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Abstract

Polygonal hybrid systems (SPDIs) are a subclass of hybrid sys-
tems whose dynamics is defined by constant differential inclusions, for
which the reachability problem is decidable. The decidability result is
based, among other things, on the fact that a trajectory cannot enter
and leave a given region through the same edge. An SPDI satisfy-
ing the above restriction is said to have the goodness property. In a
previous work we have given a misleading proof sketch of decidability
of reachability for SPDIs when relaxing goodness. In this work we
give a counter-example to such proof and we give an algorithm for
semi-deciding reachability of such class of systems.

1 Introduction

An interesting and still decidable (w.r.t reachability) class of hybrid systems
is the so-called Polygonal Hybrid System (SPDI for short, [ASY01, ASY07,
Sch02]) which is a subclass of hybrid systems on the plane whose dynamics
is defined by constant differential inclusions. SPDIs are a generalization of
PCDs (deterministic systems with Piece-wise Constant Derivatives) for which
it has been shown that the reachability problem is decidable for the pla-
nar case [MP93| but undecidable for three and higher dimensions [AMP95].
Slight extensions of such decidable classes have been proved to be undecid-
able or equivalent to a problem for which decidability or undecidability is
not known |[AS02, MPO05|.

The constructive proof for deciding reachability on SPDI given in [ASY01]
(see also [ASYO07] and [Sch02, Chap. 5]) relies, among other things, on the



fact that SPDIs have the goodness property, i.e. the dynamics of any region of
the SPDI (location of the corresponding automaton) does not allow a trajec-
tory to traverse any edge of the polygon defining the region in both directions.
Technically this means that the director vector of each edge cannot be ob-
tained as a positive linear combination of the vectors defining the dynamics.
An SPDI without the goodness property is called General SPDI —or GSPDI
for short. We have wrongly claimed in [Sch02, Chap. 9| that the reachability
problem for GSPDI is decidable. The proof sketch was conducted by proving
that any GSPDI can be reduced to a set of SPDIs, preserving reachabil-
ity. The proof sketch, as presented, is not completely wrong but incomplete,
letting the decidability conclusion to be still inconclusive. Unfortunately
we have discovered such mistake in September 2002, just few months after
the final print of the thesis. We considered it was not worth publishing a
refutation of the result at that moment since there was no research being
conducted in that direction then. We revived our interest on the subject
again only recently due to the publication of the paper [MP05|, in which
the frontier between decidable and undecidable hybrid systems is revisited,
to refine previous result given in [AS02|. The decidability of reachability of
GSPDIs would have contributed to narrow the undecidability frontier; with
the result presented here we let it still open, unfortunately.

In this paper we provide a counter-example to the claim of the decidability of
the reachability problem for GSPDIs given in [Sch02, Chap. 9|, which remain
thus an open problem. We prove, indeed, that GSPDI reachability cannot
be reduced to SPDI reachability. We rephrase the results given in [Sch02]
to give a semi-decidable algorithm for solving the reachability problem for
GSPDIs.

The paper is organized as follows. In next section we explain informally the
problems arising when relaxing goodness while in Section 3 we give some
preliminaries, providing useful notation and definitions and recalling the def-
inition of SPDI. In Section 4 we present GSPDIs. Section 5 is concerned with
the analysis of trajectories, providing some results needed to establish the
semi-decision algorithm for reachability presented in Section 6. We conclude
in the last section.

2  On Goodness

In this section we discuss informally why goodness is good for deciding the
reachability problem of SPDI and what are the problems when relaxing it.
More formal definitions will be given in Section 3.

See Fig. 1 for an example of a good and a ’bad’ region (here 'bad’ stands



for a region not satisfying the goodness criteria). In the left side of the
figure we can see a good region, where the two vectors a and b determine
the impossibility of a trajectory to enter and leave the region P through the
same edge of the polygon delimiting the region. On the other hand, the
figure on the right shows a bad region: Both ey and e5 can be crossed in both
directions by a trajectory entering and leaving P.
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Figure 1: a) A good region. b) A bad region.

2.1 Why Goodness is Good?

The algorithm presented in [Sch02] for deciding reachability on SPDI heavily
depends on the pre-processing of trajectory segments to guarantee that it
is possible to list all the possible sets of signatures, i.e., those sequences
of edges of the SPDI traversed by all the possible trajectories between two
points. This is of course not possible in general as there are infinitely many
such trajectories. However, a qualitative analysis allows to prove that indeed
there are a finite number of types of signatures, that are kind of abstract
signatures that preserve the reachability property.

Briefly, the above is achieved by performing the following steps.

1. Simplification of trajectory segments: straightening them and removing
self-crossings. Given an arbitrary trajectory segment from one point to
another, we show how to get a piecewise constant derivative trajectory
segment without self-crossing.

2. Abstraction of trajectory segments into signatures, considering the se-
quence of traversed edges. This result is based on the Poincaré map [HS74,



NS60]|, that relates n-dim continuous-time systems with (n — 1)-dim
discrete-time systems.

3. Factorization of signatures in a convenient way, having only sequences
of edges and simple cycles. This factorization allows to have a nice
representation of signatures.

4. Abstraction of factorized signatures into types of signatures, that are
signatures without taking into account the number of times each simple
cycle is iterated.

Many of the lemmas for proving that the above provides a finite number of
types signatures critically depend on the goodness assumption, which propa-
gate this dependency to the constructive proof given for deciding reachability

of SPDIs.

2.2 Why Relaxing Goodness is not so Good?

The main question now is, how much do we need to depend on the goodness
assumption to prove decidability of reachability of SPDIs? In other words,
let us consider the new class of polygonal hybrid systems, GSPDI, obtained
by relaxing goodness in SPDI. Is reachability still decidable? From the above
discussion we are let with the following two alternatives:

1. Adapt the proofs of decidability for SPDIs to GSPDIs. This would
imply to restate the proofs to make them independent of the goodness
assumption.

2. Provide a completely new decidability proof for GSPDI. This will prob-
ably need to use different techniques and results than the ones used for

SPDIs.

The first alternative above seems the most straightforward and easy to do.
However, as we will show later it is not possible to reduce GSPDI reachability
to SPDI reachability. This is done by proving that it is not in general possible
to simplify certain trajectories entering and leaving a given region through the
same edge, to trajectories behaving as in SPDIs. One of the main problems
when relaxing goodness is that a region cannot be bi-partitioned anymore into
two semi-planes were all the edges in one semi-plane can be traversed only in
one direction, w.r.t. the region, and all the edges in the other semi-plane can
be traversed only in the other direction. That is, the goodness assumption
permit a certain 'contiguity’ of entry edges and ezit edges belonging to two



disjoint sub-regions (see Fig. 8). Some lemmas and proofs of soundness of
the reachability algorithm depend on this contiguity. If we relax goodness,
we should be able to re-prove all such results without assuming the contiguity
of entry and exit edges.

This let us with the second alternative. Unfortunately, to date we have not
succeeded in providing a proof of decidability (nor of undecidability) to the
reachability problem on GSPDIs.

On the other hand and as stated in the introduction, we will show that we
can relax the goodness assumption as to give a terminating semi-decision
algorithm for reachability analysis on GSPDIs.

3 Preliminaries

This section is more technical, recalling the main definitions and concepts
needed to understand the rest of the paper. For a more detailed presentation

see [ASYO07, Sch02].

3.1 SPDI

Let a = (a1,as),x = (71,23) € R* and o, 8 € R. The inner product of two
vectors a = (ay,ay) and x = (1, 25) is defined as a - x = a;x; + aszy. We
denote by x the vector (z9, —x1) obtained from x by rotating clockwise by
the angle 7/2. Notice that x - x = 0.

An angle /P on the plane, defined by two non-zero vectors a, b is the set of
all positive linear combinations x = a a+ ( b, with o, 3 > 0, and a+ (3 > 0.
We can always assume that b is situated in the counter-clockwise direction
from a.

Definition 1. A polygonal differential inclusion system (SPDI) is defined
by giving a finite partition P of the plane into convex polygonal sets (called

regions ), and associating with each P € P a couple of vectors ap and bp.
Let ¢(P) = £2F, we have that for each x € P, x € ¢(P).

a

Let E(P) be the set of edges of P. We say that e € E(P) is an entry of P if
for all x € e and for all ¢ € ¢(P), x + ce € P for some € > 0. We say that
e is an exit of P if the same condition holds for some ¢ < 0. We denote by
In(P) C E(P) the set of all entries of P and by Out(P) C E(P) the set of
all exits of P.

Assumption 1. All the edges in E(P) are either entries or ezits, that is,
E(P) = In(P) U Out(P). We say then that all the regions in an SPDI are
good or that they have the goodness property.



Example 1. In Fig. 1-(a), region P (with ¢(P) = /P) is good, since all are
entry or exit edges. Fig. 1-(b) shows a region that is not good: edges e; and
es are not in In(P) U Out(P). u

A trajectory segment of an SPDI is a continuous function ¢ : [0,7] — R?
which is smooth everywhere except in a discrete set, of points, and such that
for all t € [0,7], if £(t) € P and £(t) is defined then £(t) € ¢(P). The
signature, denoted Sig(€), is the ordered sequence of edges traversed by the
trajectory segment, that is, ey, es, ..., where £(t;) € ¢; and t; < t;49. If
T = o0, a trajectory segment is called a trajectory.

The following is a very simple example of an SPDI: a swimmer trying to
escape from a whirlpool in a river.

Example. The dynamics x of the swimmer around the whirlpool is ap-
proximated by the piece-wise differential inclusion defined as follows. The
zone of the river nearby the whirlpool is divided into 8 regions Ry, ..., Rg. To
each region R; we associate a pair of vectors (a;, b;) meaning that x belongs
to their positive hull: a; = by = (1,5), ay = by = (—1, %), ag = (—1, %) and
by = (-1,

—1), ay =by = (=1,-1), a5 = by = (0, —1), ag = bs = (1, —1),
a; = b; = (1,0), ags = bg = (1,1). The corresponding SPDI is illustrated in

Fig. 2. 0
R4 €3 -~ €2 R2
// = .
€1
€4 R3
I
Ry
€5 B es
N = 7/
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Figure 2: The SPDI of the swimmer.



3.1.1 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges. For notational convenience, we will use e to
denote both the edge and its one-dimensional representation. Accordingly,
we write X € e or x € e, to mean “point X in edge e with coordinate x in the
one-dimensional coordinate system of €”. The same convention is applied to
sets of points of e represented as intervals (e.g., x € [ or x € I, where I C e)
and to trajectories (e.g., “¢ starting in z” or “{ starting in x”).

Now, let P € P, e € In(P) and ¢ € Out(P). For I C e, Succ([) is
the set of all points in €' reachable from some point in [ by a trajectory
segment & : [0,¢] — R?* in P (i.e., £(0) € I ANE(L) € ¢ ASig(€) = e€). Given
I = [l,u], Succe (1) = F(INS)NJ, where S and J are intervals, F([l,u]) =
(fi(]), fu(w)) and f; and f, are affine functions (a function f : R — R is affine
iff f(z) = ax + b with a > 0).

For I C ¢, Pre.(I) is the set of points in e that can reach a point in [ by a
trajectory segment in P. We have that: Pre. = Succ_, and Pre, = Succ;".

3.1.2 Qualitative analysis of simple edge-cycles

Let 0 = ey ---ege; be a simple edge-cycle, ie., e; #e; forall 1 <i# 7 <k.
Let Succ,(I) = F(INS)NJ with F' = (f}, fu).

Assumption 2. None of the two functions fi, f. is the identity.

Let [* and u* be the fix-points' of f; and f,, respectively, and SNJ = (L, U).
It can be shown that a simple cycle is of one of the following types:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L < [* < u* < U.

DIE. The rightmost trajectory exits the cycle through the left (consequently
the leftmost one also exits) or the leftmost trajectory exits the cycle
through the right (consequently the rightmost one also exits), that is,
u < LVIT>U.

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and
the rightmost one through the right, that is, I* < L Au* > U.

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but
the rightmost one stays inside, that is, [* < L <u* < U.

!The fix-point z* is computed by solving a linear equation f(x*) = x*, which can be
finite or infinite.



EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L < [* < U < u*.

The classification above provides useful information about the qualitative
behavior of trajectories. Any trajectory that enters a cycle of type DIE will
eventually quit it after a finite number of turns. If the cycle is of type STAY,
all trajectories that happen to enter it will keep turning inside it forever.
In all other cases, some trajectories will turn for a while and then exit, and
others will continue turning forever. This information is crucial for solving
the reachability problem for SPDIs.

To finish this section we recall the representation theorem for SPDIs that
allows to factorize the signatures (step 3 in Section 2.1) in a convenient way.
Given a sequence w, ¢ denotes the empty sequence whereas first(w) and
last(w) are the first and last elements of the sequence respectively. An edge
signature o can be expressed as a sequence of edges and cycles of the form
ristras? . rpsker, oy, where

1. Forall 1 <7 <n+1, r; is a sequence of pairwise different edges;

2. For all 1 < <mn, s; is a simple cycle (i.e., without repetition of edges)
repeated k; times;

This is summarized by the following representation theorem for SPDIs that
not only guarantees the existence of the above representation for SPDIs but
also provides a constructive way of doing so [Sch02, Theorem 17].

Theorem 1. Given an SPDI, let 0 = ey ...e, be an edge signature, then it
can always be written as o4 = rlslfl .. .rnsﬁ”rnﬂ, where for any 1 < i < n+1,
r; 18 a sequence of pairwise different edges and for all 1 <1 < n, s; is a sim-
ple cycle (i.e., without repetition of edges). O

This representation of signatures is the base to obtain types of signatures
(step 4 in Section 2.1) with the following good properties [Sch02, Lemma
20].

Lemma 2. Given an SPDI, let 0 = ¢q...¢e, be a feasible signature, then its
type, type(o) =11, S1,..., Tn, Sn, Tny1 Satisfies the following properties.

P, Foreveryl <i# j<n-+1,r; andr; are disjoint;

Py For every 1 <i# j<n,s; and s; are different. L

The above is the base for the argument on the finiteness of different types
of signatures to take into account in the reachability algorithm and thus to
termination of SPDI reachability.



4 GSPDI

The goodness restriction (Assumption 1) was originally introduced to simplify
treatment of trajectories to guarantee, among other things, that each region
can be partitioned into entry and exit edges in an ordered way, fact used in
the proof of decidability of the reachability problem. We will study in this
section what happens when goodness is relaxed. First notice that without
goodness there are edges that are neither of entry nor of exit as shown in
Fig. 1. This naturally leads to the following definition.

Definition 2. An edge e € P is an inout edge of P if e is neither an entry
nor an exit edge of P. [

As already explained in previous sections, the above definition is the base for
obtaining a new class of polygonal hybrid systems which generalizes SPDI.

Definition 3. An SPDI without the goodness restriction is called a general
SPDI (GSPDI). ]

Thus, in GSPDIs there are three kinds of edges: inouts, entries and exits.
Self-crossing of trajectory segments of SPDIs can be eliminated which allow
us to consider only non-crossing trajectory (segments). The proof given in
[Sch02, Chap. 4, Sec. 4.2.2] can be extended to deal with the case when
the self-crossing trajectories involve inout edges, so the result still holds for
GSPDIs. Thus in what follows we will consider only trajectory segments
without self-crossings.

Notice that on GSPDIs a trajectory can “intersect” an edge at an infinite
number of points because it can slide at it. Thus, a trace is not anymore a
sequence of points but rather a sequence of intervals.

Definition 4. The trace of a trajectory & is the sequence trace(§) = Ipl; . ..
of the intersection intervals of & with the set of edges, that is, I; C ((£NE). m

A point interval I = [x,x]| will be sometimes written as x whenever no
confusion might arise.

Definition 5. An edge signature (or simply a signature) of a GSPDI is
a sequence of edges. The edge signature of a trajectory &, Sig(§), is the
ordered sequence of traversed edges by the trajectory segment, that is, Sig(§) =
epeq - .., with trace(§) = Iply ... and I; C e;. The region signature of £ is
the sequence RSig(§) = PP, ... of traversed regions, that is, e; € In(P;). =

Notice that in many cases the intervals of a trace are in fact points. We
say that a trajectory with edge signature Sig(§) = egey...e;... and trace
trace(§) = Iply ... I;. .. interval-crosses edge e; if I; is not a point.
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Figure 3: (a): A proper inout edge; (b): A sliding edge.

Given a trajectory segment, we will make the difference between proper inout
edges and sliding edges.

Definition 6. Let £ be a trajectory segment from point X € ey to X; € ey,
with edge signature Sig(§) = eq...e;...e,, and e; € E(P) be an edge of P.
We say that e; is a sliding edge of P for & if & interval-crosses e;, otherwise
e 1s said to be a proper inout edge of P for £. ]

We say that a trajectory segment & slides on an edge e if e is a sliding edge of
P for £ and € is said to be a sliding trajectory if there is at least one sliding
edge e € Sig(§).

Example 2. In Fig. 3-(a), e is a proper inout edge. Edge e on Fig. 3-(b) is
a sliding edge. [

5 Simplification of GSPDI’s Trajectory Segments

In this section we show that in many cases it is possible to simplify trajectory
segments eliminating inout edges, but not always. We first start by showing
that the good properties of the representation theorem for SPDIs are not
valid any longer for GSPDIs, explaining why inouts edges are not desirable
in a reachability analysis.

Proposition 1. Property Py of the representation theorem for SPDIs (Lemma
2) does not hold in general for GSPDIs.

Proof: Let & be a trajectory with signature Sig(§) =0 =¢ep...€;...€,..
of a given GSPDI. The proposition states that it is not poqmble in general
to write ¢ in the form o4 = rls]f ...Tp8r, 1 with the properties stated

10



in Lemma 2. The proof is done by providing a counter-example. A typical
counter-example should allow to obtain a signature consisting of a clockwise
spiral followed by a counter-clockwise spiral (or vice-versa) and then back to
the first spiral. In such a case it is possible to find two simple cycles which
are repeated in the type of signature. Let us consider the GSPDI of Fig. 4.
To let it simple we do not write down the dynamics of the regions and we
assume that they are as to allow the segments of trajectories shown in the
picture to be well-defined. In such a GSPDI it is possible to obtain the follow-
ing type of signature: 718172897383 .., where s; = (abed), so = (dcba), and
s3 = (abed). Since s; = s3, then property Py of Lemma 2 is not satisfied. [

Figure 4: Counter-example for Proposition 1.

The following lemma presents some typical cases where it is possible to elim-
inate proper inout edges.

Lemma 3. Let § be a trajectory segment Xo € e to Xy € ey with edge
signature Sig(§) = eg...€;...e,. If €; is a proper inout edge then in some
cases there exists a trajectory segment £ from x¢ to xy that traverses e; in
at most one sense (that is, e; is either an entry or an exit, but no both).

Proof Sketch: In Fig. 5-(a) we illustrate a typical case where edge e; is a
proper inout edge. After a straightforward algebraic vector manipulation, on

11



the same lines of elimination of self-crossings, the trajectory segment shown
in Fig. 5-(a’) is obtained. O

.

Figure 5: Inout case.

Note that the above does not establish completeness of a reduction from
GSPDIs into SPDIs reachability since there are cases where the above is not
possible. We have then the following result.

Proposition 2. Given a GSPDI, assume there exists a trajectory segment
from points xg € ey to Xy € ey, traversing inout edges in both directions.
Then it s, in general, not possible to find a trajectory segment whose edge
signature contains no proper inout edges (traversed in both directions), be-
tween them.

Proof: The GSPDI of Fig. 6 presents a typical example of an inout edge (e3)
which cannot be directly eliminated as to preserve that z; is reachable from
2. To keep the explanation simple we do not present here a formal GSPDI
as counter-example. The example, however, sheds some light on the kind of
GSPDI regions serving as counter-examples. It suffices to take any trajectory
with a dynamics such that the angle is slightly less than 180 degrees. The
trajectory must traverse an inout edge following the b vector and enters into
the region by following the a vector. The trajectory must not cross itself. [

We show now how to eliminate sliding edges.

Lemma 4. Let § be a trajectory segment Xo € ey to Xy € ey with edge
signature Sig(§) = eq...€;...e,. If e; is a sliding edge for & then there exists
a trajectory segment £ from xq to x; that does not slide on edge e;.

12
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Figure 6: A GSPDI with a non-eliminating inout edge.

Proof Sketch: Sliding edges can arise in four different cases (without taking
into account the symmetric cases); they are shown in Fig. 14-(a) to (d). The
corresponding primed figures (Fig. 14-(a’) to (d’)) show the transformation
done in order to avoid sliding on edge e. The reason why the above trans-
formation is possible is because in all the cases the new obtained segment of
trajectory can be expressed as a positive linear combination of two suitable
existing segments of trajectory. Such two segments are the sliding segment,
and another segment of trajectory with starting point at the beginning or
the end of the sliding segment. O

As a consequence we have the following result.

Proposition 3 (Existence of a non-sliding trajectory). If there exists a slid-
ing trajectory segment from points Xo € ey to Xy € e5 then there always ewists
a non-sliding trajectory segment between them.

Proof: By induction on the number n of sliding edges of the signature of
the trajectory segment using LLemma 4 in the induction step. O

We usually eliminate first proper inout edges (when possible) and next slid-
ing. In fact, the number of sliding edges is not guaranteed to decrease if
sliding edges are eliminated before proper inout edges as shown in the fol-
lowing example.

Example 3. In Fig. 7-(a) a trajectory segment that slides at edge ¢’ is shown.
After eliminating the sliding at edge €', a new sliding edge is introduced (e).
This is shown in Fig. 7-(b). However, if proper inout edges are eliminated

13



first, we do not introduce new proper inout edges as shown in part (c¢) of the
same figure. ]

Qs

Figure 7: Elimination order of inout edges.

Remark. Sliding is not easy to treat in general since an edge always belong
to two different regions with different dynamics. Thus a trajectory may be
"allowed’ to slide by one of the dynamics but not by the other. We do not
analyze this in more detail, for our purposes we assume that at an inout
edge a trajectory can slide if at least one of the dynamics allows so. This
assumption does not affect the reachability analysis.

About the ordering between edges. We finish this section with an
informal discussion about the importance of the 'contiguous’ order between
entry and exit edges on SPDIs.

In SPDIs edges of a region can be bi-partitioned into entry and exit edges in
a contiguous way (see Fig. 8) having as a consequence an ordering between
edges. This is not longer the case in GSPDIs.

Figure 8: Ordering of edges on an SPDI (all the edges e satisfy a e > 0).

14



First of all, notice that the ordering of edges on an SPDI were chosen in
order to preserve the ‘positive affinity’ (and hence the monotonicity) of the
successor functions. Given a region R with differential inclusion /P, let e be
an entry edge and e; and ey two exit edges of R. For e we chose the direction
(given by a director vector e) that satisfies the inequality a e > 0 (see Fig.
11). The same for e; and e;. As a consequence we obtain an ordering like
the one shown in Fig. 8.

Note that on a GSPDI (see Fig. 9(a)), the property that for any edge e,
a e > ( is not longer valid since an edge can be of entry and of exit and then
the ordering can change. In spite of that, once an inout edge is "converted’
into an entry (or exit) then we can have the notation of considering the
ordering of entry edges going counter-clockwise and clockwise for exit edges
(see Fig. 9(b)).

Out Out
Out

Inout

Out

Inout In

In

(a) (b)

Figure 9: (a) A GSPDI; (b) Ordering after fixing input and output edges.

Even though the definition of edge and region signatures as well as edge cycle
continue to hold, it is not the case for region cycle. We can have a region
signature P; --- P;--- PP, that is not a region cycle. The reason is that in
GSPDIs a trajectory can enter a region through two different edges without
forming a cycle.

Thus we have that a region signature P, --- P;--- PPy is a region cycle if the
edge signature e; - - - exeq, with e; € Out(F;) for all 1 <i <k, forms an edge
cycle.

In Fig. 10 the following is a region cycle: P P,P3P,P,PsP,. Notice that
P, P3Py P, is region cycle for SPDIs but not for the given GSPDI.

15



Figure 10: A region cycle.

6 Reachability Analysis for GSPDIs

In this section we ‘topologically’ rephrase and prove the results of [Sch02,
Chap. 4,5 that use the contiguity between entry and exit edges in their
proofs. We also re-prove soundness of Exit-LEFT and Exit-STAY algorithms
and at the end we give a semi-decision algorithm for GPSDI reachability. We
have informally explained in Section 2.2 why we need to do so.

6.1 Proof of Lemmas without using the Contiguity As-
sumption

The only results that use the contiguity order between entry and exit edges
are Lemmas 20, Lemma 26 and Corollary 27 of [Sch02]. Lemma 20 has been
repeated here in Section 3 as Lemma 2, which as we have seen does not hold
in general for GSPDIs (Proposition 1). However, after fixing all the edges as
either of entry or exit, we can prove the result holds since it behaves as an
SPDI, modulo the contiguity of entry and exit edges.

We prove then these three results without using the order between entry and
exit edges. We restate Lemma 2 (|[Sch02, Lemma 20|) for property Ps, for
the case when GPSDI is transformed as to fix inout edges as entries or exits.

Lemma 5. Given a GSPDI where edges has been fized as entry or exit, let
o =ey...e, be a feasible signature, then its type, type(o) = ri,s1,..., T,

16



(a) ()

Figure 11: (a) ae > 0; (b) ae < 0.

Sn, Tni1 satisfies the following property, Po: For every 1 < i # j <n, s; and
sj are different.

Proof: In order to prove property Po we prove that, given a simple cycle
s; = €,..., e, the sequence of edges e¢’ cannot occur after leaving s; (hence it
cannot occur in any other simple cycle s;, with 1 <i < j <mn). After cycling
k; times cycle s; is abandoned by edge e (guaranteed by construction). Let
P be a region s.t. e € In(P) and consider the unfolding of the last iteration
and its continuation (see Fig. 12-(a)):

where ¢’ = first(riy1), e € In(P) and €', ¢” € Out(P) (e/ # €"). Let x5 be
the last point visited on edge e before leaving cycle s; and x4 be the first point
on edge ¢ after leaving s; (see Fig. 12-(b)). Segment x,x4 of the trajectory
segment divides region P into two subregions P, and P, and edge e into two
segments ez, and Z,e”. By the non-crossing hypothesis (and monotonicity
on edges) after leaving s; the only accessible part of edge e is the segment
Toe" € e. By Jordan’s curve theorem the only way to reach edge €' from any
point in z,e% € e is by crossing x,x/ or by crossing one of the edges of region
P,. The first case is not possible since it would contradict the hypothesis of
non-crossing trajectory and in the second case the sequence ee’ would not
belong to the trajectory segment. O

Remark. Note that for our purposes it is irrelevant whether property Py
holds or not, since it does not affect the finiteness argument. This is due to
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(a) (b)

Figure 12: (a): Simple cycle s; and its continuation through edge e; (b) Edge
¢’ cannot be reached from point x3 without intersecting xox}

the fact that a type of signature is finite if the number of simple cycles are
not repeated, which is stated in Ps.

In what follows we use the following notation. Whenever we partition the
space into two regions P, and Pg by the line defined by a segment of line
Ty, Pr, is the semi-space of all the points that are a left rotation of xy and
Pr, is the semi-space corresponding to the points that are a right rotation of
the same vector. With f(x) | we mean that f is defined at z and f(z) T will
mean that f is undefined at x.

Next we will (topologically) rephrase [Sch02, Lemma 26| and [Sch02, Corol-
lary 27| and we prove them both.

Lemma 6. Let P be a region, e € In(P), e1,e5 € Out(P), (l;,u;) be any
subinterval of (¢!, e¥) and fi(x) = F¢, (x).

1771

1. Let P be partitioned into two regions P, and Pr by the line defined by
xly, then the following holds: if e € Pp, fo(x) | and Iy < fi(x) then

us < fox);

2. Let the plaﬂ be partitioned into two subspaces Pp and Pg by the line
defined by xls, then the following holds: if ey € Pg, fi(x) | and fo(z) <
(%) then fl(x) < ll.

Proof:
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(a) (b

Figure 13: Lemma 6™-1. (a) When fl(z) |; (b) The case fi(x) 1.

1. Remember that the line defined by e, is ordered and that uy, A and
f2(z) belongs to it. We have then that ey € P, (and hence uy € Py)
and that fo(z) € Pg (by construction of the partition). We have then
that us < A and A < fo(x), that implies uy < fo(x). See Fig. 13(a).

2. This case is symmetric to the previous one. O

Corollary 7. Let P be a region, e € In(P), e1,ex € Out(P), fi(r) = F¢, (x)
be an affine function and F;((x,y)) = Fi({x,y)NS;)NJ; be a truncated affine
multi-valued function (with F; = [f!, f*] and J; = (L;, U;)).

1. Let P be partitioned into two regions Pr and Pgr by the line defined
by xLy, then the following holds: If e; € Pp and Ly < fl(z) then

Fa(z,y)) = 0;

2. Let P be partitioned into two regions Pr and Pgr by the line defined
by xLo, then the following holds: if ey € Pr and fi(y) < Uy then

Fil{z,y)) =0.
Proof:
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1. If fi(x) is undefined, then it is obvious that F({x,y)) = 0. If fl(x) is
defined, then the result follows directly from Lemma 6-1 and definition

of Fi((z,v)).

2. Symmetric to the above case using Lemma 6-2. U

6.2 Soundness of Exit-STAY and Exit-LEFT

We prove now soundness of the Exit-STAY and Exit-LEFT algorithm whose
proofs rely on the results proved in the previous section.

Let A = Succ?(L) and consider the line defined by AL. This line partition
the space into P, and Py as before.

Exit-STAY

function Fzitsray(1,s,ex)

— 0

Soundness By hypothesis, L < [* < u* < U. Hence, for all i, I = (ZZ,&Z) C
(L,U), hence I; = I; and by Corollary 7 we have that Succ’ . (I) = 0.

s,ex

Termination Trivial. O

Exit-LEFT:

function FEzitpprr(l,s,ex)
«—— Succg ¢, (Succs ¢((L, max{u,u*})))

Soundness By hypothesis, [* < L < u* < U. Thus, there exists a natural
number n s.t. [, < L and for all 7, u; = u; < U. Let’s consider the
following two cases:

1. If ex € P then Ex = () (by definition of Exit-LEFT) and Succ, ¢, (1;) =
() for any i (by Corollary 7-2), so Succ ¢, (Succs, ¢ ((L, max{u, u*}))) =
0;

2. If ex € Pp,, we consider two cases:

(a) Ifu < u* then forall i, u; = 4; < u* and then Um>05ucc:?f(l) =
Succ, (L, u*), thus Ex = Succ, ¢, (Succ, ¢(L, u*));
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(b) If w* < u then for all i, u; = @; < u and Up,»oSuccy, (1) =
Succg f(L,u). Consequently, Ex = Succs ¢, (Succs ¢(L,u));

From both cases we have that Ex = Succ, ., (Succy ¢ ((L, max{u, u*}))).

Termination Trivial. O

6.3 A semi-decision algorithm for reachability analysis
of GSPDIs

From the above results we have that the main algorithm for reachability may
be applied to GSPDIs after performing certain pre-processing steps.

Before presenting a sound (but incomplete) algorithm for reachability analy-
sis of GSPDIs we need the following notation. Given a GSPDI ‘H, we denote
by Hrea = {H1, ..., H,} the set of all the SPDIs obtained after fixing all the
inout edges of ‘H as inputs or outputs, considering all the possible permuta-
tions.

The reachability algorithm for a GSPDI ‘H, Reach(H, x¢, x¢), consists of the
following steps:

1. Detect all the inout edges;
2. Generate the set of SPDIs H,eq = {H1, ..., H,};
3. Apply the reachability algorithm for SPDIs to each H; (1 < i < n).

4. If there exists at least one H; € H,..q such that Reach(H;,xo, xs) = Yes
then Reach(H, xo,xs) = Yes, otherwise we do not know.

We have then the following result about termination of GSPDI reachability.
Lemma 8. Reach(H, xq,xs) always terminate.

Proof: The result follows from the termination of steps 1 and 2 of the above
algorithm, as well as from that of Reach(H;,xo,xs) (for all H; € H,eq,
1<i<n). O

We finish this section with the main result of our paper, which follows from all

the previous results, stating that we can semi-decide reachability for GSPDIs.

Theorem 9. Given a GSPDI H, if Reach(H;, X, xy) = Yes for some H; €
Hyed, then Reach(H, xo,xs) = Yes. On the other hand, if for all H; € Heq,
Reach(H;,xo,xs) = No, then Reach(H,xo,xy) is inconclusive.
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Proof: Termination is guaranteed by Lemma 8. Soundness follows from
soundness of the algorithm for SPDIs |Sch02, Sec. 5.2|, including the new
proof given in Section 6.2 considering the use of non-contiguous entry and exit
edges. The fact that reachability is inconclusive whenever Reach(H,;, xo,xy) =
No for all H; € H,.q follows from Proposition 2. O

7 Final Discussion

In this work we have provided a counter-example to a previous proof of the
decidability of the reachability problem for GSPDIs given in [Sch02, Chap.
9], which remain thus an open problem. We have rephrased the results given
in above mentioned work in order to give a semi-decidable algorithm for
solving the reachability problem for such class of systems.
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