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1. Introduction

We consider two very representative homogenization problems for conservation laws 
subjected to a stochastic perturbation by a multiplicative noise.

The first problem we consider is the one of the nonlinear transport equation whose 
deterministic case was first addressed in [24], in the periodic case, and later on in [2,30]
in the almost periodic, Fourier-Stieltjes algebras cases, respectively. See also [15,55]. The 
equation is the following

duε + a
(x
ε

)
· ∇xf(uε) dt = κ0 σ(uε) dW + 1

2κ
2
0 h(uε) dt, (1.1)

where W is a scalar Brownian motion, dW denotes Itô differential, a(y) ∈
(Lip ∩ A) (Rd)d satisfies ∇y · a(y) = 0, A(Rd) is a general ergodic algebra, a concept 
whose definition we recall subsequently, f, σ, h : R → R are smooth functions, with σ and 
h satisfying h = σ′σ. We also assume that f ′, σ′, h′ ∈ L∞(R), and σ ≥ δ0 > 0. We further 
assume that the set of zeros of f ′ has measure zero, namely, |{u ∈ R : f ′(u) = 0}| = 0.

Note that by the well-known conversion formula between Stratonovich and Itô differ-
entials (see, e.g., [5]) equation (1.1) may be written as

duε + a
(x
ε

)
· ∇xf(uε) dt = κ0 σ(uε) ◦ dW,

where ◦dW denotes integration in the Stratonovich sense.
The initial condition is given by

uε(0, x) = U0

(
x,

x

ε

)
, (1.2)

where U0(x, y) ∈ L∞(Rd; A(Rd)). Although we study the homogenization problems here 
in the general context of ergodic algebras, the results established in this paper are new 
even in the context of periodic homogenization. So, the reader not familiarized with the 
concept of ergodic algebras may, in a first reading, just assume the periodic case.

The concept of ergodic algebra was introduced in [57] (see also [40]), motivated by 
algebras generated by typical realizations of stationary ergodic processes and their self-



H. Frid et al. / Journal of Functional Analysis 283 (2022) 109620 3
averaging property provided by Birkhoff theorem. Namely, an ergodic algebra is an 
algebra A(Rd) of bounded uniformly continuous (BUC) functions in Rd satisfying the 
following: (i) A(Rd) is invariant by translations, that is, if f ∈ A, then f(· + λ) ∈ A, for 
all λ ∈ Rd; (ii) every function f ∈ A(Rd) possesses mean-value, that is, there exists a 
number M(f) such that f(ε−1x) ⇀ M(f) as ε → 0 in the weak–� topology of L∞(Rd). 
In particular, we have

M(f) := lim
R→∞

1
|B(0;R)|

ˆ

B(0;R)

f(x) dx,

where B(0; R) is the open ball with radius R centered at the origin 0, and |B(0, R)| is 
its n-dimensional Lebesgue measure. Also, one easily sees that M(f(· +λ)) = M(f), for 
all λ ∈ Rn. We also use the notation M(f) =

´
f dx; (iii) A is ergodic in the sense that 

if we define in A the semi-norm [f ]2 := M(|f |2)1/2, taking equivalence classes by the 
relation f ∼ g ⇐⇒ [f − g]2 = 0, and denoting the completion of the quotient space by 
B2(Rn), the Besicovitch space of exponent 2 associated with A(Rd), we have that any 
g ∈ B2(Rd), satisfying g(· +λ) = g(·), in the sense of B2(Rd), for all λ ∈ Rd, is equal to a 
constant in B2(Rd). As examples of ergodic algebras, besides the periodic functions, we 
have AP(Rd), the space of almost periodic functions (see, e.g., [11]), the Fourier-Stieltjes 
algebra FS(Rd) (see, e.g., [26,30]), or the larger one WAP(Rd), the space of the weak 
almost periodic functions, see [26,27]. In particular, in [27], Eberlein proved that every 
function φ ∈ WAP(Rd) admits a decomposition φ = φ∗ + φN , where φ∗ ∈ AP(Rd) and 
φN ∈ N (Rd) where

N (Rd) := {f ∈ BUC(Rd) : lim
R→∞

1
|B(0;R)|

ˆ

B(0;R)

|f(y)| dy = 0}.

This motivates the introduction in [29] of the algebra of the weak–∗ almost periodic 
functions, W*AP(Rd), defined by

W*AP(Rd) := AP(Rd) + N (Rd),

which is clearly an ergodic algebra and contains all the ergodic algebras containing the 
periodic functions so far known.

In all that follows, we assume that the ergodic algebra A(Rd) is a subalgebra of 
W*AP(Rd), that is, A(Rd) ⊂ W*AP(Rd).

Let B2(Rd) denote the L2-Besicovitch space associated with A(Rd). Set

T := {v ∈ A(Rn) ∩W 1,∞(Rn) : ∇av := a · ∇v ∈ A(Rn)}.

We define
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S :=
{
v ∈ B2(Rd) :

ˆ
Rd

v(y)a(y) · ∇ϕ(y) dy = 0, for all ϕ ∈ T
}

and its subspaces

S∗ :=
{
v ∈ A(Rd) ∩W 1,∞(Rd) : ∇av = 0, a.e.

}
,

and

S† :=
{
v ∈ S : ∃ (vk)k∈N ⊂ T , vk

B2∩L2
loc−→ v and ∇avk

B2∩L2
loc−→ 0

}
.

In the periodic case we have S† = S, as proven in [15] by applying the commutation 
lemma in [20]. In general, it holds S∗ ⊂ S†. In [2] it was shown that for a large collection 
of fields a(y) ∈ (AP∩Lip ) (Rd; Rd), with div a = 0, the space S∗ is dense in S in the 
B2(Rd) topology, when A(Rd) = AP(Rd). Similarly, in [30] also a large collection of fields 
a(y) ∈ (FS∩Lip ) (Rd; Rd), with div a = 0, was described for which the space S∗ is dense 
in S in the topology of B2(Rd), when A(Rd) = FS(Rd). Finally, in [55], it was shown 
that for any a(y) ∈ (AP∩Lip ) (Rd; Rd), S† is dense in S, in the topology of B2(Rd), for 
A(Rd) = AP(Rd).

We assume that

U0 ∈ L∞(Rd;A(Rd)), U0(x, ·) ∈ S for a.e. x ∈ Rd. (1.3)

Let K be the compactification of Rd associated with the ergodic algebra A(Rd), 
through a classical theorem by Stone (see, e.g., [22,23]). For each y ∈ K, consider the 
following auxiliary initial value problem

dU + ∇x · (ã(y)f(U)) dt = κ0 σ(U) dW + 1
2κ

2
0 h(U) dt, t > 0, x ∈ Rd, (1.4)

U(0, x, y) = U0(x, y), x ∈ Rd, (1.5)

where ã(y) is the orthogonal projection of a(y) onto S in B2(Rd). In particular, ã is a 
Borel function over K. Actually, it has been proven in [55] (see Theorem 3.2 in [55]) that 
ã(y) ∈ C(K) ∼ A(Rd); we will not make use of this fact here. The stability properties 
of solutions of the Cauchy problem for stochastic scalar conservation laws imply that 
U ∈ L2(Ω; L∞((0, T ) ×Rd ×K)), for any T > 0; we will comment further on this point 
in Section 3.

Let (Ω, F , P ) be a probability space, {Ft : 0 ≤ t ≤ T} be a complete filtration, that 
is, an increasing family of σ-algebras contained in F , all of them containing all the null 
sets of F , such that Fs =

⋂
t≥s Ft. In this paper, for simplicity, we assume that the 

σ-algebra F is countably generated and Ft is the filtration generated by the Brownian 
motion {W (s) : 0 ≤ s ≤ t} and F0, the σ-algebra generated by the null sets of F .
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If X is a Banach space, let N 2
W (0, T, X) denote the space of the predictable X-valued 

processes (see, e.g., [17], p.94, [51], p.28). This is the same as the space L2([0, T ] ×
Ω, X) with the product measure dt ⊗ dP on PT , the predictable σ-algebra, i.e., the 
σ-algebra generated by the sets {0} × F0 and the rectangles (s, t] × A for A ∈ Fs. 
We denote N 2

W (0, T, L2
loc(Rd)) :=

⋂
R>0 N 2

W (0, T, L2(B(0, R))), where B(0, R) is the 
open ball centered at 0 with radius R in Rd. We will say that u is predictable if u ∈
N 2

W (0, T, L2
loc(Rd)). Let us also denote Q = (0, T ) ×Rd.

Definition 1.1. We say that a predictable function uε ∈ L2(Ω; L∞(Q)) is an entropy 
solution of (1.1)–(1.2) if for all convex η ∈ C2(R), for q ∈ C2(R), such that q′(u) =
η′(u)f ′(u), and for all 0 ≤ ϕ ∈ C∞

c ((−∞, T ) ×Rd), a.s. in Ω, we have

ˆ

Q

η(uε)∂tϕ + q(uε)a
(x
ε

)
· ∇ϕ + κ2

0
2
(
η′(uε)h(uε) + η′′(uε)σ2(uε)

)
ϕdx dt

+ κ0

T̂

0

ˆ

Rd

η′(uε)σ(uε)ϕdx dW (t) +
ˆ

Rd

η
(
U0

(
x,

x

ε

))
ϕ(0, x) dx dt ≥ 0.

Definition 1.2. For each y ∈ K, we say that a predictable function U(y) ∈ L2(Ω; L∞(Q))
is an entropy solution of (1.4)–(1.5) if for all convex η ∈ C2(R), for q ∈ C2(R), such that 
q′(u) = η′(u)f ′(u), and for all 0 ≤ ϕ ∈ C∞

c ((−∞, T ) ×Rd), a.s. in Ω, we have

ˆ

Q

η(U(y))∂tϕ + q(U(y))ã(y) · ∇ϕ + κ2
0
2
(
η′(U(y))h(U(y)) + η′′(U(y))σ2(U(y))

)
ϕdx dt

+ κ0

T̂

0

ˆ

Rd

η′(U(y))σ(U(y))ϕdx dW (t) +
ˆ

Rd

η(U0(y))ϕ(0, x) dx dt ≥ 0. (1.6)

Theorem 1.1. Let uε be the entropy solution of (1.1)–(1.2), with U0 satisfying (1.3), and, 
for each y ∈ K, let U(y) be the entropy solution (1.4)–(1.5). Assume that S† is dense 
in S in the topology of B2(Rd). Then, we have that uε ⇀ u, in the weak topology of 
L2(Ω; L2

loc(Q)), that is, L2(Ω; L2((0, T ) × {|x| < R}), for any R > 0, where

u(t, x) =
ˆ

K

U(t, x, y) dm(y),

and dm(y) is the measure on K induced by the mean value on A(Rd). Moreover, if 
U ∈ L2(Ω; B2(Rd; Cb([0, T ] ×Rd))), then uε(t, x) −U

(
t, x, xε

)
strongly converges to zero 

in L2(Ω; L2
loc(Q)).
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The second problem is the one of a stiff oscillatory external force whose deterministic 
case was first addressed in [25], in the periodic one-dimensional case and later on in [2,3]
in the almost periodic and ergodic algebras multidimensional case. The corresponding 
equation is as follows

duε + ∇x · f(uε) dt = 1
ε
V ′
(x1

ε

)
dt + κ0 σf1(uε) dW + 1

2κ
2
0 hf1(uε) dt, (1.7)

where f = (f1, . . . , fd), fi : R → R are smooth functions, i = 1, . . . , d, f ′
1 ≥ δ0 > 0, 

f ′
k ≥ 0, k = 2, . . . , d. We also assume that f ′ ∈ L∞(R; Rd) and f ′

1, f
′′
1 , f

′′′
1 ∈ L∞(R). 

κ0 ∈ R is a constant. V : R → R is a smooth function belonging to an arbitrary ergodic 
algebra A(R), W : Ω × [0, T ] → R is a standard Brownian motion, and σf1 , hf1 are 
obtained from f1 from the expressions

σf1(u) := 1
f ′
1(u) , hf1 := − f ′′

1 (u)
f ′
1(u)3 .

We observe that, from the assumptions on f1, it follows that h′
f1

∈ L∞(R).
Again, in view of the Stratonovich-Itô conversion formula, we note that equation (1.7)

may be written as

duε + ∇x · f(uε) dt = 1
ε
V ′
(x1

ε

)
dt + κ0 σf1(uε) ◦ dW.

We prescribe an initial data for (1.7) of the form

uε(0, x) = u0

(
x,

x

ε

)
, (1.8)

which, for simplicity, we may assume to be deterministic, whose hypotheses we will 
specify later on.

Let g = f−1
1 be the inverse of f1. We assume that, for some v0 ∈ L∞(Rd), u0(x, y)

satisfies

u0(x, y) = g(V (y) + v0(x)). (1.9)

Let us consider the auxiliary equation

dū + ∇ · f̄(ū) dt = κ0 σf̄1
(ū) dW + 1

2κ
2
0 hf̄1

(ū) dt, (1.10)

where f̄ = (f̄1, f̄2, . . . , f̄d), with f̄1, f̄2, . . . , f̄d, satisfying

p =
ˆ
R
g
(
f̄1(p) + V (z1)

)
dz1, (1.11)

f̄k(p) =
ˆ
R
fk ◦ g

(
f̄1(p) + V (z1)

)
dz1, k = 2, · · · , d, (1.12)
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and σf̄1
(·), hf̄1

(·) are defined as σf1 , hf1 with f̄1(·) instead of f1 We remark that, from 
the assumptions on f and f1, it follows from (1.11) and (1.12) that f̄ and f̄1 also satisfy 
f̄ ′ ∈ L∞(R; Rd) and f̄ ′

1, f̄
′′
1 , f̄

′′′
1 ∈ L∞(R).

For (1.10) the following initial condition is prescribed

ū(0, x) = ū0(x) :=
ˆ
R
u0(x, z1) dz1 = f̄−1

1 (v0(x)). (1.13)

Definition 1.3. We say that uε ∈ N 2
W (0, T, L2

loc(Rd)) ∩ L2(Ω; L∞(Q)) is an entropy so-
lution of (1.7)–(1.8), with u0

(
·, ·

ε

)
∈ L2(Ω; L∞(Rd)), satisfying (1.9), if for all convex 

η ∈ C2(R), for q ∈ C2(R, Rd), such that q′(u) = η′(u)f ′(u), and for all 0 ≤ ϕ ∈
C∞

c ((−∞, T ) ×Rd), a.s. in Ω, we have

ˆ

Q

η(uε)∂tϕ + q(uε) · ∇ϕ + η′(uε)
(

1
ε
V ′
(x1

ε

)
+ κ2

0
2 hf1(uε)

)
ϕdx dt

+ κ2
0
2

ˆ

Q

σ2
f1

(u)η′′(u)ϕdx dt + κ0

T̂

0

ˆ

Rd

η′(u)σf1(u)ϕdx dW (t)

+
ˆ

Rd

η(u)ϕ(0, x) dx dt ≥ 0.

Definition 1.4. We say that a predictable function ū ∈ L2(Ω; L∞(Q)) is an entropy 
solution of (1.10)–(1.13) if for all convex η ∈ C2(R), for q̄ ∈ C2(R, Rd), such that 
q̄′(u) = η′(u)f̄ ′(u), and for all 0 ≤ ϕ ∈ C∞

c ((−∞, T ) ×Rd), a.s. in Ω, we have

ˆ

Q

η(ū)∂tϕ + q̄(ū) · ∇ϕ + κ2
0
2

(
η′(ū)hf̄1

(ū) + η′′(ū)σ2
f̄1

(ū)
)
ϕdx dt

+ κ0

T̂

0

ˆ

Rd

η′(ū)σf̄1
(ū)ϕdx dW (t) +

ˆ

Rd

η(ū0)ϕ(0, x) dx dt ≥ 0.

We can state our second main result.

Theorem 1.2. Let uε be the entropy solution of (1.7)–(1.8), with u0 satisfying (1.9), 
and ū be the entropy solution of (1.10)–(1.13). Then, uε ⇀ ū in the weak topol-
ogy of L2(Ω; L2

loc(Q)). Moreover, uε(t, x) − U
(
t, x, x

ε

)
strongly converges to zero in 

L2(Ω; L2
loc(Q)), as ε → 0, where U(t, x, y) = g

(
f̄1(ū(t, x)) + V (y)

)
.

Before we make an account of earlier works connected to the present one, both in 
homogenization theory and in the theory of SPDEs, and a brief description of the con-
tents in this paper, we remark for practical purposes that the stochastic perturbation 
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of the deterministic versions, of the equations we deal with herein, are determined by 
the stochastic equations satisfied by certain special solutions, which in turn are natural 
stochastic extensions of the stationary solutions of the corresponding deterministic ver-
sions, which play a central role in the homogenization process in the deterministic case. 
Homogenization theory has been useful in many well known cases to derive equations 
from mechanics and other applied areas, as the Darcy law in two-phase flows in porous 
media (see, e.g., the famous appendix by Tartar in [53]), and we believe that the way 
the stochastic perturbations were derived here may be useful in applications.

This paper is concerned with both the theory of homogenization of partial differential 
equations and the theory of stochastic differential equations. The homogenization theory 
of partial differential equations has been a field of intense research since the 1970’s and 
we refer to the classical book [10] for an account of this theory up to 1978. We also 
refer to the other classical book [40] where a section is devoted to the homogenization 
theory in the context of ergodic algebras, which is the setting adopted in this paper. 
The homogenization methods used in this paper are based on those developed in [2]
and [3], which in turn are mostly based on the concept of two-scale Young measures 
for almost periodic oscillations and its natural extension to ergodic algebras. Two-scale 
Young measures were introduced in the periodic case in [24] (see also [25]) as an extension 
to the notion of two-scale convergence introduced in [49] and further developed in [1]
(see also [15]). Two-scale convergence for general oscillations in ergodic algebras were 
established in [13], and corresponds to the linear case of the two-scale Young measures 
established in [2], as proved in [31].

The theory of stochastic partial differential equations has experienced intense progress 
in the last three decades and we cite the treatise [17] for a basic general account of this 
theory and references. More specifically, concerning the theory of stochastic conservation 
laws, we mention the first contributions by Kim [43], and Feng and Nualart [28]. The lat-
ter was further developed in Chen, Ding, and Karlsen in [14] and Karlsen and Storrøsten 
in [42]. An inflection in the course of this theory was achieved by Debussche and Vovelle 
[18] with the introduction of the notion of kinetic stochastic solution, extending the 
corresponding deterministic concept introduced by Lions, Perthame, and Tadmor [45]. 
We also mention the independent development in this theory made by Bauzet, Vallet, 
and Wittbold [7]. Concerning homogenization of stochastic partial differential equations, 
this has not been a frequently researched topic, although the earliest contribution seems 
to have appeared already in the early 1990’s by Bensoussan in [9]. As to more recent 
publications on this subject, we mention the contributions of Ichihara [38], Sango [54], 
Mohammed [47], and Mohammed and Sango [48], among others. Consult also references 
in these papers.

Concerning our method for proving Theorem 1.1 and Theorem 1.2, the core of our 
technique is to begin by using two-scale Young measures, as in [24,25,2,3], for instance, 
then to derive a stochastic kinetic equation satisfied by the generalized kinetic function 
associated with the two-scale Young measure, and then to apply a uniqueness result for 
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weak solutions of the corresponding stochastic kinetic equation, as is done in [15] in the 
deterministic periodic case for general conservation laws.

This paper is organized as follows. In Section 2 we state and prove a result on the 
existence of stochastic two-scale Young measures which will be used in the two subse-
quent sections. In Section 3, we address the homogenization of the stochastic nonlinear 
transport equation. In Section 4, we deal with the same problem for the stochastic stiff 
oscillatory external force equation. In Section 5 we establish a general well-posedness 
result for stochastic conservation laws, which fits the needs of the present article. Fi-
nally, in Section 6, we gather a general comparison principle and the so-called stochastic 
Kružkov inequality. Both needed for the analysis in Sections 3 and 4.

2. Stochastic two-scale Young measures

In the following sections our analysis will be based on the notion of two-scale Young 
measures as was done in the deterministic case in, e.g., [24,25,2,3]. For future ref-
erence, we next state as a proposition the existence of stochastic two-scale Young 
measures associated with (generalized) subsequences satisfying bounds such as (3.3)
or (4.4) below. The proof follows ideas in [2]. Nevertheless, here there is the probabil-
ity space Ω and the stochastic integral as new ingredients. Also we need to establish 
an estimate (cf. (2.3)) that will be needed in the following sections. Therefore, we in-
clude a detailed proof here for the convenience of the reader. For simplicity, to avoid 
the use of generalized subsequences, we assume that our ergodic algebra is separable. 
In practice, this means that if Ψ1(t, x, xε , u), . . . , ΨN (t, x, xε , u) is the finite family of 
continuous oscillatory functions involved in our homogenization problem, we consider 
the closure of the subalgebra of A(Rn) (invariant by translations) generated by the 
functions gα1,β1,γ1(y) := Ψ1(tα1 , xβ1 , y, uγ1), · · · , gαN ,βN ,γN

(y) := ΨN (tαN
, xβN

, y, uγN
), 

αi, βi, γi ∈ N, i = 1, · · · , N , where {(tαi
, xβi

, uγi
) : αi, βi, γi ∈ N} is a countable dense 

subset of [0, ∞) ×Rd ×R, for i = 1, · · · , N .

Proposition 2.1. Let (Ω, F , P ) be a probability space, with F countably generated, let Ft

be the filtration generated by the Brownian motion W (t) and F0, the σ-algebra generated 
by the null sets of F . Let A(Rd) be a separable ergodic algebra and K the associated 
separable compact space such that A(Rd) ∼ C(K), with associated invariant measure 
dm(y). Let uε, ε > 0, be a sequence of predictable functions in Lp(Ω; L1

loc([0, ∞) ×Rd)), 
for all p ≥ 1, satisfying

|uε(ω, t, x)| ≤ C∗(1 + |W (ω, t)|N0), for a.e. (ω, t, x) ∈ Ω × [0,∞) ×Rd, (2.1)

for some C∗ > 0 and N0 ∈ N. Let wN be defined in (5.11). Then, there exists a subse-
quence, uεk , εk → 0, and a parameterized family of probability measures over R, νω,t,x,y, 
satisfying the properties:
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(1) νω,t,x,y is measurable, in the sense that for any ζ ∈ Cc(R), 〈νω,t,x,y, ζ〉 is measurable 
with respect to the sigma-algebra F ⊗ B([0, ∞) ×Rd) ⊗ B(K);

(2) For any A ∈ F , denoting by EA the conditional expectation with respect to A, for 
all Ψ ∈ Cc([0, ∞) ×Rd ×R; A(Rd)) ∼ Cc([0, ∞) ×Rd ×K ×R),

lim
k→∞

EA

ˆ

[0,∞)×Rd

Ψ
(
t, x,

x

εk
, uεk(t, x)

)
wN (x) dt dx

= EA

ˆ

[0,∞)×Rd×K

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN (x) dm(y) dt dx. (2.2)

(3) For a.e. y ∈ K, for all T > 0, we have

E

⎛⎜⎝ess sup
t∈[0,T ]

¨

Rd×R

|ξ|p wN (x) νω,t,x,y(dξ) dx

⎞⎟⎠ ≤ CT,N,p, ∀p ∈ [1,∞), (2.3)

where CT,N,p is a positive constant depending only on T, N, p.
(4) If Ψ ∈ C([0, ∞) ×Rd×R; A(Rd)) ∼ C([0, ∞) ×Rd×K×R) is such that |Ψ(t, x, y, ξ)| ≤

1[0,T0](t)C(1 + |ξ|p), for some p ≥ 1 and T0 > 0, then (2.2) holds for all A ∈ F . More 
generally, for such Ψ, if � ∈ L2(Ω) and Ψ̃(ω, t, x, y, ξ) = �(ω)Ψ(t, x, y, ξ), then

lim
k→∞

E

ˆ

[0,∞)×Rd

Ψ̃
(
ω, t, x,

x

εk
, uεk(t, x)

)
wN (x) dt dx

= E

ˆ

[0,∞)×Rd×K

〈
νω,t,x,y, Ψ̃(ω, t, x, y, ·)

〉
wN (x) dm(y) dt dx. (2.4)

(5) If Ψ ∈ C([0, ∞) ×Rd ×R; A(Rd)) satisfying |Ψ(t, x, y, ξ)| ≤ 1[0,T0](t)C(1 + |ξ|p), for 
some p ≥ 1 and T0 > 0, then

(ω, t) �→
ˆ

Rd

ˆ

K

〈νω,t,x,y ,Ψ(t, x, y, ·)〉wN (x) dm(y) dx

is a predictable process on Ω × [0, ∞), and, for any A ∈ F ,

lim
k→∞

EA

∞̂

0

ˆ

Rd

Ψ
(
t, x,

x

εk
, uεk(t, x)

)
wN (x) dx dW (t)

= EA

∞̂

0

ˆ

Rd

ˆ

K

〈νω,t,x,y ,Ψ(t, x, y, ·)〉wN (x) dm(y) dx dW (t). (2.5)
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Moreover, for m-a.e. y ∈ K,

(ω, t) �→
ˆ

Rd

〈νω,t,x,y ,Ψ(t, x, y, ·)〉wN (x) dx

is a predictable process on Ω × [0, ∞).

Proof. Let W ∗(t) := max0≤s≤t |W (s)| and, given M > 0, let tM := inf{t ≥ 0 : W ∗(t) ≥
M}. Given T > 0, for M sufficiently large, tM > T . Therefore, taking M ∈ N, making 
M → ∞, and defining ΩM (T ) := {ω ∈ Ω : tM (ω) > T}, we see that P (Ω \ ΩM (T )) → 0. 
Indeed, ΩM (T ) is an increasing family of subsets of Ω and if P

(
Ω \

⋃
M∈N ΩM (T )

)
> 0, 

then we would be able to find ω ∈ Ω for which W (t) is defined and continuous for 
t ∈ [0, ∞) and such that W ∗(ω, t) → +∞ as t → T , which is absurd. We fix T > 0, and, 
for simplicity we write simply ΩM instead of ΩM (T ). So, for each M ∈ N, we have that 
uε is a bounded sequence in L∞(ΩM × [0, T ] ×Rd). Let us consider the countable family 
of real valued functions over ΩM , F := {W (·, r) : r ∈ Q ∩ [0, T ]}. We may assume, 
without loss of generality, that the functions of the family F are defined at every point 
of ΩM and that F distinguishes between the points of ΩM , that is, given ω1, ω2 ∈ ΩM , 
ω1 �= ω2, then there is r ∈ Q ∩ [0, T ] such that W (ω1, r) �= W (ω2, r). The first assertion 
is clear since we may find a set of null P -measure in Ω out of which the functions in 
the countable family F are defined everywhere, and so we can define them as 0 over 
this null P -measure subset of Ω. The second assertion follows from the fact that we can 
define in Ω the equivalence relation ω1 ∼ ω2 if and only if W (ω1, r) = W (ω2, r) for all 
r ∈ Q ∩ [0, T ]. Then we define the quotient space Ω̃ := Ω/ ∼, with the natural projection 
π∼ : Ω → Ω̃, π∼(ω) = [ω], where [ω] is the ∼-equivalence class of ω. We also define the 
class F̃ of subsets of Ω̃ by Ã ∈ F̃ if and only if π−1

∼ (Ã) ∈ F , and for Ã ∈ F̃ we define 
P̃ (Ã) = P (π−1

∼ (Ã)). It is easy to check that F̃ is a sigma-algebra and P̃ is a probability 
measure on Ω̃. Moreover, W (t) is a Brownian motion over Ω̃, since the distributions of 
W (t), t ∈ [0, T ], on (Ω, F , P ) and on (Ω̃, F̃ , P̃ ) coincide; therefore, for all purposes, we 
can assume that the family F distinguishes between the points of Ω; otherwise we replace 
(Ω, F , P ) by the quotient space (Ω̃, F̃ , P̃ ) and, once we obtain the result for the latter, 
it can be automatically lifted up to the original probability space (Ω, F , P ).

Let B(ΩM ) be the algebra of bounded functions over ΩM . Let A be the closed sub-
algebra of B(ΩM ) generated by {1, F}. According to a well-known extension of the 
Stone-Weierstrass theorem (see [22], p.274–276, Theorem 18 and Corollary 19) there 
exist a compact Hausdorff space ΩM and an one-to-one embedding of ΩM as a dense 
subset of ΩM , such that each ψ ∈ A has a unique continuous extension ψ to ΩM , and 
such that the correspondence ψ ↔ ψ is an isomeric isomorphism between A and C(ΩM ). 
Moreover, the relation

ˆ
ψ(ω) dP (ω) :=

ˆ
ψ(ω) dP (ω)
ΩM ΩM



12 H. Frid et al. / Journal of Functional Analysis 283 (2022) 109620
defines P as a Radon measure over ΩM . In particular, we can endow ΩM with the 
topology induced by the embedding ΩM → ΩM with respect to which P is a Radon 
measure and ΩM is relatively compact. Therefore, henceforth, for simplicity, we consider 
ΩM as compact and P as a Radon measure on ΩM , with the referred topology, which 
coincides with the topology generated by the family F.

Let LM := C∗(1 + MN0), where C∗ is as in (2.1). Denote by C0(ΩM × [0, T ] × Rd ×
[−LM , LM ]; A(Rd)) the space of functions Ψ(ω, t, x, y, ξ) continuous in ΩM × [0, T ] ×
Rd × R × Rd, belonging to A(Rd), as functions of y, for each fixed (ω, t, x, ξ) ∈ ΩM ×
[0, T ] ×Rd ×R, and such that Ψ(·, ·, x, ·, ·) → 0 as |x| → ∞, uniformly in ΩM × [0, T ] ×
R ×Rd. Clearly, C0(ΩM × [0, T ] ×Rd × [−LM , LM ]; A(Rd)) is isometrically isomorphic 
to C0(ΩM × [0, T ] ×Rd×K× [−LM , LM ]), defined similarly. Given Ψ ∈ C0(ΩM × [0, T ] ×
Rd × [−LM , LM ]; A(Rd)), define

〈με
M ,Ψ〉 :=

ˆ

ΩM×[0,T ]×Rd

Ψ
(
ω, t, x,

x

ε
, uε
)
wN dt dx dP (ω).

Because we are assuming |uε(ω, t, x)| ≤ C0(1 + |W (t)|N0), the above equation defines 
με
M as a bounded sequence of Radon measures on ΩM × [0, T ] × Rd × K × [−LM , LM ], 

where Rd is the one point compactification of Rd generated by C0(Rd), the continuous 
functions on Rd vanishing at ∞. Since the space of the Radon measures on ΩM ×
[0, T ] ×Rd ×K× [−LM , LM ] is compact in the weak-� topology by the Banach-Alaoglu 
theorem, we can find a subsequence μεM,k

M converging to some Radon measure μM on 
ΩM × [0, T ] ×Rd×K× [−LM , LM ]. Making M = 1, 2, · · · , we can extract for each M > 1
a subsequence εM,k from the subsequence obtained for M − 1, εM−1,k, inductively, and 
then take the diagonal subsequence εk,k =: εk. Observe that με

M restricted to ΩM−1, 
coincides with με

M−1. Therefore, the limit measure μ = limμεk
k , which is well defined in 

ΩM × [0, T ] ×Rd ×K ×R, for each M ∈ N, is then defined in Ω × [0, T ] ×Rd ×K ×R

and coincides with μM when restricted to ΩM × [0, T ] × Rd × K × R. In particular, for 
all Cc(Ω × [0, T ] ×Rd ×R; A(Rd)) we have

lim
k→∞

ˆ

Ω

T̂

0

ˆ

Rd

Ψ
(
ω, t, x,

x

εk
, uεk

)
dP dtwNdx

=
ˆ

Ω×[0,T ]×Rd×K×R

Ψ(ω, t, x, y, ξ) dμ(ω, t, x, y, ξ). (2.6)

Now it is easy to check that the projection of the measure μ, obtained above, over 
Ω × [0, T ] × Rd × K is equal to dP dt wNdx dm(y), since this is true for any με

M . We 
can then apply the theorem on disintegration of measures (see, e.g., theorem 2.28 in [4], 
whose extension to the present case is straightforward) to conclude the existence of a 
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dP dt wNdx dm(y)-measurable family of probability measures νω,t,x,y such that, for any 
Ψ ∈ L1(Ω × [0, T ] ×Rd ×K ×R; μ) we have

ˆ

Ω×[0,T ]×Rd×K×R

Ψ(ω, t, x, y, ξ) dμ(ω, t, x, y, ξ)

=
ˆ

Ω×[0,T ]×Rd×K

⎛⎝ ˆ

R

Ψ(ω, t, x, y, ξ) dνω,t,x,y(ξ)

⎞⎠ dP dtwNdx dm(y).

In particular, item (1) follows.
As for (2), it is enough to prove the result for all A ∈ Ft, t ≥ 0. So, take A ∈ FT0

for some T0 ≥ 0. We can repeat the above construction for T = 1, 2, · · · , starting at 
T = k with the subsequence obtained in T = k − 1 and so, using again the diagonal 
argument, we may define a subsequence which is good for any time interval [0, T ], with 
T > 0 arbitrary. In particular, we may assume that, for each M ∈ N, A ∩ ΩM is a 
Borel set in our topology for ΩM . Therefore, given M ∈ N, we can find sets K and 
V with K compact and V open in ΩM satisfying K ⊂ A ∩ ΩM ⊂ V and such that 
P (A ∩ΩM \K) and P (V \A ∩ΩM ) are arbitrarily small. We can also find ψ ∈ C(ΩM ), 
with 1K ≤ ψ ≤ 1V . Using a sequence of such ψ ∈ C(ΩM ) in (2.6), we get, for any 
Ψ ∈ Cc([0, ∞) ×Rd ×K ×R),

lim
k→∞

ˆ

A∩ΩM

T̂

0

ˆ

Rd

Ψ
(
t, x,

x

εk
, uεk

)
dP dtwNdx

=
ˆ

A∩ΩM×[0,T ]×Rd×K×R

Ψ(t, x, y, ξ) dμ(ω, t, x, y, ξ). (2.7)

Making M → ∞, we get (2).
Concerning (3), given ζ ∈ C([0, T ]), with ‖ζ‖L1([0,T ]) = 1 and ϕ ∈ C(K), with 

‖ϕ‖L1(K) = 1, for each M we have

EΩM

T̂

0

ζ(t)

⎛⎝ ˆ

K

ϕ(y)

⎛⎝ ˆ

Rd

wN (x)

⎛⎝ ˆ

R

|ξ|p dνω,t,x,y(ξ)

⎞⎠ dx

⎞⎠ dm(y)

⎞⎠ dt

= lim
k→∞

EΩM

T̂

0

ζ(t)

⎛⎝ ˆ

Rd

ϕ

(
x

εk

)
wN (x) |uεk |p dx

⎞⎠ dt

≤ lim
k→∞

C E

T̂

ζ(t)
ˆ (

1 + |W (t)|N0
)p ∣∣∣∣ϕ( x

εk

)∣∣∣∣wN (x) dx dt

0 Rd
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≤ C‖ζ‖L1([0,T ])‖ϕ‖L1(K)

ˆ

Rd

wN (x) dxE sup
0≤t≤T

(
1 + |W (t)|N0

)p
.

Since the right-hand side does not depend on M we obtain

E

T̂

0

ζ(t)

⎛⎝ ˆ

K

ϕ(y)

⎛⎝ ˆ

Rd

wN (x)

⎛⎝ ˆ

R

|ξ|p dνω,t,x,y(ξ)

⎞⎠ dx

⎞⎠ dm(y)

⎞⎠ dt

≤ C‖ζ‖L1([0,T ])‖ϕ‖L1(K)

ˆ

Rd

wN (x) dxE sup
0≤t≤T

(1 + |W (t)|N0)p

≤ C‖ζ‖L1([0,T ])‖ϕ‖L1(K)

ˆ

Rd

wN (x) dxE
(
1 + |W (T )|N0

)p
,

where the latter inequality follows from Doob’s maximal inequality, and the fact that 
(1 + |W (t)|N0)p is a submatingale (see, e.g., [17]). Taking the sup for ζ ∈ L1([0, T ]), with 
‖ζ‖L1([0,T ]) = 1, and ϕ ∈ L1(K), with ‖ϕ‖L1(K) = 1, we finally get

E sup
t∈[0,T ]

sup
y∈K

ˆ

Rd

wN (x)

⎛⎝ ˆ

R

|ξ|p dνω,t,x,y(ξ)

⎞⎠ dx ≤ CT,N,p,

and so (2.3) follows.
Concerning (4), for Ψ ∈ C([0, ∞) × Rd × R; A(Rd)) is such that |Ψ(t, x, y, ξ)| ≤

1[0,T0](t)C(1 + |ξ|p), for some p ≥ 1 and T0 > 0,

lim
k→∞

EA

ˆ

[0,∞)×Rd

Ψ
(
t, x,

x

εk
, uεk(t, x)

)
wN (x) dt dx

= P (A ∩ ΩM )
P (A) lim

k→∞
EA∩ΩM

ˆ

[0,T ]×Rd

Ψ
(
t, x,

x

εk
, uεk(t, x)

)
wN (x) dt dx + RM

= P (A ∩ ΩM )
P (A) EA∩ΩM

ˆ

[0,T ]×Rd×K

〈
νω,t,x,y, Ψ̃(t, x, y, ·)

〉
wN (x) dt dx dm(y) + RM ,

where,

|RM | ≤ P (A ∩ (Ω \ ΩM ))
P (A) EA∩(Ω\ΩM )

ˆ

[0,T ]

C(1 + |W (t)|N0)p dt
ˆ

Rd

wN (x) dx

=
ˆ

Rd

wN (x) dx 1
P (A)

ˆ

A∩(Ω\ΩM )

ˆ

[0,T ]

C(1 + |W (t)|N0)p dt dP ,
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which yields (2.2), for such Ψ(t, x, y, ξ), by making M → ∞. In particular, (2.4) follows 
for �(ω) = 1

P(A)1A, for A ∈ F . Now, given any � ∈ L2(Ω), (2.4) follows by approximating 
� in L2(Ω) by finite linear combinations of indicator functions, which concludes the proof 
of (4).

We now pass to the proof of (5). Let εk be the subsequence obtained above. First, we 
note that (2.1) and the assumed bound on Ψ implies that the sequence

(ω, t) →
ˆ

Rd

Ψ
(
t, x,

x

εk
, uεk(t, x)

)
wN (x) dx, k ∈ N

is uniformly bounded in L2(Ω × [0, T ]) and so it has a subsequence that converges weakly 
in L2(Ω × [0, T ]). Since each element of the sequence is predictable, then the limit, which 
by (2.2) equals

ˆ

Rd

ˆ

K

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN dx dm(y),

is also predictable.
Fix T > 0, and consider the sequence of random variables

Xk :=
T̂

0

ˆ

Rd

Ψ
(
t, x,

x

εk
, uεk(t, x)

)
wN (x) dx dW (t).

Define also

X :=
T̂

0

ˆ

Rd×K

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN (x) dm(y) dx dW (t).

To prove (5) it is enough to show that any subsequence {Xkj
} has a further subse-

quence that converges to X weakly in L2(Ω).
Take any subsequence {Xkj

}j . By (2.1) and the Itô isometry, we have that the {Xkj
}j

is uniformly bounded in L2(Ω). Thus, it has a further subsequence which converges 
weakly to some X̃ ∈ L2(Ω). For simplicity of notation, we denote this sub-subsequence 
by {Xkj

}j as well. In particular, for any predictable square integrable process C(t) we 
have that

lim
j→∞

E

⎛⎝Xkj

T̂

C(t) dW (t)

⎞⎠ = E

⎛⎝X̃

T̂

C(t) dW (t)

⎞⎠ . (2.8)

0 0
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On the other hand, using the Itô isometry and applying (2.2) we see that

lim
j→∞

E

⎛⎝Xkj

T̂

0

C(t) dW (t)

⎞⎠
= lim

j→∞
E

⎛⎝ T̂

0

C(t)
ˆ

Rd

Ψ
(
t, x,

x

εkj

, uεkj (t, x)
)
wN (x) dx dt

⎞⎠

= E

⎛⎜⎝ T̂

0

C(t)
ˆ

Rd×K

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN (x) dx dm(y) dt

⎞⎟⎠
Now, using the Itô isometry once again we see that

lim
j→∞

E

⎛⎝Xkj

T̂

0

C(t) dW (t)

⎞⎠ = E

⎛⎝X

T̂

0

C(t) dW (t)

⎞⎠ . (2.9)

Comparing (2.8) and (2.9) we can conclude that X = X̃ a.s.. Indeed, note that X is 
FT -measurable, since every Xk is. Also, note that E(X̃) = limj→∞ E(Xkj

) = 0. Then, we 
can define the Ft-martingale Y (t) by Y (t) := E(X̃|Ft), 0 ≤ t ≤ T (which is sometimes 
called the Doob martingale associated to X̃). By the martingale representation theorem 
(see, e.g., [52]) we have that there is some predictable integrable process D(t) such that

Y (t) =
tˆ

0

D(s) dW (s).

Then, choosing

C(t) = D(t) −
ˆ

Rd×K

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN (x) dx dm(y),

by virtue of (2.8) and (2.9), we have that

E
(∣∣X̃ −X

∣∣2) = E

⎛⎝(X̃ −X)
T̂

0

C(t) dW (t)

⎞⎠ = 0,

which proves the claim.
Since this holds for any sub-subsequence of {Xk}k we have that the whole sequence 

converges to X weakly in L2(Ω). In particular, given A ∈ F we have that

lim E (1AXk) = E (1AX) ,

k→∞
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which yields (2.5).
Moreover, to prove the assertion about the predictability of

ˆ

Rd

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN dx,

for m-a.e. y ∈ K we argue as follows. Since we are assuming that the separable ergodic 
algebra A(Rd) is a subalgebra of W*AP(Rd), we may as well assume that A(Rd) contains 
the trigonometric functions sinλ ·y, cosλ ·y, for all λ ∈ Rd such that 

´
K g(y)eiλ·y dm(y) �=

0, for some g ∈ A(Rd), which is sometimes called the spectrum of the algebra A(Rd), 
which is a countable set; otherwise we can augment A(Rn) to a separable ergodic algebra 
containing such trigonometric functions. In particular, it contains an almost periodic 
approximation of the unit, that is, a sequence of functions in AP(Rd), {ρk(y) : k ∈ N}, 
such that for all g ∈ A(Rd), ρk ∗ g(y) =

´
K ρk(y − z)g(z) dm(z) → g∗(y) in C(K), where 

g∗ is the almost periodic component of g, and so the convergence is a.e. in K to g; ρk may 
be taken as the Bochner-Fejér polynomials associated with the spectrum of the algebra 
A(Rd) (see, e.g., [11]). Since C(K) is dense in L1(K), ρk ∗ g(y) → g(y) in L1(K) for all 
g ∈ L1(K). Now, from what was seen before, for each y ∈ K,

(ω, t) �→
ˆ

Rd

ˆ

K

ρk(y − z) 〈νω,t,x,z,Ψ(t, x, z, ·)〉wN dx dm(z),

is predictable, for all k ∈ N.
Let us fix T > 0. Since F is countably generated, we can find a family {ψl : l ∈ N} in 

L∞(Ω × [0, T ]) dense in L2(Ω × [0, T ]). Then using the bound for Ψ and (2.3), we have 
that for all l ∈ N

lim
k→∞

ˆ

K

ρk(y − z)

⎛⎝E

T̂

0

ψl(ω, t)
ˆ

Rd

〈νω,t,x,z,Ψ(t, x, z, ·)〉wN dx dt

⎞⎠ dm(z)

= E

T̂

0

ψl(ω, t)
ˆ

Rd

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN dx dt (2.10)

in L1(K) and, after passing to a subsequence if necessary, the convergence is also a.e. in 
K.

Let us now fix, y ∈ K in the subset of full measure in K for which (2.10) holds for all 
l ∈ N. Using Jensen inequality, the bound for Ψ and (2.3), we see that the functions

γk(ω, t) :=
ˆ

ρk(y − z)
ˆ

〈νω,t,x,z,Ψ(t, x, z, ·)〉wN dx dm(z), k = 1, 2, · · · ,

K Rd
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form a bounded sequence in L2(Ω ×[0, T ]). Then, given any subsequence of this sequence, 
we can find a further subsequence converging weakly in L2(Ω × [0, T ]), and, because of 
(2.10), its weak limit in L2(Ω × [0, T ]) must be

γ(ω, t) :=
ˆ

Rd

〈νω,t,x,y,Ψ(t, x, y, ·)〉wN dx,

therefore, the whole sequence γk converges weakly to γ(ω, t) in L2(Ω × [0, T ]). Now, since 
the γk’s are predictable and L2(Ω × [0, T ]; P) is a closed subspace of L2(Ω × [0, T ]), we 
deduce that γ(ω, t) is also predictable, for a.e. y ∈ K, which concludes the proof. �
Remark 2.1. We remark that it follows from item (4) of Proposition 2.1 that given 
F ∈ C(R) such that |F (ξ)| ≤ C(1 + |ξ|p), for some p ≥ 1, and letting F (ω, t, x, y) :=
〈νω,t,x,y, F 〉, then for any T > 0 we have that F (uεk) ⇀ F (u) in the weak topology of 
L2(Ω; L2

loc((0, T ) ×Rd)), where

F (u)(ω, t, x) =
ˆ

K

F (ω, t, x, y)dm(y). (2.11)

In particular, if νω,t,x,y = δU(ω,t,x,y), then F (u) =
´
K F (U)dm(y).

Indeed, it suffices to take Ψ̃ in (2.4) of the form Ψ(ω, t, x, y, ξ) = �(ω)ψ(t, x)F (ξ) with 
� ∈ L2(Ω), ψ ∈ Cc((0, T ) ×Rd) arbitrary to deduce (2.11), observing that, by (2.1) and 
the assumption on F , F (uεk) is bounded in L2(Ω; L∞((0, T ) ×Rd)), therefore bounded 
in L2(Ω; L2((0, T ) ×{|x| < R})), for each R > 0 and the functions of the form �(ω)ψ(t, x)
with � ∈ L2(Ω) and ψ ∈ Cc((0, T ) ×Rd) are dense in L2(Ω; L2((0, T ) ×Rd)).

The next result gives sufficient conditions for the existence of correctors for the weak 
convergence of the sequence uεk established by Remark 2.1.

Proposition 2.2. Let νω,t,x,y be the stochastic two-scale Young measure constructed in 
Proposition 2.1. Assume νω,t,x,y = δU(ω,t,x,y) for

(a) U ∈ L2(Ω; A(Rd; L∞((0, T ) ×Rd))), or
(b) U ∈ L2(Ω; B2(Rd; Cb([0, T ] ×Rd))).

Then, uεk − U
(
ω, t, x, x

εk

)
→ 0 strongly in L2(Ω; L2

loc((0, T ) ×Rd)).

Proof. First we observe that, because we only seek to show convergence in
L2(Ω; L2

loc((0, T ) ×Rd)), for item (b), we can just consider U ∈ L2(Ω; B2(Rd; Cc((0, T ) ×
Rd))). Second, we see that the result would follow immediately from Proposition 2.1 if 
we were allowed to use
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Ψ̃(ω, t, x, y, ξ) = |ξ − U(ω, t, x, y)|2 = ξ2 − 2ξU(ω, t, x, y) + |U(ω, t, x, y)|2, (2.12)

as a test function in (2.4). Let us check this possibility for each of the terms in the 
right-hand of the last equation in (2.12). The first term, ξ2, is good and, by Remark 2.1, 
we have

lim
k→∞

E

ˆ

(0,T )×Rd

|uεk |2wN dx dt = E

ˆ

(0,T )×Rd×K

|U(ω, t, x, y)|2wN (x) dm(y) dx dt.

Concerning the second term, −2ξU(ω, t, x, y), we observe first that if

U ∈ L2(Ω;A(Rd;Cc((0, T ) ×Rd)))

we could approximate it in

L2(Ω;A(Rd;Cc((0, T ) ×Rd)))

by finite linear combinations of functions of the form 1A(ω)ψ(t, x, y) with ψ ∈
A(Rd; Cc((0, T ) × Rd)), A ∈ F , and for such functions we could apply Proposition 2.1
to obtain

lim
k→∞

E

ˆ

(0,T )×Rd

uεkU(ω, t, x, x

εk
)wN dx dt

= E

ˆ

(0,T )×Rd×K

|U(ω, t, x, y)|2wN (x) dm(y) dx dt, (2.13)

so this equation holds for U ∈ L2(Ω; A(Rd; Cc((0, T ) ×Rd))).
Now, in case (a), for U ∈ L2(Ω; A(Rd; L∞((0, T ) × Rd))), we can approximate U in 

L2(Ω; A(Rd; L2
loc((0, T ) × Rd))) by a sequence of functions in L2(Ω; A(Rd; Cc((0, T ) ×

Rd))) to obtain that (2.13) holds also for U ∈ L2(Ω; A(Rd; L∞((0, T ) ×Rd))).
In case (b), if U ∈ L2(Ω; B2(Rd; Cc((0, T ) ×Rd))), we can approximate U in

L2(Ω;B2(Rd;Cc((0, T ) ×Rd)))

by a sequence of functions in L2(Ω; A(Rd; Cc((0, T ) × Rd))) and for the latter we have 
already shown that equation (2.13) holds, so it also holds U ∈ L2(Ω; B2(Rd; Cc((0, T ) ×
Rd))).

Now, concerning the last term in the right-hand side of the last equation in (2.12), it 
does not depend on ξ, so we just need to use the well known fact that, for a function 
Ψ ∈ L2(Ω; A(Rd; L∞((0, T ) ×Rd))), in case (a), and Ψ ∈ L2(Ω; B2(Rd; Cc((0, T ) ×Rd)))
in case (b),
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Ψ(ω, t, x, x

εk
) ⇀

ˆ

K

Ψ(ω, t, x, y) dm(y),

in the weak topology of L2(Ω; L2
loc((0, T ) ×Rd)), and so we get

lim
k→∞

E

ˆ

(0,T )×Rd

∣∣∣∣U (ω, t, x, x

εk

)∣∣∣∣2 wN dx dt

= E

ˆ

(0,T )×Rd×K

|U(ω, t, x, y)|2wN dm(y) dx dt.

Putting together the facts described above, we conclude that

lim
k→∞

E

ˆ

(0,T )×Rd

∣∣∣∣uεk − U

(
ω, t, x,

x

εk

)∣∣∣∣2 wN dx dt = 0,

which finishes the proof. �
3. Stochastic nonlinear transport, proof of Theorem 1.1

In this section we prove Theorem 1.1. By assumption, we have that h = σ′σ. Set

ψα(t) = g(α + κ0W (t)), (3.1)

where g is a solution of the ODE g′(ξ) = σ(g(ξ)) and α ∈ R. We assert that ψα is 
a solution of equation (1.1), for any α ∈ R. Indeed, since g′′(ξ) = σ′(g(ξ))g′(ξ) =
σ′(g(ξ))σ(g(ξ)) = h(g(ξ)), the assertion follows from the Itô formula.

By the Stochastic Kružkov inequality, cf. Proposition 6.1, a.s. we have

∞̂

0

ˆ

Rd

{
|uε − ψα(t)|φt + sgn (uε − ψα(t)) (f(uε) − f(ψα(t))) a

(x
ε

)
· ∇xφ

+ 1
2κ

2
0 sgn (uε − ψα) (h(uε) − h(ψα))φ

}
dx dt +

ˆ

Rd

∣∣∣U0

(
x,

x

ε

)
− g(α)

∣∣∣φdx

+
∞̂

0

ˆ

Rd

κ0 sgn (uε − ψα) (σ(uε) − σ (ψα))φ dx dW (t) ≥ 0. (3.2)

A similar inequality holds with (· − ·)+ instead of | · − · |, which easily follows by adding 
to (3.2) the difference of integral equations defining weak solutions for uε(t, x) and for 
ψα(t). From (3.2) we easily get the comparison principle
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E

∞̂

0

ˆ

Rd

{
(uε − ψα(t))+ φt + sgn (uε − ψα(t))+ (f(uε) − f(ψα(t))) a

(x
ε

)
· ∇xφ

+ 1
2κ

2
0 sgn (uε − ψα)+ (h(uε) − h(ψα))φ

}
dx dt

+
ˆ

Rd

(
U0

(
x,

x

ε

)
− g(α)

)
+
φ(0, x) dx ≥ 0,

which, when g(α1) ≤ U0
(
x, x

ε

)
≤ g(α2), for some α1, α2 ∈ R, implies a.s. the following 

uniform boundedness of the solutions of (1.1)-(1.2)

ψα1(t) ≤ uε(t, x) ≤ ψα2(t), for a.e. (t, x). (3.3)

We recall that it follows from the definition of entropy solution (see Definition 1.1), 
for any C2 convex function η : R → R, and q satisfying q′ = η′f ′, uε satisfies

∞̂

0

ˆ

Rd

{
η(uε)φt + q(uε)a

(x
ε

)
· ∇φ + 1

2κ
2
0
(
η′(uε)h(uε) + η′′(uε)σ(uε)2

)
φ

}
dxdt

∞̂

0

ˆ

Rd

κ0η
′(uε)σ(uε)φ dx dW (t) +

ˆ

Rd

η
(
U0

(
x,

x

ε

))
φ(0, x) dx ≥ 0.

(3.4)

Now, in equation (3.4) we take φ(t, x) = εϕ 
(
x
ε

)
ζ(t)ϑ(x), where 0 ≤ ϕ ∈ A(Rd), ∇ϕ ∈

A(Rd; Rd), 0 ≤ ζ ∈ C∞
c ([0, ∞)) and 0 ≤ ϑ ∈ C∞

c (Rd), take conditional expectation with 
respect to an arbitrary A ∈ F , and let ε → 0, along a subsequence for which uε generates 
a two-scale Young measure νω,t,x,y, according to Proposition 2.1, to obtain, since A ∈ F
is arbitrary and we drop the ω subscript from νω,t,x,y, a.s.,

∞̂

0

ζ(t)
ˆ

K

〈
σϑ
t,y, q(·)

〉
a(y) · ∇yϕdm(y) dt ≥ 0, (3.5)

where

σϑ
t,y :=

ˆ

Rd

ϑ(x)νt,x,y dx.

By applying inequality (3.5) to C±ϕ, with C = ‖ϕ‖∞, and using the arbitrariness of ϕ,

y �→
〈
σϑ
t,y, q(·)

〉
∈ S, for a.e. t ∈ (0, T ). (3.6)

Now, for any η ∈ C2, C|u|2 + η(u) is convex for C sufficiently large (depending on η), so 
(3.6) holds for any η ∈ C2 and, by approximation, for any Lipschitz continuous η. Now, 
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if f ′ �= 0, given any η ∈ C1, defining η̃′ = η′/f ′, the entropy-flux associated to η̃ is q̃ = η, 
so that (3.6) gives

y �→
〈
σϑ
t,y, η(·)

〉
∈ S, for a.e. t ∈ (0, T ) and all η ∈ C1. (3.7)

In the more general case, where |{u : f ′(u) = 0}| = 0, we argue as in [30] to deduce 
that (3.7) still holds. Namely, for any open interval I with Ī ⊂ R \ E0, where E0 =
{u : f ′(u) = 0}, we define η′I = χI/f

′, where χI is the indicator function of the interval 
I, whose corresponding entropy flux is qI , with q′I = χI . Now, by approximation with 
convergence everywhere, the property may be extended to any open interval in R \E0. 
Also, since the intersection of any open set with R \E0 is a countable union of intervals 
in R \ E0, by approximation with convergence everywhere we get the property for any 
such intersection, and since E0 has measure zero, the primitive of such intersection is 
equal to the primitive of the interval itself, so the property holds for qI , where I is any 
open interval, and hence for qI where I is any interval. Since any C1 function may be 
uniformly approximated by piecewise linear functions, which are linear combinations of 
qI functions, we deduce that (3.7) also holds in this more general case.

Now, we take φ(t, x) = ϕ 
(
x
ε

)
ϑ(t, x) in (3.4), where 0 ≤ ϕ ∈ S† and 0 ≤ ϑ ∈

C∞
c (Rd+1), and take the conditional expectation with respect to an arbitrary A ∈ F . 

Passing to the limit as ε → 0 in (3.4), along a subsequence which generates a two-scale 
Young measure according to Proposition 2.1, as above, we get, a.s.,

∞̂

0

ˆ

Rd

ˆ

K

{
〈νt,x,y, η〉ϑt + 〈νt,x,y, q〉 ã(y) · ∇ϑ + 1

2κ
2
0
〈
νt,x,y, (η′h + η′′σ2)

〉
ϑ

}
× ϕ(y) dm(y) dx dt

+
∞̂

0

ˆ

Rd

ˆ

K

κ0 〈νt,x,y, η′σ〉ϑϕ(y) dm(y) dx dW (t)

+
ˆ

Rd

ˆ

K

η (U0(x, y))ϑ(0, x)ϕ(y) dm(y) dx ≥ 0. (3.8)

Observe that instead of a(y) we have, in (3.8), ã(y), the vector field whose components 
are the orthogonal projections of the corresponding components of a(y) onto S, in L2(K), 
which is due to (3.7). Indeed, we use the fact that, for g ∈ (S ∩ L∞) (K) and r ∈ L2(K), 
the orthogonal projection of gr onto S, g̃r, is equal to gr̃, where r̃ is the orthogonal 
projection of r onto S (see Proposition 4.2 in [30]). Since we assume that S† is dense in 
S, we can extend (3.8) from 0 ≤ ϕ ∈ S to all 0 ≤ ϕ ∈ L2(K), where we also use condition 
(1.3) on the initial data U0(x, y). Therefore, for P -a.e. ω ∈ Ω and m-a.e. y ∈ K, we have, 
for all ϑ ∈ C∞

c (Rd+1),
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∞̂

0

ˆ

Rd

{
〈νt,x,y, η〉ϑt + 〈νt,x,y, q〉 ã(y) · ∇ϑ + 1

2κ
2
0
〈
νt,x,y, (η′h + η′′σ2)

〉
ϑ

}
dx dt

+
∞̂

0

ˆ

Rd

κ0 〈νt,x,y, η′σ〉ϑ dx dW (t)

+
ˆ

Rd

η (U0(x, y))ϑ(0, x) dx ≥ 0. (3.9)

Now for a convex η ∈ C3(R), such that η′′ ∈ C1
c (R), we have the obvious formulas

η(·) =
ˆ

R

η′(ξ)I(−∞, ·)(ξ) dξ,

q(·) =
ˆ

R

f ′(ξ)η′(ξ)I(−∞, ·)(ξ) dξ,

(
η′h + η′′σ2) (·) =

ˆ

R

(
η′h′ + η′′(h + 2σσ′) + η′′′σ2) (ξ)I(−∞, ·)(ξ) dξ,

(η′σ) (·) =
ˆ

R

(η′σ′ + η′′σ) (ξ)I(−∞, ·)(ξ) dξ,

η (U0(x, y)) =
ˆ

R

η′(ξ)I(−∞,U0(x,y))(ξ) dξ.

(3.10)

Therefore, for a fixed y ∈ K, setting ρ1(t, x, ξ) = νt,x,y((ξ, +∞)), we get from (3.9)

∞̂

0

ˆ

Rd

ˆ

R

{
ρ1(t, x, ξ)η′(ξ)ϑt + ρ1(t, x, ξ)f ′(ξ)η′(ξ)ã(y) · ∇ϑ

+1
2κ

2
0ρ1(t, x, ξ)

(
η′h′ + η′′(h + 2σσ′) + η′′′σ2) (ξ)ϑ

}
dξ dx dt

+
∞̂

0

ˆ

Rd

ˆ

R

κ0ρ1(t, x, ξ) (η′σ′ + η′′σ) (ξ)ϑ dξ dx dW (t)

+
ˆ

Rd

ˆ

R

η′(ξ)I(−∞,U0(x,y))(ξ)ϑ(0, x) dξ dx ≥ 0. (3.11)

Thus, seeing the left-hand side of the inequality above as a distribution applied to 
η′′(ξ)ϑ(t, x), we conclude that it is indeed a measure, which we denote by m1(t, x, ξ). We 
can then extend the identity defining m1 to any η of the form η(ξ) =

´ ξ
ζ(s) ds, for 
−∞
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some ζ ∈ C∞
c (R). This way we deduce that ρ1 is a weak solution of the following kinetic 

equation

∂ρ1

∂t
+f ′(ξ)ã(y) ·∇ρ1 + 1

2κ
2
0h(ξ)∂ξρ1−

1
2κ

2
0∂ξ(σ2∂ξρ1) = ∂ξm1−κ0σ∂ξρ1

dW (t)
dt

, (3.12)

and we see from (3.11) that ρ1 verifies

ess lim
t→0+

ˆ

Rd+1

ρ1(t, x, ξ)ζ(ξ)φ(x) dξ dx =
ˆ

Rd+1

I(−∞,U0(x,y))(ξ)ζ(ξ)φ(x) dξ dx, (3.13)

for all ζ ∈ C∞
c (R) and all φ ∈ C∞

c (Rd), see also Remark 5.13.
Considering the definition of the measure m1(t, x, ξ) from (3.11), we may check that 

m1 satisfies the conditions of a kinetic measure in Definition 5.1. Also, ρ1(t, x, ξ) is 
a generalized kinetic function whose associated Young measure, νt,x,y, satisfies (5.27), 
which can be verified without difficulty using the bounds (3.3).

Now, let U(t, x, y) be the entropy solution of (1.4)-(1.5). According to Definition 1.2, 
recalling (1.6), for each y ∈ K, for any convex η ∈ C2(R), and 0 ≤ ϕ ∈ C∞

c (Rd+1),

ˆ

Q

η(U(y))∂tϕ + q(U(y))ã(y) · ∇ϕ + κ2
0
2
(
η′(U(y))h(U(y)) + η′′(U(y))σ2(U(y))

)
ϕdx dt

+ κ0

T̂

0

ˆ

Rd

η′(U(y))σ(U(y))ϕdx dW (t) +
ˆ

Rd

η(U0(y))ϕ(0, x) dx dt ≥ 0.

Setting ρ2(t, x, ξ) = 1(−∞,U(t,x,y))(ξ), using the formulas (3.10), we get from (1.6)

∞̂

0

ˆ

Rd

ˆ

R

{
ρ2(t, x, ξ)η′(ξ)ϕt + ρ2(t, x, ξ)f ′(ξ)η′(ξ)ã(y) · ∇ϕ

+1
2κ

2
0ρ2(t, x, ξ)

(
η′h′(ξ) + η′′(h + 2σσ′)(ξ) + η′′′σ2(ξ)

)
ϕ

}
dξ dx dt

+
∞̂

0

ˆ

Rd

ˆ

R

κ0ρ2(t, x, ξ) (η′σ′(ξ) + η′′σ(ξ))ϕdξ dx dW (t)

+
ˆ

Rd

ˆ

R

η′(ξ)I(−∞,U0(x,y))(ξ)ϕ(0, x) dξ dx ≥ 0. (3.14)

Thus, again, the left-hand side of (3.14) defines a measure m2(t, x, ξ) applied to ϕη′′. 
Therefore, as above, we see that ρ2 is a weak solution of the kinetic equation



H. Frid et al. / Journal of Functional Analysis 283 (2022) 109620 25
∂ρ2

∂t
+f ′(ξ)ã(y) ·∇ρ2 + 1

2κ
2
0h(ξ)∂ξρ2−

1
2κ

2
0∂ξ(σ2∂ξρ2) = ∂ξm2−κ0σ∂ξρ2

dW (t)
dt

, (3.15)

and we see from (3.14) that ρ2 verifies

ess lim
t→0+

ˆ

Rd+1

ρ2(t, x, ξ)ζ(ξ)φ(x) dξ dx =
ˆ

Rd+1

I(−∞,U0(x,y))(ξ)ζ(ξ)φ(x) dξ dx, (3.16)

for all ζ ∈ C∞
c (R) and all φ ∈ C∞

c (Rd). Since ρ2 is a standard kinetic function, a well 
known argument shows that the convergence in (3.16) may be strengthen to a strong 
convergence in L1(Rd; wN ) (see also Remark 5.13).

Again, by the definition of the measure m2(t, x, ξ) from (3.14), we may check that m2
satisfies the conditions of a kinetic measure in Definition 5.1. Also, ρ2(t, x, ξ) is trivially 
a generalized kinetic function whose associated Young measure δU(t,x,y), satisfies (5.27), 
which can be verified without difficulty using the bounds (3.3).

Due to (3.12)-(3.13) and (3.15)-(3.16) and the properties satisfied by m1, m2 and 
μ1
t,x = νt,x,y, μ2

t,x = δU(t,x,y) (see, in particular, Proposition 2.1(3)), we can apply Propo-
sition 5.1 together with the well-posedness result in Theorem 5.1 (see also (6.2) and 
discussion at the beginning of Section 6) to deduce that

E

ˆ

Rd

ˆ

R

ρ1(t, x, ξ) (1 − ρ2(t, x, ξ))wN dx dξ

≤ C(T )
ˆ

Rd

ˆ

R

ρ1(0, x, ξ) (1 − ρ2(0, x, ξ))wN dx dξ = 0,

for 0 < t ≤ T , wN given by (5.11), and so ρ1(t, x, ξ) = ρ2(t, x, ξ), a.e. in Ω × (0, ∞) ×
Rd ×R. Clearly, this implies that

νt,x,y = δU(t,x,y),

a.e. in Ω × (0, ∞) ×Rd ×K. In particular, due to the uniqueness of the limit, we deduce 
that the whole sequence uε(t, x) satisfies

uε ⇀ u(t, x) :=
ˆ

K

U(t, x, y) dm(y),

in the weak topology of L2(Ω; L2
loc((0, T ) ×Rd)), for each T > 0. Indeed, if this is not the 

case, then there would be a sequence εj → 0, a test function ψ ∈ L2(Ω; L2((0, T ) ×Rd))
and a constant α > 0 such that∣∣∣∣∣∣E

ˆ
uεj ψdx dt− E

ˆ
uψdx dt

∣∣∣∣∣∣ > α, for all j ∈ N. (3.17)

Q Q
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However, by the procedure above, there is a further subsequence εjk for which uεjk

generates a Young measure νω,t,x,y that turns out to be equal to δU(ω,t,x,y), which by 
Remark 2.1, contradicts (3.17).

Finally, concerning the last assertion in Theorem 1.1, it follows directly from Propo-
sition 2.2 (b). This concludes the proof of Theorem 1.1.

4. Stiff oscillatory external force, proof of Theorem 1.2

In this section we prove Theorem 1.2. For the convenience of the reader, we rewrite 
here the formulas related to the homogenization problem for (1.7), beginning with (1.7)
itself

duε + ∇x · f(uε) dt = 1
ε
V ′
(x1

ε

)
dt + κ0 σf1(uε) dW + 1

2κ
2
0 hf1(uε) dt,

where f = (f1, . . . , fd), fi : R → R are smooth functions, i = 1, . . . , d, f ′
1 ≥ δ0 > 0, 

f ′
k ≥ 0, k = 2, . . . , d. We also assume that f ′ ∈ L∞(R; Rd) and f ′

1, f
′′
1 , f

′′′
1 ∈ L∞(R). 

κ0 ∈ R is a constant. V : R → R is a smooth function belonging to an arbitrary ergodic 
algebra A(Rd), σf1 , hf1 are obtained from f1 from the expressions

σf1(u) := 1
f ′
1(u) , hf1 := − f ′′

1 (u)
f ′
1(u)3 .

We observe that, from the assumptions on f1, it follows that h′
f1

∈ L∞(R).
We recall that g = f−1

1 is the inverse of f1. We assume that, for some v0 ∈ L∞(Rd), 
the initial data u0

(
x, x

ε

)
in (1.8) satisfy

u0(x, y) = g(V (y) + v0(x)).

We recall the auxiliary equation (1.10)

dū + ∇ · f̄(ū) dt = κ0 σf̄1
(ū) dW + 1

2κ
2
0 hf̄1

(ū) dt,

where f̄ = (f̄1, f̄2, . . . , f̄d), with f̄1, f̄2, . . . , f̄d, satisfying (1.11), (1.12) which we recall 
here

p =
ˆ
R
g
(
f̄1(p) + V (z1)

)
dz1,

f̄k(p) =
ˆ
R
fk ◦ g

(
f̄1(p) + V (z1)

)
dz1, k = 2, . . . , d,

and σf̄1
(·), hf̄1

(·) are defined as σf1 , hf1 with f̄1(·) instead of f1 We recall that, from 
the assumptions on f and f1, it follows from (1.11) and (1.12) that f̄ and f̄1 also satisfy 
f̄ ′ ∈ L∞(R; Rd) and f̄ ′

1, f̄
′′
1 , f̄

′′′
1 ∈ L∞(R).
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We recall that for (1.10) we have prescribed the initial condition

ū(0, x) = ū0(x) :=
ˆ
R
u0(x, z1) dz1 = f̄−1

1 (v0(x)).

We begin the proof of Theorem 1.2 by observing that (1.7) admits special solutions 
of the form

ψα

(
t,
x1

ε

)
:= g

(
V
(x1

ε

)
+ κ0W (t) + α

)
, (4.1)

where α ∈ R, as a consequence of Itô’s formula.
The equation (1.10) has the following special solutions

ψ∗γ(t) := ḡ (γ + κ0W (t)) , (4.2)

where ḡ(·) := f̄−1
1 (·), the inverse function of f̄1(·), that is,

ψ∗γ(t) =
ˆ
R
g (γ + κ0W (t) + V (z1)) dz1.

By the stochastic Kružkov inequality, cf. Proposition 6.1, we get a.s.

∞̂

0

ˆ

Rd

{∣∣∣uε − ψα

(
t,
x1

ε

)∣∣∣φt +
∣∣∣f1(uε) − f1

(
ψα

(
t,
x1

ε

))∣∣∣φx1

+
d∑

k=2

∣∣∣fk(uε) − fk

(
ψα

(
t,
x1

ε

))∣∣∣φxk
+ 1

2κ
2
0Suε,ψε

α

(
hf1(uε)−hf1

(
ψα

(
t,
x1

ε

)))
φ

}
dx dt

+
∞̂

0

ˆ

Rd

κ0

∣∣∣σf1(uε) − σf1

(
ψα

(
t,
x1

ε

))∣∣∣φ dx dW (t)

+
ˆ

Rd

|uε
0 − ψε

α|φ(0, x) dx ≥ 0, (4.3)

where, ψε
α := ψα

(
t, x1

ε

)
, Sa,b = sgn (a − b), as in the last section, and we use the fact 

that f1, f2, · · · , fd, σf1 are monotone increasing. A similar inequality holds with (· − ·)±
instead of | · − · |, which easily follows by adding (subtracting) to (4.3) the difference 
of integral equations defining weak solutions for uε(t, x) and for ψα

(
t, x1

ε

)
. Let wN be 

defined as in (5.11). In particular, from (4.3) it follows the comparison principle

E

ˆ (
uε(t, x) − ψα(t, x1

ε
)
)
±
wN dx ≤ eCt

ˆ (
u0(x,

x1

ε
) − ψα

(
0, x1

ε

))
±
wN dx,
Rd Rd
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for some C > 0.
Thus, if α1, α2 ∈ R are such that

ψα1

(
0, x1

ε

)
≤ u0(x,

x1

ε
) ≤ ψα2

(
0, x1

ε

)
,

we obtain the following, which provide bounds for uε independent of ε:

ψα1

(
t,
x1

ε

)
≤ uε(t, x) ≤ ψα2

(
t,
x1

ε

)
. (4.4)

Taking, in (4.3), φ(t, x) = εϕ 
(
x1
ε

)
ψ(t, x), where ϕ, ϕ′ ∈ A(R), ϕ ≥ 0 and 0 ≤ ψ ∈

C∞
c ((0, ∞) ×Rd), taking conditional expectation with respect to an arbitrary A ∈ F , and 

letting ε → 0, along a subsequence for which uε generates a two-scale Young measure 
νω,t,x,y (see Proposition 2.1), we get, a.s., where we again drop the subscript ω from 
νω,t,x,y,

∞̂

0

ˆ

Rd

ˆ

K

ψ(t, x) 〈νt,x,y, |f1(λ) − f1(ψα(t, y))|〉 ϕ′(y) dm(y) dx dt ≥ 0,

where K denotes the compactification of Rd generated by A(Rd), whose invariant mea-
sure associated with the mean-value is denoted by dm(y).

Applying this inequality to C ± ϕ, with C = ‖ϕ‖∞, we obtain, a.s.,

∞̂

0

ˆ

Rd

ˆ

K

ψ(t, x) 〈νt,x,y, |f1(λ) − f1(ψα(t, y))|〉ϕ′(y) dm(y) dx dt = 0. (4.5)

We define, similarly to [25,2], the family of parameterized measures μt,x,y over R by

〈μt,x,y, θ〉 := 〈νt,x,y, θ(f1(λ) − κ0W (t) − V (y))〉 , for θ ∈ Cc(R).

We see from (4.5) that μt,x,y actually does not depend on y ∈ K, since

∞̂

0

ˆ

Rd

ˆ

K

ψ(t, x) 〈μt,x,y, θ〉ϕ′(y) dm(y) dx dt = 0, (4.6)

for all θ of the form | · −α|, α ∈ R, and, from the remark made just after (4.3), also for 
θ(·) = (· − α)±, α ∈ R, which implies that (4.6) holds for all θ ∈ C(R).

Now, taking any nonnegative φ ∈ C1
c (Rd+1) in (4.3), taking conditional expectation 

with respect to an arbitrary A ∈ F , and making ε → 0 along a subsequence as above, 
given by Proposition 2.1, we get a.s.
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∞̂

0

ˆ

Rd

ˆ

K

{
〈νt,x,y, |λ− ψα(t, y)|〉φt + 〈νt,x,y, |f1(λ) − f1(ψα(t, y))|〉φx1

+
d∑

k=2

〈
νt,x,y,

∣∣fk(λ) − fk(ψα(t, y))
∣∣〉φxk

+ 1
2κ

2
0 〈νt,x,y, Sλ,ψα

(hf1(λ) − hf1(ψα(t, y)))〉φ
}
dm(y) dx dt

+
∞̂

0

ˆ

Rd

ˆ

K

κ0 〈νt,x,y, |σf1(λ) − σf1(ψα(t, y))|〉φdm(y) dx dW (t)

+
ˆ

Rd

ˆ

K

|u0(x, y) − ψα(0, y)|φ(0, x) dm(y) dx ≥ 0. (4.7)

Due to (4.6) we can write μt,x,y = μt,x. Then, using the substitution formulas λ =
g(ρ + κ0W (t) + V (y)), ψα(t, y) = g (α + κ0W (t) + V (y)), we can rewrite (4.7) a.s. as

∞̂

0

ˆ

Rd

{〈
μt,x,

ˆ

K

|g (· + κ0W (t) + V (y)) − g (α + κ0W (t) + V (y))| m(y)
〉

φt

+
d∑

k=1

〈
μt,x,

ˆ

K

|pk(· + κ0W (t) + V (y)) − pk(α + κ0W (t) + V (y))| dm(y)
〉

φxk

+
1
2
κ
2
0

〈
μt,x,

ˆ

K

S·,α
(
hf1 ◦ g (· + κ0W (t) + V (y)) − hf1 ◦ g (α + κ0W (t) + V (y))

)
dm(y)

〉
φ

}
dx dt

+
∞̂

0

ˆ

Rd

κ0

〈
μt,x,y,

ˆ

K

∣∣σf1 ◦ g(· + κ0W (t) + V (y)) − σf1 ◦ g(α + κ0W (t) + V (y))
∣∣ dm(y)

〉
φ dx dW (t)

+
ˆ

Rd

ˆ

K

|u0(x, y) − g(α + V (y))|φ(0, x) dm(y) dx ≥ 0,

where pk = fk ◦ g (so p1(t) = t), Sa,b = sgn (a − b) = sgn (g(· + κ0W (t) + V (y)) − g(α +
κ0W (t) + V (y))), from which it follows

∞̂

0

ˆ

Rd

{〈
μt,x,

ˆ

K

(g (· + κ0W (t) + V (y)) − g (α + κ0W (t) + V (y)))+ dm(y)
〉
φt

+
d∑

k=1

〈
μt,x,

ˆ

K

(pk(· + κ0W (t) + V (y)) − pk(α + κ0W (t) + V (y)))+ dm(y)
〉
φxk

+ 1
2κ

2
0

〈
μt,x,

ˆ
S·,α,+ (hf1 ◦ g (· + κ0W (t) + V (y))
K
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−hf1 ◦ g (α + κ0W (t) + V (y))) dm(y)
〉
φ

}
dx dt

+
∞̂

0

ˆ

Rd

κ0

〈
μt,x,

ˆ

K

(
σf1 ◦ g(· + κ0W (t) + V (y))

− σf1 ◦ g(α + κ0W (t) + V (y))
)
+ dm(y)

〉
φ dx dW (t)

+
ˆ

Rd

ˆ

K

(u0(x, y) − g(α + V (y)))+ dm(y)φ(0, x) dx ≥ 0, (4.8)

where Sa,b,+ := (a − b)+ = sgn +(g(a + κ0W (t) + V (y)) − g(b + κ0W (t) + V (y)))+.
Note that from the formulas for σf̄1

and hf̄1
, recalled in the beginning of this section, 

we may verify, and this seems a little miraculous(!), the equations

σf̄1
◦ ḡ(v) =

ˆ

K

σf1 ◦ g(v + V (y)) dm(y),

hf̄1
◦ ḡ(v) =

ˆ

K

hf1 ◦ g(v + V (y)) dm(y).

Also, by the monotonicity of g, pk, k = 2, . . . , d and σf1 we can pass the integral over 
K inside of the positive part in each term of (4.8). Thus, recalling the definition of f̄k, 
k = 1, . . . , d and ψ∗α, we obtain

∞̂

0

ˆ

Rd

{〈
μt,x, (ḡ (· + κ0W (t)) − ḡ(α + κ0W (t)))+

〉
φt

+
d∑

k=1

〈
μt,x,

(
f̄k ◦ ḡ(· + κ0W (t)) − f̄k ◦ ḡ(α + κ0W (t))

)
+

〉
φxk

+
〈
μt,x,

1
2κ

2
0S·,α,+

(
hf̄1

◦ ḡ (· + κ0W (t)) − hf̄1
◦ ḡ (α + κ0W (t))

)〉
φ

}
dx dt

+
∞̂

0

ˆ

Rd

κ0

〈
μt,x,

(
σf̄1

◦ ḡ(· + κ0W (t)) − σf̄1
◦ ḡ(α + κ0W (t))

)
+

〉
φ dx dW (t)

+
ˆ

Rd

(ḡ(v0(x)) − ḡ(α))+ φ(0, x) dx ≥ 0.

Given ϑ ∈ C∞
c (Rd+1) and ϕ̃ ∈ C∞

c (R), we define the measure m1 = m1(t, x, ξ) applied 
to ϑϕ̃ by
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〈m1, ϑϕ̃〉 :=
∞̂

0

ˆ

Rd

ˆ

R

{〈
μt,x, (ḡ (· + κ0W (t)) − ḡ(ξ + κ0W (t)))+

〉
ϑt

+
d∑

k=1

〈
μt,x,

(
f̄k ◦ ḡ(· + κ0W (t)) − f̄k ◦ ḡ(ξ + κ0W (t))

)
+

〉
ϑxk

+
〈
μt,x,

1
2κ

2
0S·,α,+

(
hf̄1

◦ ḡ (· + κ0W (t)) − hf̄1
◦ ḡ (ξ + κ0W (t))

)〉
ϑ

}
ϕ̃(ξ) dξ dx dt

+
∞̂

0

ˆ

Rd

ˆ

R

κ0

〈
μt,x,

(
σf̄1

◦ ḡ(· + κ0W (t)) − σf̄1
◦ ḡ(ξ + κ0W (t))

)
+

〉
ϑϕ̃(ξ) dξ dx dW (t)

+
ˆ

Rd

ˆ

R

(ḡ(v0(x)) − ḡ(ξ))+ ϑ(0, x)ϕ̃(ξ) dξ dx. (4.9)

We then take ϕ̃ = ϕ′, for some ϕ ∈ C∞
c (R) and make an integration by parts in the 

integral in ξ. Hence, defining ρ1(t, x, ξ) := μt,x((ξ, +∞)), a0(ξ) = ḡ′(ξ), ai(ξ) = (f̄i ◦
ḡ)′(ξ), i = 1, . . . , d, H(ξ) := (hf̄1

◦ ḡ)′(ξ), G(ξ) := (σf̄1
◦ ḡ)′(ξ), setting a := (a1, . . . , ad), 

we get from (4.9)

〈∂ξm1, ϑϕ〉 =
∞̂

0

ˆ

Rd

ˆ

R

{
a0(ξ + κ0W (t))ρ1(t, x, ξ)ϑt

+
d∑

k=1

ak(ξ + κ0W (t))ρ1(t, x, ξ)ϑxk
+1

2κ
2
0H(ξ + κ0W (t))ρ1(t, x, ξ)ϑ

}
ϕ(ξ) dξ dx dt

+
∞̂

0

ˆ

Rd

ˆ

R

κ0G(ξ + κ0W (t))ρ1(t, x, ξ)ϑϕ(ξ) dξ dx dW (t)

+
ˆ

Rd

ˆ

R

ḡ′(ξ)Iξ<v0(x)ϑ(0, x)ϕ(ξ) dξ dx. (4.10)

Therefore, we see that ρ1 is a weak solution of the stochastic kinetic equation

∂t(a0(ξ + κ0W (t))ρ1) + a(ξ + κ0W (t)) · ∇xρ1 −
1
2κ

2
0H(ξ + κ0W (t))ρ1

= ∂ξm1 + κ0G(ξ + κ0W (t))ρ1
dW (t)
dt

, (4.11)

in the sense of (4.10) extended from test functions of the form ϑϕ to all test functions 
in C∞

c (Rd+2). Also, from (4.10), it follows that

ess lim
t→0+

ˆ ˆ
ρ1(t, x, ξ)φ(x, ξ) dx dξ =

ˆ ˆ
Iξ<v0(x)φ(x, ξ) dx dξ, (4.12)
Rd R Rd R
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for all φ ∈ C∞
c (Rd+1), see also Remark 5.13. We observe that ρ1 is a kinetic function asso-

ciated to the Young measure μt,x. Also, it is not difficult to check, by Proposition 2.1(3), 
that μ satisfies (5.27) and we also may check that m1, defined by (4.9), satisfies the 
conditions of a kinetic measure in Definition 5.1.

On the other hand, using the here called stochastic Kružkov inequality (see Proposi-
tion 6.1) for (1.10) for the entropy solution of (1.10)-(1.13) and for the special solution 
ψ∗γ(t), we get

∞̂

0

ˆ

Rd

{
|ψ∗γ(t) − ū|φt +

d∑
k=1

∣∣f̄k(ψ∗γ(t)) − f̄k(ū)
∣∣φxk

+1
2κ

2
0Sψ∗γ(t),ū

(
hf̄1

(ψ∗γ) − hf̄1
(ū)
)
φ

}
dx dt +

ˆ

Rd

|ψ∗γ(0) − ū(0, x)|φ(0, x) dx

+
∞̂

0

ˆ

Rd

κ0
∣∣σf̄1

(ū) − σf̄1
(ψ∗γ(t))

∣∣φ dx dW (t) ≥ 0, (4.13)

for all φ ∈ C∞
c (Rd+1).

Let X(t, x) = f̄1(ū(t, x)) − κ0W (t) and observe ū(t, x) = ḡ(X(t, x) + κ0W (t)). We 
then get from (4.13) as before,

∞̂

0

ˆ

Rd

{
(ḡ(γ + κ0W (t)) − ḡ(X(t, x) + κ0W (t))+ φt

+
d∑

k=1

(
f̄k ◦ ḡ(γ + κ0W (t)) − f̄k ◦ ḡ(X(t, x) + κ0W (t))

)
+ φxk

}
dt dx

+
∞̂

0

ˆ

Rd

1
2κ

2
0Sγ,X,+

(
h̄f1 ◦ ḡ(γ + κ0W (t)) − h̄f1 ◦ ḡ(X(t, x) + κ0W (t))

)
φ dx dt

+
ˆ

Rd

(ḡ(γ + V (y)) − ḡ(v0(x) + V (y)))+ φ(0, x)) dx

+
∞̂

0

κ0

ˆ

Rd

(
σf̄1

◦ ḡ(γ + κ0W (t)) − σf̄1
◦ ḡ(X(t, x) + κ0W (t))

)
+ φ dx dW (t) ≥ 0.

Hence, given ϑ ∈ C∞
c (Rd+1), ϕ̃ ∈ C∞

c (R) we can similarly define the measure m2 =
m2(t, x, ξ) applied to ϑϕ̃ by

〈m2, ψϕ̃〉 :=
∞̂ˆ ˆ {

(ḡ(γ + κ0W (t)) − ḡ(X(t, x) + κ0W (t))+ ϑtϕ̃(ξ)

0 Rd R
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+
d∑

k=1

(
f̄k ◦ ḡ(γ + κ0W (t)) − f̄k ◦ ḡ(X(t, x) + κ0W (t))

)
+ θxk

ϕ̃(ξ)
}
dξ dx dt

+ 1
2κ

2
0

∞̂

0

ˆ

Rd

ˆ

R

(
h̄f1 ◦ ḡ(γ + κ0W (t)) − h̄f1 ◦ ḡ(X(t, x) + κ0W (t))

)
ϑϕ̃(ξ) dξ dx dt

+
ˆ

Rd

ˆ

R

(ḡ(γ + V (y)) − ḡ(v0(x) + V (y)))+ ϑ(0, x)ϕ̃(ξ) dξ dx

+
∞̂

0

κ0

ˆ

Rd

ˆ

K

(
σf̄1

◦ ḡ(γ + κ0W (t)) − σf̄1
◦ ḡ(X(t, x) + κ0W (t))

)
+ ϑϕ̃(ξ) dξ dx dW (t).

(4.14)

Therefore, we again take ϕ̃ = ϕ′ for some ϕ ∈ C∞
c (R) and make an integration by parts 

in the integral in ξ. Hence, defining ρ2(t, x, ξ) := I(−∞,X(t,x))(ξ), we see that ρ2 is a weak 
solution of the stochastic kinetic equation

∂t(a0(ξ + κ0W (t))ρ2) + a(ξ + κ0W (t)) · ∇xρ2 −
1
2κ

2
0H(ξ + κ0W (t))ρ2

= ∂ξm2 + κ0G(ξ + κ0W (t))ρ2
dW (t)
dt

, (4.15)

where ai, i = 0, . . . , d, H and G are as before. Also, from (4.14), it follows that

ess lim
t→0+

ˆ

Rd

ˆ

R

ρ2(t, x, ξ)φ(x, ξ) dx dξ =
ˆ

Rd

ˆ

R

Iξ<v0(x)φ(x, ξ) dx dξ, (4.16)

for all φ ∈ C∞
c (Rd+1). Since ρ2 is a standard kinetic function, a well known argument 

shows that the convergence in (4.16) may be strengthen to a convergence in L1(RN ; wN )
(see also Remark 5.13).

Therefore, ρ1, ρ2 are weak solutions of identical kinetic equations, (4.11) and (4.15), 
with possibly distinct kinetic measures m1 and m2, and satisfy identical initial conditions 
(4.12) and (4.16).

Our next goal is to prove that μt,x = δX(t,x) a.s. and to do that we are going to prove 
the uniqueness of the weak solution of (4.11)-(4.12) or (4.15)-(4.16), independently of the 
corresponding kinetic measure. This, in turn, will be a consequence of the next lemma.

Lemma 4.1 (rigidity/comparison result). Let ρ1(t, x, ξ), ρ2(t, x, ξ) be generalized kinetic 
functions, that is, functions taking values in [0, 1] such that −∂ξρ1 and −∂ξρ2 are Young 
measures, which solve equations (4.11) and (4.15) with initial conditions ρ0,1 and ρ0,2, 
respectively, where m1 and m2 are kinetic measures in the sense of Definition 5.1. Then 
there is a constant C > 0 such that
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E

ˆ

Rd

ˆ

R

α0(ξ + κ0W (t))ρ1(1 − ρ2)(t)wN dξ dx

≤ CE

ˆ

Rd

ˆ

R

a0(ξ)ρ0,1(1 − ρ0,2)wN dξ dx,

(4.17)

for a.e. t ∈ [0, T ], where wN is the weight given by (5.11).

Remark 4.1. Observe that the stochastic kinetic equations (4.11), (4.15) are different 
from the equations (3.12), (3.15) (which are of the type analyzed in Section 5). In partic-
ular, the former two equations do not have gradient noise and a second order differential 
operator. They do, however, contain coefficients that are predictable random fields. We 
recall that a continuous mapping H = H(ω, t, x, u) : Ω × [0, T ] ×Rd ×R → R is a called 
a random field when it is viewed as a random variable ω �→ H(ω, t, x, u), with (t, x, u)
fixed. If, for each fixed (x, u), the stochastic process (ω, t) �→ H(ω, t, x, u) is {Ft}t∈[0,T ]-
predictable, then H is called a predictable random field. Nevertheless, given the crucial 
observation below, cf. (4.21), the analysis in Section 5 carries over to the stochastic ki-
netic equations (4.11) and (4.15), see in particular Proposition 5.1, the equation (5.36), 
and (6.2) and the discussion found at the beginning of Section 6.

To keep this paper at a reasonable length, we will only supply a sketch of the proof of 
Lemma 4.1, focusing on the formal argument leading up the crucial equation (4.21), from 
which we can proceed as in Section 5. The rigorous proof relies on the usual regularization 
procedure, the Itô product formula, and commutator estimates to control regularization 
errors. In fact, the step involving regularization by convolution (in x, ξ) is simpler (than in 
Section 5) since there are no error terms that require second-order commutator estimates, 
like (5.37), that is, all the error terms can be handled using the standard DiPerna-Lions 
folklore lemma [20]. We refer to Section 5 for details.

Sketch of proof of Lemma 4.1. We will first formally derive stochastic kinetic equations 
for ρ1 and α0(ξ+κ0W (t))(1 −ρ2). Then, combining the resulting equations, Itô’s product 
formula will provide (at least formally) an equation for a0(ξ + κ0W (t)ρ1(1 − ρ2), which 
we can use to prove (4.17), along the lines of Section 5.

We observe that we can write (4.11) as a stochastic differential equation of the fol-
lowing form, where we drop the subscript 1 in ρ1 and m1,

d(a0(ξ + κ0W (t))ρ) = Adt + B dW + ∂ξm,

where

A = −a(ξ + κ0W (t)) · ∇xρ + 1
2κ

2
0H(ξ + κ0W (t))ρ, B = κ0G(ξ + κ0W (t))ρ.

Thanks to the Itô formula, a0(ξ + κ0W (t)) satisfies the stochastic differential equation

da0(ξ + κ0W (t)) = κ0a
′
0(ξ + κ0W (t)) dW + 1

κ2
0a

′′
0(ξ + κ0W (t)) dt, (4.18)
2
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and, by the formulas for a0, σf̄1
, and hf̄1

, we have

a0(ξ) = σf̄1
◦ ḡ(ξ), a′0 = (σf̄1

◦ ḡ)′(ξ), a′′0 = (hf̄1
◦ ḡ)′(ξ),

so

a′0(ξ) = G(ξ), a′′0(ξ) = H(ξ). (4.19)

Denoting ã0(ξ) = 1
a0(ξ) we get, also from Itô’s formula, the following stochastic differen-

tial equation for ã0(ξ):

dã0(ξ + κ0W (t)) = κ0ã
′
0(ξ + κ0W (t)) dW + 1

2κ
2
0ã

′′
0(ξ + κ0W (t)) dt,

where, by virtue of (4.19),

ã′0(ξ) = − G(ξ)
a0(ξ)2

, ã′′0(ξ) = 2G(ξ)2 − a0(ξ)H(ξ)
a0(ξ)3

. (4.20)

By the Itô product rule,

dρ = d
(
ã0(ξ + κ0W (t))a0(ξ + κ0W (t))ρ

)
= a0(ξ + κ0W (t))ρ d(ã0(ξ + κ0W (t))) + ã0(ξ + κ0W (t)) d(a0(ξ + κ0W (t))ρ)

+ [ã0(ξ + κ0W (t)), a0(ξ + κ0W (t))ρ]

= κ0a0(ξ + κ0W (t))ã′0(ξ + κ0W (t))ρ dW + 1
2κ

2
0a0(ξ + κ0W (t))ã′′0(ξ + κ0W (t)) ρ dt

+ ã0(ξ + κ0W (t))Adt + ã0(ξ + κ0W (t))B dW + ã0(ξ + κ0W (t))∂ξm

+ κ0ã
′
0(ξ + κ0W (t))B dt.

In sum, we deduce that ρ1 satisfies the stochastic kinetic equation

∂tρ1 + ã0(ξ + κ0W (t))a(ξ + κ0W (t)) · ∇xρ1

= 1
2κ

2
0Ãρ1 + κ0B̃ρ1

dW (t)
dt

+ ã0(ξ + κ0W (t))∂ξm1,

where

Ã = ã0(ξ + κ0W (t))H(ξ + κ0W (t)) + 2ã′0(ξ + κ0W (t))G(ξ + κ0W (t))

+ a0(ξ + κ0W (t))ã′′0(ξ + κ0W (t)),

and



36 H. Frid et al. / Journal of Functional Analysis 283 (2022) 109620
B̃ = a0(ξ + κ0W (t))ã′0(ξ + κ0W (t)) + ã0(ξ + κ0W (t))G(ξ + κ0W (t)).

At this point, we observe that (4.19) and (4.20) imply that Ã = 0 and B̃ = 0. Thus, 
we conclude that ρ1 satisfies the (much simpler) equation

∂tρ1 + ã0(ξ + κ0W (t))a(ξ + κ0W (t)) · ∇xρ1 = ã0(ξ + κ0W (t))∂ξm1. (4.21)

In view of (4.15) and (4.18), we obtain the following equation for a0(ξ + κ0W (t))(1 −
ρ2):

∂t (a0(ξ + κ0W (t))(1 − ρ2)) + a(ξ + κ0W (t)) · ∇x(1 − ρ2) −
1
2κ

2
0H(ξ + κ0W (t))(1 − ρ2)

= −∂ξm2 + κ0G(ξ + κ0W (t))(1 − ρ2)
dW (t)
dt

. (4.22)

Given the stochastic kinetic equations (4.21) and (4.22), we may apply (again for-
mally) Itô’s product rule to obtain

d (a0(ξ + κ0W (t))ρ1(1 − ρ2))

= a0(ξ + κ0W (t))(1 − ρ2) dρ1 + ρ1 d (a0(ξ + κ0W (t))(1 − ρ2))

+ [ρ1, a0(ξ + κ0W (t))(1 − ρ2)]

= −a(ξ + κ0W (t)) · (1 − ρ2)∇xρ1 dt + (1 − ρ2)∂ξm1

− a(ξ + κ0W (t)) · ρ1∇x(1 − ρ2) dt + 1
2κ

2
0H(ξ + κ0W (t))ρ1(1 − ρ2) dt

− ρ1∂ξm2 + κ0G(ξ + κ0W (t))ρ1(1 − ρ2)dW (t).

In other words, we have the following equation for a0(ξ + κ0W (t))ρ1(1 − ρ2):

∂t (a0(ξ + κ0W (t))ρ1(1 − ρ2)) + a(ξ + κ0W (t)) · ∇x (ρ1(1 − ρ2))

= 1
2κ

2
0H(ξ + κ0W (t))ρ1(1 − ρ2) + (1 − ρ2)∂ξm1 − ρ1∂ξm2

+ κ0G(ξ + κ0W (t))ρ1(1 − ρ2)dW (t). (4.23)

Note that the coefficient a0(ξ + κ0W (t)) in the equation for (1 − ρ2) provides a can-
cellation with the coefficient ã0(ξ + κ0W (t)) which multiplies the measure m1 on the 
right-hand-side of (4.21). This cancellation, which results in the term (1 − ρ2)∂ξm2 on 
the right-hand side of equation (4.23), is essential for the proof of Lemma 4.1, as it will 
allow us to discard this term later on in the analysis based on its sign, after integra-
tion by parts. Similarly, the term −ρ1∂ξm2, which is of the same nature, will also be 
discarded by its sign. To carry on the proof, we take appropriate test functions in the 
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equation (4.23) and manipulate the remaining terms to conclude by applying Gronwall’s 
inequality.

At last, we reiterate that the above argument can be turned into a rigorous proof 
using regularization by convolution (in x, ξ), following Section 5. �

Finally, in view of Lemma 4.1, we deduce that

E

ˆ

Rd

ˆ

R

a0(ξ + κ0W (t))ρ1(t, x, ξ) (1 − ρ2(t, x, ξ))wN dx dξ

≤ C(T )
ˆ

Rd

ˆ

R

α0(ξ)ρ1,0(x, ξ) (1 − ρ2,0(x, ξ))wN dx dξ = 0,

for 0 < t ≤ T , and so, since ρ1 and ρ2 coincide at t = 0, both being equal to Iξ<v0(x), 
we obtain

μt,x = δf̄1(ū(t,x))−κ0W (t),

and consequently

νt,x,y = δg(f̄1(ū(t,x))+V (y)), P -a.e. in Ω.

In particular, it follows that, uε ⇀
´
K g(f̄1(ū(·, ·) + V (y)))dm(y) = ū in the weak–�

topology of L2(Ω; L2
loc((0, T ) × Rd)), for all T > 0 (cf. Remark 2.1 above). Note that 

we used the uniqueness of the limit to conclude that the whole sequence uε converges, 
similarly as in the proof of Theorem 1.1.

Again, the last assertion in Theorem 1.2 follows directly from Proposition 2.2 (a). 
This concludes the proof of Theorem 1.2.

5. A well-posedness result

In this section, we provide a well-posedness result for a class of stochastic conservation 
laws that is (more than) general enough to encompass some of the equations encountered 
earlier in this paper; namely, hyperbolic conservation laws with variable coefficients and 
deterministic/stochastic source terms, posed on an unbounded spatial domain (Rd), see 
Remark 5.5 for further details on the class of equations. Since these equations are not 
all covered by the available well-posedness literature [7,8,14,18,19,21,28,37,42–44,46], we 
will outline some of the arguments leading to this result, particularly the uniqueness part 
of it. On a technical level, the approach presented here is somewhat different from the 
one [18] utilized in many of the references listed above.
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The initial–value problem for these SPDEs take the form

∂tu + divx A(t, x, u) = B(t, u)Ẇ (t) + R(t, x, u), (t, x) ∈ (0, T ) ×Rd,

u(0, x) = u0(ω, x), x ∈ Rd,
(5.1)

where W is a cylindrical Wiener process [17] with noise amplitude B, A = (A1, . . . , Ad) is 
the flux vector, R is the “deterministic” source term, u0 is the initial function, and T > 0
is a fixed final time. We fix a stochastic basic S consisting of a complete probability space 
(Ω, F , P ), a complete right-continuous filtration {Ft}t∈[0,T ], and a sequence {Wk}∞k=1 of 
independent one-dimensional Wiener processes adapted to the filtration {Ft}t∈[0,T ].

We assume that the flux A belongs to C([0, T ]; C2(Rd ×R; Rd)) and

|A(t, x, u)| ≤ ma(t) (1 + |u|) (1 + |x|) ,
|A(t, x, u) −A(t, x, v)| ≤ ma(t) |u− v| (1 + |x|) ,

(5.2)

for t ∈ [0, T ], x ∈ Rd, and u, v ∈ R, where ma(t) is an integrable function. Moreover,

|(divx A)(t, x, u)| ≤ md(t) (1 + |u|) , (divx A)(t, x, 0) = 0, (5.3)

for t ∈ [0, T ], x ∈ Rd, and u ∈ R, where md(t) is another integrable function. Note that, 
without loss of generality, we may always assume (divx A)(t, x, 0) = 0.

We assume that the source function R belongs to C([0, T ]; C1(Rd ×R)), and

|R(t, x, u)| ≤ mR(t) (1 + |u|) , |R(t, x, u) −R(t, x, v)| ≤ mR(t) |u− v| , (5.4)

for t ∈ [0, T ], x ∈ Rd, and u, v ∈ R, where mR(t) is an integrable function.
The driving noise W is a cylindrical Wiener process [17],

W (t) =
∑
k≥1

Wk(t)ψk, (5.5)

evolving over a separable Hilbert space U, equipped with an orthonormal basis {ψk}k≥1. 
The series (5.5) converges in an auxiliary (larger) Hilbert space U0 with Hilbert-Schmidt 
embedding U ⊂ U0. The (nonlinear) noise amplitude B = B(ω, t, u) is an operator-valued 
mapping. For each u ∈ L2(Rd), we define B(t, u) by its action on each ψk:

B(t, u)ψk := bk(ω, t, ·, u(·)), bk ∈ C([0, T ] ×Rd ×R), k ∈ N.

We then obtain

B(t, u) dW (t) =
∑
k≥1

bk(t, x, u) dWk(t). (5.6)

We assume that the sequence {bk}k≥1 satisfy the following conditions:
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B2(t, x, u) :=
∑
k≥1

(bk(t, x, u))2 � 1 + |u|2 , (5.7)

∑
k≥1

|bk(t, x, u) − bk(t, y, v)|2 � |x− y|2 + |u− v|μ(|u− v|), (5.8)

for ω ∈ Ω, t ∈ [0, T ], x, y ∈ Rd, and u, v ∈ R, for some continuous nondecreasing function 
μ on R+ with μ(0+) = 0. The “Lipschitz case” corresponds to μ(ξ) = ξ.

Remark 5.1. We have assumed that the coefficients A, B, and R in (5.1) are deterministic. 
However, this is not necessary. Indeed, the results presented in this section carry over 
to the case where A, B, R are predictable random fields satisfying conditions similar to 
those listed above (cf. Remark 4.1 for the notion of predictable random field).

The initial function u0 is an F0-measurable random variable satisfying

u0 ∈ L∞ (Ω;L∞(Rd)
)
. (5.9)

Given a convex S ∈ C2(R), define QS : [0, T ] × R × R → Rd by (∂uQS)(t, x, u) =
S′(u)(∂uA)(t, x, u). We call (S, QS) an entropy/entropy-flux pair and write (S, QS) ∈ E. 
For (5.1) the entropy inequalities read

∂tS(u) + divx QS(t, x, u) + S′(u) ((divx A)(t, x, u) −R(t, x, u)) − (divx QS)(t, x, u)

≤
∑
k≥1

S′(u)bk(t, x, u) Ẇk(t) + 1
2S

′′(u)B2(t, x, u)

in D′([0, T ) ×Rd), a.s., ∀(S,Q) ∈ E. (5.10)

Remark 5.2 (weighted Lp estimates). For discontinuous solutions, the entropy inequalities 
act as a replacement for the Itô (temporal) and classical (spatial) chain rules. It follows 
from (5.10) with S(u) = up (p ≥ 2) and a standard martingale argument that

u ∈ Lp (Ω;L∞ (0, T ;Lp(wNdx))) ,

where Lp(wNdx) denotes the weighted Lp space of functions v : Rd → R for which
ˆ

Rd

|v|p wNdx < ∞.

Throughout this section, we make use of the weight function

wN (x) = (1 + |x|2)−N , N > d/2. (5.11)

This function is integrable on Rd and satisfies
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∇wN (x) = −2Nx

1 + |x|2
wN (x) =⇒ |∇wN (x)| � wN (x)

1 + |x| .

Note that Lp(wNdx)–bounds with p ∈ [1, 2) follow trivially from the L2(wNdx)–bound.

Remark 5.3 (weight-free framework). The Itô noise term continuously injects “entropy” 
into the system, cf. the S′′B2–term in (5.10). Suppose B(t, x, 0) = 0. Then the ordinary 
Lp spaces constitute a natural choice for (5.1), in which case we may drop the weight 
wN and obtain u ∈ Lp

(
Ω;L∞ (0, T ;Lp(Rd)

))
for all p ∈ [2, ∞), provided

u0 ∈ L∞ (Ω;
(
L2 ∩ L∞) (Rd)

)
. (5.12)

Without this assumption (B(ω, t, x, 0) �= 0), weighted Lp spaces appear to be better 
suited.

We can also drop the weight wN at the expense of imposing a stronger condition on B2

as |x| → ∞, cf. (5.7), namely that

B2(ω, t, x, u) ≤ (b(x))2
(
1 + |u|2

)
, b ∈

(
L2 ∩ L∞) (Rd), (5.13)

for ω ∈ Ω, t ∈ [0, T ], x ∈ Rd, and u ∈ R. Under this assumption or B(ω, t, x, 0) ≡ 0, 
it is possible to use (5.10), with S(·) ≈ |·| and S′′(·) ≈ δ(·), to arrive at an L1 bound, 
and consequently u ∈ Lp

(
Ω;L∞ (0, T ;Lp(Rd)

))
for all p ∈ [1, ∞), in the event that 

u0 ∈ L∞ (Ω;
(
L1 ∩ L∞) (Rd)

)
. At the same time, it is possible to replace the assumptions 

on the flux function, cf. (5.2) and (5.3), by the following more general ones:

A(t, x, u) = Ã(t, x, u) + ˜̃A(t, u),∣∣Ã(t, x, u)
∣∣ ≤ ma(t) (1 + |u|) (1 + |x|) ,

∣∣∣ ˜̃A(t, x, u)
∣∣∣ ≤ ma(t) (1 + |u|ra) ,∣∣Ã(t, x, u) − Ã(t, x, v)

∣∣ ≤ ma(t) |u− v| (1 + |x|) ,∣∣∣ ˜̃A(t, u) − ˜̃A(t, v)
∣∣∣ ≤ ma(t)

(
1 + |u|ra−1 + |v|ra−1

)
|u− v| ,∣∣(divx Ã)(t, x, u)

∣∣ ≤ md(t) (1 + |u|) , (divx Ã)(t, x, 0) = 0,

(5.14)

for t ∈ [0, T ], x ∈ Rd, and u, v ∈ R, where ra ≥ 1 is a number and ma, md are integrable 
functions on [0, T ]. “Globally Lipschitz” fluxes correspond to setting ˜̃A ≡ 0 in (5.14), 
while “polynomially growing” (x-independent) fluxes correspond to setting Ã ≡ 0. In 
the “weight-free” Lp framework it is natural to assume (5.12).

Most of the works on kinetic solutions for stochastic conservation laws have dealt with 
the torus case (Td), and x-independent flux / no reaction term. The works on entropy 
solutions, on the other hand, have considered the unbounded domain case (Rd), often 
with globally Lipschitz (x-independent) flux and no reaction term. In [28] the authors 



H. Frid et al. / Journal of Functional Analysis 283 (2022) 109620 41
allow for a polynomially growing flux A = A(u) (and R ≡ 0), corresponding to the 
˜̃A = ˜̃A(u) part of our flux. Existence of an entropy solution is proved in [28] under 
the assumptions (5.12) and (5.13), whereas uniqueness is established under the weaker 
condition (5.7). These results, based on entropy solutions, are consistent with ours based 
on kinetic solutions.

For some specific choices of the noise amplitude B it is possible to construct L∞ solutions 
of (5.1), that is, u ∈ L∞

ω,t,x, assuming (5.9). Of course, for L∞ solutions, it is sufficient 
that A, R, B are merely “locally Lipschitz in u”.

In what follows, we mostly lay out the results and proofs in the context of weighted Lp

spaces. However, whenever relevant conditions are imposed on the “data” of the problem, 
cf. (5.12), (5.13), and (5.14), the reader may set “wN ≡ 1” in the stated results.

We are going to rely on the (more precise) “kinetic” interpretation [50] of the entropy 
inequalities (5.10). The mapping χ : R2 → R defined by

χ(ξ, u) =

⎧⎪⎪⎨⎪⎪⎩
I0<ξ<u, if u > 0
0, if u = 0
−Iu<ξ<0 if u < 0

is called a χ function. Notice that χ(ξ, u) = Iξ<u − Iξ<0 for a.e. ξ, for each fixed u ∈ R. 
Moreover, χ is compactly supported in the ξ-variable, and thus χ(·, u) ∈ L1(R). For any 
locally Lipschitz continuous h : R → R, we have the following representation formula:

h(u) = h(0) +
ˆ

R

h′(ξ)χ(ξ, u) dξ, u ∈ R.

We also need the “one-sided” χ-functions χ+(ξ, u) = Iξ<u and χ−(ξ, u) := χ+(ξ, u) −1
(= −Iξ≥u). Observe that χ+(ξ, u) = χ(ξ, u) + Iξ<0 and χ−(ξ, u) = χ(ξ, u) − Iξ≥0, for 
a.e. ξ, for each fixed u ∈ R. In contrast to χ, the one-sided functions χ±(·, u) are not 
compactly supported and thus not integrable on R. In most applications, however, it is 
sufficient that χ±(·, u) is in L1

loc(R), for each fixed u ∈ R.

Remark 5.4 (properties of χ+). The following properties are easy to verify:

(1) (u − v)+ =
´
R χ+(ξ, u)(1 − χ+(ξ, v)) dξ;

(2)
´
R S′(ξ)χ+(ξ, u)(1 − χ+(ξ, v)) dξ = Iu>v (S(u) − S(v)), ∀S ∈ Liploc(R);

(3) |u− v| =
´
R |χ+(ξ, u) − χ+(ξ, v)| dξ;

(4) Set g(ξ, u, v) = 1
2 (χ+(ξ, u) + χ+(ξ, v)). Then 1

4 |u− v| =
´
R g − g2 dξ.

Let us introduce the following notations for further use:

ai = ai(t, x, ξ) := (∂uAi)(t, x, ξ), i = 1, . . . , d,
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a = (a1, . . . , ad) , d = d(t, x, ξ) := −(divx A)(t, x, ξ),

a = a(t, x, ξ) = {a, d} [16], and note that div(x,ξ) a := divx a + ∂ξd = 0. In view of our 
assumptions (5.2), (5.3), and (5.4), we clearly have

∥∥∥∥a(t, x, ξ)1 + |x|

∥∥∥∥
L∞

x

≤ ma(t), (ω, t, ξ) ∈ Ω × [0, T ] ×R, (5.15)

‖d(t, x, ξ)‖L∞
x

≤ md(t) (1 + |ξ|) , (ω, t, ξ) ∈ Ω × [0, T ] ×R, (5.16)

and

‖R(t, x, ξ)‖L∞
x

≤ mR(t) (1 + |ξ|) , ‖∂ξR(ω, t, x, ξ)‖L∞
x

≤ mR(t), (5.17)

for (ω, t, ξ) ∈ Ω × [0, T ] ×R. These estimates imply, a.s., a, R ∈ L1 (0, T ;L1
loc(Rd ×R)

)
. 

Besides, we will always assume

∇(x,ξ)a, ∇xR ∈ L1 (0, T ;L1
loc(Rd ×R)

)
a.s., (5.18)

and so, a.s., a, R ∈ L1
(
0, T ;W 1,1

loc (Rd ×R)
)

(for the DiPerna-Lions regularization 

lemma).
Setting

ρ = ρ(ω, t, x) := χ+(ξ, u(ω, t, x)) = Iξ<u(ω,t,x),

the kinetic equation reads

∂tρ + div(x,ξ)

(
aρ
)

+ R∂ξρ

+
∑
k≥1

bk∂ξρ Ẇk(t) = ∂ξ

(
B2

2 ∂ξρ

)
+ ∂ξm in D′([0, T ) ×Rd ×R), a.s.,

(5.19)

where a := {a, d} satisfies div(x,ξ) a = 0, B2 is defined in (5.7), and ∂ξρ = −δ(ξ−u). All 
the coefficients a, R, bk, B2 depend on (t, x, ξ). On the right-hand side of (5.19), m is the 
so-called kinetic measure.

Remark 5.5. Observe that the stochastic kinetic equations (3.12) and (3.15), which arise 
in our first homogenization problem, are both of the type (5.19). On the other hand, the 
kinetic equations (4.11) and (4.15) (arising in the second homogenization problem) are 
not, see also Remark 5.5. However, combining the arguments developed in this section 
with those used in the proof of Lemma 4.1, we can also handle this (new) type of 
stochastic kinetic equations.
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Definition 5.1 (kinetic measure). A nonnegative mapping m : Ω → M([0, T ] × Rd × R)
is called a (weighted) kinetic measure provided the following three conditions hold:

(1) m(φ) : Ω → R is measurable for each φ ∈ Cc([0, T ] × Rd × R), where m(φ) denotes 
the action of m on φ, i.e., m(φ) =

´
[0,T ]×Rd×R φ(t, x, ξ) m(dt, dx, dξ);

(2) the process (ω, t) �→ m(φ)([0, t] × Rd × R) =
´
[0,t]×M×R φ(x, ξ) m(ds, dx, dξ) is pre-

dictable and belongs to L2(Ω × [0, T ]), for any φ ∈ Cc(Rd ×R);
(3) m exhibits weighted p–moments: mN := wNm, cf. (5.11), satisfies

E

ˆ

[0,T ]×Rd×R

|ξ|p mN (dt, dx, dξ) �T,N,p 1, ∀p ∈ [0,∞). (5.20)

Definition 5.2 (kinetic solution). Given an initial function u0 ∈ L∞ (Ω,F0;L∞(Rd)
)
, set 

ρ0 := Iξ<u0 . A measurable function u : Ω × [0, T ] × Rd → R is said to be a kinetic 
solution of (5.1) if u is a predictable L2(wNdx)–valued stochastic process such that

E

(
ess sup
t∈[0,T ]

‖u(t)‖pLp(wNdx)

)
�T,N,p 1, ∀p ∈ [2,∞), (5.21)

and there is a kinetic measure m such that ρ := Iξ<u satisfies (5.19).

Remark 5.6. The property ∂ξρ = −δ(ξ − u) is satisfied by any kinetic solution ρ (and 
thus ρ ∈ BVξ). Given a function H = H(t, x, ξ) that is continuous in ξ, we assign the 
following meaning to the distribution H∂ξρ:

〈H∂ξρ, φ〉D′
ξ,Dξ

= −H(t, x, u(ω, t, x))φ(t, x, u(ω, t, x)), φ ∈ Dt,x,ξ,

for a.e. (ω, t, x) ∈ Ω × [0, T ] ×Rd, thereby explaining the meaning of (5.19).

Remark 5.7 (entropy & kinetic solutions). It is equivalent to be a kinetic solution ac-
cording to Definition 5.2 and an entropy solution, i.e., a weak solution of (5.1) satisfying 
(5.10).

Remark 5.8 (weighted p–moments of kinetic measure). Fix a kinetic solution ρ with 
kinetic measure m. For later use, let us compute the p-moments of the weighted measure 
mN := wNm, where wN is the weight function (5.11). It follows from (5.19) that

m(∂ξϕ)([0, T ]) =
ˆ

[0,T ]×Rd×R

∂ξϕ(x, ξ)m(dt, dx, dξ)

= 〈χ0, ϕ〉 − 〈χ(T ), ϕ〉 +
T̂ 〈

ρ(t), a(t) · ∇(x,ξ)ϕ
〉
dt
0
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−
T̂

0

〈(
R∂ξρ

)
(t), ϕ

〉
dt−

∑
k≥1

T̂

0

〈(
bk∂ξρ

)
(t), ϕ

〉
dWk(t)

−
T̂

0

〈(
B2

2 ∂ξρ

)
(t), ∂ξϕ

〉
dt, ∀ϕ ∈ C∞

c (Rd ×R), (5.22)

where χ := ρ − Iξ<0 and χ0 := ρ0 − Iξ<0. Fix any convex function S ∈ C2(R) with 
|S(ξ)| � |ξ|p+2, |S′(ξ)| � |ξ|p+1, |S′′(ξ)| � |ξ|p (p ≥ 0), i.e., S ∈ C2

pol(R). We will 
utilize the test function ϕ = ϕκ,�(x, ξ) := S′(ξ) wN (x) φκ(x)ψ�(ξ) 

κ,�↑∞−→ S′(ξ) wN (x), 
where φκ(x) = φ1

(
x
κ

)
, φ1 ∈ C∞

c (Rd), 0 ≤ φ1 ≤ 1, φ1 = 1 on {|x| ≤ 1}, and φ1 = 0 on 

{|x| ≥ 2}. Moreover, ψ�(x) = ψ1

(
ξ
�

)
, ψ1 ∈ C∞

c (Rd), 0 ≤ ψ1 ≤ 1, ψ1 = 1 on {|ξ| ≤ 1}, 
and ψ1 = 0 on {|ξ| ≥ 2}. We refer to {φκ(x)}κ≥1, and {ψ�(x)}�≥1 as truncation sequences 
(on, respectively, Rd and R). Clearly, |∇φκ(x)| � 1

κIκ≤|x|≤2κ, |ψ′
�(ξ)| � 1

� I�≤|ξ|≤2�, and

∂ξϕκ,� = S′′(ξ)wN (x)φκ(x)ψ�(ξ) + S′(ξ)wN (x)φκ(x)ψ′
�(ξ)

κ,�↑∞−→ S′′(ξ)wN (x),

∇xϕκ,� = S′(ξ)∇wN (x)φκ(x)ψ�(ξ) + S′(ξ)wN (x)∇φκ(x)ψ�(ξ)
κ,�↑∞−→ S′(ξ)∇wN (x).

Making use of ϕκ,� in (5.22) and sending κ, � → ∞, we eventually arrive at the following 
equation satisfied a.s. by the weighted kinetic measure mN (= wNm):

ˆ

[0,T ]×Rd×R

S′′(ξ)mN (dt, dx, dξ) =
ˆ

Rd

S(u0)wNdx−
ˆ

Rd

S(u(T ))wNdx

+
T̂

0

ˆ

Rd

(
−2NQS(t, x, u) · x

1 + |x|2
+ (divx QS)(t, x, u)

+ S′(u) (R(t, x, u) − (divx A)(t, x, u))
)
wNdx dt

+
∑
k≥1

T̂

0

ˆ

Rd

S′(u)bk(t, x, u)wNdx dWk(t)

+ 1
2

T̂

0

ˆ

Rd

S′′(u)B2(t, x, u)wNdx dt, (5.23)

for any S ∈ C2
pol(R), S(0) = 0, S′′ ≥ 0. Keeping in mind our assumptions (5.2), (5.3), 

(5.4), (5.7), and (5.21), choosing S(ξ) = 1 |ξ|p+2 in (5.23) gives
(p+1)(p+2)
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E

ˆ

[0,T ]×Rd×R

|ξ|p mN (dt, dx, dξ) ≤ C, p ∈ [0,∞), (5.24)

where C depends on T, N and ‖u‖Lp+2(Ω;L∞(0,T ;Lp+2(wNdx))) (see also next remark).

Regarding the “weight-free” Lp–framework discussed in Remark 5.2, cf. (5.12), (5.13), 
and (5.14), the equation (5.23) continues to hold with wN ≡ 1 (and thus mN = m), in 
which case the “−2N” term is zero. As a result, E

´
[0,T ]×Rd×R |ξ|p m(dt, dx, dξ) ≤ C, 

where C depends on T and ‖u‖Lp+2(Ω;L∞(0,T ;Lp+2(Rd))).

For L∞–solutions, the bound (5.24) on mN continues to hold with C depending on T, N , 
and Kmax := ‖u‖L∞

ω,t,x
. If R− (divx A), bk, B2 are zero on Rξ \ [−Kmax,Kmax], it follows 

from (5.23) that the weighted kinetic measure mN is compactly supported in ξ.

Remark 5.9 (improvement of integrability via a martingale argument). By the previous 
remark, the random variable ω �→

´
[0,T ]×Rd×R |ξ|p mN (dt, dx, dξ) belongs to L1(Ω). One 

can improve this to Lq(Ω) for any finite q ≥ 1. To this end, we will argue that

E

(
ess sup
t∈[0,T ]

‖u(t)‖rLp+2(wNdx)

)
+ E

⎛⎜⎝ ˆ

[0,T ]×Rd×R

|ξ|p mN (dt, dx, dξ)

⎞⎟⎠
r

p+2

�r,T,N 1,

provided the initial data u0 satisfy E
(
‖u0‖rLp+2(wNdx)

)
< ∞, for r > p + 2, a condition 

that clearly is satisfied due to (5.9). The case r = p + 2 is covered by the definition of 
kinetic solution, cf. (5.20) and (5.21). In view of (5.23) with S(ξ) = 1

(p+1)(p+2) |ξ|
p+2 and 

the growth assumptions (5.15), (5.16), and (5.17), it follows easily that

ess sup
t∈[0,T ]

ˆ

Rd

|u(t)|p+2
wNdx +

ˆ

[0,T ]×Rd×R

|ξ|p mN (dt, dx, dξ)

�
ˆ

Rd

|u0|p+2
wNdx +

T̂

0

ˆ

Rd

|u(t)|p+2
wNdx dt + sup

t∈[0,T ]
|M(t)| ,

(5.25)

for a.e. (ω, t) ∈ Ω × [0, T ], where

M(t) =
∑
k≥1

tˆ

0

ˆ

Rd

S′(u)bk(ω, s, x, u)wNdx dWk(s), S′(u) = 1
p + 1 |u|p u.

We raise both sides of (5.25) to the power r/(p + 2) > 1, apply Jensen’s inequality to 
the second term on the right-hand side, and take the expectation, eventually arriving at
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E

(
ess sup
t∈[0,T ]

‖u(t)‖rLp+2(wNdx)

)
+ E

⎛⎜⎝ ˆ

[0,T ]×Rd×R

|ξ|p mN (dt, dx, dξ)

⎞⎟⎠
r

p+2

�T E
(
‖u0‖rLp+2(wNdx)

)
+

T̂

0

E
(
‖u(t)‖rLp+2(wNdx)

)
dt

+ E sup
t∈[0,T ]

|M(t)|
r

p+2 . (5.26)

A standard martingale argument (Burkholder-Davis-Gundy inequality [12]) supplies

E sup
t∈[0,T ]

|M(t)|
r

p+2

�T,N
1
2 E

(
ess sup
t∈[0,T ]

‖u(t)‖rLp+2(wNdx)

)
+

T̂

0

E
(
‖u(t)‖rLp+2(wNdx)

)
dt + 1.

Making use of this estimate in (5.26), followed by an application of Gronwall’s inequality, 
leads to the sought after estimates.

It is easy to make the previous argument operational in the “weight-free” Lp–frame-
work discussed in Remark 5.2, assuming (5.12), (5.13), (5.14). The same applies to 
L∞–solutions.

Roughly speaking, the difference between a kinetic solution ρ and a so-called general-
ized kinetic solution � is that the structural property ∂ξρ = −δ(ξ−u) is replaced by the 
requirement ∂ξ� = −ν for some Young measure ν on Rξ. We refer to [18] for relevant 
background material on Young measures.

In what follows, any function of the form ρ = ρ(z, ξ) = Iξ<u(z) will be called a kinetic 
function. We reserve the term generalized kinetic function to functions � = �(z, ξ) taking 
values in [0, 1] such that −∂ξ� is a Young measure. For us z = (ω, x) or z = (ω, t, x).

Definition 5.3 (generalized kinetic solution). Fix a generalized kinetic function �0(ω, x, ξ). 
We call � : Ω × [0, T ] ×Rd ×R → [0, 1] a generalized kinetic solution of (5.1) with initial 
data ρ0 if �̃ := � − Iξ<0 is P/B(L2(wNdx dξ)) measurable and

E

⎛⎜⎝ess sup
t∈[0,T ]

¨

Rd×R

|ξ|p wN (x) νω,t,x(dξ) dx

⎞⎟⎠ �T,N,p 1, ∀p ∈ [2,∞), (5.27)

where ν := −∂ξ� is a Young measure, the spatial weight wN is defined in (5.11), and 
there is a kinetic measure m such that � satisfies a.s.

∂t� + div(x,ξ)

(
a�
)

+ R∂ξρ
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+
∑
k≥1

bk∂ξ� Ẇk(t) = ∂ξ

(
B2

2 ∂ξ�

)
+ ∂ξm in D′([0, T ) ×Rd ×R). (5.28)

Remark 5.10. Given a function H(t, x, ξ) that is continuous in ξ and a generalized kinetic 
solution �, we assign the following meaning to the distribution H∂ξ�:

〈H∂ξ�, φ〉D′
ξ,Dξ

= −
ˆ

R

H(ω, t, x, ξ)φ(t, x, ξ) νω,t,x(dξ), φ ∈ Dt,x,ξ,

for a.e. (ω, t, x) ∈ Ω × [0, T ] ×Rd, thereby making precise the meaning of (5.28).

Remark 5.11. Although a generalized kinetic solution � is merely locally integrable in ξ, 
the associated function �̃ (= � − Iξ<0) is globally integrable; by (5.27),

¨

Rd×R

|�̃(t)| |ξ|p wN (x) dξ dx �T,N,p 1, t ∈ [0, T ], ∀p ∈ [1,∞).

Remark 5.12 (càdlàg / càglàd versions). There are general theorems [52] ensuring that 
many real-valued stochastic processes X(t) (discontinuous semimartingales) have a right-
continuous version and, what’s more, these versions necessarily have left-limits every-
where. Right-continuous processes with left-limits everywhere are referred to as càdlàg. 
Left-continuous processes with right-limits everywhere are referred to as càglàd.

A generalized kinetic solution � is clearly not affected by modification of its values 
on any set of measure zero. In fact, � is an equivalence class of functions. When proving 
stability and uniqueness results we must work with left/right continuous representatives 
of each equivalence class. Indeed, a result from [18, Proposition 10] (see also [21, Lemma 
1.3.3]), easily generalized to our setting, says that a generalized kinetic solution � pos-
sesses weak left and right limits �t,± at every instant of time t. We then introduce left and 
right continuous representatives of � by setting �±(t) := �t,± for all t ∈ [0, T ]. Clearly, 
�± are both predictable since � is. Using the left and right continuous representatives �±
one can convert the time-space weak formulation (5.28) into a formulation that is weak 
in space only (and pointwise in time): for any t ∈ [0, T ], a.s.,

〈
�±(t), ϕ

〉
= 〈�0, ϕ〉 +

tˆ

0

〈
�(s), a(s) · ∇(x,ξ)ϕ

〉
ds−

tˆ

0

〈(
R∂ξ�

)
(s), ϕ

〉
ds

−
∑
k≥1

tˆ

0

〈(
bk∂ξ�

)
(s), ϕ

〉
dWk(s) −

tˆ

0

〈(
B2

2 ∂ξ�

)
(s), ∂ξϕ

〉
ds

−
{
m(∂ξϕ)([0, t]), for �+

m(∂ ϕ)([0, t)), for �−
.

(5.29)
ξ
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Be mindful of the fact that 〈�+(t) − �−(t), ϕ〉 = −m(∂ξϕ)({t}). Since the atomic points 
of m(∂ξϕ)(·) is at most countable, we have 〈�+(t), ϕ〉 = 〈�−(t), ϕ〉 for a.e. t and in turn 
�+ = �− almost everywhere. The real-valued stochastic processes X±(t) := 〈�±(t), ϕ〉, 
defined by (5.29), are of the form X±(t) = A±(t) +M(t), where A±(t) are finite variation 
processes and M(t) is a continuous martingale. Moreover, A+(0) = 〈�0, ϕ〉−m(∂ξϕ)({0}), 
A−(0) = 〈�0, ϕ〉, and M(0) = 0. Below we note that m(∂ξϕ)({0}) = 0 for kinetic 
initial data �0 = Iξ<u0 . Whenever convenient, we may assume that X+ (X−) are càdlàg 
(càglàd).

In what follows, we will outline a proof of uniqueness. Although we should work with the 
left/right continuous representatives �± as in [18, Proposition 10] (see also [21]) and make 
use of the space-weak formulation (5.29), we will not do so in an attempt to save space 
and keep the presentation as simple as possible. Instead we refer to [18,19,21,32,33,37]
for such details, see also [34,35].

Remark 5.13. Let us make a comment on generalized kinetic solutions and the satisfac-
tion of the initial condition. Suppose �0 = Iξ<u0 for some function u0 satisfying (5.9). It 
follows from (5.29) that (the right-continuous representative of) � satisfies a.s.

〈�(0), ϕ〉 = 〈�0, ϕ〉 −m(∂ξϕ)({0}), ∀ϕ ∈ C∞
c (Rd ×R). (5.30)

To conclude �(0) = �0 we argue that m 
(
{0} ×Rd ×R

)
= 0. The argument is standard 

[50], so we merely sketch it. Following Remark 5.8, (5.30) implies a.s. that

¨

Rd×R

S′(ξ) (�̃(0) − χ(ξ, u0)) wN dξ dx +
ˆ

{t=0}×Rd×R

S′′(ξ)wN m(dt, dx, dξ) = 0,

for any S ∈ C2(R) for which S′′ ≥ 0 and S, S′, S′′ grow at most polynomially. By 
Brenier’s lemma [50], the first integral is nonnegative. As a result, both integrals must 
be zero. In other words, a.s., �(0) = �0 and m 

(
{0} ×Rd ×R

)
= 0.

Following an approach developed by Perthame [50], later extended to the stochastic 
case in [18] (see also [18,19,21,32,33,37,44,46]), we establish a rigidity result implying 
that generalized kinetic solutions are in fact kinetic solutions, at least when the initial 
function is a kinetic function, �0 = Iξ<u0 . The proof herein involves a regularization 
(via convolution) procedure, the Itô formula, and commutator arguments (going beyond 
the deterministic one by DiPerna-Lions) [36]. Essentially the same proof also shows 
that kinetic solutions are uniquely determined by their initial data, satisfying an L1

contraction principle.

Proposition 5.1 (rigidity result). Suppose that bk, B2, a = {a, d} , R satisfy conditions 
(5.7), (5.8), (5.15), (5.16), (5.17), (5.18), and div(x,ξ) a = 0. Let � be a generalized 
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kinetic solution of (5.1) with initial data �0. Suppose m 
(
{0} ×Rd ×R

)
= 0. Then, for 

t ∈ [0, T ],

0 ≤ E

¨

Rd×R

(
�− �2) (t)wN dξ dx �T,N E

¨

Rd×R

(
ρ0 − ρ2

0
)
wN dξ dx. (5.31)

If �0 = Iξ<u0 for some u0 satisfying (5.9), then m 
(
{0} ×Rd ×R

)
= 0 and thus � −�2 = 0

a.e.; whence � = Iξ<u for some function u that necessarily is a kinetic solution of (5.1).

Remark 5.14. Informally speaking, cf. (5.29), we have �(t) = V (t) +M(t), where V (t) is 
a finite variation process, M(t) is a continuous martingale, and �(0) = V (0). In the proof 
below we need to determine the equation satisfied by S(�(t)), where S(�) = � −�2. Noting 
that (�(t))2 = (V (t))2+2V (t)M(t) +(M(t))2, we can calculate the first and second terms 
using standard calculus, while the third term can be computed using the Itô formula 
for continuous martingales [52]. Alternatively, we use the Itô formula for discontinuous 
semimartingales [39] to write S(�(t)) = S(�(0)) +

´ t

0 S′(�(s−)) d�(s) + QS(t) + JS(t), 
where QS(t) =

´ t

0
1
2S

′′(�(s−)) d[�](s), [�](t) = [M ](t) +
∑

s≤t (Δ�(s))2 is the quadratic 
variation process, and

JS(t) =
∑
s≤t

(
S(�(s)) − S(�(s−)) − S′(�(s−))Δ�(s) − 1

2S
′′(�(s−)) (Δ�(s))2

)

is the “jump part” coming from the (temporal) discontinuities in �. With S(�) = � − �2

(and S′′ = −2), we have JS ≡ 0 and QS(t) = −[M ](t) −
∑

s≤t (Δ�(s))2 ≤ −[M ](t).

Proof. We will first give an informal proof of (5.31). Recall that � satisfies a.s. (5.28). By 
the Itô and classical chain rules we arrive at the following equation for S(�) := � − �2:

∂tS(�) + div(x,ξ)

(
aS(�)

)
+ R∂ξS(ρ)

+
∑
k≥1

bk∂ξS(�) Ẇk(t) = ∂ξ

(
B2

2 ∂ξS(�)
)

+ S′(�)∂ξm + Q,
(5.32)

where Q contains the difference between certain quadratic terms linked to the variation 
of the martingale part and the second-order differential operator of the equation (5.28):

Q = S′′(�)
2

∑
k≥1

(bk∂ξ�)2 −
S′′(�)

2 B2 (∂ξ�)2 ≡ 0.

The perfect cancellation (i.e., Q = 0) is the basic reason why the Proposition 5.1 holds. 
It follows from (5.32) that I(φ) = I0(ϕ) +

∑4
i=1 Ii(ϕ), t ∈ [0, T ], where
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I(ϕ) = E

¨

Rd×R

S(�(t))ϕdξ dx, I0(ϕ) = E

¨

Rd×R

S(�0)ϕdξ dx,

I1(ϕ) =
tˆ

0

⎛⎜⎝E

¨

Rd×R

S(�(s))a(s) · ∇(x,ξ)ϕdξ dx

⎞⎟⎠ ds,

I2(ϕ) = −1
2

tˆ

0

⎛⎜⎝E

¨

Rd×R

B2(s)∂ξS(�(s))∂ξϕdξ dx

⎞⎟⎠ ds,

I3(ϕ) = −
tˆ

0

⎛⎜⎝E

¨

Rd×R

R(s)∂ξS(�(s))ϕdξ dx

⎞⎟⎠ ds,

I4(ϕ) = −E

˚

[0,t]×Rd×R

∂ξ (S′(�(s))ϕ) m(ds, dx, dξ),

for any φ ∈ C1
c (Rd ×R). Let us particularize the test function as

ϕ(x, ξ) = ϕκ,�(x, ξ) = wN (x)φκ(x)ψ�(ξ), (5.33)

where the weight function wN is defined in (5.11) and {φκ}κ≥1, {ψ�}�≥1 are truncation 
sequences respectively on Rd, R.

We rely on (5.15) and (5.16) to supply

∣∣S(�(s))a(s) · ∇(x,ξ)ϕκ,�

∣∣ �
(
�− �2) (s) |a(s)|ψ�

(
|∇wN | + 1

κ
Iκ≤|ξ|≤2κwN

)
+
(
�− �2) (s) |d(s)| 1

�
I�≤|ξ|≤2�wN

�
∥∥∥∥ a(s)

1 + |x|

∥∥∥∥
L∞

x

(
�− �2) (s)ψ�wN + md(t)

(
�− �2) (s) (1 + |ξ|) 1

�
I�≤|ξ|≤2�wN

� (ma(s) + md(s))
(
�− �2) (s)wN ∈ L1

ω,t,x,ξ,

and thus

|I1(ϕκ,�)| �
tˆ

0

(ma + md) (s)

⎛⎜⎝E

¨

Rd×R

(
�− �2) (s)wN dξ dx

⎞⎟⎠ ds.
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Next, since � ∈ L∞
ω,t,x,ξ and ∂ξ� = −ν(dξ),

∣∣B2(s)∂ξS(�(s))∂ξϕκ,�

∣∣
(5.7)
� 1

�
I�≤|ξ|≤2�

(
1 + |ξ|2

)
|1 − 2�(s)|φκ wN ν(dξ) � 1

�

(
1 + |ξ|2

)
wN ν(dξ),

and so, recalling (5.27), |I2(ϕκ,�| �T,N
1
�

�↑∞−→ 0.
Evoking (5.17),

|∂ξ (Rϕκ,�)| ≤ |∂ξR(s)ψ� + R(s)ψ′
�| φκ wN

�
(
mR(s) + mR(s) (1 + |ξ|) I�≤|ξ|≤2�

1
�

)
wN � mR(s)wN ,

and thus, after an integration by parts,

|I3(ϕκ,�)| �
tˆ

0

mR(s)

⎛⎜⎝E

¨

Rd×R

(
�− �2) (s)wN dξ dx

⎞⎟⎠ ds.

Finally, using again that ∂ξ� = −ν,

−∂ξ (S′(�(s))ϕκ,�) = −2φκ ψ� wN ν(dξ) − (1 − 2�(s)(s)) φκ ψ
′
� wN

≤ (2�(s) − 1) φκ ψ
′
� wN ,

and so, putting � ∈ L∞
ω,t,x,ξ and (5.20) to good use,

|I4(ϕκ,�)| � 1
�
EmN

(
[0, T ] ×Rd × {� ≤ |ξ| ≤ 2�}

)
= O(1/�) �↑∞−→ 0.

Summarizing our computations (after sending κ → ∞),

E

ˆ

Rd×R

(
�− �2) (t)ψ�wN dξ dx � E

ˆ

Rd×R

(
�0 − �2

0
)
ψ�wN dξ dx

+
tˆ

0

M(s)

⎛⎜⎝E

ˆ

Rd×R

(
�− �2) (s)ψ�wN dξ dx

⎞⎟⎠ ds + O(1/�),

(5.34)

where M is an integrable function on [0, T ]. We arrive at the sought after (5.31) by 
sending � ↑ ∞ and then applying Gronwall’s inequality.

Unfortunately the equation (5.32) for S(ρ) is only suggestive as the calculations involving 
the chain rule are merely formal. To make the calculations rigorous we regularize the 
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“linear” equation (5.28), bringing in several regularization errors that must be controlled. 
Let Jx

ε : Rd → R, Jξ
δ : R → R be standard Friedrich mollifiers, and define

�ε,δ(ω, t, x, ξ) = � �
(
Jx
ε J

ξ
δ

)
=

¨

Rd×R

�(ω, t, y, ζ)Jx
ε (x− y)Jξ

δ (ξ − ζ) dy dζ,

mε,δ(ω, t, x, ξ) = m �
(
Jx
ε J

ξ
δ

)
=

¨

Rd×R

Jx
ε (x− y)Jξ

δ (ξ − ζ)m(t, dy, dζ).

The mollified quantities �ε,δ, mε,δ are smooth in x, ξ but discontinuous in t. However, 
working with suitable representatives (versions), we can ensure that �ε,δ, mε,δ are càdlàg 
/ càglàd in time t, thereby making the Itô formula available to us, and thus the arguments 
below can be made rigorous (see e.g. [18,21,32–35]). In passing, note that mε,δ is a 
measure on [0, T ] (depending on the “parameters” ω, x, ξ).

The following equation holds a.s.:

∂t�ε,δ + div(x,ξ)

(
a�ε,δ

)
+ R∂ξ�ε,δ +

∑
k≥1

(
(bk∂ξ�) �

(
Jx
ε J

ξ
δ

))
Ẇk(t)

= ∂ξ

((
B2

2 ∂ξ�

)
�
(
Jx
ε J

ξ
δ

))
+ ∂ξmε,δ + rε,δ in D′([0, T ) ×Rd ×R),

(5.35)

where the reminder term rε,δ = rε,δ(ω, t, x, ξ) takes the form

rε,δ := div(x,ξ)

(
a�ε,δ

)
− div(x,ξ)

(
(a�) �

(
Jx
ε J

ξ
δ

))
+ R∂ξ�ε,δ − (R∂ξ�) �

(
Jx
ε J

ξ
δ

)
.

Our assumptions imply that a, R ∈ L1
(
0, T ;W 1,1

loc (Rd ×R)
)
, whereas the generalized 

kinetic solution � belongs a.s. to L∞ (0, T ;L∞(Rd ×R)
)
. Moreover, div(x,ξ) a = 0. Hence, 

by [20, Lemma II.1], rε,δ converges a.s. to zero in L1
loc as ε, δ → 0. Given (5.35), we apply 

the Itô formula as well as the classical (spatial) chain rule. The result is the following 
equation for S(�ε,δ) that holds a.s. in D′([0, T ) ×Rd ×R):

∂tS(�ε,δ) + div(x,ξ)

(
aS(�ε,δ)

)
+ R∂ξS(�ε,δ)

+
∑
k≥1

S′(�ε,δ)
(
(bk∂ξ�) �

(
Jx
ε J

ξ
δ

))
Ẇk(t) = ∂ξ

(
B2

2 ∂ξS(�ε,δ)
)

+ S′(�ε,δ)∂ξmε,δ + S′(�ε,δ)rε,δ + ∂ξ (S′(�ε,δ)r̃ε,δ) + Qε,δ,

(5.36)

where r̃ε,δ = B2

2 ∂ξ�ε,δ −
(

B2

2 ∂ξ�
)
�
(
Jx
ε J

ξ
δ

)
and

Qε,δ = 1
2S

′′(�ε,δ)
∑
k≥1

(
(bk∂ξ�) �

(
Jx
ε J

ξ
δ

))2
− 1

2S
′′(�ε,δ)

((
B2∂ξ�

)
�
(
Jx
ε J

ξ
δ

))
∂ξ�ε,δ.

(5.37)
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As a result of assumptions (5.7) and (5.8), B2 ∈ L1
(
0, T ;W 1,1

loc (Rd ×R)
)

(besides, we 

know � ∈ BVξ). Thus, it is not difficult o show that, r̃ε,δ converges a.s. to zero in L1
loc

as ε, δ → 0 [32]. Choosing (5.33) as test function in (5.36), recalling that S(�) = � − �2, 
and carrying on as before (5.34), we deliver

E

ˆ

Rd×R

(
�ε,δ − �2

ε,δ

)
(t)ψ�wN dξ dx � E

ˆ

Rd×R

(
�0,ε,δ − �2

0,ε,δ
)
(0)ψ�wN dξ dx

+
tˆ

0

M(s)

⎛⎜⎝E

ˆ

Rd×R

(
�ε,δ − �2

ε,δ

)
(s)ψ�wN dξ dx

⎞⎟⎠ ds

+ E

T̂

0

ˆ

Rd

ˆ

R

(
|rε,δ| +

1
�
I�≤|ξ|≤2� |r̃ε,δ|

)
wN dξ dx dt

+ E

T̂

0

ˆ

Rd

ˆ

R

Qε,δwN dξ dx dt + O(1/�), (5.38)

for some integrable function M on [0, T ], where �0,ε,δ := �0 �
(
Jx
ε J

ξ
δ

)
. Provided we show 

that the “ε, δ → 0 limit” of the Qε,δ–term is zero, we obtain the rigidity inequality 
(5.31) by sending ε, δ ↓ 0 and � ↑ ∞ in (5.38), followed by an application of Gronwall’s 
inequality.

It remains to compute the limit of the Qε,δ–term. Recalling that B2 =
∑

k≥1 b
2
k, we 

write Qε,δ(ω, t, x, ξ) =
∑

k≥1 Qε,δ,k(ω, t, x, ξ), where, for k = 1, 2, . . .,

Qε,δ,k(ω, t, x, ξ) :=
((

b2k∂ξ�
)
�
(
Jx
ε J

ξ
δ

))
∂ξ�ε,δ −

(
(bk∂ξ�) �

(
Jx
ε J

ξ
δ

))2

=
ˆ̂ˆ̂̂ (

(bk(ω, t, y, ζ))2 − bk(ω, t, y, ζ)bk(ω, t, ȳ, ζ̄)
)

× (∂ξ�)(ω, t, y, ζ)(∂ξ�)(ω, t, ȳ, ζ̄)

× Jx
ε (x− y)Jx

ε (x− ȳ)Jξ
δ (ξ − ζ)Jξ

δ (ξ − ζ̄) dζ dy dζ̄ dȳ.

We can switch the roles of y and ȳ as well as ζ and ζ̄. Add the resulting expression for 
Qε,δ,k to the one above and divide by 2, obtaining

Qε,δ,k(ω, t, x, ξ) = 1
2

ˆ̂ˆ̂̂ ∣∣bk(ω, t, y, ζ) − bk(ω, t, ȳ, ζ̄)
∣∣2 (∂ξ�)(ω, t, y, ζ)(∂ξ�)(ω, t, ȳ, ζ̄)

× Jx
ε (x− y)Jx

ε (x− ȳ)Jξ
δ (ξ − ζ)Jξ

δ (ξ − ζ̄) dζ dy dζ̄ dȳ.
(5.39)

Summing over k, recalling (5.7), and using ∂ξ� = −νω,t,x(dξ) with ν(R) = 1, the following 
estimate eventually materializes:
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¨
Qε,δ(ω, t, x, ξ)wN (x) dξ dx

� 1
2

ˆ̂ˆ̂ˆ̂ (
|y − ȳ|2 +

∣∣ζ − ζ̄
∣∣μ (∣∣ζ − ζ̄

∣∣))(∂ξ�)(ω, t, y, ζ)(∂ξ�)(ω, t, ȳ, ζ̄)
× Jx

ε (x− y)Jx
ε (x− ȳ)Jξ

δ (ξ − ζ)Jξ
δ (ξ − ζ̄)wN (x) dζ dy dζ̄ dȳ dξ dx

�N (ε + μ(δ)) ε,δ↓0−→ 0.

This concludes the proof. �
Remark 5.15. Regarding the “weight-free” Lp–framework discussed in Remark, the proof 
of Proposition 5.1 remains the same except for a few changes involving the terms I1(ϕκ,�)
and I2(ϕκ,�) to account for the weight-free test function ϕκ,�(x, ξ) = φκ(x)ψ�(ξ) and the 
modified assumptions (5.12), (5.13), and (5.14).

The next theorem contains the main result of this section, namely the existence, 
uniqueness, and L1 stability of kinetic solutions.

Theorem 5.1 (well-posedness). Suppose that bk, B2, a = {a, d} , R satisfy conditions (5.7), 
(5.8), (5.15), (5.16), (5.17), (5.18) and div(x,ξ) a = 0. There exists a unique kinetic 
solution of (5.1) with initial data u0 satisfying (5.9). If u1, u2 are two kinetic solutions 
of (5.1) with initial data u1,0, u2,0, respectively, then

E

ˆ

Rd

|u1(t, x) − u2(t, x)| wN dx �T,N E

ˆ

Rd

|u1,0(x) − u2,0(x)| wN dx, (5.40)

for all t ∈ [0, T ], where wN is defined in (5.11). Besides, the unique kinetic solution u
of (5.1) has a representative in the space Lp(Ω; L∞(0, T ; Lp(wNdx))) which a.s. exhibits 
continuous samples paths in Lp(wNdx), for all p ∈ [1, ∞).

Proof. As in [32,35], we point out that the L1 contraction principle (5.40) is a simple con-
sequence of Proposition 5.1. Indeed, define � = 1

2 (Iξ<u1 + Iξ<u2) =: 1
2 (ρ1 + ρ2) and also 

�0 = 1
2
(
Iξ<u1,0 + Iξ<u2,0

)
=: 1

2 (ρ0,1 + ρ0,2). Note that � is a generalized kinetic solution 
with initial data �0, kinetic measure m = 1

2 (m1 +m2), and ∂ξ� = −1
2 (δu1 + δu2) =: −ν. 

Clearly, m({0} ×Rd ×R) = 0 (since m1, m2 both vanish at t = 0 because of the kinetic 
initial data) and thus �(0) = �0, cf. Remark 5.13. By Proposition 5.1,

E

¨

Rd×R

(
�− �2) (t)wN dξ dx �T,N E

¨

Rd×R

(
�0 − �2

0
)
wN dξ dx,

for a.e. t ∈ [0, T ]. A simple computation, exploiting the identities ρ2
i = ρi (i = 1, 2), will 

reveal that � − �2 = 1
4 (ρ1 − ρ2)2 = 1

4 |ρ1 − ρ2| and so 
´
R

(
�− �2) dξ = 1

4 |u1 − u2|. In 
the same way, we have 

´ (
ρ0 − ρ2

0
)
dξ = 1 |u1,0 − u2,0|. Consequently, (5.40) holds.
R 4
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The sample paths of a kinetic solution u are a.s. continuous as a result of the unique-
ness result. The detailed proof is the same as in [18, Corollary 16] (see also [21]). Thanks 
to the continuity of the sample paths, the contraction inequality (5.40) holds for all 
t ∈ [0, T ].

The existence part of the theorem can be founded on the vanishing viscosity method 
[7,14,18,28,42], or operator splitting [6,41] to separate the deterministic and stochastic 
effects in (5.1). Existence results on Rd are provided in these references under the as-
sumptions that R ≡ 0 and A = A(u) does not depend on t, x. The techniques employed 
in [6,7,14,18,28,41,42] can be adapted to the general context provided by (5.1). Here we 
only give a sketch of the proof via the vanishing viscosity method, based on [18].

Given ε > 0 and consider the following parabolic SPDE

∂tu
ε + divx A(t, x, uε) − εΔxu

ε = B(t, uε)Ẇ (t) + R(t, x, uε), (t, x) ∈ (0, T ) ×Rd,

uε(0, x) = u0(ω, x), x ∈ Rd.

(5.41)

It is not difficult to show that equation (5.41) is well-posed. Indeed, the unique weak 
solution belonging to the weighted space L2(Ω; (C([0, T ]); L2(ωNdx))) ∩ L2(Ω × [0, T ]; 
H1(ωNdx)) can be found as a fixed point of the operator

Kv(t) := S(t)u0 +
tˆ

0

S(t− s)
(
R(s, ·, v(s)) − divx A(s, ·, v(s))

)
ds

+
tˆ

0

S(t− s)B(s, v(s)) dW (s),

where S(t) is the semigroup generated by the heat equation in Rd.
Let uε be the weak solution of (5.41). Then, for S ∈ C2(R), by Itô formula we have 

that the following equation is a.s. satisfied in the sense of distributions:

∂tS(uε) + divx QS(t, x, uε) + S′(uε) ((divx A)(t, x, uε) −R(t, x, uε)) − (divx QS)(t, x, uε)

= −εS′′(uε)|∇uε|2 + εΔxS(uε) +
∑
k≥1

S′(uε)bk(t, x, uε) Ẇk(t) +
1
2
S′′(uε)B2(t, x, uε), (5.42)

where QS : [0, T ] ×R ×R → Rd is given by (∂uQS)(t, x, u) = S′(u)(∂uA)(t, x, u).
Let S(ξ) = |ξ|p, p ≥ 2. Then, similarly as in Remark 5.2, taking conveniently chosen 

test functions, after some manipulation it follows that

E

(
sup

t∈[0,T ]
‖uε(t)‖pLp(ωNdx)

)
+ ε

T̂ ˆ
|uε(t, x)|p−2|∇uε|2ωN (x)dx dt ≤ C, (5.43)
0 Rd
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where C = C(p, u0, T ) is independent of ε.
Moreover, uε is a kinetic solution of equation (5.41), in the sense that the function 

�ε(t, x, ξ) := Iξ<uε(t,x) satisfies the SPDE

∂t�
ε + div(x,ξ)

(
a�ε
)

+ R∂ξ�
ε − εΔx�

ε

+
∑
k≥1

bk∂ξ�
ε Ẇk(t) = ∂ξ

(
B2

2 ∂ξ�
ε

)
+ ∂ξm

ε in D′([0, T ) ×Rd ×R), a.s.,
(5.44)

where mε = ε|∇xu
ε|2δξ=uε , with initial data �ε(0, x, ξ) = ρ0(x, ξ) := Iξ<u0(x).

Let us denote νεt,x = −∂ξ�
ε(t, x, ξ) = δξ=uε(t,x). Then, νε is a Young measure and by 

(5.43) we have, in particular, that

E

T̂

0

ˆ

Rd

ˆ

R

|ξ|p dνεt,x(ξ)ωNdx dt ≤ Cp, (5.45)

for any p ≥ 0, uniformly in ε. Likewise, (5.43) also implies that

E

ˆ

[0,T ]×Rd×R

|ξ|p dmε
N (ξ, t, x) ≤ Cp,

uniformly in ε, where mε
N = ωNmε. This last estimate can be improved to the following

E

∣∣∣∣∣∣∣
ˆ

[0,T ]×Rd×R

|ξ|2p dmε
N (ξ, t, x)

∣∣∣∣∣∣∣
2

≤ Cp, p ≥ 2. (5.46)

Proceeding similarly as in Remark 5.9, it suffices to take convenient test functions (in 
connection with the weight ωN ) in (5.42) with S(ξ) = |ξ|2p+2, squaring the resulting 
equation and taking expectation. Indeed, note that

E

∣∣∣∣∣∣∣
ˆ

[0,T ]×Rd×R

|ξ|2p dmε
N (ξ, t, x)

∣∣∣∣∣∣∣
2

= 1
(p + 2)(p + 1)E

∣∣∣∣∣∣
T̂

0

ˆ

Rd

εS′′(uε) |∇xu
ε|2 ωNdx dt

∣∣∣∣∣∣
2

.

With some manipulation involving the Itô isometry and using (5.43) all the other terms 
can be bounded appropriately so that (5.46) follows. We omit the details.
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Now, by the theory of Young measures and kinetic functions (see e.g. Theorem 5 and 
Corollary 6 in [18]) (5.45) guarantees the existence of a sequence {εn}n, a young measure 
ν and a generalized kinetic function � : Ω × [0, T ] × Rd × R → [0, 1] such that εn → 0, 
νεn → ν in the sense of Young measures and �εn ⇀ � weakly-∗ in L∞(Ω ×[0, T ] ×Rd×R)
as n → ∞. Moreover, denoting by Mb the space of the bounded Borel Measures on 
[0, T ] ×Rd ×R, by (5.46) there is a kinetic measure mN such that, up to a subsequence, 
mεn

N ⇀ mN weakly-∗ in L2(Ω; Mb), as n → ∞. Defining m := 1
ωN

mN , then m turns 
out to be a kinetic measure in the sense of Definition 5.1 and we may pass to the limit 
as ε = εn → 0 in equation (5.44) in order to conclude that � is a generalized kinetic 
solution of equation (5.1). At this point, the rigidity result implies that ρ = Iξ<u where 
u is a kinetic solution. �
Remark 5.16 (strong convergence of the parabolic approximations). Let � and �ε be as 
in the proof of Theorem 5.1. Taking advantage of the particular structure of �εn and �
we have that

‖uεn‖2
L2(Ω×[0,T ];L2(ωNdx)) − ‖u‖2

L2(Ω×[0,T ];L2(ωNdx))

=
ˆ

[0,T ]×Rd×R

2ξ(�− �εn) dξ ωNdx dt. (5.47)

By Chebyshev’s inequality and using (5.43) with p = 3, for any R > 0 we have

E

T̂

0

ˆ

Rd

ˆ

|ξ|>R

|2ξ(�− �ε)| dξ ωNdx dt ≤ C

R
.

Thus, taking expectation in (5.47), we may pass to the limit as εn → 0 in order to 
conclude that

‖uεn − u‖L2(Ω×[0,T ];L2(ωNdx)) → 0, as n → ∞.

In fact, by uniqueness, the whole sequence uε converges strongly to the kinetic solution.
Finally, in light of estimate (5.43), by Hölder inequality we also deduce that

‖uε − u‖Lp(Ω×[0,T ];Lp(ωNdx)) → 0, as ε → 0,

for any p ≥ 1.

Remark 5.17 (1/2–Hölder continuous noise coefficient). Referring to (5.6), consider the 
simple noise term b(u) dW (t), where W (t) is a one-dimensional Wiener process and 
b(u) is a scalar function. Typical noise functions covered by the regularity condition 
(5.7) include b(u) = |u|γ , γ > 1 , which is Hölder continuous with exponent γ > 1 . 
2 2
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Condition (5.7) is the same as the one imposed in the existing literature (see e.g. [18]). 
Unfortunately, it does not allow for the interesting example b(u) =

√
|u|, or any function 

b that satisfies |b(u) − b(v)| � μ(|u− v|), where

1ˆ

0

1
(μ(ξ))2

dξ = ∞. (5.48)

Condition (5.48) embraces 1
2–Hölder continuous noise functions b, like b(u) =

√
|u|.

Returning to the general case (5.6), assuming bk = bk(ξ) ∀k, we claim that Proposi-
tion 5.1 (and Theorem 5.1) actually holds with (5.8) replaced by∑

k≥1

|bk(u) − bk(v)|2 � (μ(|u− v|))2 , (5.49)

for some continuous nondecreasing function μ on R+ satisfying μ(0+) = 0 and (5.48). 
To allow for (5.49), we will make a more careful choice of the approximate delta function 
Jξ
δ in order to handle the key error term (5.39). Inspired by the work [56] of Yamada 

and Watanabe on stochastic differential equations, we pick a strictly decreasing sequence 
{an}∞n=0 of positive numbers, an ↓ 0, recursively defined by a0 = 1 and for n = 1, 2, . . .
by 

´ an−1
an

1
(μ(ξ))2 dξ = n. For example, with μ(ξ) =

√
ξ for ξ > 0, an = an−1e

−n; hence 

an = e−
1
2n(n+1). Next, pick positive C∞

c functions ψn on R+ with suppψ ⊂ (an, an−1)
and

0 ≤ ψn(ξ) ≤ 2
n (μ(ξ))2

≤ 2
nξ

, for any ξ ∈ R,

an−1ˆ

an

ψn(ξ) dξ = 1. (5.50)

We introduce the function Ψn(ξ) :=
´ |ξ|
0

´ κ̄

0 ψn(κ) dκ dκ̄ for ξ ∈ R, which is a symmetric 
approximation of |ξ|. Since ψn (and thus Ψn) is zero in a neighborhood of the origin, we 
have Ψn ∈ C∞(R) and Ψ′′

n(ξ) = ψn(|ξ|) ≤ 2
n|ξ| . Moreover, Ψn(·) → |·| uniformly on R.

Let us now return to (5.38) and the error term (5.39), replacing Jξ
δ (·) by ψn(|·|)

(= Ψ′′
n(·)) and, at the same time, renaming δ by n. Note that 

∑
k≥1

∣∣bk(ζ) − bk(ζ̄)
∣∣2 is 

bounded by a constant times (μ(|ξ − ζ|))2 +
(
μ(
∣∣ξ − ζ̄

∣∣))2, and thus, cf. (5.50),

∑
k≥1

∣∣bk(ζ) − bk(ζ̄)
∣∣2 ψn (|ξ − ζ|)ψn

(∣∣ξ − ζ̄
∣∣) � 1

n

(
ψn

(∣∣ξ − ζ̄
∣∣)+ ψn (|ξ − ζ|)

)
.

As a result,
¨

Qε,δ(ω, t, x, ξ)wN (x) dξ dx

� 1 ˆ̂ˆ̂̂ˆ̂̂ (
ψn

(∣∣ξ − ζ̄
∣∣)+ ψn (|ξ − ζ|)

)
|(∂ξ�)(ω, t, y, ζ)|

∣∣(∂ξ�)(ω, t, ȳ, ζ̄)∣∣

n
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× Jx
ε (x− y)Jx

ε (x− ȳ)wN (x) dζ dy dζ̄ dȳ dξ dx

� 1
n

ˆ (¨
|(∂ξ�)(ω, t, y, ζ)| Jx

ε (x− y) dζ dy
)

×
(¨ ∣∣(∂ξ�)(ω, t, ȳ, ζ̄)∣∣ Jx

ε (x− ȳ) dζ̄ dȳ
)

wN (x) dx �N
1
n

n↑∞−→ 0,

where we have used ∂ξ� = −ν with ν(R) = 1. Therefore, sending n → ∞, ε → 0, and 
then � → ∞ in (5.38), we obtain (5.31).

6. Comparison principle & stochastic Kružkov inequality

In a standard way, one can use Theorem 5.1 to deduce a comparison result. Indeed,

E

ˆ

Rd

(u1(t) − u2(t))+ wN dx � E

ˆ

Rd

(u1,0 − u2,0)+ wN (x) dx, (6.1)

which follows from (5.40) and the identity 2(a − b)+ = |a− b| + (a − b) for all a, b ∈ R. 
As a result, u0,1 ≤ u0,2 implies u1 ≤ u2.

One can also establish (6.1) directly, following the proof of Proposition 5.1 step-by-
step, modulo one change. The proof of Proposition 5.1 makes use of the Itô chain rule 
to compute the equation for � − �2 = �(1 − �). To establish (6.1), we use instead the 
Itô product formula to deduce that (formally) the functions ρ1 = Iξ<u1 and ρ2 = Iξ<u2

satisfy the inequality

∂t

(
�1(1 − �2)

)
+ div(x,ξ)

(
a �1(1 − �2)

)
+ R∂ξ

(
�1(1 − �2)

)
+
∑
k≥1

bk∂ξ

(
�1(1 − �2)

)
Ẇk(t)

≤ ∂ξ

(
B2

2 ∂ξ

(
�1(1 − �2)

))
+ ∂ξ

(
(1 − �2)m1 − �1m2

)
,

(6.2)

where u1, u2 are two kinetic solutions with corresponding kinetic measures m1 and m2. Of 
course, the rigorous proof goes through a regularization step that justifies the application 
of the Itô product formula.

More generally, we can derive a stochastic Kružkov inequality, that may be considered 
as a comparison inequality which is satisfied a.s.. Particular cases of this inequality have 
been proven to be extremely useful in Sections 3 and 4.

Proposition 6.1 (stochastic Kružkov inequality). Let u1 and u2 be two kinetic solutions 
of (5.1) with initial data u1,0 and u2,0, respectively. Suppose divx A = 0. Then, almost 
surely,
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∞̂

0

ˆ

Rd

{
|u1 − u2|φt + sgn (u1 − u2) (A(t, x, u1) −A(t, x, u2)) · ∇xφ

+ sgn (u1 − u2) (R(t, x, u1) −R(t, x, u2))φ
}
dx dt

+
∑
k≥1

∞̂

0

ˆ

Rd

sgn (u1 − u2) (bk(t, x, u1) − bk(t, x, u2))φ dx dWk(t)

+
ˆ

Rd

|u1,0 − u2,0|φ(0, x) dx ≥ 0, (6.3)

for any ϕ ∈ C∞
0 (R ×Rd) with ϕ ≥ 0.

Note that, formally, this inequality results by integrating inequality (6.2). Below, we 
present a straightforward proof using the fact that the unique solutions are obtained 
through the vanishing viscosity method.

Proof. Following the proof of Theorem 5.1 we have that uj , j = 1, 2, may be found as a 
limit in Lp(Ω × [0, T ] ×Rd) when ε → 0 of a sequence {uε

j}ε>0 of weak solutions to the 
parabolic SPDEs

∂tu
ε
j + divx A(t, x, uε

j) − εΔxu
ε
j = B(t, uε

j)Ẇ (t) + R(t, x, uε
j), (t, x) ∈ (0, T ) ×Rd,

uε
j(0, x) = u0,j(ω, x), x ∈ Rd.

For fixed ε > 0, we have that (u1 − u2) is a weak solution of the following equation

∂t(u1 − u2)ε + divx (A(t, x, uε
1) −A(t, x, uε

2)) − εΔx(uε
1 − uε

2)

= (B(t, uε
1) −B(t, uε

2)) Ẇ (t) + R(t, x, uε
1) −R(t, x, uε

2), (t, x) ∈ (0, T ) ×Rd,

(uε
1 − uε

2)(0, x) = (u0,1 − u0,2)(ω, x), x ∈ Rd.

Let Sθ(ξ) be a C2 convex approximation of |ξ|, such that S′
θ(ξ) is monotone nonde-

creasing, S′
θ(ξ) = 1, for ξ > δ, and S′

θ(ξ) = −1, for ξ ≤ −δ. Then, for any nonnegative 
test function ϕ(t, x), after sending θ → 0, by Itô formula we have a.s. that

∞̂

0

ˆ

Rd

|uε
1 − uε

2|ϕt dx dt +
∞̂

0

ˆ

Rd

sgn (uε
1 − uε

2) (A(t, x, uε
1) −A(t, x, uε

2)) · ∇xϕdx dt

− ε

∞̂ˆ
sgn (uε

1 − uε
2)∇(uε

1 − uε
2) · ∇ϕdx dt
0 Rd
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+
∞̂

0

ˆ

Rd

sgn (uε
1 − uε

2) (R(t, x, uε
1) −R(t, x, uε

2))ϕdx dt

+
∑
k≥1

∞̂

0

ˆ

Rd

sgn (uε
1 − uε

2) (bk(t, x, uε
1) − bk(t, x, uε

2))ϕdx dWk(t)

+
ˆ

Rd

|u0,1 − u0,2|ϕ(0, x) dx ≥ 0, (6.4)

where the convergence in the stochastic integral is enabled by (5.8).
Recall that both u1, u2 satisfy estimate (5.43), uniformly in ε. Thus, as convergence in 

mean square implies convergence in probability, which, in turn, implies a.s. convergence 
along a subsequence, we know that the third term on the left-hand side of (6.4) con-
verges to zero a.s. along a subsequence εn → 0. By the same token, passing to a further 
subsequence as the case may be, taking the limit as εn → 0 in (6.4), we obtain (6.3). �
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