
UNIVERSITY OF OSLO

Department of Informatics

Information sharing in

mobile ad-hoc

networks using a global

metadata manager

Aslak Johannessen

April 30, 2008

Abstract

Digital information sharing is vital to improve efficiency in rescue and emergency
operations. In the absence of infrastructure, the devices brought into the area
by rescue personnel, might be used to set up a mobile ad-hoc network. This
application domain is dominated by frequent merges and departures of nodes,
resulting in an unstable and ever changing topology. Information sharing can
be handled by using metadata describing instances of tables in the network.
We disseminate metadata to all nodes, so that each has its own local structure
containting all metadata available. The structure enables nodes to search for
table replicas, and query these over delay tolerant paths. Since metadata is
small in size the structure will remain small even with many tables existing,
and storing it on every device is feasible. The characteristics of mobile ad-hoc
networks makes the task of disseminating metadata across all nodes difficult,
in particular in the presence of scarce resources. We have looked into research
coming from the domain of ad-hoc networks to reuse techniques applicable to
information sharing. The techniques come mainly from routing in delay-tolerant
networks, and routing protocols of dense networks.

We have implemented three protocols which use different approaches to in-
formation sharing. The simple protocol uses a basic epidemic routing approach,
propagating information from neighbor to neighbor. By using the broadcast
protocol, we utilize the shared medium of wireless communication and its abil-
ity to send messages from one to many nodes, in addition to letting each node
stop the synchronization if no metadata is needed, thus removing some of the
redundant propagation paths. The semantic protocol utilizes the concept of
groups amongst the nodes, by giving these first priority. If nodes of the same
group are spread out through the network they will serve as multiple starting
points for the following normal dissemination.

By taking part in the implementation of the MIDAS middleware, real life
scenarios have been acquired, and tested using the protocols developed in this
thesis. MIDAS is a large reasearch project aiming to produce a middleware
that speeds up MANET application development. By testing the implemented
protocols in NEMAN, an emulator environment, we have measured both band-
width usage and performance. The implemented broadcast protocol is measured
to use 50 times less bandwidth than the simple implementation. Further the
concept of groups of nodes is utilized to give certain nodes higher priority in the
dissemination process, which results in multiple starting points for the normal
dissemination techniques. This protocol has only shown that the group priority
is working, however more research is needed to verify that the multiple start-
ing points give an advantage to the global dissemination. As we can see from
the results and the techniques used, routing principles in mobile ad-hoc net-
works can easily be applied to information sharing showing good performance
optimization, resulting in fast dissemination and high availability of metadata
information amoung the rescue personnel’s devices.

Acknowledgements

I would like to thank my supervisor Ellen Munthe-Kaas for her excellent su-
pervision and guidance. Special thanks also to Odd Aurmo for helping me out
with my English. I would also like to thank Matija Puzar and Katrine Stemland
Skjelsvik for their cooperation during the implementation phase.

Aslak Johannessen
Department of informatics UIO

30 April 2008

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Application domain . 3

1.3 Problem description . 4

1.4 MIDAS . 5

1.5 Outline . 5

2 Background 7

2.1 MANET characteristics . 7

2.1.1 Connectivity characteristics 7

2.1.2 Message passing and delay tolerant networks 8

2.1.3 Wifi limitations . 9

2.1.4 Flood . 10

2.1.5 The broadcast storm problem 11

2.2 Message piggybacking . 12

2.3 Dissemination processes . 13

2.3.1 Publish subscriber . 13

2.3.2 Expanding ring search behaviour 13

2.4 Classes of routing protocols . 14

2.4.1 Space path protocols . 14

2.4.2 Space/Time path protocols 16

2.5 MIDAS . 18

2.5.1 MIDAS Data Space . 19

2.6 Consistency . 21

2.7 Simulation and emulation platforms 22

2.7.1 NS2 . 23

2.7.2 NEMAN . 23

2.8 Ad-Hoc InfoWare . 24

2.8.1 Distributed Event Notification Service 24

3 Global metadata management 25

3.1 Data space consistency in GMDM 25

3.2 Information sharing . 27

3.2.1 Information sharing purposes 27

3.2.2 Synchronization . 28

3.2.3 Mechanisms of synchronization 28

7

4 Requriments analysis and solutions 31

4.1 Requirements put on GMDM . 31
4.1.1 Absolute requirements . 31
4.1.2 Performance requirements 32

4.2 Routing and topology service requirements from MDS 32
4.3 Dataspace vs. distributed databases 33

4.3.1 What differs MDS and DDB 34
4.3.2 What differs MDS and a DDBMS 34
4.3.3 Data space services . 35

4.4 Physical prerequisites . 36
4.5 Penalty of multihop synchronization 36
4.6 Routing principles applied for information sharing 38

4.6.1 Counter effective differences 39
4.6.2 Propabalistic routing used in information sharing 40

4.7 DENS message propagation model in information sharing 41
4.8 The broadcast storm problem . 42

4.8.1 How to use these schemes 43

5 Design issues 45

5.1 GMDM architecture . 45
5.2 Metadata filtering . 45
5.3 Propagation scope GMDM . 46
5.4 Synchronization protocols . 47

5.4.1 Messages . 47
5.4.2 Synchronization of already synchronized nodes 50

5.5 Propagation issues . 50
5.5.1 Epidemic propagation . 50
5.5.2 Broadcast propagation . 51
5.5.3 Semantic propagation . 53

6 Implementation 55

6.1 Implementation of GMDM . 55
6.1.1 Metadata tracker . 55
6.1.2 Metadata . 55
6.1.3 Synchronizer . 57
6.1.4 Sync manager controller 58
6.1.5 Chain manager . 60

6.2 Protocols . 62
6.2.1 Simple synchronization protocol 63
6.2.2 Broadcast synchronization protocol 63
6.2.3 Semantic synchronization protocol 67

6.3 CRT implementation . 71
6.3.1 Communication . 71
6.3.2 Topology manager . 73

6.4 The MDS facade component . 74
6.4.1 Message passing . 75
6.4.2 Request handler . 75

6.5 Rolle Player . 76
6.6 DENS implementation . 78

6.6.1 Architecture . 79

6.6.2 Test case . 80
6.6.3 Result . 81

6.7 Logging . 81
6.7.1 log4j . 81
6.7.2 StatusFile . 82

6.8 Software testing . 83
6.8.1 Unit testing . 83
6.8.2 Mock objects . 84

7 Instrumentation and Test setup 85

7.1 Chain . 86
7.2 Grid . 86
7.3 Message ferry . 87
7.4 Merge . 87
7.5 Test scenario implementation . 89

7.5.1 Chain scenario . 89
7.5.2 Grid scenario . 89
7.5.3 Merge scenario . 89
7.5.4 Ferry scenario . 92

7.6 Tools used and made . 93
7.6.1 NAM . 93
7.6.2 NAM format to NEMAN converter 94
7.6.3 iemul . 94

7.7 Measurements and simulation system 94
7.7.1 Controlling nodes . 95
7.7.2 Logging and status . 96

8 Test results 97

8.1 Metrics . 97
8.1.1 Sample interval . 97
8.1.2 Information storage count 98
8.1.3 Dissemination time . 98
8.1.4 Message sent count . 99

8.2 Influencing factors . 100
8.2.1 Dissemination time inaccuracy 100
8.2.2 Message size omitted . 100

8.3 Evaluation technique . 101
8.4 Conclusions drawn from the data 101

8.4.1 Bytes transferred . 102
8.4.2 Messages good indication of bytes transferred 102

8.5 Dissemination results . 103
8.5.1 Chain configuration . 104
8.5.2 Grid configuration . 105
8.5.3 Ferry scenario . 107
8.5.4 Merge scenario . 108

8.6 Performance versus neighbor count 109
8.7 Performance results . 110

8.7.1 Simple protocol . 110
8.7.2 Broadcast protocol . 111
8.7.3 Semantic protocol . 111

9 Conclusion 115

9.1 Further work . 117

A Cd content 123

A.1 /implementasjon . 123
A.1.1 /implementasjon/midas 123
A.1.2 /implementasjon/infoware-dens 123

A.2 /test-setup . 124
A.2.1 /test-setup/scenarios . 124

A.3 /script . 124

B Source code 125

B.1 Chain manager . 125
B.2 Request handler . 128
B.3 RollePlayer . 136
B.4 Protocols . 140

B.4.1 SimpleSyncprotocol . 140
B.4.2 BroadcastProtocol . 149
B.4.3 SemanticSyncProtocol . 157

C UML model MIDAS 163

D UML model Infoware implementation 167

E Re-execution of the experiments 171

List of Figures

2.1 The relation between the subcomponents of MDS 20

3.1 Simple sync protocol. 29

4.1 Multihop vs recursive synchronization 37
4.2 Relationship between messages and hops 38

5.1 The message objects . 49
5.2 Metadata content . 49
5.3 Statemaeching epidemic propagation 50
5.4 Broadcast propagation protocol at initiator side. 52
5.5 Broadcast propagation protocol machine at listening side. 52

6.1 The meatadata class . 56
6.2 The simple synchronization protocol 59
6.3 Protocol interface . 60
6.4 The ChainManager . 61
6.5 The SendView step . 64
6.6 The ReceiveAndHandleView step 64
6.7 The ReciveComplement step . 65
6.8 The ReciveNeeded step . 65
6.9 The Simple synchronization protocol 66
6.10 Listing the BroadCastOverview step 68
6.11 The BroadcastOverview step. 68
6.12 The ReceiveBroadcastAndHandleView step 69
6.13 The ReceiveDeliveryMessage step 69
6.14 The ReceiveExchangeMessage step 69
6.15 The SemanticSynchronization protocol. 70
6.16 Uml diagram of the CRT implementation 74
6.17 Uml diagram of the simulation application 77
6.18 Number of mediators . 80
6.19 The initial topology . 81

7.1 The chain scenario . 86
7.2 The grid scenario . 87
7.3 The ferry scenario . 88
7.4 The merge scenario . 90
7.5 Screenshot showing the chain scenario 91
7.6 Screenshot showing the grid scenario 91

11

7.7 Screenshot showing the merge scenario 92
7.8 Screenshot showing the ferry scenario 93
7.9 Simple outline of the simulator 95
7.10 Simple outline of the test case application 95

8.1 Graph showing dissemination . 99
8.2 Relation ship between messages and bandwidth usage 103
8.3 Plot of chain scenario . 104
8.4 Plot of grid scenario . 106
8.5 Plot of ferry scenario . 107
8.6 Plot of merge scenario . 108
8.7 Performance plotted against neighbor count 109
8.8 The metadata plotted on a per node basis 113

C.1 Overview of MDS component in MIDAS 164
C.2 Uml diagram of the GMDM component 164
C.3 Uml diagram showing the internal structure of Mds 165

D.1 The UML model showing the overview of DENS architecture. . 168
D.2 The UML model showing the DENS protocols. 169
D.3 The UML model showing the DENS event model. 170

List of Tables

8.1 Messages sent and received during the dissemination phase . . . 101
8.2 MIDAS traffic measured during dissemination 102

13

List of abbreviations

ACID Atomicity, Consistency, Isolation, Durability
AODV Ad hoc On Demand Distance Vector
API Application Program Interface
CRT Communication and routing
CTS Clear to send
DB Database
DDB Distributed database
DDBMS Distributed Database Management System
DENS Distributed event notification system
DMMS Distributed multimedia systems (Distribuerte multime-

dia systemer, Norwegian)
DS Data synchronizer
EU European Union
ERS Expanding ring search
GMDM Global metadata manager
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile communication
GUI Graphical User Interface
IEEE Institute of Electrical and Electronics Engineers
IFI Institute of informatics (Institutt for informatikk, Nor-

wegian)
IP Internet Protocol
ISC Information store count
LAR Location-Aided Routing
LS Local storage
MANET Mobile ad-hoc network
MDS MIDAS data space
MF Message ferry
MIDAS Middleware platform for developing and deploying ad-

vanced mobile services
NAM Network Animator
NEMAN Network emulator for mobile ad-hoc networks
NS2 The Network Simulator
OLSR Optimized Link State Routing protocol
OLSRD OLSR daemon
PROPHET Probabilistic Routing
QA Query analyzer
RREP Route reply
RREQ Route request
RTS Request to send
SM Subscription manager
SQL Structured Query Language
TCP Transmission Control Protocol
TTL Time to live
UDP User Datagram Protocol
UML Unified Modelling Language

Chapter 1

Introduction

The focus for this thesis is rescue scenarios, and giving rescue personnel the
ability to use devices aided information sharing. By exchanging information
between both personnel and between rescue departments information can be at
the correct place at the right time, and decisions being done with the correct
knowledge. For devices to communicate a computer network will be required.
The devices can use cell phone networks whenever available, however in many
rescue scenarios such networks are not available, in these cases only one option
remains, to use the devices as the network itself. The devices will have to form
an ad-hoc network, cooperating on network tasks, using each other’s connectiv-
ity. In such dramatically altered networks, other requirements will be governing
the application than that of a traditional environment. These requirements are
specific to the ad-hoc network, and embed asynchronous communication, spon-
taneous joins and departure of device’s and delay tolerant communication. For
an application to work over different networks a middleware has to be devel-
oped. By using this middleware an application can move between infrastructure,
cell phone, and ad-hoc networks transparently. Operation in the ad-hoc net-
work environment will become easier and more applications can be developed
as the knowledge required for development improves. We will in this thesis look
into how to make the information residing on one device known to all others,
by using metadata. The dissemination of metadata is the core of information
sharing, thus dissemination protocols need to be efficient both with respect to
bandwidth and time usage.

1.1 Background and motivation

The mobile industry is making smaller and smaller devices with better and
better communication features. The method of communication is no longer re-
stricted to wires, nor application to using voice. Data transfer and data sharing
is feasible on most mobile devices today. The hardware already is out there,
and we have only seen the start of software utilizing this new hardware.

Mobile devices are often equipped with Bluetooth, GSM and Wifi. Tra-
ditionally these technologies have been used to connect to already established
infrastructure, like GSM carriers or Wifi hotspots. The hardware does not limit
the use to infrastructure, the software does. Both Bluetooth and wifi standards

1

2 CHAPTER 1. INTRODUCTION

enables connectivity directly from device to device. This ability is called ad-hoc
networking, and is one of the fastest ways of establishing networks. When a
rescue organization, for example, arrives at a rescue site their efforts need to be
organized, this can be done through an ad-hoc network. While the network does
no longer rely on existing infrastructure, only the devices themselves supplying
the organization with a network wherever they need it. This is extremely con-
venient when organizing joint fire, police and ambulance operations in remote
locations as well as in urban areas. In remote locations infrastructure does not
exist, in urban areas, inside buildings, or tunnels existing infrastructure may be
blocked. In these situations there exists no alternative but to use existing nodes
to form the network, hence ad-hoc networks.

By forming such networks we can efficiently become independent of infras-
tructure, thus only using the ad-hoc community to support the network. Many
new consumer devices come with this network feature as one of the standard
ways of connection.

Networks in the ad-hoc category are different to normal networks. A com-
munity of devices is the network, and all devices are participating in routing
packets and other network services. This makes each device part of the “back-
bone” at the same time as they are normal end users devices. This scheme
requires that each device contributes to the network by running a set of services
to support the ad-hoc network.

When devices running cooperating services meet they will form an ad-hoc
network. This network can deliver the same features as one would expect from
a normal network. While using an ad-hoc network as a normal network, the
dynamic of the network will not be utilized. New neighbors come and go, to the
frustration of normal applications. Applications can use dynamical connectivity
of the ad-hoc network to bring more relevant information to the user. Applica-
tions can stay connected in places where they earlier could not. Collaboration
extends beyond connectivity, to features like information sharing, utility sharing
and context information to mention the most widely used.

The nature of the ad-hoc network makes normal application development
hard, as it has to take into account delay tolerant networks and frequent joins
and partitionings. Portability is another issue, each application wants to work
over all network types and be able to utilize gateways to internet connections
when such are available. To make the application development feasible and
portable, middleware software is needed. The middleware takes care of all the
hard and difficult problems of ad-hoc networking and, ideally only showing off
new and exciting features.

The vision of the ad-hoc network is to connect mobile devices, the software
developed for these networks can give another dimension to how we use our
devices. An example; Currently a system for car safety is being developed, this
uses the car as a mobile device equipped with a radio communication, it will
warn drivers along the road of hazards or accident. This can be done by letting
information jump from car to car. When an airbag is triggered the car warns the
cars around about the accidents. As the information reaches new cars, drivers
will be aware of the accident so they can stop in time. With the support of an
appropriate middleware, such applications in the future will be faster to develop
and more innovative in their use of the ad-hoc networks.

Information is not only limited to events, like in the car example, but also
to information gathered or stored at any node. In rescue and military scenarios

1.2. APPLICATION DOMAIN 3

this can, for example, be maps, instructions or registers of patients. This type
of information is physically residing in one location, but is useful elsewhere in
the network. For information to be available to each and every device, efficient
protocols for information sharing must be developed.

1.2 Application domain

Rescue like scenarios are characterized by having;

• devices carried into the area by rescue personnel

• frequent arrivals and departures of devices

• little or no infrastructure

The connectivity among the nodes is often sparse, meaning that a large area
is covered only with a small number of nodes, this leads to frequent network
partitions.

Take a train crash for example, where a train has collided inside a tunnel;
connectivity to the rescue personnel inside the tunnel can only be forwarded
through the other rescue personnel on the ground, often relying on only single
devices to transfer information from inside the tunnel to the outside. On the
outside, large groups of devices are gathered waiting for patients or coordinating
the efforts. To coordinate such a scenario information availability is crucial, thus
the information has to be made available to the rescue personnel which needs
it. Both areas with few devices and areas with many, must be handled, so that
the network service and information sharing is optimal. Information gathered
inside the tunnel has to be made available to the coordinators or ambulance
personnel outside.

This availability has to be done even though there is at the moment no
connection into the information gathering for the rescue worker, this will be
achieved via delay tolerant networks, using store and forward techniques. This
situation can arise when the network is sparse, where each node has a small
number of neighbors and many partitions exist. By using the mobility of each
node, we can still get connectivity and information sharing amongst the nodes.
By using these delay tolerant concepts, we will store information on each node
as it gathers it. Upon meeting a new node we propagate the information to
the new node, hence forward. By doing this a fireman can walk from inside
the tunnel, and store or carry the information outside to the awaiting rescue
personnel. When the fireman is walking back into the tunnel new information
from the outside can be carried inside. By this store and forward technique
metadata, along with requests for the actual data, can be transferred between
devices with no apparent connection, thus handling the frequent partitioning
and remerger, normal to the rescue scenario. This can solve the problem of
unconnected partitions, but introduces many challenges that are to be handled,
thus turning all “quality of service” terms on their head.

The domain can also be partitioned, the mentioned police, fire and ambu-
lance departments have to cooperate to perform a successful rescue operation.
The different devices coming from the different departments have to work to-
gether, regardless of which department they are under or type of device they use.

4 CHAPTER 1. INTRODUCTION

This cooperation will be handled by using the middleware, so that each device
can relate to a unified middleware which transparently hides the differences.

Development in the ad-hoc environment has been ongoing for some time,
mostly concerned with routing in ad-hoc networks. This has produced a large
quantity of routing protocols handling any scenario from dense via sparse to
delay tolerant. This thesis will try to use the large researched area of routing
protocols in ad-hoc networks to enhance information sharing. By using the
principles of routing, sharing of information will be done in an efficient manner,
utilizing the dynamic nature of the network. By implementing this strategy I
will show that today’s devices are capable of using ad-hoc network technology to
build dynamic information data storage, that expands as devices meet devices.
While talking about small devices and radio communication, we will not have
large storage space nor communication lines. In fact both assets will be small
and slow, which give implications into how we can accomplish this task. The so-
lution we are going to explore is the knowledge of knowledge, metadata. By not
moving the entire knowledge around, we distill the metadata information and
make a small piece of data called metadata. This metadata is then disseminated
through the network. This cooperation between devices will take advantage of
the mobility of each device. By exchanging information each device will be able
to discover information outside itself and its network. Through this approach
information that would forever stay hidden is discovered. This is accomplished
through an advanced device community, the network, without any network car-
riers or infrastructure. Which gives these networks and devices the ability to
survive and function in disaster areas or other areas where infrastructure is not
established.

1.3 Problem description

I have set out to handle information sharing in ad-hoc networks. By networks
I include both dense, sparse and delay tolerant networks. Information sharing
is the ability for each node to share its information with the ad-hoc network
and for each node to be aware of all other information in the network. More
formally;

• 100% dissemination. All devices in the entire ad-hoc network are required
to know of all metadata. Information is to propagate to all nodes in
its partition, in addition to all partitions that can be reached in a delay
tolerant manner.

• Global view. All nodes require all information. This demands that no
nodes will be starved with respect to any metadata.

These requirements are absolute, without meeting them we can not say that
information sharing occurs. If some areas of a partition or an ad-hoc network
do not know of a metadata element, which is known to others, the information
sharing will have failed. To avoid this situation, we enforce rules to eagerly
propagate information to neighbors. The triggering events must be established
so that bandwidth and processing are spared, but still all demands are met.

In addition to the absolute demands will we try to optimize the protocols so
that they;

1.4. MIDAS 5

• Use as little bandwidth as possible.

• The dissemination goes as fast as possible.

• Queries have low response time.

When the absolute demands are in place the focus will shift to get the pro-
tocols running as cost efficient as possible, along with having the performance
as high as possible. While existing in the ad-hoc networks where bandwidth
and processing power are key resources, these requirements will be important
to the performance of the entire network. If one part of the middleware uses
more than it needs this resource is taken away from the applications, resulting
in degradation of application potential and performance.

To optimize for performance and meet the demands put upon the protocols
we will use principles already developed for routing in ad-hoc networks. To
limit the load on the protocols only metadata will be disseminated, data must
be activly requested. The problem description is summarized in the following
quote;

Develop an efficient information sharing protocol, using principles
from ad-hoc network routing protocols.

1.4 MIDAS

MIDAS [15] is a middleware set out to make the life easier for the application
developer. Making the use of ad-hoc networks easy and with less complexity
than the situation is today. MIDAS will serve as a middleware that each appli-
cation can connect to. It delivers services as send and receive, context routing
and even has it own data space for storing and retrieval of information. It is
in this data space, called MDS (MIDAS data space), the information sharing is
taking place.

The work in this thesis was carried out as part of the MIDAS project. MI-
DAS is an EU project, consisting of different parties along with the University
of Oslo.

1.5 Outline

The rest of the thesis is organized as follows;
Chapter 2 provides background material. This is done since the following

chapters are built upon this background knowledge of wifi and ad-hoc network
environments and standards.

Chapter 3 introduces the information sharing approach used in MIDAS. How
best to do dissemination of metadata with the purpose of information sharing
is discussed.

Chapter 4 discusses how to handle the problems encountered in ad-hoc net-
works and wifi environments when doing information sharing, and an in depth
discussion into how the problems should be managed. A further specification of
the problem description is also included.

Chapter 5 includes design decisions on how to implement metadata sharing.
This is done through explaining each of the protocols and their messages.

6 CHAPTER 1. INTRODUCTION

Chapter 6 handles the implementation. In this chapter, the detailed imple-
mentation is discussed and specified. Both the implementation of the protocols
and the surrounding framework are described. Development techniques and
practises are also introduced.

Chapter 7 includes a specification of how to test the implementation speci-
fied, laying out the test scenarios and the test setup, describing the control and
logging mechanisms.

Chapter 8 contains the test results and the evaluation. In detail description
of the performance, with respect to the absolute performance requirements but
also evaluation of protocol against protocol is done.

Chapter 9 contains a conclusion and possible future work.
The appendix is divided into 5 parts, describing the cd appended to this

thesis and some important source code files. Uml documents central parts of
the implementation are included, before a re-execution recipe is described.

Chapter 2

Background

This chapter gives the background that is required when moveing on to the
discussion and implementation chapters. The background consists of introduc-
tion to the physical enviroment, the MANET and wifi technologys including the
standards that are used. The enviroment is inhereting problems due to physical
constrants, these are descirbed and solutions studied. Further is the transport
layer routing protocols introuced for diffrent types of topologys. The MIDAS
middleware is introduced by describing its vision, goals and sub components,
going into detail in MDS. Before we talk about the database asspect of MDS
consering this thesis. Simulation and emulation envirioments used to test co-
munication application of all sorts are descirbed in Section 2.7. The chapter is
finishing of with a description of the Ad-hoc Infoware project which MIDAS is
building on, in particular intrest is the DENS network.

2.1 MANET characteristics

MANET is an acronym for mobile ad-hoc network, which is a self-configuring
wireless ad-hoc network [6]. The topology of the network is defined by the
connectivity of all the nodes at any given time. The nodes are not limited to
running routing protocols but will also run user applications and services. The
nodes are free to move as they wish, this makes for rapid changes in the topol-
ogy. Nodes can disappear and reappear, due to both movement and shutdown,
without notice. Such events are referred to as network partitioning and merging.
During both partition and merge a node can alter its set of neighbors which are
defined to nodes that are within reach. We will refer to these nodes as neighbors
or one hop neighbors; hence they are one transmission range away. Nodes that
are one hop further away are called 2 hop neighbors since they have a two hop
route to the node. Such multihop routes can involve unstable connectivity of
intermediate nodes. This is handled differently by different routing protocol
classes. We will look into these protocols shortly.

2.1.1 Connectivity characteristics

In a dense network of nodes, the connectivity at each node is quite good since
each node reaches all other nodes via multihop routes. By connectivity at a

7

8 CHAPTER 2. BACKGROUND

point in time we require node A to have connection with node B. If node B is
far away from node A, it can use a multihop route to B. This can be done if
A has connectivity to some intermediate node that has connectivity, directly
or through other intermediate nodes, to B. If there exists a chain of hops that
leads from A to B, we call the connectivity a space path or a multihop route.
This means that there is a route from A to B that is “stable” so that multiple
packets can take this route. These space paths are frequent in dense networks
and are part of its characteristics. We distinguish between routes that have
intermediate nodes from those that are in direct reach of each other. The ones
with intermediate nodes are called multi hop routes, and the direct ones one
hop routes.

When there is no path from A to B at a given time, there is no space path.
In some networks where no space path exist, mobility of the nodes can make
it possible to send a packet from A to B, by using an intermediate node that
later in time passes by B and delivers the message. We call such paths over
time, space/time paths. Such space/time paths are part of the characteristics
of sparse networks. In these situations normal routing protocols do not work.
We need to use delay tolerant protocols which store and forward the packets.

To be able to route network packets over delay tolerant paths one would
have to use other mechanisms than over space paths. In these cases the routing
protocol would take into account, not only the current connectivity, but also the
future connectivity. Mobility is an important part of the delay tolerant routing
protocols, since it defines the connectivity. Routing under these conditions is
done by placing the network packet at nodes that can lead to propagation of
the packet nearer to the recipient. The selection of the store-and-forward nodes
is the major concern for the different protocols.

Let’s look at one delay tolerant routing protocol; where A and B are non-
mobile nodes that are out of reach of each other and F is a node that frequently
passes both A and B. We then have a space/time path between A and B. The
only way to send packets from A to B is via F when it passes by the nodes. In
turn F needs to retransmit the packet to the receiver when it reaches it. F then
needs to store and forward the packet from the time it receives it from A to it
can pass it on to B. We often refer to this situation as a message ferry while F
is ferrying packets between the two nodes that are out of reach. The technique
of message ferrying might seem like a universally good idea, but in practise
it requires some knowledge of the movement pattern of the nodes. In most
examples the ferry is a designated node with this one intent; the ferry is moving
in a pattern where it is supposed to encounter the nodes in the network, it
gathers messages like a postman. Ferry techniques differ from the ferry seeking
out each and every node to the nodes actively meeting the ferry on its route.
This pre-planned scheme is not feasible in general uncontrolled networks, thus
different techniques need to be used. [22]

2.1.2 Message passing and delay tolerant networks

Communication in delay tolerant networks differs from normal networks since
they require that messages are passed along, not only routed. The difference
lies in the ability for a message to travel along time/space paths. This is done
by passing on the message from node to node, it can be stored in each or some
of the intermediate nodes if needed, before it gets passed further on. While

2.1. MANET CHARACTERISTICS 9

routing, on the other hand, is merely a direct retransmission without storing.
By having the ability to store messages in intermediate nodes, on the way

from sender to receiver, delay tolerant networks can reach not only the current
network but also the network extended through the mobility of its nodes. An
example to explain more easily; assume that two gas stations are located on
the opposite sides of a broad high way, and the radio antennas can not reach
one another. To get communication between the two, we could use the pass-
ing cars as intermediate nodes, by sending a message to a passing car, which
later down the road passes by a car in the opposite direction, which it passes
the message on to. The second car will later pass by the gas station, which
now receives the message. This is one example on how to use mobility in an
everyday scenario to gain connectivity. However, the same path used to send
the message in one direction is not usable for the return messages. Each of the
cars is long gone by this time. If no car would ever pass by the gas stations
no message is returned. This asymmetry is part of the delay tolerant network’s
problems. Communication in one direction does not guarantee communication
in the opposite direction.

The routing concept of message ferrying, as done by the two cars, is inter-
esting in relation to information sharing. Both routing and information sharing
are motivated by the same thing, routing, by getting the message to the one
that needs it and information sharing, by getting information to the ones that
need it. In delay tolerant networks the receiver’s location is not known. The
nodes in-between, the intermediate nodes, are also unknown. As the nodes move
around, their encounters will lead to new network partitions and new space/-
time paths, this behaviour has to be used to route packets. The protocol does
so by placing the message in strategic positions so that the recipient receives the
message eventually. The simple solution is to flood the message to all nodes in
the partition and to every new node that comes in contact with nodes from the
original partition. With this method we will surely reach every node by space/-
time path that evolves. However, the nodes not reached by the flood technique
can not be reached, since there is no space/time path to these nodes. This
method of passing along packets is called, with some optimizations, gossiping or
epidemic routing, the packet spreads like an epidemic or as gossip [25] [3]. The
challenge is to restrain the gossiping so that the network does not get flooded
with packets. The packet that is sent has to be self-contained, so that it can
go out on the network and reach its recipient without the sender’s aid, as the
sender could be forever out of reach. This message passing will therefore not
be able to deliver quality of service as a normal network, but has to be a “best
effort” service.

2.1.3 Wifi limitations

When using MANETs it is important to be aware of the limitations of the wifi
IEEE 802.11 [11] standard which makes up the connections. This standard
runs in the 5 Ghz and 2.4 Ghz bands, and uses different types of modulation
techniques. The most commonly used is 802.11g. This standard has a maximum
bandwidth of 54 Mbit/s and is suffering from collisions with other standards and
appliances like the 802.11b, Bluetooth, cordless phones and microwave ovens.
This becomes an even bigger problem when there are many nodes running in
the same sending area. Since wifi shares the same restrictions as any other

10 CHAPTER 2. BACKGROUND

radio technology that sends and receives on the same frequency, it is physically
required to operate in simplex, only one at a time. This implies a strict control
of who is sending and how the medium is used. Medium is here used to identify
the frequency that the data is travelling on. The coordination technique is
referred to as “Collision avoidance” which tries to make the medium collision
free.

This mechanism is implemented with coordination messages such as “Request-
to-send” (RTS) and “Clear-to-send” (CTS), in addition no packets, including
RTS and CTS, will be sent before the medium is sensed to be unused [11]. When
a state arises that calls for waiting or retransmit due to collision or corrupt pack-
ets, the standard calls for a random wait period, called the backoff period. This
implies that in a dense network with many nodes and much traffic, the nodes
are going to wait longer before sending, and colliding transmissions will becom-
ing frequent as the network density grows. For two messages to collide, both
messages will require to be sent at the same time, in this way is both nodes
sensing that the medium is free. While both nodes are sending the packets col-
lide in mid air, this however is not discovered during sending, both nodes need
to finish their sending, and retransmission is called for, with all its overhead.
This in turn makes for inefficient transmission and the network is then going to
be rendered unusable due to poor performance. It is therefore not likely that
ad-hoc networks can grow to large networks, over 50 nodes. As long as the
network uses radio communication the number of nodes in one radio range can
not grow large. If they do, the network would strangle itself and reduce the
number of active nodes, while some of the nodes in a “full” area are not going
to get the time slot they need to send packets, thus disconnecting them from
the network. We can therefore assume small partition sizes when working with
ad-hoc networks. This will have consequences for the later discussed implemen-
tation of the synchronization and dissemination protocols which have to use as
little as possible of the bandwidth.

When talking about characteristics in radio and wifi communication, one
should not overlook the good things about the shared radio channel. This
means that any message is heard by any node within reach. In unicast all nodes
that are not the recipient, drop the message, but broadcast can be done in a
more efficient way than in a traditional infrastructure and wired networks. This
is related to the same fact that also creates the limitations. In fact, the 802.11
standard defines the broadcast address to be all stations actively connected to
the same medium [11]. This means that a broadcast call will be transmitted one
time only, and all that hear it, receive it. In contrast you would in infrastructure
networks have to retransmit the packet to all outgoing lines. This benefit will
be used later.

2.1.4 Flood

Flood is a basic concept when using any network. It is often done by send-
ing broadcast packets, and instructing everyone that receives one of these, to
rebroadcast them. This technique can be efficient for some purposes and is of-
ten used for network services like topology information or other network wide
coordination tasks.

Flooding of packets can be used to reach as many nodes as possible, and by
doing so, locate one specific node, establish a route, gather topology informa-

2.1. MANET CHARACTERISTICS 11

tion, or send packets, for example. The problem with flooding is that it uses
enormous amounts of bandwidth. The exponential growth of messages will lead
to the degradation of throughput if no restrictions are imposed. To look at an
example of sending messages with flooding; the basic implementation is to send
a broadcast message and instruct all to rebroadcast if they are not the recipient.
By using this technique, each of the nodes hearing the first message will send
one new broadcast message, which will be heard by all within reach, including
the original node, which will rebroadcast the message for a second time. Every
time a node which is not the recipient hears the broadcast message, it will make
another copy. When looking at the end state, we will see that the recipient must
receive all copies, while this is the only way to terminate a message copy.

There are many ways to do flooding with solving many of the problems
included in this basic example [8]. The simplest techniques include; tracking
messages so that each node never rebroadcasts a message more than once, others
stop the messages after a defined number of hops, also referred to as time to
live (TTL). By using such techniques together with broadcast messages, flooding
can serve as a good technique to solve many network tasks.

2.1.5 The broadcast storm problem

When using flood and broadcast messages in the wrong way, serious network
problems can emerge. This section summerizes the conclution from the article
[16] with respect to usage in information shareing. Techniques and principles
are proposed to enhance the use of broadcast and rebroadcast so that it can be
used for efficient dissemination of messages in an MANET. Some techniques are
listed in [16]. These techniques are in place to limit the rebroadcast of messages,
where the rebroadcast does not add to the coverage of the dissemination.

The problem occurs when a node is trying to disseminate a message in the
network using rebroadcasts from all the other nodes. As the rebroadcasts are
transmitted, problems occur due to three reasons;

• Redundant broadcasts, the occurrence of two or more nodes rebroadcast-
ing a message without reaching more nodes.

• Contention, happens when multiple nodes rebroadcast a message at the
same time.

• Collision, while the IEEE 802.11 standard does not require broadcast mes-
sages to use the request to send and clear to send mechanisms, which gives
broadcast messages a higher probability of colliding.

All categories of problems are caused by the overlapping radio transmission
range of each node. A rebroadcast in a randomly generated topology, where all
nodes have one common neighbor, shows that the average additional coverage
by each node is as low as 41% [16].

The goal of the techniques proposed in the article is to limit the number of
rebroadcasts, as many of them are redundant, thus avoiding the three problem
areas. This is done through five approaches;

• A probabilistic scheme, where a probability P is introduced when rebroad-
casting, so only some of the heard messages are rebroadcasted. To also

12 CHAPTER 2. BACKGROUND

handle contention and collision, a randomly selected back of period is used
to avoid simultaneous rebroadcasts.

• The Counter-based scheme, where a counter is used to only retransmit
messages that are not heard a given number of times. This is based on
the fact that after hearing a message k times, the expected additional
coverage by this node is less likely.

• Distance-based scheme, which uses the distance between the sender and
receiver, if they are located at approximately the same location, their
reachable area are the same, hence only one should rebroadcast. It is
proposed to use signal strength to estimate the distance between the nodes.

• Location-based scheme, that uses GPS positions to greatly enhance the
topology information, to establish an overview of the uniquely reachable
area for each node, which is the area reached by only one node.

• Cluster-based scheme, which uses the transmission range of one node and
places all its reachable nodes as its members, and the node itself as the
head. Clusters also include gateways which can communicate with another
cluster. Only gateways and heads are allowed to rebroadcast, hence re-
ducing the number of possible rebroadcasting nodes, which can be further
reduced by putting any of the above techniques on top.

From the results we learn that the location-based scheme is the most efficient,
using the exact information of node locations and topology. The probability
based approach has been shown to perform well even with a small probability,
which needs to be increased for use in sparse topologies. As a side effect of the
increased probability, will the savings of bandwidth is decreased proportionally
to the increased probability, since more rebroadcasts will occur. The counter-
based technique can obtain a reduction of messages up to 2

3
depending on the

number of neighbors each node has, if the counter threshold is set to 3. The
distance based scheme is performing better in respect to reachability, since the
correct messages are not rebroadcasted, however the savings is as large as the
counter based technique. Unfortunately it introduces higher latency.

2.2 Message piggybacking

The technique of piggybacking is simple, the concept utilizes a message that is
going from A to B, locates another message that also is going from A to B and
appends the second message into the same network packet as the first. In this
way the two packets travel together over the communication channel. At the
receiving end the two packets are dismantled and treated as two packets. The
piggyback technique can be applied to all layers of the communication stack,
both lower levels and middleware can use the piggybacking technique. It is
especially efficient in networks that always send packets of a certain size, and
where the packet payload sometimes is less than that packet size. In these
situations the gain of piggy backing, thus filling up each network packet, will
be large. The use of efficient piggybacking is closely related to the nature and
behaviour of the physical network.

2.3. DISSEMINATION PROCESSES 13

In wifi networks the concept of piggybacking can be used to gain throughput
between two nodes. The shorter each packet is the more packets there will be
in the network. Each packet introduces an overhead in using the request-to-
send and clear-to-send technique. This overhead is per packet, thus reducing
the number of packets will reduce the overhead. Additionally, long packets will
be less exposed to collisions, while collisions occur often due to simultaneous
transmissions, so if the packet does not get any collisions at the start of the
transmission it is not likely to get any collisions at all, and large quantities of
data can be transferred without high collision rate. However, as packets are
transferred, they are exposed to both collisions and noise, but this will not be
identified until the transmission is finished, hence a long packet will send the
entire packet before the data corruption is detected. This gives long packets a
drawback while they hold up the transmission medium for a longer time, and if
corrupted, the entire packet must be retransmitted, with the same problems as
the first transfer.

2.3 Dissemination processes

Dissemination is used to describe the actions done by the network as a whole.
The actions by each node contribute to the global dissemination. In this thesis
we disseminate information in the form of metadata. This is done with the
vision of having each and every node possessing one copy of each metadata
element. To achieve it we need to disseminate the metadata from one node to
all other nodes. The processes used to do so will be described in this section.

2.3.1 Publish subscriber

Publish-subscriber systems are an asynchronous form of communication which
decouples the sender and receiving side of the communication. This is done by
classification of each message, so that the sender referred to as a publisher is
sending message into the system, not directly to a receiver. The receivers are
subscribing to all messages of some class. The system routes messages from the
publisher to all interested subscribers.

These systems are benefiting from low network load, by using multicast
possibilities, not unicast from the publisher which is an alternative. Filtering of
messages can be distributed, and as near the publisher as possible. It also has
the benefit of the publisher not needing to maintain the list of receivers. This
makes publish-subscriber systems very scaleable and well suited for MANETS.

2.3.2 Expanding ring search behaviour

Expanding ring search is often used when describing flood-controlling behaviour
in MANETs. The concept uses the physical topology to limiting the search. This
is done by limiting the number of hops a message can do before it is dropped.
The technique can be used to search for a specific node, or for a node with
specific information. In its basic form it includes sending a search query which
is limited to only travelling a given number of hops. By expanding the number
of hops, we limit the initial search ring to a small number of nodes and thus
affecting only a small portion of the network.

14 CHAPTER 2. BACKGROUND

By expanding the search ring from a small number of hops to a larger number
the network load is reduced. To do this, one sends a message to all neighbors,
for example, 1 hop radius. Then, if the recipient is not found the ring or number
of hops is expanded to more hops. This is repeated until the recipient is found
or a max ring size is reached. After this limit is reached, the ring search often
uses alternative solutions like flooding.

There have been done studies into optimal max ring sizes [9] [10]. The
tradeoff is between the repeated initial search rings, and repeated search of
these nodes. The initial rings get searched every time another ring search is
performed, while all searches start from one node. This gives a penalty both in
network load and time consumed, on the other hand, if the recipient is found
inside the first rings the rest of the network will stay unaffected, and the saving
of bandwidth is large. When the full out flood has started the entire network
must get the message without regards to the fact that the recipient already has
received the message. Both mathematical and empirical studies show that the
optimum ring size is locatable. It varies from topology to topology, based on
size and density. Some have concluded with the use of a static ring size for
nodes that have no knowledge of their topology. The tests and mathematics are
based on random scenarios where both the topology layout and the placement
of the searching node and the recipient are done randomly.

2.4 Classes of routing protocols

Routing protocols in MANET have been and probably are, one of the largest
research areas inside MANETs. Many protocols and concepts for routing in
MANETs have been developed. I want to look into if and how these concepts can
be utilized for information sharing purposes. This will be handled in Section 4.6.
The routing protocols for MANETs in general deliver two important services;

• Establishing routes for transferring packets to a destination.

• Topology information which is information about how the nodes are con-
nected.

I will now go through the classes of routing protocols in MANETs, and go
into more detail in some implementations showing good examples of the routing
class.

We will use both dens and sparse MANET routing protocols. The difference
in the protocols is based on which type of topology they can handle. We separate
the dense MANETs, which are those topologies where every node reaches all
other nodes in the network by a sparse path, thus there exists only one partition
where all nodes are located. I will use the term sparse MANET when describing
an ad-hoc network that also includes partitions. When this is the case, we have
to use delay tolerant network protocols to route packets over space/time paths,
while not all nodes can be reached by a space path.

2.4.1 Space path protocols

In this class we find the protocols that handle direct communication and alter
their routes upon topology changes. They react to changes in connectivity

2.4. CLASSES OF ROUTING PROTOCOLS 15

and try to find the quickest route to other nodes in the network. Two main
groups in this class are reactive and proactive [6]. A good and widely used
example of the first is Ad-hoc On-Demand Distance Vector Routing(AODV).
The protocol is not actively making routes until there is a need for such,either
on demand or reactively. Then it starts route discovery and establishes a route
to the destination. Reactiveness leads to less overhead in most cases. The
protocol suffers from its lack of topology awareness. It is also dependent on
stable routes and long communication sessions, on the other hand the overhead
is only for creating and repairing each route. Since the overhead is associated
with each new route AODV will generate more overhead as the sessions get
smaller and new routes get more frequent. The group of proactive protocols is
represented by Open Link State Routing (OLSR) which is, as the name implies,
a link state routing protocol. It is proactive and constantly probes the network
for neighborhood changes, hence keeping track of the total topology. It also
eliminates the route discovery delay and overhead that reactive protocols can
experience, but introduces a constant overhead that is used to monitor the
topology.

I will now in greater detail describe the two major space path protocols.
The two protocols exemplify the two subclasses of how to discover nodes and
paths to nodes in a MANET. It is therefore interesting to look closely at these
mechanisms.

AODV

Ad hoc On-Demand Distance Vector (AODV) Routing is a reactive protocol [18].
The benefit for the MANET when using a reactive protocol is that no traffic is
generated unless there is a need for a route. This need can arise for two reasons.
One, there is no route to the packet’s destination. Two, there is a broken route
for an actual packet. In both situations there is a need for a new route, but no
information on where the destination node is located. The sequence of events
that AODV goes through is described below;

• Send a packet called Route Request (RREQ). It is sent by broadcast to
the network neighbors. An expanding ring search (described in section
2.3.2) is done to prevent flooding the entire network.

• If the correct recipient node receives the RREQ, it sends a Route Reply
(RREP) back to the requester. The RREP follows the same route as the
first received RREQ as this has proven to be the fastest route. Later
RREQs received by the recipient node, with the same sequence number
are discarded as duplicates.

• The requester receives the RREP and now the route is established. Inter-
mediate routers that receive a RREP, find the first node that it received
the origin RREQ from, update the route accordingly and forwards the
RREP to this node, so that a message follows the fastest RREQ.

Routes established by this method, are active for a given time period starting
from the last sent packet over the route. The established route is used for all
packets in the consecutive transmission.

16 CHAPTER 2. BACKGROUND

OLSR

Open link state routing [2] is based on link state routing from wired networks,
which operates with a total view of the topology, also called the link state. This
total view is obtained by periodically broadcasting HELLO messages which are
received by neighbors. A HELLO that is received is indicating that the sender
is a neighbor. If two consecutive HELLOs are heard, the sender is accepted
as a neighbor and is so until two consecutive HELLOs are missed. It is these
HELLOs that are making the major overhead of OLSR. The HELLO packets
give each node information about its neighbors, which is combined with other
nodes neighborhood information to form the global topology. The topology
contains how many hops there are to any node in the partition, following the
fastest route. The information from each node is entered into a packet which is
distributed to form the global topology. To speed up this distribution process
OLSR uses an overlay network which is dynamically created. Each of the overlay
nodes gathers its “local” topology and distributes this to the other overlay
network nodes, which propagate it to their nearby nodes. This happens each
time new links arise or die out. The overlay network will make the dissemination
of neighborhood information more efficient than simple epidemic dissemination
or flooding.

OLSR Deamon, OLSRD is the major implementation of OLSR. It maintains
the operating system routing tables so that existing transport layer implemen-
tations can be directly used in MANETS.

2.4.2 Space/Time path protocols

In sparse networks the probability of partitioning will be high, and the neighbor
per node are few. Those nodes that are connected will form partitions. In these
situations there can exist space/time paths between partitions. These paths are
made up of each node’s connectivity over time, as explained by using the ferry
example: There is no road - space path - to an island, so to get to the island
one needs to take a ferry. The ferry can represent a node that moves from one
partition to another, like the ferry from the mainland to the island. Hence there
is a connection between the mainland and the island, the two partitions.

This ferry technique solves some of the situations that space paths cannot.
But we are still dependent on the movement from A to B and hence the con-
nectivity with first A then later B. In addition we are also dependent on the
intermediate node, in this case the ferry, to carry the message from sender to
receiver and pass it along. We will see that for a more general case there is
no easy solution to know how to “pass along” so that not everyone gets the
message, hence flooding. We still need to ensure that the message gets to its
destination and to as small as possible portion of other nodes. If a message is
on the wrong ferry going in the wrong direction, this message will survive until
someone deletes it. As we can imagine there are plenty of problems to han-
dle for the space/time routing protocols. The selection of intermediate routes,
techniques for limiting the travel range of each packet and intermediate nodes
storage capacity are only some of the major concerns for the protocols. I will
now list some of the protocols developed. This is only some of the protocols
that exist but the collection shows the important techniques used to efficiently
route packets in dens MANETs.

2.4. CLASSES OF ROUTING PROTOCOLS 17

Message ferrying

Message ferrying is one of the main concepts in routing over time/space paths.
But the message ferry (MF) protocol [27] that is presented, uses a more con-
trolled environment than the MANETs in our application domain. The solution
is based around an MF that is assigned to do the ferrying much like the island
ferry. This MF has long range broadcast capability and a planned trajectory.
This enables the nodes in the vicinity of this trajectory to prepare messages for
transmitting to the MF. Transmission is done when the MF and the node meet.
This protocol is more suitable for stationary or semi-stationary nodes and often
there is infrastructure to support the MF.

Epidemic routing

The concept of epidemic routing is to disseminate messages much like a disease.
It uses a protocol that makes messages spread out like an epidemic and after
some time the whole network is infected, or enlightened in this case. This pro-
tocol [25] is a controlled flooding or dissemination of the packages. The protocol
takes every message that is to be disseminated and adds it to its message buffer.
When a node meets another, the message buffer hashes are exchanged and ex-
amined, and the complementary messages are transferred. After this meeting
both nodes are equal with respect to the content of the message buffers. The
message gets spread out through the network in this manner until consequently
the message reaches its destination or the TTL counter is zero and the message is
dropped. This protocol delivers the messages to the receiver if the intermediate
nodes have large enough message buffer space to carry all messages requested of
them. The drawback is that many of the nodes that receive a message were not
supposed to have it. The overhead for wrongly directed or misguided messages
fills up the network and consumes both buffer space and network capacity.

Probabilistic routing

To use the good concepts of Epidemic Routing and try to cope with the ever so
full message buffers the probabilistic routing protocol gives an answer, but at
a cost. The PROPHET [12] protocol makes use of which nodes a certain node
is likely to encounter. This is done by maintaining histories of seen nodes. If
B is encountered frequently by A, A is a good path to B. By using this simple
history, messages are retransmitted to intermediate nodes if the encountered
node has a higher probability to encounter the receiver than the node itself.
The messages are not deleted since the sender node can encounter a better path
at a later point. The effect of this protocol over epidemic routing, is that not
every node gets the message, only the once that have a probability of meeting
the receiver. This reduces the overhead, at the cost of maintaining history.

Location aided routing

Location aided routing (LAR) [26] optimizes route discovery from the basic
implementation of flooding. This is done with the use of GPS positions by
giving each node the ability to know its own position, and distribute this in the
network. The knowledge of positions gives the ability to establish an “expected
zone”, which is the area where the target node is probably located, constructed

18 CHAPTER 2. BACKGROUND

at the source from the last known position and speed vector. By knowing where
the node is expected to be located, one can perform a more directed flooding to
establish a route. By directing the flood of route discovery messages parts of the
network will be cut off from the flooding messages, thus saving bandwidth. This
can safely be done while the nodes cut off are not contributing to the discovery
as they are not in-between the sender and the target node.

The cutoff is implemented in different ways. The simplest optimalization of
flooding is done through establishing a request zone. The construction of the
request zone is discussed, but is required to span from the sender to the target
node. By only letting the nodes inside the request zone forward route discovery
messages, the flood will be contained inside the request zone. Another approach
is done through calculating the distance from each node to the target, and only
permitting the nodes that have a distance less than the previous sender of the
route discovery message plus some constant. This gives the route discovery
message an ever-closing path, which will end up at the target. Results from
simulations using the two schemes, show significantly lower routing overhead
than by using the flooding scheme.

Semantic routing

In the application domain of emergency and rescue we have well-defined re-
porting routines. These are often along some hierarchical structure, where a
fireman reports to his or her team leader, who reports further. These reporting
chains are based on roles amongst rescue workers. By using the semantic role
of each node, we can establish groups of nodes that either have the same role or
reports to each other. By giving the groups first priority on new information,
the reporting chains will always get new information fast.

When new information arrives at a new level in the reporting hierarchy
the nodes around this group member will quickly learn about new information,
while each node will go back to disseminating information the normal way after
finishing with its own group.

Groups can also be looked at as overlay networks, where the group members
are parts of the network. This scheme can also be seen in the emergency scenario
where an information element meant for all team leaders quickly disseminates
to all with this role, and thereafter disseminates to all team members. This is
currently implemented via verbal messages, but the feature is wanted also for
digital information sharing.

I have not found any implementations using semantic routing. Overlay net-
works and the existing reporting routines is the nearest implementation of such.

2.5 MIDAS

The MIDAS project is an acronym for Middleware Platform for Developing and
Deploying Advanced Mobile Services. It has set the goal of making a middleware
that will fulfill this vision: “simplify and speed up the task of developing and
deploying mobile applications and services.” [15] The project consists of partners
from all of Europe, and is funded by the EU. This thesis is concerned with the
development of Global metadata manager (GMDM) for the MIDAS data space

2.5. MIDAS 19

(MDS). The GMDM does the job of data dictionary for the “data space” or
database which MDS implements.

MIDAS also contains different components like Communication and routing
(CRT) which addresses routing and message transport. CRT is in place for
MIDAS to be able to use a variety of network technologys like; wifi both ad-hoc
networks and infrastructure, and GPRS. CRT aims to handle transitions from
AD-HOC to infrastructure networks like GPRS transparently. CRT is the only
component that MDS is dependent on in the MIDAS context.

Other components handle context based routing these are not handled in
this thesis.

2.5.1 MIDAS Data Space

MDS, MIDAS data space, is a middleware providing a distributed data space.
The layout of MDS subcomponents and there relation with CRT can be viewed
in Figure 2.1. We refer to the data space not as a database since it lacks many
of the features that a database has. The largest differences are in transaction
handling and locking, none of these will be addressed in MDS. Further the data
space will not be able to guarantee total consistency due to possible partitioning.
The data space resembles a relational database; we use a reduced SQL language
as an interface. This reduction is described in the MIDAS documentation and
is not the focus of this thesis.

MDS is designed to provide a common dataspace for all MIDAS nodes, where
applications can share data. This is going to be done in such a way that the
application on one node can enter data into the dataspace and other nodes
can get the data out of the dataspace. The underlying techology to share the
data is transparent to the application developer. The sharing is done with a
combination of replication and remote queries. Further MDS will support data
consistency amongst the nodes, so that if one node inserts more data into a table,
this additional data should be available to all nodes within a short delay. [14]. A
table in MIDAS terms is predefine before the scenario starts, and materialized
once any node does an replication of that table. The table is there for existing
as zero or more replications. However, a zero alocated table is per definition
not dissiminated by the GMDM as metadata.

Global Metadata Manager

This thesis will in detail look into the inner workings and protocols of GMDM.
The GMDM will serve as a data dictionary in the MDS. The GMDM will be
fully distributed and handle merges and partitioning in a robust and dynamic
manner. It is imperative for MDS to have a global view of the whole network
and the information that resides inside. The GMDM at each node will try to
get a view of the whole network with respect to metadata. This is done by gath-
ering all the information and cooperation amongst neighbors. By exchanging
information with every encountered node the view will expand. Information is
exchanged with new nodes, which in turn will exchange with new nodes, thus
disseminating through the network. The data dictionary implemented in MI-
DAS will be mainly concerned with the presence of relational database-style
tables in the network.

20 CHAPTER 2. BACKGROUND

Figure 2.1: Showing the relation between the subcomponents of MDS and the
component CRT. [14]

2.6. CONSISTENCY 21

The GMDM will provide functions to other components that can give the
node name where a spesific table replica is located. To do so the component
will maintain internal structures of the discovered metadata. Maintaining these
through eager synchronization. The overall goal for the GMDM is to use as
little as possible bandwidth but still provide the resolution service.

Query analyzer

The Query Analyzer(QA) acts as a facade of MDS. It receives and handles any
query invoked on the MDS instance. QA components on diffrent nodes can
cooperate by sending remote querys.

QA uses other MDS subcomponents to find the node which has a table
instance. If the table is residing on the local node, QA will use the local store
(LS) to fetch the data. If remote nodes has the table instance, remote query will
be used. This is done by sending a query as a message to the node, and getting
a result back, which contains the result. These operations can be bandwidth
consuming.

To handle the queries QA have implementations of advanced query analysis
which identifies field names and values. From the field names and values, will
the QA component identify which node that have the table instance. Some
queries optimization is also done before remote queries are performed.

Data synchronizer

The data synchronizer (DS) has the responsibility of keeping all table replicas
synchronized. To preserve the consistency DS will listen for both topology
changes and queries. Upon any topology changes reported by CRT, the GMDM
will notify DS it has discovered any new tables or table replicas. In this case
DS will query GMDM for any table that is replicated on the local node and
the newly discovered node. By using a defined protocol DS will use the QA’s
remote query services to synchronize the two replicas. Upon any INSERT or
UPDATE query, the QA will notify DS about the change, this triggers DS to
find all replicas and send a remote query, INSERT or UPDATE, to these nodes.

2.6 Consistency

Traditional databases are a large research field, and are in viedly usage. They
imbed many features which releate to transparency of data, I will here focus
on the features that are most relevant. A distributed database is a database
divided over two or more physical locations, each of which are databases in there
own right, with or without users of there own [5]. These database instances join
together into a unified distributed database. The distributed database presents
a single view of all databases, thus making them transparent. By doing so, the
distributed database system will take on the job of keeping all the databases
consistent. This implies locking, rollback and other database-related services.
These services are commonplace when dealing with distributed databases.

A data set that is retrieved from a distributed database system, can physi-
cally reside in many locations, even though the transparency hides the physical
location. Data can be distributed amongst the locations in different ways. The

22 CHAPTER 2. BACKGROUND

distribution can be fully replicated, where every data item is copied to all loca-
tions, or it could be fully distributed, where all is splited and fragments shared
amongst the nodes with a minimum of data “duplicated” to ensure correct joins
of all the data, this is called a nonredundant allocation. In the first case the
data is easy to access and response time is good for queries, due to the fact that
data is near the user. The downside is insertion time and consistency penalties.
In a full-fledged distributed database system all local systems have to be in
sync, so that from any location the same query will get the identical results. To
ensure that the ACID properties are preserved, the insert steps transform all
local database systems from the current consistent state to another consistent
state, which can be difficult and resource consuming. When replicating data will
the availability go up together with the resource useage, sticking the balance
between the wanted resource usage and the needed availability is important to
get the correct behavior.

It is also important to note that to implement a distributed database system
that will apply to all the consistency requirements, one needs to make an inter-
mediate layer, or integration layer. This layer is between the user application
and the different database systems. This layer is often acting as a centralized
unit or controlled by a centralized controller. This controller makes the calls
about transactions management and replication strategies. The global data dic-
tionary is inside this layer. Its task is to help the query planner and optimizer
with information about where data is located.

The controller is the distributed database management system (DDMS), this
controller will enshure that the database operated so that it does not violate
any of the garantees it provide. There is a set of garantees that is implisit
when working with databases, such as; availability, consistency, transactions and
transparency, I will later argue that these are not fesable in a ad-hoc network.
However, will the SQL interface be used as a interface, and some of the same
features as thouse one can expect to find in a DDMS, therefore will i go into
detaijl on which features we plan to support and which we can not support in
Section 4.3

2.7 Simulation and emulation platforms

To test and verify distributed applications repetable scenarios are needed. This
enables developers to isolate there applications and verify that there behavior are
correct. I will now introduce some platforms for simulation and emulation. Both
platform types are used for the same purpose, but have different characteristics.
The simulator is only simulating the environment and the application. The
environment and application are made in an easy to implement and fast to
develop, often script like, fashion, which is only runable on the simulator. In
contrast the emulator emulates the environment and lets actual applications
run inside. This gives the developer an opportunity to test there application
in a controlled environment. The emulator separates the application from the
environment, whereas the simulator combines the two in one application.

2.7. SIMULATION AND EMULATION PLATFORMS 23

2.7.1 NS2

Ns2 is a network simulator [23] which aims to help network related research. It
is in contrast to NEMAN (see Section 2.7.2) not an emulator. The differences
will be explained in the NEMAN section. A simulator such as NS2 is used to
simulate network topology and traffic.

NS2 gives users the ability to describe movement patterns of nodes. These
movement patterns can be “played” inside the simulator. The movement will be
simulated forming the topology of the network, which will be used to simulate
connectivity between the nodes, so that communication appears to be using
different protocols like TCP, UDP and others. The performance and other
attributes can be measured during the simulation, in any part of the simulator.

The scenarios in the simulator are programmed from different perspectives.

• Topology, defines the connectivity.

• Movement, how the nodes are moved, a snapshot of the movement, or
locations, gives the topology.

• Nodes, the behaviour of each node.

• End points or agents. These agents produce traffic on the network, in
the form of side traffic or noise. The agents can also be instructed to
replay internet scenarios captured from for example a real internet service
provider (ISP).

Benefits of using a simulator is that it is a high-level platform that supports
fast development and proof of concept simulations. This makes the development
time smaller but usability is not present because all code must be written for
the simulator and can not be reused on real hardware.

2.7.2 NEMAN

Neman is an emulator that emulates the communication layers of the network
stack [13]. This is done through the linux operating system by using its network
interfaces. The NEMAN emulator makes new virtual network interfaces and
offers these to the user application. This makes the emulator transparent to
the application, making emulator developed applications ready to run on real
hardware instantaneously. This feature does only exist in emulators, in contrast
to simulators where one has to rewrite much or all of the code. In this emulator
each of the simulated nodes is bound through the linux operating system to one
of the virtual interfaces, also called tap interfaces. Each tap is then acting as a
real interface as far as the application sees things.

The interfaces that are made at one single emulation server are all connected
through a topology manager called “topoman”. Topoman is controlled by an
external interface through UDP packets. To alter the topology, topoman will
connect and disconnect the taps, like a switchboard. The given connectivity at
one moment is the topology of the network at that moment. Neman is using the
linux kernel to establish connectivity, so no packets are leaving the server but
are only bouncing back up through the correct receiver tap. This gives NEMAN
a throughput that is far greater then what one would expect in a real life wifi

24 CHAPTER 2. BACKGROUND

network, or any other network for that matter. It is also important to note that
the emulator does not introduce network failure, like one can introduce in NS2.

Neman is controlled from an external GUI. The GUI is reading NS2-like
scripts called NS2 scenario files, which describe startup connectivity and move-
ment. The GUI sets up the topology and manages the connectivity throughout
the emulation scenario. The GUI is also able to send control packets to the taps
inside the server, which can be used to control the user applications above the
middleware. We will come back to how we use this feature in later chapters.

Neman gives the application developer a very good platform in terms of
flexibility, where the developer can make code that can be used directly on the
real platform, in addition the developer can use the technology and language of
choice.

2.8 Ad-Hoc InfoWare

MIDAS is developed as a continuation of another research project called Ad-
Hoc InfoWare [20], the two projects are similar in their vision but differ in
implementation and approach. Both work in ad-hoc environments using wifi,
both handle sparse and dense dynamic topologies. MIDAS is reaching outside
of the scope of Ad-Hoc InfoWare, which concentrates on only ad-hoc wireless
environments and rescue scenarios. While MIDAS focuses on data storage and
availability, Ad-Hoc InfoWare focuses on semantic relation between data residing
on different nodes.

Ad-Hoc InfoWare introduces a three level data dictionary. The three levels
handle the data stored, regarding semantical granularity. The conceptual layer
forms an ontology mapping the concepts stored. The concepts are linked to the
physical information or table via a semantical level in-between. This three level
architecture makes up the metadata representing the physical information. Con-
cepts and semantical data are linked together to create a unified understanding
of the data which is physically stored on some node.

This approach makes it easy to find the correct data also regarding the
semantical content. The dissemination of the metadata consists of merging the
semantical layers.

2.8.1 Distributed Event Notification Service

DENS is an event notification system for mobile ad hoc networks [21]. It has
a collection of protocols that makes up a publish-subscribe system. It uses an
overlay network, which is a subset of the nodes in the network. The overlay
keeps track of the subscriptions and the notifications that are sent. It makes
the publish-subscribe network more resilient, which fulfils the goal of DENS,
namely to be used in emergency and rescue applications.

The overlay network is one approach to resilience regarding transmission
and dissemination. Its purpose is a more efficient transmission of information
trough the network.

Chapter 3

Global metadata
management

The GMDM is discussed in detail in this chapter, laying out the main tasks,
dividing its functions into the presentation and dissemination components. Fur-
ther in detail describing the information sharing and synchronization techniques
used to realize the GMDM component.

The task of the global metadata manager (GMDM) is to organize all meta-
data in the global MDS dataspace. This implys gathering and organizing the
meta-information created by different nodes in the network. GMDM is going
to be used for various tasks by other MDS components, as discussed in Section
2.5.1.

Information gathering is the most important part of the GMDM component.
To achieve global scope some sort of dissemination techniques will have to be
developed. These techniques are governed by the requirements stated in Section
1.3. It also needs to balance the needs for dissemination up against the local
storage space. GMDM also needs to be delay tolerant, which implies that store
and forward techniques must be applied.

To cope with these requirements GMDM must track metadata originating
at its own node in addition to gathering metadata from the network. By also
providing its gathered knowledge to any new neighbor, the dissemination take
on a transitive behaviour, which is implemented as store and forward in delay
tolerant networks.

To disseminate metadata through the network efficiently I have looked into
how principles of routing protocols for MANETs apply to GMDM. The goal is
to improve the dissemination according to the performance requirements (see
Section 1.3) by taking advantage of the work already done in this field.

3.1 Data space consistency in GMDM

The distributed MDS contains all the information from all nodes in the discov-
ered network, meaning the metadata found by GMDM will reflect all discovered
tables replicas in the network. The metadata space is a list of table replicas
available, or has been available for the node to query data from. The metadata
space is constructed from the gathered metadata.

25

26 CHAPTER 3. GLOBAL METADATA MANAGEMENT

All tables that are to be used in a scenario have to be predefined by the
MDS schema according to the MDS documentation [14], each table is assigned
a unique name, a parameter describing if it is local or shared, and info about
its attributes. The parameter local or shared defines if this table is going to
be distributed and allowing remote querying or limited to a local scope. The
local value is used for node specific data that will not be visible from outside the
node. The name, is unique for all shared tables, this means that if two tables are
called the same, they are from MDS point of view treated as two replicas of the
same table. This has serious implications on synchronization and consistency
of the table. An example of this is if two partitions contain the table “patient”.
The tables are created in separate portions and have existed without knowledge
of each other. When the two partitions merge the table contents need to be syn-
chronized according to the consistency rules of MDS. These limitations to table
names are done by MIDAS at an early stage in planning. The reason for this
is to keep things simple with respect to implementation. When using the table
name as identification we can both deduct the data type and table definition.
The restriction of predefined table scheme relieves the middleware of this task,
since this is know a priori, and can be looked up in a data structure. However,
this limitation is only by convention in GMDM. The metadata format is ex-
tendable to the extent that it can contain these data type and table definitions.
By doing so would ad-hoc table creation could be supported by GMDM.

If there is only one network partition the tables in the schema are resid-
ing on one node, until a request for allocation of a table instance is issued.
Before this request, all inserts and updates will affect the same physical table
instance. After allocation all table replicas will be maintained and synchronized
so they contain the same data. However, this is only be possible when the two
nodes holding the two tables replicas are in communication range, space path
or time/space path. If there has been a separation of the two nodes the tables
replicas are maintained in the two network partitions and a synchronization is
performed when the two network partitions are merged, since these two tables
have the same unique name. Consistency at the data level is maintained by the
DS component of the MDS and is not the focus for this paper.

The GMDM will operate on a different level of consistency. It will try to
get all metadata, using eager techniques, to all nodes. Metadata is not required
to be the same on two nodes in two different partitions until the two partitions
are merged and a synchronization is performed. Such inconsistency is tolerated
as long as the two partitions have not yet discovered each other. GMDM will
never remove metadata automaticcaly, since tables can become available latter.
This implies that the GMDM knowledge base is ever growing. This problem will
not be the focus of this thesis. I do not expect it to become a problem in our
scenarios since they are small and short-lived. In MIDAS scenarios are limited
to one or two days which also would not present any problems, with respect to
metadata quantities. However the running time of the scenario is not the major
factor in determining the size of the local metadata storage, it is determind by
the number of available, shared tables instances and the number of replications,
which combined give the maximum size of the metadata storage. In addition
the size of each metadata element is small, in the range of hundreds of bytes.
When looking at the space problem on each device this will not be a problem
for the test scenarios in neither MIDAS nor for this thesis.

3.2. INFORMATION SHARING 27

3.2 Information sharing

Information sharing is often linked to the term “knowledge management”, which
is used to describe the control of information amongst collaboration parties or
machine useable information between such. The motivation to achieve good
knowledge management is to have the information available at the right time
and place. The people making the decisions will then perform better, and the
company will succeed. I will focus on the information sharing concept as the
process of disseminating information elements to all possible needing parties.

In MIDAS every node needs to be aware of all available information in the
network. The availability is tracked by the GMDM component, which holds
tuples of information elements consisting of;

1. the name of the information element

2. the location of the element

Such metadata elements are easy to disseminate in the network due to its small
size. Only when a node knows about all the metadata elements representing
all the information, the node will have a full view of what is available. The
dissemination of information is crucial to the functionality of GMDM.

3.2.1 Information sharing purposes

The GMDM will be used for two purposes

1. Find a node that can has a table instance or replica

2. Give an overview of the information available in the network

To handle the first point, the GMDM could do the search in a lazy way. The
“user” could ask for a table, and the GMDM could go out and search for the
table. This would exclude tables that are in space/time paths from the node
due to the possibly long search time. It would also stress the network for every
search of information. If we can assume that there is magnitudes more selects
(pull) than create (push), all the searching would fill up the available bandwidth.
Following the absoulte and performance requirements (see section 1.3) will this
approach not be used.

To handle the second point, the overview, the search process could be run
to gather all the information in the network. One would have very long delay
times on an overview query. It would also not be feasible to establish a sensible
waiting period from sending query to stop-listen. This is due to the space/time
paths that could take forever to return.

The solution that is chosen, is to push all the metadata elements and by
this eager dissemination of metadata information , establish an environment
where all nodes know of every element in the network. This approach makes
the selects easy to process and the overview we will get for “free” because we
already have all the metadata in local storage. This makes for effective use of
the total view, and opens for new usage where information is available as the
scenario progresses, and the knowledge base on each device is growing as the
information is gathered by the node.

28 CHAPTER 3. GLOBAL METADATA MANAGEMENT

3.2.2 Synchronization

To do dissemination information needs to be transferred through the network,
from node to node. Each node is required to act in a router-like fashion and
pass on metadata to other nodes. This is done through synchronization be-
tween neighbors, which has the side effect that the nodes are in addition to
routing metadata information, also listening and gathering metadata. Each
synchronization step is therefore crucial for the effectiveness of the whole dis-
semination.

There exists many synchronization protocols, but questions around how
many messages is the minimum to get a full synchronization or how to best
make a representation so that one can detect differences, is not answered or
well-defined. I will lay out a first approach below.

3.2.3 Mechanisms of synchronization

In its most basic form a synchronization is started to achieve one goal, to make
two entities equal with respect to some quantity. For this to work the elements
in the quantity need to be compared and the differences between two quantities
established. Upon finishing will the two nodes have the same metadata elements.

The basic outline of a mechanism is the following three step protocol.

1. View all elements in both quantities

2. Find differences

3. Exchange needed elements

Step one establishes an overview of the joint quantity. Step two identifies
the differences between the two quantities. Step three equals out the differences
by copying the differences to the needed party.

When this is done on a local unit without communication cost or distribution
problems, the synchronization looks trivial. When we use synchronization we
will need to handle both communication cost and distribution. We will only
have the total overview of one quantity, the differences must be found on one
of the two nodes without copying the entire quantity. I will now discuss how to
handle this.

Neighborhood scope

The simplest protocol works like follows, see Fig. 3.1 for a graphic illustration
of the different steps; Node A makes a hash of its local knowledge base,

1. Node A sends the hash to node B

2. B sends back the elements that A needs (the compliment of A’s hash)
which B can provide, plus a list of the elements that B requires from A

3. A responds with these needed elements.

This simple synchronization protocol is used by the authors of the PROPHET
protocol [12] and Epidemic Routing [25]. I will argue that this is a minimal so-
lution and that it works well in situations where there are differences between

3.2. INFORMATION SHARING 29

Figure 3.1: Simple sync protocol.

the nodes. In the case of multiple synchronizations between nodes that are
“equal” this protocol could be optimized. I will look more deeply into this later,
in Section 5.4.2. The GMDM will only rely on synchronization to disseminate
information through the network. To guarantee the absolute requirements (see
Section 1.3) namely that

1. all nodes that enter the network get all the metadata information of its
neighbors

2. all new elements are disseminated through the whole network

To do so would we need to establish some triggers to start the synchronization.
I will discuss this in more detail later, but for now I will state the triggers which
we need for both 1 and 2 to be fulfilled. A synchronization has to start when
everyone of the following occurs;

• a new 1-hop neighbor appears

• on the event of a new table created locally

• on the retrieval of new metadata

Metadata information entered into the network will be disseminated through
the whole network if all three triggers are used. This will also apply to new
nodes and nodes that are multihops from the nodes that created the new table.
We will get back to this in Section 5.3.

30 CHAPTER 3. GLOBAL METADATA MANAGEMENT

Chapter 4

Requriments analysis and
solutions

The Requirements analysis and solutions chapter aims to cover; the require-
ments MDS is posing on the routing implementation, and make decisions on
which to chose. The MDS is placing some of its functionality in GMDM, these
requirements together with the requirements placed by this thesis is discussed
and defined. Indepth discussion of divergence between MDS and other standard
distributed database systems, follow. More discussion into the physical nature
of ad-hoc networks and wifi technology is done, with focus on who to use the
physics to favor information sharing. Further is the mechanics of recursive ver-
sus multihop dissemination evaluated. Routing principles used for information
sharing purposes are also discussed, with the intent of reusing the already de-
veloped techniques, an important aspect of the discussion is that of the counter
effective differences, looking into where routing techniques are unusable for in-
formation sharing. The consept of overlaynetworks is discussed in relation to
the DENS protocol. At the end of the chapter is an indepth discussion on
how to implement the reduction techniques learned from broadcast storms, in
information sharing systems.

4.1 Requirements put on GMDM

For MDS to function in MIDAS as proposed, there are some absolute require-
ments, some of these have to be fulfilled by the GMDM component. In addition
to these requirements, some parameters will be measured to find the most opti-
mal implementation, these are measured against the performance requirements.
I will now go into more detailed specification of the problem description for this
thesis, as first laid out in Section 1.3.

4.1.1 Absolute requirements

The following requirements are the foundation of the functionality in GMDM.
Without fulfilling these, the implementation will be unable to play its role in
MDS, and the functionality of other components will be affected.

31

32 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

• 100% dissemination. All nodes in the reachable network are required
to know of all metadata elements. Metadata elements on nodes in one
partition are required to disseminate to all nodes in that partition, and to
all partitions that can be reached in a delay tolerant manner.

• Maintaining a global view. All nodes need to know where all table replicas
reside. This requires that every node needs to store all metadata locally.

4.1.2 Performance requirements

The performance requirements state the optimal behaviour of the GMDM im-
plementation. These reflect on measurements done under normal use and points
out which parameters are important. No threshold is defined for any of the per-
formance requirements, but the main goal is to have them combined as small
as possible. Some of the requirements will probably affect others in a bad way.
Optimization of one will decrease the performance of others, I will look into the
balance between the requirements and try to find some optimal solutions. The
balance is different in different scenarios and use cases. Use cases where there
are more inserts than selects can gain much by balancing differently than use
cases where the opposite occurs.

The performance requirements include;

• Low bandwidth. The dissemination should use as little bandwidth as
possible.

• Dissemination speed. Time from the creation of information, until 100%
coverage is obtained, should be as little as possible. Also dissemination via
routes requiring delay tolerant techniques is also required to be efficient.

• Response time. Queries into information or metadata, like global view
of tables and table name to node translation, should be fast or at best
instantaneous.

If these requirements are balanced right, the protocols will be scalable. By
scalable we require the implementation to handle an increase in number of nodes,
density in the network and frequent trigger invocations. Cases where scalability
will be visible and important is when partitions merge, since the protocols then
need to handle all the new neighbors that appear and as the synchronizations
progress, the new metadata that is discovered. Another scenario where scalabil-
ity is important is if a application creates many new table replicas, this results
in a dissemination wave, which uses bandwith as it progresses.

Balancing the implementation against longer response times, to save band-
width, will result in less scalability for many new tables. This points out that
the implementation is made to scale for its application domain, and should be
measured against a scenario matching that domain.

4.2 Routing and topology service requirements

from MDS

I will now map the requirements that one need is to be aware of when selecting
routing protocol and topology services. When assessing what MDS demands

4.3. DATASPACE VS. DISTRIBUTED DATABASES 33

from the routing daemon services, we have to assess the subcomponents GMDM,
QA and SM.

GMDM requires as a minimum;

• the ability to broadcast messages to all one hop neighbors

• topology information in one hop radius

The ability to broadcast messages is needed by the GMDM to utilize the shared
radio medium. Topology information is needed for GMDM to be neighbor hood
aware, which is required if it is to react to neighbor hood changes. GMDM also
needs global topology information and multihop message passing, to support
more advanced synchronization protocols.

QA needs to;

• send multihop messages

This is a requirement for the remote queries to be realized in QA. In addition
the QA is dependent on GMDM to provide information about which nodes host
which table replicas.

SM is only using the QA component and is not adding to the routing daemon
requirements.

Since topology information is a requirement, it is clear that a reactive pro-
tocol is not sufficient. Based on this a proactive protocol is selected, the most
advanced and reliable we could find was the OLSR protocol; it maintains infor-
mation about the global topology and can route packets over multihop routes,
thus satisfying our demands. The routing is actually performed by the oper-
ating system, but is based on the routing tables on each node, maintained by
OLSR. By selecting the OLSRD [17] implementation we limit ourselves to using
OLSRD supported operation system on the nodes, currently this is available
on both Linux and Windows in addition to other platforms. By using an open
source third party project, like the OLSRD, we can focus on the main task,
to develop MDS. The functionality required by the MDS subcomponents will
be supported in the CRT component when it is completed by other project
partners.

4.3 Dataspace vs. distributed databases

We can define a distributed database (DDB) as a collection of multi-
ple logically interrelated databases distributed over a computer net-
work, and a distributed database management system (DDBMS) as
a software system that manages a distributed database while making
the distribution transparent to the user. [5]

This quote characterizes the distributed database and distributed database man-
agement systems. By analyzing using this quote and further specifications into
what is required of a DDB and DDBMS, will I compare the requested behaviour
of a DDB and DDBMS to what MDS is capable of delivering.

34 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

4.3.1 What differs MDS and DDB

A DDB is;

1. multiple logical databases

2. interrelation between the databases

3. communication over a computer network

MDS have one instance of a database on each node, represented by local
storage (LS). MDS can, as a whole, be viewed as a DDB, since there can exist
multiple instances of MDS in a network.

The databases can be interrelated, but only as replicas of tables is allowed.
MDS will only replicate a table instance upon request and from then on try
to maintain consistency between the two replicas. However, this is the only
type of interrelation, since foreign keys and other relations between table in-
stances on different nodes are not supported. A computer network is used of
communication.

As we see all aspects are fulfilled, however, these similarities might lead
us to the conclusion that MDS is a normal DDB, such a conclusion must be
considered wrong. The characteristics of a DDB is both its behaviour but also
its environment. Such a environment is not present for MDS, this leads us to the
deviations from DDB to MDS. The normal environment where a DDB operates
depends on stable connections. Stable in the sense that they are connected
to the same router and has the same neighbors, thus the same databases are
available over time. This enables coordination, which is essential for doing any
type of transaction management or consistency.

The environment is not the same for a DDB and MDS. This shows that
MDS can not deliver the same behaviour as the a DDB could. MDS handles
this physical constraint and delivers a well defined service, described bellow.

4.3.2 What differs MDS and a DDBMS

A DDBMS does;

1. manages one or many distributed databases

2. making the distribution transparent

An DDBMS is the software that unifies the different instances of the databases.
The main task of the DDBMS is to transparently make the all the instances vis-
ible as if there where only one [5]. This is done by adding a layer between the
physical databases and the user, this layer is the DDBMS. The DDBMS soft-
ware can use different database sources as long as the result is consistent and
that it is presented transparently.

DDBMS is required to make many difference instances of a DDB transparent.
The main issues that need to be hidden for the user by the DDBMS is;

• networks and location, the details of the network is hidden from the user.
Location information or naming is not visible to the user.

• replication, data which is replicated onto different nodes are viewed as one
single instance

4.3. DATASPACE VS. DISTRIBUTED DATABASES 35

• fragmentation, if data is shared amongst nodes, the view will defragment
and combine the data with out the user knowing

• execution, how and where the queries and transactions are executed is
hidden in the DDBMS layer.

Many of these transparency requirements, are not feasible unless one has
stable connectivity, thus not in an ad-hoc network. The requirements are based
on the nodes cooperating by combining the different database instances into a
transparent larger database under the supervision of a central unit, or by a cen-
tral unit. This implies that at least the controlling unit has to have connection
with all the database instances. If this fundamental condition for cooperation
is removed, no DDBMS could function.

The ad-hoc network can not give any guarantees to the connectivity. Any
node can at any time disappear and never return. This underlying network
nature stops any DDBMS to be able to grantee transparency, availability or
reliability.

To strike a balance between the need for transparency, consistency, and
availability, and the physical nature of the ad-hoc network, would one try to
use the connectivity that is available and support a best effort service. This is
done in MDS by giving a best effort dataspace. To handle the different types of
transparency does MDS do the following actions.

4.3.3 Data space services

Network and location transparency are handled in different ways. Network
transparency is not feasible to handle transparently in ad-hoc networks, we are
not able to transparently cover over nodes that is shut-off or out of both space
path and space/time path range. Location transparency can be handled, by
giving the user an ability to query for tables names, and inside MDS transpar-
ently resolve the node name and its location, returning only the queried data,
if the node is reachable.

Replication transparency, is semi handled. For a replica to be created would
a user-command be issued, only then is the replica created on the specified
node, which is a nontransparent replication. After the replica is created will
MDS maintain consistency amongst the table replicas, as long as there is con-
nectivity. When connectivity is lost, consistency is maintained with in each
space/time partitions. This replication is transparent from the user perspective
when querying for the data.

Fragmentation is not handled in MDS, it is explicitly taken out. This is done
by not allowing queries to span over nodes. This means that a query can only
contain one table that requires remote querying. Fragmentation transparency
is therefore not an issue to MDS.

Execution transparency. The queries are parsed on the local node, identify-
ing which nodes have the instance. The query is sent to this remote node, and
the result returned, hence the query is executed on the remote node. Trans-
actions, however is not supported, the closes we get is the inserts, if there are
replicas and the instance are available, the insert will be forwarded and remotely
inserted on each of the available instances. But the insert has no rollback func-
tion, and no exception handling, when replication instances are not available.
If a table instance is not available will the instance simply be ignored, with out

36 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

any effects for the insert. If the instance is later discovered, the table will be
synchronized at the time of the merge.

As we can see from the handling of the different requirements, MDS does not
satisfy all the requirements of a DDBMS. This is also the major reason for the
naming choice, dataspace, while we will not invoke the association that MDS is,
or will provide, DDBMS services. We will instead clearly state what we focus
on accomplishing, and for these services only provide a best effort service.

4.4 Physical prerequisites

The shared medium which is part of the nature of wireless communication has
some serious drawbacks. These drawbacks, when compared to normal wired
networks forces all nodes to communicate in one single channel [11]. When all
nodes share the same channel or medium it will easily be overloaded. As the load
increases the network gets overloaded but it is not the only problem, end-to-end
transmission delays and collisions become more frequent as the total capacity
is filled up. The network gets congested when no one can get any messages
through, the network is full of control packets. These control packets handle
transmission coordination and cleaning up after collisions. These delays are
emerging as the capacity of the channel or medium is reaching its maximum, and
they will become larger as the number of nodes grows. Large delays are caused
by the request to send mechanisms which coordinates transmissions and is part
of the collision avoidance technique. In addition there are delays associated with
any collision, since after a collision is detected each node will stop listening, and
wait until the sender, which does send till completion, is finished, then the next
transmission can start. While all share the same medium all transmissions must
go in sequence, this requires a lot of coordination.

These prerequisites are part of the wireless nature, and we have to cope
with them as laws of nature. However, there are ways to benefit from the
physical shared medium. When all nodes need to use the same medium, this
also means that all nodes share a common communication channel. This channel
can be used by all to communicate with all, simultaneously. It is done through
broadcast messages, which are addressed to all that hear them.

By turning disadvantage, the shared medium, to something useful, many to
many communication, we are able to turn the drawbacks of shared medium to
our advantage. The model of information sharing fits nicely with the use of
the shared medium; since we want to share all information amongst all nodes
in a network, which includes communicating from many to many. To be able
to communicate and exchange information we require an efficient communica-
tion channel that supports communication. The shared medium and broadcast
do exactly this. We will look into how exactly to utilize this advantage for
information sharing in Section 6.2.2.

4.5 Penalty of multihop synchronization

When considering a topology and how to efficiently disseminate information
from a source to all other nodes, one can imagine two schemes.

1. The source contacts all other nodes with the new information.

4.5. PENALTY OF MULTIHOP SYNCHRONIZATION 37

(a) Multihop synchronization between S and T, with the
additional messages for 100% sharing

(b) Hop by hop synchronization between S and T

Figure 4.1: Multihop synchronization(a), compared with hop by hop dissemi-
nation(b). Each arrow with “sync” above is short for a 3 way synchronization
protocol. Numbers in gray are the amount of network packets between each
node during the entire scenario.

2. The source contact the neighboring nodes, without any intermediate nodes,
and relies on a recursive dissemination by these nodes.

The first alternative uses the intermediate nodes as routers for the packets.
By doing so will the source transfer its knowledge to one node, contributing
nodes is only routing messages and not taking part in the information sharing.
The intermediate nodes are also contacted individually, as recipients of the in-
formation in their own right. Since all nodes are required to get the information,
is it more efficient to also share information with the intermediate nodes as it
goes along, not only get them to route packets.

Consider the example in Figure 4.1, where 4 nodes form one partition. The
nodes marked “S” and “T”, source and target, are in this partition. In Figure
4.1(a) alternative 1 is illustrated , and the recursive method in Figure 4.1(b).
The total network packets sent to disseminate information from S to all other
nodes is 18 by using the direct method and 9 when using the recursive. The
two different techniques have large differences when it comes to network packet
use. To make the example more general I will now express the relation ship
between number of nodes in a topology, and the number of packets used to
disseminate information to all nodes in that chain. Assuming that all the parts
of the synchronization protocol uses as much bandwidth with both approaches.

The multihop synchronization follows the formula in Figure 4.2(a) and the
direct technique follows the 4.2(b). We can clearly see that the direct technique
grows faster than the recursive synchronization. This shows that the differences

38 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

packets = (n − 1) ∗ 3
(a) Multihop synchro-
nization, n is number of
nodes

packets =
n(n − 1)

2
∗ 3

(b) Recursive synchroniza-
tion, n is number of nodes

Figure 4.2: Relationship between network packets and nodes. Requiring chain
topology.

in efficiency between the two techniques exist, also in the general case..

4.6 Routing principles applied for information
sharing

I will now study routing protocols for ad-hoc networks and see how the nature
of routing resembles information sharing. One example is the epidemic routeing
technique, which is made for delay tolerant and sparse ad-hoc networks. In this
situation the sender does not need to be aware of the recipients location, or if
it is in the network partition. The most efficient way, according to epidemic
routing [25], is to disseminate the message to as many other nodes as possible,
but still avoiding an all out flood. Epidemic routing is the relying on the nodes
carrying the message to pass this on to new nodes when appropriate. By doing
this, epidemic routing will strive to reach all nodes at least once.

This feature of disseminating in a controlled fashion is highly applicable in
information sharing as well as in routing. They both share the same goal, to
disseminate elements so that an undisclosed recipient is reached. By undisclosed
I mean that in routing, we do not know where the recipient is located, and in
information sharing, we want to reach all. The solution is the same for both
problems. To guarantee that you will reach the recipient regardless of where it
is located we will have to disseminate the message to all nodes in the network,
which is exactly the same as information sharing is striving for.

Epidemic routing is part of the reactive routing protocols; which is the nature
of delay tolerant routeing protocols. It will not be feasible to establish and main-
tain a global topology, because this would be required to include nonreachable
and not yet discovered nodes. This implies that the reactive protocol needs to
establish a route after the message is sent. This leads us into another interesting
difference between the naturs of the two concepts. The reactive routing protocol
is working to get the message to a specific node; the message is then delivered
to the recipient and is no longer a concern for the routing protocol. Hence the
message has a life time, in the eyes of the protocol, from sending to delivering.
After this it will not be kept for later use. However in information sharing, the
information or “message” persists from creation through sending, dissemination
and until the scenario ends or the information is deleted. Information, as in in-
formation sharing, is valid and useful from delivery and onwards, where as the
message, as in routing, is deleted and removed freeing space to other messages.
While the routing protocols regard memory as a scarce resource, information
sharing has to live with the fact that it will need the information over time, thus
needing larger buffers and storage to keep the messages in.

When a protocol, information sharing or routing, receives more and more

4.6. ROUTING PRINCIPLES APPLIED FOR INFORMATION SHARING39

information or messages it stores these new elements in its local storage. If the
storage is becoming full, the protocol has to remove elements to make room for
this new element or drop the new element. In routing this will be acceptable
and logical to remove the oldest element. In the testing of the Epidemic routing
protocol [25], there is presented an relationship between the available storage
space and arrival rate. As the storage space gets smaller, the arrival rate drops,
because messages never reaches its destination before the message is pushed out
of the buffers by other messages. This further implies that the local storage
in information sharing protocols is to be large enough to hold all information
gathered through the scenario. Deletion of random will violate the absolute
requirements of 100% dissemination. While information will disappear from
every node with a overfull local storage.

4.6.1 Counter effective differences

There are also some differences that are counter effective for information sharing,
but are shown to be good for routing. While epidemic routing are based on
the fact that we can not locate the recipient via the normal sparse ad-hoc
network, there exists routing schemes that is base on the opposite. Location
based protocols use the position of each node to aid the routing of messages.
These protocols will try to find the direction that will most rapidly deliver
the message to its receiver. This requires knowing the position of the receiver,
but since this is known, it will be able to only send message in this direction,
while epidemic routing had to send the packet in any direction to be certain
of delivery. This implies using bandwidth also for those directions that does
not contribute to the delivery, to the save messages used in the direction that
does not contribute to delivery, one can use the direction of the recipient prior
to sending. This aid will starve portions of the network if used in information
sharing, because the message is constantly delivered to new nodes. It is effective
when looking for one specific node and counter effective when addressing the
whole network.

The “Location aided routing” (LAR) [26] is one of the location based routing
protocols, most of which are based on link state routing, hence a presending
known topology which is often found in dense networks. LAR is using a concept
called, last known position, this concept uses the physical position of each node
so that the routing protocol in addition to the connectivity also knows the
position, and distance and movement can then be calculated. This principle is
applicable to delay tolerant networks as well as dense networks. These protocols
use the physical position to reduce the request zone, or transmission area. This
has the effect that only the nodes in the request zone is receiving messages, thus
counter effective to information sharing where all nodes, also those positioned
outside the request zone, requires the information.

Another more basic technique to reduce the overhead of message routing, is
to use a time to live (TTL) constraint. This constraint is in place to ensure that
packets that does not reach their goal, stops after a given number of hops. This
reduces the overhead of misguided packets going forever. This is once again
a counter effective constraint in place to enhance routing by cutting off some
portion of the network. The TTL scheme works in the following manner; the
TTL counter is reduced by one at each node it visits. If the TTL counter is zero,
the packet is dropped. This will in fact stop the message from reaching nodes

40 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

that are TTL+1 hops away from the sender. In delay tolerant networks we do
not know how many hops will be needed to reach all nodes, such a constraint will
only limit the dissemination of information. And once again will the constraint
not be suitable in it self for use in information sharing.

As the differences are laid out, there arises a separation of the mechanisms
used. One, those that limits the number of recipients, which are TTL and
location constrains, for example. Two, those that make dissemination to all
more effective, and dynamic. Like epidemic routing and other store and forward
mechanisms. I view this as a guide to which mechanisms to adopt and which
not to use. The reason for this is that some unwanted side effects in routing
are wanted effects in information sharing. This is in fact quite natural when we
look at the overall goal of routing, which is sending from one to one, while in
information sharing it is one to many. Despite these differences our intermediate
goals are the same, use as little as possible of the available bandwidth, be fast,
and deliver at least once.

4.6.2 Propabalistic routing used in information sharing

The concept of propabalistic routing is taken from the PROPHET protocol [12].
In this protocol the author tries to handle the overhead seen in epidemic routing.
This is handled by building a statistics so that an educated guess can be made
whether or not to forward a message to a encountered node. Once again is
this constraint of not forwarding to everyone is made to limit the message to
portions of the network. The author of PROPHET has shown that this gives
less overhead and network usage but still performs at least as good as epidemic
routing. This might be counter intuitive, since messages are replicated onto a
subset of all nodes in the network hence giving a smaller dissemination rate.
The reason why this works is that the nodes selected for dissemination are the
nodes with the highest probability to encounter the requested node again later,
based on statistics.

The protocol works by sending message from one to one. But the principle
of using a dissemination with a probability is interesting also for information
sharing. If we can deviate from the principle of 100% dissemination for this
technique, it would be possible to see a scenario where we are able to disseminate
to a large but not total portion of the network. If this is achieved in a uniform
way, such that if all nodes as part of a partition could reach all information
within a specific number of hops, would we be able to both hold the search time
low in addition to lowering the dissemination cost. This scheme is feasable, if
one could pick out a section, a neighborhood of 4-5 nodes that where connected
via direct one hop links and these nodes combined had knowledge about of all
information in the network.

At each node we would keep some portion of the global information base.
Upon a request for a specific information element, would we first search the
local storage, if nothing was found, would we do a limited ring search until we
found the element. By doing this would we lose the instant search time, because
we have to do a network search. The gain is in how the dissemination is done,
when we no longer need to disseminate to all nodes. We could disseminate to
a fraction of the neighboring nodes, the nodes had to be randomly picked so
that the information would not be located on some nodes but evenly spread
out over all the nodes. This dissemination would leave some of the nodes in

4.7. DENS MESSAGE PROPAGATION MODEL IN INFORMATION SHARING41

each partition without some elements. The transfer that was not required to
obtain 100% coverage, is the bandwidth gain of this technique. The larger the
partition the less traffic overhead, but the larger the search time. To implement
such a technique efficiently one has to find the governing trends into how the
system is used, many searches will favour high dissemination rate, and many
new creations would favour a low dissemination rate and a more time consuming
query.

Two problems are still open when using this scheme;

1. the protocol must end, it needs a defined end state.

2. mechanisms to establish confidence that the distribution will become uni-
form.

The epidemic routing protocol stops when achieved 100% dissemination, defined
by each and every node having all its neighbors equal with respect of the infor-
mation storage. We can conduct that if each trigger is followed, all information
will be disseminated to all. In the case of the propabilistic routing the deduction
is harder, since not all triggers will result in a synchronization. If, by chance,
no nodes start a synchronization with a newly arrived node, will the new node
be starved.

To get the dissemination uniform we depend on the topology. If the network
is too sparse we could be in a situation where some partitions of the network
would never be reached. This happens, for example, if nodes that act as the
single bridge between the partitions fail or decide not to forward their infor-
mation to the other partition. If this happens, and no other node forwards
the information, the entire partition will be starved for information. To handle
these situations we need to detect that such a situation arises and respond to
that situation so that no partition is starved. Both detection and handling is
hard.

The PROPHET protocol takes advantage of that the dissemination protocols
are redundant while they deliver the same information over multiple paths. This
happens in networks where the nodes have a high connectivity which leads to
many routes from the sender to any other node in the partition. By not using
some of the routes we can still get the dissemination to a satisfactory level but
with less overhead. These problems and questions need to be investigated and
answered, these are outside the scope of this thesis and will therefore not be
discussed further.

4.7 DENS message propagation model in infor-

mation sharing

DENS combines routing of message and the knowledge of clusters to do dissem-
ination of subscriptions, this saves bandwidth but introduces requirements into
partitions and ability to negotiate hierarchies among the clusters.

DENS, distributed event notification service, uses a one-to-many propaga-
tion model to disseminate events through a subscription service. The subscrip-
tion service is distributed in an overlay network spanning the network. DENS
is transporting events in the form of messages from a publisher to all its sub-
scribers, doing filtering as near to the publisher as possible. The dissemination

42 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

process used in DENS is similar to the semantic synchronization protocol. What
DENS does is building a hierarchy amongst the nodes. The top level nodes are
part of the overlay network; each of these has some underlying nodes. If one of
the underlying nodes holds a subscription to an event that is published, the mes-
sage will follow the overlay network to the correct top level node and from there
be forwarded to the correct sub level node. These sub structures of nodes forms
“highways” for message transfer which can be stable or fast routes. Other mo-
tivations for building such structures are priorities for message delivery, where
the nodes in the overlay structure have first priority and other nodes will be
served after these. This is the case if all roles of some kind will require a fast
dissemination.

I hope to use this overlay network to get higher dissemination speeds, with
first priority amongst prioritized nodes, and hope to larger global dissemination.
This can be done by using the overlay network and from each of the overlay net-
work nodes out to the rest of the network. This gives the dissemination multiple
starting points hence a parallel dissemination process. It is thought that this
can give us faster dissemination speed than with basic epidemic dissemination.

4.8 The broadcast storm problem

The broadcast storm problem (Section 2.1.5) introduces some problems for rout-
ing and message passing in ad-hoc networks, these same problems are also
occurring in information sharing. Measures to handle the problems are also
described in the article covering this subject [16]. These measures are appli-
cable to information sharing, as the dissemination can be viewed as a series of
rebroadcasts, propagating information from node to node. As each new node
gets new information, it triggers a new synchronization, which will engage all
its neighbors. The problems occurring in broadcast storms are therefore also
occurring in information sharing, we can also assume that the techniques used
to enhance performance and avoid broadcast storms can be used to handle the
same problems in information sharing.

As described by the broadcast storm article [16], we want to reduce the
number of overlapping rebroadcasts or synchronizations. We need to reduce the
number of synchronizations initialized, not only the number of messages sent.

Multiple techniques are presented, to reduce the broadcast storm problem,
some of which are directly applicable to protocols used to solve the dissemination
problem, others are good enhancements both types will be part of future work.
I will now go through the different techniques;

Probabilistic scheme This technique is directly applicable to the protocols
used for information sharing. One can use the probability to determine if the
newly received information is going to trigger further synchronization. This will
give less initiated protocols and thus less overlapping broadcasts. The downside
seems to resemble that of the PROPHET protocol, which effects reachability.
As described in Section 4.6.2, this can lead to starving of sparse connected
partitions. To reduce the collision and contention, upon multiple initiations in
the same coverage area, a backoff timer can be used, this measure can be used
alone to se if the collision and contention rates will decrease .

4.8. THE BROADCAST STORM PROBLEM 43

Counter-based scheme Statistics of this behaviour can be used to determine
whether or not the information is going to be disseminated by this node in the
future. However, our situation is a bit different, since we can construct a message
not only based on one other message but based on multiple sources, previous
messages, local storage and the received message. To determine if the local
storage is to be disseminated, based on the last received information element,
can be misleading. But one can portray a solution where statistics are gathered
on a per metadata element basis, and from these one can read how many times
a metadata element is received over the last n seconds. These statistics can be
used to build the dissemination packet, if it ends up empty, it will not be sent.

Distance-based scheme This scheme uses the distance to each node as a
measurement onto how large contribution each node can make to the global cov-
erage area by retransmitting. A small distance to a transmitting node means
that the receiving node largely overlaps the transmission area for the sender
which is already covered, hence little extra coverage leads to stop in the rebroad-
casts. Overlapping disseminations can also occur when sharing information if
nodes are transmitting in the same area, which is exactly the same problem
as for broadcasts. If we were to measure the distance between the sender and
the receiving node, we could use this information to evaluate if the receiver was
contributing enough to the coverage area to be allowed to continue the dissem-
ination. The distance measurement is hard, but can be accomplished by using
the receiving strength or GPS positions.

Location-based scheme This scheme can use information from location
aided routing protocols to calculate the accurate additional coverage by each
node. It uses information from a GPS to evaluate the coverage area of each
node, and from this information decides whether a node is allowed to continue
a dissemination. In contrast to the distance based, where a approximation is
done based on the signal strength. GPS information is not known to a MIDAS
node as part of the project, which stops the implementation of such a scheme.

Cluster-based scheme The cluster based scheme uses a hierarchy of nodes,
where there exists a cluster head, members and gateways. A cluster is formed
by the members, a member is a node inside the range of the cluster head. The
gateway is a node with connection to another cluster. The cluster is not a
partition but a group of nodes inside a partition.

This hierarchy gives us a further optimization into which nodes can redessim-
inate information. This scheme is also applicable in information sharing, and
will probably give good performance while the number of nodes generating pack-
ets and traffic is small, hence further reducing the bandwidth use.

4.8.1 How to use these schemes

Many of the schemes are applicable to information sharing. The broadcast
protocol, which is the most advanced protocol in this thesis, suffer from many of
these symptoms. As discussed before are NEMAN hiding some of the problems
by not giving a realistic wifi environment. However, for real life usage would
the broadcast storm techniques have to be implemented to avoid problems.

44 CHAPTER 4. REQURIMENTS ANALYSIS AND SOLUTIONS

At first should the problem be analysed more thoroughly, by doing so would
we locate the most pressing problem areas. At the moment not all schemes
would be feasible to implement due to physical constraint like lack of GPS
positioning, other is hard to implement in a general fashion since they involve
cross layer communication, like he distance based scheme.

Both the probabilistic and counter based scheme is feasible to implement
with out altering the node configuration. In addition would the cluster-based
scheme might be feasible to implement by use of the already constructed OLSRD
integration, since the entire topology is known. If these first implementations
would give promising results, should one consider installing GPS or other posi-
tioning devices to look into the further gains of the distance and location-based
schemes, since these are the once that seams most promising in the article re-
sults.

The implementation of these schemes introduced by the broadcast storm
article is not included in this thesis. This is due to lack of time caused by the
late discovery of the article.

Chapter 5

Design issues

This chapter defines the design choices done. By using the previous chapter
combined with the requirements are choices made and described. First the
GMDM architecture, then the metadata filtering position. To avoid informa-
tion overflow will some component or the application filter the vast amount of
information, where this filtering is done is discussed. The scope of propagation
is discussed with relation to multi or one hop synchronization. Further are syn-
chronization protocols discussed, and different approaches are layed out. The
messages used in the protocols are also described.

5.1 GMDM architecture

GMDM is divided into two parts; the information gatherer and the information
organizer. The gatherer has the responsibility of gathering and disseminating
metadata to neighboring nodes. The organizer does the structuring of informa-
tion to later be able to respond to queries from other nodes.

To maintain the data structure in the organizer up-to-date will it rely on
the gathering part to fetch and disseminate metadata. As we can see will the
gathering part update the organizer with new information. However new infor-
mation about local tables are updated directly in the organizer’s data structure
by the user application. This gives the two parts a tight coupling while they
work on the same data structure.

5.2 Metadata filtering

The general concept of GMDM is to give a total view of the information in
the network, which will be done in an eager fashion. That is, queries about
table replicas are always placed to the local node. The knowledge in GMDM is
used in two ways, either as a search for availability, or as a request to give an
information overview. The search returns the name of a node which holds one
replica of the table name in question. The overview request returns a collection
of all table names whose replicas exist in the network.

When the application requests an overview, the middleware is providing a
total view. In doing this the application is given all metadata information that

45

46 CHAPTER 5. DESIGN ISSUES

is recorded by the GMDM. The information returned can contain both ele-
ments that are not reachable within this network partition nor needed by the
application. The knowledge of which elements are needed by the application is
not known to GMDM, thus it provides all information available to all applica-
tions. The main point is that filtering of which elements to return, is not up
to GMDM. Applications can filter on the availability of the nodes or over other
criteria. GMDM is providing the full set of metadata, giving the application
the power to filter as it wishes.

It is important that the application is aware of this fact, since it has to
handle the problems stated above. Application designers have to understand
the benefits and problems this approach introduces.

It is important to note that this placement of the filtering introduces an
overhead. This might be unavoidable, but the metadata information not used
by the application has both used bandwidth and memory to get to this node.
This part can be solved through better cross layer communication, where the
application instructs the middleware about what information is valuable. In
this way the middleware can filter out which information to request in a syn-
chronization, and in this way save bandwidth. This approach is problematic in
two ways; one, the saved bandwidth also stops dissemination. In some cases
the needs of the middleware and the global dissemination must be set above the
application. Two, as reasoning over information semantics gets better, informa-
tion that is not thought of by the user can be found by algorithms. In this way
information that is important to the user will not be hidden. This reasoning
is dependent on knowing all information available. We have made the decision
to filter only at the application level, to best avoid the problems encountered
otherwise, as the subject these problems are outside the scope of this thesis.

5.3 Propagation scope GMDM

When discussing both dissemination and propagation we need to keep clear
what the scope of the dissemination is for each node. We can look at the scope
on two levels: at the global level and at the node level. At the global level the
scope is all nodes in the network. We see the dissemination as a propagation
from one to all by every one relaying messages, thus disseminating the entire
network. At the node level the scope is limited to the nodes in one hop proximity,
also referred to as the neighborhood. The node level scope is limited to these
nodes under the argument that this is the most cost effective way, both with
respect to the ever changing topology and the penalty of routing messages over
intermediate nodes, as multihop synchronization. By keeping the scope to the
neighbors the global relay functionality is still intact.

As the same rules apply to all nodes, we know that if a message is propagated
to one neighbor, its neighbors will also get the information. We know this
because all nodes apply to the same triggers (see Section 5.3). The dissemination
will have a transitive property that ensures that the entire network will be
disseminated.

5.4. SYNCHRONIZATION PROTOCOLS 47

Triggers

As we shall see there are three situations where the node needs to take actions
to ensure that the transitivity holds. If one of the three situations is not handled
correctly, some part of the node network can be starved or the dissemination
can be delayed. The three triggers stated below is a complete set of rules to
ensure transitivity

1. new metadata created

2. new metadata received

3. new neighbors

The rules govern which events trigger a synchronization. The triggers need
to be constructed so that the individual nodes contribute to the global dissem-
ination. This is done through analysis of 1) how metadata can be inserted into
the network, covered by trigger 1, 2) how new metadata is discovered, covered
by trigger 2 and 3. The goal is to use as little time from new information ele-
ments enter the network until they are fully disseminated. We also need to look
at how new nodes are able to learn new information from networks they join,
hence the expansion of the network with respect to new information.

Metadata can also be discovered through new nodes, therefore trigger num-
ber 3. Which ensures that metadata on new nodes arriving at the partition is
discovered.

When we look at expansion of the network, we think both of the global infor-
mation network, containing all table instances and the physical node network.
The information network can be expanded by receiving new information from a
neighbor. The node’s local knowledge is then expanded, which makes it larger
than the neighbors not in direct contact with the providing node. It is therefore
up to this node to deliver the information to its neighbors, by providing the new
information, as metadata, to its neighbors.

5.4 Synchronization protocols

The synchronization protocols are responsible for dissemination of information
from one node to the next. The protocols are set into action by the GMDM
after selecting two nodes that need to be synchronized.

To be able to describe the actions and procedures of the protocols I need to
establish a difference between the listener and the initiator. This distinction is
important when I later describe behaviour. Upon one of the triggers, a node
will start a synchronization. The node that starts this synchronization is called
the initiator. The protocol synchronization contains messages, the ones that
receive these messages are called the listeners.

5.4.1 Messages

Any communication between nodes is done through sending network packets.
These packets are the bits and bytes that traffic the network. To more easily
use this communication, there is often made several abstractions. We use the
java implementations of sockets, which abstract away the actual sending of the

48 CHAPTER 5. DESIGN ISSUES

bytes, and CRT which abstract away the byte orientated packets, so we can
send messages. A message is a defined object that contains; a sender, a reciver
and a component name, thus uniquely identifies the receiver and the sender of
each message. This basic message object can be extended to whatever usage
the components will need.

Each synchronization protocol contains a set of rules, defining the message
formats, and the message order. Rules define which messages are required to
start a protocol, and which behaviour is required upon each message. The
rules combined give a deterministic behaviour model on each of the involved
nodes. For every event that can occur at any state, there will exist an action to
perform. The actions performed for a protocol - to go from one state to another -
is often combined of a trigger and an action. The trigger is most often a message
received, the kind defines which state to go to, and which action to perform.
However timeout triggers can also occur. Actions is typically constructing and
sending of messages.

The protocol defines the communication between nodes as well as the be-
haviour on each of them. Clear definition of the messages is important for the
protocol, since the message type and content decides the actions of the protocol.

To track the behaviour and status of the protocols each node will have some
form of loging service. This services will provide any implementation with the
nessasary functions to both mirror its status and its behaviour. The diffrence
between the two and there usage is more thuroughly discussed in Section 6.7.

The messages are represented as a MIDASMessage, which is a java object.
All messages used in the protocols are subclasses of this message. The message
object that is going to be sent is serialized via the java ObjectOutputStream to
from a byte sequence. At the receiver end the byte sequence can be reconstructed
as a MIDASMessage of the correct type. This is not an optimal solution while
the serialization is not as small as a handmade message type, but the message
size has not been the main focus of this thesis. Therefore we have used this
simple solution. Further work can study how large the savings are in relation to
such a change in message layout. The message hierarchy is designed to do the
message type transparent at the CRT component. The UML diagram in Figure
5.1 shows the message types, and the content of each message.

Overview message

The overview message is doubling as both a start-up message and an information
hash. The semantic meaning of the startup message is that of starting a new
protocol session. A listener that receives an overview message, will start up a
new instance of the correct protocol and link the session to the protocol. More
on sessions of protocols in the implementation, see Section 6.4.2. For now the
overview message is only signalling that a new protocol is starting, and that this
is the first message. The information hash is the primary use of the overview
message. Inside the message there is a representation of the entire knowledge
of the initiator node. The hash is made up of a list of unique representations
for each metadata element, in MDS this is a tuple - table name and location -
which is the MDS unique identifier of a metadata element.

5.4. SYNCHRONIZATION PROTOCOLS 49

Figure 5.1: Shows the message objects

Figure 5.2: A Venndiagram representing A and B, the overview knowledge, C
local knowledge, B shared knowledge

Complement message

The complement message is constructed as a response to the overview message.
The information hash inside the overview message is assessed and evaluated
against the knowledge locally. The elements that only exist in the local knowl-
edge are entered into the complement message as shown in Fig 5.2 as the grey
area, C. Note that we enter the entire metadata element into the complement
message since we want to copy the element to the initiator. This means that
metadata can have more attributes than inside the hash value. This is valuable
for extending the metadata content.

Along with the provided metadata elements in the complement, is attached
a list of needed elements. These are the elements that are in A but not in B or
C as shown in Fig 5.2. These are the elements needed by the listener. The list
entries are the hash keys of the elements as represented in the overview message,
and an entry is treated as a request for a given element.

Needed message

To be able to respond to the request for elements as provided by the complement
message, the initiator uses the Needed message. This message transfers the
elements added to its payload to the listener, it is more or less a simple envelope
where metadata can be put.

50 CHAPTER 5. DESIGN ISSUES

(a) At the listening side (b) At the initiating side

Figure 5.3: Epidemic propagation protocol represented by state machines.

5.4.2 Synchronization of already synchronized nodes

Each synchronization tries to even out differences between nodes. This is done
after each of the described triggers, however there can occur situations where
nodes that rediscover each other are already synchronized. This happens if two
nodes are done synchronizing, loose contact, and later regain contact without
either of them having new metadata elements. In these situations the nodes
will start synchronization, but since there is no need for a synchronization all
communication will be overhead. The implementation will decide how large this
overhead will become, however some communication is required to identify the
situation.

The protocols should have mechanisms for terminating this type of synchro-
nization at an early stage. How this is done depends on the implementation, as
the entire metadata hash representation has to be transferred over the network
to the other node, it represents huge amounts of overhead traffic at worst.

The optimalization in the broadcast protocol tries to handle this problem
to some extent. However, there are not done extensive tests and measurements
into how large these problems are. This should be considered when doing future
work.

5.5 Propagation issues

I will now describe the propagation techniques that will be implemented.

5.5.1 Epidemic propagation

Epidemic propagation uses concepts from epidemic routing. The protocol will
try to pass every element to all new neighbors. This will result in the propaga-
tion of an element in a hop by hop fashion. Fig 5.3 illustrates the protocol as a
state machine.

The protocol consists of two sub protocols, one for incoming requests(see
Fig 5.3 a) and one for self-initiated protocols(see Fig 5.3 b).

5.5. PROPAGATION ISSUES 51

The initiated protocol starts by sending an overview message to a selected
node. The listener node responds with a complement message, containing all
metadata elements provided by the listener node and a list of requested meta-
data. If the message is not received by the initiator within a timeout period,
the protocol logs the result and terminates gracefully. This happens in the case
of the other node moves out of reach before a return message is sent or the
overview message does not go through, hence transmission error.

Upon receiving the complement message all information is appended to the
local knowledge. If the list of needed elements contains any entries, the corre-
sponding metadata is sent to the listening node.

The listening node always keeps a ready protocol listening for overview mes-
sages. When a message is received the protocol constructs a complement mes-
sage. It also adds the list of needed elements as described in Section 5.4.1.

The protocol now waits for the other node to return the needed elements.
When the needed message is received or no message is received with in the
timeout period, the protocol terminates. If no metadata is needed, this step is
skipped and the protocol is terminated directly.

5.5.2 Broadcast propagation

In epidemic routing there is one to one communication between synchronizing
parties. The one to one technique introduces many messages. To reduce this
I use broadcast mechanisms to take advantage of the radio networks shared
medium. Such a protocol can communicate from one to many using only one
message. This is thought to introduce less overhead, especially when merging
networks and when nodes are already synchronized.

At the initiator the protocol has to be able to respond to two events. One,
changes in the neighborhood or other triggers. Two, incoming complement mes-
sages. Both events have their own listener, since they need different responses,
as described below.

The initiator will react to internal events such as new metadata or new neigh-
bors by starting a new synchronization protocol as described. The broadcast
protocol will then broadcast an overview message (see Fig 5.4 a). The subpro-
tocol will then regain the waiting state. If no one responds to the message, the
initiator will not follow up on this action.

Only those listeners that receive the overview message and need some of the
elements will respond, following the state machine in Figure 5.5. The response
will trigger the synchronization protocol. The initiator will receive the comple-
ment message, handle the provided elements, and read the needed list to see if
the initiating node is required to provide anything to the listening node. If so,
the needed message is constructed and sent (see Fig 5.4 b).

The decoupling of the listening and initiation subprotocols is vital to achieve
one to many communication. With this design the nodes can independently of
the state on the initiator side, respond to an overview message. It also handles
that many nodes respond simultaneously and that some even respond late. If
there is more than one responder to a broadcast message, the reduction on the
network load is equivalent to n-1 overview messages both in size and transfer
time, where n is the number of response messages to the overview message.

The listening node waits for an overview message which starts the protocol.
The overview is examined by the listener and a complement is constructed. The

52 CHAPTER 5. DESIGN ISSUES

(a) State machine for neighborhood changes and other
triggers

(b) State machine for exchanging metadata

Figure 5.4: Broadcast propagation protocol at initiator side.

Figure 5.5: Broadcast propagation protocol machine at listening side.

5.5. PROPAGATION ISSUES 53

complement is not sent unless either some elements are in the complement, or
there exist some needed elements. Only if the complement message is sent, the
protocol will continue, if not, it logs and terminates. When the complement is
sent and the protocol requests some needed elements from the initiator, it waits
for a needed message which transfers the requested elements. If no elements
are requested, the protocol terminates. If the needed message does not return
within a timeframe, a timeout occurs and the protocol terminates.

5.5.3 Semantic propagation

The broadcast propagation protocol tends to give a propagation pattern similar
to that of an expanding ring search. This is expected and wanted. The effect is
caused by the neighborhood scope of each node, as described in Section 3.2.3.
To break the pattern and speed up the dissemination process we have developed
a protocol that tries to start the propagation at multiple places at once. These
points are constructed from information about groups in the network. Groups
are further discussed in Section 2.4.2. Theoretically this will give greater speed
of dissemination to the group members, as a side effect it gives multiple starting
points for the dissemination process and results in faster dissemination to all.
The downside is that this will generate more traffic by using multi-hop synchro-
nization. This is an additional overhead, and must be handled with care and
be monitored. I will try to evaluate if the benefit of multihop synchronization
gives notable performance gains and what the size of the additional overhead
is. This will be evaluated in later chapters.

The protocol in itself uses both the epidemic and the broadcast protocols
as first and second step in the process. These are used since they already
are developed and tested. They are also solving the task at hand, namely to
syncronize one to one, and one to many.

The two steps of the semantic propagation are;

1. Group synchronization

2. Neighbor synchronization

The first step uses the epidemic propagation protocol (see Section 5.5.1) to
perform a multihop synchronization with all the other nodes in the group, one
by one. The second step uses the broadcast propagation protocol at each of
the group members and continues as described for the broadcast protocol (see
Section 5.5.2).

The semantic propagation introduces another level into the network, an over-
lay network similar to the one of a publish-subscriber network like DENS (see
Section 2.8.1). The multiple start points, from each of the network members,
can work in parallel by propagating new changes in the network simultaneously.

54 CHAPTER 5. DESIGN ISSUES

Chapter 6

Implementation

In the implementation chapter, I will describe in detail how the protocols as
well as the supporting classes are implemented. This will be done by first
laying out the overview, UML diagrams can be found in the appendix, later
more detailed description follows together with pseudocode. The supporting
classes like communication and topology information are described before the
implementation of the DENS protocol is specified in detail.

6.1 Implementation of GMDM

The GMDM component handles both the dissemination process and the pre-
sentation of metadata. It synchronizes its local storage with neighboring nodes
and presents the shared local storage to them using the protocols. Local stor-
age and presentation will be handled in the metadata tracker subcomponent and
the dissemination and synchronization in the SyncManagerController hierarchy
which are the implementations of the synchronization protocols. The diffrent
parts of GMDM will now be described.

6.1.1 Metadata tracker

The task of the metadata tracker, implemented in GmdmMetadataTrack class,
is to handle tracking of metadata elements. This tracking embeds storing and
retrieving metadata. This is implemented as a layer on top of the MDS local
storage (MdsLs), which is a relational database adapter. The metadata tracker
solves the translation of metadata elements to database tuples. By doing this,
the metadata tracker gives a transparent and persistent presentation of meta-
data. MIDAS needs to search metadata by source node and by table name,
to be able to search and retrieve data. The GmdmMetadataTrack class have
functions returning results for these tasks.

6.1.2 Metadata

Metadata is represented in MIDAS as a Java class (see Figure 6.1). Each meta-
data element represents a table replica at a node, the metadata element is
uniquely identified by a combination of table name and the node name, which
is sufficient for MIDAS usage. This identifier is produced by the metadata class

55

56 CHAPTER 6. IMPLEMENTATION

1 public class GmdmMetadata implements MdsMetadataElement ,
S e r i a l i z a b l e {

private St r ing name ;
3 private St r ing nodeId ;

5 /∗∗
∗ c r ea t e s a new metadata element

7 ∗ @param name
∗ @param nodeid

9 ∗/
public GmdmMetadata(S t r ing name , S t r ing nodeid)

11 {
this . name = name ;

13 this . nodeId = nodeid ;
}

15
public St r ing getName () { . . . }

17 public St r ing getNodeId () { . . . }

19 /∗∗
∗ re turn ing a unique i d e n t i f i e r o f t h i s metadataelement . i s

unique f o r t h i s r e p l i c a or t h i s source o f the o r i g i n a l t a b l e
.

21 ∗ @return
∗/

23 public St r ing g e t I d e n t i f i e r () {
return ””+ name + ”−” + nodeId ;

25
}

27
}

Figure 6.1: Listing of the important parts of the Metadata class

6.1. IMPLEMENTATION OF GMDM 57

itself. The identifier is used by many functions that work with metadata, as
the protocol overview message for example. Since the metadata class is the one
defining the identifier, it can be changed to handle more complex features in the
future. In addition to the identifier data, the metadata class can also include
other data; creation date, information about whether this is a replica, where
the parent table instance is located, data types and so on.

The reason for this extendable metadata class is that it represents the core
of the data model. Within MIDAS there has been discussion on how to delete
a table replica, and how to disseminate the unavailability of this table replica.
By altering the identifier we would be able to disseminate the deletion within
the same framework as we disseminate a creation. The identifier would sim-
ply change from “testtable-node1” to “testtable-node1;deleted”, which would in
practice disseminate another metadata element, but with the semantics of delet-
ing the first. Without this extendability in the metadata class such a extension
would be more complex to implement.

In this thesis I have concentrated on the use of metadata in MIDAS, where
the demands for metadata information is low, it is restricted to name and lo-
cation. The metadata concept can, as I have discussed above, be extended to
contain much more information. Use, other than the current MIDAS required
metadata, is not the focus of this thesis and will therefore not be discussed or
implemented further.

6.1.3 Synchronizer

The GmdmSynchronizer, also called the Synchronizer, provides an interface to
the MetadataTracker specially designed for the protocol implementations. The
Synchronizer handles the comparison of the two local storages under synchro-
nization. To compare the two local storage sets set theory will be used, since
the interest are of the complement of one set compared against another. These
functions are hard to implement and must therefore be carefully tested. The
use of the synchronizer is typically; “return the complement of this metadata
list from local storage”, “given this list of metadata what can the local storage
provide”, and “insert this list of possibly new metadata”

The separation of the synchronizer decouples the protocols and the Meta-
dataTracker, additionally it separates the synchronizers functionality from the
protocols, which is therefore easy to unit test. Since all protocols require the
same functionality the separation combines the functionality into a separate
object. The testing of the synchronizer has given a confidence to the stability
and correctness of the algorithms. By confining the synchronizer logic in the
synchronizer I can implement other tactics like probability based dissemina-
tion or other models of synchronization by altering the synchronizer algorithms.
One can also see a possible solution to encryption by simply encrypt everything
outside the synchronizer, since it forms the boundary against the network, if
security is important.

In MIDAS the synchronizer its used in is basic from, doing the set theory
operations on the different lists. This is also the version used during this thesis.

58 CHAPTER 6. IMPLEMENTATION

6.1.4 Sync manager controller

Each protocol is developed by implementing an idea often invented on a white
board or such. When the implementation is due, all ideas and constraints are
to be implemented into one streamlined protocol. To keep control over what is
actually going on, it is important to have understandable source code. This is
achieved by doing only the protocol specific actions inside the protocol imple-
mentations, all other handling, like exceptions, timeouts and anomalies, which
are not part of the protocol process, has to be separated from the implementa-
tion. When this is done, the source code gives an exact representation of the
protocol specification, understandable for the reader.

To build protocol implementations, I have decoupled GMDM and the proto-
col implementations. This is done by making a separate layer called the Sync-
ManagerController. This layer handles the communication, sequential execution
of the protocol, and hides the protocol implementation from GMDM.

Communication

To handle communication in the asynchronous fashion that is required when
using MANETs, the SyncManager uses the RequestHandler, which will be de-
scribed later. For now, all it does is making the asynchronous communication
appear synchronous to the protocol developer. It handles timeouts and round
trip delays so that the protocol only relates to sending and receiving as syn-
chronous calls.

The protocols consist of well defined steps, which in their execution sends or
receives messages. Each of these steps is required to be executed in sequence so
that the communication order remains correct, since each step responds to mes-
sages from the other protocol party. The SimpleSyncProtocol (see Figure 6.2)
requires for example that the SendView step finishes, which sends the overview
message, and that the ReceiveCompliment step does not start execution before
all subactions in the previous step are finished on the initiating node. One can
say that the protocol is defined by its steps and their order. Each of the steps
is implemented using the command pattern [7], which gives a common interface
for how to execute the step. We can now construct each protocol by picking
the steps that are required and order them in the correct way, thus forming a
protocol.

Sequential execution

This decoupling of step and protocol gives the ability to test each step according
to its specification, more on this in the unit test, Section 6.8.1. The ability to
implement each step as an isolated action has made the complex protocol easier
with respect to both debugging and development, but the sequential execution
has become even more important. If steps are executed in parallel or in the
wrong order, the messages will be sent in the wrong order. This might lead to
deadlocks and the dissemination will grind to a halt. By letting the frame work,
the SyncManagerController, ensure the sequential execution we will avoid these
kinds of race conditions without any effort from the developer. The sequential
execution is handled by chaining the steps by using the ChainManager.

6.1. IMPLEMENTATION OF GMDM 59

public class S impleSyncProtoco lContro l l e r
2 extends SyncManagerControl ler

implements MdsCrtCallBackAdapter , ChainManagerEndInterface ,
SyncManagerInter face {

4
public S impleSyncProtoco lContro l l e r (Mds In t e rna l In t e r f a c e mds)

6 {
super (mds) ;

8 this .mds = mds ;
super . toComponent = AbstractMdsMessage .GMDM;

10 }

12 public void respondTo (GmdmMessage msg) throws

SyncManagerException {
respondedTo . add (msg . getFromNode ()) ;

14
isResponseOnly = true ;

16 setRequest Id ((S t r ing)msg . getRequestId ()) ;

18 try {
chain . add (new ReceiveAndHandleView ()) ;

20 chain . add (new ReceiveNeeded ()) ;
} catch (ChainException e) {

22 MdsLogger . e r r o r (e , this) ;
throw new SyncManagerException (”Could not cons t ruc t chain

manager” , e) ;
24 }

26 s t a r t () ;
}

28
public void syncWith (St r ing toNode) throws SyncManagerException {

30
syncedWith . add (toNode) ;

32 this . toComponent = AbstractMdsMessage .GMDM;
try {

34 chain . add (new SendView ()) ;
chain . add (new ReceiveCompliment ()) ;

36 } catch (ChainException e) {
throw new SyncManagerException (”Could not cons t ruc t chain

manager” , e) ;
38 }

40 s t a r t () ;
}

42
public void triggerNewMetadata (S t r ing fromNodeId)

44 throws SyncManagerException { . . . }
}

Figure 6.2: Listing of the simple synchronization protocol, with the parts han-
dling construction of the protocol. We can see from lines 19-20 and 34-35 how
the steps are added to the execution chain.

60 CHAPTER 6. IMPLEMENTATION

public interface SyncManagerInter face extends Runnable {
2

public void respondTo (GmdmMessage message)
4 throws SyncManagerException ;

public void syncWith (St r ing nodeId)
6 throws SyncManagerException ;

public void triggerNewMetadata (S t r ing fromNodeId)
8 throws SyncManagerException ;

public void s tar tSync ()
10 throws SyncManagerException ;

12 }

Figure 6.3: Listing the interface implemented by any synchronization protocol.
All protocols are implemented as SyncronizationManagers.

Interface

Each of the protocols has to respond to different situations, these situations are
triggers described in Section 5.3. These include; on new metadata, both own
and retrieved, and on new neighbor, represented in the protocol interface (see
Figure 6.3) as functions syncWith() , used for new neighbors and triggerOn-
NewMetadata() , for new metadata.

In addition to the triggers we need a function for responding to other nodes’
synchronization request, this function is named respondTo() . It handles all
types of messages and is responsible for executing the correct part of the pro-
tocol, it can also throw an exception if the message is not recognized. The
syncWith() call is used, to synchronize local storage with one specific node.
respondTo() is used when receiving a message that is sent as an initiation of
a new protocol by another node. triggerOnNewMetadata() will start synchro-
nizing with all neighboring nodes, to disseminate the new information. When
one of them is called, the protocol constructs the chain of steps to handle the
specific request.

While constructing a protocol the ChainManager of the SyncManagerCon-
troller is loaded with the steps that are to run during this protocol. This is done
as soon as the protocol knows what situation to respond to. This is decided upon
calling one of the SyncManagerController interface functions.

6.1.5 Chain manager

As mentioned, the protocol consists of a chain of steps. These steps are organized
as an ordered set inside the ChainManager (see Figure 6.4). The ChainManager
is constructed as a series of command objects, in this case protocol steps. Before
the chain starts execution, the runChain() command is invoked. It starts the
chain execution with the first step, upon completion the next step is given the go
ahead. If one of the steps is aborted or throws an exception the ChainManager
will stop the entire chain, log the state of the chain and run a special abort
routine defined by the protocol or manager implementation. In MIDAS the
most common abort routine is to log and terminate the protocol gracefully. If
all steps are executed successfully, the special end routine is executed and the
protocol terminates. Most successful end routines contains logging.

6.1. IMPLEMENTATION OF GMDM 61

public class ChainManager {
2 ChainManagerEndInterface end = null ;

private L i s t chainElements = null ;
4

public ChainManager ()
6 {

chainElements = new ArrayList () ;
8 }

10 public void runChain (Map con f i gu r a t i on)
throws ChainException

12 {

14 for (int i = 0 ; i < chainElements . s i z e () ; i++)
{

16 currentPo int = i ;
try {

18 ((ChainElement) chainElements . get (i)) . run (c on f i gu r a t i on) ;
}catch (ChainAbortedException e)

20 {
MdsLogger . i n f o (”Chain stopped due to an abort ion ; ” + e .

getMessage () , this) ;
22 return ;

}catch (ChainException e) {
24 throw new ChainException (”Trouble with the ”+ i +” chain

element ” , e) ;
}

26
}

28
end (c on f i gu r a t i on) ;

30 }

32 public void add (ChainElement element)
throws ChainException

34 {
chainElements . add (element) ;

36 }

38 public void abort (S t r ing message , Exception cause)
throws ChainException

40 {
throw new ChainException (message , cause) ;

42 }

44 public void setEnd (ChainManagerEndInterface end)
{

46 this . end = end ;
}

48
public void end (Map con f i gu r a t i on)

50 throws ChainException
{

52 i f (end == null)
throw new ChainException (”End l i s t e n e r not s p e c i f i e d ” , null) ;

54 else

end . end (c on f i gu r a t i on) ;
56

}
58

}

Figure 6.4: Listing the ChainManager, displaying the add() function to add new
steps called chain elements, end() , and abort() functions to use for listening
for abort or successful end state. The runChain() starts the configured chain,
running one step at the time.

62 CHAPTER 6. IMPLEMENTATION

Each of the steps is a separate command object. The commands often require
common artefacts like session info and resources like local storage. There exists
a shared pool of artefacts where interstep resources and other shared artefacts
can be stored. This is provided by the command objects via the ChainManger.

6.2 Protocols

Each new protocol is constructed as a subclass of SyncManagerController. What
separate the protocols are which steps are included and how each of the inter-
face calls (syncWith() , respondTo() , triggerOnNewMetadata()) are handled.
The SimpleSyncProtocol handles the entire protocol in one session, the Broad-
castProtocol separates the protocol in two parts which gives the one-to-many
feature.

As we can see both models of protocol design are supported via the Sync-
ManagerController, while the GMDM sees no difference to which protocol is
used. It merely passes the initiation message to the selected protocol factory,
which instantiates a new protocol of the reconfigured type. If the node is to
initiate a protocol itself, GMDM will call a factory method, which produces the
correct protocol instance, where the implementation is hidden under a interface
common to all protocols.

While all these supporting structures surround the protocol, the only things
that are handled in the protocol implementation, are sending, handling and
receiving messages. This gives a more understandable protocol source code
which in turn reduces the amount of bugs introduced.

Messages

Each protocol communicates through a set of messages. All messages in MIDAS
has payload either in the form of a text message or metadata. All messages are
constructed over a super class GmdmMessage which uses the implementation
of an MdsMessage. By using this hierarchy of messages each new layer handles
only its additional function, and uses the support provided by other components
and layers. The protocol messages are required to have a type and to contain
payload. The type is used to identify the state of the protocol and semantics of
the message, the payload is used to exchange metadata.

Overview message Messages in GMDM protocols are separated into three
groups: overview, complement and exchange messages. The overview message
delivers a small representation of the local storage at the sender. This represen-
tation is as small as possible, but not smaller than we can identify each element
uniquely. Currently this is the identifier function from the metadata class. The
metadata identifier strings are put into a Vector list inside the message. A
Vector is a Java implementation of a dynamic array.

The overview message has the semantic meaning of starting a protocol.

Complement message This message is sent as a response to an overview
message, the metadata is the complement of what was presented in the overview
versus the local storage, in other words: the elements stored in the local storage
but were not present in the overview. Sometimes this is referred to as the

6.2. PROTOCOLS 63

provideable metadata. The entire metadata object is sent, to move additional
metainformation.

The metadata objects are contained in a Vector, and the requested metadata
identifier strings are kept in another Vector.

Exchange message Exchange message is as simple as the overview message.
It carries only a bag of metadata objects. Each object is the full version meta-
data, thus this message can be large in size. The message is made to transport
metadata from one node to another.

6.2.1 Simple synchronization protocol

As the names say, this is the simple implementation of dissemination. It bases its
approach on epidemic routing, taken from routing principles. The mechanisms
of epidemic routing are described in Section 2.4.2. The implementation will
serve as a reference for optimalization regarding the other two protocols and as
the simple, strait forward implementation.

It is implemented as a one to one protocol, meaning that it handles only one
sender and receiver. The protocol exchanges overview to establish difference
and then the complement message transfers the actual elements back to the
initiator together with the list of needed elements. The exchange message is
used to exchange the needed elements.

The messages are controlled by the steps that the simple synchronization
protocol is consistent of;

• SendView (see Figure 6.5), sends the overview message. Located on the
initiator side.

• ReceiveAndHandleView (see Figure 6.6), receives the overview and han-
dles it, by sending a compliment message. Located on the listening side.

• ReceiveCompliment (see Figure 6.7), receives the compliment and sends
the optional exchange message. Located on the initiator side.

• ReceiveNeeded (see Figure 6.8), receives and inserts any elements from
the exchange message. Located on the listening side.

Each step is describe using pseudocode. The SendView step is described by
listing the actual java implementation, to give a view of the actual work needed
to implement a step. The implementation of the SimpleSyncmanager imple-
menting the protocol interface is described in Figure 6.9

No interception is done to prevent redundant protocols, which means that
when the protocol is set into action it finishes even though there are no differ-
ences between the two nodes. However, no exchange message will be sent unless
there is content inside. This makes the last message optional.

Since this protocol does not use smart tricks to speed up the protocol it will
probably generate a lot of overhead traffic and processing on all nodes involved.

6.2.2 Broadcast synchronization protocol

To take advantage of the knowledge learned from developing the simple syn-
chronization protocol together with studies of routing protocols in MANETs

64 CHAPTER 6. IMPLEMENTATION

1 public class SendView extends ChainElement {
GmdmMetadataExchangeMessage exchange = null ;

3 public void run (Map con f i gu r a t i on) throws ChainException {
RequestHandler handler = (RequestHandler) c on f i gu r a t i on . get (”

node”) ;
5 Mds In t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i gu r a t i on .

get (”mds”) ;
GmdmSyncOverviewMesasge message = new GmdmSyncOverviewMesasge

((S t r ing) c on f i gu r a t i on . get (”toNode”) , mds) ;
7 Vector knownElements = new Vector () ;

I t e r a t o r i t ;
9 try {

i t = mds . getGmdm() . ge tSync ron i z e r () . getOverview () ;
11 } catch (GmdmException e) {

throw new ChainException (” could not get overview” , e) ;
13 }

while (i t . hasNext ())
15 {

St r ing element = (St r ing) i t . next () ;
17 MdsLogger . debug (” element in overview : ” + element , this) ;

19 knownElements . add (element) ;
}

21 try {
message . addAllKnownElement (knownElements) ;

23 } catch (GmdmException e) {
throw new ChainException (”Could not add a l l known elements ” ,

e) ;
25 }

c on f i gu r a t i on . put (” overview” , message) ;
27 MdsLogger . i n f o (” sending SyncOverview message to : ” + message .

getToNode () , this) ;
handler . send (message) ;

29 }
}

Figure 6.5: Listing of the class SendView which implements a step.

de f run :
2 overview = requestHandler . r e c e i v e () ;

exchangeMessage = new ExchangeMessage (overview . getFromNode () ,
mds) ;

4 exchangeMessage . addNeededElements (synchron i z e r . getNeededElements (
overview . getAllKnownElements ())) ;

exchangeMessage . addMetadataElements (synchron i z e r . getCompliment (
overview . getAllKnownElements ())) ;

6 requestHandler . send (exchangeMessage) ;

8 i f (exchangeMessage . getNeededElements () . isEmpty ())
{

10 throw new ChainAbortedException (”No needed elements ” , null) ;
}

Figure 6.6: Pseudocode of the ReceiveAndHandleView step

6.2. PROTOCOLS 65

1 de f run :
complement = requestHandler . r e c e i v e () ;

3 i f not (complement . getAl lElements () . isEmpty ())
{

5 synchron i z e r . i n s t e r tSync rona t i on (metaData . getAl lElements () ;
Gmdm. newMetadataReceived (metaData . getFromNode ()) ;

7 }

9 i f not (complement . getNeeded () . isEmpty ())
{

11 metadataExchange = new GmdmMetadataExchangeMessage (metaData .
getFromNode () , mds) ;

neededMetadata = synchron i z e r . getElementsByIdent i fyer (
complement . getNeeded ()) ;

13 metadataExchange . addMetadataElements (neededMetadata) ;
requestHandler . send (metadataExchange) ;

15 }

Figure 6.7: Pseudocode describing the step ReciveComplement

1 de f run :
neededMetadata = requestHandler . r e c e i v e () ;

3 i f not (neededMetadata . getAl lElements () . isEmpty ())
{

5 mds . getGmdm() . newMetadataReceived (metaData . getFromNode ()) ;
} else

7 {
MdsLogger . debug (” r e c e i v ed empty needed message from ” +

metaData . getFromNode () , this) ;
9 }

Figure 6.8: Pseudocode describing the ReciveNeeded step

66 CHAPTER 6. IMPLEMENTATION

1 public class S impleSyncProtoco lContro l l e r
extends SyncManagerControl ler

3 implements MdsCrtCallBackAdapter , ChainManagerEndInterface ,
SyncManagerInter face {

5 public S impleSyncProtoco lContro l l e r (Mds In t e rna l In t e r f a c e mds)
{ . . }

7

9 public void respondTo (GmdmMessage msg) throws

SyncManagerException {
. . .

11 chain . add (new ReceiveAndHandleView ()) ;
chain . add (new ReceiveNeeded ()) ;

13 . . .
s t a r t () ;

15 }

17 public void syncWith (St r ing toNode) throws SyncManagerException {
. . .

19 chain . add (new SendView ()) ;
chain . add (new ReceiveCompliment ()) ;

21 . . .
s t a r t () ;

23 }

25 public void triggerNewMetadata (S t r ing fromNodeId)
throws SyncManagerException {

27 . . .
for (int i = 0 ; i< nabours . s i z e () ; i++)

29 {
. . .

31 mds . getGmdm() . getSyncManager () . syncWith (nodeId) ; //
cons t ruc t i ng a new manager

. . .
33 }

35 }
}

Figure 6.9: Pseudocode describing the vital parts of the implementation behind
the protocol interface when implementing SimpleSyncManager. “...” indicates
code removed to enhance readability.

6.2. PROTOCOLS 67

and the radio transmission medium such as wifi, we developed an optimization.
This optimization tries to handle some of the major drawbacks from the simple
protocol by also using some other techniques.

When developing the epidemic synchronization protocol, I detected some
optimization gains that would improve the performance of the protocol. These
are the work pattern of the epidemic routing, when going in a one-to-one syn-
chronization with each of the nodes in its neighborhood. This is both costly
for the network and time consuming. What I observed was that the overview
message sent each time, was the same. By reusing the bandwidth used by the
first overview message would we save bandwidth.

I had to make the protocol one to many to make this possible. I have handled
this by sending one broadcast overview message, this is not sent via unicast but
broadcast. By sending a message in a radio medium, all in reach will hear and
receive the message. Only by rule and conduct will it not be read by others than
the recipient. When using the broadcast address, everyone is the recipient, so
while all hear the message in the first place, I take advantage by letting all use
the message. With 10 neighbors this is a saving of 9 messages in the first step.

I also observed that there were many nodes that did not request any elements
from the overview, since they already where synchronized. These nodes were,
by protocol, forced to send an empty message. To handle this, I made the
complement message optional. We now serve all the complement messages that
are received. For each message that comes in, we store the metadata and transfer
the needed metadata via an exchange message. This means that we in general
can stop a protocol at the receiver of an overview message. We still piggyback
any request for needed elements, but only if the complement message is to be
sent.

Figure 6.10 describes the implementation of the SynchronizationManager.
The steps BroadCastOverview described in Figure 6.11, initiates the entire pro-
tocol. On the receiver side is the steps ReceiveBroadcastAndHandleView (see
Figure 6.12) and ReceiveDeliveryMesasge (see Figure 6.13) located. The initia-
tor still need to offer its metadata elements to any listener this is done in the
step HandleExchangeMessage described in Figure 6.14.

6.2.3 Semantic synchronization protocol

As we shall see in Chapter 8 the broadcast protocol show good performance when
dealing with dense clusters and dissemination to neighbors. We want to see if
there is techniques that give higher dissemination speed in larger topologies,
with more neighbors per node, like the grid scenario.

We want to implement a type of highway for metadata that bring new meta-
data to multiple places fast, and then fall back to the normal dissemination.
This might stop the delay we have seen for dissemination through multiple
hops, where nodes far away are naturally getting the metadata information
late. To cope with this, we implement groups of nodes, which first synchronized
with all other in its own group, then start dissemination in the normal one hop
way. These groups can in real life be formed from roles or reporting chains
dynamically, as described in Section 5.5.3. The groups in our implementation
are predefined in a XML file.

The protocol has two stages. The first is to synchronize with its own group,
regardless of communication hop count. All nodes in reach are initiated with

68 CHAPTER 6. IMPLEMENTATION

1 public class BroadCastSyncControl ler extends SyncManagerControl ler {

3 public BroadCastSyncControl ler (Mds In t e rna l In t e r f a c e mds)
{ . . . }

5

7 public void respondTo (GmdmMessage message) throws

SyncManagerException {
i f (message instanceof BroadCastOverviewMessage) {

9 . . .
chain . add (new ReceiveBroadcastAndHandleView ()) ;

11 chain . add (new Rece iveDel iveryMesasge ()) ;
. . .

13 } else i f (message instanceof ExchageRequestMessage) {
chain . add (new HandelExchangeMessage ()) ;

15 . . .
}

17 s t a r t () ;
}

19
public void syncWith (St r ing nodeId) throws SyncManagerException

21 { syncWithEveryOne () ; }

23 public void triggerNewMetadata (S t r ing fromNodeId)
throws SyncManagerException

25 { syncWithEveryOne () ; }

27 public void s tar tSync ()
throws SyncManagerException

29 { syncWithEveryOne () ; }
private void syncWithEveryOne ()

31 throws SyncManagerException
{

33 . . .
chain . add (new BroadCastOverview ()) ;

35 . . .
s t a r t () ;

37 }

39
}

Figure 6.10: Listing of the BroadCastOverview Syncmanager implementing the
broadcast protocol. The “...” indicates code removed for readability.

de f run :
2 //BroadCastOverviewMessage s e t s i t s to address to the broadcas t

address o f the network i n t e r f a c e
overviewMessage = new BroadCastOverviewMessage (mds) ;

4 overviewMessage . addKnownelements (synchron i z e r . getOverview ()) ;
requestHandler . send (overviewMessage) ; // broadcas t ing the message

Figure 6.11: Pseudocode describing the BroadcastOverview step.

6.2. PROTOCOLS 69

1 de f run :
overview = requestHandler . r e c e i v e () ;

3 complementToOverview = synchron i z e r . getCompliment (overview .
getAllKnownElements ()) ;

5 exchangeRequestMessage = new ExchageRequestMessage (overview .
getFromNode () , mds) ;

exchangeRequestmessage . addRequest (synchron i z e r . getNeededElements (
overview . getAllKnownElements ())) ;

7
exchangeRequestmessage . addProvided (complementToOverview) ;

9
i f (message . getRequest () . isEmpty ())

11 {
// save the w i f i net , and abor t the p ro t o co l here

13 MdsLogger . i n f o (”No i n f o needed from ” + message . getFromNode () ,
this) ;

throw new ChainException (”Aborted due to non needed” , new

NotMoreElementsNeededException ()) ;
15 }

17 requestHandler . send (exchangeRequestmessage) ;

Figure 6.12: Pseudocode describing the ReceiveBroadcastAndHandleView step.

1 de f run :
neededMetadata = reques thand l e r . r e c e i v e () ;

3 synchron i z e r . i n s t e r tSync rona t i on (neededMetadata . getData ())

Figure 6.13: Pseudocode describing the ReceiveDeliveryMessage step, which
receives any requested elements.

1 de f run :
exchangeMessage = requestHandler . r e c e i v e () ;

3 synchron i z e r . i n s t e r tSync rona t i on (exchangeMessage . getProvided ()) ;

5 i f (exchangeMessage . getRequest () . s i z e () > 0)
{

7 de l iveryMessage = new Del iveryMessage (exchangeMessage .
getFromNode () , mds) ;

de l iveryMessage . addData (synchron i z e r . getElementsByIdent i fyer (
exchangeMessage . getRequest ())) ;

9
requestHandler . send (de l iveryMessage) ;

11 }
}

Figure 6.14: Pseudocode describing the ReceiveExchangeMessage step.

70 CHAPTER 6. IMPLEMENTATION

public class Semant icSyncContro l l er extends SyncManagerControl ler {
2

public Semant icSyncContro l l er (Mds In t e rna l In t e r f a c e mds)
4 { . . . }

6 public void respondTo (GmdmMessage message) throws

SyncManagerException {
i f (message instanceof BroadCastOverviewMessage)

8 {
c o n t r o l l e r = new BroadCastSyncControl ler (mds) ;

10 } else i f (message instanceof GmdmSyncOverviewMesasge)
{

12 c o n t r o l l e r = new S impleSyncProtoco lContro l l e r (mds) ;
} else i f (message instanceof ExchageRequestMessage)

14 {
c o n t r o l l e r = new BroadCastSyncControl ler (mds) ;

16 }
. . .

18 c o n t r o l l e r . respondTo (message) ;
}

20
public void syncWith (St r ing nodeId) throws SyncManagerException {

22 . . .
s impleSyncProtoco l . syncWith (nodeId) ;

24 }

26 public void triggerNewMetadata (S t r ing fromNodeId)
throws SyncManagerException

28 { s tar tSync () ; }

30 public void syncWithGroup ()
{

32 . . .
for (int i = 0 ; i < groupMembers . s i z e () ; i++)

34 {
. . .

36 syncWith ((S t r ing) groupMembers . get (i)) ;
. . .

38 }
}

40
public void syncWithNeigbours ()

42 {
. . .

44 BroadCastSyncControl ler bcast = new BroadCastSyncControl ler (mds
) ;

bcast . s ta r tSync () ;
46 . . .

}
48

public void i n i t i a l i z eG r oup ()
50 { . . . }

52 public void s tar tSync ()
{

54 . . .
syncWithGroup () ;

56 syncWithNeigbours () ;
}

58
}

Figure 6.15: Listing the SemanticSynchronization protocol. The “...” indicates
code removed for readability.

6.3. CRT IMPLEMENTATION 71

the simple protocol one by one. The implementation is described in detail
in Figure 6.15. To route the packets to its right recipient, we need the total
topology information. We have used OLSRD for both topology and routing in
the semantic protocol.

The second stage is for each of the group members to start dissemination, by
starting a broadcast synchronization with its neighbors. This gives the dissemi-
nation multiple starting points. The idea is that this gives us a higher efficiency,
especially inside the group.

All these dissemination processes, starting at the group members, goes in
true parallel, the technique will hopefully have higher speed with less overhead.
This is yet to be seen, and will be discussed in Chapter 8.

One future optimalization is to let the intermediate nodes listen in and
sniff up the information that is relayed through them. By doing this, we can
make even more start points for the metadata dissemination. This sniffing
technique is, however, not implemented while this would require implementing
a cross layer mechanism to fetch or sniff the packets that is part of the semantic
synchronization protocol from the transport layer. Since the packets are routed
by the transport layer, helped by the linux kernel and the OLSRD routing
daemon, are they out of reach for Java on the intermediate nodes. The focus is
directed towards the multiple starting points, and the vision of this improving
the dissemination speed.

6.3 CRT implementation

CRT handles communication and routing in the MIDAS middleware, it is devel-
oped by another partner of MIDAS, Telefonica in Spain. While this partner did
not focus on MANETs as their primary development goal, there was no working
CRT implementation which fulfilled our needs, at the time of the experiments.
This caused many problems for the implementation of GMDM and MDS. We
then discussed how to work around this problem; we needed communication,
routing and topology information services. There were no suitable open source
projects, as we have high demands on what CRT is going to deliver. Another
aspect is that MIDAS is implemented in Java, most routing protocols are not.
We also decided that controlling the inner workings of CRT would benefit the
development of our own components.

We went forward and started our own implementation of the CRT com-
ponent. The MIDAS partners had already agreed upon the interfaces for all
components, including CRT. This meant that our job was to implement behind
this interface, in a way that handled MANETs, and met our needs.

I used quite some time working out the requirements and how to accomplish
them. The requirements are three-fold; communication (point to point), routing
(end to end), and topology information (neighborhood info).

6.3.1 Communication

The communication component has to solve the same task as we expect from
MIDAS CRT, which is to send and receive delay tolerantly in a MANET, and
give routing information. The architecture defined that the sending of informa-
tion should be best effort and delay tolerant.

72 CHAPTER 6. IMPLEMENTATION

I implemented an asynchronous communication model, where one can send
a message to a recipient, but there will be no response to whether or not the
message is received. Any mechanisms for checking that messages come through,
must be implemented in the above layers, and is naturally a hard task in the
delay tolerant networks. This decision was implemented as UDP traffic over the
wifi network using Java sockets. However, delaytolerant message passing is not
implemented since none of the scenarios did require it.

The CrtCommunication, which is the lowest level, handles the UDP sock-
ets and actual datagram network packages. CrtOverUdp handles the MIDAS
to CrtCommunication translation, which embeds translation to and from the
IpMessage format, which MIDAS can use. The goal for this two-layered ap-
proach is the ability to change socket and transport protocol behind the inter-
face by changing the implementation of CrtCommunication, without changing
the CrtOverUdp layer. The names should have been switched to indicate that
the communication is using UDP and the above layer is only relating to IP
packets.

The CrtOverUdp object is always running and listening for packets through
the interface from CrtCommunication. When a packet arrives to the node,
CrtOverUdp will handle the translation from Datagram (network packet) to
IpMessage (Java object) and send the packet up the layers to the object that is
registered for listening. This is in the case of MIDAS the CrtAdapter.

CrtOverUdp naming scheme

The CrtOverUdp implementation of the CRT interface is exactly what the name
implies. It is the CRT implementation using UDP the transport protocol. This
name is selected to show the nature of the implementation. The CRT interface
contains both transport layer functions and topology functions. This implies
that the CrtAdapter implementing the entire interface needs to implement both
transport layer functions, send and receive, and the topology manager functions,
getNeighborHood() . The CrtOverUdp handles the transport layer functions,
by using CrtCommunications to actually do the UDP sockets. However could
the CrtOverUdp be called CrtTransport and CrtCommunication be called Cr-
tUdpMessageing. In this way would the names reflect the implementations un-
derneath. This would also enable changing the transport layer implementations
to other than UDP with limited consequences. As of today, the CrtAdapter can
not do so with out changing names of the transport layer component. These are
minor changes but will make the maintenance and further development easier.

Topology functions is implemented by the OlsrInt, which is the OLSRD
integration component.

Abstraction

To be able to later use the official CRT developed by MIDAS, I abstracted
the use of the CRT component. This is done by adding an additional layer
in-between the MDS and the CRT component, the layer is called CrtAdapter.
In this way we could use different implementations of CRT even if there were
interface and usage changes in the different CRT implementations.

The CrtAdapter has the important task of routing messages and give topol-
ogy information. The reason for having this service so high in the layers is that

6.3. CRT IMPLEMENTATION 73

it has been changed a lot during this project. It started out as a simple imple-
mentation with no routing and our own broadcast probing service, to establish
topology information. It is later changed to use the OLSRD routing daemon
for both routing and topology. This layer was the lowest common ground for
these changes.

6.3.2 Topology manager

To give our CRT implementation a topology service, I implemented a Broad-
castResponder. This is a probing service, which uses broadcast packets. From
the responses, we are able to construct the one-hop topology.

Protocol On a regular basis, broadcast HELLO packets are sent. Everyone
that receives a HELLO packet is required by the protocol to send the packet
back as a response. To do this we turn the direction of the packet around,
setting the sender as receiver and placing ourselves as sender. This marks the
packet a HELLO response, which signals, upon receiving, a topology connec-
tion. The BroadcastResponder does not handle multihop routes or topology, it
merely checks which neighbors are in one hop contact with the current. While
developing and testing the BroadcastResponder, we found it to be very intrusive
by generating a lot of traffic. To handle this, I made some optimizations like
delaying the sending of HELLO packets until a time period has expired without
any hearing other responses.

For BroadcastResponder to notify its listeners of a new neighbor, it should
receive two consecutive HELLO responses. This is also required for a node
to disappear, it has to not respond to two consecutive HELLO packets. This
strategy is inspired by the OLSR standard where this strategy is used. This
resulted in a more stable topology, and less network overhead. After using our
own BroadcastResponder for a while, we found it to be not good enough, and
started to look into using the OLSRD [17] implementation.

Olsr integration The integration of the OlsrInt was done by Matija Puzar,
a PhD student at IFI also working in the MIDAS project. What the OlsrInt
does, is to listen for messages sent from the routing daemon. The routing
daemon is patched so that it sends messages in a known format on a socket.
These messages describe changes in the topology of types “hop changes”, “node
disappearing”, “node reappearing” and “new nodes”. From this information the
OlsrInt constructs and maintains the topology in a table at the local storage.

We needed in addition a listening service from the routing daemon, like the
one we had in the BroadcastResponder. I therefore implemented a smart noti-
fication service that notifies all the listeners upon a truly new neighbor. What
defines a truly new neighbor is that there is a new route reported from OLSR
that is one hop in length, and that is not already known. The list of known one
hop routes is maintained so that nodes going away, get reported upon reappear-
ing. We also had to implement a query into the routing information in local
storage to deliver the getneighborHoodInfo() functionality in the CrtAdapter
interface.

As one can see in the Figure 6.16, the CrtAdapter is connected to both
the CrtOverUdp and the two different topology implementations, OLSR and

74 CHAPTER 6. IMPLEMENTATION

Figure 6.16: Uml diagram of the CRT implementation. Implemented to deliver
Crt services communication routing and topology information

BroadcastResponder, via interfaces. The implementation is selected by the Cr-
tAdapter, at startup it registers with the currently selected implementation, and
via the interface gets called every time a new neighbor appears. This decouples
the implementation from the CrtAdapter and improves cohesion, which gives
us the ability to change the implementation of the topology managers without
changing the CrtAdapter. Cohesion reflects the amount of focus an object has.
By implementing the listener pattern in CrtAdapter, we will be able to increase
the focus on the adapter job, namely to make the underlying implementation
transparent.

6.4 The MDS facade component

The GMDM component is presenting a unified interface to all the GMDM fea-
tures and functions. It provides, for example, functions that the QA component
can use to search the metadata storage, and register new tables. These func-
tions are implemented in the MetadataTracker, but this is made transparent by
GMDM. This makes a combined facade to the GMDM sub components, hence
following the facade pattern [7].

GMDM also listens for topology changes, and handles new neighbors by
starting the correct protocol. The listening is essential to make the GMDM
responsive to topology and local storage changes. GMDM also organizes all
available protocols by using the factory pattern, which produces a new instance
of the protocol upon invocation. This pattern makes it easier to change the
type of protocol used, and provides control of how to construct the protocols.
By hiding the creation of the protocol, we can implement logic on how to cre-
ate protocols and which implementation to use. The hiding makes this logic
transparent to the GMDM. The hiding is done by use of the factory pattern, by
making a function designated to return new instances of a specific interface.

6.4. THE MDS FACADE COMPONENT 75

The MDS facade is one of the MIDAS components, and is therefore the
facade that MIDAS sees. This is done by hiding all the MDS subcomponents
under the interface defined for MDS. No one outside MDS can access the sub-
components. Part of this facade takes care of internal message routing, this is
the messages coming from CRT addressed for MDS component. This is internal
MIDAS messages, which the MDS facade gets notified about from CRT through
the callback technique. The MDS facade is handling each message internally
and routing each message to the correct sub component.

The MDS facade exposes an internal interface to all subcomponents, this
interface serve as an internal service exchange that subcomponents can use
to exchange services. The exchange handles references to the subcomponents,
which is used, for example, by QA when requesting table name to node name
resolution from GMDM.

MDS is the term used for the combination of all sub-components. However,
we need a facade to unify the subcomponent functionality, like the ones described
above, to one single component the MDS facade, which is a implementation of
this facade.

6.4.1 Message passing

All network packets are received by the CRT component, it has to route the
messages to the correct middleware component. This is done with the help of a
field in the MIDAS message. Each of the components and subcomponents are
responsible for handling messages addressed to that component.

To handle multiple subcomponents under MDS, that are going to receive
messages from the outside, we needed some mechanism to route the messages
to the correct subcomponent. The MDS facade gets messages addressed to it
from CRT. This is done via the callback or listener system. For MDS to route
the messages correctly, it needs to know - based on the semantics of the message,
or on some field inside the message which subcomponent is the recipient.

I have implemented an extension of the MidasMessage to handle the MDS
subcomponent addressing. This has an abstract Java class which must be fur-
ther extended by any of the subcomponents in MDS that need inter-node com-
munication. The MDS facade can upon receiving a message, check for the
message type and route to the correct subcomponent via the subcomponent
field. Since both GMDM and QA has session-like behaviour in their protocols,
they need to address the correct instance of their protocols. This inter-protocol
communication requires that the instance of the protocol can be addressed di-
rectly. This is essential with regards to protocol state and type, which is only
known to the instance of the protocol and not the parent component. This is
handled by the RequestHandler system.

6.4.2 Request handler

The request handler solves the problem of protocol to protocol communication.
It offers a session concept which can be used in protocol implementations. It
also handles many other tasks that are inherently hard within MANET com-
munication. To solve the protocol instance to protocol instance, the protocol
implementation uses a RequestHandler to send and receive messages. The Re-
questHandler registers itself with the MDS, getting all messages with the session

76 CHAPTER 6. IMPLEMENTATION

id directly to itself. This ensures that all messages addressed to the protocol get
routed correctly. The addressing is made up of the MDS subcomponent name
eg. GMDM and a session key, which is defined by the RequestHandler upon
creation. The session key must be unique within the subcomponent, to avoid
session key collisions.

The RequestHandler is made to make life easier for the developer, this is
done by giving the developer of protocols a suite or framework to work with.
The suite consists of the addressing scheme, along with sending and receiving of
message using a synchronous interface. The latter point is harder than it sounds.
It embodies using the asynchronous network and making it transparent. The
RequestHandler configures messages passed through its interface, so that each
protocol or session is isolated from each other, it is done so transparently to the
developer.

To handle the transparency of synchronous networking, I have implemented
the RequestHandler’s send and receive functions as blocking calls. This means
that if we from within a protocol invokes the RequestHandler’s receive function,
the function call will not return until there is a message for this RequestHandler.
The call will throw a TimeOutException if no message is received within a set
timeout period. Sending and receiving of messages are implemented with a
concurrent message queue. This means that there can arrive multiple messages,
and the protocol implementation can handle them when ready. Unhandled
messages are queued up. This feature will once again improve the development
process because no messages disappear after being received at the recipient,
and all messages are received in order. All this without work from the protocol
developer.

To configure the sending of messages, the protocol uses the request handler’s
receive and send methods. These alter upon invocation the messages with the
correct session id. This means that the request id is totally transparent to the
protocol if the RequestHandler is used properly.

The RequestHandler was hard to develop, much effort was used, but we have
had little or no problems with communication after it was finished. This is partly
due to extensive testing and the following ability to verify our implementation.
A mock implementation was made together with the RequestHandler that in
unit test situations can be replaced with the actual RequestHandler. The mock
request handler differs since it never sends or receives any message. It appends
all messages that comes through the send function to the send list, and upon
every receive call it takes one message from the receive queue. This enables use
this mock implementation to test one protocol step, and after it finishes we can
assert the messages in the queues. The send queue will reflect the messages
send by the protocol, and the receive queue is the input to the protocol. We can
from the input, the receive queue, and the output, the send queue and internal
protocol state, evaluate if the protocol behaving correctly.

6.5 Rolle Player

The MIDAS application is only a middleware. It can run and maintain its
inner state without any applications on top. To test how the middleware is
working, we need to use it from a user application’s point of view. While running
the middleware in a test environment, we want the actions performed on the

6.5. ROLLE PLAYER 77

Figure 6.17: Uml diagram of the simulation application. Showing the MIDAS
middleware, the separate communication and the actions.

middleware to be repeatable and manageable. This is why the RollePlayer
is developed. What it does is to start up itself, read a script, initialize the
actions mentioned in the script for this node, and connect to the middleware.
It differs from a normal application by acting upon UDP messages sent via a
separate communication channel from a control unit. These messages instruct
the RollePlayer on what to do. When the RollePlayer gets a cue the action
for this cue is executed according to the script. The actions are subclasses of a
special command pattern class which is specified in the Action interface. The
Actions contain an id, which identifies a cue, and an execution method to run
upon the cue. The script is an XML file mapping the action ids to the nodes
that is supposed to run them. If we want to only have a subset of all the nodes
executing an action, or all the nodes, this can be specified in the XML file.
The cue messages are sent from the emulator GUI to the emulator server which
tunnels them into the emulator. This tunnelling is also especially developed and
is a standard UDP tunnel implemented in Perl. It is implemented as is a small
program listening on the defined port, any message which gets to this port is
read and the internal emulator IP address is fetched. Based on the IP address
a new packet is created and sent through the emulator to the correct node.

As we can see from the diagram in Figure 6.17 there is an ArrayList of per-
formed actions, there are the actions performed by the node to keep track of
what is done for post analysis. We also see the external communication chan-
nel, which is another instance of our CRT implementation, but using another
port than the one the middleware is using, this is the separate communication
channel. The Map is used for easy access to the Action pool.

My experience with running experiments on the MIDAS platform using the
RollePlayer is very good. We can achieve exactly the same behaviour by the
application for every test run, which is essential when comparing different im-
plementations of protocols or other middleware parts.

78 CHAPTER 6. IMPLEMENTATION

6.6 DENS implementation

During the summer of 07 I collaborated with the DMMS research group (this is
the same group as the one that runs the MIDAS project) on implementing the
DENS publish subscriber protocol. The implementation is done to get prelimi-
nary test results into the functionality of the protocol. DENS is not related to
MIDAS, but the protocol uses hirarchies similar to the ones found in the seman-
tic synchronization protocol, and is serving as a study of node hirarchies and
overlay networks. DENS therefore is a candidate for implementing the Subscrip-
tionManager(SM) subcomponent of MDS. However, the interesting subject for
me implementing this protocol is the distributed negotiation done to establish
such a hirarchy. This work and its results is part of the paper [19].

The implementation is done following the DENS protocol described in the
article [19]. It describes the different node types, and how they will react upon
different events. The vision of the protocol is efficient dissemination of subscrip-
tions in a publish subscriber environment.

DENS is an overlay network where there are two types of nodes, media-
tors and members. The mediators form the overlay network, which amongst
themselves exchange subscriptions and messages. For a member to subscribe, it
contacts any mediator, which disseminates the subscriptions to the other medi-
ators. When a member publishes a message, this gets sent to all mediators that
have one or more members that are subscribers to this kind of message. Each
mediator will relay the message to the members that are subscribing.

As partitions can merge and separate, the set of connected mediators can
change over time. The mediators will therefore synchronize their subscriptions
to always keep them up to date in the current partition. This is done according
to the protocol described in [19].

There are three protocols in DENS, I will give a short presentation of how
they work;

• Mediator discovery. Every node which is a mediator, sends periodically
mediator announcements. These are heard by nearby nodes and media-
tors. All nodes receiving announcements from this mediator, becomes its
members.

When partitions merge each mediator will check if it is the largest media-
tor (done by selecting the largest node ID) in its own previous partition,
if it is, it assembles a REP BROADCAST message with the mediators it
represents. The representative has the task of cooperating with the en-
countered partition, by listening for other mediators’ REP BROADCAST
messages, these newly encountered representatives start the global syn-
chronization protocol.

• Global Synchronization. Each of the mediators that are representatives of
their old partition enters the global synchronization protocol, where the
lexicographically largest representative among the representatives takes
the role of coordinator.

The coordinator starts the protocol by sending a SYNC C message to all
other representatives. It contains the subscriptions known to the coordi-
nator, hence in its own partition. Each of the mediators that receive the
message sends a SYNC REP with its contributions of further subscriptions

6.6. DENS IMPLEMENTATION 79

to the coordinator, and saves the additional information from the coor-
dinator. When the coordinator receives all SYNC REP messages coming
from all the representatives it will construct a SYNC TOTAL message
that is sent to all representatives with all elements that are discovered
during this synchronization. The representatives store the information
from the SYNC TOTAL and go on to the local sync phase.

• Local Synchronization. Each of the mediators that were not part of the
Global synchronization protocol will also need the information which their
representative has gained through the global synchronization protocol.
This is done through the local synchronization protocol. One message is
sent from the representative to all mediators in its orginal partition, it
contains all new subscriptions. Which are now stored on every mediator
node.

After the local synchronization protocol is finished the new mediators will
be merged into the old partition. This is done by the local synchronization
protocol semantically signalling a merge event. Now the partition contains all
mediators in range. The new representative in the next merge will be the same
as the coordinator of the global sync, the largest mediator node ID.

6.6.1 Architecture

The architecture used in DENS (see UML diagram in Figure D.1) resembles
that of the MIDAS system. It is component based, where communication and
topology information is split into two subcomponents. What differs most is
that DENS has much less components than there are in MIDAS. The DENS
application is more focused on only information sharing. DENS is also reliant
on OLSRD for its topology manager. However, the logic coordinating the entire
application is an event model. All controllers are responding to certain events
that are sent from other parts of the application. By studying the UML diagram
in Figure D.3, one can see the events used in the application. These model the
same events that are described in the protocol.

The different protocols are started upon certain events, and produces events
upon successful completion. Produced events are fed back to the NodeController
which can handle them as required. In this way the responsibility of starting
the protocols in correct order, is moved from the protocol implementation to
the controller, in this case the NodeController.

One of the major challenges with implementing the DENS protocol is the
underlying partition manager, called the ClusterController. The DENS system
requires to identify situations in the partition, these situations will be modeled
as events. The ClusterController can issue events like;

• the stable event, which triggers upon a merge of two partitions, were
the new partition has stabilized. The stable event triggers all needed
protocols.

• the merge event, is triggered upon finishing all needed protocols issued by
the stable event. When the event is triggered the two partitions will be
ready for merging.

80 CHAPTER 6. IMPLEMENTATION

Figure 6.18: Number of mediators viewed by node number 9 in our scenario

• finishing of the global synchronization process, which should start the local
synchronization, according to the protocol.

To generate the events based on topology changes, the ClusterController
interface is implemented in the Olsr component. This component has respon-
sibility of getting every changes from the partition topology. By using these
events can the system calculate if an stabile event has occured. The calculation
is in this implementation very simple, and uses only a timer if no changes occurs
before it runs out will the stabile event occure, upon any mergeing or parting of
nodes the timer will be reset. A more advanced solution is required to see the
full potential of the resource managemen as dissucsed in [4].

6.6.2 Test case

The test scenario used to test the implementation resoruce-management consists
of 10 nodes where all have the role of mediator. As an initial stage, eight nodes
are in one partition, after 90 seconds node number 9, enters the partition. The
initial positions are shown in Figure 6.19 The stable event occurs, followed by
a global synchronization and local synchronization. Node 9 is now merged into
the partition, and now knows nine other mediators. This will be verified by
the results and shows the success of the proof of concept application. After 190
seconds node 10 enters the partition, it starts the synchronization protocols and
is merged into the partition, the node we are following on the graph in Figure
6.18, is now aware of the new mediator since it knows of ten mediators. This is
also the total number of mediators in the scenario which shows that the event
model and synchronization protocols are working as described.

6.7. LOGGING 81

Figure 6.19: The initial topology in our scenario, showing nodes number 9 and
10 located outside the partition

6.6.3 Result

We have shown through a proof of concept implementation that the DENS
protocol works, and that stable events lead to exchange of subscription data.
This is shown in the graph in Figure 6.18, by looking at the increase in known
mediators by node 9, and assessing that the shown graph is correct according
to the protocol behaviour.

6.7 Logging

Logging is used for two purposes in MIDAS; one, to be able to monitor what
is actually going on inside the middleware, and two, for post analysis of per-
formance and state at each node. The first feature is used even when the
middleware is in normal use, e.g. in production, it is the basis for debugging
and error detection. The second feature is used by external tools to check on
the middleware and view the state of each node with the intent of evaluating
overall performance or display status.

6.7.1 log4j

log4j is an open source framework for logging, we use this framework for our
debugging logs. log4j is an Apache Software Foundation [1] project. It is one of
the many log4* style frameworks, and is therefore familiar from other languages
and thus is easy to use. It also supports six different levels of logging, which

82 CHAPTER 6. IMPLEMENTATION

gives us the ability to produce the correct granularity of logs both when running
test scenario and in production. One can also turn off the logging from a
configuration file, thus not requiring recompilation. It is reported that a disabled
logging statement takes about 5 nanoseconds on an 800MHz machine [1]. This
feature is essential for selecting logging frameworks, as we in production want
fast execution without rewriting the source.

With the high level of configuration and the fast execution of disabled logging
statements, log4j has given us what we required. It can give detailed information
into protocol and routine behaviour, but only when needed. In some situations
we only required to get information, warnings and errors, which are the three
highest levels of logging. This reduces the amount of logs produced, but still
gives us the information to observe whether or not the implementation is working
and configured correctly.

We have to specify the correct levels for each log statement all over the code,
and only use the Logger interface for any printouts. This effectively replaces
all System.out.println calls. We currently have around 460 calls to the logger
utility, which is our wrapper for log4j. The wrapper is created so that we
have the possibility to change the entire log implementation without any major
changes to the source code, we can also limit the penalty of log statements
further than disabling it them from the configuration, by merely returning from
the wrapper. It has not yet been required to use any of these techniques.

6.7.2 StatusFile

While the logging utility gives a continuous stream of events written to the log
file, there is no easy way to fetch the state at each node from this log stream at
a specific point in time. We require to have an easy to access and easy to parse,
view of the state at each node at well defined point in time. State is information
about, for example, the amount of information in the local store, knowledge with
respect to metadata, communication parameters, number of messages sent and
received. The purpose of the information is to get a quantified view of the nodes’
parameters at this moment in time. The parameters must be extendable so that
we can add more as the need for them arrives. The information is intended to
be used for postanalysis.

The implementation of the StatusFile class was the answer to this need.
It is inspired by the status files in Linux often found under /proc or /sys.
/proc/meminfo is a good example, where one can find an updated total view
of the memory usage. We then defined a class which runs as a daemon inside
the middleware and at given time periods write all parameter to the specified
file. The file is only updated if there is a change in its content. This gives
the middleware less disk accesses since parameters tend to change only in short
time periods or bursts. By placing a reference to an internal structure of some
subcomponent, the StatusFile will be able to monitor this structure over time.
This gives us a clean interface when using the StatusFile utility. In normal
running of the component, no further action is required, other then registration
of the internal structure. The StatusFile will constantly monitor the property
and upon change write the new status to the status file.

At registration of the structure an identifier is specified, this will be the
identifier that one can search for when parsing the status file at a later point.
Currently only ArrayList type of structures are supported, this is chosen because

6.8. SOFTWARE TESTING 83

almost all components use some sort of ArrayList for their internal structure.
This can be extended in later versions to support other types of structures.

The monitoring and output can be of two types, either a list of the content,
which will use the toString() function for each element or as a count of the
elements inside. The latter is the most used and also the fastest. It is the
most valuable with respect to graphs and statistics, were we tend to prefer a
quantified number of the size instead of the actual content when analyzing.

6.8 Software testing

When developing a distributed application or middleware there are many things
that are possible error sources. Many of these are bugs or badly developed code,
or communication problems of sort. To debug and handle the problems that
arise under execution of a protocol or a distributed application, one needs to first
locate the error (what is going wrong), then track down its source (which node
and in which stage), then try to correct the problem regardless of its nature,
bug or not. If one could at an earlier stage verify to some extent that parts
and functionality work correctly, one could focus the search into other parts of
the system rather than do a system wide search to begin with. This would save
time in having less bugs and smaller areas to search. This is one of the reasons
for testing early in the development cycle.

There exist many paradigms and methods for how and when to test. They
span from “test first” to “test to verify”, from functional to behaviour orientated
testing. I will not go into the area of test methodology, but I have with great
interest used the methods both as a help and as an exploration to see if they fit
my work situation with great success.

My major concern is to give some confidence to the code produced, I wanted
to see if the developed code was actually performing the task according to its
spesification. The goal is to do this before deploying to the emulator in a full
out test scenario or as early in the development iterations as possible. This way
I know that an error probably has been introduced in the last iteration of func-
tionality, while the previous have been tested. By doing this I also found that
by testing my classes I could change the implementation via refactoring without
the fear of breaking the behaviour of the system. This, regression testing, has
been another important part of my motivation to keep, and especially maintain,
the test in an automated form and over time. As the different subsystems have
changed, I can monitor their effect on my system and see if my earlier func-
tionality breaks. This effort has been substantial and one could argue that it
might have been wasted time, but I am convinced that it has both reduced my
development time by focusing the effort on the problem area, and that I have
made less bugs while the tests have revealed them early in the process.

Below I describe the jUnit test framework and the technique of mock objects
to isolate the code under test. Both have been essential parts of my test harness.

6.8.1 Unit testing

Unit testing is the method where one tests the smallest working units of code. In
our case those are the developed classes. For example, the ChainManager which
organizes the execution of each protocol, has unit tests testing its functionality,

84 CHAPTER 6. IMPLEMENTATION

these are combined called a test suite. The tests can be quite basic, like after
inserting a ChainElement into the manager, checking that it exists inside. To
more complex tests where a full chain is set up of mocked ChainElements that
finish without any aborts and checking that the running of the chain actually
executes the correct end-function. Then, by changing one of the elements to be
a ChainElement that always aborts, and then checking that the ChainManager
gets the property isAborted and that it throws an Exception. As we see, there
is an attempt to exhaustively check for any case that might break the defined
functionality.

In addition to the verification of the classes can the testcases serve as a
documentation of how the classes are used. By looking at all the tests the test
case documentation emerges, this is good documentation for developers that
come into a new project.

To automate this process both in development and execution, I have used
a common framework called jUnit. It is a unit test framework for Java, with
integration for eclipse. It gives a visual representation of executed, failed and
completed tests, and makes it easy to make new tests. Our build and package
supports jUnit in the way that it can run all of the test suites to check for failed
tests for every build, packaging or deployment. This helps us to not introduce
bugs or unwanted changes.

6.8.2 Mock objects

As mentioned before, the use of unit tests will require isolation of the unit
under test. This implie that if there are dependences used during the test these
dependences needs to be controlled so that they will not influence the test. To be
able to control the dependencies, we use a technique called mock objects. What
we actually do is to make a new implementation of the dependent class which
does exactly what we want it to do. It can for example return a specific value
or on each consecutive call to a function return objects from a predefined list.
In this way we will be able to test only the one unit, while we have full control
of its surroundings. By gaining this control we can both see how the unit reacts
under normal condition, but we can additionally check who it reaches under
non-normal conditions. We can introduce corner cases and other anomalies to
see how the unit will be affected.

By using mock objects I have been able to verify the correctness of protocols
and other network related features. Both the BroadcastResponder for topology
monitoring and each of the steps in all protocols are tested using mock objects.
These tests border over into regression testing as they do not test a confined
small unit of code, but rather large stacks of functionality, this is needed to
check that the interfaces can cooperate.

Chapter 7

Instrumentation and Test
setup

This chapter describes how the implementation is tested by emulation. This
testing differs from software testing since it is concerned with the entire mid-
dleware and not only parts of it, and by using an environment to instrument
the middleware that resembles that of a real life scenario. I will describe the
method of testing by emulation before describing the concepts and goals of each
scenario, finishing off by describing in detail how each scenario is implemented.

The purpose of the metadata information sharing is to enable and improve
the flow of information throughout the network. To be able to ensure that we ac-
tually reach this goal we need to test out different implementations and compare
the actual performance. This is done on the basis of the absolute requirements
and the performance requirements stated in Section 4.1. Through the process
of testing, we will find areas where we can improve, this information can be
fed back into the development. It will, if the results are positive, give more
confidence to the architecture and design of the information synchronization
mechanisms.

To be able to test the system, we need to construct scenarios that will expose
the wanted behavior. For this purpose we construct scenarios consisting of the
movement pattern for a set of node, along with the actions of each node at a
given time. A scenario is like a time line, it starts at one point, instructs the
nodes with the actions and movement, and terminates at a given time. The
instructions to the nodes can be movements or actions. Movement can affect
the nodes communication. Actions can insert data, allocate data and so on,
which affect the behavior of the node. Through such actions and instructions
we can construct a close to real life scenario that can be rerun multiple times.
By doing this we can isolate situations that are interesting with respect to the
specific part we want to test.

During a scenario each node logs the status and actions. This is done in both
system and status logs. System logs are maintained for debugging and reflect
system behavior, error and problems. The status logs reflect the information and
knowledge that the node contains. These logs will be used for post processing.
In post processing we will look for multiple attributes; efficiency, consistency and
durability. The post processing is an analytical phase that will pull information

85

86 CHAPTER 7. INSTRUMENTATION AND TEST SETUP

Figure 7.1: A schematic view of a chain scenario

from the logs and construct graphs and indicators reflecting the performance
of the implementation. Measurements are represented either on a time line
according to there time stamps, or as a single value. Based on the values we can
draw conclusions on the performance. It is important to note that this holds
if we change the implementation only. To ensure that the differences in test
results are reflecting only changes in the implementations we are required to keep
everything else static. This means that the scenario, actions and connectivity
is equal for each of the test run, and that only the implementation is changed.

To test the information sharing in the ad-hoc environment we need to con-
struct multiple scenarios that represent different cases for the network behavior.
It is important to not only see how well the information disseminates in the op-
timistic cases, but also in the cases where the implementation struggles and
delivers poor performance. We have constructed each scenario for one specific
purpose.

7.1 Chain

The chain scenario is the simplest of the scenarios. The nodes form a chain,
i.e. each node is the only path between its two neighbors, as viewed in Fig 7.1.
This scenario is static, that is, it has no movement, thus the connectivity is
the same from start to end. We use this to see how the basic features of the
implementation are working. This is not a real-life scenario, but we will clearly
see differences in how well each of the implementations work in its most basic
from.

Regarding actions, the scenario will, after creation and stabilization, instruct
node 1 to create a table replica, this will cause the creation of a metadata
element, which will trigger synchronization. This will disseminate the element
to the neighboring node 2, which triggers its synchronization and so on.

The goal of the scenario is to see if the implementation is able to get a 100%
information sharing. This initial test will give us an indication of the basic
performance, and if it does not pass, the other scenarios will not pass either.

7.2 Grid

While we in the chain had a maximum of 2 neighbors per node, this number is
4 in the grid. The grid is another controlled static scenario, which is made to
see how the efficiency and dissemination attributes perform on a more complex
structure, as in Fig 7.2. This scenario is more realistic than the chain scenario
since there are more neighbors, and therefore more routes between two nodes.
This means that optimalization give notably better performance.

The action performed in this scenario is creation of a new table. The action
performed creates a table on node 1, this creates metadata that is going to

7.3. MESSAGE FERRY 87

Figure 7.2: Simple schematic of a grid scenario

propagate throughout the grid, reaching neighboring nodes quite quickly. The
more long term check is to see if it ever reaches node n. This is a test of the
reliability of the protocol. We can also see the optimization of protocols that
handle multiple neighbors more clearly.

Speed and total bits transferred will vary using different protocols, thus
giving us an indication of the success.

7.3 Message ferry

The message ferry scenario is designed to show that one node can transfer
metadata from one partition to another, as shown in Fig. 7.3. This scenario
is semi-static, since only one node, C, is moving. Both partitions A and B are
stationary and out of contact with each other.

The scenario starts off with C in contact with partition A. C gathers the
metadata residing in A and starts its movement. At first it looses connections
with A, it later gains contact with B and stops inside the B partition. Status
recordings from the B partition will show how this ferry concept performs, in
terms of metadata transport. Status of the metadata storage is recorded during
the movement, to see the dissemination of elements.

The goal of the scenario is partly proof of concept, partly durability with
respect to the delay tolerant dissemination.

7.4 Merge

As the scenarios become more complex, the results will become complex to
analyze. It is vital to have dynamic scenarios to simulate more real-life scenarios.
The merge scenario is constructed to stress the situations where we expect that
the largest transfer loads will be registered. It simulates two partitions of nodes
meeting, as shown in Fig. 7.4.

88 CHAPTER 7. INSTRUMENTATION AND TEST SETUP

Figure 7.3: Schematic view of the ferry scenario, partition B and A including
C, the ferry

7.5. TEST SCENARIO IMPLEMENTATION 89

Actions performed at the start of the scenario includes only creation of new
table instances, after a given time period the nodes start moving against each
other, until there is an overlap of the two partitions. Data about the status of
the metadata storage is recorded during the movement and for a given time after
the movement has ended. Ideally we will see a stabilization of synchronization
protocols between the nodes, indicating a 100% dissemination. More specifically,
a stop in network traffic because all nodes are equal.

The goal of the scenario is to identify how the different protocols handle
massive trigger load, i.e. many new neighbors. It is also constructed to see how
fast the protocols disseminate the information to all nodes, and if the protocol
then stabilize and network load stops. Total network load is also important to
differ between the implementations.

7.5 Test scenario implementation

I will now describe how the scenarios are made by describing the actual imple-
mented scenarios in detail. These are the scenarios runned in the Test result
chapter, and can be used as a reference to gain more insight into the results.

7.5.1 Chain scenario

The chain scenario consists of 10 nodes, as seen in Figure 7.5, configured to form
a line of nodes. The scenario starts without any connectivity, after 1 second all
consecutive nodes are connected, eg. 1 and 2, 2 and 3 and so on. Each node has
then 1 or 2 neighbours and there exists only one partition. After 55 seconds,
another table is created at node 1. The table will be disseminated throughout
the network. The scenario shows if the hop by hop dissemination works, by
looking at the graphs and verifying that all three protocols manage the hop by
hop dissemination.

When using the semantic protocol I configure the group to include nodes 2
and 9. These are located in opposite corners of the scenario, 2 is between 1 and
3 and 9 is between 10 and 8.

7.5.2 Grid scenario

The grid scenario forms a grid construction of 20 nodes, as can be seen in Figure
7.6, in a pattern of 5 times 4 nodes. The distance between the nodes is such
that each node only has connectivity with the node directly above and below in
addition to left and right, which gives each node 4 neighbours. This does not
hold for the outer nodes which have fewer neighbours.

At one second into the scenario, each of the nodes is connected to form the
grid topology. 60 seconds into the scenario one new table is created on node
1. The groups when using the semantic protocol are formed of nodes 2 and 19,
which are located on different sides of the scenario but are not the nodes that
starts the dissemination.

7.5.3 Merge scenario

The merge scenario is started with two partitions, each of which is formed 1
second into the scenario. Each partition consist of 9 nodes, 18 in total, as seen

90 CHAPTER 7. INSTRUMENTATION AND TEST SETUP

Figure 7.4: Schematic view of the merge of cluster A and B

7.5. TEST SCENARIO IMPLEMENTATION 91

Figure 7.5: Screenshot from the emulator GUI, showing the chain scenario

Figure 7.6: Screenshot from the emulator GUI, showing the grid scenario

92 CHAPTER 7. INSTRUMENTATION AND TEST SETUP

Figure 7.7: Screenshot from the emulator GUI, showing the merge scenario

in Figure 7.7. At 60 seconds the partitions will merge. This happens when the
two first nodes in range will make connection; as the two partitions overlap,
more nodes will get connectivity with the other partition. At 70 seconds both
partition will overlap totally, which means that all nodes in the partitions have
neighbours that belonged to the other partition.

No action in form of table creation is performed, only the change in connec-
tivity. When considering the semantic scenario nodes, 1 and 10 are in the same
group. They are in different initial partitions, and are not the ones that meet
at the first encounter.

7.5.4 Ferry scenario

The ferry scenario consists of 17 nodes, at first separated into two partitions.
One consists of 9 nodes, the other of 7 nodes plus the ferry. At 1 second into
the scenario, both partitions are formed by turning on the network. The ferry
starts immediately to move through the first partition. At 40 seconds into the
scenario the ferry will lose connectivity with the first partition, heading for the
second, this is where the screenshot in Figure 7.8 is taken. At 47 seconds, will
the ferry connect with the second partition. Still moving through the partition,
stopping at the end of the scenario inside the second partition on the opposite
side of the entry point.

The semantic groups are formed by the ferry itself, node number 1, and a
node inside the second partition, number 2. The group member in the second
partition is located in the middle of the partition, hence is not the first encounter

7.6. TOOLS USED AND MADE 93

Figure 7.8: Screenshot from the emulator GUI, showing the ferry scenario

of the ferry.

7.6 Tools used and made

Few tools was used making scenario files prior to my contribution, random or
hand written scenarios where used. I needed a more controlled environment
where I could construct scenarios. This was accomplished by using the NAM
editor, and finding a way to translate its output format to some thing that could
be used by the NEMAN iemul GUI. With the pipeline described in this section
I am able to construct and run a scenario of my specifications without hand
coding scenarios.

7.6.1 NAM

NAM is a network animator [24], which can construct and view topologies.
In addition to its own format it can save and view NS2 files. NAM is able
to construct networks for the NS2 simulator, nodes in these networks can be
mobile or stationary. Agents known from NS2 can be placed in the network to
generate traffic. Other features available in NS2 are also available in NAM but
not introduced here since they will not be used by the NEMAN emulator.

I have used the NAM editor to construct the NS2 files that are used in my
test scenarios. It generates NS2 formatted files. The NS2 files are specifying the
scenario and in the NAM editor, one can use a time line to specify movement

94 CHAPTER 7. INSTRUMENTATION AND TEST SETUP

of nodes. These scenario files can later be converted to NEMAN GUI readable
files.

7.6.2 NAM format to NEMAN converter

There are certain format differences between the NAM written format and the
format readable by the NAME GUI. These are;

• numbering, NEMAN scripts require 0-n, NAM writes 1-(n+1)

• variables in NEMAN scripts are used with an trailing

When these changes are made by the ns2neman script will the sensnet.pl
script, from the NEMAN-1.1 util package, be used to construct the connectivity
information needed by NEMAN GUI. The NEMAN GUI uses this information
to instruct TOPOMAN about connectivity.

7.6.3 iemul

iemul is the GUI for NEMAN, it is part of the NEMAN-1.1 GUI package. It can
read modified NS2 scenario files with the additional connectivity instructions
made by the sensenet.pl script. It can also send control packages to TOPOMAN
which is used in my thesis for instructing the nodes. These control messages
need to be hand written into the scenario files.

iemul can play, pause and rewind the scenarios, it graphically shows the
movement pattern and connectivity on the client machine. iemul will make the
control packets and the instructions to NEMAN, these are sent as the scenario
specifies.

7.7 Measurements and simulation system

To be able to perform the test cases described, we will need to use an emulator
environment. This environment will enable repeatability and make running of
the test cases easy and reliable. We are using NEMAN to perform the emulation,
and since NEMAN uses NS2 format for its scenario files, we can take advantage
of the message passing feature from NS2 scenario files.

The concept is rather simple, the scenario files are going to be the single
source for test cases. This means that in addition to movement patterns and
connectivity, they will also handle behavior. Behavior is all that the middleware
is able to do, we use some simple behaviors called actions like; log status, create
new table, create new metadata, and query for available metadata. Via this
behavior we will be able to start the test case from the emulator interface, and
each test can be run in exactly the same way each time.

To realize the concept of single source test case files, we need to get the
messages sent from the emulator GUI into the emulator. Inside the emulator
environment, messages will be routed to the correct node or nodes. Each node
should be able to pick up a message and perform the wanted behavior. This
outline a design shown in Fig 7.9.

The messages are sent from the emulator GUI together with the control
messages to the emulator. At the emulator they are picked up by software

7.7. MEASUREMENTS AND SIMULATION SYSTEM 95

Figure 7.9: Simple outline of the simulator, with communication flow marked
by arrows from the PC(emulator GUI) to the nodes inside the emulator

Figure 7.10: Simple outline of the test case application, that implements a
remote control over the nodes

which tunnels the messages into the emulator to the IP address specified in the
scenario files. At this point the nodes have to be ready to pick up the messages
and interpret them.

7.7.1 Controlling nodes

To control the nodes I made an application that uses the MIDAS middleware.
The application is controlled by the messages sent to the nodes. By doing the
control this way I get to test that the middleware as a whole works in the proper
way. In addition, the tests will be more precise to what they would be in real life
situations. Since the middleware is used in more of the same way as a normal
application would.

When designing the application two major requirements surfaced; One, the
use of the middleware needed to be as if it was a user application using it. Two,
the actions that a node could perform, had to be extendable. By accepting the
requirements the design had to include a separate communication channel and
a pool of actions that could be extended to new actions at a later point.

As we can see from the UML diagram overview in Fig 7.10, there is a separate
communication unit for the application. This unit uses the same interface to the

96 CHAPTER 7. INSTRUMENTATION AND TEST SETUP

network layer as MIDAS does. By separating these two communication channels
there will be no interference in MIDAS middleware by the control messages
to/from the nodes. This will make both debugging easier and the results more
reliable because the middleware is not affected by the control messages.

The test application is only executing actions from the action pool, this
makes the test application extendable so that it can perform any task inserted
into the ActionPool. The actions are performed in and application and will
affect or operate the middleware through the MIDAS interface.

7.7.2 Logging and status

The logging of system data like size and count of knowledge base is done through
a status file on the node. The file is a mirror of the status on the node at any
given moment. The logging is done externally and according to a sampling rate.
This is done through copying the file and noting the timestamp. In this way
we can from the outside log the status without interfering with the application.
How this is done is described in the implementation Section 6.7.

Chapter 8

Test results

The results from tests performed are laid out and discussed in this chapter. I
start with the metrics used and the influencing factors. Next, I describe the
evaluation techniques and presenting the measurements done during the test
runs both in tables and graphs. Further the protocols are evaluated against
each other based on performance in the same scenario and each protocol by is
discussed, evaluating it over all scenarios. Finaly I Identifying thire successes
and limitations and also evaluate thier scalability.

8.1 Metrics

I have evaluated each scenario using each of the protocols, measuring the meta-
data storage and communication cost from each node. By doing this I am able
to verify and check that each protocol fulfils the absolute requirements. In ad-
dition, I will look into how well they perform with respect to the performance
requirements described in Section 1.3. All measurements are done in the context
of time, which gives me the ability to see the dissemination as a function over
time.

In this section I will describe the metrics used to measure and evaluate each
protocol.

8.1.1 Sample interval

The tests are instrumented using the StatusFile described in Section 6.7.2, by
reading the status files once each second, marking them with the current times-
tamp, and writing them to a new file in the logging directory. Latter this
directory is packaged together with the tcpdump log, for transport and post
analysis.

The script which copies the status files is quite simple. Each of the files are
copied in sequence, which introduces a small delay between the first and last
copy operation. After this is done a sleep command is invoked with the sample
interval, one second in these tests.

97

98 CHAPTER 8. TEST RESULTS

8.1.2 Information storage count

The known information elements, in the form of metadata, are kept in the
information storage. We use the concept information storage to denote storage
of all data, local as well as shared in the local storage.

Each node has an initial information storage containing one metadata ele-
ment, this is a table replica used by the DS component for versioning purposes.
This versioning table is a normal shared table as any other table instance, but
it is special since it is created at startup on all nodes. This will imply that in a
partition of two nodes, each node will after synchronization have two elements in
its information storage. These are its own versioning table and the other node’s
versioning table. The global information storage in this case consists of all its
nodes’ information storage, counting 2 + 2 = 4. Since all MIDAS nodes have
this feature of creating a table at startup, I can use this table as a measurement
into how far dissemination has reached without the need for active allocation of
tables by the test application.

To determine the absolute size of the information storage I will use the
number of nodes, thus forming the information storage count (ISC), based on
the fact that each node has one table replica at startup. From this number I
am able to determine how many metadata elements each node has. The global
ISC is well defined in all scenarios, by knowing the initial size of each ISC and
the number of nodes in each partition. This is used to check if the absolute
requirement is met, by asserting the measured global ISC to the calculated
global ISC.

8.1.3 Dissemination time

I will measure the time used to disseminate from an action occurs until the
ISC has reached the new total information level. By plotting the global ISC
I can make graphs showing the time since scenario start, and the size of the
global ISC by evaluating these graphs (see Fig 8.1), looking for areas where the
global ISC goes from one known stable state to another. By finding the last
seen stable measurement and the first new stable measurement, I can measure
the time spent from synchronization start until end; this is the dissemination
time for these elements.

In the static scenarios I have used one new table replica as the new infor-
mation created. This information is created on a node defined by the scenario.
Identification of the stable states is done by knowledge of how many nodes are
in each partition, thus forming the ISC in that partition. Using the fact that
each node has only one table present at startup I know that the ISC for each
node should equal that of the number of nodes in that partition. To locate the
next stable state I will look for the new wanted global ISC.

In the static scenarios the new ISC is one larger that the number of nodes
in the partition. This represents that there is one table shared per node, plus
one created by the scenario.

In the dynamic scenarios this metric is more complex. The new ISC is de-
termined by the joint ISC of both partitions. To give a more practical example;
In the ferry scenario one node goes from partition A to partition B. The initial
ISC of partition B is determined by the number of nodes in the partition. After
the ferry has moved, the wanted ISC is the initial ISC of partitions A and B

8.1. METRICS 99

Figure 8.1: Graph showing the different stable states and start and stop of the
dissemination

combined. Partition B should now be aware of all elements in B and all from A
through the node mobility.

8.1.4 Message sent count

To disseminate information in the network, each protocol uses messages to com-
municate. This communication is represented in my metrics as the number of
messages sent. Each message that is sent, contributes to each node’s message
counter. By measuring the number of messages sent, I can evaluate how much
strain the protocols put on the network. By evaluating the message count to-
gether with the ISC I can analyze which protocols deliver high dissemination
with a small amount of message use.

This metric does not give the finite answer to how large the network load
is, because the message count does not include the size of the message. Further
analysis and discussion of how good the indicators are, is done in Section 8.4.1.
One can identify the activity level of the protocol by looking at the send rate.
A zero send rate indicates no active protocols, an ever growing indicates a bug
or error, a stable growing message count indicates activity. This indication is
used to measure dissemination time, for this purpose is the message count well
suited.

To take measurements of sent messages, I have instrumented each node
to report its status to the status file regarding its message status. This is
done in the MdsCrtAdapter which implies that we will not have any lower level
packets included in the measurements. Additionally, this is only used by the
MDS component, which gives us an accurate measurement of the MDS message

100 CHAPTER 8. TEST RESULTS

count. For the duration of the tests presented in this thesis I will disable the DS
component. This gives the message count more accuracy when studying only
the GMDM component. This means that all messages reported sent, are from
the GMDM component.

8.2 Influencing factors

In this section I will describe error sources and important aspects of the mea-
surements. This is done to gain more clarity into what is presented, both with
respect to what the numbers and graphs mean, and what they show or might
not show.

8.2.1 Dissemination time inaccuracy

The dissemination time is based on the time differences from one stable state,
until another stable state. The time between these two states is the dissemi-
nation time of the metadata disseminated. The action is, as described before,
either a creation of metadata or a merge of two partitions.

To identify that a stable state is ending, I will find the last known stable
measurement point. This point is found knowing the size of the ISC and the
actions in the scenario. The first point in the next stable state marks the end
of the dissemination.

While some of the protocols are fast in relation to the sample interval, some
of the results might be too inaccurate. This is an effect of the instrumenta-
tion technique used, which takes one measurement each sample period. If a
change happens between two measurements, this will first be recorded when
the measurement is taken. Since the time span of some protocols is less than
3 seconds, this sample interval is too small to give an accurate measurement of
the dissemination time.

When a stable state is ending, the recording of the increase in ISC will be
done up to 1 second after it actually happened. This is also the case when the
dissemination has reached everyone, which is marked by the last node getting
the new level of ISC. The recording of this ISC can be up to 1 second delayed.
This gives the dissemination time an inaccuracy of +- 2 seconds, one at the
start of the dissemination and one at the end.

8.2.2 Message size omitted

In the graphs presented all measurements are in terms of messages sent or in the
number of metadata elements. When using only message count as the definitive
quantity, one must remember that the actual size sent over the network for two
messages can differ by large factors. In Section 8.4.1, I will explore the actual
differences between the message count and the bandwidth use. It seems that the
message count is an ok indicator of how good the performance is. But there is
inaccuracy when only using the message count, especially in the Merge scenario.

8.3. EVALUATION TECHNIQUE 101

Environment Protocol Messages sent Message recv Sec merge 100%
Chain Simple 29,1 25,3 3

Broadcast 4,6 2,8 1
Semantic 3,1 4,7 1

Grid Simple 62,5 57,0 3
Broadcast 3,1 6,2 2
Semantic 3,7 6,8 3

Ferry Simple 21,8 21,8 4
Broadcast 3,8 17,7 2
Semantic 6,6 12,1 4

Merge Simple 48,1 48,1 7
Broadcast 18,6 185,9 4
Semantic 29,0 44,5 6

Table 8.1: Messages sent and received during the dissemination phase. Dissem-
ination time, is measured in seconds

8.3 Evaluation technique

To evaluate these tests I will use the goals stated in Section 1.3 and the graphs
and measurements in this chapter. By comparing each of the protocols against
the goals for information sharing I hope to find answers to how well each protocol
performs in each of the scenarios. I will also look into the relationship between
the different protocols used on the same scenario to see if there are protocols
that perform better under some scenarios than others. The goal is to see if there
exist protocols that is well suited for all conditions, or if a universal protocol
is not one of the tested, and if so what would be the causes for the different
performance.

The assessments are going to be done through graphs for time series data
like dissemination, and in tables or histograms for quantified data without the
time dimension.

8.4 Conclusions drawn from the data

The parameters in Table 8.1 is as follows; Messages sent is the average number
of sent messages through the middleware, per node. Messages received are the
average number of messages received through the middleware per node. All
messages addressed to one node, including the broadcast address, get counted.
Messages are counted from the start of the dissemination until the nodes stop
sending messages. The stop in message sending indicates that all nodes are equal
and that all protocol instances are finished. “Sec merge 100%”, the duration of
the dissemination, this is the time it takes from the protocols start, until the
100% is reached. This time period is shorter than the period that is used from
dissemination start until message sending stops. Timestamps are done only on
whole seconds, thus can the measurements only be given in whole seconds.

102 CHAPTER 8. TEST RESULTS

Environment Protocol Bytes sent
Chain Simple 563727

Broadcast 22115
Semantic 30188

Grid Simple 2693948
Broadcast 53895
Semantic 76641

Ferry Simple 359102
Broadcast 68983
Semantic 71226

Merge Simple 731260
Broadcast 360067
Semantic 494226

Table 8.2: MIDAS traffic measured during dissemination

8.4.1 Bytes transferred

To get more concrete results of what goes on at the network level, I have mea-
sured the bandwidth use in each of the tests. This is done through use of
tcpdump, and post analysis of the dump files. The measurement is done from
the starting point of the dissemination. This is identified through analysis of
the tcpdump file by looking for the control packets from the emulator GUI,
which indicates the start of the static scenarios, or in dynamic scenarios the
first message sent between the two first encounter nodes. For example, in the
ferry scenario, the encounter between the ferry and the second partition. The
measurement is done by adding up all packet lengths sent to every MIDAS
node on port 1113. This will include all messages send from one MIDAS node
to another, excluding all routing daemon traffic and the control packets.

The measurement results are displayed in Table 8.2, and show each of the
scenarios and protocols and the number of bytes sent in the dissemination pe-
riod, described above.

8.4.2 Messages good indication of bytes transferred

Message size can vary, this is not visible when only looking at the message count.
I will asses if the trends are the same regarding bytes and messages, if this is
the case will messages indicate, bytes usage and vice versa. For the trends to
correlate will the increase in, for example, byte usage be proportional to the
increase in messages.

As we can see from the plotted data in Figure 8.2 the byte count follows the
message count to some extent. Some exceptions occur in the chain scenario (see
Figure 8.2(a)) where the broadcast protocol sends more bytes than the semantic
protocol, but sends fewer messages. This illustrates the problem with only
counting messages and not bytes, since large messages are sent the comparison
to the semantic protocol will be misleading. Also in the merge scenario we
see that the broadcast and semantic protocols use almost equal amounts of
bandwidth, even though the broadcast protocol reports less messages, which
indicates larger messages.

Even though byte count does not accurately follow the message count, we can

8.5. DISSEMINATION RESULTS 103

 0

 100000

 200000

 300000

 400000

 500000

 600000

Simple BroadcastSemantic
 0

 5

 10

 15

 20

 25

 30
B

yt
es

 s
en

t

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Bytes sent
Messages sent

(a) Chain scenario

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

Simple BroadcastSemantic
 0

 10

 20

 30

 40

 50

 60

 70

B
yt

es
 s

en
t

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Bytes sent
Messages sent

(b) Grid scenario

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Simple BroadcastSemantic
 15

 20

 25

 30

 35

 40

 45

 50

B
yt

es
 s

en
t

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Bytes sent
Messages sent

(c) Ferry scenario

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Simple BroadcastSemantic
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

B
yt

es
 s

en
t

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Bytes sent
Messages sent

(d) Merge scenario

Figure 8.2: Messages and bytes plotted side by side, to show the relation ship
between messages and bandwidth usage

still use the message count as an indicator for bandwidth use. The reason for this
is that the message count follows the actual bandwidth use to some extent, even
though we would like a more close correlation. Messages used in the semantic
protocol use a multihop routes which gives packet size∗hops = bandwidth use,
which is part of the deviation. What the message count still tells us is the
active use of bandwidth, thus a reduction in the message count affects the byte
count. I will use message count for absolute requirements, and to some extent
to asses the performance requirements but use the bandwidth measurements
when appropriate.

8.5 Dissemination results

In this section I will display the test results from the test scenarios. By doing so
I will argument that we have fulfilled the absolute requirements and that some
protocols perform very well with respect to speed, bytes and message count.

We will use graphs to display metadata counts over time. By analyzing
the graphs I will find whether or not the protocol has fulfilled the absolute
requirements. In addition I will identify the dissemination time between the
two stable states. The protocols will be measured against each other within
each of the scenarios. This will give us a clear view of the relative performance
of the implementations.

104 CHAPTER 8. TEST RESULTS

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80

chain

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 8.3: Plot using the total values for the entire network using the three
different protocols in the chain scenario.

8.5.1 Chain configuration

Evaluation

When analyzing the chain scenario using the graph in Figure 8.3 and the num-
bers from Table 8.1 we discover some interesting results; small differences in
time usage, very large differences in message count, and some unexpected re-
sults regarding the received message count.

Time differences used for dissemination in the chain scenario are almost none.
The simple synchronization protocol uses 3 seconds and the two others use 1
second. Knowing that the sample period is one second and that the uncertainty
is around +-2 seconds, these results have to be treated as more or less the same.

In the chain scenario, the simple protocol uses 9 times as much messages
as the semantic protocol, and more than 6 times as much as the broadcast
protocol. This is confirmed by looking at the bytes transferred, where simple
synchronization uses 25 times as much bandwidth as the broadcast synchroniza-
tion, and the simple synchronization uses 18 times more bandwidth than the
semantic synchronization. The broadcast protocol is using more messages and
less bandwidth than the semantic protocol, which indicates that it uses smaller
messages.

To look at the overall scenario we evaluate the graph and find that the differ-
ence in total message count is 1:4 between the simple and broadcast protocols,
this includes the setup phase. It is interesting to note that the overall differ-
ence is smaller than the studied dissemination period. The overall message use
includes too many uncontrolled aspects to be analyzed in this context. I will

8.5. DISSEMINATION RESULTS 105

therefore dissemination phase to measure performance.

Taking a closer look at the received messages (see Table 8.1) in the chain
scenario, one notices that the broadcast protocol receives less messages than the
semantic protocol. As the use of broadcast messages increase will the difference
between received and sent messages increase, if the node that uses broadcast
messages has more than 1 neighbor. Since a broadcast message is counted as
1 sent message and as n receives, were n is the number of neighbors. If no
messages is lost to communication error, this will be the only way that the
send count is larger than the receive count. In the case of the chain scenario,
where the receive count is less than the send count, this has to be explained
by transmission error. While no other phenomenon can explain the fact that a
message is send with out any one receiving it, especially considering that these
are static scenarios where all nodes has connectivity at all times.

When looking at the Table 8.1, we also notice that the broadcast protocol is
sending more messages than the semantic protocol, which indicates that the se-
mantic protocol outperforms the broadcast protocol, this is not true for the bytes
transferred which is seen to be larger for the semantic synchronization. The ex-
planation for this might be that the broadcast protocol sends more overview
messages alone than as part of the semantic synchronization. The reason for
this is that the multiple start points for the following broadcast synchronization
is more efficient than the plain broadcast with respect to redundant overviews.
We expected that the results would show that semantic would go faster but use
more bandwidth. We have only shown that the semantic protocol uses more
bandwidth, with no measurable speed gain. What we can see from the message
count, is that the broadcast protocol shows signs of not being optimal with
respect to messages versus information sharing in the chain scenario.

8.5.2 Grid configuration

Evaluation

In the scenario shown in the graph in Figure 8.4 and in Table 8.1, we see that the
simple synchronization is struggling with the grid scenario. By looking at the
messages used to disseminate one element, it uses 20 times as many messages as
the broadcast protocol. While the semantic and broadcast protocols are more or
less the same when looking at there message count. When looking at the bytes
transferred a some what different view emerges, the simple protocol uses almost
50 times as much bytes to disseminate one element as the broadcast protocol,
for the semantic protocol the relation ship to simple protocol is 35 times. This
however does not show as clearly in the timing results, which can be related
to the use of NEMAN (Section 2.7.2) and the timing uncertainty. As NEMAN
gives each node very large bandwidth, this reduces the problems imposed by
high bandwidth usage. This is most likely the reason for the small differences
in timing.

The large differences in message count might be caused by how the protocol
handles many neighbors. We see, from the scenario description in Section 7.2,
that the connectivity is high. An average node has 3.2 neighbors. When a new
metadata element is created, the simple protocol will need 4 protocol instances,
while the broadcast protocol needs one overview to reach all its neighbors. If
some of the nodes already are up-to-date on information this will lead to addi-

106 CHAPTER 8. TEST RESULTS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

grid

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 8.4: Plot using the total values for the entire network in the grid scenario,
using the three different protocols.

tional savings. By analyzing the grid scenario we clearly see the consequences
of this feature. The broadcast protocol outperforms the simple protocol by 20
times, regarding message use and 50 times regarding bandwidth. This result is
higher than expected, and further discussed in Section 8.6.

We also see that the messages received and sent are more or less equal for
the semantic and broadcast protocol, we can actually see a slightly larger mes-
sage use by the semantical protocol. We were expecting good results from the
semantical synchronization technique especially from the grid scenario. Because
the recursive dissemination would require substantial iterations before reaching
all the nodes. The increased number of start points was expected to be of great
advantage for the semantical protocol. It might be that the scenario is still
too small and the distance between group members is not large enough to give
any substantial differences. Had both these interventions been cleared and the
transfer medium reassembled more wifi networks than it does on NEMAN, we
would perhaps have seen more beneficial results regarding the semantical pro-
tocol. There are too many uncertainties to speculate into the result of such an
experiment.

There can be seen a pattern that the broadcast synchronization protocol
is as good in the chain and grid scenario, but the simple protocol is sending
more messages as the connectivity (neighbors per node) increases. This is an
important aspect of the performance especially in relation to scalability, which
will be discussed further in Section 8.6. The view is backed up by the bandwidth
use, where the broadcast protocol increases its bandwidth usage from the chain
scenario to the grid scenario by a factor of 2, the semantic protocol by 2.5,

8.5. DISSEMINATION RESULTS 107

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

ferry

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 8.5: Plot using the total values for the entire network in the ferry scenario,
using the three different protocols.

and the simple protocol by 4.7. These numbers show a relation between the
protocols, but can not be related directly to scalability since there are to many
differences between the chain and grid scenario. To measure scalability would
more controlled and specific scenarios be constructed, that explored the neighbor
ratio differences and the number of nodes with respect to scalability.

8.5.3 Ferry scenario

Evaluation

When evaluating the results shown in the graph in Figure 8.5, the ferry scenario,
one must remember that this is actually a three part scenario;

1. initialization in two partitions of 7 and 10 nodes

2. disconnection from the smallest group by the ferry

3. the ferry enters the larger partition

We will look at the entering into the larger partition, as the durability eval-
uation, evaluating that the larger partition eventually consisting of 11 nodes,
has the total information per node at 17. This shows that the protocol fulfils
the absolute requirements also when subject to delay tolerant paths. By look-
ing at the graph in Figure 8.5 we can confirm that the global ISC is equal to;
(6 ∗ 7) + (11 ∗ 17) = 229 Where; 6*7 is the ISC for the smaller partition at the
end of the scenario. 11*17 is the larger partition ISC at the end of the scenario.
229 is the global ISC.

108 CHAPTER 8. TEST RESULTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140

merge

broadcast message count
broadcast metadata count

simple message count
simple metadata count

semantic message count
semantic metadata count

Figure 8.6: Plot using the total values for the entire network in the merge
scenario, using the three different protocols.

Assessing performance, by looking at the different protocols operating in
the same environment we see in the graph in Figure 8.5 and Table 8.1 that the
differences are much smaller than in previous scenarios. As low as 1:3, between
simple to semantic protocol, and the difference between simple to broadcast
protocol is 1:5, regarding message count. The byte count tells us that the
simple protocol uses 5.2 times more bandwidth than the broadcast protocol,
and 5.0 times more than the semantic. This indicates that the ferry scenario
does not differ as much between the protocols as the other scenarios. When we
look at the time usage we see that the difference is still small, broadcast is still
fastest, with the two others a bit behind.

It is, however, a 1:2 difference in messages sent when assessing broadcast
against semantic. This difference in count is not seen in the other scenarios.
However, the byte counts are almost the same differing only 3%. This indi-
cates that the semantic protocol uses messages that are smaller in size than the
broadcast protocol, this means less information per connection, which can lead
to more overhead.

8.5.4 Merge scenario

Evaluation

The merge scenario is the scenario with the highest neighbor ratio, it includes
connection changes during the actual merge which will stress the triggers on
each of the involved nodes. This is reflected in the results by having many new
protocols instances created, due to the onNewneighbor() trigger, and newMeta-

8.6. PERFORMANCE VERSUS NEIGHBOR COUNT 109

 0

 10

 20

 30

 40

 50

 60

 70

Simple Broadcast Semantic
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4
M

es
sa

ge
s

se
nt

N
um

be
r

of
 n

ei
gh

bo
rs

 a
va

ra
ge

Msg # chain scenario
Msg # grid scenario

Neighbor count chain scenario
Neighbor count grid scenario

Figure 8.7: Performance plotted against neighbor count

data() trigger, which both trigger a synchronization protocol instance.
We can conclude from the Table 8.1 and by looking at the graph in Figure

8.6 that the broadcast is still fastest with 4 seconds, followed by the simple and
semantic protocols on a shared second place around 6-7 seconds. When looking
at the message count number, we see that the simple protocol is sending by far
the most messages. Broadcast is sending least and semantic a place in between.
The ratio between broadcast and simple is 1:2.6 and semantic vs. simple is
1:1,6. With respect to bandwidth is the ratio 2 between simple and broadcast,
between simple and semantic the ratio is 1.5. Which states the performance
gain of the broadcast protocol in the merge scenario.

What is very interesting is the receive count of the broadcast protocol, which
is 10 times the number of send messages. This is a direct effect of the high neigh-
bor count, since one node with 10 one-hop neighbors broadcast one message and
gets heard by 11 nodes, by all neighbors and the sender itself. One would ex-
pect this to give efficient and very low bandwidth dissemination, however, the
differences are not larger than in other scenarios in fact they are less. The high
neighbor ratio would also give multiple dissemination paths, leading to multiple
redundant overview messages that where to favour the optional responce broad-
cast protocol. This is neither seen as clear as we might expect. The reason
for this might be the extensive trigger load, while the triggers get invoked very
often will all protocol implementations need to respond with another instance
of a synchronization. If this is the major cause to network load in this scenario,
will the optimization done in the cutoff techniques might be as visible.

8.6 Performance versus neighbor count

To evaluate the protocols for scalability we have tried to find a correlation
between neighbor count and bandwidth use, shown in Figure 8.7.

As the number of nodes in a partition increases, the number of neighbors will

110 CHAPTER 8. TEST RESULTS

also increase, if the partition keeps its original physical size. If the number of
neighbors increases, the protocols will be tested for scalability. As the number
of neighbors is large, the protocols will be required to handle more nodes on
each trigger, which can result in more bandwidth use. How well the increasing
neighbor count is handled will show us how the protocol scale in dens networks.

I have used the results from the chain and grid scenario to show the scaling
of the protocols. The results are shown in Figure 8.7. The graph shows mes-
sages sent using each of the three protocols, with the message count on the left
hand side. The number of neighbors in average for each of the two scenarios
is plotted as horizontal lines. The chain scenario has 1.8 neighbors per node,
the grid has 3.2. The increase in neighbor count is substantial and can give us
an indication on the scaling of the protocols. However these two tests are not
enough to conclude on something definitive, and more tests and analyses must
be performed to be able to give a definitive answer to how the protocols actually
scale.

From these limited test results we can anyhow see some indications into how
the different protocols react to the increase in node density. We observe that the
simple protocol more than doubles its message use, while the broadcast protocol
reduces its message use as the neighbor count gets higher. This indicates that the
bandwidth use of the simple protocol dramatically increases with the neighbor
count, which indicates bad scalability. While the broadcast protocol decreases
its message use, as the neighbor count doubles, which indicates good scalability.
When looking at the semantic protocol, we can see that the grid scenario uses
a bit more messages then the chain scenario. This can be explained by looking
at the two protocols that the semantic protocol consists of, which will explain
the message use that increases. The increase over the broadcast protocol is due
to the group synchronization phase.

However the picture drawn from the messages is not entirely correct. If
we see the bytes transferred in relation to the scaling another picture emerges,
which is different but still supports the view of scalability. The simple protocol
goes from 533 727 bytes in the chain to 2 693 948 bytes which is 4,8 times larger,
at the same time the broadcast protocol goes from 22 115 bytes to 53 895 byte
the equivalent of 2,5 times. This still indicates the difference in scalability in
favour of the broadcast protocol, but the difference is not as large as when we
only look at the message count.

The subject of scalability must be looked into further to give a definitive
answer. More tests with more nodes have to be performed and the correlation
between neighboring nodes and dissemination patterns has to be analyzed to
see if the patterns of dissemination changes as the protocol or topology changes.
There must also be done an analysis of the problems with respect to the broad-
cast storm problem, which can possibly improve the performance of the proto-
cols further.

8.7 Performance results

8.7.1 Simple protocol

The simple protocol was implemented according to the epidemic routing prin-
ciple. No optimization is done to enhance its performance. When we evaluate

8.7. PERFORMANCE RESULTS 111

the protocol over the different scenarios we can observe that also this simple
implementation fulfils the absolute requirements, even though the 100% dis-
semination takes some time, all nodes get to know all information elements in
all scenarios.

It suffers from lack off no cut-off techniques and use of the one-to-one syn-
chronization method. This is slow and bandwidth costly, since every neighbor
will be contacted directly. This is costly since the listner node also needs to
perform the same tasks in the opposite direction due to the trigger onNewMeta-
data() (see Section 5.3). These two inefficient techniques degrade the perfor-
mance of the global dissemination.

The decision to not do optimization in combination with the one-to-one
technique gives the protocol a bandwidth use that is magnitudes larger than
the other protocols. The bandwidth use is so large that it would probably
inflict with normal operations in the ad-hoc network.

As the simple protocol is only a first implementation, there is no expectations
into how the protocol is to perform. Anyhow, the bandwidth use of the simple
protocol is a magnitude of 25 time more bytes transferred in the chain scenario,
of 50 in the grid scenario, of 5 in the ferry scenario and of 2 in the merge scenario,
than the bandwidth used by the broadcast protocol.

8.7.2 Broadcast protocol

The Broadcast protocol is optimized for performance and lower bandwidth us-
age. If we measure the protocol against the requirements from Section 1.3 we
identify that the protocol fulfils the absolute requirements. Regarding the per-
formance requirements the broadcast protocol performs well with respect to
dissemination speed and bandwidth use. The results from each of the scenarios,
looking at the graphs, achieve a 100% dissemination and in the fastest time
for all scenarios. As we look at the number of messages used, we can observe
that the use of bandwidth is lower than both the simple protocol and semantic
protocol. Compared with the simple protocol the broadcast protocol uses from
2,5 to 20 times as few messages, and uses from 2, in the merge scenario, to 50
times less bandwidth than the simple synchronization, in the chain scenario.

The optimization done in the broadcast protocol clearly gives better perfor-
mance and higher dissemination speed than the simple implementation. The less
use of bandwidth is also an important optimization that favours the broadcast
approach.

8.7.3 Semantic protocol

The goal of the semantic protocol was to speed up the dissemination process
with focus on getting the information to a set of group members. As we see from
the graphs the group synchronization is slowing down the global dissemination
process compared to the Broadcast protocol, this is due to the overhead of
multihop synchronization and delay for doing the group synchronization first.
I expected that the overall dissemination would speed up as an effect of the
overlay network that the group was forming, this has not been the case in the
scenarios tested. I assume that the advantage of overlay network and multiple
start points is going to prove themselves on larger scale topologies, especially

112 CHAPTER 8. TEST RESULTS

where communication is more unreliable or slower than in NEMAN. But we
have not seen this effect in any of the scenarios performed in this thesis.

The additional overhead is stated to be assessed against the overall gain
of the semantical protocol. Both measurements of message count and bytes
transfer show that the semantic protocol introduces more overhead over the
broadcast protocol. This overhead ranges from no difference in messages sent
in the static scenarios, up to 30-40% more messages sent in the merge and
ferry scenarios, compared to the broadcast protocol. When we look at the bytes
transferred we clearly see the actual overhead affecting bandwidth ranging from
3% in the ferry scenario to 36% in chain, 37% in the merge and up to 42% in
the grid scenario more bandwidth used than the broadcast protocol.

Group dissemination speed

The semantic protocol has two levels of synchronization that are used in se-
quence, as described before. I will now assess the inter group dissemination
speed. This is the output of the first synchronization protocol. Since the results
from the scenarios have not proven the semantic protocol to be as fast as ex-
pected, we will try to see if the inter group synchronization is at all faster than
the global dissemination, with respect to the group members.

By plotting all nodes on the same time line along the y axis and their ISC
along the x axis we will be able to see how the group members which should
receive metadata from the group, are performing in relation to the other nodes.
To more easily see how the group members in question perform, the plot for
this node is in bold. The graphs can be viewed in Figure 8.8.

Chain scenario (Figure 8.8(a)) does not show any interesting results, all
nodes are moving from knowing 10 metadata elements to 11 in the same sample.
No difference can be established.

Grid scenario (Figure 8.8(b)) is a bit more interesting, it shows a late start
for the group member synchronization and that the receiving member is getting
the element as one of the last. The group synchronization is not speeding up
its receiving rate. This can be explained by looking at when the first group
member receives the metadata, in fact it can look as if nodes number 19 and 2
get the metadata at the same time. The receiving of metadata to the group is
reliant on the dissemination of metadata from the source, node 1, to one of the
two group nodes, 19 or 2, this explains the delay. However, by observing that
the two group members receive the metadata at the same time, we can say that
the group synchronization functions correctly.

Merge scenario (Figure 8.8(c)) gives us another example of the group node
not being the quickest. One needs to remember that the two group members
are not the first to merge. Again we can see that nodes number 1 and 10, which
are in different partitions, move from 9 metadata elements to 18 at the same
sampling. This indicates that the propagation from group member to group
member goes fast.

8
.7

.
P

E
R

F
O

R
M

A
N

C
E

R
E

S
U

L
T

S
113

 10

 11

Chain scenario

Node 1
Node 10

Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

(a
)

C
h
a
in

scen
a
rio

,
g
ro

u
p

co
n
sists

o
f

n
o
d
e

1
a
n
d

1
0

 19

 20

 21

Grid scenario

Node 1
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18
Node 19

Node 2
Node 20

Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

(b
)

G
rid

scen
a
rio

,
g
ro

u
p

co
n
sist

o
f

n
o
d
e

2
a
n
d

1
9

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

Merge scenario

Node 1
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18

Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

(c)
M

erg
e

scen
a
rio

,
g
ro

u
p

co
n
sists

o
f
n
o
d
e

1
a
n
d

1
0

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

Ferry scenario

Node 1
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16
Node 17
Node 18

Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

(d
)

F
erry

scen
a
rio

,
g
ro

u
p

co
n
sist

o
f

n
o
d
e

1
a
n
d

2

F
igu

re
8.8:

T
h
e

m
etad

ata
p
lotted

on
a

p
er

n
o
d
e

b
asis,

rep
resen

tin
g

th
e

receiv
in

g
n
o
d
e

u
sin

g
a

b
old

lin
e

114 CHAPTER 8. TEST RESULTS

Ferry scenario (Figure 8.8(d)) where the ferry is part of the group gives us
a clear example on what we have been seeing in the other scenarios. The group
member enters another partition, invocation of the triggers happen, and the
group member is updated. This can be seen while the ferry, the only one going
from 8 metadata elements to 18, reaches the 18 metadata level at the same time
as the receiving group node. An interesting aspect is that the only source of
new metadata is the ferry, so the nodes that reach the new level of metadata,
18 elements, received these from the ferry. Some of the nodes do this before the
ferry reaches the new level, indicating the delay of the semantic protocol during
the merge.

Group synchronization evaluation

By studying the graphs in Figure 8.8, we see that the group synchronization
works, and that it is fast among the group. It also reveals that the protocol
makes the group nodes less responsive to synchronizations from other nodes
while they do the group synchronization. This was clearly visible in the ferry
scenario, where the single source of new metadata did not apparently store the
new metadata elements, even though multiple other nodes had gotten their
elements. This is a delay which can be introduced by processing power shortage
or other non-protocol-related causes.

To more clearly see the advantage of using the synchronization protocol,
tests were one of the group members are the source of the metadata. In such
a scenario would the semantic protocol be more suted and possably show more
efficientency, by doing so can more clear conclution be drawn on the performance
gains over the broadcast protocol.

We can identify that the wanted behaviour from the semantic protocol is
correct, since the group is propagating the elements fetched by one, to all others.
This further strengthens the theory that the causes for the bad results in my
scenarios are due to small scenarios or the fast emulator. It can also be due to
the fact that the scenarios are constructed so that they reflect badly upon the
semantic protocol, by giving the metadata other propagation routes than over
the group nodes. This can be seen in the grid scenario, where multiple nodes,
which where located more than one hop away, has received metadata before the
group member, which was located only one hop away from the origin.

This leaves the semantic protocol with only increased overhead, and no real
speed gain. Not due to the protocol but rather to the fast broadcast proto-
col, that over these short distances, and in this environment, outperforms the
semantic protocol.

Chapter 9

Conclusion

We set out to handle information sharing in rescue scenarios using ad-hoc net-
works. Since information sharing is done alongside other applications also re-
quiring network bandwidth, there are strict requirements into how the protocols
are to perform with respect to both bandwidth and response time. By using
metadata we can disseminate small information elements to all nodes in the net-
work. To limit bandwidth usage we have implemented an approach that uses
the neighbor relations, propagating information from node to node in a recur-
sive manner. To optimize the node to node propagation, extensive testing and
analysis have been performed. This has resulted in protocols spanning from the
basic simple protocol to the more advanced broadcast and semantic protocols.
Optimalization are done based on knowledge of the physical characteristics of
the wifi and ad-hoc environment. We have shown that our information sharing
protocols provide a global view of the information in the network. We have
further shown that delay tolerant features are supported, and work as expected.

The protocols were developed in an incremental process starting with a sim-
ple implementation inspired by the epidemic routing protocol. The development
focuses on durability, so that an element created in the network will be dissemi-
nated to all. The protocol has a simple outline using a one to one, recursive syn-
chronization technique to propagate metadata to its neighbors. As the strengths
and weaknesses of the protocol emerges, a second protocol was developed, tak-
ing advantage of the radio medium, using broadcast messages, hence the name
broadcast protocol. It uses a one to many synchronization technique, reducing
the overhead and also reducing the number of multiple dissemination paths,
by not forcing already synchronized nodes to perform another synchronization.
By using this optimalization the performance increases dramatically. Another
attempt to further enhance the performance was done with the semantic pro-
tocol, inspired by using overlay networks as used in publish subscriber systems
like DENS, the protocol uses the notion of groups among the nodes by giving
the members of its own group first priority, thus forming the overlay network,
and dissemination to these members is done faster. As a side effect we expect
faster global dissemination by using this technique under the impression that
multiple starting points were going to, disseminate the network faster. However
there were not found measurable differences in dissemination time to the entire
network, only to the group nodes.

The requirements put upon the protocols are twofold, absolute requirements

115

116 CHAPTER 9. CONCLUSION

that set the functional requirements, and the performance requirements that
give us a metric for making optimalization. The absolute requirements include;

• 100% dissemination. All nodes network are required to know of all meta-
data elements.

• Maintaining a global view. This requires that from every node all meta-
data will be visible.

And the performance requirements;

• Low bandwidth.

• Dissemination speed.

• Search response time.

By using these metrics the protocols have been evaluated revealing the differ-
ences. I performed a set of test scenarios, exposing the protocols to different -
more or less - realistic behaviour and movement amongst the nodes. By post
analysis of the measured test data the absolute requirements were found to be
valid, and the performance requirements evaluated. The absolute requirements
hold for all implementations over all scenarios.

The broadcast protocol outperformed the simple protocol by magnitudes
both in respect to its message use and bandwidth, also regarding dissemination
speed was the broadcast protocol faster. This clearly shows that by optimaliza-
tion the epidemic routing principle for information sharing in ad-hoc networks,
we can reduce the bandwidth and time use by large quantities.

In analysis the concept of the semantic protocol looks promising, however
we have not gathered data that shows that the semantic protocol is faster than
the broadcast protocol, with respect to global dissemination. It introduces an
overhead both in bandwidth use and a time delay. I have argued that the
semantic protocol would perform better in relation to the broadcast protocol if
the bandwidth in the emulator NEMAN were closer to that of the real life and
if our scenarios had been bigger or more suited to fit the semantic protocol.

The performance is measured against the requirements, to find the band-
width usage and dissemination speed. The search time is instant and does not
vary between the implementations while the 100% dissemination requirements
are followed. Our measurements have confirmed that the simple implementation
can be outperformed by combining routing principles and the understanding of
wireless environments. This is done through the broadcast protocol, which has
proven to be an overall better utilization of bandwidth. We see that the optimal-
ization saves up to 50 times the bandwidth when using the broadcast protocol
vs. the simple protocol. The optimalization shows promising results when look-
ing at the scenarios tested, as the chain versus the grid scenario, where the
broadcast protocol uses 25 less bandwidth in the chain scenario and 50 time
less in the grid scenario as the average neighbor count doubles. This indicates
that the broadcast protocol can handle larger and more dense topologies. The
Broadcast protocol gives the information sharing better responsiveness and at
the same time uses less bandwidth. This successfully shows that some of the
concepts of routing in ad-hoc networks are applicable to information sharing.
As done with the broadcast protocol, one can build upon the research field of
routing when developing protocols for information sharing.

9.1. FURTHER WORK 117

During the development of the three protocols there was done analysis of
the performance, which was fed back into the development. By doing so would
the protocols, especially the broadcast and semantic protocol, perform better
both with respect to dissemination time and bandwidth usage. This analysis
in the development cycle was done by using the scenarios and the emulator,
and by maintaining the test suite could I experiment with changes, without
introducing bugs. This has lead to the one to many technique and other opti-
malization used in the implementations. The repeatability made the effects of
the changes visible while the test cases did ensure that no unexpected behaviour
was introduced. This gave freedom to experiment and confidence that no wrong
functional behaviour was introduced.

The automation of scenario creation did early on show that new scenarios
could be constructed in a matter of minutes not hours, as the case was before.
This gives a more flexible way of emulating the behaviour and testing the actual
performance of the implementation in a corner case.

During the development process there has been developed a framework for
fast development of application using the ad-hoc network, also referred to as
the MIDAS middleware. The framework consists of APIs ready to perform
many of the tasks required by an application. Thus using the ready made
framework will application developers in the future be able to use more time
on the applications than the ad-hoc environment problems. As part of this
thesis, a middleware implementation enabling application to send, and route
messages, explore the topology, and store shareable data, has been developed.
This is accomplished by developing a series of components handling, point to
point message transport, integration against routing tables and sharing of data
amongst nodes. This has resulted in a framework that have given support for
both applications development, as well as internal protocols for information
sharing.

By easy creation of the test scenarios, has testing of specific scenarios be-
come easier. This is accomplished by using the NAM editor and a developed
converter to the NEMAN format. When the scenario is constructed the accu-
racy of running the scenarios become more reliant while all nodes are controlled
by a central unit, which can repeat the scenario multiple times. Before the
development of the RollePlayer and the mechanisms of controlpackets, would
only movement and connectivity be controlled by the control unit, with my
contribution can this control now be extended to the behaviour of each node.

The MDS framework, which is the implementation product of this thesis,
is extendable and usable by application developers also out side the MIDAS
project. The frame work can be used in general to realize other distributed
application using ad-hoc networks. The components can also be used separately,
to take advantage implemented features, in addition to the use of the middleware
as a whole..

9.1 Further work

As I have studied routing protocols during this thesis has multiple other tech-
niques emerged. Only some of which are implemented and tested as part of this
work. Further implementation of different techniques will probably give more
efficient implementations.

118 CHAPTER 9. CONCLUSION

The subject of limiting broadcast storms is highly usable for even the already
implemented protocols. This will reduce the redundant paths of dissemination,
and result in saving in bandwidth and dissemination time.

Probabilistic routing is another protocol, based on the same concept as epi-
demic routing but with an introduced probability. I have argued that this con-
cept of probability in propagating the metadata elements can give more efficient
protocols, this concept is also known from reduction techniques for broadcast
storms.

The semantic protocol has shown to be giving a group high priority, however
our test has not revealed any performance gains in the global dissemination.
There needs to be done more tests in larger and on more realistic emulators to
show if this concept is performing better than the standard nongroup approach.
Also scenarios more tailored to the semantic protocol runned in on NEMAN
should give interesting results. If so, dynamic creation of the groups would be
interesting to give a more efficient selection of the group members with respect
to the global dissemination. By selecting the nodes that are in key positions in
the topology, the overlay network would always be optimal to serve the global
dissemination. The overlay network can be constructed upon calculation done
over the topology known from the routing daemon. Which positions in the
topology that are key to efficiency when doing dissemination, has to be studied.
This topology aware semantic synchronization is done both by the DENS overlay
network, by distributed selection of the partition representative, and mentioned
in the broadcast storm paper, when it selects its gateways and heads.

As specified in the performance requirements both the search time and 100%
dissemination are important aspects of the information sharing concept. How-
ever, these requirements will require that all metadata is located on all nodes.
The bandwidth used to disseminate the metadata to all nodes is substantial, to
lower this bandwidth usage the requirements have to change. We could see a
shift so that the search time could be “as low as possible” at the same time as an
optimal dissemination rate is found. The wanted effect is that not all nodes are
required to have all metadata if the search time is low. The bandwidth savings
will be substantial if the proportional searches for metadata is lower than the
creation of metadata.

References

[1] “Apache log4j 1.2 - log4j 1.2,” Apache. [Online]. Available: http:
//logging.apache.org/log4j/1.2/index.html

[2] T. H. Clausen, Optimized Link State Routing Protocol (OLSR), The Inter-
net Society, Network Working Group, the official RFC for olsr, rfc3626.

[3] A. Datta, Autonomous Gossiping: A Self-Organizing Epidemic Algorithm
for Selective Information Dissemination in Wireless Mobile Ad-Hoc
Networks, 2004. [Online]. Available: http://www.springerlink.com/
content/rt1jlbvd1x98xj74

[4] O. V. Drugan, T. Plagemann, and E. Munthe-Kaas, “Predicting time in-
tervals forresource availability in manets,” in SUTC ’06: Proceedings of
the IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing - Vol 2 - Workshops. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 32–37.

[5] R. A. Elmasri and S. B. Navathe, Fundamentals of Database Systems, fifth
edition, M. Goldstein, Ed. Addison-Wesley Longman Publishing Co., Inc.,
2007.

[6] L. M. Feeney, “A taxonomy for routing protocols in mobile ad
hoc networks, Tech. Rep. T99–07, 1, 1999. [Online]. Available:
citeseer.ist.psu.edu/feeney99taxonomy.html

[7] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Pat-
terns. O’Reilly, October 2004.

[8] K. A. Harras, Delay Tolerant Mobile Networks (DTMNs): Controlled
Flooding in Sparse Mobile Networks, 2005. [Online]. Available: http:
//www.springerlink.com/content/pgeg51q68nj3fyhe

[9] J. Hassan and S. Jha, “Optimising expanding ring search for multi-hop
wireless networks,” Global Telecommunications Conference, 2004. GLOBE-
COM ’04. IEEE, vol. 2, pp. 1061–1065 Vol.2, 12 2004.

[10] ——, “Performance analysis of expanding ring search for multi-hop wire-
less networks,” Vehicu Technology Conference, 2004. VTC2004-Fall. 2004
IEEE 60th, vol. 5, pp. 3615–3619 Vol. 5, 26-29 Sept. 2004.

[11] “Part 11: Wireless lan medium access control (mac) and physical layer
(phy) specifications,” IEEE, 1997, the 802.11 standard.

119

120 REFERENCES

[12] A. Lindgren, A. Doria, and O. Scheln, “Probabilistic routing in
intermittently connected networks,” 2003. [Online]. Available: citeseer.ist.
psu.edu/lindgren03probabilistic.html

[13] P. M. and P. T., “Neman: a network emulator for mobile ad-hoc networks,”
6 2005.

[14] “Design: Middleware for connectivity and information sharing, de-
sign of the midas data space,” MIDAS, 1 2007. [Online]. Avail-
able: https://project.sintef.no/eRoomReq/Files/ecy/MIDAS/0 37a6c/
D2%5B1%5D.1 AnnexII postValladolid.doc

[15] “Midas offical website,” MIDAS, 9 2007. [Online]. Available: http:
//www.ist-midas.org/

[16] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in MobiCom ’99: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and
networking. New York, NY, USA: ACM, 1999, pp. 151–162.

[17] olsr.org, 3 2008. [Online]. Available: http://www.olsr.org/

[18] C. E. Perkins, Ad hoc On-Demand Distance Vector (AODV) Routing,
The Internet Society, Network Working Group, the official RFC for aodv,
rfc3561.

[19] T. Plagemann, K. S. Skjelsvik, M. Puzar, A. Johannessen, O. Drugan,
V. Goebel, and E. Munthe-Kaas, “Cross-layer overlay synchronization in
sparse manets,” in Proceedings of the 5th International ISCRAM Confer-
ence - Washington, DC, USA, May 2008.

[20] N. Sanderson, Metadata Management for Ad-Hoc InfoWare - A Rescue
and Emergency Use Case for Mobile Ad-Hoc Scenarios. Springer Berlin /
Heidelberg, 11 2005, vol. 3761/2005.

[21] K. Skjelsvik, “Distributed event notification for mobile ad hoc networks,”
Distributed Systems Online, IEEE , vol.5, no.8, pp. 2-2, 08 2004.

[22] M. M. B. Tariq, M. Ammar, and E. Zegura, “Message ferry route design for
sparse ad hoc networks with mobile nodes,” in MobiHoc ’06: Proceedings
of the seventh ACM international symposium on Mobile ad hoc networking
and computing. New York, NY, USA: ACM Press, 2006, pp. 37–48.

[23] “Ns2 documentation,” UC Berkeley, LBL, USC/ISI, and Xerox PARC, 10
2007. [Online]. Available: http://www.isi.edu/nsnam/ns/doc/

[24] “Nam: Network animator,” University of Southern California’s Information
Sciences Institute (ISI), 4 2008. [Online]. Available: http://www.isi.edu/
nsnam/nam/

[25] A. Vahdat, “Epidemic routing for partially-connected ad hoc networks,”
Duke Technical Report CS-2000-06, 2000.

REFERENCES 121

[26] H. Young-Bae, Ko.; Nitin, “Location aided routing in mobile ad hoc
networks,” Wireless Networks, vol. 6, no. 4, pp. 307–321, Sep 2000. [Online].
Available: http://www.springerlink.com/content/t074q3x1j7972u52

[27] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data
delivery in sparse mobile ad hoc networks,” in MobiHoc ’04: Proceedings
of the 5th ACM international symposium on Mobile ad hoc networking and
computing. New York, NY, USA: ACM Press, 2004, pp. 187–198.

122 REFERENCES

Appendix A

Cd content

This chapter describes the content of the cd. It contains the scripts used to set
up the test enviroment when running my experiments. In addition is all source
code added both for the MIDAS project and the implementation of the DENS
protocol.

A.1 /implementasjon

This folder contains both the MIDAS implementation and the DENS implemen-
tation.

A.1.1 /implementasjon/midas

What lies in the midas catalog is the MDS implementation as described in this
thesis. The MDS implementation has been developed further after this branch
has been taken out, which was done the 31. january 2008, some modifications
is done by me with respect to this thesis. Includeing removal of the DS hook
in GMDM to only have the GMDM protocols runing. It is built with maven
which gives the catalog structure and the utility used to build it. To build the
entire code,

1. install and configure maven, can be found on http://maven.apache.org/

2. run the install.sh script in the deps catalog.

3. run mvn eclipse:eclipse to generate project files for the eclipse ide.

4. run mvn test to run the entire test suite.

5. run men assembly:assembly to generate the jar file used on the nodes. The
jar file is build and packaged in the target folder.

A.1.2 /implementasjon/infoware-dens

The DENS implementation is also built with maven, follow the above instruc-
tions to install and build. It requires Java 6.

123

124 APPENDIX A. CD CONTENT

A.2 /test-setup

The test-setup catalog is all the scripts used to run the tests. The route catalog
contains the following scripts;

• read. Made to read the status file once a second

• run.sh. Starts one node on the given tap, with the given parameters to
the VM.

• run.nodes.sh. Starts multiple nodes from first parametert to last, third pa-
rameter is used to spesify protocol. ./run.nodes.sh 1 20 broadcast starts
the broadcast protocol on tap 1 to 20 in giving the nodes correct IP ad-
dresses

• run tests.sh Takes the following parameters “number of nodes” “proto-
col” “name of test”, and runns all tests checking that the olsr enviroment
is ready, loging all status files and tcpdump of tap0 (getting all commu-
nication in the emulator) and upon ending will the entire folder, named
according to the ¡name of test¿, be made into a tarball ready to be down-
loaded for post prosessing.

• tunnel.pl tunneling the controlpackets from the GUI to the nodes

A.2.1 /test-setup/scenarios

The scenarios are located in this catalog. They are ready to run in the iemul
GUI.

A.3 /script

This catalog contains all scripts used to parse status files into gnuplot files
preserving all parameters. Also scripts for generating the graphs displayed in
the thesis from the gnuplot files are contained in this catalog. Scripts are done
in both ruby and bash script.

Appendix B

Source code

In this appendix I list some of the source code that might be of interest without
opening the entire source code.

B.1 Chain manager

1 package midas .mw.mds .gmdm. chainManager ;

3 import java . u t i l . ArrayList ;
import java . u t i l . L i s t ;

5 import java . u t i l .Map;

7 import midas .mw.mds . l ogg ing . MdsLogger ;

9
/∗∗

11 ∗ Chaining manager . Planed to be used in p ro t oco l development
∗

13 ∗ Tought to be used in t h i s way
∗

15 ∗ − over load the manager with another c l a s s which does the adds
o f the e lements in the cons t ruc to r

∗ − the new c l a s s i s c a l l i n g the runChain
17 ∗ − the new c l a s s i s l i s t e n i n g on boutgh t end and abor ted and does

the ac t i ons requ i red when each o f them i s c a l l e d
∗

19 ∗ − the con f i gu ra t i on array i s only f o r i n t e r na l use , and every
new c l a s s ex tend ing from t h i s must make i t s own pro toco l

∗ − the map con f i gu ra t i on i s intended as i n t e r s t ep communication
and s e r v i c e l o c a t o r

21 ∗
∗ @author a s l a k

23 ∗
∗/

25 public class ChainManager {

27 ChainManagerEndInterface end = null ;
int cur rentPo int = 0 ;

29 private L i s t chainElements = null ;

31
public ChainManager ()

125

126 APPENDIX B. SOURCE CODE

33 {
chainElements = new ArrayList () ;

35 }

37 /∗∗
∗ Runing a chan of e lements

39 ∗ @param con f i gu ra t i on A map of con f i gura t ion , any c l a s s which
ex tends t h i s must

∗ have there own p ro t o c l on how t h i s i s popu la ted
41 ∗ @throws ChainException

∗/
43 public void runChain (Map con f i gu r a t i on)

throws ChainException
45 {

47 for (int i = 0 ; i < chainElements . s i z e () ; i++)
{

49 currentPo int = i ;
try {

51 ((ChainElement) chainElements . get (i)) . run (c on f i gu r a t i on) ;
}catch (ChainAbortedException e)

53 {
MdsLogger . i n f o (”Chain stoped due to an abort ion ; ” + e .

getMessage () , this) ;
55 return ;

}catch (ChainException e) {
57 throw new ChainException (”Trouble with the ”+ i +” chain

element ” , e) ;
}

59
}

61
end (c on f i gu r a t i on) ;

63
}

65
/∗∗

67 ∗ f o r s e t t i n g up the chain , one can add a chain element , i t w i l l
be added to the end o f the chain

∗ @param element the element to add
69 ∗ @throws ChainException

∗/
71 public void add (ChainElement element)

throws ChainException
73 {

chainElements . add (element) ;
75 }

77 /∗∗
∗ f o r g e t t i n g the current chaine lement

79 ∗ @return the current chian element
∗ @throws ChainException

81 ∗/
public ChainElement getCurrentPoint ()

83 throws ChainException
{

85 i f (cur rentPo int > chainElements . s i z e ())
throw new ChainException (”Current po int not a c t i v e or added” ,

null) ;
87 return (ChainElement) chainElements . get (cur rentPo int) ;

}
89

B.1. CHAIN MANAGER 127

/∗∗
91 ∗ g e t t i n g the s t a r t i n g po in t

∗ @return the s t a r t i n g po in t
93 ∗ @throws ChainException

∗/
95 public ChainElement ge tS ta r tPo in t ()

throws ChainException
97 {

i f (chainElements . s i z e () == 0)
99 throw new ChainException (”No chain e lements added” , null) ;

101 return (ChainElement) chainElements . get (cur rentPo int) ;
}

103
/∗∗

105 ∗ For when ever a chain i s abor ted
∗

107 ∗ @param message a exp l a ina to ry message
∗ @param cause i f a excep t ion i s the reason , e l s e nu l l

109 ∗ @throws ChainException
∗/

111 public void abort (S t r ing message , Exception cause)
throws ChainException

113 {
throw new ChainException (message , cause) ;

115 }

117 /∗∗
∗ s e t t i n g the end ac t ion

119 ∗ @param end
∗/

121 public void setEnd (ChainManagerEndInterface end)
{

123 this . end = end ;
}

125
/∗∗

127 ∗ Function which i s run when ever a l l the e lements are done
s u c c s e s f u l l y

∗ @param con f i gu ra t i on the con f i gu ra t i on as a s e r v i c e l o c a t o r f o r
a l l e the e lements

129 ∗ @throws ChainException
∗/

131 public void end (Map con f i gu r a t i on)
throws ChainException

133 {
i f (end == null)

135 throw new ChainException (”End l i s t e n e r not s p e c i f i e d ” , null) ;
else

137 end . end (c on f i gu r a t i on) ;

139 }

141

143
}

Listing B.1: The ChainManager is made to ensure sequential execution of the
steps.

package midas .mw.mds .gmdm. chainManager ;

128 APPENDIX B. SOURCE CODE

2
import java . u t i l .Map;

4

6

8 abstract public class ChainElement {

10
/∗∗

12 ∗ f unc t i on to s t a r t t h i s chain element , c a l l e d when i t i s t h i s
e lements turn

∗ @param con f i gu ra t i on con f i gu ra t i on passed on from prev ious
chain element

14 ∗ @throws ChainException
∗/

16 public void run (Map con f i gu r a t i on)
throws ChainException , ChainAbortedException

18 {
throw new ChainException (”not implemented element ” , null) ;

20 }

22
/∗∗

24 ∗ c a l l e d when a element wants to abor t the ho l e proses s
∗ t h i s g i v e s every element a ve to

26 ∗ @throws ChainAbortedException on throwing th i s , the manager i s
to s top the ho l e chain and c a l l i t s own abor t method

∗/
28 public void abort (S t r ing reason , Exception cause)

throws ChainAbortedException
30 {

throw new ChainAbortedException (reason , cause) ;
32 }

}

Listing B.2: The ChainElement is the abstract class which must be subclassed
for a element, such as a protocol step, to be used in the ChainManager.

B.2 Request handler

I will now list the RequestHandler, and the SyncManagerController which is
one of the components using the RequestHandler extensively.

1 package midas .mw.mds ;

3 import java . u t i l . Vector ;

5 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
import midas .mw.mds . i n t e r n a l i n t e r f a c e s . MidasMessage ;

7 import midas .mw.mds . l ogg ing . MdsLogger ;

9 /∗∗
∗ Class f o r easy use o f message pass ing

11 ∗
∗ in tended use :

13 ∗
∗ cons t ruc t new ob j ec t , −−> cons t ruc to r i s c a l l e d and i n i t i a t e d

15 ∗ s t a r t the thread , by invok ing . s t a r t () −−> run i s c a l l e d and
done , from here on the handler l i v e s u n t i l i t i s d e r e g i s t e r e d

B.2. REQUEST HANDLER 129

from the wa i t i n g f o r response u sua l l y done at the end or some
abor t method

∗
17 ∗ pro toco l i s an extended c l a s s o f r e que s t hand ler

∗
19 ∗ pro toco l = new Pro toco lCon t ro l l e r (mds) ; // s t a r t s up the handler

∗
21 ∗ pro toco l . onReceivedMessage (message) ; // passes a new message to

the handler
∗ pro toco l . s t a r t () ; // s t a r t s the p ro t o co l which runs upon the

handler
23 ∗

∗ when a new messages a r r i v e s to the handler
25 ∗ pro toco l . onReceivedMessage (message) ; // pass ing on the message

to the handler w i l l invoke the run method
∗

27 ∗ @author a s l a k
∗

29 ∗/
public abstract class RequestHandler extends Thread implements

MdsCrtCallBackAdapter {
31

protected St r ing r eque s t Id = ”” ;
33 protected St r ing toComponent = ”” ;

private Vector messages = null ;
35 protected MdsIn t e rna l In t e r f a c e mds ;

private boolean r e g i s t e r e d = fa l se ;
37

/∗∗
39 ∗ Used by extended c l a s s e s to implement o ther then standard

pa t t e rns o f use .
∗

41 ∗ WARN: when used the user c l a s s i s r e s p on s i b l e f o r the proper
se tup o f the handler and fo r any er ror s . f o r normal use use
other cons t ruc to r

∗ the proper ty s i s
43 ∗

∗ < l i >reques t Id </ l i >

45 ∗ < l i >toComponent</ l i >

∗ < l i >r e g i s t r a t i o n </ l i >

47 ∗
∗ @param mds

49 ∗/
public RequestHandler (Mds In t e rna l In t e r f a c e mds)

51 {
this .mds = mds ;

53 messages = new Vector () ;
}

55
/∗∗

57 ∗ Constructor intended to use l o c a l l y , i . e . when a reque s t i s
s t a r t e d at t h i s node

∗ @param mds Pointer to the running MDS component
59 ∗ @param reque s t I d one can de f i ne the reques t Id , i t has to be

uniqe i n s i d e t h i s subcomponent
∗ @param toComponent the component to sendt to ,

61 ∗/
public RequestHandler (Mds In t e rna l In t e r f a c e mds , S t r ing reques t Id ,

S t r ing toComponent) {
63 //TODO remove tocompoennt

super () ;
65

130 APPENDIX B. SOURCE CODE

this .mds = mds ;
67 this . toComponent = toComponent ;

this . r eque s t Id = reque s t Id ;
69 messages = new Vector () ;

71 // r e g i s t r a t i n g the reque s thand l e r at the mds , which i s rou t ing
mds . wait ingForResponse (this) ;

73 this . r e g i s t e r e d = true ;
}

75
/∗∗

77 ∗ Send the message to the r e c e i v e r s p e c i f i e d in the message .
∗

79 ∗ The reque s t ID i s appended to the message here , hence t h i s do
not needed to be done be f o r e

∗
81 ∗ @param message

∗/
83 public void send (AbstractMdsMessage message)

{
85 message . setRequest Id (r eque s t Id) ;

//MdsLogger . debug (” sending message ”+ message . g e tC la s s () .
getName ()+ ” , requId : ” + message . ge tReques t Id () , t h i s) ;

87 mds . getCrt () . send (message) ;
}

89
/∗∗

91 ∗ Blocking rece ive , i t r e turns when a message with the r i g h t
r e que s t id and de s t i na t i on component i s r e ce i v ed

∗
93 ∗ @return The message rece i v ed

∗ @throws MdsTimeoutException Thrown upon a timeout , cu r r en t l y a
f i x e d va lue o f 10 sec

95 ∗ @throws MdsClientException I f the MDS Cl i en t in form of the
Request hand ler i s having problems

∗/
97 public synchronized MidasMessage r e c e i v e (int t imeoutSeconds)

throws MdsTimeoutException , MdsClientException
99 {

long startTime = System . cur r entT imeMi l l i s () ;
101 while (messages . s i z e () == 0)

{
103 try {

// the time out
105 wait (t imeoutSeconds ∗ 1000) ;

// check ing i f t h i s i s the timout or j u s t a bogus no t i f y
107 //TODO san i t y check

i f ((startTime +(timeoutSeconds ∗1000)) <= System .
cur r entT imeMi l l i s ())

109 throw new MdsTimeoutException (”Timeout occured ”+
timeoutSeconds + ” sec ” , null) ;

} catch (Inter ruptedExcept ion e) {
111 throw new MdsClientException (”Unasked f o r i n t e rup t ! ” , null)

;
}

113 }

115
/∗

117 ∗ Remove System . out . p r i n t l n () . . . but t h i s message i s maybe not
so important anyway

System . out . p r i n t l n(”+++ reading r e c e i v e l i s t ”) ;

B.2. REQUEST HANDLER 131

119 ∗/
i f (messages . s i z e () == 0)

121 throw new MdsClientException (”Read be f o r e update on receve
message” , null) ;

123 MidasMessage r e tu r = (MidasMessage) messages . get (0) ;
messages . remove (0) ;

125 return r e tu r ;
}

127
public synchronized MidasMessage r e c e i v e () throws

MdsTimeoutException , MdsClientException {
129 return this . r e c e i v e (10) ;

}
131

/∗∗
133 ∗ S tar t the thread

∗/
135 public abstract void run () ;

137
/∗∗

139 ∗ Method c a l l e d by the rou t ing au t ho r i t y . This message i s
d e l i v e r e d to

∗ the r e c e i v e queue . I f the r e c e i v e i s cu r r en t l y b lock ing , i t
w i l l re turn a f t e r the r e c e i v e

141 ∗ b u f f e r i s updated
∗/

143 public synchronized void onReceivedMessage (MidasMessage message)
{

messages . add (message) ;
145 MdsLogger . debug (” [” +this . hashCode () + ”] r e c e i v ed a message ”

+ message . ge tC la s s () . getName () + ” , ” + message .
getRequestId () , this) ;

n o t i f yA l l () ;
147 }

149 /∗∗
∗ The component t h i s hander i s de s t ined to

151 ∗ TODO remove
∗ @return

153 ∗/
public St r ing getToComponent ()

155 {
return toComponent ;

157 }

159
/∗∗

161 ∗ Get the reque s t id o f t h i s r eque s thand l e r
∗ @return

163 ∗/
public St r ing getRequestId ()

165 {
return r eque s t Id ;

167 }

169 /∗∗
∗ Set the r eque s t hand ler

171 ∗ use on response to a reque s t
∗ @param reque s t I d

173 ∗/

132 APPENDIX B. SOURCE CODE

public void setRequest Id (S t r ing r eque s t Id) {
175 d e r e g i s t e r () ;

this . r eque s t Id = reque s t Id ;
177

r e g i s t e r () ;
179 }

181 /∗∗
∗ Reg i s t e r the handler

183 ∗/
public void r e g i s t e r ()

185 {
mds . wait ingForResponse (this) ;

187 r e g i s t e r e d = true ;
}

189
/∗∗

191 ∗ Dereg i s t e r handler from queue
∗/

193 public void d e r e g i s t e r () {
this . r e g i s t e r e d = fa l se ;

195 mds . notWaitingAnyMore (this) ;
}

197
/∗∗

199 ∗ Check whether handler i s s t i l l r e g i s t e r e d
∗ @return true i f r e g i s t e r ed , f a l s e i f not

201 ∗/
public boolean i sR e g i s t e r e d () {

203 return r e g i s t e r e d ;
}

205
}

Listing B.3: The RequestHandler is made to make the middleware developer’s
life easier by transparently useing the asynchronous network as a synchronous
one. In addition the RequestHandler will provide a session concept for the
application to use.

package midas .mw.mds .gmdm. SyncManager ;
2

import java . u t i l . ArrayList ;
4 import java . u t i l . HashMap ;

import java . u t i l .Map;
6 import java . u t i l . Vector ;

8 import midas .mw.mds . AbstractMdsMessage ;
import midas .mw.mds . MdsTimeoutException ;

10 import midas .mw.mds . RequestHandler ;
import midas .mw.mds . ds .MdsDs ;

12 import midas .mw.mds .gmdm.GmdmMessage ;
import midas .mw.mds .gmdm. GmdmSynchronize ;

14 import midas .mw.mds .gmdm. chainManager . ChainAbortedException ;
import midas .mw.mds .gmdm. chainManager . ChainException ;

16 import midas .mw.mds .gmdm. chainManager . ChainManager ;
import midas .mw.mds .gmdm. chainManager . ChainManagerEndInterface ;

18 import midas .mw.mds .gmdm. except ion . GmdmException ;
import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;

20 import midas .mw.mds . l ogg ing . MdsLogger ;

22 public abstract class SyncManagerControl ler

B.2. REQUEST HANDLER 133

extends RequestHandler
24 implements SyncManagerInterface , ChainManagerEndInterface {

26 protected MdsIn t e rna l In t e r f a c e mds ;

28
protected Map con f i gu r a t i on = new HashMap() ;

30 protected ChainManager chain ;

32 protected boolean i sResponseOnly = fa l se ;

34 public stat ic ArrayList syncedWith = new ArrayList () ;
public stat ic ArrayList respondedTo = new ArrayList () ;

36
public SyncManagerControl ler (Mds In t e rna l In t e r f a c e mds) {

38 super (mds) ;

40

42 this .mds = mds ;
toComponent = AbstractMdsMessage .GMDM;

44
chain = new ChainManager () ;

46 setRequest Id (S t r ing . valueOf (System . cur r entT imeMi l l i s ()) +
hashCode ()) ;

48 c on f i gu r a t i on . put (”node” , this) ;

50 GmdmSynchronize sync =null ;
try {

52 sync = new GmdmSynchronize (mds) ;
} catch (GmdmException e1) {

54 MdsLogger . e r r o r (” could not i n i t i a t e the p ro to co l : ” + e1 .
getMessage () , this) ;

MdsLogger . e r r o r (e1 , this) ;
56

}
58 c on f i gu r a t i on . put (” sync” , sync) ;

c on f i gu r a t i on . put (”mds” , mds) ;
60

chain . setEnd (this) ;
62

}
64

/∗∗
66 ∗ used to ge t t h i s p ro t o co l runing as a thread , c a l l e d only by

s t a r t
∗

68 ∗ pre f eard way to ge t the p ro t o co l running
∗/

70 public void run ()
{

72 try {
MdsLogger . i n f o (”Chain s t a r t ed ” , this) ;

74
runChain () ;

76 } catch (ChainException e) {
MdsLogger . e r r o r (e , this) ;

78 }
}

80
/∗∗

134 APPENDIX B. SOURCE CODE

82 ∗ runing the p ro t o co l b e s t runed by invoke ing o f the s t a r t ()
method , to make a thread

∗ @throws ChainException
84 ∗/

public void runChain ()
86 throws ChainException

{
88 MdsLogger . debug (”Running p ro to co l ” + getC la s s () . getName () + ”

i s re sponse : ” + isResponseOnly , this) ;

90 this . c on f i gu r a t i on . put (” p r o t o c o l l I d ” , getRequestId ()) ;
try {

92 chain . runChain (this . c on f i gu r a t i on) ;
} catch (ChainException e) {

94 St r ing nodeName = (St r ing) c on f i gu r a t i on . get (”toNode”) ;
i f (e . getCause () instanceof MdsTimeoutException | | (e .

getCause () != null && e . getCause () . getCause () instanceof

MdsTimeoutException))
96 {

MdsLogger . i n f o (”Chain (with : ”+ nodeName + ” , ” +
getRequestId () + ”) aborted by TimeOutException : ” + e
. getCause () . getMessage () + ” , ” + nodeName + ” r eq e s t I d
: ” + getRequestId () + ” numberOfElementGained : ” +
con f i gu r a t i on . get (”addedMetadata”) , this) ;

98
} else i f (e . getCause () instanceof ChainAbortedException | | (e .

getCause () != null && e . getCause () . getCause () instanceof

ChainAbortedException))
100 {

MdsLogger . i n f o (”Chain (with : ”+ nodeName + ” , ” +
getRequestId () + ”) aborted by step with message : ” + e .
getMessage () + ” >> ”+ e . getCause () . getMessage () + ” , ”
+ nodeName + ” r eq e s t I d : ” + getRequestId () + ”

numberOfElementGained : ” + con f i gu r a t i on . get (”
addedMetadata”) , this) ;

102 }
else {

104 MdsLogger . e r r o r (”Chain (with : ”+ nodeName + ” , ” +
getRequestId () +”) stoped unexpectedly , ” + e .
getMessage () + ” , ” + nodeName + ” r eq e s t I d : ” +
getRequestId () + ” numberOfElementGained : ” +
con f i gu r a t i on . get (”addedMetadata”) , this) ;

MdsLogger . e r r o r (e , this) ;
106 }

108 }
}

110
/∗∗

112 ∗ c a l l e d by any o f the p r o t o c o l l e lements f o r g e t t i n g the
p ro t o co l to end

∗ @param message
114 ∗ @param cause

∗ @throws ChainException
116 ∗/

public void abort (S t r ing message , Exception cause) throws

ChainException {
118 throw new ChainException (”not in use ” , null) ;

}
120

/∗∗

B.2. REQUEST HANDLER 135

122 ∗ This i s the standard implementation sync with every one in the
neigbourhood l i s t .

∗ using the {@link #syncWith (S t r ing)} f unc t i on fo r every node
124 ∗

∗ Overload i f o ther ac t ion then d e f u l t e i s required , f o r example
{@link BroadCastSyncControl ler#s tar tSync () }

126 ∗
∗ @see SyncManagerInterface#star tSync ()

128 ∗/
public void s tar tSync ()

130 throws SyncManagerException
{

132 Vector nodes = mds . getCrt () . getNeighbourhood () ;
MdsLogger . i n f o (” s t a r t ed sync ing with ne ighbors ; ” + nodes .

t oS t r i ng () + ” nodes ” , this) ;
134 for (int i = 0 ; i < nodes . s i z e () ; i++)

mds . getGmdm() . getSyncManager () . syncWith ((S t r ing) nodes . get (i))
;

136 }

138 /∗∗
∗ c a l l e d when the p ro t o co l i s done

140 ∗ <p/>
∗ must c a l l {@link MdsDs#startLazySynch (Vector)} with the node

tha t i s synced
142 ∗ <p/>

∗ can f ind the node wich was synced with v ia con f i gu ra t i on . ge t (”
toNode ”)

144 ∗ @see #respondTo (GmdmMessage)
∗ @see #syncWith (S t r ing)

146 ∗/
public void end (Map con f i gu r a t i on)

148 {

150 d e r e g i s t e r () ;

152 i f (c on f i gu r a t i on == null)
{

154
return ;

156 }

158 St r ing syncedNode = (St r ing) c on f i gu r a t i on . get (”toNode”) ;

160
i f (! isResponseOnly)

162 MdsLogger . i n f o (”Sync p ro s e s s i s f i n i s h ed , ” + syncedNode + ”
r eq e s t I d : ” + getRequestId () + ” numberOfElementGained : ” +
(In t eg e r) c on f i gu r a t i on . get (”addedMetadata”) , this) ;

else

164 MdsLogger . i n f o (”Sync response i s f i n i s h ed , ” + syncedNode + ”
r eq e s t I d : ” + getRequestId () + ” numberOfElementGained : ”

+ (In t eg e r) c on f i gu r a t i on . get (”addedMetadata”) , this) ;

166
// i f the toNode i s se t , then t h i s i s a p r o t o c o l l wich do sync

some th ing
168 // i f not s e t t h i s i s t y p i c a l l y a broadcas t or one way sync , no

r e s u l t s

170
i f (syncedNode != null)

136 APPENDIX B. SOURCE CODE

172 {
//removing to only see the sm, p ro t o co l

174 /∗
Vector node = new Vector () ;

176 node . add (syncedNode) ;
mds . getDs () . s tartLazySynch (node) ;

178 ∗/
//TODO t h i s has to become more e l e gan t

180
try {

182 i f (c on f i gu r a t i on . get (”addedMetadata”) != null && ((In t eg e r)
c on f i gu r a t i on . get (”addedMetadata”)) . intValue () > 0)

{
184 MdsLogger . i n f o (” s t a r t i n g a more sync to propagate new

i n f o r from ” + syncedNode + ” got ” + ((In t eg e r)
c on f i gu r a t i on . get (”addedMetadata”)) . intValue () + ”
elements ” , this) ;

mds . getGmdm() . newMetadataReceived (syncedNode) ;
186 }

} catch (GmdmException e) {
188 MdsLogger . e r r o r (e , this) ;

}
190

}
192

}
194

/∗∗
196 ∗ needs to s e t con f i gu ra t i on [” toNode ”] to co r r e c t va lue

∗
198 ∗ @see super {@link #respondTo (GmdmMessage)}

∗/
200 public abstract void respondTo (GmdmMessage message) throws

SyncManagerException ;

202 /∗∗
∗ needs to s e t con f i gu ra t i on [” toNode ”] to co r r e c t va lue

204 ∗
∗ @see super {@link #syncWith (S t r ing)}

206 ∗/
public abstract void syncWith (St r ing nodeId) throws

SyncManagerException ;
208

/∗∗
210 ∗ @see super {@link #triggerNewMetadata (S t r ing)}

∗/
212 public abstract void triggerNewMetadata (S t r ing fromNodeId) throws

SyncManagerException ;

214 }

Listing B.4: The SyncManagerController is used to build synchronization
protocols. As one can see the interface functions are abstract and need to
be implemented by subclasses. Much of the class handles logging.

B.3 RollePlayer

package midas . apps . s imu la t i on ;
2

B.3. ROLLEPLAYER 137

import java . u t i l . ArrayList ;
4 import java . u t i l .Map;

import java . u t i l . TreeMap ;
6 import java . u t i l . Vector ;

8 import midas . apps . s imu la t i on . a c t i on s . Action ;
import midas . apps . s imu la t i on . a c t i on s . A l l o ca t eTab l eLoca l l y ;

10 import midas . apps . s imu la t i on . a c t i on s . MakeNewTableAction ;
import midas . apps . s imu la t i on . a c t i on s . RemoteAllocate ;

12 import midas . apps . s imu la t i on . a c t i on s .WhatDoGmdmKnowAction ;
import midas . apps . s imu la t i on . a c t i on s . WhatsInsideTable ;

14 import midas .mw.MwImpl ;
import midas .mw. i n t e r f a c e s .Mw;

16 import midas .mw.mds . MdsCrtAdapter ;
import midas .mw.mds . MdsCrtAdapterInterface ;

18 import midas .mw.mds . MdsCrtCallBackAdapter ;
import midas .mw.mds . MidasTextMessage ;

20 import midas .mw.mds . XmlNode ;
import midas .mw.mds . XmlParser ;

22 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . MidasMessage ;
import midas .mw.mds . l ogg ing . MdsLogger ;

24 import midas .mw.mds . l ogg ing . S t a tu sF i l e ;
import midas .mw.mds . l ogg ing . S ta tusF i l eExcept ion ;

26
public class Rol l eP layer implements MdsCrtCallBackAdapter {

28
public long startTime ;

30

32 private ArrayList preformedActions = new ArrayList () ;
Map actionMap = new TreeMap () ;

34
Mw middleware ;

36 St r ing nodeName ;

38
stat ic Action [] a c t i on s = {

40 new MakeNewTableAction () ,
new WhatDoGmdmKnowAction() ,

42 new Al loca t eTab l eLoca l l y () ,
new MakeNewTableAction () ,

44 new RemoteAllocate () ,
new WhatsInsideTable ()

46 } ;
/∗ new Inser tAct ion () ,

48 new InsertAnotherAct ion () ,
new UpdateAction ()

50 ∗/

52
/∗∗

54 ∗ r o l l e p l a y e r i s a c l a s s which p lay s out some ac t i ons on a
message i n i t a t e d bases .

∗
56 ∗ That i s when a message send from the iemul i s r e ce i v ed at the

r o l l e p l a y e r the r o l l e p l a y e r w i l l check i t s
∗ con f i gu ra t i on and see f o r any ac t i ons to execute at t h i s

marker .
58 ∗

∗ @param nodeName name of the node
60 ∗ @param mapper marker to ac t i ons <St r ing : marker name , Action :

marker act ion>

138 APPENDIX B. SOURCE CODE

∗
62 ∗ @see Action

∗/
64 public Rol l eP layer (S t r ing nodeName , Map mapper) {

MdsLogger . setName (nodeName) ;
66 MdsLogger . i n f o (” s t a r t i n g a Ro l l eP layer on ” + nodeName , this) ;

actionMap = mapper ;
68

S t a tu sF i l e . s i n g l e t on = new S ta tu sF i l e (nodeName + ” . s t a tu s ”) ;
70 try {

S ta tu sF i l e . s i n g l e t on . s e tS ta tu sPo in t (” act ionsPre formed ” ,
preformedActions , fa l se) ;

72 } catch (S ta tusF i l eExcept ion e) {
MdsLogger . e r r o r (e , this) ;

74 }
/∗

76 I t e r a t o r keyActionMap = actionMap . keySet () . i t e r a t o r () ;
wh i l e (keyActionMap . hasNext ())

78 {
St r ing marker = (S t r ing) keyActionMap . next () ;

80 System . out . p r i n t l n (”− ’” + marker + ” ’”) ;
System . out . p r i n t l n (” −> ’” + actionMap . ge t (marker) . g e tC la s s ()

. getName ()) ;
82 }

∗/
84 long mi l i s = System . cur r entT imeMi l l i s () ;

MwImpl mw = new MwImpl(nodeName) ;
86 mw. mwStart (mw) ;

m i l i s = System . cur r entT imeMi l l i s () − mi l i s ;
88 MdsLogger . e r r o r (”Middleware ready in ” + m i l i s + ” m i l i s e c s ” ,

this) ;

90
middleware = mw;

92 /∗
∗ f o r r e c e i v e i n g the messages form the sim

94 ∗/
MdsCrtAdapterInterface c r t = new MdsCrtAdapter (nodeName , ”2006”

, null) ;
96 c r t . s t a r t (mw) ;

c r t . r e g i s t e rCa l lBack (this) ;
98

this . nodeName = nodeName ;
100

102
}

104

106 public stat ic void main (St r ing [] a rgs)
{

108
Map markerToActionMapper = new TreeMap () ;

110
St r ing nodeName = args [0] ;

112 MdsLogger . setName (nodeName) ;
XmlNode topNode = XmlParser . parse (” senar i oAct ion . xml”) . item (0) ;

114 Vector markers = topNode . getChi ldren () ;
for (int i = 0 ; i< markers . s i z e () ; i++)

116 {
XmlNode marker = (XmlNode) markers . get (i) ;

118 Vector a f f e c tedNodes = marker . ge tChi ldren () ;

B.3. ROLLEPLAYER 139

120 for (int x = 0 ; x< a f f ec tedNodes . s i z e () ; x++)
{

122 XmlNode node = (XmlNode) a f f e c tedNodes . get (x) ;
i f (node . ge tAt t r ibute (” id ”) . equa l s (nodeName) | | node .

ge tAt t r ibute (” id ”) . s tartsWith (”∗”))
124 {

// ac t ion fo r t h i s node or the a l l node char ∗
126 markerToActionMapper . put (marker . g e tAt t r ibute (” id ”) ,

classFromText (node . ge tAt t r ibute (” ac t i on ”))) ;
MdsLogger . debug (”adding ”+ marker . g e tAt t r ibute (” id ”) + ”

with ob j e c t ” + classFromText (node . ge tAt t r ibute (”
ac t i on ”)) , Thread . currentThread ()) ;

128 }
}

130 }

132 new Rol l eP layer (nodeName , markerToActionMapper) ;

134 }

136
private stat ic Action classFromText (S t r ing a t t r i b u t e) {

138 for (int i = 0 ; i< a c t i on s . l ength ; i++)
{

140 i f (a t t r i b u t e . equa l s (a c t i on s [i] . g e t I d e n t i f y e r ()))
return a c t i on s [i] ;

142 }
return null ;

144 }

146
/∗∗

148 ∗ r e c e i v e i n g the messsages form the net t , or s imu la tor and
execu t ing the co r r e c t

∗ acr t i on .
150 ∗/

public void onReceivedMessage (MidasMessage message) {
152 i f (message instanceof MidasTextMessage)

{
154 MidasTextMessage msg = (MidasTextMessage) message ;

S t r ing marker = new St r ing (msg . getText () . toCharArray ()) ;
156

// s t r i p i n g o f f any \0 at the end wh i l e t h i s makes . e qua l s go
nuts

158 for (int i = 0 ; i < marker . toCharArray () . l ength ; i++)
{

160 i f (marker . charAt (i) == 0)
{

162 marker = marker . sub s t r i ng (0 , i) ;
i = marker . toCharArray () . l ength ;

164 }
}

166

168 Action currentAct ion = (Action) actionMap . get (marker) ;

170 try {
currentAct ion . run (middleware) ;

172 preformedActions . add (currentAct ion) ; // s t a t u s f i l e l o g i n g
MdsLogger . i n f o (”Action found f o r node : ” + nodeName + ”

marker : ’ ” + marker + ” ’ ” , this) ;

140 APPENDIX B. SOURCE CODE

174 }catch (Nul lPo interExcept ion e) {
//MdsLogger . error (e , t h i s) ;

176 MdsLogger . i n f o (”∗No∗ ac t i on found f o r node : ” + nodeName +
” marker : ’ ” + marker + ” ’ ” , this) ;

178 }
catch (Exception e) {

180 MdsLogger . i n f o (”Error with node : ” + nodeName + ” marker : ”
+ marker + ” problem : ” + e . getMessage () , this) ;

MdsLogger . e r r o r (e , this) ;
182 }

} else

184 MdsLogger . warn (”dropping packet ” + message . ge tC la s s () .
getName () , this) ;

}
186

}

Listing B.5: The RollePlayer is the application doing the behaviour in our test
scenarios. As one can see from the onReceivedMessage() any incoming message
will result in running of an action, if the script says so.

B.4 Protocols

In this section all protocol source code is listed. First the protocol controller,
followed by the steps.

B.4.1 SimpleSyncprotocol

1 package midas .mw.mds .gmdm. SyncManager ;

3 import java . u t i l . HashMap ;
import java . u t i l . Vector ;

5
import midas .mw.mds . AbstractMdsMessage ;

7 import midas .mw.mds . MdsCrtCallBackAdapter ;
import midas .mw.mds .gmdm.GmdmMessage ;

9 import midas .mw.mds .gmdm. SyncManager . s t ep s . ReceiveAndHandleView ;
import midas .mw.mds .gmdm. SyncManager . s t ep s . ReceiveCompliment ;

11 import midas .mw.mds .gmdm. SyncManager . s t ep s . ReceiveNeeded ;
import midas .mw.mds .gmdm. SyncManager . s t ep s . SendView ;

13 import midas .mw.mds .gmdm. chainManager . ChainException ;
import midas .mw.mds .gmdm. chainManager . ChainManagerEndInterface ;

15 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
import midas .mw.mds . l ogg ing . MdsLogger ;

17

19 public class S impleSyncProtoco lContro l l e r
extends SyncManagerControl ler

21 implements MdsCrtCallBackAdapter , ChainManagerEndInterface ,
SyncManagerInter face {

23 stat ic int protoco l lCounte r = 0 ;

25

27 /∗∗

B.4. PROTOCOLS 141

∗ Entry po in t f o r a sync , to comply with the {@link
SyncManagerInterface}

29 ∗
∗ the chosen ac t ion must e x p l i c i t be c a l l e d {@link #respondTo (

GmdmMessage)} or {@link #syncWith (S t r ing)}
31 ∗

∗ the
33 ∗

∗ @param mds
35 ∗/

public S impleSyncProtoco lContro l l e r (Mds In t e rna l In t e r f a c e mds)
37 {

super (mds) ;
39 this .mds = mds ;

41 super . toComponent = AbstractMdsMessage .GMDM;

43 MdsLogger . debug (”made sync c o n t r o l l e r ” , this) ;
}

45

47
/∗∗

49 ∗ @see SyncManagerInterface#respondTo (GmdmMessage) ;
∗/

51 public void respondTo (GmdmMessage msg) throws

SyncManagerException {
respondedTo . add (msg . getFromNode ()) ;

53
isResponseOnly = true ;

55 setRequest Id ((S t r ing)msg . getRequestId ()) ;
c on f i gu r a t i on . put (”toNode” , msg . getFromNode ()) ;

57
try {

59 chain . add (new ReceiveAndHandleView ()) ;
chain . add (new ReceiveNeeded ()) ;

61 } catch (ChainException e) {
MdsLogger . e r r o r (e , this) ;

63 throw new SyncManagerException (”Could not cons t ruc t chain
manager” , e) ;

}
65

67 //TODO t h i s cant be r i g h t con f i gu ra t i on = new TreeMap () ;

69

71 MdsLogger . i n f o (” s t a r t ed a response on sync reque s t form ” + msg
. getFromNode () , this) ;

73 s t a r t () ;
}

75
/∗∗

77 ∗ @see SyncManagerInterface#syncWith (S t r ing)
∗/

79 public void syncWith (St r ing toNode) throws SyncManagerException {

81 syncedWith . add (toNode) ;

83 this . toComponent = AbstractMdsMessage .GMDM;

142 APPENDIX B. SOURCE CODE

85
try {

87 chain . add (new SendView ()) ;
chain . add (new ReceiveCompliment ()) ;

89 } catch (ChainException e) {
throw new SyncManagerException (”Could not cons t ruc t chain

manager” , e) ;
91 }

93
//TODO t h i s cant be r i g h t con f i gu ra t i on = new TreeMap() ;

95 c on f i gu r a t i on . put (”toNode” , toNode) ;

97
MdsLogger . i n f o (” s t a r t ed a sync p ro s s e s with ”+ toNode , this) ;

99
s t a r t () ;

101
}

103
/∗∗

105 ∗ @see SyncManagerInterface#triggerNewMetadata (S t r ing)
∗/

107 public void triggerNewMetadata (S t r ing fromNodeId)
throws SyncManagerException {

109 HashMap onlyonceMap = new HashMap() ;

111 Vector nabours = mds . getCrt () . getNeighbourhood () ;
MdsLogger . debug (” t r i g g e r i n g on new metadata r e c e i v ed from : ” +

fromNodeId + ” nabours ”+ nabours . t oS t r i ng () + ” ” +
nabours . s i z e () , this) ;

113 for (int i = 0 ; i< nabours . s i z e () ; i++)
{

115 St r ing nodeId = (St r ing) nabours . get (i) ;
i f (! onlyonceMap . containsKey (nodeId))

117 {
onlyonceMap . put (nodeId , nodeId) ;

119 i f (! nodeId . equa l s (fromNodeId))
{

121 MdsLogger . debug (” sync ing with ” + nodeId + ” a f t e r new
metadata” , this) ;

mds . getGmdm() . getSyncManager () . syncWith (nodeId) ; //
cons t ruc t i ng a new manager

123 }
} else

125 {
MdsLogger . warn (”dual sync with ” + nodeId + ” on one

triggerNewMetadata ” , this) ;
127 }

}
129

}
131

133

135
}

Listing B.6: SimpleSyncProtocolController

package midas .mw.mds .gmdm. SyncManager . s t ep s ;

B.4. PROTOCOLS 143

2
import java . u t i l . I t e r a t o r ;

4 import java . u t i l .Map;
import java . u t i l . Vector ;

6
import midas .mw.mds . RequestHandler ;

8 import midas .mw.mds .gmdm. SyncManager . messages .
GmdmMetadataExchangeMessage ;

import midas .mw.mds .gmdm. SyncManager . messages .
GmdmSyncOverviewMesasge ;

10 import midas .mw.mds .gmdm. chainManager . ChainElement ;
import midas .mw.mds .gmdm. chainManager . ChainException ;

12 import midas .mw.mds .gmdm. except ion . GmdmException ;
import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;

14 import midas .mw.mds . l ogg ing . MdsLogger ;

16 /∗∗
∗ sending a t o t a l overview of the l o c a l y known ins tance s to

another node .
18 ∗

∗
 much l i k e the {@link BroadCastOverview} but t h i s sends
only to one other node

20 ∗ @author a s l a k
∗

22 ∗/
public class SendView extends ChainElement {

24
GmdmMetadataExchangeMessage exchange = null ;

26
public void run (Map con f i gu r a t i on) throws ChainException {

28 RequestHandler handler = (RequestHandler) c on f i gu r a t i on . get (”
node”) ;

30 Mds In t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i gu r a t i on .
get (”mds”) ;

32 GmdmSyncOverviewMesasge message = new GmdmSyncOverviewMesasge
((S t r ing) c on f i gu r a t i on . get (”toNode”) , mds) ;

34 Vector knownElements = new Vector () ;
I t e r a t o r i t ;

36 try {
i t = mds . getGmdm() . ge tSync ron i z e r () . getOverview () ;

38 } catch (GmdmException e) {
throw new ChainException (” could not get overview” , e) ;

40 }
while (i t . hasNext ())

42 {
St r ing element = (St r ing) i t . next () ;

44 MdsLogger . debug (” element in overview : ” + element , this) ;

46 knownElements . add (element) ;
}

48
try {

50 message . addAllKnownElement (knownElements) ;
} catch (GmdmException e) {

52 throw new ChainException (”Could not add a l l known elemnts ” ,
e) ;

}
54

c on f i gu r a t i on . put (” overview” , message) ;

144 APPENDIX B. SOURCE CODE

56 MdsLogger . i n f o (” sending SyncOverview message to : ” + message .
getToNode () , this) ;

handler . send (message) ;
58 }

60

62 }

Listing B.7: SendView

package midas .mw.mds .gmdm. SyncManager . s t ep s ;
2

import java . u t i l .Map;
4 import java . u t i l . Vector ;

6 import midas .mw.mds . MdsClientException ;
import midas .mw.mds . MdsTimeoutException ;

8 import midas .mw.mds . RequestHandler ;
import midas .mw.mds .gmdm. GmdmSynchronize ;

10 import midas .mw.mds .gmdm. SyncManager . messages .
GmdmMetadataExchangeMessage ;

import midas .mw.mds .gmdm. SyncManager . messages .
GmdmSyncOverviewMesasge ;

12 import midas .mw.mds .gmdm. chainManager . ChainAbortedException ;
import midas .mw.mds .gmdm. chainManager . ChainElement ;

14 import midas .mw.mds .gmdm. chainManager . ChainException ;
import midas .mw.mds .gmdm. except ion . GmdmException ;

16 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
import midas .mw.mds . l ogg ing . MdsLogger ;

18
/∗∗

20 ∗ t h i s s t ep i s used to respond to a overview message .
∗
 I t r e qu i r e s t ha t a message i f type {@link

GmdmSyncOverviewMesasge} i s r e ce i v ed . The s t ep w i l l respond
with

22 ∗ a {@link GmdmMetadataExchangeMessage} with the e lements t h i s
node can prov ide

∗ @author a s l a k
24 ∗

∗/
26 public class ReceiveAndHandleView extends ChainElement {

28

30 public void run (Map con f i gu r a t i on) throws ChainException {
RequestHandler c l i e n t = (RequestHandler) c on f i gu r a t i on . get (”node

”) ;
32

GmdmSyncOverviewMesasge overview = null ;
34 try {

//wait f o r the node to receve a message
36 MdsLogger . debug (” wai t ing f o r a GmdmSyncOverviewMessage” , this

) ;
overview = (GmdmSyncOverviewMesasge) c l i e n t . r e c e i v e () ;

38
} catch (MdsTimeoutException e) {

40 MdsLogger . debug (” time out on wait f o r overview” , this) ;
MdsLogger . i n f o (” excpected a overview did not r e c e i v e ” , this) ;

42 throw new ChainException (”Timeout f o r r eceve ” , e) ;
}catch (MdsClientException e)

44 {

B.4. PROTOCOLS 145

MdsLogger . e r r o r (”Having problems with the Request handler
some th ing whent wrong” , this) ;

46 throw new ChainException (”Problems with the c l i e n t and/ or
r eque s t handler ” , e) ;

}
48

GmdmSynchronize sync = (GmdmSynchronize) c on f i gu r a t i on . get (” sync
”) ;

50 Mds In t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i gu r a t i on .
get (”mds”) ;

52 Vector data = null ;
try {

54 data = sync . getCompliment (overview . getAllKnownElements ()) ;
} catch (GmdmException e) {

56 throw new ChainException (”problems g e t t i n g compliment” , e) ;
}

58
MdsLogger . i n f o (” sending a MetadatExchange message in response

to OverviewMessage” , this) ;
60

GmdmMetadataExchangeMessage message = new

GmdmMetadataExchangeMessage (overview . getFromNode () , mds) ;
62 message . addNeededElements (sync . getNeededElements (overview .

getAllKnownElements ())) ;
MdsLogger . i n f o (” adding a reque s t f o r needed elements count : ”+

message . getNeededElements () . s i z e () , this) ;
64 try {

message . addMetadataElements (data) ;
66 } catch (GmdmException e1) {

throw new ChainException (” could not add the compliment
e lements ” , e1) ;

68 }

70 c l i e n t . send (message) ;
c on f i gu r a t i on . put (” sendtMessage ” , message) ;

72
i f (message . getNeededElements () . isEmpty ())

74 {
MdsLogger . i n f o (” Stoping the syncpro toco l whi l e the re i s no

need f o r r e spnse to t h i s message” , this) ;
76 throw new ChainAbortedException (”No needed elements from ” +

message . getToNode () + ” , no need f o r wai t ing f o r message”
, null) ;

}
78

}
80

}

Listing B.8: ReceiveAndHandleView

1 package midas .mw.mds .gmdm. SyncManager . s t ep s ;

3 import java . u t i l .Map;
import java . u t i l . Vector ;

5
import midas .mw.mds . MdsClientException ;

7 import midas .mw.mds . MdsTimeoutException ;
import midas .mw.mds . RequestHandler ;

9 import midas .mw.mds .gmdm. GmdmImplementation ;
import midas .mw.mds .gmdm.GmdmMetadata ;

146 APPENDIX B. SOURCE CODE

11 import midas .mw.mds .gmdm. GmdmSynchronize ;
import midas .mw.mds .gmdm. SyncManager . SyncManagerControl ler ;

13 import midas .mw.mds .gmdm. SyncManager . SyncManagerException ;
import midas .mw.mds .gmdm. SyncManager . messages .

GmdmMetadataExchangeMessage ;
15 import midas .mw.mds .gmdm. chainManager . ChainElement ;

import midas .mw.mds .gmdm. chainManager . ChainException ;
17 import midas .mw.mds .gmdm. except ion . GmdmException ;

import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
19 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . MidasMessage ;

import midas .mw.mds . l ogg ing . MdsLogger ;
21

/∗∗
23 ∗ This s t ep w i l l handel any {@link GmdmMetadataExchangeMessage}

and w i l l put the new elements
∗ in the database in the co r r e c t way to inshure t ha t a l l t r i g g e r s

i s used proper l y .
25 ∗

∗
 the s t ep w i l l a l s o look f o r needed e lements and send the
e lements needed to the needee in a {@link
GmdmMetadataExchangeMessage}

27 ∗
∗

29 ∗ @see GmdmImplementation#newMetadataReceived (S t r ing)
∗ @author a s l a k

31 ∗
∗/

33 public class ReceiveCompliment extends ChainElement {

35
public void run (Map con f i gu r a t i on) throws ChainException {

37 RequestHandler node = (RequestHandler) c on f i gu r a t i on . get (”node”
) ;

39 GmdmMetadataExchangeMessage metaData =null ;
Mds In t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i gu r a t i on .

get (”mds”) ;
41 try {

MdsLogger . debug (” wai t ing f o r a MetaDataExchange message ” ,
this) ;

43 MidasMessage tmpMessage= (MidasMessage) node . r e c e i v e () ;

45 // i f t h i s i s a response to a loop back message , i t i s
s toped here .

i f (tmpMessage . getFromNode () . equa l s (mds . getNodeID ()))
47 throw new ChainException (”Recevied message loopback ,

abort t h i s handler ” , null) ;

49 metaData = (GmdmMetadataExchangeMessage) tmpMessage ;

51 } catch (MdsTimeoutException e1) {
throw new ChainException (”Could not r eceve message be f o r e

timeout ” , e1) ;
53 } catch (MdsClientException e1) {

throw new ChainException (”Could not r eceve message from
node” , e1) ;

55 }

57

59 GmdmSynchronize sync = (GmdmSynchronize) c on f i gu r a t i o n . get (”
sync”) ;

B.4. PROTOCOLS 147

try {
61 i f (! metaData . getAl lElements () . isEmpty ())

{
63 int numberOfElements = sync . i n s t e r tSync rona t i on (metaData .

getAl lElements ()) ;
i f (numberOfElements > 0)

65 {
c on f i gu r a t i on . put (”addedMetadata” , new I n t eg e r (

numberOfElements)) ;
67

//TODO remove fo r ex t ra speed
69 for (int i = 0 ; i < metaData . getAl lElements () . s i z e () ; i++)

MdsLogger . debug (”Receive metadata o f t ab l e : ” + ((
GmdmMetadata)metaData . getAl lElements () . get (i)) .
getName () , this) ;

71
// syncing t h i s metadata out

73 mds . getGmdm() . newMetadataReceived (metaData . getFromNode ())
;

} else

75 MdsLogger . debug (”no elements i s returned , nothing to get
from other node : ” + metaData . getFromNode () , this) ;

} else

77 MdsLogger . debug (”no elements i s returned , nothing to get
from other node : ” + metaData . getFromNode () , this) ;

} catch (GmdmException e) {
79 throw new ChainException (”Problem i n s e r t i n g meta data

compliment” , e) ;
}

81

83 // f i nd in g out whether we can prov ide some th ing to the other
s i d e or not .

Vector needed = metaData . getNeededElements () ;
85 i f (needed != null && ! needed . isEmpty ())

{
87 MdsLogger . debug (”Request f o r needed elements i s found adding

the reques ted e lements ” , this) ;

89 GmdmMetadataExchangeMessage msg = new

GmdmMetadataExchangeMessage (metaData . getFromNode () , mds) ;
try {

91 Vector tmpVector = sync . getElementsByIdent i fyer (needed) ;
i f (! tmpVector . isEmpty ())

93 {
msg . addMetadataElements (tmpVector) ;

95 MdsLogger . debug (” sending a MetadataExchange message with
response to needed elements count : ” + msg .
getAl lElements () . s i z e () , this) ;

node . send (msg) ;
97 } else

MdsLogger . warn (”can not con t r ibu t e with any element ” ,
this) ;

99
} catch (GmdmException e) {

101 MdsLogger . e r r o r (e , this) ;
}

103

105
} else

148 APPENDIX B. SOURCE CODE

107 MdsLogger . i n f o (”No elements was reques ted through needed
elements no mesage i s sendt ” , this) ;

109 //TODO: l o g the sync , how i t whent and how many elemnts i t
synced

}
111

}

Listing B.9: ReceiveCompliment

package midas .mw.mds .gmdm. SyncManager . s t ep s ;
2

import java . u t i l .Map;
4

import midas .mw.mds . MdsImpl ;
6 import midas .mw.mds . RequestHandler ;

import midas .mw.mds .gmdm. GmdmSynchronize ;
8 import midas .mw.mds .gmdm. SyncManager . SyncManagerException ;

import midas .mw.mds .gmdm. SyncManager . messages .
GmdmMetadataExchangeMessage ;

10 import midas .mw.mds .gmdm. chainManager . ChainAbortedException ;
import midas .mw.mds .gmdm. chainManager . ChainElement ;

12 import midas .mw.mds .gmdm. chainManager . ChainException ;
import midas .mw.mds .gmdm. except ion . GmdmException ;

14 import midas .mw.mds . l ogg ing . MdsLogger ;

16 /∗∗
∗ s t ep r e c e i v e i n g a l l needed e lements . w i l l not make a nother

message . Does the jobb o f i n s e r t i n g a l l e lements to
18 ∗ the database

∗ @author a s l a k
20 ∗

∗/
22 public class ReceiveNeeded extends ChainElement {

24 public void run (Map con f i gu r a t i on)
throws ChainException

26 {
GmdmMetadataExchangeMessage msg = (GmdmMetadataExchangeMessage)

c on f i gu r a t i on . get (” sendtMessage ”) ;
28

i f (msg . getNeededElements () . isEmpty ())
30 {

MdsLogger . i n f o (” Stoping the syncpro toco l whi l e the re i s no
need f o r re sponse to t h i s message” , this) ;

32 throw new ChainAbortedException (”No needed elements from ” +
msg . getToNode () + ” , no need f o r wai t ing f o r message” ,
new NotMoreElementsNeededException ()) ;

}
34

RequestHandler node = (RequestHandler) c on f i gu r a t i on . get (”node”
) ;

36 MdsImpl mds = (MdsImpl) c on f i gu r a t i on . get (”mds”) ;
GmdmMetadataExchangeMessage metaData =null ;

38 try {
MdsLogger . debug (” [” +this . hashCode () + ”] wa i t ing f o r

reques ted needed elements ” , this) ;
40 metaData = (GmdmMetadataExchangeMessage) node . r e c e i v e () ;

} catch (Exception e) {
42 MdsLogger . debug (”No message was receved with the needed

elements ” , this) ;

B.4. PROTOCOLS 149

throw new ChainException (”Problems r e c eve ing metadata
i t e r a t o r from node” , e) ;

44 }
MdsLogger . debug (” [” +this . hashCode () + ”] message receved

requId : ” + metaData . getRequestId () , this) ;
46 GmdmSynchronize sync = (GmdmSynchronize) c on f i gu r a t i o n . get (”

sync”) ;
try {

48 i f (! metaData . getAl lElements () . isEmpty ())
{

50 int numberOfElements = sync . i n s t e r tSync rona t i on (metaData .
getAl lElements ()) ;

i f (numberOfElements > 0)
52 {

c on f i gu r a t i on . put (”addedMetadata” , new I n t eg e r (
numberOfElements)) ;

54
mds . getGmdm() . newMetadataReceived (metaData . getFromNode ())

;
56 MdsLogger . debug (” r e c ev ing number o f needed elements : ” +

metaData . getAl lElements () . s i z e () , this) ;
} else

58 MdsLogger . debug (” r e c i v ed empty needed message from ” +
metaData . getFromNode () , this) ;

}
60

} catch (GmdmException e) {
62 throw new ChainException (”Problem i n s e r t i n g meta data

compliment” , e) ;
}

64 }

66 }

Listing B.10: ReceiveNeeded

B.4.2 BroadcastProtocol

/∗∗
2 ∗

∗/
4 package midas .mw.mds .gmdm. SyncManager ;

6 import midas .mw. crtMock . BroadcastResponder ;
import midas .mw.mds . AbstractMdsMessage ;

8 import midas .mw.mds .gmdm.GmdmMessage ;
import midas .mw.mds .gmdm. SyncManager . messages .

BroadCastOverviewMessage ;
10 import midas .mw.mds .gmdm. SyncManager . messages . ExchageRequestMessage

;
import midas .mw.mds .gmdm. SyncManager . s t ep s . BroadCastOverview ;

12 import midas .mw.mds .gmdm. SyncManager . s t ep s . HandelExchangeMessage ;
import midas .mw.mds .gmdm. SyncManager . s t ep s .

ReceiveBroadcastAndHandleView ;
14 import midas .mw.mds .gmdm. SyncManager . s t ep s . Rece iveDel iveryMesasge ;

import midas .mw.mds .gmdm. chainManager . ChainException ;
16 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;

import midas .mw.mds . l ogg ing . MdsLogger ;
18

/∗∗
20 ∗ Cont ro l l e r f o r broadcas t syncronat ion

150 APPENDIX B. SOURCE CODE

∗
22 ∗ t h i s w i l l use the advantage o f broadcas t in w i f i networks

∗
24 ∗ But wh i l e we are p r e v i ou s l y only having one to one sync w i l l now

have a one to many r e l a t i o n s h i p
∗ between the p a r t i e s . This means t ha t we need to have a sepera te

hand l ing ru t ine f o r the response
26 ∗ o f the BroadcastSyncOverview . This means t ha t a overview i s

sendt , and responded with a ExchangeRequest
∗ form every one tha t hears the overview and(&&) needs the

e lements prov ided .
28 ∗

∗ The exchange reque s t at the i n i t i a t i n g par t can be rece i v ed in
the hundreds or none . This means t ha t

30 ∗ the i n i t i a t i n g par t has to be ready to handle many or none . This
w i l l again put some r e s t r a i n t on the

∗ p r o t o c o l l .
32 ∗

∗ <p>

34 ∗ sender
∗ BroadcastSyncOverviewMessage

36 ∗ on the crea t e r e c i e v e eg .
∗ t r i g g e r s . The i n i t i a t i o n par t ends here and there i s nothing

l e f t to r e c e i v e the exchage r e que s t s
38 ∗ </p>

∗
40 ∗ <p>

∗ r e c e i v e r
42 ∗ Exchange Request

∗ The r e c e i v e r o f a BroadcastSyncOverview has to 1) make a new
reque s t id . 2) send a message back to the sender

44 ∗ The r e p l i e in the Exchage Request i s d i v i d ed in two f i r s t the
needed e lements from the sender to the r e s i v e r (the r eque s t)

∗ second the e lements t ha t the r e c e i v e r can i n l i g h t the send about
(prov ided)

46 ∗ </p>

∗
48 ∗ <p>

∗ sender
50 ∗ DeliveryMessage

∗ The sender i s now in a new Request wich w i l l handel a l l the
ExchangeRequests . This w i l l be handeld by g i v i n g the

52 ∗ r e c e i v e r the e lements t ha t are in the reque s t . This w i l l be done
in a Del iveryMessage . The prov ided e lements i s

∗ added to the knowledge o f the sender . This s t ep i s repeated f or
every ExchageRequest .

54 ∗ </p>

∗
56 ∗ @author a s l a k

∗
58 ∗/

public class BroadCastSyncControl ler extends SyncManagerControl ler {
60

public BroadCastSyncControl ler (Mds In t e rna l In t e r f a c e mds) {
62 super (mds) ;

toComponent = AbstractMdsMessage .GMDM;
64

MdsLogger . debug (” s t a r t i n g a broadcast sync p r t o c o l l ” , this) ;
66

}
68

B.4. PROTOCOLS 151

70 /∗ (non−Javadoc)
∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerInterface#

respondTo (midas .mw.mds .gmdm.GmdmMessage)
72 ∗/

public void respondTo (GmdmMessage message) throws

SyncManagerException {
74 isResponseOnly = true ;

76
i f (message . getFromNode () . equa l s (mds . getNodeID ()))

78 {
MdsLogger . debug (” sync r eque s t from own node , dropping message

” , this) ;
80 return ;

}
82

i f (message instanceof BroadCastOverviewMessage) {
84 try {

86 chain . add (new ReceiveBroadcastAndHandleView ()) ;
chain . add (new Rece iveDel iveryMesasge ()) ;

88 } catch (ChainException e) {
throw new SyncManagerException (” could not const runct a

handler chain f o r a Broadcast message” , e) ;
90 }

92 } else i f (message instanceof ExchageRequestMessage)
{

94 try {
chain . add (new HandelExchangeMessage ()) ;

96 setRequest Id (message . getRequestId ()) ;
//onReceivedMessage (message) ;

98 } catch (ChainException e) {
throw new SyncManagerException (” could not const runct

handler f o r exchangeMesasge ” , e) ;
100 }

} else

102 {
MdsLogger . warn (”This message should not s t a r t a p r o t o co l l ,

dropping ” + message . ge tC la s s () . getName () + ” req : ” +
message . getRequestId () , this) ;

104 }

106 c on f i gu r a t i on . put (”toNode” , message . getFromNode ()) ;

108 MdsLogger . debug (” S ta r t i ng the p r o t o c o l l in re sponse to ” +
message . ge tC la s s () . getName () +” from ” + message .
getFromNode () , this) ;

s t a r t () ;
110 }

112 /∗ (non−Javadoc)
∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerInterface#

syncWith (java . lang . S t r ing)
114 ∗/

/∗∗
116 ∗ using the {@link SimpleSyncProtoco lContro l l er#syncWith (S t r ing)

} funct ion , wh i l e t h i s w i l l be the same
∗/

118 public void syncWith (St r ing nodeId) throws SyncManagerException {

120 syncWithEveryOne () ;

152 APPENDIX B. SOURCE CODE

}
122

/∗ (non−Javadoc)
124 ∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerInterface#

triggerNewMetadata (java . lang . S t r ing)
∗/

126 public void triggerNewMetadata (S t r ing fromNodeId)
throws SyncManagerException {

128 syncWithEveryOne () ;
}

130
public void s tar tSync ()

132 throws SyncManagerException
{

134 syncWithEveryOne () ;
}

136
private void syncWithEveryOne ()

138 throws SyncManagerException
{

140 syncedWith . add (”everyOne”) ;
try {

142 chain . add (new BroadCastOverview ()) ;
} catch (ChainException e) {

144 throw new SyncManagerException (”Error in sync p r o t o c o l l
execut ion ” , e) ;

}
146

chain . setEnd (this) ;
148 MdsLogger . i n f o (” S ta r t i ng the p r o t o c o l l with every one” , this) ;

s t a r t () ;
150 }

152
}

Listing B.11: BroadCastSyncController

1 package midas .mw.mds .gmdm. SyncManager . s t ep s ;

3 import java . u t i l . I t e r a t o r ;
import java . u t i l .Map;

5
import midas .mw.mds . RequestHandler ;

7 import midas .mw.mds .gmdm. GmdmSynchronize ;
import midas .mw.mds .gmdm. SyncManager . messages .

BroadCastOverviewMessage ;
9 import midas .mw.mds .gmdm. chainManager . ChainElement ;

import midas .mw.mds .gmdm. chainManager . ChainException ;
11 import midas .mw.mds .gmdm. except ion . GmdmException ;

import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
13 import midas .mw.mds . l ogg ing . MdsLogger ;

15 /∗∗
∗ t h i s s t ep i s t ak ing advantage o f the broadcas t c a p a b i l i t y s in

w i f i networks . This w i l l save bandwith wh i l e the
17 ∗ s t ep i s only sending one message to a l l the neighbours .

∗
19 ∗

∗ @author a s l a k
21 ∗

∗/

B.4. PROTOCOLS 153

23 public class BroadCastOverview extends ChainElement {

25 public void run (Map con f i g) throws ChainException
{

27 RequestHandler handler = (RequestHandler) c on f i g . get (”node”) ;
Mds In t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i g . get (”

mds”) ;
29

BroadCastOverviewMessage message = new BroadCastOverviewMessage
(mds) ;

31 GmdmSynchronize sync = (GmdmSynchronize) c on f i g . get (” sync”) ;

33 try {
I t e r a t o r e lements = sync . getOverview () ;

35 while (e lements . hasNext ())
{

37 message . addKnownElement ((S t r ing) e lements . next ()) ;
}

39
} catch (GmdmException e) {

41 throw new ChainException (” e r r o r in adding overview” , e) ;
}

43
MdsLogger . debug (” sending broadcast message” , this) ;

45 handler . send (message) ;
}

47
}

Listing B.12: BroadCastOverview

package midas .mw.mds .gmdm. SyncManager . s t ep s ;
2

import java . u t i l .Map;
4 import java . u t i l . Vector ;

6 import midas .mw.mds . MdsClientException ;
import midas .mw.mds . MdsTimeoutException ;

8 import midas .mw.mds . RequestHandler ;
import midas .mw.mds .gmdm. GmdmSynchronize ;

10 import midas .mw.mds .gmdm. SyncManager . SyncManagerControl ler ;
import midas .mw.mds .gmdm. SyncManager . messages .

BroadCastOverviewMessage ;
12 import midas .mw.mds .gmdm. SyncManager . messages . ExchageRequestMessage

;
import midas .mw.mds .gmdm. chainManager . ChainElement ;

14 import midas .mw.mds .gmdm. chainManager . ChainException ;
import midas .mw.mds .gmdm. except ion . GmdmException ;

16 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
import midas .mw.mds . l ogg ing . MdsLogger ;

18
/∗∗

20 ∗ This s t ep i s des igned to handel the {@link
BroadCastOverviewMessage} and then i f t he re i s something
reques t ed wait f o r the respondes .

∗ The s t ep i s to responde to the message with a exchange message
i f and only i f t h i s node can

22 ∗ prov ied or need some elements . This w i l l be sendt trough a {
@link ExchageRequestMessage}

∗
24 ∗ @author a s l a k

∗

154 APPENDIX B. SOURCE CODE

26 ∗/
public class ReceiveBroadcastAndHandleView extends ChainElement {

28

30 public void run (Map con f i gu r a t i on) throws ChainException {
RequestHandler c l i e n t = (RequestHandler) c on f i gu r a t i on . get (”node

”) ;
32

BroadCastOverviewMessage overview = null ;
34 try {

//wait f o r the node to receve a message
36 MdsLogger . debug (” wai t ing f o r a BroadcastOverviewMessage ” ,

this) ;
overview = (BroadCastOverviewMessage) c l i e n t . r e c e i v e () ;

38
MdsLogger . debug (”BroadcastResponse new Seq : ” + c l i e n t .

getRequestId () + ” old : ”+ overview . getRequestId () , this)
;

40
} catch (MdsTimeoutException e) {

42 MdsLogger . debug (” time out on wait f o r overview” , this) ;
MdsLogger . i n f o (” excpected a overview did not r e c e i v e ” , this) ;

44 throw new ChainException (”Timeout f o r r eceve ” , e) ;
}catch (MdsClientException e)

46 {
MdsLogger . e r r o r (”Having problems with the Request handler

some th ing whent wrong” , this) ;
48 throw new ChainException (”Problems with the c l i e n t and/ or

r eque s t handler ” , e) ;
}

50
GmdmSynchronize sync = (GmdmSynchronize) c on f i gu r a t i on . get (” sync

”) ;
52 Mds In t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i gu r a t i on .

get (”mds”) ;

54 Vector data = null ;
try {

56 data = sync . getCompliment (overview . getAllKnownElements ()) ;
} catch (GmdmException e) {

58 throw new ChainException (”problems g e t t i n g compliment” , e) ;
}

60

62 ExchageRequestMessage message = new ExchageRequestMessage (
overview . getFromNode () , mds) ;

message . addRequest (sync . getNeededElements (overview .
getAllKnownElements ())) ;

64
MdsLogger . i n f o (”Request ing needed elements ”+ message .

getRequest () . t oS t r i ng () , this) ;
66 try {

message . addProvided (data) ;
68 } catch (GmdmException e1) {

throw new ChainException (” could not add the provided elements
” , e1) ;

70 }

72
i f (message . getRequest () . isEmpty ())

74 {
// save the w i f i net , and abor t the p r o t o c o l l here

B.4. PROTOCOLS 155

76 MdsLogger . i n f o (”No i n f o needed from ” + message . getFromNode ()
, this) ;

throw new ChainException (”Aborted due to non needed” , new

NotMoreElementsNeededException ()) ;
78 } else

{
80 MdsLogger . warn (”Responding to over view , by r eque s t i ng ; ” +

message . getRequest () + ” prov id ing ; ”+ message .
getProvided () , this) ;

}
82

c l i e n t . send (message) ;
84 SyncManagerControl ler . respondedTo . add (message . getFromNode ()) ;

MdsLogger . i n f o (” sending a ExchangeRequest (”+ message .
getProvided () . t oS t r i ng () + ” wanted : ”+ message . getRequest
() . t oS t r i ng () + ”) message in response to
BroadcastOverviewMessage ” , this) ;

86 c on f i gu r a t i on . put (” requestCount ” , new I n t eg e r (message .
getRequest () . s i z e ())) ;

88 /∗
// r e c e i v e i n g the bcas t message be f o r e we terminate the requid

90 t r y {
c l i e n t . r e c e i v e () ;

92 } catch (MdsTimeoutException e) {
MdsLogger . warn(” the loopback broadcas t message cou ld not be

r ece i v ed in time out ” , t h i s) ;
94 MdsLogger . warn(e , t h i s) ;

} catch (MdsClientException e) {
96 MdsLogger . warn(” the loopback broadcas t message cou ld not be

r ece i v ed ” , t h i s) ;
MdsLogger . warn(e , t h i s) ;

98 }
∗/

100 }

102 }

Listing B.13: ReceiveBroadcastAndHandleView

package midas .mw.mds .gmdm. SyncManager . s t ep s ;
2

import java . u t i l .Map;
4

import midas .mw.mds . MdsClientException ;
6 import midas .mw.mds . MdsTimeoutException ;

import midas .mw.mds . RequestHandler ;
8 import midas .mw.mds .gmdm. GmdmSynchronize ;

import midas .mw.mds .gmdm. SyncManager . messages . Del iveryMessage ;
10 import midas .mw.mds .gmdm. chainManager . ChainElement ;

import midas .mw.mds .gmdm. chainManager . ChainException ;
12 import midas .mw.mds .gmdm. except ion . GmdmException ;

import midas .mw.mds . l ogg ing . MdsLogger ;
14

public class Rece iveDel iveryMesasge extends ChainElement {
16

public void run (Map con f i g)
18 throws ChainException

{
20 i f (((In t eg e r) c on f i g . get (” requestCount ”)) . intValue () > 0)

{
22 RequestHandler handler = (RequestHandler) c on f i g . get (”node”) ;

156 APPENDIX B. SOURCE CODE

24 Del iveryMessage message ;
try {

26 message = (Del iveryMessage) handler . r e c e i v e () ;
} catch (MdsTimeoutException e) {

28 throw new ChainException (” could not get message be f o r e time
out” , e) ;

} catch (MdsClientException e) {
30 throw new ChainException (” could not r e c e i v e message” , e) ;

}
32 MdsLogger . debug (” got d e l i v e r y ” + message . getData () . t oS t r i ng

() , this) ;
GmdmSynchronize sync = (GmdmSynchronize) c on f i g . get (” sync”) ;

34 try {
int numberOfElements = sync . i n s t e r tSync rona t i on (message .

getData ()) ;
36 i f (numberOfElements > 0)

c on f i g . put (”addedMetadata” , new I n t eg e r (numberOfElements)
) ;

38
MdsLogger . i n f o (”Recived needed metadata (”+ message . getData

() . t oS t r i ng () +”) from ”+ message . getFromNode () , this) ;
40 } catch (GmdmException e) {

throw new ChainException (” could not i n s e r t the new elements
” , e) ;

42 }
} else

44 {
MdsLogger . i n f o (”The sync p ro s e s s i s not r eque s t i ng any th ing

and i s the re f o r ended” , this) ;
46 }

}
48 }

Listing B.14: ReceiveDeliveryMesasge

package midas .mw.mds .gmdm. SyncManager . s t ep s ;
2

import java . u t i l .Map;
4

import midas .mw.mds . MdsClientException ;
6 import midas .mw.mds . MdsTimeoutException ;

import midas .mw.mds . RequestHandler ;
8 import midas .mw.mds .gmdm. GmdmSynchronize ;

import midas .mw.mds .gmdm. SyncManager . messages . Del iveryMessage ;
10 import midas .mw.mds .gmdm. SyncManager . messages . ExchageRequestMessage

;
import midas .mw.mds .gmdm. chainManager . ChainElement ;

12 import midas .mw.mds .gmdm. chainManager . ChainException ;
import midas .mw.mds .gmdm. except ion . GmdmException ;

14 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;

16 public class HandelExchangeMessage extends ChainElement {

18 public void run (Map con f i gu r a t i on)
throws ChainException

20 {
RequestHandler c l i e n t = (RequestHandler) c on f i gu r a t i on . get (”node

”) ;
22 GmdmSynchronize sync = (GmdmSynchronize) c on f i gu r a t i o n . get (” sync

”) ;

B.4. PROTOCOLS 157

MdsIn t e rna l In t e r f a c e mds = (Mds In t e rna l In t e r f a c e) c on f i gu r a t i on .
get (”mds”) ;

24
ExchageRequestMessage message ;

26 try {
message = (ExchageRequestMessage) c l i e n t . r e c e i v e () ;

28 } catch (MdsTimeoutException e) {
throw new ChainException (” could not get message be f o r e time

out” , e) ;
30 } catch (MdsClientException e) {

throw new ChainException (” could not r e c e i v e message” , e) ;
32 }

34 try {
int numberOfElements = sync . i n s t e r tSync rona t i on (message .

getProvided ()) ;
36 i f (numberOfElements > 0)

c on f i gu r a t i on . put (”addedMetadata” , new I n t eg e r (
numberOfElements)) ;

38
} catch (GmdmException e) {

40 throw new ChainException (” could not i n s e r t new metadata” , e) ;
}

42

44
i f (message . getRequest () . s i z e () > 0)

46 {
Del iveryMessage d e l i v e r y = new Del iveryMessage (message .

getFromNode () , mds) ;
48 try {

d e l i v e r y . addData (sync . getElementsByIdent i fyer (message .
getRequest ())) ;

50 } catch (GmdmException e) {
throw new ChainException (” could not get the reques ted

e lements ” , e) ;
52 }

54 c l i e n t . send (d e l i v e r y) ;
}

56
}

58 }

Listing B.15: HandelExchangeMessage

B.4.3 SemanticSyncProtocol

/∗∗
2 ∗

∗/
4 package midas .mw.mds .gmdm. SyncManager ;

6 import java . u t i l . Vector ;

8 import midas .mw.mds . MdsClientException ;
import midas .mw.mds . MdsTimeoutException ;

10 import midas .mw.mds . XmlNode ;
import midas .mw.mds . XmlParser ;

12 import midas .mw.mds .gmdm.GmdmMessage ;

158 APPENDIX B. SOURCE CODE

import midas .mw.mds .gmdm. SyncManager . messages .
BroadCastOverviewMessage ;

14 import midas .mw.mds .gmdm. SyncManager . messages . ExchageRequestMessage
;

import midas .mw.mds .gmdm. SyncManager . messages .
GmdmMetadataExchangeMessage ;

16 import midas .mw.mds .gmdm. SyncManager . messages .
GmdmSyncOverviewMesasge ;

import midas .mw.mds . i n t e r n a l i n t e r f a c e s . Mds In t e rna l In t e r f a c e ;
18 import midas .mw.mds . i n t e r n a l i n t e r f a c e s . MidasMessage ;

import midas .mw.mds . l ogg ing . MdsLogger ;
20

/∗∗
22 ∗ This p ro t o co l i s to use the advantage o f the group which the

user i s par t o f .
∗

24 ∗ The pro toco l i s to t r y to ge t h i gher speed o f the meta data
spred . So tha t a l l

∗ the e lements in s h o r t e s t time p o s s i b l e ach i ve s 100% coverage .
This w i l l be node in the f o l l ow i n g way

26 ∗
∗

28 ∗ sender r e c e i v e r sender
∗ SemanticOverviewMessage >> @link {@link

GmdmMetadataExchangeMessage} >> {@link
GmdmMetadataExchangeMessage}

30 ∗ A message to a l l in same a response with e lements and needed
the needed e lements

∗ group as sender
32 ∗

∗
34 ∗ @author a s l a k

∗
36 ∗/

public class Semant icSyncContro l l er extends SyncManagerControl ler {
38

St r ing groupName = ”” ;
40 Vector groupMembers = new Vector (0) ;

42 public Semant icSyncContro l l er (Mds In t e rna l In t e r f a c e mds) {
super (mds) ;

44
i n i t i a l i z eG r oup () ;

46 }

48

50 /∗∗
∗ Using broadcas t p ro t o co l to respond to

BroadCastOverviewMessage and ExchageRequestMessage

52 ∗ and s imp l e c on t r o l l e r to GmdmSyncOverviewMesasge

∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerInterface#
respondTo (midas .mw.mds .gmdm.GmdmMessage)

54 ∗/
public void respondTo (GmdmMessage message) throws

SyncManagerException {
56

MdsLogger . debug (” responding to ” + message . ge tC la s s () . getName ()
+ ” req : ” + message . getRequestId () + ” from ” + message .

getFromNode () , this) ;
58 SyncManagerControl ler c o n t r o l l e r = null ;

i f (message instanceof BroadCastOverviewMessage)

B.4. PROTOCOLS 159

60 {
//a response i s needed fo r a broadcas t message

62 c o n t r o l l e r = new BroadCastSyncControl ler (mds) ;
} else i f (message instanceof GmdmSyncOverviewMesasge)

64 {
//a response i s needed fo r a s imple sync

66 c o n t r o l l e r = new S impleSyncProtoco lContro l l e r (mds) ;
} else i f (message instanceof ExchageRequestMessage)

68 {
//a response to the prev ious broadcas t message

70 c o n t r o l l e r = new BroadCastSyncControl ler (mds) ;
} else

72 {
MdsLogger . warn (”message not r e cogn i s ed ” + message . ge tC l a s s ()

. getName () + ” req : ” + message . getRequestId () , this) ;
74 return ;

}
76

try {
78 MidasMessage msg = r e c e i v e () ;

MdsLogger . debug (” passed on message ” + msg . ge tC la s s () . getName
() +

80 ” req : ” + msg . getRequestId () +
” to ” + c o n t r o l l e r . g e tC la s s () . getName ()

82 , this

) ;
84 c o n t r o l l e r . onReceivedMessage (msg) ;

86 } catch (MdsTimeoutException e) {
MdsLogger . debug (” sou ld not be wai t ing t h i s i s only forward ” ,

this) ;
88 } catch (MdsClientException e) {

MdsLogger . debug (e , this) ;
90 }

92 c o n t r o l l e r . respondTo (message) ;
end (null) ;

94 }

96 /∗∗
∗ s t a r t i n g sync with one node us ing SimpleSyncProtoco lContro l l er

98 ∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerInterface#
syncWith (java . lang . S t r ing)

∗/
100 public void syncWith (St r ing nodeId) throws SyncManagerException {

i f (nodeId . equa l s (mds . getNodeID ()))
102 {

MdsLogger . debug (” r e f u s i n g to sync with i t s e l f ! ” , this) ;
104 return ;

}
106

MdsLogger . debug (” sync ing with ” + nodeId , this) ;
108 S impleSyncProtoco lContro l l e r s imple = new

S impleSyncProtoco lContro l l e r (mds) ;
s imple . syncWith (nodeId) ;

110 }

112 /∗∗
∗ S ta r t i n g the {@link #star tSync () }

114 ∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerInterface#
triggerNewMetadata (java . lang . S t r ing)

∗/

160 APPENDIX B. SOURCE CODE

116 public void triggerNewMetadata (S t r ing fromNodeId)
throws SyncManagerException {

118 MdsLogger . debug (” t r i g g e r d on metadata” , this) ;

120 s tar tSync () ;

122 }

124 /∗∗
∗ syncing with a l l in t h i s group . cou ld be none .

126 ∗ using {@link #syncWith (S t r ing)}
∗/

128 public void syncWithGroup ()
{

130 MdsLogger . debug (” sync ing with the ne igbours one by one ” +
groupMembers , this) ;

i f (groupMembers . isEmpty ())
132 {

MdsLogger . i n f o (”no one in your group” , this) ;
134 return ;

}
136 for (int i = 0 ; i < groupMembers . s i z e () ; i++)

{
138 try {

syncWith ((S t r ing) groupMembers . get (i)) ;
140 } catch (SyncManagerException e) {

MdsLogger . e r r o r (e , this) ;
142 }

}
144 }

146 /∗∗
∗ syncing with a l l the ne igbours de f ined by a l l t ha t hears the {

@link BroadCastOverviewMessage} v ia {@link
BroadCastSyncControl ler}

148 ∗
∗/

150 public void syncWithNeigbours ()
{

152 MdsLogger . debug (” sync ing with a l l the ne igbours ” , this) ;
BroadCastSyncControl ler bcast = new BroadCastSyncControl ler (mds

) ;
154 try {

bcast . s ta r tSync () ;
156 } catch (SyncManagerException e) {

MdsLogger . e r r o r (e , this) ;
158 }

}
160

/∗∗
162 ∗ reading the groups . xml and f i nd in g out wich are in the same

group
∗

164 ∗/
public void i n i t i a l i z eG r oup ()

166 {

168 Vector groups ;
try {

170 groups = ((XmlNode) XmlParser . parse (” groups . xml”) . g e tChi ldren
() . get (0)) . ge tChi ldren () ;

} catch (Exception e) {

B.4. PROTOCOLS 161

172 MdsLogger . debug (”This node i s in no group” , this) ;
groupMembers = new Vector () ;

174 groupName =” s i n g l e ” ;
return ;

176 }

178 for (int i = 0 ; i < groups . s i z e () ; i++)
{

180 Vector group = ((XmlNode) groups . get (i)) . ge tChi ldren () ;

182 Vector members = new Vector () ;
for (int x = 0 ; x < group . s i z e () ; x++)

184 {
St r ing name = ((XmlNode) group . get (x)) . g e tAt t r ibute (”nodeId”

) ;
186 members . add (name) ;

}
188 i f (members . conta in s (mds . getNodeID ()))

{
190 groupMembers = members ;

groupName = ((XmlNode) groups . get (i)) . g e tAt t r ibute (” id ”) ;
192 break ;

}
194 }

196 MdsLogger . debug (”your group ” + groupName + ” , ” + groupMembers
, this) ;

}
198

/∗∗
200 ∗ s t a r t i n g sync , by doing {@link #syncWithGroup () } and then {

@link #syncWithNeigbours () }
∗ @see midas .mw.mds .gmdm. SyncManager . SyncManagerControl ler#

s tar tSync ()
202 ∗/

public void s tar tSync ()
204 {

MdsLogger . debug (” s t a r t ed f u l l sync” , this) ;
206 syncWithGroup () ;

syncWithNeigbours () ;
208 }

210 }

Listing B.16: SemanticSyncController

162 APPENDIX B. SOURCE CODE

Appendix C

UML model MIDAS

I will now display the componet design of MDS and GMDM.

163

164 APPENDIX C. UML MODEL MIDAS

Figure C.1: Overview of MDS component in MIDAS

Figure C.2: Uml diagram of the GMDM component

165

Figure C.3: Uml diagram showing the internal structure of Mds

166 APPENDIX C. UML MODEL MIDAS

Appendix D

UML model Infoware
implementation

In this appendix the overall architecture of the DENS implementation is pre-
sented.

167

168 APPENDIX D. UML MODEL INFOWARE IMPLEMENTATION

Figure D.1: The UML model showing the overview of DENS architecture.

169

Figure D.2: The UML model showing the DENS protocols.

170 APPENDIX D. UML MODEL INFOWARE IMPLEMENTATION

Figure D.3: The UML model showing the DENS event model.

Appendix E

Re-execution of the
experiments

To do a re-execution of the experiments one needs to follow some steps;

1. Setup a NEMAN server. This involves getting the source code and kernel
paches and applying the patch and compiling the NEMAN suite. This
can be acomplished by contacting the authors of [13].

2. Once the emulation enviroment is up and running on the server with the
wanted number of taps, the experiments need to be setup.

This is done by starting iemul, from the NEMAN suite, setting it up
with the correct server address.

loading the correct scenario

starting the control packet tunneling, tunnel.pl

moving the test-setup files to the server. Together with the jar file,
and linking the run.sh script with the correct jar file.

3. starting the experiments by issuing run tests.sh, waiting for it to start all
nodes and logging.

4. pressing the play button in the iemul GUI, running the tests and pressing
“any-key” in the server terminal to mark the finishing of the test run,
which results in a tar ball being produced with all the logs.

171

