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On the De
idability of the Rea
habilityProblem for GSPDIsGerardo S
hneiderDepartment of Informati
s, University of OsloPO Box 1080 Blindern, N-0316 Oslo, NorwayE-mail: {gerardo at i�.uio.no}Abstra
tPolygonal hybrid systems (SPDIs) are a sub
lass of hybrid sys-tems whose dynami
s is de�ned by 
onstant di�erential in
lusions, forwhi
h the rea
hability problem is de
idable. The de
idability result isbased, among other things, on the fa
t that a traje
tory 
annot enterand leave a given region through the same edge. An SPDI satisfy-ing the above restri
tion is said to have the goodness property. In aprevious work we have given a misleading proof sket
h of de
idabilityof rea
hability for SPDIs when relaxing goodness. In this work wegive a 
ounter-example to su
h proof and we give an algorithm forsemi-de
iding rea
hability of su
h 
lass of systems.1 Introdu
tionAn interesting and still de
idable (w.r.t rea
hability) 
lass of hybrid systemsis the so-
alled Polygonal Hybrid System (SPDI for short, [ASY01, ASY07,S
h02℄) whi
h is a sub
lass of hybrid systems on the plane whose dynami
sis de�ned by 
onstant di�erential in
lusions. SPDIs are a generalization ofPCDs (deterministi
 systems with Pie
e-wise Constant Derivatives) for whi
hit has been shown that the rea
hability problem is de
idable for the pla-nar 
ase [MP93℄ but unde
idable for three and higher dimensions [AMP95℄.Slight extensions of su
h de
idable 
lasses have been proved to be unde
id-able or equivalent to a problem for whi
h de
idability or unde
idability isnot known [AS02, MP05℄.The 
onstru
tive proof for de
iding rea
hability on SPDI given in [ASY01℄(see also [ASY07℄ and [S
h02, Chap. 5℄) relies, among other things, on the1



fa
t that SPDIs have the goodness property, i.e. the dynami
s of any region ofthe SPDI (lo
ation of the 
orresponding automaton) does not allow a traje
-tory to traverse any edge of the polygon de�ning the region in both dire
tions.Te
hni
ally this means that the dire
tor ve
tor of ea
h edge 
annot be ob-tained as a positive linear 
ombination of the ve
tors de�ning the dynami
s.An SPDI without the goodness property is 
alled General SPDI �or GSPDIfor short. We have wrongly 
laimed in [S
h02, Chap. 9℄ that the rea
habilityproblem for GSPDI is de
idable. The proof sket
h was 
ondu
ted by provingthat any GSPDI 
an be redu
ed to a set of SPDIs, preserving rea
habil-ity. The proof sket
h, as presented, is not 
ompletely wrong but in
omplete,letting the de
idability 
on
lusion to be still in
on
lusive. Unfortunatelywe have dis
overed su
h mistake in September 2002, just few months afterthe �nal print of the thesis. We 
onsidered it was not worth publishing arefutation of the result at that moment sin
e there was no resear
h being
ondu
ted in that dire
tion then. We revived our interest on the subje
tagain only re
ently due to the publi
ation of the paper [MP05℄, in whi
hthe frontier between de
idable and unde
idable hybrid systems is revisited,to re�ne previous result given in [AS02℄. The de
idability of rea
hability ofGSPDIs would have 
ontributed to narrow the unde
idability frontier; withthe result presented here we let it still open, unfortunately.In this paper we provide a 
ounter-example to the 
laim of the de
idability ofthe rea
hability problem for GSPDIs given in [S
h02, Chap. 9℄, whi
h remainthus an open problem. We prove, indeed, that GSPDI rea
hability 
annotbe redu
ed to SPDI rea
hability. We rephrase the results given in [S
h02℄to give a semi-de
idable algorithm for solving the rea
hability problem forGSPDIs.The paper is organized as follows. In next se
tion we explain informally theproblems arising when relaxing goodness while in Se
tion 3 we give somepreliminaries, providing useful notation and de�nitions and re
alling the def-inition of SPDI. In Se
tion 4 we present GSPDIs. Se
tion 5 is 
on
erned withthe analysis of traje
tories, providing some results needed to establish thesemi-de
ision algorithm for rea
hability presented in Se
tion 6. We 
on
ludein the last se
tion.2 On GoodnessIn this se
tion we dis
uss informally why goodness is good for de
iding therea
hability problem of SPDI and what are the problems when relaxing it.More formal de�nitions will be given in Se
tion 3.See Fig. 1 for an example of a good and a 'bad' region (here 'bad' stands2



for a region not satisfying the goodness 
riteria). In the left side of the�gure we 
an see a good region, where the two ve
tors a and b determinethe impossibility of a traje
tory to enter and leave the region P through thesame edge of the polygon delimiting the region. On the other hand, the�gure on the right shows a bad region: Both e2 and e5 
an be 
rossed in bothdire
tions by a traje
tory entering and leaving P .
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αFigure 1: a) A good region. b) A bad region.2.1 Why Goodness is Good?The algorithm presented in [S
h02℄ for de
iding rea
hability on SPDI heavilydepends on the pre-pro
essing of traje
tory segments to guarantee that itis possible to list all the possible sets of signatures, i.e., those sequen
esof edges of the SPDI traversed by all the possible traje
tories between twopoints. This is of 
ourse not possible in general as there are in�nitely manysu
h traje
tories. However, a qualitative analysis allows to prove that indeedthere are a �nite number of types of signatures, that are kind of abstra
tsignatures that preserve the rea
hability property.Brie�y, the above is a
hieved by performing the following steps.1. Simpli�
ation of traje
tory segments: straightening them and removingself-
rossings. Given an arbitrary traje
tory segment from one point toanother, we show how to get a pie
ewise 
onstant derivative traje
torysegment without self-
rossing.2. Abstra
tion of traje
tory segments into signatures, 
onsidering the se-quen
e of traversed edges. This result is based on the Poin
aré map [HS74,3



NS60℄, that relates n-dim 
ontinuous-time systems with (n − 1)-dimdis
rete-time systems.3. Fa
torization of signatures in a 
onvenient way, having only sequen
esof edges and simple 
y
les. This fa
torization allows to have a ni
erepresentation of signatures.4. Abstra
tion of fa
torized signatures into types of signatures, that aresignatures without taking into a

ount the number of times ea
h simple
y
le is iterated.Many of the lemmas for proving that the above provides a �nite number oftypes signatures 
riti
ally depend on the goodness assumption, whi
h propa-gate this dependen
y to the 
onstru
tive proof given for de
iding rea
habilityof SPDIs.2.2 Why Relaxing Goodness is not so Good?The main question now is, how mu
h do we need to depend on the goodnessassumption to prove de
idability of rea
hability of SPDIs? In other words,let us 
onsider the new 
lass of polygonal hybrid systems, GSPDI, obtainedby relaxing goodness in SPDI. Is rea
hability still de
idable? From the abovedis
ussion we are let with the following two alternatives:1. Adapt the proofs of de
idability for SPDIs to GSPDIs. This wouldimply to restate the proofs to make them independent of the goodnessassumption.2. Provide a 
ompletely new de
idability proof for GSPDI. This will prob-ably need to use di�erent te
hniques and results than the ones used forSPDIs.The �rst alternative above seems the most straightforward and easy to do.However, as we will show later it is not possible to redu
e GSPDI rea
habilityto SPDI rea
hability. This is done by proving that it is not in general possibleto simplify 
ertain traje
tories entering and leaving a given region through thesame edge, to traje
tories behaving as in SPDIs. One of the main problemswhen relaxing goodness is that a region 
annot be bi-partitioned anymore intotwo semi-planes were all the edges in one semi-plane 
an be traversed only inone dire
tion, w.r.t. the region, and all the edges in the other semi-plane 
anbe traversed only in the other dire
tion. That is, the goodness assumptionpermit a 
ertain '
ontiguity' of entry edges and exit edges belonging to two4



disjoint sub-regions (see Fig. 8). Some lemmas and proofs of soundness ofthe rea
hability algorithm depend on this 
ontiguity. If we relax goodness,we should be able to re-prove all su
h results without assuming the 
ontiguityof entry and exit edges.This let us with the se
ond alternative. Unfortunately, to date we have notsu

eeded in providing a proof of de
idability (nor of unde
idability) to therea
hability problem on GSPDIs.On the other hand and as stated in the introdu
tion, we will show that we
an relax the goodness assumption as to give a terminating semi-de
isionalgorithm for rea
hability analysis on GSPDIs.3 PreliminariesThis se
tion is more te
hni
al, re
alling the main de�nitions and 
on
eptsneeded to understand the rest of the paper. For a more detailed presentationsee [ASY07, S
h02℄.3.1 SPDILet a = (a1, a2),x = (x1, x2) ∈ R
2 and α, β ∈ R. The inner produ
t of twove
tors a = (a1, a2) and x = (x1, x2) is de�ned as a · x = a1x1 + a2x2. Wedenote by x̂ the ve
tor (x2,−x1) obtained from x by rotating 
lo
kwise bythe angle π/2. Noti
e that x · x̂ = 0.An angle ∠

b

a
on the plane, de�ned by two non-zero ve
tors a,b is the set ofall positive linear 
ombinations x = α a+β b, with α, β ≥ 0, and α+β > 0.We 
an always assume that b is situated in the 
ounter-
lo
kwise dire
tionfrom a.De�nition 1. A polygonal di�erential in
lusion system (SPDI) is de�nedby giving a �nite partition P of the plane into 
onvex polygonal sets (
alledregions), and asso
iating with ea
h P ∈ P a 
ouple of ve
tors aP and bP .Let φ(P ) = ∠
bP
aP
, we have that for ea
h x ∈ P , ẋ ∈ φ(P ).Let E(P ) be the set of edges of P . We say that e ∈ E(P ) is an entry of P iffor all x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P for some ǫ > 0. We say that

e is an exit of P if the same 
ondition holds for some ǫ < 0. We denote byIn(P ) ⊆ E(P ) the set of all entries of P and by Out(P ) ⊆ E(P ) the set ofall exits of P .Assumption 1. All the edges in E(P ) are either entries or exits, that is,
E(P ) = In(P ) ∪ Out(P ). We say then that all the regions in an SPDI aregood or that they have the goodness property.5



Example 1. In Fig. 1-(a), region P (with φ(P ) = ∠
b

a
) is good, sin
e all areentry or exit edges. Fig. 1-(b) shows a region that is not good: edges e2 and

e5 are not in In(P ) ∪Out(P ).A traje
tory segment of an SPDI is a 
ontinuous fun
tion ξ : [0, T ] → R
2whi
h is smooth everywhere ex
ept in a dis
rete set of points, and su
h thatfor all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). Thesignature, denoted Sig(ξ), is the ordered sequen
e of edges traversed by thetraje
tory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If

T =∞, a traje
tory segment is 
alled a traje
tory.The following is a very simple example of an SPDI: a swimmer trying toes
ape from a whirlpool in a river.Example. The dynami
s ẋ of the swimmer around the whirlpool is ap-proximated by the pie
e-wise di�erential in
lusion de�ned as follows. Thezone of the river nearby the whirlpool is divided into 8 regions R1, . . . , R8. Toea
h region Ri we asso
iate a pair of ve
tors (ai,bi) meaning that ẋ belongsto their positive hull: a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2
), a3 = (−1, 11

60
) and

b3 = (−1,−1

4
), a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1),

a7 = b7 = (1, 0), a8 = b8 = (1, 1). The 
orresponding SPDI is illustrated inFig. 2.
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6



3.1.1 Su

essors and prede
essorsGiven an SPDI, we �x a one-dimensional 
oordinate system on ea
h edge torepresent points laying on edges. For notational 
onvenien
e, we will use e todenote both the edge and its one-dimensional representation. A

ordingly,we write x ∈ e or x ∈ e, to mean �point x in edge e with 
oordinate x in theone-dimensional 
oordinate system of e�. The same 
onvention is applied tosets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e)and to traje
tories (e.g., �ξ starting in x� or �ξ starting in x�).Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e, Succee′(I) isthe set of all points in e′ rea
hable from some point in I by a traje
torysegment ξ : [0, t] → R
2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Given

I = [l, u], Succee′(I) = F (I ∩ S)∩ J , where S and J are intervals, F ([l, u]) =
〈fl(l), fu(u)〉 and fl and fu are a�ne fun
tions (a fun
tion f : R→ R is a�nei� f(x) = ax + b with a > 0).For I ⊆ e′, Preee′(I) is the set of points in e that 
an rea
h a point in I by atraje
tory segment in P . We have that: Preee′ = Succ−1

ee′ and Preσ = Succ−1

σ .3.1.2 Qualitative analysis of simple edge-
y
lesLet σ = e1 · · · eke1 be a simple edge-
y
le, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k.Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉.Assumption 2. None of the two fun
tions fl, fu is the identity.Let l∗ and u∗ be the �x-points1 of fl and fu, respe
tively, and S∩J = 〈L, U〉.It 
an be shown that a simple 
y
le is of one of the following types:STAY. The 
y
le is not abandoned neither by the leftmost nor the rightmosttraje
tory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost traje
tory exits the 
y
le through the left (
onsequentlythe leftmost one also exits) or the leftmost traje
tory exits the 
y
lethrough the right (
onsequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost traje
tory exits the 
y
le through the left andthe rightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost traje
tory exits the 
y
le (through the left) butthe rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .1The �x-point x∗ is 
omputed by solving a linear equation f(x∗) = x∗, whi
h 
an be�nite or in�nite. 7



EXIT-RIGHT. The rightmost traje
tory exits the 
y
le (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.The 
lassi�
ation above provides useful information about the qualitativebehavior of traje
tories. Any traje
tory that enters a 
y
le of type DIE willeventually quit it after a �nite number of turns. If the 
y
le is of type STAY,all traje
tories that happen to enter it will keep turning inside it forever.In all other 
ases, some traje
tories will turn for a while and then exit, andothers will 
ontinue turning forever. This information is 
ru
ial for solvingthe rea
hability problem for SPDIs.To �nish this se
tion we re
all the representation theorem for SPDIs thatallows to fa
torize the signatures (step 3 in Se
tion 2.1) in a 
onvenient way.Given a sequen
e w, ε denotes the empty sequen
e whereas first(w) and
last(w) are the �rst and last elements of the sequen
e respe
tively. An edgesignature σ 
an be expressed as a sequen
e of edges and 
y
les of the form
r1s

k1

1 r2s
k2

2 . . . rns
kn
n rn+1, where1. For all 1 ≤ i ≤ n + 1, ri is a sequen
e of pairwise di�erent edges;2. For all 1 ≤ i ≤ n, si is a simple 
y
le (i.e., without repetition of edges)repeated ki times;This is summarized by the following representation theorem for SPDIs thatnot only guarantees the existen
e of the above representation for SPDIs butalso provides a 
onstru
tive way of doing so [S
h02, Theorem 17℄.Theorem 1. Given an SPDI, let σ = e1 . . . ep be an edge signature, then it
an always be written as σA = r1s

k1

1 . . . rns
kn
n rn+1, where for any 1 ≤ i ≤ n+1,

ri is a sequen
e of pairwise di�erent edges and for all 1 ≤ i ≤ n, si is a sim-ple 
y
le (i.e., without repetition of edges).This representation of signatures is the base to obtain types of signatures(step 4 in Se
tion 2.1) with the following good properties [S
h02, Lemma20℄.Lemma 2. Given an SPDI, let σ = e0 . . . ep be a feasible signature, then itstype, type(σ) = r1, s1, . . . , rn, sn, rn+1 satis�es the following properties.
P1 For every 1 ≤ i 6= j ≤ n + 1, ri and rj are disjoint;
P2 For every 1 ≤ i 6= j ≤ n, si and sj are di�erent.The above is the base for the argument on the �niteness of di�erent typesof signatures to take into a

ount in the rea
hability algorithm and thus totermination of SPDI rea
hability. 8



4 GSPDIThe goodness restri
tion (Assumption 1) was originally introdu
ed to simplifytreatment of traje
tories to guarantee, among other things, that ea
h region
an be partitioned into entry and exit edges in an ordered way, fa
t used inthe proof of de
idability of the rea
hability problem. We will study in thisse
tion what happens when goodness is relaxed. First noti
e that withoutgoodness there are edges that are neither of entry nor of exit as shown inFig. 1. This naturally leads to the following de�nition.De�nition 2. An edge e ∈ P is an inout edge of P if e is neither an entrynor an exit edge of P .As already explained in previous se
tions, the above de�nition is the base forobtaining a new 
lass of polygonal hybrid systems whi
h generalizes SPDI.De�nition 3. An SPDI without the goodness restri
tion is 
alled a generalSPDI (GSPDI).Thus, in GSPDIs there are three kinds of edges: inouts, entries and exits.Self-
rossing of traje
tory segments of SPDIs 
an be eliminated whi
h allowus to 
onsider only non-
rossing traje
tory (segments). The proof given in[S
h02, Chap. 4, Se
. 4.2.2℄ 
an be extended to deal with the 
ase whenthe self-
rossing traje
tories involve inout edges, so the result still holds forGSPDIs. Thus in what follows we will 
onsider only traje
tory segmentswithout self-
rossings.Noti
e that on GSPDIs a traje
tory 
an �interse
t� an edge at an in�nitenumber of points be
ause it 
an slide at it. Thus, a tra
e is not anymore asequen
e of points but rather a sequen
e of intervals.De�nition 4. The tra
e of a traje
tory ξ is the sequen
e trace(ξ) = I0I1 . . .of the interse
tion intervals of ξ with the set of edges, that is, Ii ⊆ (ξ ∩E).A point interval I = [x,x] will be sometimes written as x whenever no
onfusion might arise.De�nition 5. An edge signature (or simply a signature) of a GSPDI isa sequen
e of edges. The edge signature of a traje
tory ξ, Sig(ξ), is theordered sequen
e of traversed edges by the traje
tory segment, that is, Sig(ξ) =
e0e1 . . ., with trace(ξ) = I0I1 . . . and Ii ⊆ ei. The region signature of ξ isthe sequen
e RSig(ξ) = P0P1 . . . of traversed regions, that is, ei ∈ In(Pi).Noti
e that in many 
ases the intervals of a tra
e are in fa
t points. Wesay that a traje
tory with edge signature Sig(ξ) = e0e1 . . . ei . . . and tra
e
trace(ξ) = I0I1 . . . Ii . . . interval-
rosses edge ei if Ii is not a point.9
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Figure 3: (a): A proper inout edge; (b): A sliding edge.Given a traje
tory segment, we will make the di�eren
e between proper inoutedges and sliding edges.De�nition 6. Let ξ be a traje
tory segment from point x0 ∈ e0 to xf ∈ ef ,with edge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P ) be an edge of P .We say that ei is a sliding edge of P for ξ if ξ interval-
rosses ei, otherwise
e is said to be a proper inout edge of P for ξ.We say that a traje
tory segment ξ slides on an edge e if e is a sliding edge of
P for ξ and ξ is said to be a sliding traje
tory if there is at least one slidingedge e ∈ Sig(ξ).Example 2. In Fig. 3-(a), e is a proper inout edge. Edge e on Fig. 3-(b) isa sliding edge.5 Simpli�
ation of GSPDI's Traje
tory SegmentsIn this se
tion we show that in many 
ases it is possible to simplify traje
torysegments eliminating inout edges, but not always. We �rst start by showingthat the good properties of the representation theorem for SPDIs are notvalid any longer for GSPDIs, explaining why inouts edges are not desirablein a rea
hability analysis.Proposition 1. Property P2 of the representation theorem for SPDIs (Lemma2) does not hold in general for GSPDIs.Proof: Let ξ be a traje
tory with signature Sig(ξ) = σ = e0 . . . ei . . . en . . .of a given GSPDI. The proposition states that it is not possible in generalto write σ in the form σA = r1s

k1

1 . . . rns
kn
n rn+1 with the properties stated10



in Lemma 2. The proof is done by providing a 
ounter-example. A typi
al
ounter-example should allow to obtain a signature 
onsisting of a 
lo
kwisespiral followed by a 
ounter-
lo
kwise spiral (or vi
e-versa) and then ba
k tothe �rst spiral. In su
h a 
ase it is possible to �nd two simple 
y
les whi
hare repeated in the type of signature. Let us 
onsider the GSPDI of Fig. 4.To let it simple we do not write down the dynami
s of the regions and weassume that they are as to allow the segments of traje
tories shown in thepi
ture to be well-de�ned. In su
h a GSPDI it is possible to obtain the follow-ing type of signature: r1s1r2s2r3s3 . . ., where s1 = (abcd), s2 = (dcba), and
s3 = (abcd). Sin
e s1 = s3, then property P2 of Lemma 2 is not satis�ed.

a

b

c

dFigure 4: Counter-example for Proposition 1.The following lemma presents some typi
al 
ases where it is possible to elim-inate proper inout edges.Lemma 3. Let ξ be a traje
tory segment x0 ∈ e0 to xf ∈ ef with edgesignature Sig(ξ) = e0 . . . ei . . . en. If ei is a proper inout edge then in some
ases there exists a traje
tory segment ξ′ from x0 to xf that traverses ei inat most one sense (that is, ei is either an entry or an exit, but no both).Proof Sket
h: In Fig. 5-(a) we illustrate a typi
al 
ase where edge ei is aproper inout edge. After a straightforward algebrai
 ve
tor manipulation, on11



the same lines of elimination of self-
rossings, the traje
tory segment shownin Fig. 5-(a') is obtained.
xf

(a) x0

xf

ee

(a')x0 Figure 5: Inout 
ase.Note that the above does not establish 
ompleteness of a redu
tion fromGSPDIs into SPDIs rea
hability sin
e there are 
ases where the above is notpossible. We have then the following result.Proposition 2. Given a GSPDI, assume there exists a traje
tory segmentfrom points x0 ∈ e0 to xf ∈ ef , traversing inout edges in both dire
tions.Then it is, in general, not possible to �nd a traje
tory segment whose edgesignature 
ontains no proper inout edges (traversed in both dire
tions), be-tween them.Proof: The GSPDI of Fig. 6 presents a typi
al example of an inout edge (e2)whi
h 
annot be dire
tly eliminated as to preserve that xf is rea
hable from
x0. To keep the explanation simple we do not present here a formal GSPDIas 
ounter-example. The example, however, sheds some light on the kind ofGSPDI regions serving as 
ounter-examples. It su�
es to take any traje
torywith a dynami
s su
h that the angle is slightly less than 180 degrees. Thetraje
tory must traverse an inout edge following the b ve
tor and enters intothe region by following the a ve
tor. The traje
tory must not 
ross itself.We show now how to eliminate sliding edges.Lemma 4. Let ξ be a traje
tory segment x0 ∈ e0 to xf ∈ ef with edgesignature Sig(ξ) = e0 . . . ei . . . en. If ei is a sliding edge for ξ then there existsa traje
tory segment ξ′ from x0 to xf that does not slide on edge ei.12
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e2

e3

e6

e4

Figure 6: A GSPDI with a non-eliminating inout edge.Proof Sket
h: Sliding edges 
an arise in four di�erent 
ases (without takinginto a

ount the symmetri
 
ases); they are shown in Fig. 14-(a) to (d). The
orresponding primed �gures (Fig. 14-(a') to (d')) show the transformationdone in order to avoid sliding on edge e. The reason why the above trans-formation is possible is be
ause in all the 
ases the new obtained segment oftraje
tory 
an be expressed as a positive linear 
ombination of two suitableexisting segments of traje
tory. Su
h two segments are the sliding segment,and another segment of traje
tory with starting point at the beginning orthe end of the sliding segment.As a 
onsequen
e we have the following result.Proposition 3 (Existen
e of a non-sliding traje
tory). If there exists a slid-ing traje
tory segment from points x0 ∈ e0 to xf ∈ ef then there always existsa non-sliding traje
tory segment between them.Proof: By indu
tion on the number n of sliding edges of the signature ofthe traje
tory segment using Lemma 4 in the indu
tion step.We usually eliminate �rst proper inout edges (when possible) and next slid-ing. In fa
t, the number of sliding edges is not guaranteed to de
rease ifsliding edges are eliminated before proper inout edges as shown in the fol-lowing example.Example 3. In Fig. 7-(a) a traje
tory segment that slides at edge e′ is shown.After eliminating the sliding at edge e′, a new sliding edge is introdu
ed (e).This is shown in Fig. 7-(b). However, if proper inout edges are eliminated13



�rst, we do not introdu
e new proper inout edges as shown in part (
) of thesame �gure.
xf xf xf

(a)x0

e e′

(b)x0

e e′

(
)x0

e e′

Figure 7: Elimination order of inout edges.Remark. Sliding is not easy to treat in general sin
e an edge always belongto two di�erent regions with di�erent dynami
s. Thus a traje
tory may be'allowed' to slide by one of the dynami
s but not by the other. We do notanalyze this in more detail, for our purposes we assume that at an inoutedge a traje
tory 
an slide if at least one of the dynami
s allows so. Thisassumption does not a�e
t the rea
hability analysis.About the ordering between edges. We �nish this se
tion with aninformal dis
ussion about the importan
e of the '
ontiguous' order betweenentry and exit edges on SPDIs.In SPDIs edges of a region 
an be bi-partitioned into entry and exit edges ina 
ontiguous way (see Fig. 8) having as a 
onsequen
e an ordering betweenedges. This is not longer the 
ase in GSPDIs.
P

a
b

In

Out

Figure 8: Ordering of edges on an SPDI (all the edges e satisfy â e > 0).
14



First of all, noti
e that the ordering of edges on an SPDI were 
hosen inorder to preserve the `positive a�nity' (and hen
e the monotoni
ity) of thesu

essor fun
tions. Given a region R with di�erential in
lusion ∠
b

a
, let e bean entry edge and e1 and e2 two exit edges of R. For e we 
hose the dire
tion(given by a dire
tor ve
tor e) that satis�es the inequality â e > 0 (see Fig.11). The same for e1 and e2. As a 
onsequen
e we obtain an ordering likethe one shown in Fig. 8.Note that on a GSPDI (see Fig. 9(a)), the property that for any edge e,

â e > 0 is not longer valid sin
e an edge 
an be of entry and of exit and thenthe ordering 
an 
hange. In spite of that, on
e an inout edge is '
onverted'into an entry (or exit) then we 
an have the notation of 
onsidering theordering of entry edges going 
ounter-
lo
kwise and 
lo
kwise for exit edges(see Fig. 9(b)).

(a) (b)

P

a

In

In

In

In

Out

Out

Out

Out

b

P

a

In

In

Inout

Inout

Inout

Inout

Out

b

Inout

Figure 9: (a) A GSPDI; (b) Ordering after �xing input and output edges.Even though the de�nition of edge and region signatures as well as edge 
y
le
ontinue to hold, it is not the 
ase for region 
y
le. We 
an have a regionsignature P1 · · ·Pi · · ·PkP1 that is not a region 
y
le. The reason is that inGSPDIs a traje
tory 
an enter a region through two di�erent edges withoutforming a 
y
le.Thus we have that a region signature P1 · · ·Pi · · ·PkP1 is a region 
y
le if theedge signature e1 · · · eke1, with ei ∈ Out(Pi) for all 1 ≤ i ≤ k, forms an edge
y
le.In Fig. 10 the following is a region 
y
le: P1P2P3P4P2P5P1. Noti
e that
P2P3P4P2 is region 
y
le for SPDIs but not for the given GSPDI.15
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e3
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Figure 10: A region 
y
le.6 Rea
hability Analysis for GSPDIsIn this se
tion we `topologi
ally' rephrase and prove the results of [S
h02,Chap. 4,5℄ that use the 
ontiguity between entry and exit edges in theirproofs. We also re-prove soundness of Exit-LEFT and Exit-STAY algorithmsand at the end we give a semi-de
ision algorithm for GPSDI rea
hability. Wehave informally explained in Se
tion 2.2 why we need to do so.6.1 Proof of Lemmas without using the Contiguity As-sumptionThe only results that use the 
ontiguity order between entry and exit edgesare Lemmas 20, Lemma 26 and Corollary 27 of [S
h02℄. Lemma 20 has beenrepeated here in Se
tion 3 as Lemma 2, whi
h as we have seen does not holdin general for GSPDIs (Proposition 1). However, after �xing all the edges aseither of entry or exit, we 
an prove the result holds sin
e it behaves as anSPDI, modulo the 
ontiguity of entry and exit edges.We prove then these three results without using the order between entry andexit edges. We restate Lemma 2 ([S
h02, Lemma 20℄) for property P2, forthe 
ase when GPSDI is transformed as to �x inout edges as entries or exits.Lemma 5. Given a GSPDI where edges has been �xed as entry or exit, let
σ = e0 . . . ep be a feasible signature, then its type, type(σ) = r1, s1, . . . , rn,16



(a) (b)

P

ee

P

e

â

e

a a

âFigure 11: (a) â e > 0; (b) â e < 0.
sn, rn+1 satis�es the following property, P2: For every 1 ≤ i 6= j ≤ n, si and
sj are di�erent.Proof: In order to prove property P2 we prove that, given a simple 
y
le
si = e′, . . . , e, the sequen
e of edges ee′ 
annot o

ur after leaving si (hen
e it
annot o

ur in any other simple 
y
le sj , with 1 ≤ i < j ≤ n). After 
y
ling
ki times 
y
le si is abandoned by edge e (guaranteed by 
onstru
tion). Let
P be a region s.t. e ∈ In(P ) and 
onsider the unfolding of the last iterationand its 
ontinuation (see Fig. 12-(a)):

. . . , e, e′, . . . , e, e′′, . . .where e′′ = first(ri+1), e ∈ In(P ) and e′, e′′ ∈ Out(P ) (e′ 6= e′′). Let x2 bethe last point visited on edge e before leaving 
y
le si and x′′
2 be the �rst pointon edge e′′ after leaving si (see Fig. 12-(b)). Segment x2x
′′
2 of the traje
torysegment divides region P into two subregions P1 and P2 and edge e into twosegments elx2 and x2eu. By the non-
rossing hypothesis (and monotoni
ityon edges) after leaving si the only a

essible part of edge e is the segment

x2eu ∈ e. By Jordan's 
urve theorem the only way to rea
h edge e′ from anypoint in x2eu ∈ e is by 
rossing x2x
′′
2 or by 
rossing one of the edges of region

P2. The �rst 
ase is not possible sin
e it would 
ontradi
t the hypothesis ofnon-
rossing traje
tory and in the se
ond 
ase the sequen
e ee′ would notbelong to the traje
tory segment.Remark. Note that for our purposes it is irrelevant whether property P1holds or not, sin
e it does not a�e
t the �niteness argument. This is due to17
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e
x2

x3

eu (b)
P2

x′′

2

e′′e′

P1

Figure 12: (a): Simple 
y
le si and its 
ontinuation through edge e; (b) Edge
e′ 
annot be rea
hed from point x3 without interse
ting x2x

′′
2the fa
t that a type of signature is �nite if the number of simple 
y
les arenot repeated, whi
h is stated in P2.In what follows we use the following notation. Whenever we partition thespa
e into two regions PL and PR by the line de�ned by a segment of line

xy, PL is the semi-spa
e of all the points that are a left rotation of ~xy and
PR is the semi-spa
e 
orresponding to the points that are a right rotation ofthe same ve
tor. With f(x) ↓ we mean that f is de�ned at x and f(x) ↑ willmean that f is unde�ned at x.Next we will (topologi
ally) rephrase [S
h02, Lemma 26℄ and [S
h02, Corol-lary 27℄ and we prove them both.Lemma 6. Let P be a region, e ∈ In(P ), e1, e2 ∈ Out(P ), 〈li, ui〉 be anysubinterval of 〈el

i, e
u
i 〉 and fi(x) = F c

e,ei
(x).1. Let P be partitioned into two regions PL and PR by the line de�ned by

xl1, then the following holds: if e2 ∈ PL, f2(x) ↓ and l1 < f1(x) then
u2 < f2(x);2. Let the plane be partitioned into two subspa
es PL and PR by the linede�ned by xl2, then the following holds: if e1 ∈ PR, f1(x) ↓ and f2(x) <
u2 then f1(x) < l1.Proof : 18
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Figure 13: Lemma 6'-1. (a) When f l
2(x) ↓; (b) The 
ase f l

2(x) ↑.1. Remember that the line de�ned by e2 is ordered and that u2, A and
f2(x) belongs to it. We have then that e2 ∈ PL (and hen
e u2 ∈ PL)and that f2(x) ∈ PR (by 
onstru
tion of the partition). We have thenthat u2 < A and A < f2(x), that implies u2 < f2(x). See Fig. 13(a).2. This 
ase is symmetri
 to the previous one.Corollary 7. Let P be a region, e ∈ In(P ), e1, e2 ∈ Out(P ), fi(x) = F c

e,ei
(x)be an a�ne fun
tion and Fi(〈x, y〉) = Fi(〈x, y〉∩Si)∩Ji be a trun
ated a�nemulti-valued fun
tion (with Fi = [f l

i , f
u
i ] and Ji = 〈Li, Ui〉).1. Let P be partitioned into two regions PL and PR by the line de�nedby xL1, then the following holds: If e2 ∈ PL and L1 < f l

1(x) then
F2(〈x, y〉) = ∅;2. Let P be partitioned into two regions PL and PR by the line de�nedby xL2, then the following holds: if e1 ∈ PR and fu

2 (y) < U2 then
F1(〈x, y〉) = ∅.Proof: 19



1. If f l
2(x) is unde�ned, then it is obvious that F2(〈x, y〉) = ∅. If f l

1(x) isde�ned, then the result follows dire
tly from Lemma 6-1 and de�nitionof Fi(〈x, y〉).2. Symmetri
 to the above 
ase using Lemma 6-2.6.2 Soundness of Exit-STAY and Exit-LEFTWe prove now soundness of the Exit-STAY and Exit-LEFT algorithm whoseproofs rely on the results proved in the previous se
tion.Let A = Succb

s (L) and 
onsider the line de�ned by AL. This line partitionthe spa
e into PL and PR as before.Exit-STAY fun
tion ExitSTAY (I, s, ex)
←− ∅Soundness By hypothesis, L < l∗ < u∗ < U . Hen
e, for all i, Ĩi = 〈l̃i, ũi〉 ⊆

〈L, U〉, hen
e Ii = Ĩi and by Corollary 7 we have that Succi
s,ex(I) = ∅.Termination Trivial.Exit-LEFT: fun
tion ExitLEFT (I, s, ex)

←− Succs,ex(Succs,f(〈L, max{u, u∗}〉))Soundness By hypothesis, l∗ < L < u∗ ≤ U . Thus, there exists a naturalnumber n s.t. l̃n ≤ L and for all i, ui = ũi ≤ U . Let's 
onsider thefollowing two 
ases:1. If ex ∈ PR then Ex = ∅ (by de�nition of Exit-LEFT) and Succs,ex(Ii) =
∅ for any i (by Corollary 7-2), so Succs,ex(Succs,f(〈L, max{u, u∗}〉)) =
∅;2. If ex ∈ PL, we 
onsider two 
ases:(a) If u < u∗ then for all i, ui = ũi ≤ u∗ and then ∪m>0Succm

s,f(I) =
Succs,f(L, u∗), thus Ex = Succs,ex(Succs,f(L, u∗));20



(b) If u∗ < u then for all i, ui = ũi ≤ u and ∪m>0Succm
s,f(I) =

Succs,f(L, u). Consequently, Ex = Succs,ex(Succs,f(L, u));From both 
ases we have that Ex = Succs,ex(Succs,f(〈L, max{u, u∗}〉)).Termination Trivial.6.3 A semi-de
ision algorithm for rea
hability analysisof GSPDIsFrom the above results we have that the main algorithm for rea
hability maybe applied to GSPDIs after performing 
ertain pre-pro
essing steps.Before presenting a sound (but in
omplete) algorithm for rea
hability analy-sis of GSPDIs we need the following notation. Given a GSPDI H, we denoteby Hred = {H1, . . . , Hn} the set of all the SPDIs obtained after �xing all theinout edges of H as inputs or outputs, 
onsidering all the possible permuta-tions.The rea
hability algorithm for a GSPDI H, Rea
h(H,x0,xf ), 
onsists of thefollowing steps:1. Dete
t all the inout edges;2. Generate the set of SPDIs Hred = {H1, . . . , Hn};3. Apply the rea
hability algorithm for SPDIs to ea
h Hi (1 ≤ i ≤ n).4. If there exists at least oneHi ∈ Hred su
h thatRea
h(Hi,x0,xf) = Yesthen Rea
h(H,x0,xf) = Yes, otherwise we do not know.We have then the following result about termination of GSPDI rea
hability.Lemma 8. Rea
h(H,x0,xf ) always terminate.Proof: The result follows from the termination of steps 1 and 2 of the abovealgorithm, as well as from that of Rea
h(Hi,x0,xf) (for all Hi ∈ Hred,
1 ≤ i ≤ n).We �nish this se
tion with the main result of our paper, whi
h follows from allthe previous results, stating that we 
an semi-de
ide rea
hability for GSPDIs.Theorem 9. Given a GSPDI H, if Rea
h(Hi,x0,xf) = Yes for some Hi ∈
Hred, then Rea
h(H,x0,xf ) = Yes. On the other hand, if for all Hi ∈ Hred,Rea
h(Hi,x0,xf) = No, then Rea
h(H,x0,xf ) is in
on
lusive.21



Proof: Termination is guaranteed by Lemma 8. Soundness follows fromsoundness of the algorithm for SPDIs [S
h02, Se
. 5.2℄, in
luding the newproof given in Se
tion 6.2 
onsidering the use of non-
ontiguous entry and exitedges. The fa
t that rea
hability is in
on
lusive wheneverRea
h(Hi,x0,xf) =
No for all Hi ∈ Hred follows from Proposition 2.7 Final Dis
ussionIn this work we have provided a 
ounter-example to a previous proof of thede
idability of the rea
hability problem for GSPDIs given in [S
h02, Chap.9℄, whi
h remain thus an open problem. We have rephrased the results givenin above mentioned work in order to give a semi-de
idable algorithm forsolving the rea
hability problem for su
h 
lass of systems.Referen
es[AMP95℄ E. Asarin, O. Maler, and A. Pnueli. Rea
hability analysis ofdynami
al systems having pie
ewise-
onstant derivatives. TCS,138:35�65, 1995.[AS02℄ E. Asarin and G. S
hneider. Widening the boundary between de-
idable and unde
idable hybrid systems. In CONCUR'2002, vol-ume 2421 of LNCS, pages 193�208, Brno, Cze
h Republi
, August2002. Springer-Verlag.[ASY01℄ E. Asarin, G. S
hneider, and S. Yovine. On the de
idabilityof the rea
hability problem for planar di�erential in
lusions. InHSCC'2001, number 2034 in LNCS, pages 89�104, Rome, Italy,2001. Springer-Verlag.[ASY07℄ Eugene Asarin, Gerardo S
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h-ability. Theoreti
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ien
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Figure 14: Sliding 
ases.24


