
UNIVERSITY OF OSLO
Department of Informatics

A semantic
paradigm for
component-based
specification
integrating a notion
of security risk

Research report 341

Gyrd Brændeland

Ketil Stølen

ISBN 82-7368-297-8
ISSN 0806-3036

October 2006

A Semantic Paradigm for Component-Based

Specification Integrating a Notion of Security Risk

Gyrd Brændeland1,2? and Ketil Stølen1,2

1 Department of Informatics, University of Oslo, Norway
2 SINTEF, Norway

Abstract. We propose a semantic paradigm for component-based spec-
ification supporting the documentation of security risk behaviour. By
security risk, we mean behaviour that constitutes a risk with regard to
ICT security aspects, such as confidentiality, integrity and availability.
The purpose of this work is to investigate the nature of security risk in the
setting of component-based system development. A better understand-
ing of security risk at the level of components facilitates the prediction
of risks related to introducing a new component into a system. The se-
mantic paradigm provides a first step towards integrating security risk
analysis into the system development process.

Key words: component, formal specification, risk analysis, security

1 Introduction

The flexibility of component-oriented software systems enabled by component
technologies such as Sun’s Enterprise Java Beans (EJB), Microsoft’s .NET or
the Open Source Gateway initiative (OSGi) gives rise to new types of security
concerns. In particular the question of how a system owner can know whether to
trust a new component to be deployed into a system. A solution to this problem
requires integrating the process of security risk analysis in the early stages of
component-based system development. The purpose of security risk analysis is
to decide upon the necessary level of asset protection against security risks, such
as a confidentiality or integrity breach. Unfortunately, the processes of system
development and security risk analysis are often carried out independently with
little mutual interaction. The result is expensive redesigns and unsatisfactory
security solutions. To facilitate a tighter integration we need a better under-
standing of security risk at the level of components. But knowing the security
risks of a single component is not enough, since two components can affect the
risk level of each other. An example is the known buffer overflow vulnerability
of previous versions of the media player Winamp, that may allow an unauthen-
ticated attacker using a crafted file to execute arbitrary code on a vulnerable
system. By default Internet Explorer opens affected files without prompting the
user [20]. Hence, the probability of a successful attack is much higher if a user

? Contact author: email: gyb@sintef.uio.no

2 Gyrd Brændeland and Ketil Stølen

utilises both Internet Explorer and Winamp, than only one of them. As this
example illustrates we need a strategy for predicting system level risks that may
be caused by introducing a new component. A better understanding of security
risk at the level of components is a prerequisite for compositional security level
estimation. Such understanding also provides the basis for trust management,
because as argued by Jøsang and Presti [12] there is a close dependency between
trust and risk. The contributions of this paper is a novel semantic paradigm for
component-based specification explaining

– basic components with provided and required interfaces;
– the composition of components into composite components;
– unpredictability which is often required to characterise confidentiality prop-

erties (secure information flow);
– the notion of security risk as known from asset-oriented security risk analysis.

This paper is divided into ten sections. In Sections 2 and 3 we explain our no-
tions of security risk analysis and component. In Section 4 we introduce the
basic vocabulary of the semantic model. In Sections 5 to 7 we define the se-
mantic paradigm for component-based specifications. In Section 8 we describe
how security risk analysis concepts relate to the component model and how they
are represented in the semantics. In Section 9 we attempt to place our work in
relation to ongoing research within related areas and finally, in Section 10, we
summarise our findings.

2 Asset-Oriented Security Risk Analysis

By security risk analysis we mean risk analysis applied to the domain of infor-
mation and communication technology (ICT) security. For convenience we often
use security analysis as a short term for security risk analysis. ICT security in-
cludes all aspects related to defining, achieving and maintaining confidentiality,
integrity, availability, non-repudiation, accountability, authenticity and reliabil-
ity of ICT [11].

Hogganvik and Stølen [7] have provided a conceptual model for security anal-
ysis based on a conceptual model originally developed in the CORAS project [3].
The CORAS risk management process is based on the the “Code of practise
for information security management” (ISO/IEC 17799:2000) [9] and the Aus-
tralian/New Zealand standard “Risk Management” (AS/NZS 4360:2004) [22].

With some adjustments the model is expressed as a class diagram in UML
2.0 [18], see Figure 1. The associations between the elements have cardinalities
specifying the number of instances of one element that can be related to one
instance of the other. The hollow diamond symbolises aggregation and the filled
composition. Elements connected with an aggregation can also be part of other
aggregations, while composite elements only exist within the specified composi-
tion.

We explain Figure 1 as follows: Stakeholders are those people and organisa-
tions who may affect, be affected by, or perceive themselves to be affected by,

A Paradigm for Component-Based Specification Integrating Security Risk 3

Consequence
Information

security incident
Probability

Threat

Stakeholder

1
1

AssetVulnerability

Treatment Risk

1..*
*

*

*
* 1..*

Weakens

*

1

1 1

1

1..*

* 1

11

1..* 1

1 1..*

* 1..*

Causes ▼

▲Exploits

▲Values

▲Affects

Affects ►

Fig. 1. CORAS conceptual model of security analysis terms

a decision or activity or risk [22]. The CORAS security analysis process is as-

set -oriented. An asset is something to which a stakeholder directly assigns value
and, hence, for which the stakeholder requires protection [23]3. CORAS links
assets uniquely to their stakeholders. A vulnerability is a weakness of an asset or
group of assets that can be exploited by one or more threats [11]. A threat is a
potential cause of an incident that may result in harm to a system or organisa-
tion [11]. An information security incident refers to any unexpected or unwanted
event that might cause a compromise of business activities or information secu-
rity, such as malfunction of software or hardware and access violations [11]. A
risk is the combination of the probability of an event and its consequence [10].
Conceptually, as illustrated in Figure 1, a risk consist of an information security
incident, the probability of its happening and its consequence. Probability is the
extent to which an event will occur [10]. Consequence is the outcome of an event
expressed qualitatively or quantitatively, being a loss, injury or disadvantage.
There may be a range of possible outcomes associated with an event [23]. This
implies that an information security incident may lead to the reduction in value
of several assets. Hence, an information security incident may be part of several
risks. Risk treatment is the process of selection and implementation of measures
to modify risks [10].

3 The Component Model

There exist various definitions of what a software component is. The classic
definition by Szyperski [24] provides a basic notion of a component that is widely
adopted in later definitions: “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to composition
by third parties.”

3 The Australian handbook [23] uses the term organisation instead of the broader
term stakeholder. For simplicity of the conceptual model we prefer the broader term
stakeholder which includes organisation.

4 Gyrd Brændeland and Ketil Stølen

Lau and Wang [15] criticise Szyperski’s definition for not relating the compo-
nent concept to a component model. Lau and Wang emphasise the importance of
a component model as a provider of an underlying semantic framework, defining:

– the syntax of components, i.e., how they are constructed and represented;

– the semantics of components, i.e. what components are meant to be;

– the composition of components, i.e. how they are composed or assembled.

Lau and Wang present a taxonomy of current component models, comparing
their similarities and differences with regard to these three criteria. They com-
pare the component models facilities for composition both in the design phase
and the deployment phase. Our approach focuses on the specification of compo-
nents. Hence, composition takes place in the design phase.

According to Cheesman and Daniels [2] the main motivation for using a
component-oriented approach is to make dependencies explicit, in order to facil-
itate management of component systems and independent deployment of compo-
nents. Since the client of a component is not necessarily the same as the deployer
of the component, they distinguish between two types of contracts correspond-
ing to these two roles: usage and realisation contracts. This distinction motivates
the separation of specifications into interfaces and components. Our conceptual
model of a component, shown in Figure 2, is inspired by the definitions given
in [2].

Requires ► Name

Type

Operation

Composite

Component

*1

2..*

* 1

* *

*

*

*

1..*
*

Provides ►

Provides ►

Requires ►

Interface
Basic

Component

Fig. 2. Conceptual model of a component

We explain the conceptual component model as follows: An interface is a
contract with a client, describing a set of behaviours provided by a component
object. It defines a list of operations that the interface provides, their signatures
and semantics. A component is a contract with the realiser. It describes pro-
vided interfaces and component dependencies in terms of required interfaces. By
required interface we mean the calls the component needs to make, in order to
implement the operations described in the provided interfaces. We distinguish
between basic components and composite components. A basic component pro-
vides only one interface. We obtain components with more than one provided
interface by the composition of basic components. Composite components can
also be combined to obtain new composite components.

A Paradigm for Component-Based Specification Integrating Security Risk 5

4 The Semantic Model of STAIRS

We build our semantic paradigm on top of the trace semantics of STAIRS [6,5].
STAIRS is an approach to the compositional development of UML 2.0 interac-
tions. For a thorough account of the STAIRS semantics, see Haugen et al. [6,5].

The most common interaction diagram is the sequence diagram, which shows
a set of messages arranged in time sequence [18]. A sequence diagram typically
captures the behaviour of a single scenario. A sequence diagram describes one
or more positive (i.e. valid) and/or negative (i.e. invalid) behaviours.

The sequence diagram in Figure 3 specifies a scenario in which the client
lifeline sends the message displayAcc to the bank lifeline, which then sends the
message check with argument pin to the environment. When the bank lifeline
receives the message ok it sends the message acc to the client lifeline.

sd Bank
:Bank

acc

displayAcc(pin)

ok

check(pin)

:Client

Fig. 3. Example interaction

Formally STAIRS uses denotational trace semantics in order to explain the
meaning of a single interaction. A trace is a sequence of events, representing a
system run. There are two kinds of events: sending and reception of a message,
where a message is a triple (s , re, tr) consisting of a signal s , a transmitter lifeline
tr and a receiver lifeline re. We let E denote the set of all events.

The set of traces described by a diagram like the one in Figure 3 are all posi-
tive sequences consisting of events such that the transmit event is ordered before
the corresponding receive event, and events on the same lifeline are ordered from
the top downwards. Shortening each message to the first letter of each signal, we
thus get that Figure 3 specifies the trace 〈!d , ?d , !c, ?o, !a, ?a〉 where ! denotes
transmission and ? reception of the message.

Formally we let H denote the set of all well-formed traces. A trace is well-
formed if, for each message, the send event is ordered before the corresponding
receive event. An interaction obligation (pi ,ni) is a classification of all of the
traces in H into three categories: the positive traces pi , representing desired and
acceptable behaviour, the negative traces ni , representing undesired or unac-
ceptable behaviour, and the inconclusive traces H \ (pi ∪ ni). The inconclusive
traces are a result of the incompleteness of interactions, representing traces that
are not described as positive or negative by the current interaction.

6 Gyrd Brændeland and Ketil Stølen

The reason we operate with inconclusive traces is that sequence diagrams
normally gives a partial description of a system behaviour. It is also possible to
specify complete behaviour. Then every trace is either positive or negative.

5 Semantics of Basic Components

In this section we describe how basic components can be described semantically
using STAIRS. Our semantic paradigm is independent of the concrete syntactic
representation of specifications. In this paper we use sequence diagrams based
on the semantic mapping defined in STAIRS, as they are simple to understand
and well suited to exemplify parts of a component behaviour. We could have
defined similar mappings for other specification languages.

A basic component has a unique identifier. In STAIRS this identifier is rep-
resented by a lifeline. As explained in Section 3 the provided interface of a basic
component corresponds to the method calls it can receive and the required in-
terface corresponds to the method calls the component needs to make to other
component interfaces, in order to implement the operations described in the
provided interface.

The denotation [[K]] of a basic component specification K in the STAIRS se-
mantics is an interaction obligation (PK ,NK) where PK and NK are the positive
and negative traces over some set of component events EK , respectively.

Example 1. The sequence diagram in Figure 4 specifies a scenario where a login
lifeline receives the message login with arguments id and pwd . The login lifeline
then sends the message authenticate to the environment. STAIRS uses the alt

fail

session

sd Login :ILogin

login(id,pwd)

login(id,pwd)

authenticate(id,pwd)

ok

authenticate(id,pwd)

fail

wrong user-name

login(id,pwd)
authenticate(id,pwd)

fail

alt

alt

neg

Fig. 4. Specifying component dependencies

operator to describe that a system can include alternative behaviours. There are
three alternatives: Firstly, when a user attempts to login she can either succeed

A Paradigm for Component-Based Specification Integrating Security Risk 7

or fail. If she fails there are two alternatives, of which only one is legal: When
the login lifeline receives the reply fail it should reply with fail.

We specify that the component should never return simply the message wrong

user-name, by placing the event of returning this message within a neg construct
in the sequence diagram. That is because we do not wish to reveal informa-
tion that can be useful for a potential impostor, if a login attempt fails. The
sequence diagram in Figure 4 specifies an interaction obligation (P ,N) where
P = {〈?l , !a, ?o, !s〉, 〈?l , !a, ?f , !f 〉} and N = {〈?l , !a, ?f , !w〉} when shortening
each message to the first letter of each signal 2

We define an interface and its denotation as an abstraction over a basic compo-
nent. An interface describes the view of the user, who does not need to know how
the login operation is implemented. We obtain the provided interface of a basic
component by filtering away the interactions on the required interface. Hence, a
provided interface corresponds to a basic component, if the component has no
required interface.

6 Semantics of Composite Components

As described in Section 5 we distinguish between basic and composite compo-
nents. A basic component provides only one interface. We obtain components
with more than one interface by the composition of basic components. Composite
components can also be combined to obtain new composite components.

In order to define composition we need the functions S© for filtering of se-
quences, and T© for filtering of pairs of sequences, defined by Haugen et al. [6,5].
The filtering function S© is used to filter away elements. By B S© a we denote the
sequence obtained from the sequence a by removing all elements in a that are
not in the set of elements B . For example, we have that

{1, 3} S©〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

The filtering function T© may be understood as a generalisation of S©. The func-
tion T© filters pairs of sequences with respect to pairs of elements in the same way
as S© filters sequences with respect to elements. For any set of pairs of elements
P and pair of sequences t , by P T© t we denote the pair of sequences obtained
from t by

– truncating the longest sequence in t at the length of the shortest sequence
in t if the two sequences are of unequal length;

– for each j ∈ [1, . . . , k], where k is the length of the shortest sequence in
t , selecting or deleting the two elements at index j in the two sequences,
depending on whether the pair of these elements is in the set P .

For example, we have that

(1, f), (1, g) T©(〈1, 1, 2, 1, 2〉, 〈f , f , f , g, g〉) = (〈1, 1, 1〉, 〈f , f , g〉)

8 Gyrd Brændeland and Ketil Stølen

Parallel execution of trace sets is defined as:

s1 ⊗ s2
def
= {h ∈ H | ∃ p ∈ {1, 2}∞ : π2(({1} × E T©(p, h))) ∈ s1 ∧

π2(({2} × E T©(p, h))) ∈ s2}

In this definition, we make use of an oracle, the infinite sequence p, to resolve
the non-determinism in the interleaving. It determines the order in which events
from traces in s1 and s2 are sequenced. π2 is a projection operator returning the
second element of a pair.

Given two components K1 and K2 with distinct component identifiers (life-
lines). By K1 ⊗ K2 we denote their composition. Semantically, composition is
defined as follows:

[[K1 ⊗ K2]] = [[K1]] ⊗ [[K2]]

where for all interaction obligations (p1,n1), (p2,n2) we define

(p1,n1) ⊗ (p2,n2)
def
= (p1 ⊗ p2, (n1 ⊗ p2) ∪ (n1 ⊗ n2) ∪ (p1 ⊗ n2))

Note how any trace involving a negative trace will remain negative in the result-
ing interaction obligation.

We also introduce a hiding operator δ that hides all behaviour of a component
which is internal with regard to a set of lifelines L. Formally

[[δL : K]]
def
= (δL : π1.[[K]], δL : π2.[[K]])

where for a set of traces H and a trace h

δL : H
def
= {δL : h | h ∈ H }

δL : h
def
= {e ∈ E | re.e 6∈ L ∨ tr .e 6∈ L} S© h

where the functions tr .e and re.e yields the transmitter and receiver of an event.
Finally we define composition with hiding of local interaction as:

K1 ⊕ K2

def
= δ(ll .[[K1]] ∪ ll .[[K2]]) : K1 ⊗ K2

where the function ll yields the set of lifelines of an interaction obligation.

7 Generalising the Semantics to Support Unpredictability

As explained by Zakinthinos and Lee [26], the purpose of a confidentiality prop-
erty is to prevent low level users from being able to make deductions about
the events of the high level users. A confidentiality property will often typically
require nondeterministic behaviour (unpredictability) to achieve this. Unpre-
dictability in the form of non-determinism is known to be problematic in re-
lation to specifications because non-determinism is also often used to represent

A Paradigm for Component-Based Specification Integrating Security Risk 9

underspecification and when underspecification is refined away during system de-
velopment we may easily also reduce the required unpredictability and thereby
reduce security. For this reason, STAIRS (as explained carefully by Seehusen and
Stølen [21]) distinguishes between mandatory and potential choice. Mandatory
choice is used to capture unpredictability while potential choice captures under-
specification. One of the main concerns in STAIRS is the ability to distinguish
between traces that an implementation may exhibit (e.g. due to underspecifica-
tion), and traces that it must exhibit (e.g. due to unpredictability). Semantically,
this distinction is captured by stating that the semantics of an interaction d is
a set of interaction obligations [[d]] = {(p1,n1), . . . , (pm ,nm)}. Intuitively, the
traces allowed by an interaction obligation (i.e. its positive and inconclusive
traces) represent potential alternatives, where being able to produce only one of
these traces is sufficient for an implementation. On the other hand, the different
interaction obligations represent mandatory alternatives, each obligation speci-
fying traces where at least one must be possible for any correct implementation
of the specification.

We adapt the definition of a basic component to allow mandatory behaviour
alternatives as follows: The denotation [[K]] of a basic component is a set of
interaction obligations over some set of events EK . We also lift the definition of
composition to handle unpredictability by point-wise composition of interaction
obligations

[[K1 ⊗ K2]]
def
= {o1 ⊗ o2 | o1 ∈ [[K1]] ∧ o2 ∈ [[K2]]}

The δ operator is overloaded to sets of interaction obligations:

[[δL : K]]
def
= {[[δL : o]] | o ∈ [[K]]}

and composition with hiding is defined as before.

8 Relating Security Risk to the Semantic Paradigm

Having introduced the underlying semantic component paradigm and formalised
unpredictability, the next step is to relate this paradigm to the main notions of
security analysis and generalise the paradigm to the extent this is necessary.
The purpose of extending the component model with security analysis concepts
is to be able to specify security risks and document security analysis results of
components. This facilitates integration of security analysis into the early stages
of component-based system development. Security analysis documentation pro-
vides information about the risk level of the component with regard to its assets,
i.e., the probability of behaviour leading to reduction of asset values. At this point
we do not concern ourselves with how to obtain such security analysis results.
We refer to [1] for an evaluation of an integrated process, applying the semantic
paradigm. In the following we focus on how security analysis concepts can be
understood in a component-setting and how they can be represented formally. In
Sections 8.1– 8.4 we explain how the security analysis concepts of Figure 1 may
be understood in a component setting. In Section 8.5 we formalise the required
extensions of the semantic paradigm.

10 Gyrd Brændeland and Ketil Stølen

8.1 Representing Stakeholders and Threats

We represent stakeholders as lifelines, since the stakeholders of a component can
be understood as entities interacting with it via its interfaces. We also represent
threats as lifelines. A threat can be external (e.g. hackers or viruses) or internal
(e.g. system failures). An internal threat of a component is a sub-component,
represented by a lifeline or a set of lifelines. An external threat may initiate
a threat scenario by calling an operation of one of the component’s external
interfaces.

8.2 Representing Assets

For each of its stakeholders a component holds a (possibly empty) set of assets.
An asset is a physical or conceptual entity of value for a stakeholder. There are
different strategies we can choose for representing assets, their initial values and
the change in asset values over time: Represent assets (1) as variables and add an
operator for assignment; (2) as data using extensions to STAIRS introduced by
Runde et al. [19] or (3) as lifelines indicating the change in asset value through
the reception of special messages. We have chosen the latter because it keeps
our semantics simpler (we do not have to add new concepts) and provides the
same extent of expressive power as the other alternatives. Formally an asset is a
triple (a, c,V) of an asset lifeline a, a basic component lifeline c and an initial
value V . In a trace we represent the reduction of asset value by a special kind
of message called reduce, which takes as argument the amount by which the
asset value should be reduced. The value of an asset at a given point in time
is computed by looking at its initial value and all occurrences of reduce, with
the asset as receiver, up to that point in the trace. Events on the lifeline of an
asset can only be receptions of reduce messages. The value of an asset can not
go below zero.

8.3 Representing Vulnerabilities

As pointed out by Verdon and McGraw [25] vulnerabilities can be divided into
two basic categories: flaws, which are design level problems, and bugs, which
are implementation level problems. When conducting security analysis during
the early stages of system development, the vulnerabilities that can be detected
are of the former type. I.e., a vulnerability is a weakness in the component
specification, allowing interactions that can be exploited by threats to cause
harm to assets.

8.4 Representing Incidents and Risks

As explained in Section 2 an information security incident is an unexpected or
unwanted event that might compromise information security. In a component
setting we can represent security incidents in the same manner as we represent
normal behaviour; by sets of traces. A risk is measured in terms of the probability

A Paradigm for Component-Based Specification Integrating Security Risk 11

and consequence of an information security incident. Hence, in order to represent
risks we need to be able to represent the probability of a set of traces constituting
an information security incident and its consequence.

Inspired by Refsdal et al. [17] in our semantic model we represent this set
of traces by a so called risk obligation. A risk obligation is a generalisation of
an interaction obligation. Formally a risk obligation is a triple (o,Q ,A) of an
interaction obligation o, a set of probabilities Q and a set of assets A. The
probability of the risk is an element of Q . We operate with a set of probabilities
instead of a single probability to allow the probability to range freely within an
interval.

Example 2. Figure 5 illustrates how we can specify a risk in accordance with
the extensions to the semantic paradigm, described above. As most dynamic
web applications, the login component pass data on to a subsystem. This may
be an SQL data base or a component interacting with a database. If the system
is not protected against SQL injection an attacker can modify or add queries
that are sent to a database by crafting input to the web application. The attack
example is from Sverre H. Huseby’s [8] book on web-server security.

The sequence diagram in Figure 5 shows the interactions of a hacker using a
modified query to attempt an SQL injection and the login lifeline receiving the
query. Instead of a password the hacker writes a double hyphen (- -). Unless the

p > 0.16

p <= 0.16

reduce($50)

:ILogin
:UserName

Value=k

login(id,--)

fail

login(id,--)

authenticate(id,--)

ok

:IHacker

authenticate(id,--)

fail

palt

session

sd LoginFraud($ k)

Fig. 5. Login without password using SQL injection

system is programmed to handle such metacharacters in a secure manner, this
has the effect that the test for a matching password is inactivated allowing the
hacker to login with only a user name. We have assigned the asset UserName

to the basic component ILogin. As the sequence diagram illustrates an example
run, we assume the initial asset value has been set elsewhere and parameterise
the specification with the asset value k of type $. If the SQL attack is successful
the asset value is reduced with $50.

12 Gyrd Brændeland and Ketil Stølen

We specify the risk as a probabilistic choice between the scenario where the
attack is successful and the scenario where it fails. Probabilistic STAIRS [17] uses
the palt construct to specify probabilistic alternatives, as illustrated in Figure 5.

In order to estimate the probability of a successful login using SQL injection,
we must know both the probability of an attack (threat probability) and the
probability of the success of an attack (degree of vulnerability), given that an
attack is attempted. We assume that an attack has been estimated to have a
0.2 probability. The probability that the attack will be successful is determined
from looking at the system’s existing vulnerabilities, such as lack of control
mechanisms. In the example there is not specified any protection mechanisms
against attempt at SQL injection. The probability of success given an attack is
therefore estimated as high: 0.8. The alternative to the risk is that the modified
query is rejected, and hence the asset value is not reduced. The consequence
of the risk is the loss of $50 in asset value. We multiply the probability of an
attack with the probability of its success to obtain the total probability of the
risk. Hence, the probability of a successful false login is 0.2 ∗ 0.8 = 0.16.

2

8.5 Generalising the Paradigm to Support Security Risk

Above we have outlined the relation between security risks as described in Fig-
ure 1 and our semantic paradigm. We now go on to adapt the semantic paradigm
to capture this understanding formally.

In order to allow assignment of probabilities to trace sets, we represent basic
components by sets of risk obligations instead of sets of interaction obligations.
Moreover, contrary to earlier a basic component may now have more than one
lifeline, namely the lifeline of the component itself and one additional lifeline for
each of its assets. Hence, the denotation [[K]] of a basic component K is a set of
risk obligations. Composition of components is defined point-wise as previously,
i.e.:

[[K1 ⊗ K2]]
def
= {r1 ⊗ r2 | r1 ∈ [[K1]] ∧ r2 ∈ [[K2]]}

Composition of risk obligations is defined as follows

(o1,Q1,A1) ⊗ (o1,Q1,A2)
def
= (o1 ⊗ o2,Q1 ∗ Q2,A1 ∪ A2)

where

Q1 ∗Q2

def
= {q1 ∗ q2 | q1 ∈ Q1 ∧ q2 ∈ Q2}

and ∗ is the multiplication operator. The use of the ⊗-operator requires that K1

and K2 are described independently as components. In STAIRS the ⊗ operator
corresponds to parallel composition (||) (which is the same as % since K1 and
K2 have disjoint lifelines). The scenario described in Figure 5 involves the palt

construct, which imposes a global constraint on the interactions between the

A Paradigm for Component-Based Specification Integrating Security Risk 13

hacker and the login lifelines. Calculating the semantics of the overall scenario
involves the use of several additional operators. See [6,5] for further details.

We also update the hiding operator δ to ensure that external assets are not
hidden. An asset is external if it is associated with the interfaces of a basic
component that has externally visible behaviour. We define the function AExt to
yield the external assets with regard to a set of assets A, a set of basic component
lifelines L and an interaction obligation o:

AExt(A,L, o)
def
= {a ∈ A | π2.a ∈ ll .δL : o}

Given a component K and a set of basic component lifelines L, at the component
level hiding is defined as the pointwise application of the hiding operator to each
risk obligation:

[[δL : K]]
def
= {δL : r | r ∈ [[K]]}

where hiding at the level of risk obligation is defined as:

δL : (o,Q ,A)
def
= (δ(L \ AExt(A,L, o)) : o,Q ,AExt(A,L, o))

Composition with hiding is defined as before.

9 Related Work

Fenton and Neil [4] addresses the problem of predicting risks related to introduc-
ing a new component into a system, by applying Bayesian networks to analyse
failure probabilities of components. They combine quantitative and qualitative
evidence concerning the reliability of a component and use Bayesian networks
to calculate the overall failure probability. Although Fenton and Neil address
the same problem as we do, the focus is different. At this point we do not con-
cern ourselves with how the security analysis results are obtained. Rather than
focusing on the process we look at how the results of security analysis can be
represented at the component level to facilitate composition of security analysis
results in a development process.

There are a number of proposals to integrate security requirements into
the requirements specification, such as for example in SecureUML [16] and in
UMLsec [13]. SecureUML is a method for modelling access control policies and
their integration into model-driven software development. SecureUML is based
on role-based access control and models security requirements for well-behaved
applications in predictable environments. UMLsec is an extension to UML that
enables the modelling of security-related features such as confidentiality and
access control. These approaches have no particular focus on component-based
specification. One approach that has a particular focus on component security
is the security characterisation framework proposed by Khan and Han [14] to
characterise and certify the security properties of components as a basis for de-
riving system-level risks during the deployment phase. These methods focus on

14 Gyrd Brændeland and Ketil Stølen

specifying security properties of systems which is orthogonal to what we do.
They include no notion of risk or probability. Rather than specifying security
properties of systems, we focus on representing risks, i.e., we integrate the docu-
mentation of the probability that unwanted behaviour may occur into component
specifications.

10 Conclusion

We have provided a semantic paradigm for component-based specifications ex-
plaining: basic components with provided and required interfaces; the compo-
sition of components into composite components and unpredictability which is
often required to characterise confidentiality properties. Furthermore we have
extended the semantic paradigm with the notion of security risk as known from
asset-oriented security analysis. Figure 6 summarises the relations between the
conceptual component model and security assessment concepts: A component

Probability

Threat

StakeholderRisk
* 1

1
1

Asset value

1

1

Basic

Component
Interface

Composite

Component

*

1

2..*

* *

*

*

*

1..*
*

1

1

*

1

1

1..*

* Affects ►Provides ►

Provides ►

Requires ►

Requires ►

◄Interact

◄Threaten

1

1

11

*

1

Name

Type

Operation

Causes ▼

▲Values

Consequence

Asset
1..*

Vulnerability Weakens►

* 1

1..*
*

*
*

▲Exploits

*

Affects ►

Fig. 6. Integrated conceptual model of a component risk specification

holds a set of assets that has value for its stakeholders. We limit the notion of a
stakeholder to that of a component client or supplier interacting with it through
its interfaces. We represent threats as lifelines that may interact with a compo-
nent through its interface. There is a one-to-one association between an interface
on the one hand and stakeholder and threat on the other, as a component in-
terface can interact with one stakeholder or threat at a time. A vulnerability
is represented implicitly as an interaction that may be exploited by a threat to
cause harm to a components assets. Instead of representing the two concepts of
information security incident and risk, we represent only the concept of a risk
as a probabilistic interaction leading to the reduction of an asset value. In the
extended component model we associate a threat directly with a risk, as someone
or something that may initiate a risk.

The formal representation of security analysis results at the component-level
allows us to specify security risks and document security analysis results of com-
ponents. This is a step towards integration of security analysis into the system

A Paradigm for Component-Based Specification Integrating Security Risk 15

development process. Component-based security analysis can be conducted on
the basis of requirement specification in parallel with conventional analysis. If
new components are accompanied by security risk analysis, we do not need to
carry out a security analysis from scratch each time a system is upgraded with
new components, but can apply rules for composition to update the security risk
analysis.

Acknowledgements

The research on which this paper reports has been funded by the Research
Council of Norway via the two research projects COMA 160317 (Component-
oriented model-based security analysis) and SECURIS (152839/220).

References

1. G. Brændeland and K. Stølen. Using model-based security analysis in component-
oriented system development. A case-based evaluation. To appear in Proceedings
of the second Workshop on Quality of Protection (QoP’06), 2006.

2. J. Cheesman and J. Daniels. UML Components. A simple process for specifying
component-based software. Component software series. Addison-Wesley, 2001.

3. F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stølen, and J. Ø.
Aagedal. UML and the Unified Process, chapter The CORAS methodology: model-
based risk management using UML and UP, pages 332–357. IRM Press, 2003.

4. N. Fenton and M. Neil. Combining evidence in risk analysis using bayesian net-
works. Agena White Paper W0704/01, 2004.

5. Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. Why timed sequence di-
agrams require three-event semantics. Technical Report 309, University of Oslo,
Department of Informatics, 2004.

6. Ø. Haugen and K. Stølen. STAIRS – steps to analyze interactions with refinement
semantics. In UML, volume 2863 of Lecture Notes in Computer Science, pages
388–402. Springer, 2003.

7. I. Hogganvik and K. Stølen. On the comprehension of security risk scenarios.
In 13th International Workshop on Program Comprehension (IWPC 2005), pages
115–124. IEEE Computer Society, 2005.

8. S. H. Huseby. Innocent code. A security wake-up call for web programmers. Wiley,
2004.

9. ISO/IEC. Information technology – Code of practice for information security man-
agement. ISO/IEC 17799:2000.

10. ISO/IEC. Risk management – Vocabulary – Guidelines for use in standards, 2002.
ISO/IEC Guide 73:2002.

11. ISO/IEC. Information Technology – Security techniques – Management of infor-
mation and communications technology security – Part 1: Concepts and models for
information and communications technology security management, 2004. ISO/IEC
13335-1:2004.

12. A. Jøsang and S. L. Presti. Analysing the relationship between risk and trust. In
Trust Management. Proceedings of Second International Conference, iTrust 2004,
Oxford UK, volume 2995 of Lecture Notes in Computer Science, pages 135–145.
Springer, 2004.

16 Gyrd Brændeland and Ketil Stølen

13. J. Jürjens, editor. Secure systems develoment with UML. Springer, 2005.
14. K. M. Khan and J. Han. A process framework for characterising security prop-

erties of component-based software systems. In Australian Software Engineering
Conference, pages 358–367. IEEE Computer Society, 2004.

15. K.-K. Lau and Z. Wang. A taxonomy of software component models. In Proc. 31st
Euromicro Conference, pages 88–95. IEEE Computer Society Press, 2005.

16. T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-based modeling
language for model-driven security. In UML, volume 2460 of Lecture Notes in
Computer Science, pages 426–441. Springer, 2002.

17. A. Refsdal, R. K. Runde, and K. Stølen. Underspecification, inherent nondetermin-
ism and probability in sequence diagrams. In FMOODS, volume 4037 of Lecture
Notes in Computer Science, pages 138–155. Springer, 2006.

18. J. Rumbaugh, I. Jacobsen, and G. Booch. The unified modeling language reference
manual. Addison-Wesley, 2005.

19. R. K. Runde, Ø. Haugen, and K. Stølen. Refining UML interactions with under-
specification and nondeterminism. Nordic Journal of Computing, 2005.

20. Winamp skin file arbitrary code execution vulnerability. Secunia Advisory:
SA12381. Secunia, 2006.

21. F. Seehusen and K. Stølen. Information flow property preserving transformation
of uml interaction diagrams. In 11th ACM Symposium on Access Control Models
and Technologies (SACMAT 2006), pages 150–159. ACM, 2006.

22. Standards Australia, Standards New Zealand. Australian/New Zealand Standard.
Risk Management, 2004. AS/NZS 4360:2004.

23. Standards Australia, Standards New Zealand. Information security risk manage-
ment guidelines, 2004. HB 231:2004.

24. C. Szyperski and C. Pfister. Workshop on component-oriented programming. In
M. Mülhauser, editor, Special Issues in Object-Oriented Programming – ECOOP’96
Workshop Reader, pages 127–130. dpunkt Verlag, 1997.

25. D. Verdon and G. McGraw. Risk analysis in software design. IEEE Security &
Privacy, 2(4):79–84, 2004.

26. A. Zakinthinos and E. S. Lee. A general theory of security properties. In IEEE
Symposium on Security and Privacy, pages 94–102. IEEE Computer Society, 1997.

	forside_test.pdf
	Pages from 050628.report309.pdf
	fast11_brendeland.pdf

