetized using Sevoflurane 4% in O2 gas when delivering each irradiation fraction, as well as 

when magnetic resonance imaging (MRI) was performed. During saliva sampling a 

subcutaneous injection of Zoletil-mix was used as anaesthesia. 

The mice belonged either to an irradiation group receiving varying doses or a control group 

where no irradiation was delivered. The irradiated mice were either given 1 or 2 fractions per day 

for 5 or 10 days, such that all mice received 10 fractions in total, with doses varying from 3.0 to 

8.5 Gray per fraction (Gy / f). The delivered X-rays was either generated with (1) 180 kV / 10 

mA and 0.3 mm Cu filter and 0.65 Gy / min dose rate, or with (2) 100 kV / 15 mA and 2.0 mm 

Al and 0.75 Gy / min. Absolute calibration of the X-ray delivery system was performed using an 

FC65-G ionization chamber (IBA Dosimetry, Germany) with a MAX-4000 electrometer 

(Standard Imaging, USA) following standards for dose to water (section 2.1.1). The 

anaesthetized mice were positioned on their right side, and a custom-build lead collimator 

ensured a 25 x 20 mm radiation field covered the oral cavity, pharynx, along the major salivary 

glands of the mice.  

Magnetic Resonance Imaging was performed using a 7.05 T Biospec scanner (Bruker Medical 

systems, Germany) at baseline (day -7 or -3), in quick succession after the irradiation, and at 

time points in the follow-up period varying with the experiments. T2 weighted images were 

acquired for 62 of the mice at varying time points, where 29 belonged to a control group 

receiving no irradiation. For 31 individuals T1 weighted images were also acquired, where 15 

belonged to a control group. All series with T1 imaging had a corresponding T2 series. For some 

mice imaging both before and after pilocarpine injections (used for measuring saliva production) 

were acquired. An overview of the number of images taken at each time-point is seen in Table 

3-1. The T2 imaging protocol was a fast spin echo (FSE) sequence (TurboRARE) with echo time 

TE = 31 ms and repetition time TR = 3100 ms having an echo train length ETL = 8 (see sections 

2.2.3 and 2.2.4). The T1 protocol also used a FSE sequence (RARE) with TE = 8 ms, TR = 1500 

ms and ETL = 4. Both the T1 and the T2 protocols produced images with a resolution of 

256 × 256 pixels, but with varying amounts of slices (between 8 and 30). The pixel spacing for 

both the T1 and T2 images is isotropic in-plane with a distance of 0.12 mm between each pixel 

in every image slice, while the voxel spacing was 0.7 mm between the slices. Only images taken 

of the sagittal plane was used for analysis in this thesis, which constituted most of the images. 

The body temperature of the mice was monitored and maintained at 37°C using a feedback-

regulated fan.  
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 Tot # of mice  

(#control) 

Before / 

after 

pilocarpine 

Day 
→ 

-7 -3 5 8 12 26 35 56 70 105 

T1 100 31 (15) 79 / 21  6 21 18 0 10 0 17 0 10 18 

T2 233 62 (29) 151 / 82  61 21 38 26 10 18 17 14 10 18 

Both 333 62 (29) 230 / 103  67 42 56 26 20 18 34 14 20 36 
Table 3-1: Number of MR-images acquired grouped by weighting (T1, T2), before and after pilocarpine injection, and time (day 

0 is the first day of irradiation).  

 

 

Figure 3-1: Radiation field (A and red triangle in B) covering the HN region of a mouse in a similar fashion to a clinical field. 

Figure C shows the timeline for baseline sampling (day -7), irradiation (day 0 to 4), and the follow-up period. Image from [80]. 

 

Measurements of saliva was taken at the baseline time, immediately after the irradiation period, 

and at some later time-point in the follow-up period. Of the 112 individual mice from which 

saliva were measured 40 belonged to a control group, and the remaining 72 were in a group 

receiving irradiation. A pilocarpine dose of 0.375 mg / kg (mg solution per mouse weight in kg) 

was given as an intraperitoneal injection to mice placed under anaesthesia. Saliva was collected 

using a cotton swab for 15 minutes, centrifuged at 7500 g at 4°𝐶 for 2 minutes, before the 

obtained volume was measured and stored. The number of saliva measurements taken over time 

is seen in Table 3-2. 
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Day -7 -3 3 5 8 12 26 35 56 75 All 

days 

# of 

measurements 

72 40 31 39 31 40 10 51 15 18 347 

# control 30 10 9 19 9 10 2 19 5 5 118 

# irradiated 42 30 22 20 22 30 8 32 10 13 229 
Table 3-2: Number of saliva measurements per day relative to start of irradiation (day 0), for 112 individual mice. All mice had 

baseline measures taken (at day -7 or -3), and in total 391 measurements were acquired. 

 

3.2 Image segmentation 

Defining the 2D region of interest (ROI), or 3D volume of interest (VOI), from which radiomic 

features are extracted is known as segmentation or delineation. The segmentation process in a 

medical setting considers a tumour or organ within the image(s) to be isolated – masked - for 

study. As the boundary of the tumour / organ to be delineated may be hard to observe on medical 

images, e.g. by being of similar density as the surrounding tissue in a CT image or having similar 

relaxation constants in a MR image (2.2.3), the segmentation process is sensitive to both intra- 

and inter-observer variations. Many of the radiomic features have been shown to be strongly 

affected by the ROI / VOI variations and are therefore considered non-robust with respect to 

segmentation [82].  

While IBSI incorporates image segmentation after the post-acquisition processing in the 

workflow shown in Figure 2-11, the segmentation pipeline utilized here (described in section 

3.2.4) considers very different preprocessing steps than the feature extraction process (section 

3.3).  

Manual segmentation is when an expert (oncologist, radiologist, medical physicist) uses 

experience and medical knowledge to decide where the boundary is. Automatic and semi-

automatic segmentation are differentiated by the need of any user input, or manual corrections, 

in the process [8]. Dividing the image into regions satisfying some homogeneity criterion is 

known as region-based segmentation. Alternatively the segmentation boundaries may be defined 

by characteristics at edges within the image, such as high local changes in intensity represented 

by a high gradient, i.e. an edge-based segmentation [83].  

The SMG, being the ROI, is divided into a left and right unit (section 2.1.3), with the center of 

each unit ending up in different sagittal image slices. Thus for each set of images acquired, the 

central slices of the left and right SMG were defined, largely by maximizing the area of the 

glands. 
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3.2.1 Histogram equalization 

Histogram equalization techniques aim to increase the image contrast by transforming the 

intensity values in the image based on its histogram (see section 2.3.1). The simplest form of 

histogram equalization applies such a transform that the histogram becomes as flat as possible - 

and the cumulative histogram becomes a straight line [83]. This global method, considering all 

intensity values in the image, tends to enhance the noise of the image in addition to the contrast 

especially in regions of similar intensity (Figure 3-2). Contrast limited adaptive histogram 

equalization (CLAHE) addresses this issue by basing the transformation on several region-based 

histograms enhancing the local contrast (adaptive histogram equalization) while limiting the 

mapping function and as such the achieved contrast amplification [84].  

Figure 3-2 is created using the python [85] implementation of OpenCV [86] having built-in 

functions for both linearizing the cumulative histogram (central column) and CLAHE (right 

column). The input image (left column) is required to have 8-bit unsigned integer gray values 

(uint8), i.e. the intensities are scaled (see equation 3.3-3) and discretized to integer values on the 

interval [0, 255] (as unsigned 8-bit values have 2^8 = 256 possibilities). This scaled uint8 image 

is the basis for all the subsequent steps in the segmentation pipelines.  

 

Figure 3-2: Image histograms (yellow lines, bottom row) for scaled image (left), after global histogram equalization (middle), 

and after CLAHE (right). Cumulative histograms seen as blue lines. 
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3.2.2 Rank- and kernel-based filters 

Rank filters transform the image pixel intensity values based on the histogram calculated within a 

neighbourhood of each pixel. The considered neighbourhood is based on a binary structuring 

element – kernel – where the transformed pixel corresponds to the centre of the kernel matrix 

[87]. The python package scikit-image [88] function disk(radius=1) returns the 3 × 3 kernel 

[
0 1 0
1 1 1
0 1 0

], meaning the histograms are computed using the 4-connected nearest neighbours in 

all cardinal directions in addition to the central pixel. With an arbitrary integer-valued radius 𝑟 

the function returns a kernel matrix of size (2𝑟 + 1) × (2𝑟 + 1) increasingly resembling a circle 

of 1’s within the square matrix. 

Median filtering is a method used for noise suppression in an image, where all pixel values are 

transformed to the median value of intensities defined by the kernel [83].  

Gaussian filtering is another method of noise suppression. Instead of considering all pixels in the 

neighbourhood defined by the kernel equally, as in the median filter, the method uses a non-

binary kernel which weighs the contributions of each neighbour pixel with the gaussian function 

𝑔(𝑥, 𝑦) =
1

√2 𝜋𝜎
exp(−

𝑑2

2𝜎2) where 𝜎 is the standard deviation. The distance from the central pixel 

(𝑥0, 𝑦0), to be transformed, to a pixel in the neighbourhood at position (𝑥, 𝑦) is defined as 𝑑 =

√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 [89]. 

The local gradient image describes the change in pixel intensities within a local region of the 

image, computed by the difference between the maximum and minimum pixel values within the 

kernel-based neighbourhood [90]. 

The median filtered and gradient images computed in the segmentation pipeline (3.2.4), and in 

Figure 3-3, are created using scikit-image [88]. The gaussian filter used in the bias field 

correction (3.3.1) is created using OpenCV [86].  

 

Figure 3-3: Gaussian (left), median filtered (middle) and gradient (right) of uint8 converted image after CLAHE. Median and 

gradient images are computed using scikit-image with kernel disk(radius=2), while the gaussian image is created using OpenCV 

with a 3 × 3 gaussian kernel. 
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3.2.3 Watershed 

Watershed is a region-based segmentation algorithm, using the image morphology as a topologic 

basis to divide the image into regions. The regions are created in analogy to drainage basins, 

regions defined by added water (e.g. from precipitation) ending up in the same geographic 

region, divided by watershed lines separating such regions. Necessitating initial markers (seeds) 

within each object in the image to segment, and some user input for selection of the region 

corresponding to the wanted ROI, makes it a semi-automatic algorithm [83].  

An intuitive watershed algorithm is the simulated immersion approach. In analogy to a two-

dimensional surface the regional minima, valleys, are punctured with holes before the whole 

surface is sunk into a great water body. Water fills up the basins surrounding the valleys until 

water coming from two different punctured valleys would merge – where a dam is built. This 

process is continued until all regional minima are surrounded by dams – the watershed lines are 

delimiting each catchment basin [91].  

While proving to be a versatile tool for segmenting 2D images, the formalism may be extended 

to more dimensions or grid patterns and have been shown to work on three-dimensional medical 

images [92].  

 

3.2.4 Segmentation pipeline SMG 

The methods mentioned in the previous subchapters are implemented in a watershed-based semi-

automatic segmentation procedure (Figure 3-4). The segmentations are done on each 2D slice in 

the MRI series individually before the resulting ROI’s are aggregated to a 3D matrix of similar 

shape as the image series. The ROI to be segmented is the pair of submandibular glands (SMG) 

in the mice (section 2.1.3.1). As the SMG pair contains two “central” slices when viewed in the 

sagittal plane (see Figure 2-4) the indices corresponding to said slices (left + right) in the image 

matrix was saved for extraction of 2D features. 

The first step is to process each image slice in the image series, extracted from a DICOM file 

using pydicom [93], with a MR-specific bias field correction (N4 – see section 3.3.1)) to account 

for low-frequency nonuniformities across the whole image (see section 2.2.5). The corrected 

image intensities are then scaled and discretized to uint8 values in the [0, 255] range such that a 

CLAHE may be performed (see section 3.2.1). A denoised image is then created with a disk 

kernel having radius mediandisksize. A gradient image is created from the denoised image with a 

disk kernel having radius gradientdisksize (see section 3.2.2). A separate gradient operation is 

again done on the denoised image with a disk kernel of radius markerthreshsize, and pixels 

values below the markerthresh value is set to 1 – else 0. The regions are numbered by their 

connectivity (4 or 8 nearest neighbours) making the markers image. Watershed is then done 

between the first mentioned gradient image and the markers image (section 3.2.3), from which 

the watershed regions are manually chosen whether to be included in the slice ROI. A 

morphological closing operation is done each time a region is added to the ROI such that no 
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“holes” remains. This process is repeated for all slices until a 3D volume of binary values (1 if in 

ROI, 0 else) is created.  

 

Figure 3-4: The ROI segmentation pipeline. 

The segmentation pipeline is semi-automatic as user input is needed to select what watershed 

regions to include in the ROI, while the initial markers (watershed seeds) are created 

automatically. 

 

Figure 3-5: Illustrating the four steps used for segmenting the SMG. 

The python packages used in the pipeline are as described in the corresponding methods 

subchapters, and the final 3D ROI is saved as a numpy array [94]. The segmentation pipeline is 



49 

 

heavily influenced by [95]. The implementation is found in segmentation_algorithm.py and 

watershed.py in the extraction pipeline folder.  

 

3.2.5 Background identification by Otsu thresholding 

Being a region-based segmentation method global thresholding divides an image into regions 

having gray levels either above or below some threshold intensity value 𝑇. A common 

application may be to divide an image into foreground (1) and background (0) using the step 

function  [83]:  

𝑔(𝑥, 𝑦) = {
1   if   𝐼(𝑥, 𝑦) > 𝑇

0   if   𝐼(𝑥, 𝑦) ≤ 𝑇
 

3.2-1. 

 

Where 𝐼(𝑥, 𝑦) is the pixel intensity value at position (𝑥, 𝑦). 

Otsu’s method attempts to find the optimal value for such a global threshold value by 

maximizing the distinction between the resulting classes [96]  – with each pixel being assigned 

to either 0 or 1 in the binary case. Having a normalized histogram of 𝑁𝐺  gray levels, such that 

∑ 𝑝𝑖
𝑁𝐺
𝑖=1 = 1, the probability that an arbitrarily chosen pixel belongs to class 0 given a 

thresholding value 𝑘 becomes 𝑃0(𝑘) = ∑ 𝑝𝑖
𝑘
𝑖=1 . Similarly, the probability of a pixel belonging to 

class 1 becomes 𝑃1(𝑘) = ∑ 𝑝𝑖
𝑁𝐺
𝑖=𝑘+1 = 1 − 𝑃0(𝑘). The average value of all discretized pixels up 

to, and including, gray level 𝑘 in the image is defined as 𝑚(𝑘) = ∑ 𝑖𝑝𝑖
𝑘
𝑖=1 , and the global mean 

becomes 𝑚𝐺 = 𝑚(𝑁𝐺) = ∑ 𝑖𝑝𝑖
𝑁𝐺
𝑖=1 . The mean value of all pixels belonging to class 𝑗 may then be 

calculated as 𝑚𝑗(𝑘) =
𝑚(𝑘)

𝑃𝑗(𝑘)
. From these results the inter-class variance 𝑚𝐵, a metric of the 

separability between the classes, may be calculated as: 

𝜎𝐵
2 = 𝑃1(𝑚1 − 𝑚𝐺)2 + 𝑃0(𝑚0 − 𝑚𝐺)2 =

[𝑚𝐺𝑃0(𝑘) − 𝑚(𝑘)]2

𝑃0(𝑘)[1 − 𝑃0(𝑘)]
 

3.2-2. 

 

By finding a 𝑘∗ ∈ [1, 𝑁𝐺] such that 𝜎𝐵
2(𝑘∗) = max

0≤𝑘≤𝑁𝐺

𝜎𝐵
2(𝑘), the largest class distinction is found. 

Thus, by having 𝑇 = 𝑘∗, one may use equation 3.2-1. to segment the image into two 

mathematically optimal classes. The thresholding process is often combined with some image 

smoothing to improve the segmentation performance [90]. 

A python implementation of Otsu’s method is found in the SimpleITK library [97], which is used 

in the automatic background identification pipeline shown in Figure 3-6. The number of bins for 

creating the normalized histogram is set to 128. First the image is scaled (using min-max feature 

scaling, section 3.3.2.1) to the range [0, 255] before all intensity gray values are converted to a 

uint8 data type. The image is then blurred by a gaussian filter with a 9 × 9 kernel (3.2.2) before a 

histogram equalization is applied (3.2.1). The background and foreground are then segmented 
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using Otsu’s method, and lastly a morphological closing operation is applied. Figure 3-7 shows 

an example of the identified background by this method.  

 

 

Figure 3-6: Pipeline for identifying and masking the background using Otsu’s method. Preprocessing includes gaussian blurring 

and histogram equalization. 

 

 

Figure 3-7: Otsu thresholding with 128 bins on 9x9 gaussian blurred image plus histogram equalization. Created using 

simpleITK [97]. 

 

3.3 Image preprocessing for radiomics 

Whether or not, and how, to apply various image processing methods before extraction of 

radiomic features is a hot topic of discussion and research as they are major components of the 

radiomics process. While the image biomarker standardization initiative (IBSI) does not cover 

post-acquisition processing such as inhomogeneity correction methods and normalization, the 
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initiative provides standardized methods for interpolation, re-segmentation (exclusion of outliers 

in the ROI), and image discretization [7]. Preprocessing is considered a major contributor to the 

reproducibility of features, and the pipeline should be suited to the image sequence in use (T1 

and T2 weighted MRI in the case of this thesis) [7], [8], [45], [47].  

 

The order of application on the methods used for preprocessing in this thesis follows the results 

from a study concerning the interplay effects between post-acquisition preprocessing methods 

(bias field correction before normalization) [98], while the remaining steps follows the IBSI 

pipeline as seen in Figure 2-11. The order the methods are presented in this chapter is the same 

as is done in the extraction pipeline. 

Due to having a much larger slice distance (0.70 mm) than in-plane pixel spacing (0.12 mm) no 

interpolation was done to an isotropic voxel environment, and as such all extraction of features 

was done from 2D images.  

What normalization procedure to be used was chosen on a feature-specific basis, further 

described in section 3.4.1.  

 

3.3.1 Nonuniform intensity normalization: N4 bias field correction 

As discussed in section 2.2.5 MR images often contains some low frequency non-uniformity 

artifact across the image known as a bias field. The improved nonparametric nonuniform 

intensity normalization for bias field correction (from now on referred to as N4 in order to save 

paper) uses B-splines to iteratively approximate such non-uniformity artifacts as low-frequency 

fields covering the image [99]. Assuming the acquired image to be a function of the bias field 

without any noise one may model the image as: 

                 𝑣(𝑥) = 𝑢(𝑥)𝑓(𝑥) 

⇒            𝑣(𝑥) ≔ log(𝑣(𝑥)) = log(𝑢(𝑥)) + log(𝑓(𝑥)) =  �̂�(𝑥) + 𝑓(𝑥) 

3.3-1. 

 

Where 𝑢 is the assumed bias-free image, 𝑓 is the low-frequency bias field, and 𝑣 is the acquired 

image. After 𝑛 iterations the corrected image becomes: 

�̂�𝑛 = �̂�𝑛−1 − 𝑓𝑟
𝑛 = �̂�𝑛−1 − 𝑆∗{�̂�𝑛−1 − 𝐸[�̂� | �̂�𝑛−1]} 

3.3-2. 

 

Where 𝑓𝑟
𝑛 is the estimated residual bias field between iteration 𝑛 and 𝑛 − 1 equal to the B-spline 

estimator 𝑆∗. The B-spline estimator is made publicly available by the creators of the algorithm, 

and detailed derivations for the expectation value of the bias-free image given the current 

previous iteration of the corrected image (𝐸[�̂� | �̂�𝑛−1]) is found in the paper describing the 

algorithm [100]. 
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The B-spline is a generalized version of the Bezier curve, a method of nonparametric curve 

parametrization which may follow arbitrary data points in a smooth continuous way [101]. No a 

priori knowledge, or assumptions, about the underlying function which the bias field to estimate 

(𝑓) follows is needed. 

The python implementation of N4 in the simpleITK library recommends using a mask 

identifying the foreground in the image such that the background is not considered when 

estimating the bias field [102]. The workflow applying Otsu thresholding described in section 

3.2.5 is used for this purpose. An example of the resulting bias field estimated from the identified 

foreground is seen in Figure 3-8.  

 

Figure 3-8: Illustration of the N4 bias field correction pipeline. Left: foreground identified by Otsu thresholding. Middle: 

estimated bias field. Right: difference in image before and after N4 was applied, as percentage values relative to the maximum 

intensity in the (masked) original image. 

 

3.3.2 Image intensity normalization 

As the intensity values in a MR-image has rather arbitrary scaling (see section 2.2.5) IBSI 

recommends including some procedure of homogenization of grey values between the images, as 

this has been shown to affect the subset of selected features as well as the reproducibility 

between MR-acquisition protocols [7], [46], [47]. Many methods of achieving such a 

homogenization have been proposed for use in radiomic analysis, and commonly occurring 

techniques include the standard score normalization and Nyul normalization.  

Selecting the proper method of normalization is dependent on many intrinsic properties of the 

considered data but some general conditions should be satisfied: the normalization should not 

destroy information such as the inter-relationships between neighbouring pixel intensities 

(textural information) while achieving some standardization of the tissue-dependent intensity 

values to achieve a meaningful comparison.  



53 

 

Studies have shown that especially standard score normalization and Nyul normalization 

significantly increases the repeatability of radiomic features extracted from T2-weighed MRI 

images of cheese [103], the brain [46], and OAR’s surrounding the prostate [47]. 

 

3.3.2.1  Min-max feature scaling 

While not often considered a robust normalization procedure in radiomics, linearly transforming 

the intensities within the image from the original range to an arbitrary scale is of practical 

interest when preparing the images for various segmentation procedures. One example is when 

intensity value inputs are required to be of an unsigned 8-bit integer (uint8) data type having 

values on the interval [0, 255]. The method linearly scales the intensities in the image from the 

scale [min(x), max(x)] to a new interval [a, b] using:  

𝑥′ =
(𝑥 − min (𝑋))(𝑏 − 𝑎)

max(𝑋) − min (𝑋)
+ 𝑎 

3.3-3. 

 

Where min(𝑋) and max (𝑋) is the minimum and maximum intensity value in the image, 

respectively. The method makes no assumptions about the underlying intensity distribution, and 

as such achieves no centering – only scaling and shifting (if 𝑎 ≠ 0) [67]. 

 

3.3.2.2  Shifted standardization 

Assuming the intensity distribution to be normally distributed one may rescale the intensities 

within an image to have zero mean and a standard deviation of one - as for the standard normal 

distribution. The user guide for pyRadiomics recommends this method of preprocessing, but with 

a small modification: instead of centering the mean of the transformed intensity values around 0, 

the mean is shifted such that the intensity values are centered around 3𝜎. This will ensure that no 

division with zero occurs when computing the first-order and texture based features (see section 

2.3.1 and 2.3.3) [52], given that the ROI have been re-segmented to exclude such outliers 

(section 3.3.3). Standard score normalization, or standardization, with such a shift is referred to 

as standard score normalization in this thesis. The normalization function then becomes: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎
+ 3𝜎 

3.3-4. 

 

Where the mean 𝜇 and the standard deviation 𝜎 are computed from all pixel intensities in the 

image. The standard score normalization is considered more robust to outliers than min-max 

scaling [67].  
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3.3.2.3  Nyul normalization 

Proposed by Nyul et al. [104] this MR-specific histogram-matching technique aims to 

standardize the intensity distributions for a set of images of the same body region and acquired 

using the same protocol (e.g. T2-RARE) to achieve a similar tissue-related intensity dependence. 

Achieving such a tissue-dependent “global” (in relation to a set of MR-images) intensity value is 

highly desirable for extraction and comparison of quantitative information in the radiomic 

procedure.  

The method consists of two parts: first training a “standard histogram” at specified landmarks 

(reference points at percentile values in the histogram), which is then used as reference for 

transforming each image histogram linearly from the original image scale to the standard scale - 

using a separately acquired transformation function for each landmark interval. 

Given a set of MR-images {𝜈𝑗} acquired by protocols {𝑃𝑖} of body parts {𝐷𝑗} a range of 

intensities of interest (IOI) is selected from the considered minimum and maximum percentiles 

𝑝𝑐1 and 𝑝𝑐2 respectively. Along with 𝑙 other percentiles they make up the landmark percentiles 

𝐿 = {𝑝𝑐1, 𝜇1, 𝜇2, . . . , 𝜇𝑙, 𝑝𝑐2} corresponding to intensity landmark values {𝑝1𝑗, 𝜇1𝑗 , 𝜇2𝑗 , . .,

𝜇𝑙𝑗 , 𝑝2𝑗} in the histogram of image 𝜈𝑗. Let 𝑚1𝑗, 𝑚2𝑗 denote the minimum/ maximum of all 

intensity values in the image.  

Finding the values constituting the standard histogram {𝑠1, 𝜇1𝑠, … , 𝜇𝑙𝑠, 𝑠2}, corresponding to the 

landmark percentile set 𝐿, is done by mapping [𝑝1𝑗, 𝑝2𝑗] onto [𝑠1, 𝑠2] (linearly) defining a 

transformation function 𝜏𝑗 for each image histogram within the IOI. All landmark values are then 

transformed by 𝜏𝑗(𝜇𝑘𝑗) = 𝜇′𝑘𝑗 ∀ 𝑘 ∈ 1, 2, . . , 𝑙 which yields each standard histogram landmark 

by calculating the mean over all the transformed values from the training set: 𝜇𝑘𝑠 =
∑ 𝜇𝑘𝑗

𝑙
𝑗=1

𝑙
.  

Transforming (normalizing) each image is done by defining mapping functions for each 

landmark interval [𝜇𝑘𝑖, 𝜇𝑘+1 𝑖] of the image histogram 𝐻𝑖 onto the standard scale intervals [𝜇𝑘𝑠,

𝜇𝑘+1 𝑠] by (linear) interpolation, creating a set of transformations making up the standardizer 𝜏νi. 

The first and last map transformations are defined for the intervals [𝑝1𝑖, 𝜇1𝑖] and [𝜇𝑙𝑖, 𝑝2𝑖] onto 

[𝑠1, 𝜇1𝑠] and [𝜇𝑙𝑠, 𝑠2], respectively. Concerning values outside the IOI the mapping function 

corresponding to the closest interval is used by expanding its domain interval to include either 

[𝑚1𝑖, 𝑝1𝑖] or [𝑝2𝑖, 𝑚2𝑖] while expanding the codomain interval by adding either [𝑠1𝑖
′ , 𝑠1] or [𝑠2,

𝑠2𝑖
′ ] by (linear) extrapolation as shown in Figure 3-9.  
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Figure 3-9: Linear intensity mapping from the image histogram scale to the standard histogram scale, defined for each landmark 

interval. Figure from Nyul et al. (2000, [104]). 

As the choice of 𝑝𝑐1 and 𝑝𝑐2, defining the IOI, directly affects the (transformed) shape of the 

normalized image histogram along the choice of corresponding standard scale values 𝑠1 and 𝑠2 

some conditions should be fulfilled to ensure the intensity relations between pixels are preserved 

after the transformation. The quantities 

𝜇′
𝑚𝑖𝑛 = min{𝜇′𝑖}                               𝜇′𝑚𝑎𝑥 = max {𝜇′

𝑖} 

𝜇𝑙 − 𝑝1𝑙 = min  {𝜇1𝑖 − 𝑝1𝑖}             𝜇𝐿 − 𝑝1𝐿 = max  {𝜇1𝑖 − 𝑝1𝑖} 

𝑝2𝑟 − 𝜇𝑟 = min{𝑝2𝑖 − 𝜇𝑙𝑖}              𝑝2𝑅 − 𝜇𝑅 = max {𝑝2𝑖 − 𝜇𝑙𝑖} 

3.3-5. 

 

 

should satisfy the conditions  

 

 

1:                       𝜇′
𝑚𝑖𝑛 − 𝑠1 ≥ 𝜇𝐿 − 𝑝1𝐿                  𝑠2 − 𝜇′

𝑚𝑎𝑥 ≥ 𝑝2𝑅 − 𝜇𝑅 

2:              𝑠2 − 𝑠1 ≥ (𝜇𝐿 − 𝑝1𝐿 + 𝑝2𝑅 − 𝜇𝑅) × max {
𝜇𝐿 − 𝑝1𝐿

𝜇𝑙 − 𝑝1𝑙
,

𝑝2𝑅 − 𝜇𝑅

𝑝2𝑟 − 𝜇𝑟
} 

3:              𝜏𝜈𝑖(𝑥1) < 𝜏𝜈𝑖(𝑥2)      if and only if      𝑥1 < 𝑥2,    ∀    𝑥1, 𝑥2 ∈ 𝜈𝑖 

3.3-6. 
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The conditions in equation 3.3-6 ensures a one-to-one mapping from the original intensity 

distribution onto the standard scale, meaning no information is lost. Condition 3 should be 

evaluated last as is assumes condition 1 is true.  

As the images to be normalized have a varying number of pixels belonging to the background, 

which may affect the histogram percentile values in both the training and transforming steps, a 

background identification is suggested to be included. While the paper by Nyul recommends 

using a thresholding method based on the image mean value, the background identification based 

on Otsu thresholding (section 3.2.5) is used for this purpose as it performs better on the acquired 

images. 

A self-developed python implementation, found in nyul_histogram_matching.py, is used for all 

Nyul normalization purposes which includes a validation function evaluating the equations in 

3.3-6. The standard scales attained from training, used for transformation (i.e. normalization), are 

created independently for the T1 and T2 images as well as for the images after pilocarpine 

injections (i.e. the images are split into four groups having separate standard scales). The 

considered histogram landmarks used are the ten deciles in addition to 𝑝𝑐1 = 2 and 𝑝𝑐2 = 98 

(the 2nd and 98th percentiles), with the corresponding minimum / maximum used for the standard 

scale histogram is 𝑠1 = 1 and 𝑠2 = 50 000.  

 

3.3.3 Re-segmentation 

As the segmented ROI may contain some pixels not belonging to the actual regions of interest, 

the submandibular glands, a second mask is created which attempts to omit such pixels. The new 

re-segmented mask is referred to as the intensity mask by IBSI, while the preserved original ROI 

is referred to as the morphological mask – used for calculation of shape features [7]. 

As MR-images are on an arbitrary intensity scale the commonly used method of re-segmentation 

is by excluding intensity outliers using the standard deviation. Values outside the range [𝜇 −

3𝜎, 𝜇 + 3𝜎] are considered outliers, where 𝜇 is the image mean and 𝜎 the standard deviation [8], 

[103]. 

 

3.3.4 Discretization 

The calculation of certain radiomic features require the images to be discretized (see sections 

2.3.1, 2.3.3). The two approaches considered for this purpose in radiomics is either using a fixed 

number of bins (fixed bin count, FBC), or having a fixed bin width (FBW). Both methods have a 

noise suppressing effect. FBC have some normalizing properties, but destroys the relationship 

between image intensity values and the physiological tissue [7]. As this relationship is not well-

defined in the MR-images IBSI recommends using FBC for MRI radiomics. However, newer 

studies have shown that discretizing using FBC on MR-images reduces the feature 

reproducibility in relation to the inter-observer variability, and recommends using FBW after 
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some normalization procedure [47], [105]. Using Nyul normalization, which potentially 

establishes a meaningful relationship between tissue and intensity levels (section 3.3.2.3), might 

thus make FBW a viable choice.  

Having a lower number of bins, i.e. having a lower amount of discretized gray levels 𝑁𝐺 , reduces 

the complexity and size of certain textural matrices such as the GLCM (section 2.3.3). This, in 

turn, reduces the number of computations needed to calculate the corresponding texture features.  

Given pixel x with intensity gray value I(x) the FBW discretization function defined by IBSI is: 

𝐼𝐹𝐵𝑊(𝑥) =  ⌈
𝐼(𝑥)

Δ𝐼
⌉ − min (⌈

𝐼(𝑥)

𝛥𝐼
⌉) + 1 

3.3-7. 

 

 

Where the bin width Δ𝐼 is the width of the equidistanced bins, and ⌈𝑎⌉ is the ceiling function. 

The plus one is added to keep the lowest bin value above 0, which is necessary to avoid division 

with zero for some feature calculations. When discretizing using a FBW approach the user guide 

for pyRadiomics recommends having a bin width such that the number of gray levels in the ROI 

ends up in the range [30, 130] [52]. The optimal bin width is as such dependent on the 

normalization choice. Based on the results in section 4.3.1 the bin widths used for the three 

considered normalization methods (including no normalization as a “null hypothesis”) are seen 

in Table 3-3. N4 correction was always performed regardless of normalization.  

 

Normalization 

method 

No normalization   Standard score Nyul 

T1 images 100 0.050 800 

T2 images 100 0.075 950 
Table 3-3: Optimal bin widths for FBW discretization after bias field correction and various normalization procedures. 

 

3.4 Extraction of radiomic features 

Radiomic features were extracted from the central slices of the left and right unit of the SMG, for 

all image series, with a feature-specific normalization choice for the T1 and T2 images 

separately (section 3.4.1). 828 two-dimensional features were extracted per image using the 

python package pyRadiomics [52] of which 9 were shape-based features, 162 first-order, and the 

remaining 657 were texture-based (Figure 3-10). For each image filter, 91 intensity-based 

features were extracted. The 100 counted for no filter includes the 9 shape features. Two 

versions of wavelet filters were applied, high (H) and low (L).  
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Figure 3-10: Number of extracted features belonging to the different feature classes (left), and with image filters applied (right). 

 

3.4.1 Feature-specific preprocessing selection 

Inspired by a paper published in Nature by Fave et al. (2016, [44]) the method of normalization 

was chosen on a feature-specific basis. Before extraction of all combinations of feature types and 

possible image filters (828 in total) three normalization procedures was applied: no 

normalization, standard score normalization (3.3.2.2), and Nyul normalization (3.3.2.3). The 

procedure of selecting the best normalization on a feature-specific basis is referred to as feature-

specific preprocessing selection (FSPS). N4 corrections were applied on all images before any 

normalization was done (including no normalization). 

Only MR-images from baseline instances were considered in the FSPS to establish an initial 

relationship between features and saliva measurements from the same time-points, acquired 

either 7 or 3 days before the first irradiation day (day 0). All images acquired after pilocarpine 

injection was omitted. This resulted in 55 images having both T2-MR data and saliva 

measurements for the same mouse at the same time, and 24 for the T1 weighted MR-images.  

The T1 and T2 images were analysed independently, and both the central left and right SMG 

slices was included in the images for all considered instances.  

For all features a spearman rank correlation was calculated between the measured saliva amounts 

and the feature corresponding to each normalization group. The correlation was considered 

significant if the p-value was below a set threshold. If only a single normalization group was 

significant this was selected as the best normalization procedure for the feature. If multiple 

groups were significant, the normalization which produced the lowest correlation between the 

feature and ROI area was selected (as this is a shape feature easy to interpret). If none was 
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significant the feature was dropped from the feature set for further analysis, and as such FSPS 

becomes the first step of feature selection. 

The FSPS procedure was performed four times in total: separate for the image features from T1- 

and T2-weighted images, and whether the features from the left and right SMG unit were 

averaged (LR-average) or treated as separate features by being aggregated as new data columns 

(LR-aggregated). As the shape-based features (9 for 2D extraction) are unaffected by the 

normalization procedure (2.3.2) they were not included in the FSPS process and simply added to 

the remaining features. 

Using a threshold of 0.05 for significance between saliva measurements and features, the T2 

feature set size was reduced from 828 to 562. A threshold of 0.15 was used for the T1 images 

resulting in 127 remaining features. Spearman rank correlation and its p-value, for both saliva 

correlation and area dependence, was calculated using the python library Scipy [106].  

 

 

Figure 3-11: The feature-specific preprocessing selection pipeline. Red box represents the preprocessing steps, and the green 

box the normalization selection for each radiomic feature. The whole selection process is done for the T1 and T2 weighted 

images separately.  
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3.5 Delta-radiomics 

A recent development in radiomic research, delta-radiomics, evaluates the changes in feature 

values over time on an individual basis. These delta-features have shown clinical promise in 

oncology for prediction of treatment responses and evaluation of side-effects [107], [44], [74]. 

Following two recent papers the relative net change was calculated between the baseline features 

and features from images acquired after irradiation using equation 3.5-1. 

Δ𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑁𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑓𝑡𝑎𝑓𝑡𝑒𝑟 𝑖𝑟𝑟 − 𝑓𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑓𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

3.5-1. 

 

Of the 62 individual mice from which MR-images were acquired (section 3.1) 7 had no images 

taken at baseline. Of the 55 remaining mice 13 had no saliva measurements taken at later time-

points than day 5, and 4 had no images taken after irradiation. Of the remaining 38 individuals 

available for delta-feature calculation with prediction of late saliva responses, 10 mice had 

images taken at day 35 with saliva measurements at day 75. The rest had images after irradiation 

taken at day 5, 8, or 12 with latest saliva measurements at day 26, 35, or 56. 

Whether to include these 10 mice in the set of mice for delta-radiomics calculations, or not, 

becomes a trade-off between two options: either minimizing the variation in time-points 

considered as late saliva measurements by omitting these 10 individuals, or maximizing the 

sample size by allowing a temporal overlap between the late saliva measurements and some of 

the images taken after irradiation. Due to having a small sample size the latter option was 

chosen, such that all 38 available mice were included (Figure 3-12). 

Only T2 images were considered for this analysis as only 21 mice having T1 images taken 

fulfilled the criterion described above. All images taken after pilocarpine injections were omitted 

for this analysis. 
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Figure 3-12: Times when the T2-w MR-images (red crosses), and saliva measurements (blue dots), were acquired for the N=38 

individual mice available for delta-radiomic analysis. Delta-features are calculated between the images before (day -7 or -3) and 

after irradiation for prediction of the latest saliva measurement for each mouse. 

 

3.5.1 Delta-P features 

As a way of utilizing the images taken after pilocarpine injections, inspired by the 

aforementioned delta-feature calculations, the relative net change in features from images taken 

before and after pilocarpine injections and saliva extraction (referred to as before p / after p) 

were calculated. Instead of being a measure of the relative difference in time it becomes a 

measure of the effects on radiomic features due to saliva extraction and other eventual effects 

due to the pilocarpine drug. The relative net change is calculated using 3.5-2. 

ΔP-feature =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑎𝑓𝑡𝑒𝑟 𝑃 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑏𝑒𝑓𝑜𝑟𝑒 𝑃

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑏𝑒𝑓𝑜𝑟𝑒 𝑃
 

3.5-2. 

 

Only T2-w images are considered for this analysis as there are 36 individual mice which have 

been imaged before and after pilocarpine injections, while only 9 individuals when considering 

the T1 images. 
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3.6 Feature selection and modelling 

3.6.1 Splitting the data into training and test sets 

To estimate the generalization error of a trained model, evaluation of the model is done on 

unseen data – the test data (section 2.4). In a single train-test split a subset of the available data is 

held-out for such testing, a common approach in radiomic studies [10], [74], [108]. Resampling 

methods is often used in addition to, or instead of, this single split. Shayesteh et al. (2021, [74]) 

used 1000 bootstraps of the training data for hyperparameter (HP) tuning, and 1000 bootstraps of 

the test data for evaluation. Crombé et al. (2019, [108]) used a 10-fold cross-validation (CV) on 

the training data for HP-tuning and training before evaluating on the test data. Fave et al. (2016, 

[44]) had a somewhat different approach: instead of a single division into train and testing, the 

feature-selection, HP-tuning, and training was incorporated into a LOOCV which calculated the 

validation error using the held-out instances across the CV.  

 

3.6.1.1  Single train / test split with respect to available mice for 

various feature-spaces 

Three main methods of radiomic analysis are considered in this thesis, consisting of four feature 

spaces: using the extracted features only from images before pilocarpine injections (no-p) being 

either T2- or T1-weighted, using the delta-features (only T2), and lastly the delta-p features (only 

T2). Before any further dimensionality reduction of the four feature spaces beyond the already 

omitted features from the FSPS procedure, the data available for each method is split into a 

training set and a hold-out set for testing. The individuals chosen for the test set may affect the 

prediction and accuracy measures of the models, and as such the test sets are created to have a as 

big overlap as possible between the data available for each feature-space. This will allow for a 

more accurate comparison of the models, since a “global” test set is unfeasible as the individuals 

available for the different feature-spaces vary. As a second priority each test set is stratified by 

individuals belonging to the control group. The test set size is attempted to be about 20% of all 

available data for each method. The number of individual mice with data for each feature space 

is seen in Table 3-4, along the balance of control / not control individuals in all the train / test 

sets.  
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Feature 

type → 

Standard radiomic 

features (no-p) 

Delta-features Delta-p features 

WEIGHT 

↓ 

𝑁𝑡𝑜𝑡 

(%ctrl) 

𝑁𝑡𝑟𝑎𝑖𝑛 

(%ctrl) 

𝑁𝑡𝑒𝑠𝑡 

(%ctrl) 

𝑁𝑡𝑜𝑡 

(%ctrl) 

𝑁𝑡𝑟𝑎𝑖𝑛 

(%ctrl) 

𝑁𝑡𝑒𝑠𝑡 

(%ctrl) 

𝑁𝑡𝑜𝑡 

(%ctrl) 

𝑁𝑡𝑟𝑎𝑖𝑛 

(%ctrl) 

𝑁𝑡𝑒𝑠𝑡 

(%ctrl) 

T1 29 

(48%) 

23 

(48%) 

6 

(50%) 

21 

(48%) 

  9 - - 

T2 59 

(46%) 

47 

(47%) 

12 

(42%) 

38 

(42%) 

31 

(42%) 

7 

(43%) 

35 

(43%) 

27 

(44%) 

8 

(38%) 
Table 3-4: Number of individual mice for each train / test split. 𝑁𝑡𝑜𝑡 is the total available individuals for a given imaging weight 

(T1, T2) and feature type (no-p, delta, delta-p). Split into 𝑁𝑡𝑟𝑎𝑖𝑛 training individuals and 𝑁𝑣𝑎𝑙𝑖𝑑 hold-out individuals for model 

evaluation, with percentage of the individuals being a control individual (having received no dose). Green cells indicate the 

feature type and weight is used for modelling, red cells indicate a too small sample size to be used.  

 

3.6.1.2  Three train / test splits of individuals having both T1 and T2-

weighted images 

In order to compare the predictive abilities of image features from T1- and T2-weighted images, 

the instances (same mouse at same day) where no-p data (excluding all images after pilocarpine 

injections) was available for both instances was divided into three splits. As such the outcome 

data, measure saliva amounts, is the same for both sets of no-p features allowing for a more 

robust comparison given any outliers in the outcome data (which may vary when looking at 

different instances as in the split in section 3.6.1.1). Delta-features and delta-p features are not 

registered for this analysis, given very small T1-weighted features available as seen in Table 3-4. 

Three splits were made for three different prediction modes: either predicting saliva amounts 

acquired at the same time as the images (simultaneous), or predicting saliva measured at the 

latest time-point for each individual mice (days 35-75) using either image features from baseline 

(day -3 or -7) or right after irradiation (after irr, days 5-35).  

For prediction of simultaneous saliva data some individuals may have both T1 and T2 images at 

multiple time-points, leading to a larger data set than the number of individuals. For prediction of 

late saliva each individual represents a single data point (being T1 and T2 features plus a single 

saliva measurement). When predicting late saliva using images from right after irradiation two 

individuals are not in any test set, thus only used for training (seen as the difference when 

summing up the test rows and comparing to all individuals in Table 3-5).  

 All individuals 

(# control) 

Test split 1 Test split 2 Test split 3 

Simultaneous 29 (14) 9 (5) 8 (3) 12 (6) 

Late baseline 24 (10) 8 (4) 8 (3) 8 (3) 

Late after irr 26 (14) 8 (4) 8 (4) 8 (4) 
Table 3-5: Number of individuals having both T1 and T2 images taken at the same time, for prediction of saliva amounts taken at 

the same time (simultaneous) or at the latest time-point using image features from baseline times or right after irradiation. The 

data is split into three train / test sets which are analysed independently.  
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3.6.2 Binary grouping of saliva measurements by xerostomia 

thresholding 

As an alternative to making regression models for the measured saliva amounts, thresholding 

was applied dividing the outcome space into two groups suitable for binary classification: having 

xerostomia or not. To account for mouse growth, and thus an assumed natural increase in saliva 

production, a linear regression was done on all saliva measurements from any individual not 

having received any dose – the control individuals merged with all baseline measurements 

(N=190).  

 

Figure 3-13: Thresholding of all saliva measurements. Xerostomia is assumed true if a measurement falls below 50% of the 

expectation value for the same day, following a linear regression on control + baseline data (i.e., all measurements from mice 

having received no dose). 

 

Following the definition of xerostomia as a 50% reduction in saliva production (section 2.1.4) all 

measurement below half the expectation value from the regression line at a time-point was 

defined as xerostomia (see Figure 3-13).  

 

3.6.3 Maximum relevance minimum redundancy 

Being a method for feature selection (section 2.3.5), the maximum-relevance minimum-

redundancy (MRMR) algorithm attempts to overcome the correlation between features in the 

selection process by iteratively selecting features while evaluating each pick to the already 

chosen subset. As the method works independently of the machine learning model choice it is 

considered a filter method, and as the method (considering all combinations) iteratively increases 

the pool of selected features it is known as a forward selection method. 

For each iteration all remaining features available for selection are ranked by some scoring 

metric and the highest ranked is chosen. The scoring function should reflect the relevance of 

each feature with respect to the outcome, while penalizing redundancy with respect to the 

existing subset of chosen features. The F-test correlation quotient (FCQ) is such a scoring metric. 
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The F-score between an unselected feature and outcome values is calculated, and divided by the 

average correlation to previously selected features [109].  

𝐹𝐶𝑄𝑖 =
𝐹(𝑓𝑡𝑖, 𝑦)

1
𝑛

∑ 𝑐𝑜𝑟𝑟(𝑠𝑗, 𝑓𝑡𝑖)
𝑛
𝑗=1

 

3.6-1. 

 

𝑓𝑡𝑖 is non-selected feature 𝑖, 𝑦 are the outcome values to select with respect to, and 𝑠𝑗 is the j’th 

of 𝑛 already selected features. 𝐶𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗) is the Pearson correlation coefficient, and 𝐹(𝑋𝑖, 𝑌) 

the F-statistic. Besides choosing the scoring metric is the only input parameter in MRMR the 

number of features to select, i.e. for how many iterations to run the algorithm.  

A python implementation of MRMR is used to select the best 𝑘 features in the training sets 

[110], individually for classification and regression purposes. 

 

3.6.4 Hyperparameter tuning and bootstrapped model evaluation 

All classifiers and regression models are trained using the training data from each feature spaces 

(Table 3-4), individually. First the training data is used to find optimal hyperparameters (HPs) 

such as forest size and optimal criterion measure for random forest models (section 2.4.3.2 and 

2.4.3.3), or regularization strength 𝜆 for logistic regression models (section 2.4.5). A 5-repeated 

2-fold cross validation (CV) evaluator was used for each hyperparameter optimization, resulting 

in 10 fits per hyperparameter combination. The hyperparameters resulting in highest average 

accuracy (for classification tasks), or highest average coefficient of determination (for regression 

tasks), using the CV evaluator was chosen.   
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4 Results 

4.1 Comparing saliva production between control and 

irradiated groups 

Of all 347 saliva measurements 118 were from individuals belonging to a control group and 229 

from irradiated individuals. Qualitatively it is difficult to make any separation between the 

control and irradiated samples seen in Figure 4-1, with no obvious pattern visible.  

 

 

Figure 4-1: All longitudinal salivation data from control and irradiated individuals. 

 

However, a Pearson correlation of -0.34 with a significant p-value (1.9 × 10−7) is observed 

between dose and saliva amount when only the irradiated individuals are considered, as seen in 

Figure 4-2. While the correlation between time and saliva amount is not significant for the 

irradiated individuals (p = 0.29), a significant correlation of 0.29 for the control individuals 

(p=0.001) indicate an increase in saliva production over time when undisturbed by irradiation.  
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Figure 4-2: Correlation (first number) and p-value (second number) between saliva production, time, and dose for control (left) 

and irradiated individuals (right). 

 

4.1.1 Longitudinal analysis of saliva measurements 

The measurements were further divided into three groups by time of acquisition: baseline, acute, 

and late. Baseline being the first measurement taken before start of irradiation (day -7 or -3 

relative to start of irradiation at day 0), acute being measurements taken close to the last 

irradiation day (days 3 – 12), and at later days (from day 26 to 75). Number of measurements for 

each group along summary statistics are seen in Table 4-1. The coefficients of variation for all 

time-groups, in both control and irradiated, are between 0.50 and 0.71 indicating a high spread 

between the measurements in all groups. Boxplots of the measurements from each time-group 

belonging to controls or irradiated individuals are seen in Figure 4-3.  
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Figure 4-3: Box plot of all saliva measurements, grouped by time intervals: baseline is day -3 or day -7. Blue boxes are 

measurements from controls, orange from irradiated individuals. 

 

 Number of 

measurements 

Mean Median Standard 

deviation 

CV = std / mean 

 Total Ctrl Irr Ctrl Irr Ctrl Irr Ctrl Irr Ctrl Irr 

Baseline 112 40 72 81 98 80 98 44 50 .54 .51 

Acute: 

days 3-

12 

141 47 94 78 67 60 60 56 47 .71 .70 

Late: 

days 26-

75 

94 31 63 127 71 120 55 64 60 .50 .85 

Table 4-1: Summary statistics for measured saliva values (𝜇𝐿 / 15min) for control (ctrl) and irradiated (irr) individuals. The 

measurements are grouped by baseline times (day -7 or -3), after irradiation (day 5 to 12), and later measurements (day 26 to 

75). All values are rounded to the nearest whole number, except the coefficient of variation (CV) which is rounded to two decimal 

places. 

 

To evaluate whether the mean values of the control and irradiated samples are different in each 

time-group, Welch’s t-test for independent samples were performed due to the groups having 

different means and sample sizes. Only for the last time-group there was a significant difference 

between controls and irradiated individuals as seen in Table 4-2, reflecting the largest difference 

seen in Figure 4-3. Looking at the distributions of saliva measurements for the various time-

groups in Figure 4-4, a shift towards lower values is seen for irradiated individuals relative to 

controls.  
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 Baseline Acute Late 

Sample sizes control / 

irradiated 

40 / 72 47 / 94 31 / 63 

Statistic t -1.88 1.08 4.09 

P-value 0.064 0.28 1.4 × 10−4 
Table 4-2: Welch’s t-test between control and irradiated saliva measurements from the three time-groups.  

 

|  

Figure 4-4: Histograms with kernel density estimated curve for saliva measurements from baseline (left), right after irradiation 

(middle), and the last days(right). 

 

Three paired t-tests were performed to evaluate significantly different means between two time-

groups: either comparing baseline measurements with acute measurements, comparing baseline 

with late, and comparing acute with late. The three paired t-tests were performed on 

measurements from either control or irradiated groups, separately, making up six paired t-tests in 

total as seen in Table 4-3. As not all mice had measurements taken at all times, the number of 

available pairs varied between the tests. If an individual had multiple measurements in the acute 

or late time groups, the latest measurements were chosen for this analysis.  

 

 Baseline - acute Baseline - late Acute – late 

 Control Irradiated Control Irradiated Control Irradiated 

# of paired 

values 

38 72 26 50 26 50 

T-statistic 0.12 4.14 -5.12 1.83 -3.11 -0.26 

P-value 0.90 9.4 × 10−5 2.8 × 10−5 0.07 4.6 × 10−3 0.79 
Table 4-3: Paired t-tests on longitudinal data for three different time groups, performed on data from control and irradiated 

individuals separately. Individuals having measurements in both compared time groups are used for each t-test, thus varying the 

number of compared measurements in each test. 
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4.1.2 Xerostomia thresholding 

Deciding whether a mouse is said to have xerostomia for a measured saliva amount at a given 

time-point follows the method described in section 3.6.2. Xerostomia is said to be present if the 

measurement is below 50% of the expectation value of a simple linear regression line from all 

control data, including all individuals at baseline, over time (see Figure 3-13). The regression 

line was found to be increasing (91.25 + 0.56 × day), with a p-value of 0.008 and a coefficient of 

determination equal to 0.037 (see Figure 4-5). 

Of all 347 saliva measurements 110 (32%) is thus considered xerostomic, being 33 of the 118 

(28%) measured saliva values from control individuals and 77 of the 229 (34%) measurements 

from irradiated individuals.  

 

 

Figure 4-5: Simple linear regression (blue line) using all saliva measurements where no dose had been delivered (N=190), 

having time as the only input variable. The xerostomia threshold is defined as half the regression line. 

 

4.2 Evaluating the segmented ROIs 

The parameters for the watershed-based segmentation algorithm may be described by a tuple of 

integer values: (median disk-size, gradient disk-size, marker disk-size, marker threshold). All 

except the last threshold value describe the kernel sizes used in various image filters applied (see 

section 3.2.2).  

The optimal choice of parameters varies between each segmented instance (mouse at a given 

day) together with image sequence (T1 or T2) and whether the images was taken before or after 

pilocarpine injections for saliva extractions (no-p or after-p). The count of each combination of 

segmentation parameters used is seen in Appendix A. All segmented ROIs for the left and right 

SMG unit at baseline is seen in Appendix B. Although not validated against a ground truth, it is 

clear that the segmentations varied somewhat in quality (Figure 4-6). 
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Figure 4-6: Example showing a good ROI segmentation (left) and a less good (right).  

 

4.2.1 Comparing the segmented ROI to SG areas 

The area of the left unit of both the sublingual gland (SLG) and the submandibular gland (SMG) 

was measured using surgical specimen from 20 mice after termination at day 105. The Pearson 

correlation coefficient between the measured SLG and SMG areas was 0.465 (𝑝 = 0.06). 9 of 

the mice also had MR-images taken at day 105, both T1 and T2 weighted. The highest 

significant correlation (0.71; p < 0.05) was between the SLG area measurements, and the T2 

ROIs taken before pilocarpine injections (no p), as seen in Figure 4-7.  

 

Figure 4-7: Person correlation matrix between segmented ROI size (T1 + T2 before pilocarpine, no p) and measured SMG or 

SLG areas for 9 mice. 
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4.2.2 Image-category variability between segmented ROIs 

All images were categorized by being: T2-weighted before pilocarpine injections (T2 no-p, 

N=151), T2 after pilocarpine (T2 after-p, N=77), T1-weighted before pilocarpine (T1 no-p, 

N=79) and T1 after pilocarpine (N=19). Between these four image categories the variability in 

ROI size for images belonging to similar individuals at the same days was determined. 

In total 326 of all 333 images was evaluated by only considering IDs and acquisition days 

present among the T2 before pilocarpine images (see Table 3-1). An example of all four sets of 

images for the same mouse and time points are illustrated in Figure 4-8. 

 

Figure 4-8: Segmented image slices with segmented ROI (central left SMG). All images are of individual 8-3 taken at day 105.  

 

A matrix of Pearson correlation coefficients was calculated between the ROI sizes (number of 

pixels) for the four image sets, done for both the left and right SMG slices, seen in Figure 4-9. A 

higher value indicates a lower variability between segmented ROIs.  

 

Figure 4-9: Pearson correlation between number of pixels in segmented left + right central SMG, for T2 and T1 images split into 

before (no-p) and after (p) pilocarpine injections. 
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4.2.3 Temporal evolution of ROI sizes 

Each 2D ROI created for both the left and right unit of the SMG, for all image types (T1 or T2, 

before or after pilocarpine), were aggregated and split into the same three time-groups as in 

section 4.1.1. Among the 666 ROIs (333 images times with a left and right SMG unit), the 

biggest difference in size between the ROIs belonging to control and irradiated individuals is 

seen in the last time-group (days 26 – 75), where the irradiated SG ROIs have a slightly higher 

median than control as seen in Figure 4-10. The difference in means is 151 pixels, which was 

significant under an unpaired t-test (𝑝 < .000). 

No difference in ROI size between the left and right SMG units is observed across the time-

groups. 

 

|  

Figure 4-10: Size for all segmented 2D ROIs in three time-groups, split between control and irradiated individuals (left) or ROI’s 

corresponding to the left and right SMG unit (right).  

 

4.3 Preprocessing results 

4.3.1 Intensity distribution variability in the ROI after normalization 

The distributions of pixel intensities in the ROIs of all images after some or no normalization is 

seen as kernel density estimated lines (KDE lines) in Figure 4-11. N4 corrections were applied 

before all normalizations. Comparing the distributions after no normalization to Nyul 

normalization one may observe a lowered dispersion between the KDE-lines from individual 

images for the latter. The effect on distributions after standard score normalization is difficult to 

interpret in the figure due to the 3𝜎 shift (section 3.3.2.2), which varies between each image and 

as such shifts the center of each distribution.  
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Using the mean pixel intensities in the ROIs {𝜇𝑖} a coefficient of variation of the means (𝑐𝑣𝜇) 

was calculated as the standard deviation of the means (𝜎𝜇) divided by the mean of the means (�̅�) 

(i.e., 𝑐𝑣𝜇 = 𝜎𝜇  / 𝜇̅). 𝑐𝑣𝜇 calculated for different image subsets after various normalization 

techniques are seen in Figure 4-12. 𝑐𝑣𝜇 is overall lowered when only applying the N4 correction 

to the raw images (comparing no norm to raw), further lowered by applying either Nyul or 

standard score normalization. For all normalizations 𝑐𝑣𝜇 is lower for the T1-weighted images 

compared to the T2-weighted images. The difference in 𝑐𝑣𝜇 between the images before and after 

pilocarpine injections (no p / p, respectively) is small with no trend across the normalizations.  

 

 

Figure 4-11: KDE lines of intensity values in the ROIs from T2- (upper row) or T1-weighted images, after various 

normalizations. From left: no normalization, standard score normalization, and Nyul normalization. 
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Figure 4-12: Coefficient of variation (CV) of mean pixel intensities in the ROI for various image types (columns) and 

normalization techniques (rows). N4 corrections were applied before any or no normalizations, except for raw where no 

preprocessing was done.  

 

4.3.2 Number of bins in the ROI after FBW discretization 

As the optimal choice of bin width in a fixed bin width discretization heavily depends on the 

values and variability of the pixel intensities in the ROIs, the bin width must be chosen in 

accordance with the former preprocessing steps. As the normalization procedure in this work 

varies between features the optimal bin width must be chosen accordingly. The intensity 

distributions in the ROI vary between the T1- and T2-weighted images (see Figure 4-11), such 

that the optimal bin width also should depend on the MRI-weightings. No split is made between 

before and after pilocarpine injections as the acquisition protocol is unchanged. All images are 

N4 corrected before the normalization is done. 

 

Figure 4-13: Resulting number of bins in the ROIs after FBW discretization (no normalization). 



76 

 

 

Figure 4-14: Resulting number of bins in the ROIs after FBW discretization with shifted standard score normalization. 

 

As seen in Figure 4-13 a bin width of 100 seems to be a reasonable choice for both the T1 and 

T2 images after no normalization have been applied.  

Looking at the min and maximum number of bins for the T2 images after standard score 

normalization in Figure 4-14, it seems hard to get all bins in the [30, 130] range. A bin width 

choice of 0.075 seems reasonable as the minimum and maximum bin counts are only slightly out 

of this range. This is not as big an issue for the T1 images, where a bin width of 0.05 seems 

optimal.  

 

 

Figure 4-15: Resulting number of bins in the ROI after FBW discretization with Nyul normalization. 
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Following the Nyul normalization seen in Figure 4-15, the bin width is set to 800 for the T1 

images and 950 for the T2 images.  

 

Normalization No normalization Standard score norm Nyul norm 

Optimal bin width T1 100 0.050 800 

Optimal bin width T2 100 0.075 950 
Table 4-4: Optimal bin width for FBW discretization of T1 and T2 images, following various normalization methods.  

 

4.3.3 Feature specific preprocessing selection 

Using the methods described in section 3.4.1, feature-specific preprocessing selection was done 

for each combination of LR-modes and MR-weight. A threshold of 0.05 was used for all T2 

images, and 0.15 for all T1 images. The number of remaining features between the three 

normalization modes are seen in Table 4-5. 

 

 T1 LR-agg T2 LR-agg T1 LR-avg T2 LR-avg T1 LR-

split 

T2 LR-

split 

# fts before 

FSPS 

1656 1656 828 828 828 828 

# fts after 

FSPS 

227 694 63 387 115 550 

No norm 45 (20%) 43 (6%) 4 (6%) 22 (6%) 24 (21%) 68 (12%) 

St. score 84 (37%) 277 (40%) 46 (73%) 85 (22%) 74 (64%) 277 (50%) 

Nyul 98 (43%) 374 (54%) 13 (21%) 280 (72%) 17 (15%) 205 (37%) 
Table 4-5: Summary of image features (excluding shape-based) remaining after FSPS, for each combination of weights T1, T2 

and LR-modes aggregated, average, split. Each remaining feature was from an image either not normalized (no norm) or 

normalized using shifted standard score or Nyul-normalization. 

 

4.4 Regression analysis 

4.4.1 Time and dose as explanatory variables 

Using all available data of saliva measurements, time and dose were used as explanatory 

variables to fit regression models with the saliva amount as the outcome. A multiple linear 

regression model was fitted to and evaluated on all available data (N=347) or using a 5-fold cross 

validation (CV). The estimated intercept and coefficients with corresponding p-values, the F-

statistic p-value for the models, and the coefficient of determination (R2) for the models 

evaluated on the training and test data are seen in Table 4-6. In addition to the linear model a 

random forest (RF) regressor was fitted to the same data with R2-values for the training and test 

data seen as the bottom two rows. Hyperparameters (HP’s) for the RF regressor were tuned on a 



78 

 

2-fold CV of the training data, repeated 5 times, to mitigate overfitting to the training data 

(Figure 4-16). HP-tuning was independent between each fold in the 5-fold CV. No HP-tuning 

was performed before fitting all data. 

 

 

Figure 4-16: R2 as a function of number of estimators in random forest regression models, i.e. the number of decision trees in the 

random forests. For each fold the training data was evaluated by a 5-repeated 2-fold cross-validation and evaluated by the 

average R2 seen in this plot. 

 

The RF model scored a higher R2 than the linear regression model when evaluated on the 

training data for each fold, and on the models using all data. For all test folds the regressors 

performs oppositely with the linear regression models having higher R2 than the RF models. The 

models perform differently on the test data across the folds with R2 ranging from -0.41 to +0.18 

for the RF models, and from -0.04 to +0.23 for the linear regression models. Fold 4 yields the 

highest R2 on the test data for both regressors along the lowest R2 on the training data, and the 

highest p-value between the linear regression models.  

The estimated intercept in the linear model is seen to be stable across the folds with low p-values 

(< .000), while the estimated coefficient for the dose-variable varies more – but maintains low p-

values (< .000). Time, however, is seen to be the most unstable explanatory variable with 

coefficient estimates ranging from 0.29 in fold 4 to 0.87 in fold 5. The estimated time-coefficient 

is barely significant in fold 4 with p = 0.046. The feature’s importance in the RF models is split 

approximately 50 / 50 between time and dose in all folds, where fold 5 is the only fold where 

time is more important than dose – corresponding to the higher estimated time coefficient in the 

linear model for this fold. 
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 All data 

(no split) 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Test set 

size 

(control) 

347 (118) 70 (30) 70 (21) 69 (28) 69 (20) 69 (19) 

P-value 

model 
5.65
× 10−9 

1.87
× 10−8 

4.11
× 10−8 

7.83
× 10−10 

1.52
× 10−4 

 

7.26
× 10−7 

Intercept 

(p-value) 

93.21 

P < .000 

92.21 

P < .000 

95.91 

P < .000 

94.46 

P < .000 

90.79 

P < .000 

92.88 

P < .000 

Coef. 

Time 

0.43 

P = .002 

0.45 

P = .002 

0.40 

P = .006 

0.55 

P < .000 

0.29 

P = .046 

0.87 

P = .006 

Coef. Dose - 0.60 

P < .000 

- 0.59 

P < .000 

- 0.62 

P < .000 

- 0.76 

P < .000 

- 0.49 

P < .000 

- 0.60 

P < .000 

R2 train 0.10 0.12 0.12 0.14 0.06 0.10 

R2 test - 0.00 0.01 - 0.09 0.23 - 0.04 

RF R2 

train 

0.26 0.22 0.20 0.25 0.13 0.19 

RF R2 test - - 0.04 0.00 - 0.16 0.18 -0.41 

RF % 

importance 

time / dose  

50 / 50 50 / 50 44 / 56 44 / 56 47 / 53 56 / 44 

Table 4-6: Results from multiple regression models using time and dose as explanatory variables to predict saliva production as 

outcome. The three bottom rows are results from random forest regression models, the rest from linear regression. The models 

were trained and evaluated on either all data (left column), or a 5-fold split into training and test. 

 

In addition to the 5-fold CV, a leave-one-out cross-validation (LOOCV) was performed. For 

each observation left out a RF regressor was fitted 100 times alongside a linear regression model 

fitted once. No HP-tuning was done for the RF model. 

 LOOCV linear 

reg 

LOOCV RF reg 5-fold test 

average linear 

reg 

5-fold test 

average RF reg 

R2 0.09 ± 0.00 0.08 ± 0.00 0.02 ±  0.11 −0.08 ± 0.20 

MSE 2799±0 2825 ± 6 2974 ± 633 3348 ± 1059 
Table 4-7: LOOCV and average 5-fold test results for linear regression and RF regression on saliva data using time and dose as 

predictors. Top row: coefficient of determination (R2), bottom: mean squared error (MSE). The uncertainty for the LOOCV 

results is due to the small variation in repeated RF modelling, while the higher variation for the 5-fold CV is the standard 

deviation of the results across the folds.  

 

Comparing the mean squared error (MSE) and coefficient of determination (R2) from the 

LOOCV to the averaged results of the 5-fold CV, seen in Table 4-7, LOOCV yields better scores 

(higher R2 and lower MSE) than the averaged 5-fold for both the RF- and linear regressor. This 

is expected due to the relation between low bias and the LOOCV (section 2.4.1). Linear 

regression also performs better on unseen data in the LOOCV as is the case for 5-fold CV.  
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4.4.2 Image features as explanatory variables 

Training data from three feature spaces (no-p T1 & T2 along T2 delta-p) was used to fit 

regression models using saliva amounts as the continuous outcome variable, measured on the 

same days as the images were taken. The features from the left and right SMG unit were 

aggregated column-wise and thus treated as separate features (LR-aggregated). 

An exception was made for images taken at day 70, where saliva measured at day 75 was used 

for prediction being the closest in time. The regression models used were either a multiple linear 

regressor or a random forest (RF) regressor.  

The single split between training and test data was based on individual mice as described in 

section 3.6.1.1 summarized in Table 3-4, with the corresponding sample sizes seen in Table 4-8. 

Individuals may have both imaging and saliva data from multiple days which was treated as 

separate observations within each split, but were all in either the training or test set (e.g. two 

time-points for mouse C2 would both be in the training set). 

 

 All data (control) Training (control) Test (control) 

No-p T1 69 (33) 55 (26) 14 (7) 

No-p T2 140 (61) 113 (50) 27 (11) 

Delta-p 69 (28) 54 (23) 15 (5) 
Table 4-8: Number of data points for the three feature-spaces used in regression models predicting simultaneously measured 

saliva. Number of control individuals in parenthesis.  

 

Either only time and dose were used as predictors in the model (td-model), or the best 5, 10, or 

15 image features selected by MRMR (3.6.3) from the various feature-spaces. Lastly all image 

features were used in the model without any selection (excluding the features dropped in FSPS, 

section 3.4.1). The coefficient of determination (R2) was calculated using the fitted training data 

and the hold-out test data, separately, with the resulting values seen in Figure 4-17.  
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Figure 4-17: Coefficient of determination, 𝑅2, calculated from regression tasks done on various features spaces using multiple 

linear or random forest regression. The model was evaluated on the data used for training (left), and the hold-out testing data 

(right). The models were created using either only time and dose (td), or the best 5, 10, 15, or all, image features. 

 

While both the linear regression and random forest models managed to fit the training data with 

some high R2 scores close (or equal) to 1.0 in Figure 4-17, the results on the test data were seen 

to be below or close to zero for almost all models. Across all three subsets of the predicted 

outcome (varying between the feature-spaces) the td-models had the highest R2 when evaluated 

on the test data. In some cases the R2 was higher for test than training data (linear regression no-

p T2 td, and both regressors for delta-p td).  

Using all 𝑁 data-points available (left column in Table 4-8) combinations of regression models 

(random forest or multiple linear regression), feature spaces (no-p T1, T2, or delta-p), and LR-

modes (aggregated or averaged features between the LR-subunits) were evaluated using leave-

one-out cross-validation (LOOCV). For each instance left out the remaining 𝑁 − 1 data-points 

were used for the selection of 5 image features, hyperparameter tuning, and training. The 

predicted saliva amounts for both the td- and feature-model were saved for all left-out instances 

and used to calculate the coefficient of determination for each model (Figure 4-18). Due to the 

random nature of the random forest regressor (bagged decision trees, see section 2.4.3.3) each 

RF model was fit 100 times to the training data, from which the average and standard deviation 

of the predicted values were used to create an uncertainty interval for the R2 scores. 
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Figure 4-18: Coefficient of determination (𝑅2) for leave-one-out cross-validated regression models (linear regression or random 

forest), using various feature spaces. 

 

Overall, the R2 values were close to or below zero with the highest score at 0.11 belonging to the 

no-p T2 RF td-models (LR-aggregated or average makes no difference with respect to time and 

dose). The no-p T2 image features max out at 0.09 using LR-aggregated features in a multiple 

linear regression model, and the delta-p features obtained R2 = 0.06 using a LR-average RF 

model. The no-p T1 features tops out at 𝑅2 = 0.00.  

 

4.4.3 Testing the added predictive ability with best radiomic features 

To evaluate the significance of any potentially increased performance of using image features in 

combination with time and dose, compared to only time and dose, new models were created 

using the top 𝑘 features from each LOO cross-validated model in section 4.4.2. The top 𝑘 

features were defined as being picked among the top 5 (by MRMR) in at least 50% of all feature 

selections across the LOOCV, in a similar fashion as done in [44]. The top 5 and 4 features for 

the two top-performing models across the LOOCV are seen in Figure 4-19, with similar plots for 

all models in Appendix E. 

 

Figure 4-19: The 𝑘 best features for the two best performing image feature-models in the LOOCV. The k best features are 

defined by having been selected in at least 50% of the left-out instances across the LOOCV (black stippled horizontal line). 
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For each 12 combinations of feature-spaces (3), LR-modes (2), and regressors (2), 𝑘 + 1 models 

were created in addition to the td-model. A model using all best 𝑘 features, and 𝑘 models using 

time and dose in addition to one of the 𝑘 features. A LOOCV was performed for each model, 

predicting continuous saliva production for each hold-out observation across the CV. The 

squared error between the model predictions and the ground truth (measured saliva production) 

was calculated for each observation.  

For each set of squared errors, corresponding to a feature model, a one-tailed paired t-test was 

performed against the null hypothesis that the MSE for the td-model was lower or equal to the 

MSE of the given model (𝐻0:𝑀𝑆𝐸𝑡𝑑 ≤ 𝑀𝑆𝐸𝑖). Of 52 tests performed 4 was significant, seen in 

Table 4-9. The MSE from the LOOCV where 5 features were selected by MRMR for each 

observation left out (from section 4.4.2) is also seen as MSE MRMR, for comparison. 

Under the Bonferroni correction the significance threshold for each t-test is scaled from 𝑝 <

0.05 to 𝑝 <
0.05

𝑚
 (𝑚 being the number of tests performed) to account for random rejections of 

null hypothesis – being more probable with increasing 𝑚. Using the scaled threshold 𝑝 <

9.6 × 10−4 none of the tests were significant. 

 

 Ft-

space 

LR-mode Regressor MSE 

MRMR 
𝑘 MSE 

td 

MSE Relative 

change 

MSE 

p-value  

MSE td > 

MSE 

Td + 

ft297R 

Delta-p Aggregated Linear 

reg 

3707 4 2888 2452 -0.151 .028 

Td + 

ft12 

Delta-p Average Linear 

reg 

3042 4 2888 2314 -0.199 .044 

Td + 

ft522R 

No-p 

T2 

Aggregated Linear 

reg 

1829 5 1871 1694 -0.095 .039 

Td + 

ft240L 

No-p 

T2 

Aggregated Linear 

reg 

1829 5 1871 1606 -0.142 .018 

Table 4-9: MSE for time + dose models (MSE td) compared to time + dose + a single feature (MSE), by a one-tailed paired t-

test. 

 

The four features significantly improving the td-models all had the same sign for the estimated 

regression coefficients across the LOOCV. The regression coefficients had a coefficient of 

variation below 0.1 for all four features, indicating a stability of the features. 

 

4.5 Classification of binary xerostomia outcomes 

All measured saliva values were divided into one of two groups with xerostomia either being 

true or false using the thresholding method described in section 3.6.2. Using this as the binary 

outcome variable, classification tasks were performed using random forest classifiers. The 
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explanatory variables were either only time and dose, or a subset of the image features, when not 

specified otherwise. The potential image features used in each model were all surviving features 

following the feature-specific preprocessing selection (FSPS, section 3.4.1), varying between 

being features from T1- or T2-weighted images, and whether the features from the left and right 

unit of the SMG were aggregated as separate features (LR-aggregated) or averaged (LR-

average).  

The best 5, 10, and 15 features were selected from the training data for each feature space using 

the maximum relevance minimum redundancy (MRMR) algorithm described in section 3.6.3. 

The available feature spaces used for modelling were either T1 or T2 features before pilocarpine 

injections (no-p T1 / T2), delta-p features (section 3.5.1), or delta-features (section 3.5). 

 

4.5.1 Prediction of simultaneous xerostomia using time and dose 

Similarly to the regression to all saliva measurements (N=347) in section 4.4.1, time and dose are 

now used as explanatory variables to predict the probability of xerostomia. A logistic regression 

model and a random forest (RF) classifier were initially fit to all data without any split into 

training and test. In addition to models using time and dose as variables, a second-degree 

interaction term between time and dose was added for two models - making up four models in 

total. Classification metrics with respect to the ground truth, in addition to various p-values, is 

seen in the left part of Table 4-10 with the right part being results from a leave-one-out cross-

validation (LOOCV) evaluation of the models. In the LOOCV each fit was repeated 100 times to 

estimate variations in the RF classifier. Uncertainties in each metric is reported as the max 

difference to the mean metric using the 25th and 75th percentile of the estimated class 

probabilities. The area under the receiver operating characteristic curve (AUC), and the brier 

score (BS) were calculated for model evaluation. 

Using the log-likelihood ratio (LLR) between the null model (having only intercept) and the full 

model (with estimated coefficients) as a z-statistic, the p-values for the logistic regression models 

were calculated (p-val LLR). Both models, with and without the interaction term, were 

significantly (p < .000) better performers relative the intercept-only null models. For each 

estimated coefficient the p-values were calculated for both logistic models, showing significant 

dose coefficients (p < .05) and insignificant time coefficients. While the interaction term in the 

logistic regressor yielded better model scores both when fit to all data and in the LOOCV relative 

no interaction term, the difference is negligible for the random forest classifier.  
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 All data (no split) LOOCV 

 Acc AUC BS P-val 

LLR 

P-val 

time 

P-val 

dose 

P-val 

interaction 

Acc AUC BS 

Logreg .69 .65 .20 <.000 .697 <.000 - .68 .55 .21 

Logreg 

w/ 

inter 

.72 .64 .20 <.000 .162 .027 .031 .70 .61 .20 

RF reg .77 .80 .16 - - - - . 70
± .03 

. 67
± .01 

. 20
± .00 

RF reg 

w/ 

inter 

.77 .80 .16 - - - - . 71
± .03 

. 67
± .01 

. 20
± .00 

Table 4-10: Metrics and p-values for td-models classifying xerostomia. Left: models trained and evaluated on all data. Right: 

models evaluated by LOOCV. 

 

The RF model scores lower AUC than logistic regression when fit to all data and across the 

LOOCV. The BS was lower for the RF models when fit to all data but changed little between 

models in the LOOCV.  

 

4.5.2 Prediction of simultaneous xerostomia using image features 

Image features of various types were used to predict xerostomia corresponding to saliva 

measured at the same day the MR-images were taken (referred to as simultaneously), in a similar 

fashion as in section 4.4.2. Models were created using either no-p T1, no-p T2, or delta-p 

features with a random forest classifier.  

Each model was trained using the feature-space specific training data following the split in Table 

3-4. Evaluating each model, based on either feature space, was done by bootstrapping the test 

data 1000 times (inspired by [74]) – resulting in a similar amount of estimated class probabilities. 

The average of the corresponding AUCs ± the standard deviation of the AUCs for each model is 

seen in Figure 4-20. Across the feature-spaces and LR-modes the td-models have the highest 

average AUC, except for the no-p T1 model using 5 selected LR-average features. Models using 

LR-average features is seen to generally have higher AUCs than using LR-aggregated features. 

The number of available data points for each model, being the same for LR-average and LR-

aggregated feature-based models, is seen in Table 4-11.  
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Figure 4-20: 𝜇𝐴𝑈𝐶 ± 𝜎𝐴𝑈𝐶  for random forest models evaluated on the test set, bootstrapped 1000 times. Binary xerostomia 

values corresponding to saliva measured at the same day as the images were acquired, were used as the outcome variable. 

 

 All data Training data Test data 

 Total (xer) Total 

(xer) 

# control 

(xer) 

# irr (xer) Total 

(xer) 

# control 

(xer) 

# irr (xer) 

No-p 

T1 

69 (31) 55 (24) 26 (7) 29 (17) 14 (7) 7 (3) 7 (4) 

No-p 

T2 

140 (58) 113 

(48) 

50 (16) 63 (32) 27 (10) 11 (4) 16 (6) 

Delta-p 

T2 

69 (26) 54 (22) 23 (9) 31 (13) 15 (4) 5 (2) 10 (2) 

Table 4-11: Number of available data points (image features with corresponding binary xerostomia outcome) for training and 

testing for each feature-space. Number of xerostomic individuals in parenthesis.  

 

LOOCV were used for model evaluations in addition to the single split into training and test 

data. Feature selection and hyperparameter tuning was done using the 𝑁 − 1 training 

observations, repeated for all 𝑁 left-out observations in the LOOCV. To estimate the standard 

deviations of the models a 1000 repeated bootstrap of each training set was used for model fitting 

before class probability estimation, producing the results seen in Figure 4-21.  
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Figure 4-21: ROC AUC scores for LOOCV using image features or time + dose (td) as explanatory variables to predict 

simultaneous xerostomia. For each observation left out the training set was bootstrapped 1000 times from which 𝑚𝑒𝑎𝑛(𝐴𝑈𝐶) ±
𝑠𝑑(𝐴𝑈𝐶) were calculated. In parenthesis: AUCs from a LOOCV without any bootstrapping or repetitions. 

 

4.5.3 Prediction of late xerostomia using features from earlier days 

Random forest classification models were created using radiomic features extracted from MR-

images taken either before any irradiation (baseline), after irradiation (after-irr), or a combination 

of the two (delta-features). The binary xerostomia outcome data for classification is now the 

latest saliva measurement acquired for each individual (varying between day 35 and 75), for 

evaluation of the radiomic features’ ability to predict xerostomia forward in time. The models 

were created using either LR-aggregated or LR-average image features from one of four feature-

spaces: either T2 or T1 no-p features, T2 delta-p features, or T2 delta-features. The top features 

were selected from each feature-space (after FSPS) using MRMR, and used as predictors in the 

RF models. Time and dose were omitted before any selection and used in a separate model for 

comparison (td-models). Concerning the delta-feature based td-models, the time variable is 

meaningless - leaving only dose as the explanatory variable. 

The number of available data points for training and testing each model is seen in Table 4-12, 

based on the split on individuals (Table 3-4) stratified with respect to control as described in 

section 3.6.1.1. The sample sizes vary between the feature spaces and prediction modes. 
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 All data Training data Test data 

 All Control All Control All Control 

No-p T1 

baseline 

24 (14) 10 (3) 19 (12) 8 (3) 5 (2) 2 (0) 

No-p T1 

after irr 

26 (12) 14 (3) 21 (11) 11 (3) 5 (1) 3 (0) 

No-p T2 

baseline 

54 (29) 23 (7) 42 (23) 18 (6) 12 (6) 5 (1) 

No-p T2 

after irr 

42 (20) 19 (3) 35 (18) 16 (3) 7 (2) 3 (0) 

Delta-p T2 

baseline 

27 (11) 12 (4) 20 (8) 9 (3) 7 (3) 3 (1) 

Delta-p T2 

after irr 

18 (6) 7 (0) 14 (5) 6 (0) 4 (1) 1 (0) 

Delta-

features T2 

38 (19) 16 (3) 31 (17) 13 (3) 7 (2) 3 (0) 

Table 4-12: Number of observations (individuals) available for prediction of late xerostomia, from each feature-space and 

prediction mode, along numbers of observations reserved for training and testing. Number of xerostomic observations seen in 

parenthesis. 

 

The average ROC AUC ± standard deviation of the AUCs for each model is calculated from 

1000 evaluations on bootstrapped test sets using the top 5 features, seen in Figure 4-22. The 

same metric is shown for delta-feature models, with a varying number of selected features, in 

Figure 4-23. Additional models using more than 5 features may be found in Appendix C. 

Image features from baseline is seen to be generally worse predictors than from after irradiation. 

The no-p T2 features have the worst performance with maximum AUC = 0.60, compared to no-p 

T1 and delta-p (both having AUC > 0.80). Some predictive ability is seen for baseline features 

on the T1 data, as both the td- and image feature-models have average AUCs close to 0.70. 

Using features from after irradiation both T1 and delta-p image features have average AUCs 

above 0.80 indicating good performance. The td-model using the T1 data have a very high AUC 

(0.95), with the td-models using the T2 and delta-p data being a little lower but above 0.80. The 

LR-aggregated delta-p features have exactly the same average AUC as td. The LR-averaged T1-

features have a somewhat higher performance than aggregated (average AUC at 0.88 and 0.75), 

while the LR-aggregated delta-p features perform much better than LR-average (AUCs at 0.82 

and 0.51). 

The delta-features are seen to have the worst predictive abilities in the single split, with 

maximum AUC at 0.50.  
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Figure 4-22: ROC AUC values from evaluating each model on the test set, bootstrapped 1000 times. The presented values are the 

average AUC ± the standard deviation of the AUCs, from predictions made on the bootstrapped test sets for each model.  

 

 

Figure 4-23: ROC AUC values for evaluating delta-feature based models on the test set, bootstrapped 1000 times. The heatmap 

values are the average AUC ± the standard deviation of the AUCs, for each model.  

 

As an alternative to only using a single train / test split, LOOCV was used to evaluate models 

based on the four feature-spaces. Each observation is left out of training and used for testing 

once, repeated for all observations (left column in Table 4-12). 

For each observation left out for testing the remaining data were used for feature selection, 

hyperparameter tuning, and training. The number of times a feature was selected across the 

LOOCV for a model was counted. Either a random forest classifier or logistic regression 

classifier with 𝑙2 penalization was used (section 2.4.5), from which the classification probability 

given each test observation across the LOOCV was saved. 
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Figure 4-24: ROC AUC for LOOCV evaluated models using image features from days right after irradiation, or baseline, to 

predict late xerostomia. 

 

 

Figure 4-25: ROC AUC for LOOCV evaluated models using delta-features to predict late xerostomia. 

 

Generally across the LOOCV-evaluated models, using baseline features is seen to yield lower 

AUCs than using features from after irradiation (Figure 4-24). An obvious exception is for the 

baseline no-p T1 LR-average models, having AUC = 0.80.  

The td-models outperform all models using after-irr features, except for the delta-feature LR-

average logistic regression model having AUC = 0.80 (Figure 4-25). Among the after-irr models, 

no-p T2 LR-aggregated with a RF classifier performs the best with AUC = 0.75, followed by no-

p T1 LR-average with a logistic regressor (AUC = 0.72). Using delta-p features scored AUCs 

equal to or below 0.51 in the LOOCV. 

 

4.5.4 Comparing T1- and T2- based feature models on the same 

subset of data 

To allow for a fair comparison between the predictive abilities of radiomic features from T1- or 

T2-weighted MR-images, the instances (same individual mouse at the same time) where images 

of both modalities were acquired were registered and split into three test / train sets as described 
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in section 3.6.1.2 and summarized in Table 3-5. Only no-p features were considered, with the 

feature from the left and right SMG units aggregated as separate features (LR-aggregated).  

The features were evaluated on predicting simultaneous xerostomia, or late xerostomia using 

baseline or features from after irradiation. The number of available data for training and testing 

varies between the prediction modes as seen in Table 4-13.  

 

 All data Test split 1 Test split 2 Test split 3 

 Tot Control Tot Control Tot Control Tot Control 

Simult. 69 (31) 33 (10) 23 (13) 13 (6) 23 (10) 9 (2) 23 (8) 11 (2) 

Late 

baseline 

24 (14) 10 (3) 8 (5) 4 (1) 8 (4) 3 (1) 8 (5) 3 (1) 

Late 

after irr 

26 (12) 14 (3) 8 (4) 4 (1) 8 (4) 4 (1) 8 (3) 4 (0) 

Table 4-13: Size of the data sets available where both T1 and T2 images are present (all data), and the three test sets, for 

prediction of simultaneous or late xerostomia. Number of xerostomic observations in parenthesis. 

 

Models were trained on features from either T1 images, T2 images, or using both (aggregated as 

separate features, denoted T1 + T2 or combined). Time and dose were omitted before any feature 

selection and used in a separate model (td). The top 5 features from each feature-space were used 

in a random forest classifier model. The time + dose, T1, T2, and combined models were 

evaluated on the same test set for a given prediction mode and split bootstrapped 1000 times. 

The average ROC AUC with the standard deviation of the AUCs, combined for the three splits, 

for the models is seen in Figure 4-26. The AUCs for the three train / test splits separately is seen 

in Appendix D. 

When predicting xerostomia using image features from simultaneous time-points, only using 

time and dose as explanatory variables produces the highest average AUC across all splits at 

0.79. Only using T2 features have the lowest AUC, and an improvement is seen when using both 

T1 and T2 features compared to only T1 features. Between the 1000 AUCs calculated from each 

model, due to the bootstraps, paired t-tests were performed (paired as the bootstrapped test was 

the same for the models). The simultaneous T1 model had significantly higher AUC than the T2 

models (𝑝 <  .000). 

Predicting late xerostomia using baseline features yields lower AUC’s than using features from 

after irradiation in every model. While baseline models using T1 features and time and dose have 

average AUCs above 0.5, the distributions of AUC’s have a high variability with a maximum at 

0.5 for the td-model as seen in Figure 4-26. 

Regarding predicting late xerostomia using features from after irradiation the td- and combined 

model perform the best with an average AUC between all splits of 0.81, which is significantly 

greater than the T1- and T2- based models when comparing all AUCs with paired t-tests (𝑝 <

.000). The T1-model have a somewhat higher average AUC than the T2-model (𝑝 < .000), even 

though the distributions look very similar (Figure 4-27). The difference in average AUC between 
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the top-performing td- and combined models is not significant with 𝑝 = 0.18, indicating a 

similar performance across the bootstrapped test sets.  

 

 

Figure 4-26: Performance of varying models applied to the three splits for each prediction mode, given by the AUC for the 

corresponding model on the given test set (bootstrapped 1000 times). Each cell value is the average of all AUCs from the three 

splits ± the standard deviation of the AUCs. 

 

 

Figure 4-27: Distributions of all AUCs from 1000 bootstrapped test sets in all three splits. Prediction of simultaneous xerostomia 

in left plot. Prediction of late xerostomia using baseline features in middle plot, and features from after irradiation in the right 

plot. Median of all AUC’s given a feature type is seen in the legend as 𝑚. 

 

In addition to the 3-fold split, LOOCV was used to evaluate the models. The results are seen in 

Figure 4-28 as ROC AUC and BS. Paired t-tests were performed between the models, for each 

prediction mode, using the squared differences between the estimated class probabilities and the 

ground truth for each observation (which, when divided by the number of observations is equal 

to the BS). The BS for the T2-models was significantly different (𝑝 < 0.05) than all other 

models for simultaneous prediction. For late predictions using baseline only the BS between the 

T2- and td-model was significantly different. While the T2-based and combined models are seen 
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to perform the best using after-irr features (highest AUC and lowest BS), the brier scores were 

not significantly different to the T1- or td-model. 

 

 

Figure 4-28: ROC AUC and BS for LOOCV evaluated models using either T1, T2, or both feature types to predict simultaneous 

or late xerostomia. All models used a random forest classifier and LR-aggregated features. 

 

4.5.5 Testing the added predictive ability of radiomic features to time 

and dose for xerostomia classification 

For each combination of feature-spaces and LR-modes a logistic- and RF-classifier was trained 

on either only time and dose (td), or time and dose in addition to one of each of the 𝑘 best 

features from the LOOCV done in sections 4.5.2 and 4.5.3 (based on whether to predict 

simultaneous or late xerostomia). This analysis is similar to the analysis done for regression 

models in section 4.4.3, now performing paired t-tests between squared differences between the 

estimated class probabilities and binary xerostomia outcome for each observation. The mean of 

all such squared errors is per definition the brier score (section 2.4.6), such that the p-value from 

the t-tests corresponds to the probability of the null hypothesis 𝐻0: 𝐵𝑆𝑡𝑑 ≤ 𝐵𝑆𝑡𝑑+𝑓𝑡𝑖
 being true. 

All available data is used for each LOOCV, based on what feature-space is utilized and the 

prediction mode (simultaneous: Table 4-11, late: Table 4-12).  

For prediction of simultaneous xerostomia the 12 combinations of feature-spaces, LR-modes, 

and classifiers yielded 46 tests in total (with 𝑘 varying) of which 5 were significant (p < 0.05). 

For prediction of late xerostomia 20 of 86 tests were significant.  

Using Bonferroni corrected significance thresholds (𝑝 < 1.08 ∗ 10−3 for simultaneous 

prediction, and 𝑝 < 5 × 10−4 for late prediction) yielded no significant tests for either prediction 

mode. 

While the significant tests indicate a model improvement based on BS (a lower value compared 

to the td-model) the actual change is seen to be vanishingly small in some cases. A second test 

criterion was therefore added: in addition to a significant t-test, the negative relative change in 
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BS should be above 1% relative to the td-model. This additional criterion resulted in 2 feature-

models with increased performance for simultaneous predictions seen in Table 4-14, and 9 for 

late predictions seen in Table 4-15. Each feature-number corresponds to the filter and type seen 

in the feature-register in Appendix C (with R/ L added for the LR-aggregated features). The 

AUC and BS from the original from which the 𝑘 best features are selected are seen in the column 

denoted AUC / BS MRMR.  

 

Td + 

 𝑓𝑡𝑖 ↓ 

Ft-space LR Classif AUC / BS 

td 

AUC / BS 

MRMR 

K AUC / BS Sign 

perc 

p-value 

BS td > 

BS 

Rel diff 

BS 

Ft340R Delta-p Agg Logreg .564 / .239 .467 / .274 2 .596 / .235 +100 .026 -.018 

Ft635R No-p T1 Agg Logreg .686 / .200 .572 / .259 4 .731 / .194 +80 .003 -.029 
Table 4-14: Feature improving the prediction of simultaneous xerostomia when added as an explanatory variable to time and 

dose. The squared difference between estimated class probabilities and binary outcomes across the LOOCV is significantly lower 

compared to only time and dose (p<0.05), in addition to at least -1% relative change in the BS. 

 

Td + 

 𝑓𝑡𝑖 ↓ 

Ft-space LR Late- 

mode 

Classif AUC / BS 

td 

AUC / BS 

MRMR 

K AUC / BS Sign 

perc 

p-val 

BS td > 

BS 

Rel diff 

BS 

Ft2 Delta-p Avg Baseline Logreg .000 / .260 .222 / .548 2 .119 / .254 -100 .014 -.026 

Ft498 No-p T1 Avg Baseline Logreg .300 / .215 .804 / .211 5 .300 / .212 -100 .007 -.017 

Ft678R Delta-p Agg After irr Logreg .708 / .217 .514 / .320 4 .708 / .213 100 .045 -.016 

Ft216R No-p T2 Agg After irr RF .795 / .203 .748 / .204 4 .943 / .098 - .006 -.518 

Ft408 No-p T2 Avg After irr RF .789 / .202 .520 / .304 5 .878 / .146 - .040 -.278 

Ft765 No-p T2 Avg After irr RF .789 / .202 .520 / .304 5 .874 / .144 - .020 -.290 

Ft759R Delta Agg Delta Logreg .670 / .207 .590 / .279 1 .668 / .204 -100 .041 -.014 

Ft1 Delta Avg Delta Logreg .670 / .207 .790 / .190 4 .704 / .196 100 .009 -.053 

Ft1 Delta Avg Delta RF .654 / .247 .639 / .258 4 .843 / .157 - .036 -.363 
Table 4-15: Features improving on the late prediction of xerostomia when used as an explanatory variable in addition to time 

and dose.  
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5 Discussion 

As mentioned in the introduction, the radiomic feature were evaluated on their ability to predict 

the measured saliva production in individual mice. Both the image features and the measured 

saliva amounts displays high variabilities in general, which is discussed in sections 5.1 and 5.2. 

Considerations about, and errors relating to, segmentation and the developed radiomic pipeline is 

discussed in sections 5.3 and 5.4. The models are evaluated in section 5.5, and the top-

performing features are interpreted biologically in section 5.6.  

 

5.1 Major sources of error 

The repeatability and reproducibility of features and results is a major issue in radiomic studies. 

Finding robust features across scanner variations and acquisition protocols, along methods of 

extraction, selection, and modelling, is critical before any radiomic feature may be incorporated 

into patient-specific precision oncology [6]. As such, understanding the major error sources in 

any study using radiomics is highly necessary.  

An irreducible error affecting every step of the pipeline, from ROI segmentation to extracted 

feature values and thus predictions, is artifacts and noise present in the MR-images as discussed 

in section 2.2.5. The level of noise and blurriness varies much between the images but is 

generally not very noticeable.  

Many of the images contains a horizontal noise pattern in the lower part of the images as seen in 

both examples in Figure 5-1. Some images contain very periodic parallel horizontal lines 

(sometimes only a single row), often in the upper parts of the images, as seen in the left example 

image. The periodicity of the latter artifact implicates that the artifact may be some sort of Gibbs 

artifact, and the high contrast area close to the lines in the example image supports this. 

As seen in the right image in Figure 5-1, the upper part of the head of the mouse disappears 

almost completely. The vanishing signal may be due to some susceptibility artifact, or an 

extreme case of the low-frequency bias field. Additionally, the lower part of the mouse is seen to 

exhibit a very strong signal overall. While the bias field is mostly harder to detect with the naked 

eye, it is assumed to always be present in some manner – hence the application of the N4 

correction to all images. The after-p images were in general more affected by artifacts, since the 

anesthesia wore off and some mice started to wake up and move during the second round of 

image acquisitions (section 3.1).  
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Figure 5-1: Visible artifacts in T2-w images, at a central SMG slice. Left: image showing Gibbs ringing in the upper part. Right: 

Image showing bias field artifact along generally high noise, and potentially a susceptibility artifact in the centre. Both images 

also show some artifact in the lower part of the images. 

 

The semi-automatic segmentation procedure necessitates user input and is as such heavily 

influenced by an observer bias from the author of this thesis. Choosing what slice to consider the 

central slice for both the left and right SMG unit was in some cases difficult, and largely based 

on maximizing the area of each left or right unit of the gland with some separation between the 

two central slices. As the slice distances are much larger than the pixel distances, the true center 

of the gland units may have ended up between two slices creating a partial volume effect varying 

between each image acquisition series. Positions of the mice in the scanner might have changed 

between the acquisitions - slightly changing the orientation or causing some deformation of the 

glands due to internal pressure. As the SMGs and SLGs are fused in mice, they were hard to 

differentiate in the images. The segmented ROIs are assumed to contain more of the SMG than 

the SLG due to its larger size in the mice. The shape-based features are only dependent on the 

ROI, and as such heavily influenced by errors in the segmentations. If anatomy from outside the 

SGs are included in the ROIs the segmentation might have affected the first-order or texture-

based features as well. A more in-depth discussion regarding the validity of the segmentations is 

found in section 5.3. 

The measured saliva values are seemingly very noisy with a high variance for both control and 

irradiated individuals. Potential causes for this variability are discussed more in section 5.2. A 

high error in the saliva measurements have direct consequences for all machine learning based 

analysis in this thesis, being the outcome for all models. The features are also selected based on 

their relations to the outcome, as well as the feature-specific preprocessing (FSPS).  
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Due to the positionings of the mice during irradiation, the left and right unit of the SGs might 

have received different doses. Assuming a negligible build-up region, for photons in the keV 

energy range, the left unit received a higher dose than the right due to photon attenuation (as the 

mice are positioned on their right side during irradiation). While the dose difference was 

assumed to be negligible, the dose contributions to the two units were not quantified.  

As with all radiomic studies, the number of features is much larger than the number of 

observations (curse of dimensionality). If all features were random values, i.e. just noise, one 

might still pick up seemingly good predictors due to the random variations corresponding to the 

outcomes (multiple comparisons problem). This issue further emphasizes the need for external 

validation. While Bonferroni corrections were used in sections 4.4.3 and 4.5.5, with no 

significant tests after the correction, a “proper” correction might take into account every feature 

as they are all evaluated to the outcome in the FSPS –leading to a p-value threshold magnitudes 

below 0.05. 

The choice of method for feature selection has a very large impact on the final models, especially 

when reducing the feature-space to five explanatory variables as were done for the majority of 

the models.  

Evaluating the models using a single split into training and test data may yield overly optimistic 

or pessimistic generalization results due to random separation between individuals exhibiting 

outlier behaviours – either from the measurements itself, or a very high inter-mice variability. 

This is discussed further when comparing the 5-fold split to the leave-one-out cross-validation 

(LOOCV) in section 5.5.1. Due to the small number of observations available for the models, 

especially when predicting late xerostomia, the LOOCV might yield more overall accurate 

results. However, the LOOCV is known to produce a low bias (overfit) and have a high variance 

(section 2.4.1) which might overestimate the generalization scores, but the ratio of outlier 

individuals in training compared to test disappears as all observation are used for testing once. 

When considering simultaneous regressor or classification, using a LOOCV necessitates using 

some individuals for both training and test (for each individual having measurements for more 

than one day) which may lead to overly optimistic generalization results.  

Concerning the classification tasks, the method used for thresholding continuous saliva 

measurements into a binary response variable (section 3.6.2) must be discussed. Due to the high 

variance among the saliva measurements, the thresholding was based on population estimates 

from the control individuals rather than on an individual basis taking the baseline measurements 

from each mouse into account. The thresholding, transforming the machine learning task from a 

regression to a classification problem, becomes a trade-off between whether signal-containing 

information is destroyed by such a coarse binary re-binning, or whether the noise is suppressed 

allowing for more achievable learning tasks given the small sample size.  

At certain points in the radiomic workflow presented in this thesis all the available data have 

been used for some decision or estimation, creating a potential data leakage further downstream 

the workflow. The first instance was for training the standard scales in the Nyul normalization 

algorithm (section 3.3.2.3), followed by the choice of optimal bin width for fixed-bin 

discretization (section 3.3.4) and in the feature-specific preprocessing selection (section 3.4.1). 
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Data leakage may also have affected the choice of top-performing features used in combined 

models with time and dose (sections 4.4.3 and 4.5.5) where the top 𝑘 features was selected from 

across the LOOCVs for further analysis – effectively using all data in an embedded feature 

selection.  

 

5.2 Saliva production in control and irradiated mice 

Due to the young age of the mice at baseline, one might expect their continued growth to 

increase the saliva production over time when undisturbed by irradiation. While the salivation 

measurements are quite noisy and no pattern is obvious, this assumption is supported by the 

significant correlation between time and saliva for the control mice seen in Figure 4-2 (𝜌 = 0.29 

with p = 0.001) and the significant paired t-tests between saliva measurements for control mice at 

baseline or immediately post-irradiation (denoted acute) to the latest time-points seen in Table 

4-3 (section 4.1.1, both p-values < 0.005). The linear regression done on all mice having received 

no dose for xerostomia thresholding is seen to be significant (p = 0.008) in section 4.1.2 with a 

positive slope (0.56 × day) also supports the assumption of increased average saliva production 

over time for the control mice. 

The saliva production for the irradiated mice was seen to be significantly negatively correlated 

with the total dose delivered (𝜌 = −0.34 with p < 0.000), while the correlation to time was not 

significant - indicating that the irradiation of the SGs may have halted the growth of functional 

tissue in, and/ or induced damage to, the SGs. The significant difference in saliva production 

between baseline and acute time-groups supports earlier studies describing a reduction in saliva 

following irradiation (section 2.1.4) in both HNC patients treated with RT and rats. However: the 

saliva values between baseline and late is close to but not significant (p = 0.07). This might be 

due to some healing of the functional tissue in the SGs or that the SGs continues their growth 

supplying new healthy tissue. If the latter is the case, the significant difference between 

measurements from irradiated and control mice in the late time-group indicates that the growth 

have been at least halted in the irradiated mice. It could of course also be an error due to the high 

level of variance (assumed to be noise) in the saliva measurements: the median is seen to be at its 

lowest for the irradiated mice in the late time-group but with a very high CV as seen in Table 4-1 

and Figure 4-3.  
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Figure 5-2: Control mouse C2 displaying no visible increase in SG size over 63 days (day -7 to 56). 

 

While the measured saliva values from control mouse C2 increase over time (60 at baseline to 

120 at day 56), no increase is seen in the SG size by visual inspection of Figure 5-2. As this is 

only a single data point no conclusion is inferred by this inspection relating to the correlation 

between SG size and saliva production. The temporal evolution of the ROIs is discussed in 

section 5.3. 

 

As a thought experiment the high variation in the saliva measurements may be attributed to three 

major factors: variations in an individual mouse (intra-mouse variability), variations between the 

mice (inter-mice variability), and measurement errors. The three sources may be thought to make 

up the total observed variability. Saliva production on an individual basis is known to be affected 

by time since last meal, and cyclic changes over a day (circadian dependence) [111]. Different 

mice might have different baseline production of saliva, growth rates, and radiosensitivity (see 

section 2.1.2). Thus, one might expect a higher inter-mice variability for saliva values in 

irradiated mice over time, than control – which is seen as a higher CV for the latest irradiated 

time-group in Table 4-1. Figure 5-3 attempts to illustrate this point using four hypothetical mice: 

in the left plot control mice undisturbed by irradiation show cyclic variation across each day 

(circadian intra-variance), with differing slope for saliva increase over time (growth rates as 

inter-variance). The total error incorporates both the inter- and intra-variability, with an added 

buffer to illustrate measurement error. In the right plot different radiosensitivity is illustrated by a 

dramatic change in slope for mouse 3, with mouse 4 more or less undisturbed (as an exaggerated 

lower radiosensitivity for this thought experiment) – causing the inter-variance and thus total 

error to increase more relative the control mice. 
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Figure 5-3: Illustration of the three assumed contributors to the high variance (noise) in the measured saliva values. Left: control 

mice. Right: irradiated mice with different radiosensitivity.   

 

5.3 Segmentation 

While state-of-the-art fully automatic segmentation techniques exists, such as the deep 

convolutional neural net U-Net discussed in [8], a large amount of training data would be needed 

which was not available. The semi-automatic watershed-based 2-dimensional segmentation 

algorithm (section 3.2.4) produced seemingly good ROIs overall, but its usage was a time-

consuming process as all ROIs had to be manually chosen among the watershed regions. While 

radiomic studies often utilizes multiple experts for delineation, or works with previously 

segmented data, in this work the author was responsible for every step of the process. Due to not 

being an expert in mouse physiology the choice of ROIs representing the SMGs might be 

assumed affected by human error and observer bias by said author. In an ideal world the 

segmentation process should have been be repeated and validated by an external observer as 

discussed in [8].  

However: by comparing the ROIs to the area of SG specimen surgically extracted by an actual 

biologist (PhD student Inga Solgård Juvkam), the validity of the segmented ROIs was checked in 

section 4.2.1. The SLG size does not necessarily reflect the SMG size, according to the 

somewhat low correlation of 0.47 between the 20 extracted glands. The SMG size was not 

significantly correlated to the number of ROI pixels for either the no-p T1 or T2 weighted 

images, but the SLG was significantly correlated to the T2 images. As the SLG and SMG is 

fused in mice (section 2.1.3.1) and hard to separate visually in the MR-images, the ROIs might 

be assumed to contain a bit of both glands. As the sample size for said correlation analysis was 
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very small (N=9 mice having both tissue samples and late MR images) any further conclusions 

are not drawn.  

Using the ROI sizes between images of various types, before or after pilocarpine (before-p, after-

p) and MR-weightings T1 or T2, the variability in image ROIs from the same days was 

quantified by correlation in section 4.2.2. As the segmentations attempts to capture the exact 

same anatomic ROI at the same day, the difference in ROI sizes may capture some observer- or 

method-bias in the segmentation process. While the correlations between before- and after-p 

images for each weighting was high (𝜌 > 0.6) the correlations between before-p T1 to after-p T2 

and after-p T1 to before-p T2 was lower (𝜌 = 0.32 and 0.41, respectively). This may indicate 

that some partial-volume effect between the modalities more strongly affects the size of the 

central ROIs (for both the left and right unit), having a larger effect on ROI variability than 

positional changes before and after pilocarpine injections.  

As previously discussed in section 5.1 the control mice are expected to continue growing during 

the experiments and increases in saliva over time have been established. The expectation for the 

ROIs is therefore an increase in the ROI sizes for the control mice over time, and potentially 

shrinkage of the irradiated ROIs as observed in earlier studies (section 2.1.4). The box plot in 

Figure 4-10 (section 4.2.3) show a lower ROI size for control than irradiated mice in the latest 

time-group, going against the aforementioned hypothesis. While the difference in means (151 

pixels) is significant under an unpaired t-test, the difference is very small compared to the IQRs 

(which is above 1000 pixels for the irradiated ROIs). The difference in ROI sizes between the 

left and right SG subunit was also evaluated over time, as the left unit received a higher dose 

than the right due to being closer to the skin surface where the irradiation beam entered (section 

3.1), with no observed differences.  

The discordant results in image-type-variability and the temporal evolution of the ROI sizes 

might be explained by two factors: the MR slice thickness for the images is not negligible 

compared to the size of the mouse SGs, and the positioning of the mouse might have changed 

between scans. As such different anatomy from each mouse might be contained in the slices 

selected for analysis between scans of the mice (partial volume effect). Regarding the temporal 

analysis of ROI sizes, the assumption that increased saliva production and overall growth implies 

bigger SGs might be wrong. This is because the glands may exhibit increased efficiency (e.g. as 

a higher fraction of saliva-producing acini relative adipose tissue) while maintaining their 

original size.  

Qualitatively, the segmentation of the T1 images was harder than the T2 images due to the lower 

variability in pixel intensities (see Figure 4-12) and the SG edges was therefore not picked as 

easily by the watershed algorithm.  
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5.4 Preprocessing and feature extraction 

Preprocessing is a major component of the radiomics pipeline with direct impact on the 

quantitative nature of the features, as discussed in section 2.3. To improve feature 

reproducibility, and overall repeatability of radiomic studies, all preprocessing steps was 

reported in detail as emphasized in IBSI [7] and multiple review studies on radiomics [8], [45], 

[112].  

As each MR-acquisition matrix was assumed to contain central slices for the left and right 

subunit of the SMG, one may ask why 3D radiomics was not utilized instead of having two 2D 

images per instance with an added challenge on how to deal with this – referred to as LR-modes. 

3D radiomics would have utilized a VOI containing the whole SMG organ, i.e. containing more 

information as a whole than 2D radiomics, but requires interpolation to an isotropic voxel space 

to make extraction matrices (e.g. the GLCM) rotationally invariant. Interpolation has been shown 

to increase the reproducibility of features between data sets [8]. While this sounds like an 

obviously better option than 2D radiomics in theory, the MRI acquisition protocol used in this 

work provides a challenge regarding interpolation: the large discrepancy between pixel spacing 

(0.12 mm) and slice thickness (0.70 mm) described in section 3.1. Interpolation may be done by 

either up-sampling to a higher resolution than the original image matrix, or by down-sampling to 

a lower resolution. Due to the pixel spacing / slice distance discrepancy up-sampling would 

imply a higher proportion of artificially generated voxel intensities relative the original data, 

while down-sampling would imply a significant loss of information. To preserve the raw 

information as much as possible this was discarded in favour of using 2D radiomics.  

A general question regarding the radiomic feature extraction used is why hand-crafted radiomics 

was used in favour of deep radiomics as mentioned in section 2.3. While deep neural networks 

are able to find more arbitrary pixel-relationships than the mathematically defined hand-crafted 

features, a large sample size of data is required for training the deep network for discovery of 

deep features – which would not be feasible with the small data set utilized in this work. 

Additionally, the hand-crafted features are more easily explained in a biological context – 

necessary for potential future clinical implementation as imaging biomarkers.  

 

5.4.1 Post-acquisition processing 

As discussed in section 3.3 IBSI does not cover post-acquisition processing, so the choice of 

what methods to include and their order was largely based on a 2011 study [98]. Three image 

processing methods were considered in the paper: bias field correction, a landmark-based 

intensity standardization for normalization, and noise filtering. The paper made no mention of 

Nyul normalization (section 3.3.2.3) but the landmark-based method is conceptually the same. 

As suggested, bias field correction (using the N4 algorithm described in section 3.3.1) was used 

before normalization (section 3.3.2), but no noise filter was applied. By visual inspection of the 

ROIs noise was determined to generally not be a big issue, such that a choice was made to omit 
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noise suppression to keep as much raw information as possible by limiting unnecessary 

preprocessing. 

Two methods of intensity normalization were used in the radiomics pipeline (section 3.3.2), Nyul 

normalization and shifted standardization in addition to no normalization, of which one was 

decided upon and used on a feature-specific basis (FSPS, section 3.4.1). Using some intensity 

normalization have been shown to improve the repeatability of features and make MR-images 

from differing acquisitions more suitable for comparison [113]. The two normalization methods 

used were recommended specifically for T2-weighted radiomics in a 2020 study [47]. While not 

applying any intensity normalization is denoted as no normalization in FSPS the images are still 

normalized in a small manner by the N4 correction (affecting all radiomic features except shape-

based) and the discretization (affecting texture-based features). 

Looking at the pixel intensity distributions within the ROIs after Nyul normalization in Figure 

4-11 (section 4.3.1) the normalization is seen to produce more equal distributions relative no 

normalization. The intensity distributions after shifted standardization are hard to interpret as 

they appear as thin lines scattered across the plot, due to the fact that the shift constant is 

calculated on a per-image basis. 

The relative variation of the means 𝑐𝑣𝜇 is seen to decrease after both Nyul normalization and 

shifted standardization, relative no normalization, for both the T1 and T2 images (Figure 4-12). 

The CV of the means in the ROIs could be interpreted as a descriptor of between-images 

intensity harmonization within the ROIs, where a lower value means more equal intensity 

distributions. The average CV is also lowered when applying the shifted standardization 

compared to no normalization, as well as the N4 correction compared to the raw images. 

The T1-weighted MR-images are seen to exhibit lower relative variation than the T2 images as is 

expected due to the T2 weightings increased contrast for water relative the T1 images (section 

2.2.3), given the high water-content in saliva. However, the differences in relative variation 

between before- and after-p injections are small across the normalizations and follow no obvious 

pattern. As the saliva, and thus water, content is lower in the SGs when the after-p images were 

taken (following the saliva extraction for measuring) the CV might reflect the signal from fatty 

tissue more strongly than water. None of the MR-acquisition protocols utilized fat suppression 

(section 2.2.3).  

While the CV is susceptible to outliers and unstable for distributions centered around zero (as the 

CV would go towards infinity), this is assumed to not be any issue as very few pixel intensities 

are below zero after any normalization.  

 

5.4.2 Discretization 

As the MR-image intensities are continuous, discretization is required before calculation of the 

radiomic texture matrices – to avoid arbitrarily large matrices with a single entry for each 

separate pixel-value in the ROI. The choice between using a fixed bin width (FBW, or absolute 
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discretization) and fixed bin count (FBC, or relative discretization) is a topic of debate within the 

field of radiomics. IBSI recommends using FBC for MRI-based radiomics due to the arbitrary 

nature of pixel intensities [7], but other studies have shown that using a FBW increases the inter-

observer reproducibility of the features [105]. Additionally, as the Nyul normalization attempts 

to establish a physiologic relationship between the images and intensities within the set of 

images (section 3.3.2.3) the argument for FBC by IBSI is weakened. This assumption is 

supported by Scalco et al. (2020, [47]) which evaluates the interplay between normalization 

methods and using either FBC or FBW for feature reproducibility, in combination with T2-w 

MRI, where using FBW obtained the most reproducible features both considering image 

information content and with respect to inter-observer variability.  

The choice to use separate discretization bin widths between normalization methods, described 

in section 3.3.4, is trivial as the intensities after normalization are on completely different scales 

than the raw values – which requires adaptation by the FBW procedure. As the Nyul 

normalization utilizes separately trained standard scales between the T1 and T2 images, it is a 

logical continuation to split the optimal bin width between T1 and T2 within each normalization. 

However, the before- and after-p images are not considered separately as this is exactly the type 

of physiological changes (i.e., the change in saliva content) assumed to be picked up by the 

features when working with radiomics.  

 

5.4.3 Feature-specific preprocessing selection 

In the feature-specific preprocessing selection (FSPS, section 3.4.1) the intensity normalization is 

decided upon on a per-feature basis: either no normalization, shifted standardization, or Nyul 

normalization. While the paper by Fave et al. (2016, [44]), inspiring the FSPS, considered 

different preprocessing steps for selection (smoothing filter and resampling) the method have no 

reason not to work for choosing between intensity normalizations instead. 

The selection is based on two subsequent criteria of which the first incorporates a univariate 

filtering by discarding features which are not significantly correlated to the saliva production for 

any of the three normalization modes. The FSPS procedure therefore effectively becomes the 

first step in the feature selection process, as a filtering method (section 2.3.5), reducing the size 

of the feature-spaces available for later selection and modelling. FSPS is considered separately 

for the T1- and T2-weighted images, as well as the LR-modes.  

The second criterion, relevant only if multiple normalizations pass the first criterion for a given 

feature, selects the normalization which obtains the lowest correlation with ROI area. As ROI 

area is a radiomic feature easy to interpret (assuming the ROIs actually corresponds to the SMGs 

/ SLGs) one may describe the criterion as maximizing relevant information to the outcome while 

minimizing the overlap between shape-based information. The shape-based features are 

unaffected by normalization and being only 9 features they are all excluded from FSPS, and 

simply included in the post-FSPS feature-spaces.  
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Due to the arbitrary intensity units in MR-images (section 2.2) one might expect that applying 

some normalization is preferrable for most features, yielding higher-performing features 

compared to none. Especially is Nyul normalization expected to work better with FBW 

discretization as discussed in section 5.4.2. Looking at the percentage of features selected with 

each normalization seen in Table 4-5 (section 4.3.3) the Nyul normalization is seen to be selected 

the most across both LR-average and LR-aggregated features (43% - 72%), except for T1 LR-

average where shifted standardization is selected for 73% of the features, partly confirming this 

expectation. 

The T2-features is seen to have a much higher chance of surviving FSPS compared to the T1-

features, even with a more strict selection threshold (𝑝 = 0.05 for T2 and 0.15 for T1). It should 

be noted that the baseline sample size, used for FSPS, is more than twice the size for T2-images 

(N = 55) compared to T1 (N = 24). LR-average features are also seen to have lower feature-space 

size after FSPS than LR-aggregated features.  

 

The first iteration on how to deal with image features from both the left and right subunit of the 

SMG, was to simply treat features from the two units as separate observations with respect to the 

measured saliva production – referred to as LR-split (since images from the same instance are 

split into two observations). The first iteration of delta-p and delta-features were therefore 

calculated from the pool of surviving LR-split features following FSPS. The LR-split method 

was quickly deprecated, as observations from the same mouse and day would be treated 

independently and as such easily end up in both train and test subsets of the data (increasing the 

chance of overfitting the models). FSPS was then performed for LR-aggregated and LR-average 

features, which treats each observation separately. However, the FSPS was not re-done for the 

LR-average delta-p and delta-features such that the LR-split iteration of the FSPS became the 

initial selection for those feature-spaces. This human error might have caused important features 

to be discarded, while keeping less important, for the LR-average delta-p and delta-features. For 

all other combinations of feature-spaces and LR-modes the re-run FSPS results was used 

correctly.  

 

5.5 Selection and modelling saliva as outcome 

Assuming the high variance in the measured saliva production to be related to intra-mouse and 

inter-mice variability (as discussed in section 5.2), more than noise due to a high measurement 

error, an optimistic viewpoint on radiomics may assume that the image features should reflect 

the physiological state of the SGs. Thus, the features should be expected to contain information 

related to the measured saliva values, and as such be suitable for prediction-based machine 

learning models. 

The high water-content in saliva (section 2.1.3) is expected to reflect the signal more strongly in 

the T2-images over the T1-images (section 2.2.3). As the original first-order radiomic features 
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are closely related to said signal (section 2.3.1), one might expect first-order features to be good 

predictors of simultaneously measured saliva – especially using the T2-weighted delta-p features 

describing the relative change in each feature before and after pilocarpine injections for 

measuring saliva (section 3.5.1).  

Random forest (RF) models are used both for classification tasks relating to the binary 

xerostomia outcome, and for regression to the continuous saliva production outcome. RF have 

shown previous success within radiomic studies ([74]) and may capture complex non-linear 

relationships between the features due to the non-parametric nature of decision trees in 

combination with the probabilistic nature of the ensemble forest made up of said decision trees 

using bootstrapped data (section 2.4.3.3). In addition to RF-models multiple linear regression is 

used for the regression tasks, and logistic regression for estimating class probabilities in the 

binary classification tasks. As they are parametric methods, the influence from features onto the 

model’s structure is more easily explained relative the non-parametric RF models - as both linear 

and logistic regression estimates a coefficient for each feature used as an explanatory variable in 

the model (sections 2.4.4 and 2.4.5). 

All models using radiomic features are evaluated in their relation to the simplified NTCP-model 

using only time and dose as explanatory variables, denoted td-models. As the subset of data 

available between analyses differs the td-models are seen in relation to the td-analysis using all 

347 available saliva measurements, which may provide information of the optimism of the model 

performances based on random variations in the subset of data used for each analysis. 

 

5.5.1 Predicting simultaneously measured saliva and xerostomia 

using only time and dose 

In sections 4.4.1 and 4.5.1 all available saliva measurements (N = 347) were used to predict the 

continuous saliva production measurements and the binary xerostomia after thresholding, 

independently of the radiomic features. Both the regression and classification tasks were based 

on the same data, and the machine-learning models used the exact same explanatory variables: 

day of measurement relative start of irradiation (day 0), and the dose delivered at said day. This 

attempted to establish a simplified NTCP-model (see section 2.3.6), without individual-specific 

data, in order to establish the predictivity of time and dose as explanatory variables in a machine 

learning context (referred to as a td-model). Only subsets of the saliva measurement data were 

utilized when creating models using radiomic features, where td-models were used for 

comparison. As such, the td-only modelling gave the most accurate picture of the predictive 

abilities of time and dose for both regression and classification. 

In the td-models for both regression and classification, time is seen to be a less stable predictor 

than dose: the estimated coefficients vary more for time than dose in the regression models and 

are non-significant in the classification models. This corresponds to the non-significant 

correlation between time and saliva measurements from irradiated individuals as discussed in 

section 5.2. The time-values take on a larger span of values than the dose-values, where the latter 



107 

 

is either zero or the total delivered dose after irradiation (e.g. 44 Gy) as no measurements were 

taken during the fractionated irradiation days – and is as such a binary explanatory variable on a 

per-individual basis. In the logistic classification model with second-order interactions between 

time and dose however, the interactions term is significant when fit to all data. 

The RF-models are seen to perform better (higher R2) than the linear regressor models when 

evaluated on the training data in regression tasks, but scores worse (lower R2 and higher MSE) 

than linear regression when averaged across the 5-fold test data and in the LOOCV. 

Interestingly, when comparing RF to logistic regression for binary xerostomia classification the 

RF-models performs better both when trained and evaluated on all data (higher accuracy, AUC, 

and lower BS) and on unseen data in the LOOCV (higher AUC). The classification performance 

on unseen data is however unchanged when evaluating the models probabilistically, i.e. 

unchanged BS, meaning the RF-models might have overfit to noise in the data (low bias but high 

variance reflected when predicting unseen data). However, if some estimated class probabilities 

are way off the binary ground truth, such outliers might affect the BS more than the AUC. 

As the logistic regression model for xerostomia classification with interactions performs better 

across the LOOCV than without interactions, some nonlinear effects between time and dose 

seems to be captured. Seen in combination with the assumed overfit by the RF-models, which 

could capture more non-linear effects due to its non-parametric modelling nature, the biggest 

explanatory impact on saliva production from time and dose may be assumed to be mostly 

independent of each other.  

Even when having about 70 observations in each test set across the 5-fold cross-validation (CV) 

evaluating regression performance in Table 4-6 the test scores vary for both regressors across the 

CV. This implies a heavy split-dependence on the td-model’s ability to generalize to unseen data. 

The hypothesized intra- and inter-mice variability as discussed in section 5.2, would not be 

captured by the td-models as time and dose are non-specific features between individuals. 

The RF hyperparameter (HP) tuning for the td-models seems to have little impact on the model’s 

performance, as illustrated by Figure 4-16 evaluating the averaged R2 across a 5-repeated 2-fold 

CV against the number of decision trees (estimators) in the RF. There is no observed pattern 

across the 5-fold CV, with peak performance (highest R2) at some number of estimators varying 

between the folds. This trend is observed across all HPs for the RF regressor, except certain HPs 

preferring lower values such as the minimum samples considered per new created split in the 

decision trees (section 2.4.3). While the 5-repeated 2-fold CV on the training data attempts to 

achieve higher generalization for the HP optimum, the optimum for the test data (unseen in the 

HP tuning) is not necessarily achieved. As illustrated in Figure 5-4, a much higher HP value 

would achieve better results on some of the unseen test data (upper plot) but would be chosen at 

a very low value in the hp-tuning using training data (lower plot). 
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Figure 5-4: Illustration of the discrepancy between optimal HP from tuning (high point bottom), with the corresponding effect on 

test data (upper). 

 

5.5.2 Predicting simultaneous saliva and xerostomia using only 

radiomic features 

A natural starting point for establishing any potential relationships between the saliva 

measurements and the radiomic features in a machine learning context, is to use the image 

features to predict saliva values from the same time-points (days) as the images were taken. 

Regression models (section 4.4.2) were used to predict the continuous saliva amount as outcome, 

and classification models (section 4.5.2) were used to predict the class probability for binary 

grouped xerostomia following the thresholding method (section 4.1.2). 

Three feature-spaces were considered for the analysis: using radiomic features extracted from 

T1- or T2-weighted MR-images before pilocarpine extraction for saliva measurement (no-p T1 

or T2) and the delta-p features calculated as the relative difference between each T2-feature from 

before and after pilocarpine injections (section 3.5.1). The number of available observations, i.e. 

the overlap in time and mouse-id between the image features and the saliva measurements, was 

140 for the no-p T2 features and 69 for no-p T1 and delta-p. The percentage of observations 

being from control mice were between 41% and 48% (Table 4-8) for both regression and 

classification analysis. For the classification analysis the percentages of mice having saliva 

measurements determined to be xerostomic was between 38% and 45% (Table 4-11).  

 

The same split into training and test data was used for both regression and classification, separate 

for each feature-space with as much overlap as possible (section 3.6.1). In the regression tasks, 

only using time and dose as predictors (td-models) performed better on the test set than the 

image features which had all R2-values below zero (Figure 4-17). Some feature-based linear 

regression models achieved a perfect fit to the training data (R2 = 1.00), not unexpected when 
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using all available features without any regularization parameter penalizing multiple predictors, 

but had the worst results on the test data (as the models are extremely overfit to the training 

data). The RF-models utilizing the whole feature-spaces as predictors, were less overfit 

compared to the similar linear regression models, but the inherent RF feature selection (by 

importance, see section 2.4.3.3) performed worse than primary selection by MRMR. 

In the classification tasks (Figure 4-20) the td-models also performed better than the feature-

models, except for the no-p T1 model using the top 5 LR-average features with a RF regressor 

having AUC = 0.78. The no-p T2 and delta-p models had AUCs below, or barely above, 0.50 – 

making the models slightly better than random guesses. Between both regression and 

classification the td-models using the no-p T1 subset is seen to perform worse than the T2 and 

delta-p based td-models in the single split. 

 

In order to mitigate potential imbalance in the randomly split train and test sets, LOOCV were 

performed in addition to the single split for both regression and classification. In the regression 

tasks only two feature-based models had R2-scores above zero (Figure 4-18): a no-p T2 LR-

aggregated model using linear regression (R2 = 0.09) and delta-p LR-average using random 

forest (0.06). The no-p T1 models performed the worst with a maximum score of R2 = 0.00. In 

the classification tasks (Figure 4-21) the no-p T1 LR-aggregated feature models were seen to 

have a maximum AUC at 0.65. The no-p T2 models had some models with AUC barely above 

0.50, and the delta-p models were all below. No pattern is seen between the optimal td-models 

from the regression and classification tasks, except some small improvements when using a RF-

based model compared to linear or logistic regression. 

 

Looking at the calibration curves (Figure 5-5) for the three feature-spaces predicting 

simultaneous xerostomia, evaluated by bootstrapped LOOCV, no-p T1 is seen to stay closest to 

the central line (red stippled line) with a sigmoidal shape while delta-p strays the farthest. This 

reflects the results in Figure 4-21, as the reliability curves describes how well the predicted 

probabilities relates to class prevalence in the ground truth. In general, the RF classifiers tends to 

create some prediction bias for estimated probabilities away from 0 or 1. All decision trees in the 

forest would have to agree on 0 or 1 as the estimated outcome in such a case, which is unlikely 

when building each tree using bootstrapped data in the bagging process  [114]. This trend is 

more visible in the no-p T2 and delta-p distributions of estimated probabilities, which is seen to 

go towards zero as the probability approaches 1 - leading to a large deviation from the central 

axis in the right part of the calibration diagram.  
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Figure 5-5: Left: calibration curves for three random forest models using LR-aggregated features to predict simultaneous 

xerostomia, evaluated across a LOOCV with 100 bootstrapped training sets. Right: distributions of estimated class probabilities, 

across the 100 bootstraps and LOOCVs. 

 

Across all the regression and classification models the td-models generally performed better than 

the feature-based models, with some exceptions (no-p T1 in the single split classification, and 

delta-p in the LOOCV regression). All feature-based models performed better in a LOOCV than 

the single train / test split, except for some higher AUCs when using no-p T1 features for 

classification. Generally one might expect better model scores from a LOOCV compared to a 

single split as almost all (𝑁 − 1) observations are used for training, creating models with higher 

bias (section 2.4.1). This effect might have been strengthened by the small sample sizes for the 

available data.  

The regression td-models had some R2 scores on the single split test data which were 

unrealistically high compared to the regression models utilizing all salivation data (discussed in 

section 5.5.1). Assuming an optimistic viewpoint on radiomics in general one may assume that 

the radiomic features captures some of the intra-mouse and inter-mice variance hypothesized in 

section 5.2, while the td-models does not (as no information in the time of sampling or dose 

given is individual-specific). Under this assumption might the td-models be more susceptible to 

such variations and potential outliers in a single train / test split, scoring models much higher or 

lower than the td-models utilizing all saliva measurements. The td-models evaluated by LOOCV 

have R2’s more closely resembling the td-models using all saliva measurements, supporting this 

hypothesis as they are unaffected by random variations in a train/ test split by using all data for 

testing once.  

Using delta-p features had higher performance on regression tasks than classification. One may 

hypothesize that the delta-p features manage to capture more of the intra-variability in the mice, 

due to being the relative difference in features from before and after saliva extraction. As some 

of this variability information may be lost when reducing the outcome to a binary xerostomia 

variable, the decreased performance on the classification tasks might be reasonable. 
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5.5.3 Predicting late xerostomia using radiomic features 

Predicting xerostomia forward in time using the radiomic features is a more interesting problem 

from a clinical perspective, as successful features potentially could help decision-making for 

preventive measures before or during RT of HNC. The majority of radiomic studies therefore 

considers predictions to endpoints forward in time relative the image acquisitions. Classification 

tasks were prioritized over regression for this analysis, to allow for comparison with a previous 

study on radiomics and xerostomia [10]. This section considers the results in section 4.5.3.  

Based on the time of image acquisition, the features are divided into three temporal groups: using 

baseline features, features from after irradiation (after-irr), or as a combination of the two (delta-

features, section 3.5). For this analysis each individual corresponds to a single observation in 

each data set, compared to some individuals having multiple observations in the analysis of 

simultaneously measured saliva. 

Some intuitive expectations regarding the temporal feature groups are an increased performance 

for after-irr features relative baseline, having information closer in time to the outcome for 

prediction, and that the delta-features performs the best due to effectively incorporating 

temporally dependent information from two observations. The prediction of xerostomia forward 

in time is expected to a more difficult ML-task than simultaneous predictions. Additionally, the 

sample sizes are smaller while the number of features is unchanged (e.g. 42 observations for no-

p T2 after-irr, compared to the 140 observations for simultaneous predictions using no-p T2 

features).  

A potential major error source from the implementation of this analysis, is the large temporal 

variation in, and overlap between, the after-irr and delta-features and the saliva measurements as 

discussed in section 3.5. While there is no overlap on a per-individual basis, some individuals 

have after-irr features from images taken at day 35 while others have the “late” saliva 

measurements from the same day. While this is obviously not optimal, allowing this overlap was 

necessary to have sample sizes big enough for any analysis at all.  

 

Similarly to the analysis of simultaneous predictions, was the classification tasks evaluated by 

both a single split into training and test along a LOOCV. Looking at the results from the single 

split in Figure 4-22 and Figure 4-23, the after-irr features is seen to perform better than the 

baseline features as expected. The delta-features, however, is seen to be the overall worst 

predictor with no models obtaining AUC above 0.50. Across the feature-spaces using after-irr 

features, are some models using no-p T1 and delta-p features seen to obtain AUCs above 0.80. 

The no-p T2 features maxes out at AUC = 0.60, being lower than the exact same model (LR-

aggregated RF) using baseline features with AUC = 0.63. Some variation is seen between the 

AUCs for the td-models, which overall performs well when using after-irr values for time and 

dose. The td-model on the no-p T1 data performs almost perfectly with AUC = 0.95.  

Concerning the LOOCV evaluated models, seen in Figure 4-24 and Figure 4-25, the after-irr 

features are seen to overall perform better than the baseline features. An obvious exception 
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standing out among the baseline models, is the no-p T1 models using LR-average features 

having AUC = 0.80. Using LR-average delta-features with a logistic regression model is seen to 

be a good model with AUC = 0.80, higher than the maximum AUC attained between after-irr 

feature models at 0.75 using no-p T2 LR-aggregated features with a RF classifier. Using after-irr 

no-p T1 features have some lowered performance in the LOOCV with max AUC = 0.72, and the 

delta-p features perform equally bad compared to the single split. All baseline td-models are bad 

predictors with AUC < 0.50, where the delta-p td-models are perfectly wrong for all predictions 

(AUC = 0.00). This is expected, as all dose values are zero while the only difference in the time 

variable is being either day -3 or day -7 – i.e. no information relating to xerostomia. However, 

one might have expected the AUCs for such models to approach 0.50 rather than 0.00, indicating 

the models attempts to use some relationship between xerostomia prevalence between the two 

baseline days (unsuccessfully). Similarly, the baseline td-model having AUC = 0.67 in the single 

split must therefore be due to a random imbalance in xerostomia between the baseline times in 

the test set, which does not affect the LOOCV.  

An improvement in both delta-feature and no-p T2 based models are seen in the LOOCV relative 

the single split. In combination with the observed decreased performance for the no-p T1 

features, one may assume the LOOCV results to be more realistic.  

 

5.5.4 Comparing T1- and T2-based feature models on the same subset 

of data 

To mitigate the potentially different random imbalance in variability for the data used in T1- and 

T2-based models, due to predicting different subsets of the total outcome space, a separate 

analysis was performed using features from the two MRI-weightings for predicting the exact 

same outcome. In practice, this meant discarding observations from the T2 data until the T1 and 

T2 were left with the same individuals and times. The models were scored on simultaneous 

predictions, or late predictions using baseline or after-irr features. A 3-fold train test split was 

performed in addition to a LOOCV. In addition to creating models using only features from each 

sequence, a combined model was created by aggregating the no-p T1 and T2 feature-spaces 

column-wise allowing for selection of features from either MRI-weight. 

 

While the td-models performed the best across the 3-fold split (Figure 4-26), the baseline td-

model performed the worst in the LOOCV (Figure 4-28). Looking at the distributions of AUC-

values across the bootstrapped 3-fold split (Figure 4-27) the td-model is seen to have a peak at 

AUC = 0.50, which the T1 model does not. The T1-model was therefore a more stable performer 

on baseline features, in addition to being the best baseline model in the LOOCV. However, the 

T1-model was not significantly better (lower BS) than the T2-model using baseline data, when 

comparing the squared probability errors across the LOOCV, and the AUC was not particularly 

high (AUC = 0.57).  
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The T1-models outperformed the T2-models for prediction of simultaneous xerostomia for both 

CV methods and had significantly higher average AUC across the 3-fold split (𝑝 < .000) and 

lower BS across the LOOCV (𝑝 = 0.039). The combined model performed similarly to the T1 

model, with a slight increase (3-fold split) or decrease (LOOCV) in AUC.  

The combined model performed significantly better (higher AUC with 𝑝 < .000) than both the 

T1- and T2-model for late prediction using after-irr features in the 3-fold split. In the LOOCV 

the T2- and combined models performed better than the T1 model, but the lower BS was not 

significantly different for any combination.  

As the paired t-test in the 3-fold split included all AUC-scores from bootstrapped validation 1000 

times, effectively creating 1000 “pseudo-observations” for each real observation, the estimated 

p-values became extremely low. Thus, the t-test between BS in the LOOCV only considering 

each observation once, produced more sober results.  

 

5.5.5 Comparing the added predictive ability of time and dose with 

best radiomic features 

While models using only time and dose as predictors generally outperformed the models only 

using radiomic features discussed in the previous sections, the radiomic features may have 

contained additional information on a more individual basis than time and dose. Thus, using both 

time, dose, and some relevant radiomic feature was assumed to increase the model performance 

compared to only using time and dose. Based on the LOOCVs for both regression and 

classification, a feature was considered for this analysis if it were chosen more than 50% across 

the left-out observations. In another words: all data have been used for selection of the 

presumably top-performing features, across all feature-spaces and LR-modes, making this 

effectively embedded feature selection method (section 2.3.5) a potential source of data leakage.  

For each LOOCV-feature a combined model using time and dose, in addition to the feature, was 

created for univariate evaluation. T-tests between the squared error for the combined model and 

the td-only model, across a LOOCV, was performed to test whether the combined model had 

significantly lower MSE (when regressing to continuous saliva values) or BS (when classifying 

xerostomia). The BS is effectively the probabilistic version of the MSE given a binary outcome, 

making the t-tests performed for both regression and classification comparable. Due to the grand 

number of tests performed, the tests were also evaluated under Bonferroni corrected significance 

thresholds in addition to the standard 0.05. 

While no models had significantly improved performance under the Bonferroni corrections, 15 

models using 14 separate features were significant with 𝑝 < 0.05. Of the 14 features 4 were 

from regression to simultaneous saliva, 2 from classification of simultaneous xerostomia, and 8 

from prediction of late xerostomia. Of the 8 features being LR-aggregated, 7 were the version 

from the right SG subunit.   
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As seen in Figure 5-6 the 9 texture-based individual features had the highest prevalence, 

followed by three first order features and two shape-based. Excluding the shape features (which 

are denoted as original by the pyRadiomics python package), the gradient filter was the most 

prominent with 3 features, followed by 2 features without any filter, logarithm filtered, or 

wavelet filtered (one H and one L), each. The indexing between feature number and filter and 

type is seen in Appendix C. 

 

 

Figure 5-6: Histograms of feature types (left) and image filters (right) among the 14 features significantly improving upon the td-

models. Shape-based features were excluded before counting filter types.  

 

Concerning the regression features, an interesting observation is that a lower MSE for the 

combined model relative the td-model does not mean a significant difference in the squared 

errors: while adding Ft192 to the td-model (using no-p T1 LR-aggregated data with a RF 

regressor) lowered the MSE from 1970 to 1570, the combined model was not significant (𝑝 =

0.110) and may therefore not be considered a stable predictor. On a similar note: low-performing 

models using the top 5 MRMR selected features across the LOOCV, such as delta-p LR-

aggregated with a linear regressor (see Table 4-9) having originally a MSE of 3707, contrarily 

shows to have stable features which significantly improves the performance. Using Ft297R from 

the aforementioned delta-p model in addition to time and dose significantly reduced the MSE by 

15% relative the td-model (from 2888 to 2452). Oppositely, models performing well in the 

MRMR-selected LOOCV does not imply any significant features here: the delta-p LR-average 

RF model had the second highest R2 in Figure 4-18 (among the feature-based models, with R2 = 

0.06) but none significantly univariate features in the combined models. The top-performing 

feature-model in Figure 4-18 however, no-p T2 LR-aggregated with linear regression, had two 

univariate significant features in the combined models: Ft522R and ft240L, reducing the MSE 

with 9% and 14% respectively.  

 



115 

 

Much more features created combined models with significant improvements from the td-models 

in the classification task, relative the regression tasks. Even more features reported significantly 

lowered BS, the change was negligible and thus a second criterion demanding a minimum 1% 

relative negative difference in BS between the combined and td-models. This issue was not 

present when evaluating the regression models, which only had the four significant features 

overall. One may argue that this difference substantiates the binary grouping by xerostomia 

thresholding, and that the classification ML-task was more feasible when having such a noisy 

outcome than regression.  

Regarding prediction of simultaneous xerostomia the no-p T1 LR-aggregated feature 635R with 

logistic regression improved the td-model the most, increasing the AUC (from 0.686 to 0.731) 

and lowering the BS (by 2.9%) as seen in Table 4-14. This reflects the results from LOOCV 

evaluated simultaneous xerostomia prediction (Figure 4-21) where no-p T1 LR-aggregated 

features performed the best among the feature-only models. 

Among the features improving late predictions (Table 4-15), two features are from baseline. 

While the no-p T1 LR-average models scored a high AUC using only baseline features (AUC = 

0.80, Figure 4-24) only one of the 5 features improved upon the td-model significantly (Ft498, 

see Table 4-15). However, while the combined model decreased the BS (by 1.7%), the high 

performance observed using only image features is not present with a low AUC (0.300). 

Similarly, Ft2 (from delta-p LR-avg baseline) increases the AUC from 0.000 to 0.119 and is 

therefore still a very bad model.  

Among the four after-irr features improving upon the BS, the delta-p feature (Ft678R) did not 

improve the AUC. The other three features were all no-p T2 features in combinations with a RF 

classifier and had a bigger impact on both AUC and BS resulting in very good models (all AUCs 

above 0.870). Especially Ft216R is seen to be improve upon the td-model massively, resulting in 

a combined model being the highest performer across all models in this work (with AUC = 0.943 

and BS = 0.098, Figure 5-7). However, the td-model is seen to already have a high AUC (at 

0.795) above the td-model utilizing all data in section 4.5.1 (having maximum AUC = 0.67, see 

Table 4-10), and might therefore be assumed to produce somewhat optimistic results. Still, the 

improvement in BS is large and such a high-performing feature is a great candidate for further 

investigation. 
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Figure 5-7: ROC curve for highest performing feature (216R) in a combined model with time and dose, using no-p T2 LR-

aggregated data with a random forest classifier. The classifier was fitted 100 times, seen as dotted curves surrounding the solid 

curve created using the averaged probability estimates. 

 

Among the three delta-features identified, two models (RF and logistic regression) both used the 

same shape-based LR-averaged feature (Ft2) to achieve high-performing combined models. 

Having a shape-based delta-feature as a good predictor of late xerostomia corresponds with the 

study by van Dijk et al. (2018, [10]), which identified the relative (delta) surface change between 

baseline and week 3 to be the strongest univariate predictor (as discussed in section 2.3.6).  

 

5.6 Evaluation of top performing features with 

biological interpretations 

The Quantitative Image Biomarker Association (QIBA) attempts to standardize the clinical 

implementation of imaging biomarkers, such as radiomic features, using a five-step process 

[115]. The first step relates to a public claim regarding some biomarker identification with an 

explanation of the clinical relevance.  

As this work is a part of a pre-clinical study evaluating short- and long-term effects after RT to 

the HN region (PROCCA), biological interpretations of the top performing radiomic features are 

of interest as they might contain information regarding the biological mechanism post-irradiation 

on a macroscopic level.  

 

5.6.1 Shape-based features 

The shape-based radiomic features might be expected to capture macroscopic changes in the 

SGs, unrelated to pixel intensities, such as loss of mass or inflammation-induced swelling (see 
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section 2.1.4). Inter-mice variabilities such as growth rate or radiosensitivity might have affected 

the shape features, but one may assume intra-mice variability over shorter periods (circadian 

dependence) to be unrelated. Seen in relation to the questionable validity of segmentations 

performed in this work discussed in section 5.3, any claims regarding the shape features should 

be done with caution.  

 

The delta-p LR-averaged feature Ft2, having improved upon the td-model as described in section 

5.5.5, is a measure of the major axis length in the 2-dimensional ROI (the maximum length 

across the ROI). Being a delta-p feature, the feature describes some ROI shape change before 

and after saliva extractions by pilocarpine injections on the same day. The relative delta-p 

change is both positive and negative at baseline for both control and irradiated individuals. While 

the baseline feature improved upon the td-model the predictions were still bad in the combined 

model with AUC below 0.50 and BS equal to 0.25, as well as when being used as a univariate 

predictor. The feature might therefore be significant only due to random variations in the 

segmentations, or positional changes before and after pilocarpine injections, rather than a change 

in shape on the same day induced by extraction of saliva from the glands. 

 

The relative difference over time of the average elongation between the left and right segmented 

units (delta LR-average Ft1) improved upon the td-model both using a RF and logistic classifier. 

The elongation was calculated as the squared ratio between the lengths of the major and minor 

axis following IBSI [49]. From an optimistic standpoint, one may assume the averaging between 

two segmented ROIs from the same individual to cancel out segmentation errors – thus 

improving the feature accuracy. Looking at the scatter plot of the delta-feature in Figure 5-8 the 

xerostomic individuals seems to have a larger increase in elongation between baseline and after 

irradiation, when evaluating the control and irradiated individuals separately. Being a shape-

based delta-feature a natural comparison is to the delta-radiomics analysis by van Dijk (2018, 

[10]), where the relative change in PG surface between baseline and week 3 was the best 

predictor of late xerostomia. As the elongation feature have a low insignificant correlation to 

ROI surface (𝜌 = 0.09, 𝑝 = 0.27) the delta-version of Ft1 may be assumed to either describe 

some different biological phenomenon than the previously discovered shrinkage in PG-surface, 

or be due to variations in mouse positionings during the MRI-acquisitions across the experiments 

– changing the shape of the organ due to internal pressures affecting elongation with a random 

relationship to saliva changes in the small sample size for delta-analysis (N=39). 
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Figure 5-8: Relative change in ROI elongation over time (delta-features), for irradiated and control individuals. 

 

5.6.2 First-order features 

As discussed in section 5.5, the signal in T2-w MR-images is expected to be more directly 

related the water content in saliva relative the T1-w images. Among the three top-performing 

first-order features two are T2-weighted delta-p features, and all three are from predictions to 

saliva measurements from the same day as the images (simultaneous). Being the relative 

difference in feature values before and after saliva measurements, the delta-p features may be 

expected to more strongly reflect both intra- and inter-variabilities in the saliva productions for 

the mice than the before-p (no-p) T2 features. An earlier study found the maximum intensity in 

CT-images to improve predictions of late xerostomia [62].  

 

The combined model using the LR-average delta-p feature Ft12 had the biggest relative 

reduction in MSE compared to the td-only regression model in section 4.4.3. Ft12 is a measure 

of the image energy, without any image filtering, calculated as the sum of all squared intensities 

within the ROI. As the squaring amplifies high-valued intensities, the feature becomes a measure 

of the magnitude of the intensities. Most delta-p Ft12 values are negative, indicating a lower 

magnitude among the pixel intensities overall after saliva measurements. The delta-p feature has 

a Pearson correlation of 0.329 (p = 0.006) to the saliva values, increasing to 0.579 (p < .000) 

when only considering irradiated individuals while being very low and insignificant when only 

considering control individuals (correlation at 0.031 with p = 0.874). This may indicate the first-

order delta-p feature captures variability factors such as radiosensitivity, affecting the SG 

destruction and complementary loss of saliva production, more than factors relating to control 

individuals such as variations in growth rate.  
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5.6.3 Texture-based features 

The texture-based radiomic features might be expected to capture changes in the microscopic 

environment, visible as macroscopic relationships between neighbouring pixels in the images. 

Earlier studies have shown an increase in heterogeneity in the salivary glands post-irradiation, 

and related texture-features to observed changes in the epithelial architecture, increase in adipose 

tissue, or a decrease in vascularization as discussed in sections 2.1.4 and 2.3.6. As the 

abovementioned biological changes may be highly individual, the texture-features might be 

expected to capture inter-mice variations. 

 

Among the top performing texture features, features based on the gray level co-occurrence 

matrix (GLCM) was represented the most (Figure 5-6). Of the three GLCM-features, two were 

calculated after applying a gradient filter. The relationship between the GLCM and the gradient 

filter is illustrated in Figure 5-9. As the gradient filter enhances edges in the image (sections 

2.3.4 and  3.2.2) the branching structure central in the ROI becomes more visible after applying 

the filter. Comparing the structure to the mouse anatomy in Figure 2-5, it may be either a 

salivary duct (for saliva transportation) or vascular such as the carotid artery.  

 

 

Figure 5-9: Illustrating the relationship between the gradient image filter and the gray level co-occurrence matrix (GLCM). 

Right: gradient filtered image and GLCM for control (C2) and irradiated individual (H3) after irradiation (day 8). 

 

As mentioned in section 2.3.6 the GLCM correlation was shown to be a significant predictor of 

xerostomia in a 2018 texture-analysis study using CT images [65]. As a delta-feature the right 

version of the LR-aggregated GLCM correlation after applying the gradient filter (Ft759R) was 
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among the top predictors for improving predictions of late xerostomia relative the td-model. 

Looking at the temporal evolution of the feature in Figure 5-10 (left plot), a separation between 

control and irradiated individuals is present post-irradiation (from day 8) with an increased 

difference in the latest time-group. The GLCM correlation describes the linear dependency 

between discretized gray level values in the ROI and their respective entries in the GLCM [49].  

For prediction of late xerostomia, the no-p T2 LR-average feature 765 was among the top models 

in combination with time and dose. Using the GLCM from after gradient filtering, Ft765 

describes the informational measure of correlation (IMC) relating the joint distributions between 

𝑖 and 𝑗 in the GLCM using mutual information [49]. IMC is a descriptor of the texture 

complexity which, in combination with the gradient filter, may be assumed to be related to the 

visible branching structure. Ft765 is seen to separate the controls and irradiated individuals post-

irradiation in Figure 5-10 (right plot). 

The GLCM correlation in the 2018 texture-analysis was assumed, along a GLRLM feature, to 

possibly relate to a lower vascularity in xerostomic patients post-irradiation or an increase in 

adipose tissue [65]. This corresponds to the reported increased vascular resistance found by 

ultrasonic found by earlier studies, as described in section 2.1.4. 

 

 

Figure 5-10: Left: Right version of LR-aggregated feature 759, right: LR-average of feature 765. Both are GLCM-based features 

calculated after applying a gradient filter. 

 

Only two of the top-performing features scored with AUC above 0.50 when evaluated 

univariately for xerostomia predictions, both being textural features calculated from the gray 

level run length matrix (GLRLM). 

Using no-p T2 LR-average feature 408 from after irradiation, without any image filtering, the 

long-run high gray-level emphasis predicts late xerostomia with AUC = 0.60 univariately and 

with AUC = 0.878 when combined with time and dose. The feature increases with longer runs in 

the GLRLM among the higher-intensity pixels, indicating a coarser textural structure among the 

high-intensity regions in the ROI. 
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The second GLRLM feature is the no-p T1 LR-aggregated feature 635R, for prediction of 

simultaneous xerostomia. Ft635 is the run variance (RV) in the GLRLM calculating after 

applying a square filter. The square filter squares all pixel intensities in the image, increasing the 

separation between high and low intensities in the ROI. The RV measures the variance in the 

runs, across the run lengths in the GLRLM. As seen in the right plot in Figure 5-11 xerostomic 

individuals have a higher RV than the non-xerostomic individuals, with little separation between 

irradiated and control.  

In the 2016 study by van Dijk evaluating texture-features from CT images in relation to 

xerostomia, the GLRLM short run emphasis from the parotid gland was among the top predictors 

(section 2.3.6 and [61]). By visual inspection the feature was linked to an increase in fat 

saturation, as was also hypothesized by the 2018 CT study from IMRT-treated patients finding 

both a GLCM and GLRLM feature to be of significance [65] (as mentioned above in this 

chapter). As T1 images have bright signal from fat, but not from water, one might suspect the 

T1-version of feature 635R to capture some inter-mouse variance between the increase in 

adipose tissue following irradiation, which might also be present in a small subset of the control 

individuals, hindering normal function of the salivary glands making the mice xerostomic. 

 

 

Figure 5-11: Left: images from control (C2) and irradiated (H3) individuals after applying a square filter, with corresponding 

GLRLMs. Right: the square GLRLM run variance for all control and irradiated individuals, separated by whether they are 

xerostomic.  

 

The absolute top-performing feature in combination with a td-model was feature 216R from the 

no-p T2 LR-aggregated after-irr features (AUC = 0.941, BS = 0.098). The feature more than 

halved the BS relative the td-only model (relative change -0.514). Feature 216R measures the 

joint distribution of low dependence entries with emphasis on lower gray levels calculated from 

the GLDM [49], following a logarithm filter. As seen in Figure 5-12 the logarithm filter, in 

combination with the FBW discretization, compresses the number of gray levels relative the 

unfiltered image (8 intensities levels in the y-direction of the GLDM). However, this seemed to 
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increase the range of the dependencies (x-direction of the GLDM). One may therefore wonder if 

using a lower amount of discretization levels (bins) increased the differentiation between 

controls and irradiated individuals in the low-intensity dependency counts, measured by the 

feature.  

 

 

Figure 5-12: Illustration of resulting GLDMs before and after applying a logarithm filter. The GLDM for a control mouse (C2) 

and irradiated (H3) after logarithm filtering seen to the right, from the fist imaging day after irradiation (day 8). All images are 

from the right SMG unit. 

 

5.7 Improvements and further studies 

As with all radiomics-based studies, the repeatability of identified features with their predictive 

performance should optimally be evaluated on new external data. The reproducibility of 

radiomic features, e.g. stability across differently acquired data, could also be assessed to 

evaluate whether the acclaimed signal is just that – or noise with random correlations to the 

outcome. Evaluation of the feature robustness across different MRI scanners, protocols, and B-

field variations is of interest when using MR-images for radiomics.  

Assuming the results to have some relation to the true biological phenomenon as hypothesized, 

the best radiomic features from this work could be compared to features identified using a 

similar workflow in the next step of PROCCA: irradiated mice using protons. This may identify 

imaging biomarkers which are stable across external irradiation using both x-rays and protons, 

which have different ways of delivering dose to the target medium.  

To aid the interpretation of top-performing features in future work, especially after image 

filtering and texture-based features, comparisons to other types of analysis of irradiated mice 
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relative control could be done. Examples include visual assessments of SG biopsies, histology 

analysis, and cytokine data. 

As the segmentation method developed and used in this study have a high level of observer bias, 

the segmentation would optimally be repeated by an external observer (with expert knowledge 

about mouse physiology) to assess inter-observer variations in the delineation, such as what 

watershed regions to include and the choice of central L/ R slices. Future work may also use 

MRI-acquisitions with a lower difference between pixel distance and slice distance allowing for 

less loss of, or creation of artificial, information through interpolation into an isotropic voxel 

space for 3D radiomics. Capturing the SGs as single whole organs in 3D-radiomic features 

would allow for a less confusing analysis without considering LR-modes. 

 

While the dose differences between the left and right SGs were assumed to be negligible, a 

Monte Carlo simulation may be used for accurate voxel-based dosimetry in a future work. This 

would allow for a more proper NTCP-model for comparison with the radiomic features, by 

incorporating the dose-volume histogram parameters such as the volume having received 90% of 

max dose (D90). In both future work, and as an improvement on this work, baseline saliva 

measurements could have been implemented into a separate NTCP comparison analysis – which 

would in this work have discarded some data, but allowed for a NTCP model more closely 

resembling what is in use clinically.  

 

Regarding the preprocessing choices made in this work, some improvements may be suggested. 

When normalizing image intensities with a shifted standardization, the shift could have been 

made global based on the image acquisition (T1 or T2) in a similar fashion to the Nyul standard 

scales – making the image intensities at roughly the same values. Concerning the choice of using 

a FBW discretization, a FBC discretization may be more feasible for calculation of features after 

image filtering – which largely changes the scale and range of intensities in the images for some 

filters.  

To mitigate potential data leakage the data might have been split into training and test data as 

early as normalization, using only training data to create the standard scales for Nyul 

normalization and in the further steps with potential data leakage. However, this could be hard to 

implement in combination with using LOOCV for evaluation of the models. 

 

In a future work having more accurate saliva measurements, the xerostomia thresholding could 

be implemented on a per-individual basis: using the relative change to relative baseline saliva 

with some ratio-based threshold – allowing for inter-mice variabilities when assuming an 

individual to be xerostomic. 

Future studies may also use more advanced MRI techniques, if possible with the small scanners 

used for mice, such as diffusion weighted MRI (dMRI) or sialography. Using dMRI may yield 
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information regarding changes in vascularity post-irradiation or over time. MR sialography 

utilized a heavily T2-weighted sequence to map the ductal architectures of the SGs [25], which 

may contain texture-related information obtained by radiomic analysis. 

 

6 Conclusions 

Imaging biomarkers from radiomic studies have the potential for incorporation into clinical 

oncology, supplying patient-specific information for baseline risk assessments and changes post-

irradiation. Such information may be used as a decision-making tool for the oncologist, helping 

the shift towards precision oncology improving patient care in radiotherapy of head and neck 

carcinoma. Specifically, radiomic features from both T2- and T1-weighted MR-images showed 

potential for predicting radiation-induced changes in saliva production in vivo, using data from a 

pre-clinical study on mice. The features were calculated from 2D ROIs in the images, from both 

the left and right subunit of the fused sublingual and submandibular glands. Delta-features from 

before and after irradiation, and delta-p feature from before and after pilocarpine injections for 

measuring saliva production at the same day, were calculated and compared to the standard 

radiomic features (denoted no-p, or before-p, in relation to the pilocarpine injections). 

Segmenting the salivary glands to create a region of interest was successfully performed using a 

watershed-based semi-automatic algorithm on each 2D MR-image separately. While segmented 

ROIs in both T1 and T2-images had a higher correlation to measured SLG area than SMG area 

in surgical specimens from 9 imaged individuals, the ROIs were assumed to contain most or all 

of the SMG with some SLG as the SMG is bigger than the SLG and the two glands are fused in 

mice. A pipeline for extraction of radiomic features considering preprocessing on a feature-

specific level was successfully developed in accordance with the IBSI guidelines. 

The saliva production from control individuals was found to be significantly different to 

irradiated individuals for measurements taken at day 26 or later, confirming earlier studies 

showing a post-irradiation reduction in saliva for both humans and rats. A regression analysis 

was performed to evaluate the predictive performance of time and dose on all saliva 

measurements (N=347), having a maximum R2 of 0.09 across LOOCV evaluated linear 

regression models. A xerostomia thresholding was performed to shift the prediction problem 

from regression to classification, using measured saliva from non-irradiated individuals, but due 

to high variance in the outcome the regressed thresholding line had a low R2 at 0.037. 

Nonetheless, the td-model using all data scored a maximum AUC of 0.67 when predicting 

xerostomia. 

Using only image features, the no-p T2 LR-aggregated features had the highest R2 in a LOOCV 

evaluated regression analysis to simultaneously measured saliva (R2 = 0.09). However, the no-p 

T1 features had the highest AUC across LOOCV evaluated classifications to simultaneous saliva 

(AUC = 0.62) and were better predictors of late xerostomia (AUC = 0.72) along the T2 no-p 

features (AUC = 0.75). The no-p T1 features also showed a high predictive ability using only 
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baseline features to predict late xerostomia (AUC = 0.80). Only using delta-features for 

predicting late xerostomia was unsuccessful with no models having AUC above 0.50. Comparing 

no-p T1 to T2 features on the same subset of data the T1-models significantly outperformed the 

T2-models on predicting simultaneous xerostomia, while the T2-features had some non-

significant improvement over the T1 models for predicting late xerostomia.  

Using td-models in addition to one of each top-selected radiomic features from the previous 

LOOCV evaluated models, 14 features improved upon the td-models significantly. Among the 

top features almost all LR-aggregated features were from the right subunit, indicating some 

possible differences in post-irradiation responses between the two SG subunits.  

The shape-based delta-feature elongation improved upon prediction of late xerostomia, possibly 

related to radiation-induced changes in SG shape. The delta-p first-order feature energy 

improved the td-model for predicting simultaneous xerostomia, assumed to be related to the 

difference in saliva content before and after saliva extraction. Most of the radiomic features 

improving upon the td-models were texture-based. A delta-feature related to the GLCM, along a 

no-p T2 feature, possibly captured some irradiation-induced changes related to vascularity or the 

salivatory ducts with clear separation between control and irradiated individuals in the latest 

days. Both a T1 and T2 weighted feature from the GLRLM was hypothesized to capture changes 

in fat-content, known to increase post-irradiation in the SGs.  

Overall, the radiomic features seem to capture inter-mice variabilities relating to saliva 

production at the same day as the MR-images were acquired, and forward in time. However, due 

to small sample sizes and a lot of potential error sources, the results are in need of validation 

studies on external data to evaluate robustness and repeatability of the best prediction models and 

top-performing features.  
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Appendix A: Segmentation hyperparameters 

Segmentation parameter 

tuple 

(median disk-size, gradient disk-size, marker 

disk-size, marker threshold) 

Number of 

images segmented 

(3, 4, 13, 2) 279 

(4, 5, 10, 2) 35 

(2, 5, 10, 2) 8 

(4, 4, 12, 2) 8 

(2, 4, 10, 2) 2 

(2, 8, 14, 2) 1 

(3, 6, 6, 2) 1 

 

Appendix B: Segmented regions of interests at 

baseline 
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* left / right segmented ROI seen as separate slice for each mouse at baseline times (day -7 or -3)  
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Appendix C: Register of radiomic features by filters 

and type 

IDX FILTER_TYPE  IDX FILTER_TYPE 

 

1-9 original_shape 376-380 lbp-2D_ngtdm 

10-27 original_firstorder 381-402 original_glcm 

28-43 original_glszm 403-418 original_glrlm 

44-57 original_gldm 419-436 wavelet-H_firstorder 

58-62 original_ngtdm 437-458 wavelet-H_glcm 

63-80 square_firstorder 459-474 wavelet-H_glrlm 

81-96 square_glszm 475-490 wavelet-H_glszm 

97-110 square_gldm 491-504 wavelet-H_gldm 

111-115 square_ngtdm 505-509 wavelet-H_ngtdm 

116-133 squareroot_firstorder 510-527 wavelet-L_firstorder 

134-149 squareroot_glszm 528-549 wavelet-L_glcm 

150-163 squareroot_gldm 550-565 wavelet-L_glrlm 

164-168 squareroot_ngtdm 566-581 wavelet-L_glszm 

169-186 logarithm_firstorder 582-595 wavelet-L_gldm 

187-202 logarithm_glszm 596-600 wavelet-L_ngtdm 

203-216 logarithm_gldm 601-622 square_glcm 

217-221 logarithm_ngtdm 623-638 square_glrlm 

222-239 exponential_firstorder 639-660 squareroot_glcm 

240-255 exponential_glszm 661-676 squareroot_glrlm 

256-269 exponential_gldm 677-698 logarithm_glcm 

270-274 exponential_ngtdm 699-714 logarithm_glrlm 

275-292 gradient_firstorder 715-736 exponential_glcm 

293-308 gradient_glszm 737-752 exponential_glrlm 

309-322 gradient_gldm 753-774 gradient_glcm 

323-327 gradient_ngtdm 775-790 gradient_glrlm 

328-345 lbp-2D_firstorder 791-812 lbp-2D_glcm 

346-361 lbp-2D_glszm 813-828 lbp-2D_glrlm 

362-375 lbp-2D_gldm   
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Appendix D: Additional classification results 

 

Figure 6-1: AUC results from prediction of late xerostomia using various amounts of top features from four feature-spaces, 

including only time and dose (td).  

 

 

Figure 6-2: Mean of AUCs ± sd of AUCs for RF models using instances where both T1 and T2 images are present. Columns: 

prediction mode and test / train split. Rows: features used in model 
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Appendix E: Best k features across LOOCV 

evaluated regression models 

 

 


