
Fuzzy Logic-Based Approximate Event Notification in
Sparse MANETs

Anna Lekova Katrine Stemland Skjelsvik, Thomas Plagemann, Vera Goebel

Institute of Control and System Re-
search, Bulgarian Academy of

Sciences
P.O.Box 79 Acad. G. Bonchev

1113 Sofia Bulgaria

Department of Informatics
University of Oslo

P.O.Box 1080, Blindern
NO-0316 Oslo, Norway

ABSTRACT
Mobile Ad-Hoc Networks (MANETs) are an important communi-
cation infrastructure to support emergency and rescue operations.
To address the frequent disconnections and network partitions that
might occur, we have developed a distributed event notification
service (DENS) for sparse MANETs. In most event notification
solutions, subscriptions are formed with crisp values or crisp
value ranges. However, in emergency and rescue operations sub-
scribers may not always have time to give crisp values or crisp
value ranges. Moreover, subscriber's interests in queries have
gradual nature and subjective measure that calls for computing by
words. Therefore, we design and implement a simple fuzzy-
concept based subscription language allowing more expressive
subscriptions and more sophisticated event-filtering. It is built on
two new ideas: using features as multi-attribute indexes of the
subscription and predicate patterns for processing subscriptions
with arbitrary Boolean operators. However, requiring more com-
putational efforts, fuzzy logic introduces performance penalties in
the whole network. The proposed services have been evaluated for
run-time, space and scalability efficiency. The proposed design
framework is extensible to the user- and application-semantics
and configurable to the dynamics in data that publish/subscribe
paradigm imposes at runtime.

Categories and Subject Descriptors
C.2.1. [Computer Systems Organization]: Computer-
Communication Networks- distributed networks. D.3.3 [Pro-
gramming Languages]: Language Constructs and Features –
frameworks, data types and structures. I.2.3 [Computing Metho-
dologies]: Artificial Intelligence– uncertainty, ``fuzzy,'' and prob-
abilistic reasoning.

General Terms
Algorithms, Performance, Design, Languages.

Keywords
Sparse MANETs, middleware, approximate event notification.

1. INTRODUCTION
In the Ad-Hoc InfoWare project [10], we are developing middle-
ware services for emergency and rescue applications, like com-
mand and control, dispatching of resources, and remote patient
monitoring. Mobile Ad-Hoc Networks (MANETs) are typically
used for emergency and rescue operations, because they are often
performed in environments without any or only a very rudimen-
tary amount of existing infrastructure. However, these networks

might be sparse with low node density and high node mobility.
Therefore, disconnections might happen frequently and the mid-
dleware services have to be designed in such a way that they
gracefully handle network partitions and provide delay tolerant
services to the applications. To meet this requirement, we have
developed a delay tolerant Distributed Event Notification Service
(DENS) [14]. One of the important design decisions for the DENS
is to decouple subscribers and publishers. A subscriber is a node
interested in being notified when an event occurs. An event is a
change in data of interest, the node that is identifying this change
in data is called a publisher. A subscriber is describing in a sub-
scription “when” and “what” it wants to be notified about by
means of selection predicates. A notification is a message that
describes an event according to the current subscription interests.
Decoupling subscribers and publishers means that subscribers do
not need to be able to directly connect to publishers and they even
do not need to know the name or address of the publishers and
vice versa. A set of so-called DENS nodes forms an overlay and
serves as mediators between publishers and subscribers. This
overlay is responsible for delivering subscriptions and event
notifications to their destinations, to replicate them, and to per-
form store-carry-forward operations in case of disconnections and
network partitions. In order to save resources, the DENS delivers
only events of interest, i.e., it performs source filtering. For exam-
ple, a remote patient monitoring application might be interested in
the event that the body temperature of any patient is falling below
34 °C or gets higher than 40 °C. This subscription is forwarded to
the DENS, which in turn forwards it to all sources, i.e., health
sensors on patients. The filtering of the event is done within the
sensors. Only in case the filter criteria are fulfilled, a notification
is sent from the sensor to the DENS, which in turn delivers it to
the subscriber.

In addition to the dissemination process, the other main design
decision for the DENS is the subscription specification and event
filtering, i.e., the subscription language, that determines the use-
fulness of the DENS for the many different applications. Rich
languages can be used to specify complex filters, but their proc-
essing in the publisher nodes and also in the DENS requires more
resources than simple languages. If a simple and efficient lan-
guage is sufficient for an application, it should be used to save the
scarce resources. However, there might be applications that would
benefit from more complex subscription languages.
In most event notification solutions, subscriptions are formed with
crisp values or crisp value ranges. However, in emergency and
rescue operations subscriber's interests often have gradual nature
and subjective measure or there may not always be time to give

 2

crisp values or crisp value ranges in queries. Subscribers do not
want to worry about violating the interval-ranges. Moreover, there
might be applications that would benefit from more complex
subscription filters, e.g. to capture uncertain data during rescue
operations. For instance, agents in the RoboCup rescue scenario
gather and circulate information for observed fires, smoke or even
“the danger” in the vicinity. Transitional values as “semi-burning”
would be helpful and need to be modeled by qualitative terms in
predicates. Agent online decisions might be aided by an intelligent
approach for computing with words by exploiting fuzzy logic,
introduced by Zadeh Error! Reference source not found..
Therefore, we design and implement a simple fuzzy-concept
based subscription language, data structures and filtering algo-
rithms allowing more expressive subscriptions and more sophisti-
cated event-filtering. It is built on two new ideas: using features as
multi-attribute indexes of the subscription and predicate patterns
for processing subscriptions with arbitrary Boolean operators.

However, requiring more computational efforts and space, fuzzy
logic might introduce performance penalties in the whole network
when not carefully designed. There are three areas in which space
and computational efficiency is especially important: First, the
representation of fuzzy logic based subscriptions might consume
too much space on the nodes, i.e., subscribers, publishers and
DENS nodes, and in the network in form of subscription and
notification messages. Second, source filtering is performed on
sensor nodes and might be too complex for these nodes. Finally,
to forward notifications from publishers to subscribers, the DENS
has to match subscriptions and notifications. The efficiency and
scalability of this forwarding process in the DENS overlay de-
pends on the complexity of the matching. It is the contribution of
this paper to describe the design, implementation and evaluation
of a subscription language that is able to model uncertainties and
solutions for efficient filtering and matching based on fuzzy infe-
rence.

The remainder of the paper is structured as follows: In Section 2,
we briefly describe the DENS architecture. In Section 3, we
present the requirements for a fuzzy-concept based service and
related works. In Section 4, concepts, ideas and fuzzy solutions
about event notification in uncertainty, as well as a simple fuzzy
concept-based subscription language, are proposed. In Section 5
the implementation, emulation and evaluation of the proposed
fuzzy-based data model and algorithms in Sun Java Wireless
Toolkit and NEMAN, are illustrated. Finally, conclusions and
future directions are given.

2. DENS
In this section, we give a brief introduction to the DENS middle-
ware and the importance of event filtering to generate notifica-
tions, as well as the matching to identify the subscriber(s) who are
interesting in these notifications.

The DENS service runs on some of the nodes in the network
forming an overlay. Subscribers and publishers only have to send
a subscription or notification to the DENS overlay, which in turn
delivers it to its destination. Subscriptions are replicated among
the DENS nodes to increase service availability. Figure 1 shows
the DENS architecture. Based on it, three different protocols are
developed for DENS nodes to manage and replicate subscription
information, to disseminate notifications, and to deliver them to
their destinations. The functionalities of event-filtering and
routing are decoupled which enables independent development of

protocols at routing layer and subscription language at the appli-
cation layer. We support decoupling of subscribers and publishers
and at the same time want to support more than one subscription
language. This is achieved by using language specific plug-ins at
the DENS and at the publisher node: A look-up plug-in used for
finding publishers, a filtering plug-in for filtering events at the
source node, and a matching plug-in for matching notifications
sent to the DENS overlay and stored subscriptions. A more de-
tailed description can be found in [15].

When a subscriber wants to send a subscription it uses the
SUB/DENS protocol to send it. The DENS node or nodes receiv-
ing the subscription stores it, and finds the correct publisher using
the Knowledge Manager (KM) [11]. The KM manages the infor-
mation sharing and therefore addresses two important require-
ments for publish/subscribe systems for emergency and rescue
operations: 1) that subscribers do not need to know the publisher
and 2) that each organization should be able to use its own voca-
bulary. Each node keeps a view of local resources available for
sharing, together with metadata about resources available on other
nodes. Metadata extracts are exchanged with neighboring nodes
as they come into range. The KM keeps a cross-vocabulary the-
saurus for all a priori known vocabularies used by the participat-
ing organizations, offering services for synonym look-ups and
locating related metadata resources. The thesaurus maps of con-
cept terms between the vocabularies. One of the main component
in the KM is the Data Dictionary Manager which manages the
metadata-handling The Data Dictionary Manager maintains a
Local Data Dictionary (LDD) and a Semantic Linked Distributed
Data Dictionary. Metadata descriptions of local resources are
enhanced with concepts from vocabularies, and registered for
sharing in the LDD.

The PUB/DENS protocol is used for communication between
DENS and publishers, i.e., subscriptions are sent from DENS to
the publisher and notifications are sent from publisher to DENS.
Source-filtering is used to reduce the number of events sent from
the publisher. The filtering is done by a monitoring agent, called
watchdog (WD), running on the publisher node. It generates
notification control messages that describe an event according to
the current subscription interests. The WD Manager is responsible
for updating subscriptions on the publisher and starting the WD
Execution Environment (WD_EE) with the specified subscription
language and the correct filtering function. The WD Manager
implements the interface between the DENS and the WDs. When
the DENS sends a subscription using SUB/DENS protocol, the
WD Manager registers it and checks to see whether the same
subscription has been received before, and updates the subscribers
currently interested in events at this node. The programming
model of WD Manager has an interface to DENS to obtain infor-
mation from the KM to find the protocol and content type of data
which should be monitored for the received subscription. The
WD_EE instantiates the corresponding class for monitoring data
acquisition applications, processes data according to the content
type (e.g. if the protocol is “file” the content handler is “text/csv”)
and generates notifications when an event occurs that fulfills some
conditions specified in some of the active subscriptions. After-
ward the WD Manager sends a notification to the DENS using the
PUB/DENS protocol. Finally, a publisher needs to understand the
subscription to filter the events of interest. The WD is able to be
extended by plug-ins provided by the language developer defining
the subscription language and filterng function, e.g. database and
SQL querying, Data Stream Management Systems and continues

 3

querying, XML and XML querying, XPath and Bloom filters [18],
fuzzy sets and fuzzy inference, etc. The format of notifications is
also language specific.

When receiving a notification, the DENS needs to identify the
subscriber(s) and to deliver this notification. This is done by
matching the incoming notification with stored on DENS sub-
scriptions. Subscription language IDs are used by the DENS and
the publisher to identify which particular plug-in has to be in-
voked for matching constraints in predicates of current subscrip-
tion to actual values in the notification and evaluating how close
they are.

The DENS/DENS protocol is used for communication among the
DENS nodes, including replication of subscriptions and undeli-
vered notifications, consistency management etc. The storage
component is used for storing undelivered notifications since
DENS has to perform store-carry-forward operations in case of
disconnections and network partitions.

Sub/DENS

Subscriber
Node3

Publisher
Node5

WD/ App
Watchdog
Execution

Environment

Install WD

Sub/DENS

Subscriber
Node1

Pub
DENS

DENS
DENS

Availability
& Scaling Storage

mgmt

DENS Overlay

DENS6

DENS4

DENS2

Event
Filtering

Watchdog
Manager Watchdog

Sub
DENS

N/S
Matching

App Sub/DENS

Subscriber
Node3

Publisher
Node5

WD/ App
Watchdog
Execution

Environment

Install WD

Sub/DENS

Subscriber
Node1

Pub/
DENS

DENS/
DENS

Availability & Scaling Storage
mgmt

DENS Overlay

DENS6

DENS4

DENS2

Appr Event
Filtering

Watchdog
Manager Watchdog

Sub/
DENS

N/S
Appr. Matching

App

Figure 1. DENS Architecture

3. THE NEED OF FUZZY-CONCEPT
BASED SERVICES
In this section, we analyze the need of fuzzy-concept based ser-
vices for emergency and rescue applications, as well as DENS
requirements for fuzzy model implementation. The state-of-the-art
in expressiveness of content-based subscription languages and
event filtering algorithms are revised, as well as the data-driven
fuzzy modeling problem.

3.1 Requirements from Rescue Applications
Publish/subscribe systems and their languages are typically de-
signed for the situation that many subscribers are interested in the
same event. However, in rescue operations there are events that
are only relevant to a very few subscribers, e.g., health status
information is only relevant for those that are assigned to monitor
the particular patient. In order to save resources, the DENS deliv-
ers only events of interest by performing source filtering. If an
event of interest has happened on a publisher, an approximate
notification is generated.
The proposed fuzzy-concept design is motivated by the need to
handle and aggregate uncertainties in subscriptions and perform
event filtering using natural language instead of numerical values.
Since, the properties described often have gradual nature and

subjective measure, for attributes such as “temperature” or “road
access”, selecting terms such as “hot”, “clear”, “totally blocked”,
etc. would be necessary. Modifying the linguistic terms, such as
“warm” to “very warm” will allow flexible ways to specify the
user interests, too. Certainly, we could use interval-ranged values
to express uncertainties in a crisp system, however lacking of
transitional boundaries does not take into account the values
slightly out of the interval. Thus, subscribers need to worry about
not violating the interval-ranges. At times, they might have been
wrong in expressing their interests in exact terms. In other words,
the tolerance level for how close or how loose information items
in the published event adheres to the subscriptions’ interests is a
design solution with respect to the error-tolerance in rescue opera-
tions.

As a natural conclusion, fuzzy logic is a suitable approach for
representing the current subscribers’ interests about incoming
events and handling an approximate fit to the data in notifications.
Fuzzy logic is a superset of classical logic with the introduction of
“degree of membership”. Uncertainties are presented as fuzzy sets
(Ai), which are often expressed by words and interpreted by their
membership functions µA. A fuzzifier is used at the input of the
system to convert crisp to fuzzy data, while a defuzzifier - from
fuzzy to crisp data. The fuzzifier converts each element of crisp
data x from a certain domain (D) into fuzzy set using the concept
of degree of membership of x to A - µA(x), which is a number in
[0÷1]. Fuzzified input data trigger one or several rules in the fuzzy
model to calculate the result. IF-THEN rules map the input values
to the output space in terms of implication relation between fuzzy
sets in “IF” and “THEN” parts. Fuzzy reasoning is numerically
processing of the information in the fuzzy rules.

3.2 Requirements from DENS
To address DENS concerns about space and computational effi-
ciency, designing the most efficient publish/subscribe algorithms
and data structures is crucial. Subscription and notification mes-
sages need to be packed in as much as possible before sending to
the DENS overlay, since the representation of fuzzy logic based
subscriptions might consume too much space on the nodes and in
the network in form of subscription and notification messages;
and in form of replications. Replications forward much network
traffic causing overhead and power dissipation.
The flow of messages from senders to receivers is driven by the
content of the messages rather than by explicit addresses. This
suggests using of data-driven model to perform computations in
order dictated by data dependencies in subscriptions. Intelligent
fuzzy system configurable to the dynamics in data that pub-
lish/subscribe paradigm imposes needs to be designed. The design
of fuzzy inference system (FIS) consists of the following steps:

- determine the available inputs and output variables;
- determine the domains of variables and their sets of fuzzy

terms;
- define the membership functions of the fuzzy terms;
- determine a fuzzy rule base;
- determine a fuzzy model and inference implication.

The main idea in classical fuzzy approaches from Zadeh and
Takagi-Sugeno[16] is to calculate the result by evaluating the
degree of matches from the measurement that triggered one or
several rules in the fuzzy model. IF-THEN rules map the input
values to the output space through composition and aggregation of
the fuzzy sets in the “IF” part. Each rule is evaluated by an impli-

 4

cation relation between the multi-dimensional fuzzy set in the
“IF” part and output fuzzy set in “THEN” part that gives the
relevance of the rule.
It is evident that a priori information about how the events should
be processed according to the fuzzy rule base could not be placed
on the local device since the available inputs, fuzzy terms and
fuzzy membership functions depend on the data in the active
subscriptions. Hence, an intelligent fuzzy model configuring and
adapting its performance to the data in subscriptions, has to be
designed. However, the majority of conventional fuzzy toolboxes
fall short of design framework that allows customization and self-
configuration of the fuzzy model at runtime. Conventional inter-
active fuzzy tools as MATLAB could not be used although they
provide exporting of FIS as a stand-alone application. First, FIS
has a fixed number of inputs and outputs, as well as a fixed set of
fuzzy rules. Second, the size of the FIS is about 25-30KB since
the toolbox supplies a fuzzy inference engine that can execute FIS
as an external application. This memory footprint is not practical
and useful if resource-constrained devices.

3.3 Related Work
A detailed survey and classification of subscription languages is
made in [6] and [4]. A content-based publish/subscribe language
is the most expressive language using flexible scheme for specify-
ing filters. The filters utilize Boolean-valued functions over sub-
scription predicates, e.g. (“temperature_value >38C”). As in the
publish/subscribe system Elvin [13] we use source-filtering to
reduce the number of notifications sent from the publishers. In
Elvin these “reverse subscriptions” are called quench expressions
and sent to the publishers to stop them from sending notifications
to which no subscribers are interested.
The filtering process is influenced by the complexity of the sub-
scription model. Filtering of events based on conjunction of crisp
predicates is not a costly task. Filtering a subscription interested in
arbitrary Boolean operators among predicates at a specific loca-
tion and expressed in fuzzy terms, is obviously more costly. Al-
most all filtering algorithms support only conjunctions of predi-
cates in subscriptions. They do not take into account the various
combinations of predicates. They determine fulfilled predicates
and count the number of matching predicates to be equal to the
total number of predicates in the subscription.
The common practice if predicates are connected via arbitrary
Boolean operators is to transform subscriptions into canonical
expressions as disjunctive normal forms (DNFs) [6]. However, in
sparse MANETs it is very questionable whether the resources are
enough for transformation into canonical expressions. DNFs are
exponential in size compared to their original Boolean expres-
sions. In [6] an approach for arbitrary Boolean subscriptions
without transforming to DNFs is presented.
A few existing publish/subscribe systems can model uncertainties
for the information in subscriptions and notifications, and can
perform approximate event filtering. Approximate-content based
subscription language that allows uncertainties to be involved and
indicates how to process these data, are proposed in [8, 9]. In [8]
the theoretic basis of A-ToPSS is described. Its publish/subscribe
model is based on possibility theory and fuzzy set theory to
process uncertainties to the information in either subscriptions or
publications. The filtering algorithm performs uncertainty inhe-
rent, exploiting one-dimensional index structure, proceeds in two
stages. First, predicates are matched and second, matching sub-
scriptions are identified. A fuzzy tuple space implementation

extends LighTS [9]. The matching semantic combines the mem-
bership degrees using a fuzzy aggregating operator from the
Fuzzy_Tuple library. Partial scores return true only if the mem-
bership value of the crisp value found in the field being compared
is higher than a given threshold, associated to the membership
function in a tuple.

The approach that these two fuzzy systems use is so called flat
modeling approach. It works in problem domains where there is
little or no dependency between input variables. However, deci-
sion-making during rescue operations often require complex
aggregating function of two or more predicates that introduces
relationships among data. For instance, all predicates might be
location and/or temporally restricted. Flat modeling will yield a
decomposition error. Decomposition into fuzzy Cartesian product
space taking into account various combination of predicates which
directly addresses this problem through breakdown of the input
fuzzy sets [2]. We recall that if X1 and X2 are two crisp sets, their
Cartesian crisp product X1 × X2 is a set consisting of all pairs (x1,
x2) where x1 ∈ X1 and x2 ∈ X2 [17]. The notion of the crisp
Cartesian product can be extended to the fuzzy Cartesian product
(FCP). The Cartesian product of fuzzy sets X1 and X2 is defined
as R X1×X2 = { µ X1×X2(x1, x2)/(x1, x2){ x1∈X1; x2∈X2}. A fuzzy
relation (x1,x2) is a two-dimensional fuzzy set over the Cartesian
product of crisp sets X1 and X2. It specifies more than presence or
absence of an association between the elements of the crisp sets.
A two-dimensional membership function for correlated attributes
in subscription is defined as:

µ X1×X2 (x1, x2) = T-(co)norm(µ X1(x1), µ X2(x2))

Different approaches have been proposed for data-driven fuzzy
modeling. A survey of such systems, as well as some improve-
ments of interpretability of generated fuzzy models is given in [5].
The main goal is to develop an automatic rule generation mechan-
ism without any assumption about the structure of the data, such
as the number of attributes, number of fuzzy sets for each
attributes, etc. In the current work the interpretability is improved
by a rule-generation mechanism which reduces the number of
produced rules using a general fuzzifier and fuzzy rules with
variable fuzzy regions. The approach is similar to those in [1, 7].

4. MODELING AND PROCESSING OF
UNCERTAINTY
In this section we describe our design solutions for a simple
fuzzy-based subscription language and its data structures and
filtering/matching algorithms, conforming to DENS requirements
for minimal use the resources of mobile devices.

4.1. IDEAS, CONCEPTS AND MODELS
Fuzzy logic is a suitable approach for modeling and solving tasks
for classification in uncertainty. We exploit fuzzy sets for model-
ing imprecise information in subscriptions. Membership degrees
are first computed, which evaluate the values of the notification to
the constraints in the subscription predicates, which are in a form
of membership functions. Then, aggregating operators compute
the overall score of matching for each subscription to a notifica-
tion by a degree of certainty. The type of aggregation is user- or
application- related. An XML subscription language is provided
that enables one to write queries over events. Using XML schema
subscribers do not have to learn a completely novel language and
an extension mechanism of XML schema is used to make a sub-

 5

scription language extensible to user- or application- needs. Dif-
ferent averaging functions might have been defined, such as more
or less sensitivity to some attributes or fulfillment by their
weighted or balance average. The semantics of equally named
aggregating functions might not be the same. For instance, AND
could be a minimum, product, averaging one. If the aggregating
functions are complex or highly non-linear, a mechanism for their
approximation to reduce the complexity in calculations is pro-
vided.

We created and implemented an extensible design framework
configurable to the dynamics in data that publish/subscribe para-
digm imposes to FIS at runtime. It provides the programming of
data-driven fuzzy knowledge-base system which core consists of a
set of interfaces and classes having abstract methods for collecting
and structuring of accessible subscriptions into fuzzy rules. Fuzzy
model configures itself by setting up interfaces and classes that
model FIS (such as Mamdani or Takagi-Sugeno), aggregating
functions among predicates, internal parameters of FIS (such as
the number of input parameters), etc. The framework uses an
extensible subscription language for defining new operators about
the type of predicates or aggregators. In case of approximate
predicates, the framework allows customization to different fuzzy
terms at runtime. Extensions about new operators and associated
plug-ins are processed by dynamic parsers which default imple-
mentation is characterized by the ability to extend the definition of
rules how to process a format of new operators in subscriptions
and how to map the uncertainties in predicates to the parameters
for configuring the fuzzy model.

Our proposal for a data-driven fuzzy model is built on two new
ideas: using features as multi-attribute index for the subscription
and predicate patterns for indexing arbitrary Boolean operators in
the subscription. Features and patterns are assigned to subscrip-
tions and notifications as arrays of bits. They are used for confi-
guring and adapting the fuzzy rules with variable fuzzy regions of
the fuzzy model on the publisher or DENS node. These regions
are customized still on the subscriber node from the dynamic
parser that binary encodes and maps membership functions of
original fuzzy terms in the subscription to the parameters of the
universal fuzzifier used in the fuzzy model. Universal fuzzifier
applies a membership function to the numerical values of notifica-
tion attributes according to the fuzzy constraints in subscription
predicates. Thus, space efficiency of the publish/subscribe system
is improved, since the encoded subscription messages do not carry
the whole mathematical description of original fuzzy membership
functions along their lifetime. A single, unified data structure for
binary encoding of different types of predicate constraints, such as
crisp, crisp range-interval, string, date, time, approximate ones, is
designed. Fuzzy terms reduce the number of subscription predi-
cates to be evaluated since two predicates are needed to represent
an interval-range value against one, if fuzzy term is used as a
constraint. Another design solution is indexing, sorting and group-
ing of subscriptions according to their features and covering
relations. If features of active subscriptions on the node are sorted,
the filtering algorithm stops earlier rather than evaluate all sub-
scriptions. If active subscriptions are aggregated according to their
covering, many subscriptions can be evaluated using single
matching. If we e.g., consider two subscriptions SA1 and SA2,
SA1 covers SA2 if all events which are valid for SA2 are also valid
for SA1 [4].

We call approximate source filtering the human-like fuzzy rea-
soning in linguistic terms how to filter the numerical values in
incoming events using aggregated from active subscriptions im-
precise information in the form of natural language. Contents of
all subscription interests about events happened on a particular
source node are transformed into fuzzy rules. Fuzzy inference will
use this set of fuzzy rules for filtering of events afterwards. Sub-
scriptions are processed according to their features. A feature is an
interpreted value of an array of bits consisting of flags about the
state of the subscription attributes. Features drive the filtering in
two steps. In the first step on the PUB node, the potential notifica-
tions according to the features of active subscriptions are tailored.
Covering of subscriptions could be exploited for reducing the
number of sent notifications: if two notifications NA1 and NA2
match SA1 and SA2, where SA1 covers SA2, then NA1 covers NA2.
Approximate evaluation of notification values to constraints in
predicates is performed in the second step. We call approximate
matching the reasoning in linguistic terms for how to match im-
precise data in subscriptions to numerical values in the notifica-
tion. The available subscriptions on DENS, summarized in form
of fuzzy rule base, are matched to incoming notifications. In the
first step on DENS node, the features of subscription vector (SV)
and notification vector (NV) are matched via bitwise operators. In
case of fitting in step two, we apply membership functions of all
predicates in current subscription to actual values of attributes in
the notification for evaluating how close they are. The overall
score aggregates all degrees of membership and the subscription
is relevant if the score is greater than the subscription’s threshold.

4.2. Subscription Language and Data Model
An approximate subscription contains a set of approximate predi-
cates combined by Boolean operators. The form of the approx-
imate predicate is attribute-relational_operator-
membership_function triple:

)})x(op x{)},...,x(opx{R()x ,· · · ,s(x mmAmA m1 μμ 111= ,
where x is the attribute name, ’op’ is the operator, and µ is a
membership function for a fuzzy set A. The relational_operator
could be: is, is not, qualitative is as “more or less” or a temporally
restricted is as “last few seconds”. A subscription relation R de-
fines a Boolean function connecting all predicates in s. Set opera-
tions such as union or intersection applied to fuzzy sets defined in
different domains result in a multi-dimensional fuzzy set in the
Cartesian product space of those domains. A notification consists
of a set of attributes which have a name and a value. Mathemati-
cally, for a given notification vector X (x1, ... ,xm) in this space a
subscription relation R constitutes a function defined over the
fuzzy Cartesian product of the domains of X and yields a transi-
tional truth value of s for this vector.
The subscription language specifies the queries over content of
events using special tags (operators for defining the different type
of predicates and aggregating functions) such as <crisp-predicate>
- an operator on how to model constraints as crisp predicates,
<aggregating-function> - an operator how to handle the logical
expressions between predicates, <predicate-pattern> - how to
handle arbitrary Boolean operators among predicates. The exten-
sion mechanism associates new interface methods to new defined
tags that will be invoked at runtime.

Tags for representing <approximate-predicate> operator consist of
information about fuzzy variables, domains, fuzzy sets and fuz-
zifiers. They are used to generate new linguistic variables. The

 6

choice of the parameters of the fuzzifier customizes the semantics
of the approximate predicate according to the user perception. In
[19] Zadeh introduces so-called linguistic hedges or fuzzy quan-
tifiers. They are mathematical operators that modify either the
shape of the linguistic variable or its membership function reflect-
ing a variation on its semantics. Thus hedges adjust the corres-
ponding threshold of subscriptions’ degree of fulfillment automat-
ically.

<Approximate Predicate>
<Attribute type=”fuzzy variable”> Patient_Temperature

<Fuzzy Terms>low, ,high, very_high </Fuzzy Terms>
 <Domain_min> 30°C </Domain_min>
 <Domain_max>50°C</Domain_max>
<Fuzzy Set> <term>low </term>
<Fuzzifier> trapezoidal (width, left, right)
</Fuzzifier> </Fuzzy Set>
<Fuzzy Set> <term>high </term>
<Fuzzifier> triangular (width, center)
</Fuzzifier></Fuzzy Set>
<Fuzzy Set> <term>very_high</term>
<Hedge>Very </Hedge><term>high </term>
… </Fuzzy Set>

</Attribute>
<Aggregating-function>harmonic_mean</Aggregating-function>

An example describing a subscription in XML format, is shown
on Fig.2. Since, XML documents require expensive string-based
parsing that will introduce performance penalties on DENS, sub-
scription is decoded in binary format on the sub node by a dynam-
ic XML parser at runtime. A subscription, as a vector with varia-
ble-length of bytes is attached to SUB/DENS protocol packets.
For 877 bytes of subscription in XML format and 20KB for XML
parser corresponds 17 bytes of subscription in binary code and
4KB source code for approximate filtering.

Figure 2. Expressing uncertainties in XML subscription

The rules how to parse the tags in the <Approximate Predicate> is
accomplished by implementing new interface methods extending
the rules of dynamic parsers by plug-in a new functionality These
methods customize how to map the uncertainties in predicates to
the internal parameters of the fuzzy model. After parsing the
<Aggregating-function> operator, a variable is assigned to the
internal data structure that indicates the aggregator used, such as
minimum, product, averaging fuzzy aggregators, etc. There is an
XML operator for defining complex aggregators with matching
semantics based on a function of two or more predicates. It pro-
vides tags for describing the local linear models if the function
could be approximated in fuzzy Cartesian product space.

Attributes Look-up:
Nodes that are publishers announce their attributes to the KM (see
Section 2). The KM offers services for synonym look-ups and
locates related metadata resources keeping a cross-vocabulary
thesaurus for all a priori known vocabularies used by the partici-
pating organizations. We assume that the described events of
interest in a new subscription are metadata entries in the LDD and
attributes are concept terms from a known vocabulary. Subscrib-
ers have two options to be informed whether the information they
are looking for is monitored: either by querying the KM or by
browsing the concept terms of local sources. For instance, a sub-
scriber can be prompted that two publisher nodes in a current
partition have “entries for temperature measurements” with a
concept term “temp” from medical vocabulary. An attribute spe-
cific look-up function queries the KM for finding the meta-
information about which concept terms user could use as
attributes in subscription predicates. Synonym look-up services
aim the subscriber in questioning.

The following assumptions have been made: 1) The supported
events in the whole system are categorized as metadata entries and
indexed a priori according to their names; 2) The supported
attributes of each event are linked to concept terms and indexed a
priori according to their names; 3) The domains of all attributes
are defined a-priori; 4) A basic set of fuzzy terms for describing
concept terms is predefined.

Concept terms as indexes, in fact are the position of an attribute in
features that point the presence or absence of interest in current
subscription. For instance, the index for an attribute
”wind_direction” is 1, i.e. the first bit in the binary array is active.
Based on these indexes the dynamic parser assigns subscription
features (SF) to each subscription. The corresponding bit or bits in
SF is “1” when there is a constraint value about this attribute and
its cardinality determines how many bits are charged. For in-
stance, if we have a SV interested in attribute 4, 5 and 6 the SF is
then 56 and the cardinality is 3. Thus, the subscription message
does not carry the names of attributes since they are indexed in
features according to the names of their concept terms. The fea-
tures state which event (LDD metadata entry) should be moni-
tored and which attributes (concept term) of that event the sub-
scription is interested in. One subscription may be interested in
only the temperature values, another in both temperature and wind
speed. Notification Feature (NF) is an array of bits and a bit(s) is
charged if this event should be monitored. Attributes of this event
are indexed according to the subscription feature SF. The corres-
ponding bit or bits in NF is “1” when there is a constraint value
about this attribute and its cardinality determines how many bits
are charged. The WD in the current implementation generates a
notification message as a vector of bytes with only these values,
for which there are an interest in the SF. If the event is

),...a,...,a(),a,...,a()(
k

)()(
k

)(22
1

11
1 ,where T

ka are attributes of the time-
ordered events, potential notifications according to subscriptions
SV1,…,SVi are:

),...NF,x,...,x(),NF,x,...,x()(
n

)(
)SFn(card

)()()(
)SF(card

)(111
1

1
1

11
1 1

where n
)(

n SFNF =1 and)SFn(card is the number of attributes that
participate in the current subscription. The assigned at the end NF
are same as SF. The corresponding NF is 56 and the NV is 11
bytes.

 7

The lengths of SV (NV) are tailored according to the SF. SF and
NF are k+6 bytes, where k is the cardinality of SF. First 6 bytes in
the SV or NV store info about ID number, sequential number,
valid period, timestamp and aggregatorID. The offset for each
attribute pointing which bytes contain its fuzzy constraints in SV
are defined after masking the bits in SF from the beginning of SV
(Fig.4.a.). The values of constraints are normalized in the range
[0÷1] according to their domains and are mapped to the parame-
ters of the universal fuzzifier (Eq.1.) used in the fuzzy model to
calculate degrees of membership. Constraints values are dissemi-
nated as a sequence of three fuzzy parameters (vi;Vi,γ), where vi
and Vi are the right and left borders of the area where the member-
ship grade is 1 (fig.3).
Therefore, the varying length of SV (NV) and its bytes for fuzzy
constraints is described as follows:

)SF(card*)SF(cardSV ii ++= 26
)NF(cardNV i+= 6

Notation γ is a sensitive parameter describing the generalization
region of the corresponding fuzzy set. γ determines the spreads of
membership function as a tangent of CAF∠ which usually is be-
tween 30 and 89 degrees and γ is in the range [0.57÷57]. The
larger γ the less fuzziness. In order to achieve a single, unified
data structure and faster event filtering, we decode crisp values,
crisp value ranges and string predicates like approximate ones.
When subscription consists of string and crisp predicates, vi=Vi,
and γ parameter is large enough to decreases the fuzziness of the
constraint value in the predicate. γ eliminates the spreads of fuzzy
set since the angle is close to 90 degrees and γ is large.

Figure3. One-Dimensional membership function

(1) Vx if)))]Vx(,min(,max([or

;vx if)))]xv(,min(,max([orVxv if)x(m

iiii

iiii;iiiiAi

>−−

<−−<<=

γ

γ

101

1011

More expressiveness requires more composite data model for
representing subscriptions. This influences the complexity of
filtering/matching algorithms, as well as how much these algo-
rithms can be optimized. The following data structures are pro-
posed: without indexing predicates, with indexing predicates and
data structure for decomposing the predicates into Cartesian prod-
uct space. For all structures each bit in features indexes the offset
in SV, where a membership function describes the user’s con-
straint about this attribute.

The data structure on Fig. 4.a. stores the constraints for each
predicate according to its fuzzy set definitions in SV. NV encodes
actual values of attributes in the notification. A subscription list
stores the overall score (Λ) after aggregating all membership
degrees applying fuzzy aggregator based on its ID. A predicate
hashtable depicted on Fig.4.b. indexes predicates according to
their names and store the fuzzy constraints for each predicate. It
allows the degree of match for each predicate to be evaluated only

once using an index. Subscription evaluation is based on the
association list linking the subscriptions that contain that predi-
cate. A subscription list keeps the overall score of each subscrip-
tion. The overall data structure with decomposition of attributes
into Fuzzy Cartesian Product is depicted on Fig. 4.c. If

m,...,i,x)t(
i 1= are the number of attributes participating in the

current feature, the two-dimensional membership functions that
this data structure encodes in break-down subscription vector
(BDSV) are:)(

nxxxx SV,,...,()(
j

)(
i

)()(
1

111
2

1
1 ×× μμ , where

ij;m,...,j,i,)t(
j

)t(
i xx >=× 1μ . The number of all two-dimensional µ is

(1)
n SAFofy cardinalit the is m where,1)-(m*mproj

2
= . Subscrip-

tion list stores the aggregated by fuzzy mean formula [16] degrees
of match from all fuzzy relations.

A tag <predicate-pattern> has been designed to provide user to
write more flexible subscriptions for processing arbitrary Boolean
operators between predicates. Using features, implemented opera-
tors for predicate patterns (PP), such as d2c1, and the data struc-
ture on fig.4.d, the XML parser maps the information in these tags
into a vector of variable length of bytes. The seventh byte encodes
the predicate pattern as a consequence of flags. The first and third
bits code the operator between operands as conjunctions (c) or
disjunctions (d), the second and fourth bits - the type of the ope-
rand: predicate or fuzzy relational pair (FRP), the last two bits
point how many bits the pattern uses. Next the vector consists of
several bytes defining how many FRP participates and which one-
or two- dimensional membership function (µ) to be processed.
The last k bytes before features carry universal fuzzifier parame-
ters, where *mbf[i] is a sequence of {vi,Vi,γi}. For instance, in
case of subscription (p1 ∨ p2 ∨ p3) ∧ p4 the number of last k bytes
is 21. 3 two-dimensional µ correlating two one-dimensional µ,
each µ is encoded by 3 bytes {vi,Vi,γi} plus one-dimensional µ*3
bytes: (3 FRP*2)*3 +1*3=21.

4.3. Processing of Uncertainty
We propose three types of filtering/matching algorithms, one
using predicate indexing, one without indexing and one with
decomposition of the input variables into fuzzy Cartesian product.
In the non-indexing algorithm, predicates of each subscription are
tested independently by applying their membership functions to
values of attributes in the potential (or actual) notification. Then
an aggregating operator computes the overall degree of matching
for each subscription. Using predicate indexing the number of
subscriptions that must be examined is reduced. There are two
stages in the indexing algorithm. In the first stage, predicates are
evaluated and, in the second, satisfied subscriptions are identified
and evaluated by their overall scores. In the break-down algorithm
for function approximation, first the membership degrees are
computed and then all two-dimensional degrees by decomposing
of the predicate constraints into fuzzy Cartesian product. If local
linear models describing the system's behavior in all FRP would
be found, the aggregating function is approximated in THEN part
of the fuzzy rules and the rules are aggregated and defuzzified by
using the fuzzy-mean formula [16].

The TS is of first-order if the THEN parts consist of a linear func-
tion and of zero-order - if consist of a scalar. In the break-down

μ
1

vi – 1/γi vi Vi Vi + 1/γi

A

C

x µi

F

 8

algorithm for arbitrary Boolean subscriptions the decomposition
of the input variables is performed only in those fuzzy relations
which attributes participate in features and have number bigger
than 1 after the connective operator in the pattern. For instance, if
d2c1 and features 00000111 – a two-dimensional µ in FRP

10 xx × and one-dimensional µ about x3 will be evaluated. Indi-
vidual contribution of fuzzy relations to the overall degree of
matching is performed according to their connective operators, i.e.
all FRP with AND connective are aggregated and defuzzificated
by using the fuzzy-mean formula and all FRP with OR connective
– by maximum mean. The overall score aggregates them accord-
ing to the last in pattern connective operator.
Non-indexing approach is designed for filtering on the publisher
node since if at least one subscription is satisfied then the notifica-
tion is sent and the filtering continues only with subscriptions that
have different features than the sent one. We optimize the match-
ing process on the DENS nodes by first checking the subscription

and notification features for potential hits. Only in case of relevant
features, matching of notification values to constraints in predi-
cates is performed in the second step. A flat non-indexing algo-
rithm with features (FNIF) proposes optimizations using features
as multi-attribute indexes. If features are sorted faster filter-
ing/matching is performed in a first step. A flat non-indexing
algorithm with sorted features (FNIFS) has been designed. A flat
non-indexing algorithm with features that are assigned after cov-
ering the subscriptions first is FNIFC. FNIF, FNIFS, FNIFC and a
flat algorithm with indexing of predicates (FIP) have been de-
signed for matching on the DENS node. Three breakdown filter-
ing algorithms decomposing the input variables into Cartesian
product space have been designed, as well They allow complex
arbitrary Boolean relationships among predicates to be processed
(BFCPAB) and function approximation using of first-order
(BFCPA1) and of zero-order TS system (BFCPA2).

SF
0 0 1 1 1 0 0 0

x3 x2 x1

V2 v1 V1γ3 γ2 γ1 v3 V3 v2

I D i n f o 0 0 1 1 1 0 0 0

byte offset

NF
NV

I D i n f o
SV

a) without indexing predicates

Subscription List
S1 Λ1

S2 Λ2

Si Λi

S2 S3 γ1 1 v1 V1

γ2 2 v2 V2

γi IDp vi Vi

S2

S2 S4 S9

Predicate Hashtable Subscription List
S1 Λ1

S2 Λ2

Si Λi

Assoc. Pred/Sub List

b) with indexing predicates

0 0 1 1 1 0 0 0

V2 v1 V1γ3 γ2 γ1 v3 V3 v2

byte offset

I D i n f o

SV

 9

Figure 4. Data Structures

d) with decomposition into fuzzy Cartesian product for arbitrary Boolean subscriptions

x3 x2 x3

v2 V2 γ2 v3 V3 γ3 v3 V3 γ3

x1 x2 x1

v2 V2 γ2 v1 V1 γ1 v1 V1 γ1

Subscription List

S1 Λ 1

S2 Λ 2

Si Λ i

c) with decomposition into fuzzy Cartesian product for function approx-
imation

SF

x3 x2 x1 I D i n f o 0 0 1 1 1 0 0 0 NV

0 0 1 1 1 0 0 0

V2 v1 V1 γ3 γ2 γ1 v3 V3 v2

byte offset

I D i n f o

SV

BDNV

BDSV

byte offset

is Pred Disj
5th bit is not used

 0
1

0
1

0
1

0
1

0
1

Pred Disj

Predicate Pattern

is FRP Conj FRP Conj

*mbf[i]= {vi;Vi,γi}

0 0 0 0 1 0 0 1 I D i n f o

BDSV

(p1 ∧ p2) ∨ p3->d2c1

1 0 0 0 0 0 0 1 2 2*mbf[0] *mbf[2]

(p1 ∧ p3) ∨ (p2 ∧ p4)->d2c2c

*mbf[4] *mbf[1]

0 0 0 0 1 1 0 0 1 3

*mbf[0] *mbf[1]

(p1 ∨ p3 ∨ p2) ∧ p4->c3d1

*mbf[2]*mbf[0] *mbf[1] *mbf[3] *mbf[2]

PP

PP

PP

1 2*mbf[0] *mbf[1] *mbf[5]

byte offset

SEF

SAF

 10

4.4. Optimizations
The main goal of optimization is reducing the event filtering time.
On the one hand, reducing the number of subscriptions that have
to be evaluated and on the other hand, reducing the complexity in
calculations that more expressive subscriptions introduce. Some
CLDC (Connected Limited Device Configuration) devices have
no math library that includes floating point calculations. Using
CLDC math library for SQRT, sin, tangent, etc., increases the
matching time significantly. We applied the above two break-
down algorithms for approximating those functions and replaced
the floating-point math by approximate fix-point math.

Reducing the processing time by indexing of predicates or sorting
of subscriptions according to their features results in fast event
filtering. The pseudo code of the optimized matching algorithms
using features is presented in fig.5.a. The sorting algorithm ex-
ploits some properties for starting evaluation if and only if the
feature of notification is bigger than the first subscription’s feature
and less than the last subscription’s one. Enumeration of available
subscriptions starts if and only if the feature of the notification is
less than the current one. A pseudo code for FNIFS is presented in
Fig.5.b. The covering algorithm (fig.5.c.) takes advantage of
similarity in the system, which is significant when approximate
terms are used. However, dynamism in the topology of sparse
MANETs imposes algorithms for insertion, covering, intersection
and sorting of subscriptions to be fast and efficient to make the
loading time of subscription as low as possible.

Input: SV, N
Variables: s=number of subcriptions,
i=number of predicates
SatS:set of satisfied subscriptions
Body:
1. for each subscription ss in SV

locate its feature SFss
 if (XOR-ing SFss with NF) ==0;

then
For each attribute in features locate corresponding (vi;Vi,γ)

compute µi

else continue next ss;
2. for all attributes switch(aggregator)
3. defuzzification of µi to yield FDM
4. if FDMs>threshold then SatSub U SV[s]

return SatSub

Figure 5.a. Pseudo-code of matching algorithm FNIF

1 Step –Sorting SV
InpI Input: SV

Variables: i=number of subcriptions,
Feat[ss] - array storing active features
SFeat[ss] - array storing sorted features
SSV-vector storing sorted subscriptions
Body:
1. for each subscription si in SV

locate its feature SFs and store in Feat[s]
2. SFeat[si] =Hoare's Quick Sort algorithm (Feat[si], 0, Feat[si].length)
3. for each feature f in SFeat[si]

for each subscription si in SV
if(SFeat[f]= = SF[si]

 SV.removeElement(si);
 SoSV.addElement(si);
4. Return SSV

2 Step:
Input: SSV-vector storing sorted subscriptions, N

Variables: i=number of subcriptions,
SatS: storing set of satisfied subscriptions
Body:
1. for each subscription si in SSV

if(NF>60) locate last element from SFss
locate feature SF si
if NF>=SF si exit

 if (XOR-ing SFss with NF)])= =0)
then: for each attribute locate corresponding (vi;Vi,γ)

Figure 5.b. Pseudo-code of matching algorithm FNIFS

1 Step –Covering SV
Input: SV, input subscription s

Variables: i=number of subcriptions,
AssocSub – vector (or hashtable) storing subscription’s associations
UnsubSub – vector (or hashtable) storing associated subscriptions
Body:
1. for each subscription si in SV

boolean add_this_sub=false
xor feature SF with SFi

2. if (SF ^ SFi) !=0:
 if(card>=cardi):
 if(SF& SFi +(SF - SFi))= =SF:

masking bits in (SF ^ SFi) gives the attrs in si that si does
not have does not have

 skip evaluation of these attrs
in case si covers s: AssocSub.put(sID, siID, SFi)

 if(card<cardi):

 if(SF& SFi +(SFi -SF))= = SFi:

masking bits in (SF ^ SFi) gives the attrs in si that s does not
have; skip evaluation of these attrs

 in case s covers si: AssocSub.put(siID, sID, SF)

3. if (SF ^ SFi) = =0:
for each attribute constraints in ss [card]
if((s[vi]<= si [vi])&&(s[Vi]>= si [Vi])&& (s[γ]>= si [γ]))
si covers s: AssocSub.put(sID, si ID)
add_this_sub=true; SV.removeElement(si)
UnsubSub.addElement(si)
else if((si [vi]<= s [vi])&&(si [Vi]>= s [Vi])&&
 (si [γ]>= s [γ]))
 { s covers si: AssocSub.put(siID, sID)
UnsubSub.addElement(s)
} else add_this_sub=true

4. if(add_this_sub) SV.addElement(s);
5. Return SV
2 Step: same as in FNIF

Figure 5.c.Pseudo-code of matching algorithm FNIFC

5. IMPLEMENTATION AND EVALUATION
In this section the implementation, emulation and evaluation of
the proposed fuzzy-concept based data model and algorithms in
Sun Java Wireless Toolkit 2.3 (WTK23) and NEMAN [11], are
illustrated.

We have designed a light–weight portable MIDP Java WD appli-
cation supporting devices running Java2 Micro Edition. WD_EE
implements a protocol handler interface for monitoring files on a
local mobile file system (JSR75 API). We have implemented and
evaluated the performance of a filtering algorithm with non-
indexing of predicates in subscriptions, with and without sorted
features and covered subscriptions. We evaluated the algorithm by
indexing of predicates in the subscription on the DENS nodes, as
well. An implementation of the arbitrary Boolean subscriptions

 11

with patterns: p1 ∧ (p2 ∨ p3); (p1 ∧ p2) ∨ p3; (p1∧p2) ∨
(p3∧p4) and (p1 ∨ p2 ∨ p3) ∧ p4, have been tested.

We used NEMAN [11] as an emulation platform and the test
setup is described in fig.6. NEMAN provides a virtual wireless
network that can handle hundreds of nodes on a single machine.
On one machine NEMAN is running and emulating a MANET
with 50 nodes. In addition to the test machine we have used a
wireless weather station “METEO_PRO WS 2305” with sensors
collecting information such as temperature, wind speed, etc., and
these sensors send values to a base station which logs the values.
The collected values were then used as data for a publisher node.
We used a simplified implementation of the KM, i.e., a simplified
LDD for providing the necessary metadata. The WD is imple-
mented on a laptop, and the WD Manager is linked to a node in
the MANET which then acts as a publisher. WD has been emu-
lated in a WTK23. It uses the PUB/DENS protocol to communi-
cate with the DENS overlay. The nodes in the network picked out
to be DENS nodes (grey nodes) uses the matching functions when
receiving a notification.

Figure 6: Test Setup

Since, the idea of DENS design is to decouple the subscription
and notification delivery from subscription specification and event
filtering, the performance costs have been measured locally on the
publisher or DENS nodes and globally in NEMAN. Global cost
evaluates the global network, mobility and application perfor-
mance. In the present study we focused mainly on the local cost.
Local cost evaluates the behavior and performance on the pub-
lisher and DENS nodes according to the application workload, the
subscription specification and the degree of expressiveness of
subscriptions.

Our first experiment was to implement and compare the matching
times for the crisp and fuzzy algorithms on DENS overlay in
NEMAN. To put up a test scenario we had up to 1000 randomly
generated subscriptions. The publisher starts publishing notifica-
tions over a 1 second period for 200 measured events. We varied
the workload up to 1000 subscriptions with 3 and 4 attributes. The
time to do the matching was ~100 ms for the fuzzy flat algorithm,
~600 ms for the “breakdown” one and negligible for the attribute-
valued crisp algorithm. These results showed that fuzzy event
notification could be well supported and is relatively comparable
to crisp one.

Fig.7.a. shows the time for filtering of 200 events when the num-
ber of inserted subscriptions on the publisher is 40, 100, 200, 500
or 1000 every one second. Thus, the times for subscription inser-
tion, deletion and their aggregation into fuzzy rules base have
been tested. These times can be neglected if not covering of sub-
scriptions is performed. Fig.7.b. shows the filtering times of one
event according to different number of subscriptions using flat
algorithms. FNIF increases linearly with the number of registered
subscriptions. If subscriptions’ covering is performed (FNIFC),

the filtering time is flat and low – about 20ms since subscription
equality in the system is increasing: 60% for 100 subscriptions,
92% for 500 and 96% for 1000 subscriptions. However, optimized
algorithms require subscription loading time that needs to be
taken into account (Fig.7.c.). Times consuming for decomposing
of predicates using “break down filtering algorithm” are shown in
Fig.7.d. Minimum, maximum, product, geometric- (SQRT), har-
monic- and arithmetic-mean aggregating functions have been
implemented. Different times have been observed when product,
approximated SQRT; Java Math SQRT and arithmetic mean-
aggregator (fig.9.e.) have been used. Since Java Math square root
is a very costly operator, a precision of the SQRT aggregator has
been traded-off against the time. Approximated SQRT aggregator
is proposed to be used which matching accuracy is distributed
within an error-interval of 1% around the true value. Expressive-
ness of the data model influences the scalability of the implemen-
tation on mobile devices to process up to 10000 subscriptions
(Fig.7.f.). Memory is scarce on MIDP devices. The Memory
Footprint of WD implementation is 49KB (MIDP Java Descriptor
File +JARfile). A memory monitor in WTK23 examines the
amount of memory currently allocated to each process over time.
The default color mobile phone has 500KB RAM and the maxi-
mum amount of resident memory allocated for some processes is:
for loading the objects of WD_M -118KB; for launching the
MIDP application – 19KB; for starting WD_EE for content hand-
ler "text/csv" – 44KB. Allocated memory for filtering and cover-
ing for different number of subscriptions is shown in Fig.7.g.

When a notification was sent to the DENS node in JWT23, the
best performance shows algorithm exploiting sorted features and
covering subscriptions - 6.5-7ms (Fig.7.h.). If predicates of sub-
scriptions are hashed and indexed (FIP), the matching time is low
too (6-6.5ms), however the loading time is large (Fig.7.i.). The
Memory Footprint of MIDP implementation on the DENS node is
22KB. We compared times for the crisp and approximate match-
ing algorithms when a notification was sent to the DENS overlay
in NEMAN. We used workload of 100 subscriptions with 3
attributes. The time to do the matching was ~10 ms for the im-
plemented FNIF, ~60 ms for “break down matching algorithm”
and negligible for the simple attribute-valued crisp one.

Filtering of #200 events

0

10000

20000

30000

40000

50000

0 200 400 600 800 1000
#sub

Fi
lte

rin
g

Ti
m

e
[m

s]

FNIF

FNIFC

a) filtering time for 200 events

Flat Algorithms for filtering on the publisher

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

#sub

Fi
lte

rin
g

Ti
m

e
[m

s]

FNIF
FNIFC

b) Filtering time on publisher

MANET
Base

station

Test machine Sensors

Implem-
ented
WD

 12

Flat Algorithms for filtering on the publisher

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
#sub

Lo
ad

in
g

Ti
m

e
[m

s]

FNIF
FNIFC

c) Loading time on publisher

Break Down Algorithms on the publisher

0

200

400

600

800

1000

0 200 400 600 800 1000#sub

Fi
lte

rin
g

Ti
m

e
[m

s]

BFCPB

BFCPA1

BFCPA2

d) Filtering time on publisher

FNIF - Different Fuzzy Aggregators

0

100

200

300

400

500

0 200 400 600 800 1000#Sub

M
at

ch
in

g
Ti

m
e

[m
s]

Product Aggregator Appr SQRT Aggregator
J2ME Math SQRT Aritmetic Mean Aggregator
Non-linear Aggregator

e) Different fuzzy aggregators

Scalability (FNIF)

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000#sub

M
at

ch
in

gT
im

e
[m

s]

 f) Scalability

Memory used by Filtering Algorithms

0

100

200

300

400

500

0 2000 4000 6000 8000 10000 12000

#sub

M
em

or
y

si
ze

 [K
B]

FNIF FNIFC

g) Resident memory allocated for filtering processes

Flat Algorithms for matching on DENS node

0

5

10

15

20

0 200 400 600 800 1000
#sub

M
at

ch
in

g
Ti

m
e[

m
s] FNIF

FNIFC

FNIFS

FNIFC+
FNIFS

FIP

h) Matching time on DENS node

Flat Algorithms for matching on DENS node

0

100

200

300

400

500

0 200 400 600 800 1000#sub
Lo

ad
in

gT
im

e[
m

s]

FNIF

FNIFC

FNIFS

FNIFC
+FNIF
S
FIP

i) Loading time on DENS node

Figure 7: Emulations in Sun Java Wireless Toolkit 2.3

6. CONCLUSIONS
Sparse MANETs require efficient event notification services for
information sharing that could be performed on mobile device
without restricting the expressiveness of a subscription language
and losing the portability of services. This paper presented a
design of subscription language, data structures and algorithms
that can be used to perform approximate event notification on the
DENS overlay in the Ad-Hoc InfoWare project for emergency
and rescue applications. Fuzzy logic has been successfully applied
for modeling and processing of subscriptions in uncertainty. It not
only making distributed event notification services more ad-
vanced, it performs error-tolerance in information providing and
information consuming. We have established that crisp and ap-
proximate event filtering are comparable in time, space and scala-
bility efficiency. Simulations results show that publish/subscribe
can be well supported by an approximate filtering function, and
that the load is tolerable for mobile devices with limited compu-
ting capability.

Since, the proposed design framework is extensible and configur-
able, the design of additional data structures and methods for time
synchronization and composition of subscriber interests about
events on DENS, will be easily set up. As for a future work, we
would like to research how temporal relationships among predi-
cates in subscriptions could be represented by fuzzy temporary
restrictors, to study and model event correlations using the sub-
scription features and to improve the attribute look-up services to
facilitate subscribers in combining events.

7. ACKNOWLEDGMENTS
This research has been performed in the Ad-Hoc InfoWare
project, funded by the Norwegian Research Council in the IKT-
2010 Program, Project No. 152929/431.

 13

8. REFERENCES
[1] Abe Sh, M. Lan, Fuzzy rules extraction directly from

numerical data for function approximation, IEEE
Trans. System Man Cybernet 25, 1995, 119-129.

[2] Babuska, H.B. Verbruggen, Constructing fuzzy models
by product space clustering. In H. Hellendoorn.

[3] Carzaniga A., L. Wolf. Content-based networking: A
new communication infrastructure. In NSF Work-
shop on an Infrastructure for Mobile and Wireless
Systems, Scottsdale, Arizona, Oct. 2001

[4] Carzaniga, D. Rosenblum and A. Wolf. Achieving Sca-
lability and Expressiveness in an Internet-Scale
Event Notification Service, In 9th ACM Symposium
on Principles of Distributed Computing (PODC),
2000, pp.219-227

[5] Chen M., D. Linkens, Rule-base self-generation and
simplification for data driven fuzzy models. Fuzzy
Sets and Systems 142:2, 2004, 243-265

[6] Jung D., A. Hinze, A Meta-service for Event Notifica-
tion. Lecture Notes in Computer Science, Volume
3290 / 2004 , 283-300 29

[7] Lekova. A., at all, Redundant fuzzy rules exclusion by
genetic algorithms, Fuzzy Sets and Systems 100,
1998, 235-243

[8] Liu, H.-A. Jacobsen. Modelling Uncertainties in Pub-
lish/Subscribe. International Conference on Data
Engineering (ICDE), Boston, MA, June 2004, 510-
522.

[9] Picco G., D. Balzarotti and P. Costa, LighTS: a
lightweight, customizable tuple space supporting
context-aware applications. ACM Symposium on
Applied Computing, 2005, 413-419.

[10] Plagemann, T., Goebel, V., Griwodz, C., and Halvorsen,
P. Towards Middleware Services for Ad-Hoc Net-

work Applications. In the 9th IEEE Workshop on
Future Trends of Distributed Computing Systems,
Puerto Rico, May 2003, 249-257

[11] Pužar M and T. Plagemann, NEMAN: A Network Emu-
lator for Mobile Ad-Hoc Networks. 8th Interna-
tional Conference on Telecommunications (Con-
TEL 2005), Zagreb, Croatia, June 2005.

[12] Sanderson N., V. Goebel and E. Munthe-Kaas, Know-
ledge Management in Mobile Ad-Hoc Networks for
Rescue Scenarios. Workshop on Semantic Web
Technology for Mobile and Ubiquitous Applica-
tions, ISWC 2004, 11, 2004.

[13] Segall, D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching.
In Proceedings of AUUG97, Brisbane, Australia,
September 1997.

[14] Skjelsvik K., V. Goebel, T. Plagemann,. Distributed
Event Notification Service for Mobile Ad Hoc Net-
works, IEEE Distributed Systems Online, vol.5(8),
2004.

[15] Skjelsvik K., at all, Supporting Multiple Subscription
Languages by a Single Event Notification Overlay
in Sparse MANETs. MobiDE'06,June 25, 2006

[16] Takagi T., M. Sugeno. Fuzzy identification of systems
and its applications to modeling and control. IEEE
Trans. Syst., Man, Cybern., vol. 15, 1985, 116–
132.

[17] Yager R., D.P.Filev, Essential of Fuzzy Modeling and
Control. Wiley, New York, 1994.

[18] Yoneki E., J. Bacon. An Adaptive Approach to Content-
Based Subscription in Mobile Ad Hoc Networks.
Proceedings of the 1st International Workshop on
Mobile Peer-to-Peer Computing, 2004, 92-97

[19] Zadeh L., A fuzzy-set-theoretic interpretation of linguis-
tic hedges. Journal of Cybernetic, 2, 1972

