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Abstract
Hemochromatosis is a hereditary disorder, most often associated with mutations of the HFE (High FErrum) gene. If left 
untreated, it can result in severe parenchymal iron accumulation. Bloodletting is the mainstay treatment. We have previously 
shown that treatment of hemochromatosis by repeated bloodlettings may induce changes in the serum levels of several trace 
elements. The aim of this work was to evaluate if whole blood concentrations of the environmental pollutants lead (Pb), 
mercury (Hg), and cadmium (Cd) could be affected by bloodlettings. We recruited 28 patients and 21 healthy individuals 
(control group). Whole blood and urine levels of Pb, Hg, and Cd were measured before the start and after the completion of 
treatment using inductively coupled plasma mass spectrometry, together with serum iron and liver function tests. Concentra-
tions of blood Pb, but not Hg or Cd, were significantly increased after treatment. The increase in Pb was higher in C282Y 
homozygous patients than in the other patients, and it was positively correlated with the serum concentration of alkaline 
phosphatase. Bloodlettings in hemochromatosis result in an increase in the blood concentration of Pb. Augmented absorp-
tion due to iron loss or Pb mobilization from bone may contribute to the higher blood Pb level.
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Introduction

Hemochromatosis is an inherited iron overload disorder 
characterized by excessive absorption of iron caused by defi-
ciency of hepcidin [1]. It is the most common hereditary dis-
order in the Nordic countries [2]. Permanently increased iron 
(Fe) uptake from the gut results in iron accumulation and 
overload, leading to severe parenchymal damage, particu-
larly in the liver and the heart, joints, and other organs [3]. 
If left untreated, the disorder may result in a lethal outcome.

Different types of hereditary hemochromatosis are defined 
by the specific mutation involved [3]. In most cases, the disorder 
is associated with mutations of the High FErrum (HFE) gene. 
Homozygosity for C282Y is the most prevalent variant in patients 
with symptoms, although other variants like H63D homozygosity 
or compound heterozygosity C282Y/H63D may contribute to dis-
ease manifestations [4]. Routine treatment involves bloodlettings 
of 450–500 mL weekly, up to 20–40 times, to remove excess iron 
from the body. After normalization of iron parameters, patients 
need maintenance blood lettings throughout their lives [5, 6].

The pathogenetic mechanisms of hemochromatosis are 
not fully understood. The genetic mutations have variable 
phenotypic penetrance, and the development of clinical 
symptoms seems to be modulated by yet unknown factors 
[6, 7]. Although it is not a gender-specific disease, the symp-
toms occur more often in male patients [8]. In women, clini-
cal symptoms are usually presented later because of blood 
loss experienced with menstruation and childbirth.

Multiple interrelationships between serum levels of iron and 
various trace elements have been demonstrated [9, 10]. Distur-
bances in iron metabolism may affect the metabolism of metals 
other than iron [9, 11–14]. Iron-binding proteins like transferrin 
and ferritin can bind other metals in addition to iron [15–20].
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Barton et al. [21] found that hemochromatosis patients, espe-
cially homozygotes, absorb increased quantities of lead. In con-
trast, Åkesson [12] demonstrated that blood concentrations of 
cadmium, but not lead, were significantly higher in bloodletted 
hemochromatosis patients than in paired controls. The reason 
for this discrepancy is not clear. Beyond these and our previous 
study [22], we have found no other report on the effects of blood-
lettings on trace element status in hemochromatosis patients.

The aim of this study was to see if bloodlettings in hemo-
chromatosis patients affect whole blood concentrations of 
the environmental pollutants lead (Pb), mercury (Hg), and 
cadmium (Cd). We recruited untreated patients and com-
pared pre-phlebotomy blood concentrations with post-phle-
botomy values in the same individuals using a prospective, 
pairwise design. In addition, a group of healthy persons 
without hemochromatosis and not subject to bloodlettings 
were included as controls.

Materials and Methods

Reagents

Seronorm™ Trace Elements Whole Blood controls were 
obtained from SERO AS (Billingstad, Norway). HNO3 and 
Triton® X-100 were purchased from Merck (KGaA, Darm-
stadt, Germany) and gold from PerkinElmer Inc. (Shelton, 
Connecticut, USA).

Subject Selection

Twenty-eight patients and twenty-one healthy individuals (con-
trols) were recruited (Fig. 1). For prospective pairwise compari-
sons, samples from the patients were analyzed before the start 
and after the completion of treatment (bloodlettings) aimed at 
normalizing serum iron parameters. Exclusion criteria were age 
less than 18 years, other bloodletting or transfusion within the 
last 3 months, concurrent disease, pregnancy, installed osteo-
synthesis materials (e.g., after fractures), or other metal items.

Informed Consent

The study was approved by the Regional Committee for Medi-
cal and Health Research Ethics, Western Norway (REC no. 
220.05). Informed consent was obtained from patients referred 
by their doctors to the hemochromatosis outpatients’ clinics at 
Haukeland University Hospital, Bergen and Oslo University 
Hospital, Oslo, Norway, and from control persons.

Blood and Urine Collection

All the patients were treated with venesection of 450 mL 
blood either weekly or every alternate week until 

normalization of iron parameters, which could take up to 
24 bloodlettings. Blood samples were collected for trace 
element and hematological analyses and serum samples 
for iron status and clinical chemistry measurements. Urine 
samples were also collected for most of the patients. Clini-
cal chemistry and hematological analyses were done as 
described previously [22]. Transferrin iron saturation 
(Tfsat) was calculated as the molar ratio between serum 
iron and total iron binding capacity (TIBC).

Trace Element Analysis and Analytical Quality 
Control

Whole blood samples were collected on BD Vacutainer K2 
EDTA Trace Elements (Puls Norge, Oslo). Prior to analy-
sis, the samples were diluted 1:25 with 0.33% v/v (volume 
per volume) HNO3, 0.1% v/v Triton® X-100, and 0.5 ppm 
gold. Trace elements were measured by inductively-cou-
pled plasma mass spectrometry (ICP-MS) on Perkin Elmer 
ELAN DRC-e (PerkinElmer, Toronto, Canada) using a 
standard mode [22, 23]. The lower limits of quantification 
(LQ) were defined as five times the within-day analytical 
standard deviation, as determined by 20 measurements 
in a sample pool—this gives a theoretical coefficient of 
variation of 20% for LQ [24]. LQ for Pb, Hg, and Cd was 
0.01 μmol/L, 4.7 nmol/L, and 1.6 nmol/L, respectively.

The between-run analytical coefficients of variation 
for Pb, Hg, and Cd, as determined in Seronorm Trace 
Elements Wholeblood Level 1, were 3%, 10%, and 10%, 
respectively. All analyses complied with assigned values 
for Seronorm Trace Elements Wholeblood Level 1, 2, and 
3. Urine metal concentrations are given as the molar ratio 
urine metal/urine creatinine concentration [25].
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Fig. 1   Age and sex distribution of subjects
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Statistical Analysis

The concentrations of trace elements and other variables before 
the start and after the completion of treatment were compared 
using related samples Wilcoxon signed-rank test. All paired 
analyses were done in the same analytical run. Correlation 
coefficients were calculated as Spearman’s rho. Other compari-
sons were done as stated to the text and tables. In our calcula-
tions, the genotypes were dichotomized to C282Y homozygote 
vs. all other genotypes. All statistical analyses were performed 
with IBM SPSS Statistics Version 25 (IBM Corp., Armonk, 
NY). GraphPad Prism 6.0 for Mac (GraphPad Software, San 
Diego, CA, USA) was used for preparing the figures.

Results

Figure 1 and Supplementary Table 1 present the subject 
demographics. As could be expected [8], the number of male 
patients (n = 24) was higher than that of female patients (n = 4), 
in contrast to the control group (males = 10; females = 11). 

The age group of 60–79 years presented the lowest number of 
participants for both the patient group (n = 5) and the control 
group (n = 3). The group-wise scatter plots of blood Pb, Cd, 
and Hg by age are shown in Supplementary Fig. 1.

Genotypes of the patients are shown in Fig. 2. Half of the 
patients had C282Y mutation (homozygote = 13; heterozy-
gote = 1). Two male patients had raised iron parameters but 
no HFE mutation; in these cases, the clinical diagnosis of 
hemochromatosis with iron overload was confirmed by toler-
ance to repeated therapeutic bloodlettings.

Table 1 summarizes the correlations among iron status (as 
represented by ferritin), hemoglobin (Hb), and clinical chemistry 
variables in the patients before and after the treatment, as well 
as those in the control group. In patients not yet subjected to 
bloodletting, ferritin levels were significantly correlated with Hb 
(r = 0.439), gamma-glutamyltransferase (GGT, r = 0.610), and 
alanine aminotransferase (ALT, r = 0.791). After bloodlettings, 
a significant correlation to ferritin was found for only creatinine 
(r =  − 0.407). In the control group, there were significant posi-
tive correlations of ferritin with three parameters: Hb (r = 0.515), 
GGT (r = 0.468), and alkaline phosphatase (ALP, r = 0.593).

Correlations of the abovementioned variables with trace 
elements are shown in Table 2. Before bloodlettings, signifi-
cantly positive associations were observed between Pb and 
the liver enzymes GGT (r = 0.477) and ALP (r = 0.388). Of 
these, only the correlation between Pb and ALP (r = 0.465) 
persisted after bloodlettings. There was no significant correla-
tion between Pb and iron status. There were negative correla-
tions of Hg levels with some iron parameters, and Hg levels 
were significantly correlated with serum creatinine levels in 
all the groups. Cd was negatively correlated with TIBC both 
before (r =  − 0.593) and after (r =  − 0.615) the bloodlettings. 
These and other correlations are shown in Table 2.

Table 3 shows the correlations among trace elements. In 
the control group, the levels of Pb were significantly asso-
ciated with those of Cd in the blood (r = 0.922) and urine 
(r = 0.693); however, in the patient group, this association 
was found only in the urine after treatment (r = 0.674). 
Blood Pb was also correlated with Hg in untreated patients 
(r = 0.514) and in controls (r = 0.688).

The results from paired comparisons of iron status, Hb 
levels, and clinical chemistry variables in patient and control 
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Fig. 2   Distribution of genotypes by gender

Table 1   Correlations among variables. Correlation (Spearman’s rho coefficients) of serum ferritin with Hb and liver function test parameters in 
patients before and after bloodletting and in the control group

* p < 0.05
** p < 0.01
The significant p values have been highlighted in bold fonts

Bloodletted? n Hb Creatinine GGT​ ALT ALP

Ferritin No 28 0.439* 0.477 0.610** 0.791** 0.351
Yes 28 0.294  − 0.407* 0.356  − 0.262  − 0.192
Control 21 0.515* 0.168 0.468* 0.410 0.593**
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groups are provided in Table 4 (p values in Supplemen-
tary Table 2). Iron status (iron, TIBC, ferritin, and Tfsat) 
of untreated patients was significantly different from con-
trols, and bloodletting changed it significantly in the patient 
group. There was a significant difference between untreated 
patients and controls for iron status, Hb, and ALT. GGT 
levels differed significantly between controls and patients, 
both before and after treatment. As shown in Table 5, Pb in 
blood increased by 26% (median, p < 0.001) after the blood-
lettings. In addition, Pb levels were significantly higher in 
the treated patients than in the control group (p values in 
Supplementary Table 3).

Table 6 shows the increase in blood Pb by genotypes. 
The increase was higher in C282Y homozygote patients 
than in patients with other genotypes (Table 7, p = 0.048). 
Among other pre-treatment variables, only ALP was signifi-
cantly correlated with the increase in blood Pb (p < 0.001, 
Table 7). The relation between ALP and the increase in Pb 
is shown in Fig. 3.

Discussion

Toxic Metals

In this work, we demonstrate that bloodlettings performed 
to eliminate iron overload in hemochromatosis patients 
increase the concentration of Pb in blood. The concurrent 
increase in the concentration of Cd was not statistically sig-
nificant, whereas Hg levels were not affected by the blood-
lettings (Table 5 and Supplementary Table 3). The findings 
are in line with those of our previous study, which showed 
that several other trace elements in the serum might be influ-
enced by bloodlettings [22]. Åkesson et al. [12] observed 

that both Cd and Pb levels increased after phlebotomy in 
hemochromatosis patients; however, the increase was sta-
tistically significant only for Cd. The discrepancy between 
Åkesson’s and our results might have been caused by the 
limited number of participants in both studies. In our study, 
the number of male patients (n = 24) was higher than that of 
female patients (n = 4), such uneven gender distribution has 
been previously reported [8].

To our knowledge, no other publication has attempted to 
show the effects of bloodletting therapy on micromineral 

Table 2   Correlations among variables. Correlation (Spearman’s rho coefficients) of trace metal concentrations with Hb, liver function test 
parameters, and iron profiles in patients before and after bloodletting and in the control group

* p < 0.05
** p < 0.01
1 Results below limit of quantification excluded
The significant p values have been highlighted in bold fonts

Bloodletted? n Iron TIBC Ferritin Hb Tfsat Creat GGT​ ALT ALP

Pb No 28  − 0.269 0.120 0.195 0.329  − 0.308 0.095 0.477* 0.194 0.388*
Yes 28  − 0.028  − 0.230  − 0.008 0.450*  − 0.070  − 0.092 0.152  − 0.013 0.465*
Control 20 0.307 0.161  − 0.037 0.145 0.300 0.120 0.397 0.451* 0.217

Hg1 No 22  − 0.510* 0.232 0.016 0.249  − 0.481* 0.431* 0.401 0.111 0.032
Yes 22 0.108 0.202  − 0.445* 0.056  − 0.014 0.614** 0.453*  − 0.006 0.231
Control 16  − 0.031  − 0.187 0.394 0.436 0.124 0.538* 0.438 0.530* 0.436

Cd1 No 18  − 0.119  − 0.593** 0.138 0.287 0.007 0.043 0.081 0.050 0.542*
Yes 20  − 0.255  − 0.615**  − 0.078  − 0.015  − 0.070  − 0.001  − 0.109 0.011 0.376
Control 8 0.310 0.108  − 0.357 0.190 0.286  − 0.071 0.263 0.095 0.095

Table 3   Correlations among variables. Correlation (Spearman’s rho 
coefficients) between trace metal concentrations in patients before 
and after bloodletting and in the control group

* p < 0.05
** p < 0.01
† Spearman’s rho coefficients (n)
NA, not available
Results below limit of quantification excluded
The significant p values have been highlighted in bold fonts

Bloodletted? Hg (n)† Cd (n)†

Blood Pb No 0.514* (22) 0.407(18)
Yes 0.182 (22) 0.448 (20)
Control 0.688** (16) 0.922** (8)

Hg No 0.159 (15)
Yes  − 0.388 (16)
Control 0.760 (7)

Urine Pb No NA 0.454 (15)
Yes NA 0.674** (16)
Control 0.394 (10) 0.693* (19)

Hg No NA (2)
Yes NA (1)
Control 0.083 (9)
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homeostasis in hemochromatosis patients. However, sev-
eral investigations have revealed associations between iron 
and various microelements [9, 10, 26]. The observation that 
the blood concentration of Pb was influenced by bloodlet-
tings (Table 5) may be partly explained by the associations 
between HFE mutations and blood Pb levels [27–29]. It has 
been reported that hemochromatosis patients, especially 
homozygotes, absorb increased quantities of Pb compared 
to normal persons [21]. In line with this, our patients with 
the homozygote genotype C282Y mutation presented a 
higher increase in blood Pb concentration than the other 

patients (Tables 6 and 7). The adverse health effects of Pb, 
even at very low blood levels, are well-known [30–34]. 
Although the concentrations of Pb reported in this study 
were low, adverse effects of increased Pb absorption or 
mobilization cannot be ruled out.

Hg was detected in the blood samples of all participants. In 
contrast to Pb, the Hg concentration was not affected by the 
treatment (Table 5 and Supplementary Table 3). Due to global 
contamination, Hg is generally present in humans. Fish and 
seafood are the leading sources of Hg exposure [35], espe-
cially in societies with high consumption, like the Nordic 

Table 4   Paired comparisons of 
serum iron profiles, Hb, serum 
creatinine, and liver function 
test parameters in patients and 
controls

b

a

Control

Patient

Before 

bloodletting

After 

bloodletting

Relative 

change in 

median (%)

n

Median (n)

Range

(SD)

Median

Range

(SD)

Iron

(µmol/L)

15.9 (21)

10.1 – 38.2

(7.16)

27.8

12.0 – 47.7

(9.1)

22.5

9.0 – 42.2

(9.3)

-19 28

TIBC 

(µmol/L)

67 (21)

55 – 89

(8.16)

53.0

40.0 – 68.0

(7.2)

61.5

43.0 – 93.0

(11.1)

16 28

Ferritin 

(µg/L)

65 (21)

9 – 514

(113)

527

249 – 2555

(443)

62

18 – 346

(87)

-88 28

Hemoglobin 

(g/dL)

14.1 (21)

11.8 – 17.0

(1.49)

15.22

12.8 – 17.2

(1.1)

14.85

12.7 – 17.3

(1.26)

- 2 28

Tfsat (%) 22.7 (21)

14 – 57

(11.4)

48.6

22.2 – 86.1

(18.6)

34.4

13.3 – 79.2

(18.0)

-29 28

Creatinine 

(µmol/L)

73 (20)

58 – 96

(9.8)

77

50 – 135

(17.5)

79

51 – 112

(15.4)

3 27

GGT (U/L) 16.0 (21)

7 – 32

(6.5)

33

12 – 139

(31.6)

33

13 – 199

(37.7)

0 27

ALP (U/L) 61 (21)

43 – 144

(22)

69

43 – 105

(17.6)

73

42 – 97

(15.5)

6 25

ALT (U/L) 21 (21)

10 – 54

(10.3)

35

9 – 180

(44.1)

28

9 – 223

(44.0)

-20 28

b

a

a b

a

a b

a

a

a

a Independent samples Mann–Whitney U test for inter-group comparisons
b Related samples Wilcoxon signed-rank test for paired comparisons
Letters (a or b) above groups denote significant differences. Supplementary Table 2 provides the p values
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countries [36]. The median Cd concentration was higher after 
the bloodlettings than before in both blood and urine (Table 5 
and Supplementary Table 3), although the difference was not 
statistically significant. However, Cd concentration in the 
patients was highly dispersed, much more than in the control 
persons. There was a significant correlation between Pb and 
Hg levels in the blood (Table 3). Pb was also correlated with 
Cd in the controls (Table 3). Correlations among Hg, Pb, and 
Cd in the general population have been assumed to be due to 
common exposure sources and accumulation in the body [37].

Cd was negatively correlated with TIBC in untreated and 
treated individuals (Table 2). A similar negative correlation 
between blood Cd and iron status was reported previously 
[38–41]. Cd levels may increase under iron overload condi-
tions [42].

Liver Function Tests

Pb concentration before the bloodlettings was correlated with 
ALP and GGT levels (Table 2). Elevated levels of liver enzymes 
may be an early sign of this organ’s injury due to iron accumu-
lation. In agreement with a previous study [4], liver enzyme 
levels were correlated with the ferritin level (Table 1). Moreover, 

ALP is related to bone disease, and Pb is known to accumu-
late in bones [43]. The strong correlation of pre-treatment ALP 
with both Pb (Table 2) and the subsequent increase in Pb lev-
els (Table 7 and Fig. 3) may suggest that Pb is mobilized from 
the bones into the blood. Notably, ALP levels were not signifi-
cantly altered by the bloodlettings (Table 4 and Supplementary 
Table 2). Interestingly, the levels of ALT, another liver enzyme, 
were significantly correlated with Pb levels in control persons 
only (Table 2). A corresponding relationship of ALT with Hg 

Table 5   Paired comparisons of 
trace metal concentrations in 
patients and controls

a

Control

Patients

Before 

bloodletting

After 

bloodletting

Relative 

change in 

median (%)

n

Median (n) 
Range
(SD)

Median 
Range
(SD)

Hg (nmol/L) 15.10 (16)

4.99 – 30.60

(7.50)

12.25

5.08 – 56.60

(13.22)

12.05

5.21 – 39.76

(11.07)

-2 21

Cd (nmol/L) 2.12 (13)

X
d

– 4.71

(1.01
e
)

2.13

X
d

– 22.92

(5.50
e
)

2.65

X
d

– 27.95

(6.30
e
)

+24 28

Urine 

Cd/creatinine 

(nmol/µmol)c

0.371 (19)

0.136 – 0.843

(0.164)

0.522

0.117 – 1.760

(0.512)

0.685

0.131 – 2.900

(0.831)

+31 9

Pb (µmol/L) 0.070 (20)

0.024 – 0.166

(0.038)

0.078

0.022 – 0.172

(0.041)

0.098

0.024 – 0.262

(0.064)

+26 28

Urine 

Pb/creatinine 

(nmol/µmol)

0.433 (21)

0.069 – 1.201

(0.366)

0.566

0.116 – 1.746

(0.424)

0.640

0.120 – 4.261

(1.017)

+13 14

b

a Independent samples Mann–Whitney U test for inter-group comparisons
b Related samples Wilcoxon signed-rank test for paired comparisons
c Values < LQ in u-Cd excluded
d X = Result below LQ
e Values below LQ excluded
Letters (a or b) above groups denotes significant difference. Supplementary Table 2 provides the p values

Table 6   Increase in Pb concentrations: relationships with pre-treat-
ment variables. Increase in blood lead concentrations in subjects with 
different hemochromatosis genotypes (μmol/L)

Median Range n

C282Y homozygote 0.034  − 0.004 to 0.114 13
C282Y heterozygote 0.008 1
H63D homozygote 0.002  − 0.012 to 0.011 3
H63D heterozygote 0.000 1
Compound heterozygote 0.024  − 0.007 to 0.063 8
No HFE mutation 0.026  − 0.010 to 0.062 2
Total 0.029  − 0.012 to 0.114 28
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was detected (Table 2). Hg is the trace element showing a sig-
nificant correlation with Pb levels in the blood (Table 3). In the 
control group, Pb was also correlated with Cd (Table 3). How-
ever, this did not result in a significant correlation of ALT with 
Cd (Table 2), possibly due to the low number of samples (n = 8).

Hg concentration was correlated with ALT levels in only 
the control group (Table 2). In a cohort study of healthy pre-
menopausal women (n = 259) [44], the associations of low 
exposure levels to Hg and some functional biomarkers of 
the liver and kidney were revealed, similar to our results for 
GGT, ALT, and creatinine. For Cd, our study found a corre-
lation with ALP levels (Table 2). It could be an early indica-
tion of liver injury in untreated patients [45, 46]. Cd exists 
in tobacco, and thus, humans are exposed to Cd through 
tobacco smoke [47], but we do not have complete data on 
the smoking status of the recruited individuals. In serum, 
this environmental and industrial pollutant is bound to alfa-
2-macroglobulin and albumin [48]. Cd chiefly accumulates 
in the liver and kidneys of exposed individuals.

Creatinine concentration was the only parameter in the 
present study that was correlated with Hg concentration 
in all subjects (Table 2), although no significant difference 
between groups was found as a result of the bloodlettings 
(Table 4 and Supplementary Table 2). The kidneys are one 
of the main targets of Hg deposition and subsequent toxicity 
[49], whereas creatinine is frequently used as a biomarker of 

renal function [50]. Pb concentration was not significantly 
correlated with creatinine levels (Table 2).

Iron Metabolism

Several organs, including the duodenum, liver, and bone 
marrow, are involved in regulating iron metabolism [8]. 
Iron and other elements compete for biomolecular binding 
sites for transportation, e.g., DMT1, transferrin, and ferritin 
[17, 51, 52]. The induced duodenal absorption of iron (e.g., 
by bloodletting) may affect the fate of some other metals 
such as Pb, Cd, and Co [53–55]. In line with this, while 
the repeated bloodlettings removed iron from the body and 
normalized the iron status (Table 4), the absorption or mobi-
lization of Pb increased (Table 5).

The strength of this work is its design, which allows pairwise 
comparisons of the included patients. Weaknesses include the 
limited number of participants for each genotype, the imbalance 
between genders, the absence of data on diet, medications, and 
lifestyle (e.g., drinking and smoking habits) of the participants, 
and the unavailability of data for urine Hg levels.

Conclusion

The present and previous works demonstrate that repeated 
bloodlettings in hemochromatosis affect the blood levels of 
several metals and not only iron. While serum iron declines, 
the effect on other metals, if any, is generally an increase 
in serum or whole blood levels. In the treatment of hemo-
chromatosis, one should be aware that repeated bloodlettings 
may induce increased absorption or mobilization of toxic 
metals in the body. Whether this effect is due to increased 
absorption or redistribution in the body is not clear, and 
further studies are needed.

Supplementary Information  The online version contains supplemen-
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Table 7   Increase in Pb concentrations: relationships with pre-treatment variables. Correlation (Spearman’s rho coefficients) between increase in 
Pb and serum iron profiles, Hb, serum creatinine, liver function test parameters, and C282Y homozygote genotype

a C282Y homozygote vs. all others
The significant p values have been highlighted in bold fonts

Ferritin Iron TIBC Tfsat Hb GGT​ ALT ALP Creat Genotypea

Increase in b-Pb Spearman’s rho 0.103 0.260  − 0.322 0.321 0.143  − 0.019  − 0.062 0.662  − 0.145 0.337
p 0.603 0.182 0.095 0.096 0.468 0.922 0.754  < 0.001 0.462 0.048
n 28 28 28 28 28 28 28 28 28 28

Fig. 3   The relationship of Pb levels with pre-treatment ALP levels in 
blood
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