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ABSTRACT. We establish the existence of solutions for a class of stochastic reaction-
diffusion systems with cross-diffusion terms modeling interspecific competition between
two populations. More precisely, we prove the existence of weak martingale solutions
employing appropriate Faedo-Galerkin approximations and the stochastic compactness
method. The nonnegativity of solutions is proved by a stochastic adaptation of the well-
known Stampacchia approach.

1. INTRODUCTION

This work is devoted to the mathematical analysis of a stochastic reaction-diffusion
system with cross-diffusion modeling the interaction between two populations. Cross-
diffusion expresses that the population flux of a given subpopulation is affected by the
presence of other subpopulations. The (deterministic) dynamics of interacting species
with cross-diffusion were investigated by many authors, including Levin [25], Levin and
Segel [24], Okubo and Levin [31], Mimura and Murray [27], Mimura and Kawasaki
[26], Mimura and Yamaguti [28], Galiano et al. [17, 18], Bendahmane et al. [1, 6] (see
also [2, 3, 5, 7]) to name a few. We consider a spatially distributed population wherein
u = u(t, x) and v = v(t, x) are the respective densities of two subpopulations at time t
and location x ∈ Ω. The variables u and v may represent predator and prey densities. In
the context of dispersal of an epidemic disease, the two variables u and v may represent
predator and prey densities for susceptible (those who can catch the disease) and infectious
individuals (those who are infected and can transmit the disease). Let p = u + v be the
total population density. The population in each subclass is given by

U(t) =

∫
Ω

u(t, x) dx, V (t) =

∫
Ω

v(t, x) dx,

whereas the total population is

P (t) =

∫
Ω

(u+ v) (t, x) dx =

∫
Ω

p(t, x) dx,

where Ω is a bounded open domain of Rd (d = 3), with C3 boundary ∂Ω and outward
unit normal ν. In this work, we assume that the diffusion of individuals follows a Fick law
modified by various other processes such as searching for food, escaping high infection
risks, or avoiding large concentrations of individuals. This means that the mobility in each
subclass is influenced by the spatial gradient of the other subclass (cf. e.g. [29, 30, 31]).
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A prototype of stochastic reaction-diffusion systems with nonlocal diffusion and cross-
diffusion terms is

du−∇ ·
(
Du

(∫
Ω

u(t, x) dx
)
∇u+A11(u, v)∇u+A12(u, v)∇v

)
dt

= F (u, v) dt+ σu(u) dWu(t),

dv −∇ ·

(
Dv

(∫
Ω

v(t, x) dx
)
∇v +A21(u, v)∇u+A22(u, v)∇v

)
dt

= G(u, v) dt+ σv(v) dWv(t),

(1.1)

which is posed in the time-space cylinder ΩT := (0, T )×Ω. This system is supplemented
with nonnegative initial data,

(1.2) u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ Ω,

and zero-flux boundary conditions on ΣT := (0, T )× ∂Ω:(
Du

(∫
Ω

u(t, x) dx
)
∇u+A11(u, v)∇u+A12(u, v)∇v

)
· ν = 0,(

Dv

(∫
Ω

v(t, x) dx
)
∇v +A21(u, v)∇u+A22(u, v)∇v

)
· ν = 0.

(1.3)

In the system (1.1), Ww is a cylindrical Wiener process, with noise function σw for
w = u, v. Formally, we can think of σw(w) dWw as

∑
k≥1 σw,k(w) dWk,w(t), where

{Ww,k}k≥1 is a sequence of independent 1D Brownian motions and {σw,k}k≥1 a sequence
of noise coefficients. The processesWu andWv are independent, and the terms σu(u) dWu

and σv(v) dWv model environmental noise.
In (1.1),

(1.4) F (u, v) := −θ(u, v)− µu G(u, v) := θ(u, v)− γv − µv

are the reaction terms. In the dispersal of an epidemic disease, the constants µ, γ > 0 are
the biological parameters of the system (think of 1/γ as the duration of the infectious stage
and µ as the mortality rate). The incidence function θ takes a proportionate mixing form:
for some constant α > 0,

(1.5) θ(u, v) = α
uv

u+ v
, u, v ≥ 0.

For later use, note that

(1.6) 0 ≤ θ(u, v) ≤ αmin (u, v), u, v ≥ 0.

The diffusion rates (given by Du(·) and Dv(·) > 0) are assumed to be “nonlocal”,
depending on the whole of each population rather than on the local density; in other
words, the diffusion of individuals is guided by the global state of the population in the
medium. For example, if we want to model species tending to leave crowded zones, a
natural assumption is that Du(·), Dv(·) are increasing functions. Otherwise, for species
attracted by a growing population, one may assume that the nonlocal diffusion coefficients
Du(·), Dv(·) are decreasing functions. We assume that Du, Dv : R → R are continuous
functions satisfying the following conditions: ∃Cm, CM > 0 such that for w = u, v,

(1.7) Dw(I) ≥ Cm, |Dw(I1)−Dw(I2)| ≤ CM |I1 − I2| , ∀I, I1, I2 ∈ R.
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In (1.1), A(u, v) = {Aij(u, v)}2i,j=1 is the cross-diffusion matrix. For simplicity of
presentation, we introduce the short-hand notation

A(u, v)

(
∇u
∇v

)
=

(
A11(u, v)∇u+A12(u, v)∇v
A21(u, v)∇u+A22(u, v)∇v

)
.

We assume that the matrix A has as C2 entries and satisfies the following conditions:

∀u, v ≥ 0, A12(0, v) = 0, A21(u, 0) = 0,

∀u, v ≥ 0, ∀w :=

(
w1

w2

)
∈ R2d,

(
A(u, v)w,w

)
≥ 1

C
|A(u, v)| |w|2 ,

∀u1, u2, v1, v2 ≥ 0, |A(u1, v1)−A(u2, v2)| ≤ C
(
|u1 − u2|+ |v1 − v2|

)
,

(1.8)

where (·, ·) is the usual scalar product on R2, with corresponding norm |·|. Moreover,
|A(·, ·)| = max

i,j=1,2
|Aij(·, ·)| and C is a positive constant. Notice that (1.8) implies

A11(u, v) ≥ 0, A22(u, v) ≥ 0, ∀u, v ≥ 0.

A typical example of a cross-diffusion matrix is

A(u, v) =

(
a11u+ a12v a13u

a21v a22u+ a23v

)
,

where the coefficients aij > 0 are known as self-diffusion rates. This matrix is nonnegative
if 8a11a21 ≥ a2

12 and 8a22a12 ≥ a2
21, cf. [4] for more details.

Remark 1.1. For the upcoming analysis we need to extend the definitions of A, cf. (1.8),
F and G to all u, v ∈ R. We do this by assuming the following (for i, j = 1, 2):

if u, v ≥ 0, then Aij(u, v) ≥ 0, otherwise Aij(u, v) = 0 (i 6= j) and Aii(u, v) ≥ 0,

F (u, v) =


−θ(u, v)− µu, if u, v ≥ 0,

−µu, if u ≥ 0 and v < 0,

0, if u < 0 and v ≥ 0,

G(u, v) =


θ(u, v)− γv − µv, if u, v ≥ 0,

0, if u ≥ 0 and v < 0,

−γv − µv, if u < 0 and v ≥ 0.

Our analysis is restricted to positive cross-diffusion matrices A. Positive matrices are
motivated by their applications in population dynamics. In a forthcoming work, we deci-
pher stability and instability conditions for the spatially constant stationary state. More-
over, we define and prove the existence of suitably defined solutions satisfying these con-
ditions. The “natural” solutions are determined when the nonlinearities and cross diffusiv-
ities obey certain constraints. In the deterministic case [3], these constraints are not fully
satisfied for realistic parameters, yielding instabilities. The interesting open question is,
which type of solution experiences instabilities? Degenerate cross-diffusion systems and
numerical methods will be the subject of another forthcoming work.

Historically, cross-diffusion models are deterministic,, meaning that the input data de-
termine the solution at each moment in time. In deterministic models, non-predictable
environmental factors are not considered, although it is well-known that a combination of
random perturbations and nonlinearities can strongly influence solutions. Multiple factors
may influence the population’s growth in the environment, such as food, water, temper-
ature, etc., each element easily being thought of as stochastic. It is natural to employ
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noise to model these environmental fluctuations by adding a stochastic forcing term to the
deterministic system, resulting in (1.1).

Let us now put the mathematical contributions of this paper into perspective. First,
note that the standard theory for parabolic systems does not apply naturally to the cross-
diffusion model because of the strong coupling in the highest derivatives. As a result, no
traditional maximum principle applies. A stochastic forcing term further complicates the
maximum principle approach. The existence result for (1.1) is based on martingale solu-
tions and the introduction of suitable approximate (Faedo-Galerkin) solutions. We derive a
series of system-specific a priori estimates in L2

ω,tH
1 ∩L2

ωL
∞
t L

2
x ∩L1

ωCt(W
1,4
x )? for the

Faedo-Galerkin approximations and use a compactness method to conclude convergence.
The system’s nonlinear structure requires strong convergence of the approximate solutions
in suitable norms. However, one cannot directly deduce strong convergence in the prob-
ability variable. To handle this issue, we establish weak compactness of the probability
laws of the approximate solutions, which follows from tightness and Prokhorov’s theo-
rem. We then construct a.s. convergent versions of the approximations using Skorokhod’s
representation theorem, which makes it possible to show that the limit constitutes a mar-
tingale solution of (1.1). We demonstrate that the constructed solutions are nonnegative
by adapting the Stampacchia approach to the stochastic setting, following Chekroun, Park,
and Temam [10]. Finally, we mention that the pathwise uniqueness of the solution for the
deterministic and stochastic cross-diffusion systems remains an open problem.

In [14], the authors prove the existence of solutions for a related stochastic cross-
diffusion system (with F,G,Du, Dv ≡ 0) using the entropy method, assuming that the
cross-diffusion matrix exhibits a quadratic entropy structure. A critical difference between
our work and [14] is that the cross-diffusion term in the predator-prey system (1.1) does
not have an entropy structure. Besides, the system (1.1) contains nonlocal diffusion terms,
which further breaks the entropy structure in [14].

For the existence of martingale solutions for other classes of SPDEs, we refer [8, 9, 11,
12, 15, 16, 20, 21, 22, 34, 35], to mention a few inspirational examples.

The paper is organized as follows: In Section 2, we present the stochastic framework
and state the noise coefficients’ hypotheses. Section 3 supplies the definition of a weak
martingale solution and declares the main result. We construct approximate solutions by
the Faedo-Galerkin method in Section 4. Uniform estimates for these approximations are
established in Sections 5 and 6. Section 7 proves the tightness of the probability laws
generated by the Faedo-Galerkin approximations. The tightness and Skorokhod’s repre-
sentation theorem is used to show that a weakly convergent sequence of the probability
laws has a limit that can be represented as the law of an almost surely convergent sequence
of random variables defined on a common probability space. The limit of this sequence
is proved to be a weak martingale solution of the stochastic reaction-diffusion system in
Section 8, while its nonnegativity is deferred to Section 9.

Throughout this paper, we will frequently use the letters C,K, etc., to denote a generic
constant independent of n, that may take different values at different occurrences.

2. STOCHASTIC FRAMEWORK

This section recalls basic concepts and results from stochastic analysis (see e.g. [11,
33] for more details). We consider a complete probability space (D,F , P ), along with a
complete right-continuous filtration {Ft}t∈[0,T ].
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In passing, note that the letter Ω is reserved for the physical domain in this paper. In
contrast, we use D for the probability domain (in the stochastic literature, Ω denotes the
probability domain).

Given a separable Banach space B, which is equipped with the Borel σ-algebra B(B),
a B-valued random variable X is a measurable mapping from (D,F , P ) to (B,B(B)),
D 3 ω 7→ X(ω) ∈ B. The expectation of a random variable X is E[X] :=

∫
D
X dP .

For p ≥ 1, the Banach space Lp(D;B) = Lp(D,F , P ;B) is the collection of all B-valued
random variables, equipped with the following norm

‖X‖Lp(D;B) = ‖X‖Lp(D,F,P ;B) :=
(
E
[
‖X‖pB

]) 1
p (p <∞),

‖X‖Lp(D;B) = ‖X‖L∞(D,F,P ;B) := sup
ω∈D
‖X(ω)‖B .

We use the abbreviation a.s. (or almost surely) for “P -almost every ω ∈ D”. A stochastic
processX = {X(t)}t∈[0,T ] is a collection of B-valued random variablesX(t). We assume
that X is measurable, which means that the map X : D × [0, T ]→ B is measurable from
F × B([0, T ]) to B(B). The paths t→ X(ω, t) are then automatically Borel measurable.

We refer to

(2.1) S =
(
D,F , {Ft}t∈[0,T ] , P, {Wk}∞k=1

)
as a (Brownian) stochastic basis, where {Wk}∞k=1 is a sequence of independent one-
dimensional Wiener processes adapted to the filtration {Ft}t∈[0,T ].

A stochastic process X is adapted if X(t) is Ft measurable for all t ∈ [0, T ]. When
a filtration is involved there are additional notions of measurability (predictable, optional
and progressive) that occasionally are more convenient to work with. Herein we use the
(stronger) notion of a predictable process. A predictable process is a PT × B([0, T ])
measurable map D × [0, T ] → B, (ω, t) 7→ X(ω, t), where PT is the predictable σ-
algebra on D × [0, T ] associated with {Ft}t∈[0,T ], i.e., the σ-algebra generated by all
left-continuous adapted processes.

Consider a Hilbert space U equipped with a complete orthonormal basis {ψk}k≥1.
A cylindrical Wiener process W on U is defined by W :=

∑
k≥1Wkψk. The vector

space of all bounded linear operators from U to L2(Ω) is denoted L(U, L2(Ω)). De-
note by L2(U, L2(Ω)) the space of Hilbert-Schmidt operators from U to L2(Ω), i.e.,
R ∈ L2(U, L2(Ω)) ⇔ R ∈ L(U, L2(Ω)), ‖R‖2L2(U,L2(Ω)) :=

∑
k≥1 ‖Rψk‖L2(Ω) < ∞.

We recall that L2(U, L2(Ω)) is a Hilbert space. As is well-known, there is an auxiliary
Hilbert space U0 ⊃ U, with a Hilbert-Schmidt embedding J : U → U0, on which the
infinite series

∑
k≥1Wkψk converges.

For a given cylindrical Wiener process Ww, the L2(Ω)-valued Itô stochastic integral∫
σ dWw is defined as follows (see for, e.g., [11, 33]):

(2.2)
∫ t

0

σw dWw =

∞∑
k=1

∫ t

0

σw,k dWw,k, σw,k := σwψk,

for any L2(Ω)-valued predictable integrand

σ ∈ L2
(
D,F , P ;L2

(
0, T ;L2(U, L2(Ω))

))
.

Throughout the paper, we assume several conditions on the noise coefficients σu, σv
appearing in (1.1). For each z ∈ L2(Ω), we assume that σw(z) : U → L2(Ω), for
w = u, v, is defined by

σw(z)ψk = σw,k(z(·)), k ≥ 1,
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for some real-valued functions σw,k(·) : R→ R that satisfy∑
k≥1

|σw,k(z)|2 ≤ Cσ
(

1 + |z|2
)
, ∀z ∈ R,

∑
k≥1

|σw,k(z1)− σw,k(z2)|2 ≤ Cσ |z1 − z2|2 , ∀z1, z2 ∈ R,
(2.3)

for a constant Cσ > 0. A consequence of (2.3) is

‖σw(z)‖2L2(U,L2(Ω)) ≤ Cσ
(

1 + ‖z‖2L2(Ω)

)
, z ∈ L2(Ω),

‖σw(z1)− σw(z2)‖2L2(U,L2(Ω)) ≤ Cσ ‖z1 − z2‖2L2(Ω) , z1, z2 ∈ L2(Ω).
(2.4)

Under these conditions (2.4), the stochastic integral (2.2) is an L2(Ω)-valued square
integrable martingale, satisfying the Burkholder-Davis-Gundy (BDG) inequality

(2.5) E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

σw dWw

∥∥∥∥p
L2(Ω)

]
≤ C E

(∫ T

0

‖σw‖2L2(U,L2(Ω)) dt

) p
2

 ,
where C is a constant depending on p ≥ 1.

We need the following convergence result for stochastic integrals [12, Lemma 2.1].

Lemma 2.1 (convergence of stochastic integrals). For each n ∈ N, consider a stochastic
basis Sn =

(
D,F , {Fnt } , P,Wn

)
and a {Fnt }–predictable process Gn, which belongs

to L2
(
0, T ;L2(U, L2(Ω))

)
, almost surely. Furthermore, suppose there exist a stochastic

basis S =
(
D,F , {Ft} , P,W

)
and a {Ft}–predictable process G, which belongs to

L2
(
0, T ;L2(U, L2(Ω))

)
a.s., such that

Wn n↑∞−→ W in C([0, T ];U0), in probability

Gn
n↑∞−→ G in L2

(
0, T ;L2(U;L2(Ω))

)
, in probability.

Then ∫ t

0

Gn dWn n↑∞−→
∫ t

0

GdW in L2(0, T ;L2(Ω)), in probability.

Let S be a Polish space. We denote by B(S) the collection Borel subsets of S and
by P(S) the family of all Borel probability measures on S. A sequence of probability
measures {µn}n≥1 on (S,B(S)) is tight [11] if for every ε > 0 there is a compact set
Kε ⊂ S such that µn(Kε) > 1 − ε for all n ≥ 1. According to Prokhorov’s theorem
(see e.g. [11, Theorem 2.3]), tightness is a criterion for weak compactness: If {µn}n≥1

is tight, then there exists a subsequence
{
µnj
}
j≥1

that converges weakly to a probability
measure µ, where weak convergence means that

∫
S φ(w) dµnj (w) →

∫
S φ(w) dµ(w), for

any continuous bounded function φ : S→ R.
Any random variable X : D → S induces a probability measure L on (S,B(S)) via

the pushforward of P through X , often L = P ◦ X−1 is referred to as the law of X .
Let {Xk}k≥1 be a sequence of random variables whose laws Lk converge weakly to L.
Then a well-known result of Skorokhod (see e.g. [11, Theorem 2.4]) says that there exist
a probability space (D̃, F̃ , P̃ ) and random variables X̃k, X̃ : D̃ → S such that the law of
X̃k is Lk, the law of X̃ is L, and X̃k → X̃ P̃ -almost surely as k →∞.
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3. NOTION OF SOLUTION AND MAIN RESULT

We will utilize the following notion of solution for the stochastic cross-diffusion system.

Definition 3.1 (weak martingale solution). Let µu0 , µv0 be probability measures onL2(Ω).
A weak martingale solution of the stochastic cross-diffusion system (1.1), with initial-
boundary data (1.2) and (1.3), is a triplet

(
S, u, v

)
satisfying the following conditions:

(1) S =
(
D,F , {Ft} , P, {Wu,k}∞k=1 , {Wv,k}∞k=1

)
is a stochastic basis;

(2) Wu :=
∑
k≥1Wk,uψk and Wv :=

∑
k≥1Wk,vψk are two independent

cylindrical Wiener processes, adapted to the filtration {Ft};
(3) The elements u and v are nonnegative, belong to

L2
(
D,F , P ;L2(0, T ;H1(Ω))

)⋂
L2
(
D,F , P ;L∞(0, T ;L2(Ω))

)
,

and satisfy√
|Aij(u, v)|∇u ∈ L2

(
D,F , P ;L2(0, T ;L2(Ω))

)
, i, j = 1, 2.

Finally, u, v ∈ C
(
[0, T ];

(
H1(Ω)

)?)
a.s., and u, v are predictable in

(
H1(Ω)

)?
.

(4) The laws of u0 := u(0) and v0 := v(0) are respectively µu0
and µv0 ;

(5) The following equations hold P -almost surely, for any t ∈ [0, T ]:∫
Ω

u(t)ϕu dx−
∫

Ω

u0ϕu dx

+

∫ t

0

∫
Ω

(
Du

(∫
Ω

u(t, x) dx
)
∇u+A11(u, v)∇u+A12(u, v)∇v

)
· ∇ϕu dx ds

=

∫ t

0

∫
Ω

F (u, v)ϕu dx ds+

∫ t

0

∫
Ω

σu(u)ϕu dx dWu(s),

∫
Ω

v(t)ϕv dx−
∫

Ω

v0ϕv dx

(3.1)

+

∫ t

0

∫
Ω

(
Dv

(∫
Ω

v(t, x) dx
)
∇v +A21(u, v)∇u+A22(u, v)∇v

)
· ∇ϕv dx ds

=

∫ t

0

∫
Ω

G(u, v)ϕv dx ds+

∫ t

0

∫
Ω

σv(v)ϕv dx dWv(s),

for all ϕu, ϕv ∈W 1,4(Ω).

Remark 3.2. In Definition 3.1, we use the standard Sobolev spaces

H1(Ω) = W 1,2(Ω), and for p ∈ (1,∞),

W 1,p(Ω) =
{
u ∈ Lp(Ω) : ∇u ∈ Lp(Ω;Rd)

}
,

along with the corresponding dual spaces
(
H1(Ω)

)∗
and

(
W 1,p(Ω)

)∗
. Later we also use

the space H2(Ω) consisting of all functions u ∈ L2(Ω) for which ∇u ∈ L2(Ω;Rd) and
∇2u ∈ L2(Ω;Rd×d). Throughout the paper we use

(
W 1,p(Ω)

)?
to denote the dual of

W 1,p(Ω), which is a Banach space with norm

‖L‖(W 1,p(Ω))? = sup
{∣∣〈L, φ〉∣∣ : φ ∈W 1,p(Ω), ‖φ‖W 1,p(Ω) ≤ 1

}
,

where
〈
·, ·
〉

is the duality pairing between
(
W 1,p(Ω)

)?
and W 1,p(Ω).
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Recall thatL ∈
(
W 1,p(Ω)

)?
if and only if there exist functions f0, f1, . . . , fd ∈ Lp

′
(Ω),

p′ = p
p−1 , such that

〈L, φ〉 =

∫
Ω

f0φ+

d∑
i=1

fi∂xiφdx, ∀φ ∈W 1,p(Ω),

and ‖L‖(W 1,p(Ω))? =
(∑d

i=0 ‖fi‖Lp′ (Ω)

)1/p′

[23, Theorem 10.41]. Note that bounded

linear functionals over W 1,p(Ω) are not distributions.

Remark 3.3. 1. Given the regularity conditions imposed in Definition 3.1, one can show
that the deterministic and the stochastic integrals in (3.1) are all well-defined. Regarding
the stochastic terms

∫ t
0

∫
Ω
σw(w)ϕw dx dWw(s),w = u, v, they are interpreted as in (2.2).

2. For martingale solutions, one prescribes the initial data in terms of probability measures
µu0

, µv0 on L2(Ω), For probabilistic strong solutions (not considered here), one prescribes
the initial data in terms of random variables u0, v0 ∈ L2

ω,x := L2
(
D;L2(Ω)

)
.

3. Part (3) of Definition 3.1 implies that u, v belong to the space L∞(0, T ;L2(Ω)) ∩
C
(
[0, T ];

(
H1(Ω)

)?)
, almost surely. Hence, u, v ∈ Cw([0, T ];L2(Ω)) a.s., i.e., for any

φ ∈ L2(Ω), [0, T ] 3 t 7→
∫

Ω
w(t)φdx is continuous a.s., for w = u, v. We do not

have u, v ∈ C([0, T ];L2(Ω)) (strong time-continuity in L2). As W 1,4(Ω) ⊂ H1(Ω)

with continuous embedding (recall that Ω ⊂ R3 bounded),
(
H1(Ω)

)? ⊂ (
W 1,4(Ω)

)?
with continuous embedding, and therefore u, v ∈ C

(
[0, T ];

(
W 1,4(Ω)

)?)
a.s., which is

consistent with requiring the equations (3.1) to hold for all ϕu, ϕv ∈W 1,4(Ω).

Remark 3.4. A significant difficulty for the analysis of (1.1) is the strong coupling in the
highest derivatives. However, since these terms are zero on the boundary, cf. (1.3), the
nonlinear boundary conditions will “disappear” in the weak martingale formulation.

Our main result is

Theorem 3.5 (existence). Suppose conditions (1.4), (1.5), (1.6), (1.8), (1.7), and (2.3)
hold, and that the initial data u0, v0 are random variables with laws µu0

, µv0 satisfying

(3.2)
∫
L2(Ω)

‖w‖q0L2(Ω) dµw0
(w) <∞, for some q0 > 3, w := u, v.

Then the stochastic cross-diffusion system (1.1), with initial-boundary data (1.2) and (1.3),
possesses a weak martingale solution in the sense of Definition 3.1. Moreover, assuming
σu(0) = σv(0) = 0, this martingale solution is nonnegative.

The proof of Theorem 3.5 is organized into several sections. First, in Section 4, we
construct the Faedo-Galerkin solutions. Energy-type estimates are derived in Section 5.
Convergence of the approximate solutions (along a subsequence) to a limit follows from
these estimates, a temporal translation estimate, cf. 6, and the tightness of the probability
laws generated by the Faedo-Galerkin solutions, cf. Section 7. In Section 8, we show
that the limit is a weak martingale solution. Finally, we prove the nonnegativity of the
constructed martingale solution, cf. Section 9.

4. CONSTRUCTION OF APPROXIMATE SOLUTIONS

In this section, we define precisely the Faedo-Galerkin equations and prove that there
exists a solution to these equations. We begin by fixing a stochastic basis S, cf. (2.1),
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and F0-measurable initial data u0, v0 ∈ L2(D;L2(Ω)), with respective laws µu0
, µv0 on

L2(Ω). We look for approximate solutions obtained from the projection of (1.1), (1.2) and
(1.3) onto a finite dimensional space Xn := Span{e1, . . . , en}.

Let us make precise the basis functions e1, . . . , en. The following discussion is well-
known but is included for the sake of readability. First, we introduce the spaces

L2
0 :=

{
u ∈ L2(Ω) : u :=

1

|Ω|

∫
Ω

u dx = 0

}
,

H2
N :=

{
u ∈ H2(Ω) :

∂u

∂ν
= 0 on ∂Ω

}
,

(H1)?0 :=

{
u ∈

(
H1(Ω)

)?
: u :=

1

|Ω|
〈u, 1〉(H1)?,H1 = 0

}
.

The embeddings H2
N ⊂ H1 ⊂ L2 ∼=

(
L2
)? ⊂ (H1

)? ⊂ (H2
N

)?
are continuous, dense

and compact. We have 〈u, v〉(H1)?,H1 = (u, v) :=
∫

Ω
uv dx for u ∈ L2(Ω), v ∈ H1(Ω).

Similarly, 〈u, v〉(H2
N )?,H2

N
= (u, v) for u ∈ L2(Ω), v ∈ H2

N .
The Neumann-Laplace operator −∆N : H1(Ω) ∩ L2

0(Ω)→ (H1)?0 is defined by

〈−∆Nu, v〉(H1)?,H1 =

∫
Ω

∇u · ∇v dx, u, v ∈ H1(Ω).

The Neumann-Laplace operator is positive and self-adjoint. By the Lax-Milgram theorem
and the Poincaré inequality, the inverse operator (−∆N )−1 : (H1)?0 → H1(Ω) ∩ L2

0 is
compact, positive and symmetric. By the spectral theorem, (−∆N )−1 admits a sequence
of eigenfunctions {wl}∞l=1 that forms a complete orthonormal basis in L2

0. The eigenfunc-
tions of −∆N is e1 := 1/ |Ω|

1
2 and el := wl−1 for l ≥ 2. The sequence {el}∞l=1 is an

orthonormal basis of L2(Ω). The L2 orthogonal projection is denoted by

(4.1) Πn : L2(Ω)→ Xn = Span{e1, . . . , en} , Πnu :=

n∑
l=1

(u, el) el.

Then Πnu→ u in L2(Ω) as n→∞ and ‖Πnu‖L2(Ω) ≤ ‖u‖L2(Ω).
Denoting the corresponding eigenvalues by {λl}∞l=1, we have

(4.2) −∆el = λlel in Ω,
∂el
∂ν

= 0 on ∂Ω,

for each l ∈ N. The eigenvalues form a nondecreasing sequence with λ1 = 0 and λl →∞
as l → ∞. By elliptic regularity theory, each eigenfunction el belongs to H2

N ⊂ L∞(Ω),
el ∈ C∞(Ω), and el is as smooth in Ω as ∂Ω deems possible (e.g. el ∈ C∞ if ∂Ω is C∞).
By [19, Lemma 3.1], the space H2

N is dense in H1(Ω) and in W 1,5(Ω). The same proof
applies to W 1,p(Ω) for any p ∈ [1, 6]. It is further known that {el}∞l=1 forms a basis of
H2
N . Indeed, for any u ∈ H2

N ,

∆Πnu =

n∑
l=1

(u, el) ∆el =

n∑
l=1

(u,−λel) el

=

n∑
l=1

(u,∆el) el =

n∑
l=1

(∆u, el) el = Πn∆u.

As a result, ∆Πnu converges in L2 to ∆u as n → ∞. We can therefore conclude that
Πnu → u in H2

N . Hence, the sequence {el}∞l=1 forms a basis of H2
N . Later we will make
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use of the estimate

‖Πnu‖H2
N
≤ C ‖u‖H2

N
,

for a constant C that is independent of n.
From the weak form of (4.2) with test function v = em,∫

Ω

∇el · ∇em dx = λl

∫
Ω

elem dx = λlδlm, ∀l,m ∈ N;

thus (u, v)H1(Ω) = (1+λl)δlm and ‖el‖H1(Ω) =
√

(u, u)H1(Ω) = (1+λl)
1
2 , i.e., {el}∞l=1

is an orthonormal basis ofL2(Ω) that is orthogonal inH1(Ω). Set ẽl := el/(1+λl)
1
2 . Then

{ẽl}∞l=1 forms an orthonormal basis of H1(Ω). To see this, note that {ẽl}∞l=1 is clearly an
orthonormal sequence in H1(Ω). To prove that it is a basis, it suffices to establish that
(u, ẽl)H1(Ω) = 0 ∀l implies u = 0, for any u ∈ H1(Ω). Suppose (u, ẽl)H1(Ω) = 0 ∀l.
From integration by parts and (4.2),

0 =

∫
Ω

∇u · ∇ẽl dx+

∫
Ω

uẽl dx = (1 + λl)
1
2

∫
Ω

uel dx,

so that (u, el) = 0 ∀l. Since {el}∞l=1 is a basis of L2(Ω), this implies that u = 0.
Let us note that the restriction of Πn to H1(Ω) coincides with Π̃n, the H1 orthogonal

projection onto the space Span{ẽ1, . . . , ẽn}: for any u ∈ H1(Ω),

Π̃nu =

n∑
l=1

(u, ẽl)H1(Ω) ẽl =

n∑
l=1

(1 + λl)
1
2 (u, el) ẽl =

n∑
l=1

(u, el) el = Πnu.

Consequently,

Πnu
n↑∞−→ u in H1(Ω), ‖Πnu‖H1(Ω) ≤ ‖u‖H1(Ω) .

Finally, we will continue to use the symbol Πn for the operator

Πn : X? → Span{e1, . . . , en} , Πnu :=

n∑
l=1

〈u, el〉X?,X el,

where X = H1(Ω) or X = H2
N . The restriction of this operator to L2(Ω) coincides with

the L2 orthogonal projection defined before (4.1). It is easy to verify that

(Πnu, v) = 〈u,Πnv〉X?,X , u ∈ X?, v ∈ X,

as
(∑n

l=1 〈u, el〉X?,X el, v
)

=
∑n
l=1 〈u, el〉X?,X (el, v) =

〈
u,
∑n
l=1 (v, el) el

〉
X?,X

.
We can now define our Faedo-Galerkin approximations

un, vn : [0, T ]→ Xn, un(t) =

n∑
l=1

cnl (t)el, vn(t) =

n∑
l=1

dnl (t)el,(4.3)
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where the coefficients cn = {cnl (t)}nl=1 and dn = {dnl }
n
l=1 are determined such that the

following equations hold (for l = 1, . . . , n):

(dun, el) +Du

(∫
Ω

un(t, x) dx
)

(∇un,∇el) dt

+
(
A11(un, vn)∇un +A12(un, vn)∇vn,∇el

)
dt

= (F (un, vn), el) dt+

n∑
k=1

(
σnu,k(un), el

)
dWu,k(t),

(dvn, el) +Dv

(∫
Ω

vn(t, x) dx
)

(∇vn,∇el) dt

+
(
A21(un, vn)∇un +A22(un, vn)∇vn,∇el

)
dt

= (G(un, vn), el) dt+

n∑
k=1

(
σnv,k(vn), el

)
dWv,k(t),

(4.4)

and, with reference to the initial data,

un(0) = un0 :=

n∑
l=1

cnl (0)el, cnl (0) := (un0 , el)L2(Ω) ,

vn(0) = vn0 :=

n∑
l=1

dnl (0)el, dnl (0) := (v0, el)L2(Ω) .

(4.5)

In (4.4) we have used the following approximations of the noise coefficients:

σnw,k(wn) :=

n∑
l=1

σw,k,l(w
n)el, where

σw,k,l(w
n) := (σw,k(wn), el)L2(Ω) , w = u, v.

(4.6)

Using the Faedo-Galerkin equations (4.4), the regularity un(t), vn(t) ∈ H2
N ⊂ L∞,

and basic properties of the projection operator Πn, we obtain
un(t)− un0

−
∫ t

0

Πn

[
∇ ·

(
Du

(∫
Ω

un(t, x) dx
)
∇un

)]
ds

−
∫ t

0

Πn

[
∇ ·

(
A11(un, vn)∇un +A12(un, vn)∇vn

)]
ds

=

∫ t

0

Πn [F (un, vn)] ds+

∫ t

0

σnu(un) dWn
u (s) in L2(Ω),

vn(t)− vn0

−
∫ t

0

Πn

[
∇ ·

(
Dv

(∫
Ω

vn(t, x) dx
)
∇vn

)]
ds

−
∫ t

0

Πn

[
∇ ·

(
A21(un, vn)∇un +A22(un, vn)∇vn

)]
ds

=

∫ t

0

Πn [G(un, vn)] ds+

∫ t

0

σnv (vn) dWn
v (s) in L2(Ω),

(4.7)

with initial data un0 = Πnu0 and vn0 = Πnv0, where σnw(wn) dWn
w is short-hand notation

for
∑n
k=1 σ

n
w,k(wn) dWw,k, w = u, v. The formulation (4.7) allows us to treat un, vn as
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stochastic processes in Rn, so that one can apply the finite dimensional Itô formula to the
Faedo-Galerkin equations.

Remark 4.1. Our construction of approximate solutions makes use of Neumann boundary
conditions, which are encoded in the space H2

N . The zero-flux boundary conditions (1.3)
are recovered when we pass to the limit to identify the weak martingale solution.

The existence of pathwise solutions to the finite-dimensional problem (4.4), (4.5) is
guaranteed by the next lemma.

Lemma 4.2. For each n ∈ N, the Faedo-Galerkin equations (4.3), (4.4), (4.5) possess a
unique adapted solution (un(t), vn(t)) on [0, T ]. Furthermore, un, vn ∈ C([0, T ];Xn)

a.s., where Xn is defined in (4.1), and E
[
‖wn(t)‖2L2(Ω)

]
.T,n 1, ∀t ∈ [0, T ], w = u, v.

Proof. We look for a stochastic process Cn taking values in Xn × Xn that is a solution to
the following system of stochastic differential equations:

dCn = M(Cn) dt+ Γ(Cn) dWn,(4.8)

where Cn =

(
un

vn

)
, M(Cn) =

(
Au (Cn)
Av (Cn)

)
, and

Au (Cn) = −Πn∇ ·
(
Du

(∫
Ω

un(t, x) dx
)
∇un

)
−Πn∇ ·

(
A11(un, vn)∇un +A12(un, vn)∇vn

)
+ ΠnF (un, vn),

Av (Cn) = −Πn∇ ·
(
Dv

(∫
Ω

vn(t, x) dx
)
∇vn

)
−Πn∇ ·

(
A21(un, vn)∇un +A22(un, vn)∇vn

)
+ ΠnG(un, vn).

Moreover, Γ(Cn) dWn is short-hand notation for
(
σnu (un) dWn

u

σnv (vn) dWn
v

)
. We complete (4.8)

with initial data Cn(0) = Cn0 , where Cn0 is the vector defined by (4.5).
To prove the existence and uniqueness of a pathwise solution to (4.8), we will use [33,

Theorem 3.1.1] (see also Theorem 5.1.3 in [33]), which asks that M and Γ satisfy the
following conditions:

(i) — local weak monotonicity. For all C1 =

(
u1

v1

)
and C2 =

(
u2

v2

)
with ui, vi ∈ Xn

such that ‖uni ‖L2(Ω) , ‖vni ‖L2(Ω) ≤ r, for any r > 0 and i = 1, 2, we have

2
(
M(C1)−M(C2), C1 − C2

)
+ ‖Γ(C1)− Γ(C2)‖2L2(Ω)

≤ K(r) ‖C1 − C2‖2L2(Ω) ,
(4.9)

for a constant K(r) that may depend on r, where (·, ·) denotes the L2(Ω) inner product.

(ii) — weak coercivity. For all C =

(
u
v

)
with u, v ∈ Xn,

(4.10) 2
(
M(C), C

)
+ ‖Γ(C)‖2L2(Ω) ≤ K

(
1 + ‖C‖2L2(Ω)

)
,

for some constant K > 0.

The weak coercivity condition (4.10) is easily verified using the assumption (1.8) and
the global Lipschitz continuity of F,G,Γ.
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Let us verify the weak monotonicity condition (4.9) in some detail. Fix a real number
r > 0 and set u := u1 − u2 and v := v1 − v2, where ui, vi are arbitrary functions in Xn
for which ‖ui‖L2(Ω) , ‖vi‖L2(Ω) ≤ r for i = 1, 2. In view of (1.8) and Young’s inequality,

(4.11)
(
M(C1)−M(C2), C1 − C2

)
+ ‖Γ(C1)− Γ(C2)‖2L2(Ω) =

6∑
i=0

Ii,

where I0 = ‖Γ(C1)− Γ(C2)‖2L2(Ω)

(2.4)
. ‖C1 − C2‖2L2(Ω) and

I1 = −
∑
w=u,v

Dw

(∫
Ω

w1 dx
)(
∇w,∇w

)
,

I2 = −
∑
w=u,v

(
Dw

(∫
Ω

w1 dx
)
−Dw

(∫
Ω

w2 dx
))(
∇w2,∇w

)
,

I3 = −
(
A(u1, v1)

(
∇u
∇v

)
,

(
∇u
∇v

))
,

I4 = −
((
A(u1, v1)−A(u2, v2)

)(∇u2

∇v2

)
,

(
∇u
∇v

))
,

I5 =
(
F (u1, v1)− F (u2, v2), u

)
, I6 =

(
G(u1, v1)−G(u2, v2), v

)
.

Recall that the basis functions el belong to H2
N and H2

N ⊂ W 1,p(Ω) ∩ L∞(Ω), for any
p ∈ [1, 6] (as Ω ⊂ R3 is bounded). Hence, the assumption ‖wi‖L2(Ω) ≤ r implies
‖wi‖H2

N
.r,n 1, for w = u, v and i = 1, 2. In view of (1.7),

|I2| .
∑
w=u,v

‖w1 − w2‖L1(Ω) ‖∇w2‖L2(Ω) ‖∇w‖L2(Ω) ,

and so |I2| .r,n
∑
w=u,v ‖w1 − w2‖L2(Ω). Similarly, given the assumption (1.8),

|I4| .
∑
w=u,v

‖w1 − w2‖L2(Ω)

∑
w=u,v

‖∇w2‖L4(Ω)

∑
wn=u,v

‖∇w‖L4(Ω)

.
∑
w=u,v

‖w1 − w2‖L2(Ω)

∑
w=u,v

‖∇wn2 ‖H2
N

∑
w=u,v

‖∇w‖H2
N
,

and so |I4| .r,n
∑
w=u,v ‖w1 − w2‖L2(Ω). In view of the global Lipschitz continuity of

the reaction functions F and G, cf. (1.4), it follows that

|I5|+ |I6| .
∑
w=u,v

‖w1 − w2‖L2(Ω)

∑
w=u,v

‖wn‖L2(Ω) ,

so that |I5|+ |I6| .r
∑
w=u,v ‖w1 − w2‖L2(Ω). Finally, by (1.7) and (1.8), I1, I3 ≤ 0.

Referring to (4.11), this implies
∑6
i=0 Ii .r,n ‖Cn1 − Cn2 ‖

2
L2(Ω), and (4.9) thus holds.

�

5. BASIC A PRIORI ESTIMATES

We start with a series of basic energy-type estimates.

Lemma 5.1. Let un(t), vn(t), t ∈ [0, T ], satisfy (4.4), (4.5). There is a constant C > 0,
independent of n, such that

E
[
‖un(t)‖2L2(Ω)

]
+ E

[
‖vn(t)‖2L2(Ω)

]
≤ C, ∀t ∈ [0, T ];(5.1)
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E

[∫ T

0

∫
Ω

|∇un|2 dx dt

]
+ E

[∫ T

0

∫
Ω

|∇vn|2 dx dt

]
≤ C;(5.2)

E

[∫ T

0

∫
Ω

|Aij(un, vn)|
(
|∇un|2 + |∇vn|2

)
dx dt

]
≤ C, i, j = 1, 2;(5.3)

E

[
sup
t∈[0,T ]

‖un(t)‖2L2(Ω)

]
+ E

[
sup
t∈[0,T ]

‖vn(t)‖2L2(Ω)

]
≤ C.(5.4)

Proof. By Itô’s formula, dS(wn) = S′(wn) dwn+ 1
2S
′′(wn)

∑n
k=1 (σw,k(wn))

2
dt, w =

u, v, for any C2 function S : R→ R. Hence, with S(w) = 1
2 |w|

2,

1

2

∑
w=u,v

‖wn(t)‖2L2(Ω) +
∑
w=u,v

∫ t

0

Dw

(∫
Ω

wn(t, x) dx
)∫

Ω

|∇wn|2 dx ds

+

∫ t

0

(
A11(un, vn)∇un +A12(un, vn)∇vn,∇un

)
L2(Ω)

ds

+

∫ t

0

(
A21(un, vn)∇un +A22(un, vn)∇vn,∇vn

)
L2(Ω)

ds

=
1

2

∑
w=u,v

‖wn(0)‖2L2(Ω) +

∫ t

0

(
F (un, vn), un

)
L2(Ω)

ds

+

∫ t

0

(
G(un, vn), vn

)
L2(Ω)

ds

+
∑
w=u,v

n∑
k=1

∫ t

0

∫
Ω

wnσnw,k(wn) dx dWw,k

+
1

2

∑
w=u,v

n∑
k=1

∫ t

0

∫
Ω

(
σnw,k(wn)

)2
dx ds

≤ 1

2

∑
w=u,v

‖wn(0)‖2L2(Ω) + C

∫ t

0

(
1 + ‖un(t)‖2L2(Ω) + ‖vn(t)‖2L2(Ω)

)
ds

+
∑
w=u,v

n∑
k=1

∫ t

0

∫
Ω

wnσnw,k(wn) dx dWw,k(s),

(5.5)
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where have put to good use (1.4), (1.5), and also (1.6). By the fundamental assumption
(1.8), the sum of the Aij terms is lower bounded by |A(un, vn)|

(
|∇un|2 + |∇vn|2

)
, so∑

w=u,v

‖wn(t)‖2L2(Ω) +
∑
w=u,v

Cm

∫ t

0

∫
Ω

|∇wn|2 dx ds

+
∑
w=u,v

∫ t

0

∫
Ω

|A(un, vn)| |∇wn|2 dx ds

≤
∑
w=u,v

‖wn(0)‖2L2(Ω) + C

∫ t

0

(
1 +

∑
w=u,v

‖wn(t)‖2L2(Ω)

)
ds

+
∑
w=u,v

n∑
k=1

∫ t

0

∫
Ω

wnσnw,k(wn) dx dWw,k(s).

(5.6)

where we have also used (1.7). Applying E[·] to (5.6) and using the Gronwall inequality,
we arrive at (5.1), (5.2), and (5.3), recalling that the initial data u0, v0 belong to L2.

To prove the final estimate (5.4), we take supt∈[0,T ] and then E[·] in (5.5). Using (5.1)
and the L2 boundedness of the initial data, we end up with the estimate

(5.7)
∑
w=u,v

E

[
sup
t∈[0,T ]

‖wn(t)‖2L2(Ω)

]
≤ C

(
1 +

∑
w=u,v

Iw

)
,

where Iw := E
[

supt∈[0,T ]

∣∣∣∑n
k=1

∫ t
0

∫
Ω
wnσnw,k(wn) dx dWw,k(s)

∣∣∣ ]. Using the BDG
inequality (2.5), the Cauchy-Schwarz inequality, (2.3), Cauchy’s inequality, and (5.1), we
proceed as follows for w = u, v:

|Iw| ≤ CE

(∫ T

0

n∑
k=1

∣∣∣∣∫
Ω

wnσnw,k(wn) dx

∣∣∣∣2 dt
) 1

2


≤ CE

(∫ T

0

(∫
Ω

|wn|2 dx
)( n∑

k=1

∫
Ω

∣∣σnw,k(wn)
∣∣2 dx) dt

) 1
2


≤ CE

( sup
t∈[0,T ]

∫
Ω

|wn|2 dx

) 1
2
(∫ T

0

n∑
k=1

∫
Ω

∣∣σnw,k(wn)
∣∣2 dx dt) 1

2


≤ αE

[
sup
t∈[0,T ]

∫
Ω

|wn|2 dx

]
+ C(α)E

[∫ T

0

n∑
k=1

∫
Ω

∣∣σnw,k(wn)
∣∣2 dx dt]

≤ αE

[
sup
t∈[0,T ]

‖wn(t)‖2L2(Ω)

]
+ C,

(5.8)

for any number α > 0. Combining the inequalities (5.7) and (5.8), and choosing α > 0
small, we arrive at the estimate (5.4). �

Later we will need to convert a.s. convergence into L2 convergence. To this end, the
next lemma—containing improved integrability estimates—is useful.

Corollary 5.2. Let un(t), vn(t), t ∈ [0, T ], satisfy (4.4), (4.5). Suppose u0, v0 belong
to Lq

(
D,F , P ;L2(Ω))

)
with q ∈ (2, q0], cf. (3.2). Then there exists a constant C > 0,
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independent of n, such that

(5.9) E
[

sup
0≤t≤T

‖wn(t)‖qL2(Ω)

]
≤ C, E

[
‖∇wn‖qL2((0,T )×Ω)

]
≤ C, w = u, v,

and

(5.10) E

 ∣∣∣∣∣
∫ T

0

∫
Ω

|Aij(un, vn)|
(
|∇un|2 + |∇vn|2

)
dx dt

∣∣∣∣∣
q
2

 ≤ C, i, j = 1, 2.

Proof. Starting off from (5.5), the following estimate holds for any (ω, t) ∈ D × [0, T ]:∑
w=u,v

sup
0≤τ≤t

‖wn(τ)‖2L2(Ω) ≤
∑
w=u,v

‖wn(0)‖2L2(Ω) + C
∑
w=u,v

∫ t

0

‖wn(s)‖2L2(Ω) ds

+ C
∑
w=u,v

sup
0≤τ≤t

∣∣∣∣∣
n∑
k=1

∫ τ

0

∫
Ω

wnσnw,k(wn) dx dWw,k(s)

∣∣∣∣∣ ,
for some constantC independent of n. Next, we raise both sides of this inequality to power
q/2 and take the expectation, eventually obtaining∑

w=u,v

E
[

sup
0≤τ≤t

‖un(τ)‖qL2(Ω)

]
≤ C

∑
w=u,v

E
[
‖wn(0)‖qL2(Ω)

]
+ C (1 + t)

q
2

+ C
∑
w=u,v

∫ t

0

‖wn(s)‖qL2(Ω) ds+
∑
w=u,v

Iw,

(5.11)

where Iw = E
[

sup0≤τ≤t

∣∣∣∑n
k=1

∫ τ
0

∫
Ω
wnσnw,k(wn) dx dWw,k(s)

∣∣∣ q2 ]. Relying on the

martingale inequality (2.5), we proceed as in (5.8):

Iw ≤ CE

(∫ t

0

n∑
k=1

∣∣∣∣∫
Ω

wnσnw,k(wn) dx

∣∣∣∣2 ds
) q

4


≤ CE

(∫ t

0

(∫
Ω

|wn|2 dx
)( n∑

k=1

∫
Ω

∣∣σnw,k(wn)
∣∣2 dx) ds

) q
4


≤ CE

( sup
τ∈[0,t]

∫
Ω

|wn|2 dx

) q
4
(∫ t

0

n∑
k=1

∫
Ω

∣∣σnk,w(wn)
∣∣2 dx ds) q

4


≤ αE

( sup
τ∈[0,t]

∫
Ω

|wn|2 dx

) q
2

+ C(α)E

(∫ t

0

n∑
k=1

∫
Ω

∣∣σnk,u(wn)
∣∣2 dx ds) q

2


≤ αE

[
sup
τ∈[0,t]

‖wn(τ)‖qL2(Ω)

]
+ CE

[∫ t

0

‖wn(s)‖qL2(Ω) ds

]
+ C,

(5.12)

for any number α > 0. Choosing α small, we conclude from (5.11), (5.12) that∑
w=u,v

E
[

sup
0≤τ≤t

‖wn(τ)‖qL2(Ω)

]
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≤ C
∑
w=u,v

E
[
‖wn(0)‖qL2(Ω)

]
+ C

∑
w=u,v

∫ t

0

E
[
‖wn(s)‖qL2(Ω) ds

]
+ C,

for some constant C > 0 independent of n. An application of Grönwall’s inequality now
yields the sought-after estimate (5.9).

Finally, we use (5.6), the first part of (5.12), and (5.9) to conclude that there is a constant
C > 0, independent of n, such that∑

w=u,v

E

[∣∣∣∣∫ t

0

∫
Ω

|∇wn|2 dx ds
∣∣∣∣
q
2

]
≤ C, w = u, v,

and the second part of (5.9) follows. Similarly, we derive (5.10). �

6. TEMPORAL TRANSLATION ESTIMATES

Given Lemma 5.1, it is easy to see that Ai1(un, vn)∇un and A2j(u
n, vn)∇vn are

uniformly bounded in Lq for some q < 2, for i, j = 1, 2. As a result, we cannot control
the time translation of the approximate solution in the space

(
H1(Ω)

)?
. Although we

expect the exact solution to be continuous in time with values in
(
W 1,4(Ω)

)?
(evident by

inspecting the proof below), the fact that the sequence {el}∞l=1 is not a basis of W 1,4(Ω)—
but it is for H2

N ⊂ W 1,4—we cannot control the projection operator in ‖·‖W 1,4(Ω)—but
we can in ‖·‖H2

N
. To ensure strong L2

t,x compactness of a sequence of Faedo-Galerkin
solutions, we will therefore establish a temporal translation estimate in the larger space(
H2
N

)? ⊃ (
W 1,4(Ω)

)? ⊃ (
H1(Ω)

)?
, which is enough to work out the required L2

t,x

compactness (and tightness).

Lemma 6.1. Extend the Faedo-Galerkin functions un(t), vn(t), t ∈ [0, T ], which satisfy
(4.4) and (4.5), by zero outside of [0, T ]. There exists a constant C = C(T,Ω) > 0,
independent of n, such that

(6.1) E

[
sup

|τ |∈(0,δ)

‖wn(t+ τ)− wn(t)‖(H2
N)

?

]
≤ Cδ1/4, ∀t ∈ [0, T ],

for any sufficiently small δ > 0, w = u, v.

Proof. In what follows, we write 〈·, ·〉 instead of 〈·, ·〉(H2
N )?,H2

N
. We will estimate the

expected value of

I(t, τ) := ‖un(t+ τ, ·)− un(t, ·)‖(H2
N)

?

= sup
{∣∣〈un(t+ τ, ·)− un(t, ·), φ

〉∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1
}

= sup

{∫
Ω

(
un(t+ τ, x)− un(t, x)

)
φ(x) dx : φ ∈ H2

N , ‖φ‖H2
N
≤ 1

}
,

for τ ∈ (0, δ), δ > 0. The same estimate can derived for τ ∈ (−δ, 0).
By (4.3),

I(t, τ) := ‖un(t+ τ, ·)− un(t, ·)‖(H2
N)

? ≤
4∑
i=1

Ii(t, τ),

where

I1(t, τ) =

∥∥∥∥∫ t+τ

t

Πn

[
∇ ·

(
Du

(∫
Ω

un(t, x) dx
)
∇un

)]
ds

∥∥∥∥
(H2

N)
?
,
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I2(t, τ) =

∥∥∥∥∫ t+τ

t

Πn

[
∇ ·

(
A11(un, vn)∇un +A12(un, vn)∇vn

)]
ds

∥∥∥∥
(H2

N)
?
,

I3(t, τ) =

∥∥∥∥∫ t+τ

t

Πn [F (un, vn)] ds

∥∥∥∥
(H2

N)
?
,

I4(t, τ) =

∥∥∥∥∥
n∑
k=1

∫ t+τ

t

σnu,k(un) dWu,k(s)

∥∥∥∥∥
(H2

N)
?

.

Estimate of I2. Setting Ln2,u := Πn

[
∇ ·

(
A11(un, vn)∇un

)]
, let us estimate∥∥∥∥∫ t+τ

t

Ln2,u ds

∥∥∥∥
(H2

N)
?

= sup

{∣∣∣∣〈∫ t+τ

t

Ln2,u ds, φ

〉∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}
= sup

{∣∣∣∣∫ t+τ

t

∫
Ω

Ln2,uφdx ds

∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}
= sup

{∣∣∣∣∫ t+τ

t

∫
Ω

A11(un, vn)∇un · ∇Πnφdx ds

∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}
by bounding the term

I :=

∣∣∣∣∫ t+τ

t

∫
Ω

A11(un, vn)∇un · ∇Πnφdx ds

∣∣∣∣ .
By the generalised Hölder inequality,

I ≤ τ1/4
∥∥∥√|A11(un, vn)|

∥∥∥
L4((0,T )×Ω)

×
∥∥∥√|A11(un, vn)| |∇un|

∥∥∥
L2((0,T )×Ω)

‖∇Πnφ‖L4(Ω) .

Now we use that H2
N is continuously embedded in W 1,p(Ω) ∀p ∈ [1, 6] (recalling that

Ω ⊂ R3 bounded), so

‖∇Πnφ‖L4(Ω) ≤ ‖Πnφ‖W 1,4(Ω) . ‖Πnφ‖H2
N
.

As {el}∞l=1 is a basis of H2
N , ‖Πnφ‖H2

N
. ‖φ‖H2

N
and thus ‖∇Πnφ‖L4(Ω) . ‖φ‖H2

N
.

Using this bound and Young’s product inequality,

I . τ1/4

(∥∥∥√|A11(un, vn)|
∥∥∥2

L4((0,T )×Ω)

+
∥∥∥√|A11(un, vn)| |∇un|

∥∥∥2

L2((0,T )×Ω)

)
‖φ‖H2

N
,

Note that ∥∥∥√|A11(un, vn)|
∥∥∥2

L4((0,T )×Ω)

= ‖A11(un, vn)‖L2((0,T )×Ω) . ‖1 + un + vn‖L2((0,T )×Ω)

.T,Ω 1 + ‖un‖L∞(0,T ;L2(Ω)) + ‖vn‖L∞(0,T ;L2(Ω)) .
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Consequently, after taking the expectation and using (5.3) and (5.4),

E [I] .T,Ω τ1/4 ‖φ‖H2
N
.

Summarising,

E

[
sup

τ∈(0,δ)

sup

{∣∣∣∣〈∫ t+τ

t

Ln2,u ds, φ

〉∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}]
. δ

1
4 ,

i.e.,

E

[
sup

τ∈(0,δ)

∥∥∥∥∫ t+τ

t

Lnu,2 ds

∥∥∥∥
(H2

N)
?

]
. δ

1
4 .

A similar estimate holds for Ln2,v := Πn

[
∇ ·

(
A12(un, vn)∇vn

)]
, and therefore

E
[

sup
0≤τ≤δ

I2(t, τ)

]
. δ1/4, uniformly in t ∈ [0, T ].

Estimate of I1. Set Ln1 := Πn

[
∇ ·

(
Du

(∫
Ω
un(t, x) dx

)
∇un

)]
. Given (1.7),∣∣∣∣Du

(∫
Ω

un(t, x) dx
)∣∣∣∣2 . 1 +

(∫
Ω

|un(t, x)| dx
)2

.Ω 1 + ‖un‖2L∞(0,T ;L2(Ω)) .

Using this, we bound∣∣∣∣〈∫ t+τ

t

Ln1 ds, φ

〉∣∣∣∣ =

∣∣∣∣∫ t+τ

t

∫
Ω

Du

(∫
Ω

un(t, x) dx
)
∇un · ∇Πnφdx ds

∣∣∣∣
by a constant times

τ1/2

(∫ T

0

∫
Ω

(
1 + ‖un‖2L∞(0,T ;L2(Ω))

)
|∇un|2 dx ds

) 1
2

‖∇Πnφ‖L2(Ω)

. τ1/2
(

1 + ‖un‖L∞(0,T ;L2(Ω))

)
‖∇un‖L2((0,T )×Ω) ‖Πnφ‖H1(Ω) .

Recalling that the sequence {el}∞l=1 is an orthogonal basis of H1(Ω), we have

‖Πnφ‖H1(Ω) ≤ ‖φ‖H1(Ω ≤ ‖φ‖H2
N
.

Taking the expectation and using Young’s inequality,

E
[(

1 + ‖un‖L∞(0,T ;L2(Ω))

)
‖∇un‖L2(Ω)

]
. 1 + E

[
‖un‖2L∞(0,T ;L2(Ω))

]
+ E

[
‖∇un‖2L∞(0,T ;L2(Ω))

] (5.2),(5.4)
. 1,

and thus we conclude that

E

[
sup

τ∈(0,δ)

sup

{∣∣∣∣〈∫ t+τ

t

Ln1 ds, φ

〉∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}]
. δ1/2,

i.e.,

E

[
sup

τ∈(0,δ)

I1(t, τ)

]
. δ1/2, uniformly in t ∈ [0, T ].
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Estimate of I3. Set Ln3 := Πn [F (un, vn)]. The function F is linearly growing in both
its arguments, which follows from (1.4), (1.5) and (1.6). Using this, we bound∣∣∣∣〈∫ t+τ

t

Ln3 ds, φ

〉∣∣∣∣ =

∣∣∣∣∫ t+τ

t

∫
Ω

F (un, vn)Πnφdx ds

∣∣∣∣
by a constant times

τ1/2 ‖1 + un + vn‖L2((0,T )×Ω) ‖Πnφ‖L2(Ω)

. τ1/2
(

1 + ‖un‖2L2((0,T )×Ω) + ‖un‖2L2((0,T )×Ω)

)
‖φ‖H2

N
,

where we have used Young’s inequality and that the sequence {el}∞l=1 is an orthonormal
basis of L2(Ω), so that ‖Πnφ‖L2(Ω) ≤ ‖φ‖L2(Ω) ≤ ‖φ‖H2

N
. Hence

E

[
sup

τ∈(0,δ)

sup

{∣∣∣∣〈∫ t+τ

t

Ln3 ds, φ

〉∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}]
. δ1/2,

i.e.,

E

[
sup

τ∈(0,δ)

I3(t, τ)

]
. δ1/2, uniformly in t ∈ [0, T ].

Estimate of I4. Set Ln4 :=
∑n
k=1

∫ t+τ
t

σnu,k(un) dWu,k(s). We bound∣∣∣∣〈∫ t+τ

t

Ln3 ds, φ

〉∣∣∣∣ =

∣∣∣∣∣
∫

Ω

n∑
k=1

∫ t+τ

t

σnu,k(un) dWu,k(s)φdx

∣∣∣∣∣
by a constant times ∥∥∥∥∥

n∑
k=1

∫ t+τ

t

σnu,k(un) dWu,k(s)

∥∥∥∥∥
L2(Ω)

‖φ‖L2(Ω)

where ‖φ‖L2(Ω) ≤ ‖φ‖H2
N

. By the Burkholder-Davis-Gundy inequality (2.5),

E

 sup
τ∈(0,δ)

∥∥∥∥∥
n∑
k=1

∫ t+τ

t

σnu,k(un) dWu,k(s)

∥∥∥∥∥
L2(Ω)


. E

[
n∑
k=1

∫ t+δ

t

∫
Ω

(
σnu,k(un)

)2
dx ds

] 1
2

(2.3)
.Ω δ1/2

(
1 + E

[
‖un‖L∞(0,T ;L2(Ω))

])
,

where E
[
‖un‖L∞(0,T ;L2(Ω))

] (5.4)
. 1. As a result,

E

[
sup

τ∈(0,δ)

sup

{∣∣∣∣〈∫ t+τ

t

Ln4 ds, φ

〉∣∣∣∣ : φ ∈ H2
N , ‖φ‖H2

N
≤ 1

}]
. δ1/2,

i.e.,

E

[
sup

τ∈(0,δ)

I4(t, τ)

]
. δ1/2, uniformly in t ∈ [0, T ].

Summarising our estimates of I1, . . . , I4 concludes the proof of (6.1) for w = u. The
proof for w = v is the same. �
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7. TIGHTNESS AND SKOROKHOD A.S. REPRESENTATIONS

In this section we establish the tightness of the probability measures (laws) generated
by the Faedo-Galerkin solutions {(un, vn,Wn

u ,W
n
v , u

n
0 , v

n
0 )}n≥1. Note that the strong

convergence of un, vn in L2
t,x is a consequence of the spatial H1 bound (5.2) and the

time translation estimate (6.1), recalling that H1 ⊂ L2 ⊂
(
H2
N

)?
. To secure the strong

(almost sure) convergence in the probability variable ω ∈ D, we need to use some results
of Skorokhod linked to tightness (weak compactness) of probability measures and almost
sure representations of random variables.

We choose the following phase space for the probability laws of the Faedo-Galerkin
approximations:

H := Hu ×Hv ×HWu ×HWv ×Hu0 ×Hv0 ,
where

Hu, Hv = L2(0, T ;L2(Ω))
⋂
C
(
0, T ; (H1(Ω))?

)
and (U0 is defined in Section 2)

HWu , HWv = C([0, T ];U0), Hu0 = Hv0 = L2(Ω).

As X1 = L2(0, T ;L2(Ω)), X2 = C
(
0, T ; (H1(Ω))?

)
are Polish spaces, the intersection

spaceX1∩X2 is Polish. It is also a fact that products of Polish spaces are Polish. Therefore,
since C([0, T ];U0) and L2(Ω) are Polish, H is a Polish space. We denote by B(H) the
σ-algebra of Borel subsets ofH, and introduce the measurable mapping

Ψn : (D,F , P )→ (H,B(H)) ,

Ψn(ω) =
(
un(ω), vn(ω),Wn

u (ω),Wn
v (ω), un0 (ω), vn0 (ω)

)
.

We define a probability measure Ln on (H,B(H)) by

(7.1) Ln(A) =
(
P ◦Ψ−1

)
(A) = P

(
Ψ−1
n (A)

)
, A ∈ B(H).

Denote by Lun , Lvn , LWn
u

, LWn
v

, Lun0 , Lvn0 the respective laws of un, vn, Wn
u , Wn

v , un0
and vn0 , which are defined respectively on (Hu,B(Hu)), (Hv,B(Hv)), (HWu ,B(HWu)),
(HWv ,B(HWv )) (Hu0 ,B(Hu0)) and (Hv0 ,B(Hv0)). Thus

Ln = Lun × Lvn × LWn
u
× LWn

v
× Lun0 × Lvn0 .

Remark 7.1. As a cartesian product of topological spaces,H is always equipped with the
product topology and, thus, the Borel σ-algebra B(H) generated by the product topology.
Of course, onH there are two natural σ-algebras: the product of the Borel σ-algebras and
the already introduced B(H) for the product topology. For Polish (and separable metric)
spaces, these two coincide. This implies that coordinatewise measurability and tightness is
the same as joint measurability and tightness, which is important since we use the product
of the Borel σ-algebras in the computations below leading up to the joint tightness and
weak convergence in the product space (H,B(H)).

Given sequences {rm}m≥1 , {νm}m≥1 of positive numbers tending to zero as m→∞
(to be specified below), introduce the set

Zrm,νm :=

{
z ∈L∞

(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
:

sup
m≥1

1

νm
sup

τ∈(0,rm)

‖z(·+ τ)− z‖L∞(0,T−τ ;(H2
N )?) <∞

}
.
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It is easy to see that Zrm,νm is a Banach space under the norm

‖z‖Zrm,νm := ‖z‖L∞(0,T ;L2(Ω)) + ‖w‖L2(0,T ;H1(Ω))

+ sup
m≥1

1

νm
sup

0≤τ≤rm
‖z(·+ τ)− z‖L∞(0,T−τ ;(H2

N)
?
) .

In view of [36], we have

Zrm,νm ⊂⊂ L2(0, T ;L2(Ω)) ∩ C
(
[0, T ]; (H1(Ω))?

)
,

where X ⊂⊂ Y means that X is compactly embedded in Y . Indeed, to conclude this we
need Theorem 5 in [36] on the compactness of functions with values in an intermediate
space. LetX1, X0, X−1 be Banach spaces with continuous embeddings X1 ⊂ X0 ⊂ X−1

and X1 compactly embedded in X0. Then [36, Theorem 5] ensures that Z is relatively
compact in Lp(0, T ;X0), with p ∈ [1,∞), if Z is bounded in Lp(0, T ;X1) and, as τ → 0,
there holds that ‖u(·+ τ)− u‖Lp(0,T−τ ;X−1) → 0, uniformly for u ∈ Z , if p is finite.
If p = ∞, then the relative compactness is in C([0, T ];X0). First, we will apply this
result with X1 = H1(Ω), X0 = L2(Ω), X−1 =

(
H2
N

)?
and p = 2, which implies

relative compactness in L2(0, T ;L2(Ω)). Second, we will apply it with X1 = L2(Ω),
X0 = (H1(Ω))?, X−1 =

(
H2
N

)?
and p = ∞, to conclude relative compactness in the

space C
(
[0, T ]; (H1(Ω))?

)
.

Now we verify that the laws Ln, cf. (7.1), of the Faedo-Galerkin solutions are tight.

Lemma 7.2. The sequence {Ln}n≥1 of probability measures is (uniformly) tight, and
therefore weakly compact, on the phase space (H,B(H)).

Proof. For each δ > 0, we need to produce compact sets

C1,δ ⊂ L2(0, T ;L2(Ω))
⋂
C
(
0, T ; (H1(Ω))?

)
,

and C2,δ ⊂ C([0, T ];U0), C3,δ ⊂ L2(Ω),

such that Ln (Cδ) = P ({Φn ∈ Cδ}) > 1 − δ, where Cδ is short-hand notation for
(C1,δ)

2×(C2,δ)
2×(C3,δ)

2. This follows if we show thatLn
(
Cc
i,δ

)
≤ δ/6 for i = 1, 2, 3.

To this end, pick the sequences {rm}∞m=1, {νm}∞m=1 such that

(7.2)
∞∑
m=1

r
1/4
m

νm
<∞,

and take
C1,δ :=

{
z ∈ Zrm,νm : ‖z‖Zrm,νm ≤ R1,δ

}
,

where R1,δ > 0 is a number to be determined later. In view of [36, Theorem 5], C1,δ is a
compact subset of L2(0, T ;L2(Ω)). For w = u, v, we have

P
({
ω ∈ D : wn(ω) /∈ C1,δ

})
≤ P

({
ω ∈ D : ‖wn(ω)‖L∞(0,T ;L2(Ω)) > R1,δ

})
+ P

({
ω ∈ D : ‖wn(ω)‖L2(0,T ;H1(Ω)) > R1,δ

})
+ P

({
ω ∈ D : sup

τ∈(0,rm)

‖wn(·+ τ)− wn‖L∞(0,T−τ ;(H2
N)

?
) > R1,δ νm

})
=: P1,1 + P1,2 + P1,3 (for any m ≥ 1).
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Repeated applications of the Chebyshev inequality supply

P1,1 ≤
1

R1,δ
E
[
‖wn(ω)‖L∞(0,T ;L2(Ω))

]
≤ C

R1,δ
,

P1,2 ≤
1

R1,δ
E
[
‖wn(ω)‖L2(0,T ;H1(Ω))

]
≤ C

R1,δ
,

P1,3 ≤
∞∑
m=1

1

R1,δ νm
E
[

sup
0≤τ≤rm

‖wn(·+ τ)− wn‖L∞(0,T−τ ;(H2
N)

?
)

]

≤ C

R1,δ

∞∑
m=1

r
1/4
m

νm

(7.2)
≤ C

R1,δ
,

where we have used (5.2), (5.4), and (6.1). From this, we can choose R1,δ such that

Lwn
(
Cc

1,δ

)
= P ({ω ∈ D : wn(ω) /∈ C1,δ}) ≤

δ

6
, w = u, v.

Regarding the finite-dimensional approximations of the Wiener processes, we know that
the finite series Wn

u ,W
n
v are P -a.s. convergent in C([0, T ];U0) as n → ∞. This implies

that the laws LWn
u
,LWn

v
converge weakly. Now we use Prokhorov’s weak compactness

characterization (see e.g. [11, Theorem 2.3])) to conclude the tightness of
{
LWn

u

}
n≥1

and{
LWn

u

}
n≥1

; thus, for any δ > 0, there exists a compact set C2,δ in C([0, T ];U0) such that

LWn
w

(
Cc

2,δ

)
= P ({ω ∈ D : Wn

w(ω) /∈ C2,δ}) ≤
δ

6
, w = u, v.

Similarly, the initial data approximations un0 , v
n
0 are P -a.s. convergent inL2(Ω) as n→∞,

and so the laws Lun0 ,Lvn0 converge weakly (with Lun0 ⇀ µu0 , Lvn0 ⇀ µv0 ). As a result,
these laws are tight and thus

Lwn0 (C3,δ) = P ({ω ∈ D : wn0 (ω) /∈ C3,δ}) ≤
δ

6
, w = u, v.

Summarising, {Ln}n≥1 is a tight sequence of probability measures. By Prokhorov’s
theorem [11, Theorem 2.3], this implies the weak compactness of {Ln}n≥1. �

As the probability measures Ln linked to the Faedo-Galerkin approximations form a
sequence that is weakly compact on (H,B(H)), we deduce that Ln converges weakly to a
probability measure L onH, up to a subsequence that we do not relabel. We can then apply
the Skorokhod representation theorem (see e.g. [11, Theorem 2.4]) to deduce the existence
of a new (complete) probability space (D̃, F̃ , P̃ ) and new random variables

Ψ̃n =
(
ũn, ṽn, W̃n

u , W̃
n
v , ũ

n
0 , ṽ

n
0

)
, Ψ̃ =

(
ũ, ṽ, W̃u, W̃v, ũ0, ṽ0

)
,(7.3)

with respective joint laws L̃n = Ln and L̃ = L, such that Ψ̃n → Ψ̃ almost surely in the
topology of X , i.e., the following convergences hold P̃ -almost surely as n→∞:

ũn → ũ, ṽn → ṽ in L2(0, T ;L2(Ω)),

ũn → ũ, ṽn → ṽ in C
(
[0, T ];

(
H1(Ω)

)?)
,

W̃n
u → W̃u, W̃n

v → W̃v in C([0, T ];U0),

ũn0 → ũ0, ṽn0 → ṽ0 in L2(Ω).

(7.4)

By equality of the laws, the estimates in Lemma 5.1 and Corollary 5.2 continue to
hold for the new random variables w̃n (w = u, v). In fact, all statistical estimates for the
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Faedo-Galerkin approximations wn are valid for the “tilde” approximations w̃n defined
on the new probability space (D̃, F̃ , P̃ ). Recall wn ∈ C([0, T ];Xn) P -a.s., where Xn =
Span{e1, . . . , en} and each el belongs to H2

N ⊂ L∞ Besides, by elliptic regularity, el
is smooth in Ω. Since wn and w̃n have the same laws Lwn and C([0, T ];Xn) is a Borel
subset of L2(0, T ;L2(Ω))

⋂
C
(
0, T ; (H1(Ω))?

)
, it follows that Lwn

(
C([0, T ];Xn)

)
= 1

and w̃n ∈ C([0, T ];Xn) P̃ -a.s., w = u, v. Moreover, we have

Lemma 7.3. Let ũn(t), ṽn(t), W̃n
u (t), W̃n

v (t), ũn0 , ṽn0 be the Skorokhod representations of
the Faedo-Galerkin approximations, cf. (7.3). There exists a constant C > 0, independent
of n, such that

(7.5) Ẽ
[
‖w̃n‖qL∞(0,T ;L2(Ω)

]
≤ C, Ẽ

[
‖∇w̃n‖qL2((0,T )×Ω)

]
≤ C, w = u, v,

for any q ∈ [2, q0], see (3.2) and Corollary 5.2 for the appearance of q0.

Proof. We prove the first estimate in (7.5), as the other ones can be proved in the same
way. Let f : X1 → X2 be a continuous injection between Polish spaces. According to
the Lusin-Suslin theorem, f(X1) is a Borel set in X2. Since X1 := L∞(0, T ;L2(Ω)) is
continuously embedded inX2 := L2(0, T ;L2(Ω)), we can apply the Lusin-Suslin theorem
to ensure that X1 is a Borel set in X2. Hence, as µ := Lwn is a measure on X2 and
|·|q : X2 → R is continuous (⇒ Borel measurable), the integration

∫
X1
|w|q dµ(w) makes

sense. Consequently, Ẽ
[
‖w̃n‖qL∞t L2

x

]
=
∫
X1
|w|q dµ(w) = E

[
‖wn‖qL∞t L2

x

]
≤ C. �

Recalling (7.3), consider the associated stochastic basis

(7.6) S̃n =
(
D̃, F̃ ,

{
F̃nt
}
t∈[0,T ]

, P̃ , W̃n
u , W̃

n
v

)
,

where F̃nt = σ
(
σ
(
Ψ̃n

∣∣
[0,t]

)⋃{
N ∈ F̃ : P̃ (N) = 0

})
. The filtration

{
F̃nt
}
n≥1

is the

smallest one making all the “tilde processes” ũn, ṽn, W̃n
u , W̃n

v , ũn0 , and ṽn0 adapted.
A cylindrical Wiener process is fully determined by its law. By equality of the laws

and Lévy’s martingale characterization of a Wiener process, see [11, Theorem 4.6], we
conclude that W̃n

u and W̃n
v are cylindrical Wiener processes with respect to their canonical

filtrations. Furthermore, we claim that W̃n
u , W̃n

v are cylindrical Wiener processes relative
to the filtration

{
F̃nt
}
n≥1

defined in (7.6). To prove this, we must verify that W̃n
w(t) is F̃nt

measurable and W̃n
w(t)− W̃n

w(s) is independent of F̃ns , for all 0 ≤ s < t ≤ T , w = u, v.
These properties are simple consequences of the fact that W̃n

w and Wn
w have the same laws

and that Wn
w(t) is Ft measurable and Wn

w(t)−Wn
w(s) is independent of Fs.

Hence, there exist sequences
{
W̃n
u,k

}
k≥1

,
{
W̃n
v,k

}
k≥1

of mutually independent real-

valued Wiener processes adapted to
{
F̃nt
}
t∈[0,T ]

such that

(7.7) W̃n
w =

∑
k≥1

W̃n
w,kψk, for w = u, v,

recalling that
{
ψk
}
k≥1

is the basis of U and the series converge in U0 ⊃ U (cf. Sect. 2).
In what follows, we will use the following n-truncated sums

W̃ (n)
w =

n∑
k=1

W̃n
w,kψk, w = u, v,

which converges to W̃w in C([0, T ];U0), P̃ -almost surely; the convergence claim follows
from (7.4) and standard arguments (see e.g. [11, Section 4.2.2]).
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Arguing as in [8], using (4.7) and equality of the laws, the following equations hold
P̃ -almost surely on the new probability space

(
D̃, F̃ , P̃

)
:

ũn(t)−
∫ t

0

Πn

[
∇ ·

(
Du

(∫
Ω

ũn(t, x) dx
)
∇ũn

)]
ds

−
∫ t

0

Πn

[
∇ ·

(
A11(ũn, ṽn)∇ũn +A12(ũn, ṽn)∇ṽn

)]
ds

= ũn0 +

∫ t

0

Πn [F (ũn, ṽn)] ds+

∫ t

0

σnu(ũn) dW̃ (n)
u (s) in L2(Ω),

ṽn(t)−
∫ t

0

Πn

[
∇ ·

(
Dv

(∫
Ω

ṽn(t, x) dx
)
∇ṽn

)]
ds

−
∫ t

0

Πn

[
∇ ·

(
A21(ũn, ṽn)∇ũn +A22(ũ, ṽ)∇ṽn

)]
ds

= ṽn0 +

∫ t

0

Πn [G(ũn, ṽn)] ds+

∫ t

0

σnv (ṽn) dW̃ (n)
v (s) in L2(Ω),

(7.8)

for any t ∈ [0, T ], where σnw(w̃n) dW̃
(n)
w =

∑n
k=1 σ

n
w,k(w̃n) dW̃n

w,k, w = u, v. Let us
sketch the proof of the first equation in (7.8), with the second one following in the same
way. Consider the first equation in (4.7) and introduce the L2(Ω)-valued stochastic process

In(ω, t, x) := un(t)− un0 −
∫ t

0

Πn

[
∇ ·

(
Du

(∫
Ω

un(t, x) dx
)
∇un

)]
ds

−
∫ t

0

Πn

[
∇ ·

(
A11(un, vn)∇un +A12(un, vn)∇vn

)]
ds

−
∫ t

0

Πn [F (un, vn)] ds−
∫ t

0

σnu(un) dWn
u (s).

Replacing un, vn, un0 ,W
n
u by ũn, ṽn, ũn0 , W̃

n
u , we denote the resulting process by Ĩn. Let

us also introduce the random variables

In(ω) = ‖In(ω, ·, ·)‖2L2(0,T ;L2(Ω)) , Ĩn(ω) =
∥∥∥Ĩn(ω, ·, ·)

∥∥∥2

L2(0,T ;L2(Ω))
.

By (4.7), In = 0 a.s. and thus E
[
In

1+In

]
= 0. Recalling that

∫ t
0
σnu(un) dWn

u (s) =∑n
k=1

∫ t
0
σnu,k(un) dWn

u,k, let us replace the integrand σnu,k(un) by the time-regularised

function σδu,k(t) = 1
δ

∫ t
0
e−

t−s
δ σnu,k(un(s)) ds, for δ > 0, in which case the stochastic

integral can be viewed as a continuous function of the Wiener process Wn
u,k (after an

integration by parts). Denote by Iδn the analog of In with σnu,k(un) replaced by σδu,k. We

use a similar definition of Ĩδn. It is now possible to write Iδn
1+Iδn

= L(Ψn), Ĩδn
1+Ĩδn

= L(Ψ̃n),
for some continuous function L : X → R. By equality of the laws,

Ẽ

[
Ĩδn

1 + Ĩδn

]
=

∫
X
L(Ψ) dLn(Ψ) = E

[
Iδn

1 + Iδn

]
.

Sending δ ↓ 0 yields Ẽ
[
Ĩn

1+Ĩn

]
= 0, implying that the first equation in (7.8) holds.
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The next estimate was not stated in Lemma 7.3, but it can be derived from the “tilde”
equations in (7.8), following the proofs of (5.3) and (5.10). For any q ∈ [2, q0],

(7.9) E

 ∣∣∣∣∣
∫ T

0

∫
Ω

|Aij(ũn, ṽn)|
(
|∇ũn|2 + |∇ṽn|2

)
dx dt

∣∣∣∣∣
q
2

 ≤ C, i, j = 1, 2,

where the constant C is independent of n.

8. PASSING TO THE LIMIT IN THE FAEDO-GALERKIN EQUATIONS

A stochastic basis is needed for the limit of the Skorokhod representations, i.e., for the
variables Ψ̃ :=

(
ũ, ṽ, W̃u, W̃v, ũ0, ṽ0

)
, cf. (7.3): namely,

(8.1) S̃ =
(
D̃, F̃ ,

{
F̃t
}
t∈[0,T ]

, P̃ , W̃u, W̃v

)
,

where F̃t = σ
(
σ
(
Ψ̃
∣∣
[0,t]

)⋃{
N ∈ F̃ : P̃ (N) = 0

})
. Recall that W̃n

u , W̃n
v are cylindrical

Wiener processes with respect to S̃n, see (7.6) and (7.7). Since W̃n
u → W̃u, W̃n

v → W̃v

in the sense of (7.4), it is more or less obvious that also the limits W̃u, W̃v are cylindrical
Wiener processes with respect to S̃ , see for example [32, Lemma 9.9] or [13, Proposition
4.8]. As a result, there exist sequences

{
W̃u,k

}
k≥1

,
{
W̃v,k

}
k≥1

of real-valued Wiener

processes adapted to the filtration
{
F̃t
}
t∈[0,T ]

, cf. (8.1), such that W̃u =
∑
k≥1 W̃u,kψk

and W̃v =
∑
k≥1 W̃v,kψk.

Given the n-independent estimates in Lemma 7.3 and the almost sure convergences in
(7.4), we deduce the following result:

Lemma 8.1 (convergence). The limits ũ, ṽ, W̃u, W̃v , ũ0 and ṽ0, see (7.3) and also (7.4),
satisfy

ũ, ṽ ∈ L2
(
D̃, F̃ , P̃ ;L2(0, T ;H1(Ω))

)⋂
L2
(
D̃, F̃ , P̃ ;L∞(0, T ;L2(Ω))

)⋂
L2
(
D̃, F̃ , P̃ ;C

(
[0, T ];

(
H1(Ω)

)?))
,

and
√
|Aij(ũ, ṽ)|∇ũ ∈ L2

(
D̃, F̃ , P̃ ;L2(0, T ;L2(Ω))

)
, for i, j = 1, 2.

Let ũn(t), ṽn(t), W̃n
u (t), W̃n

v (t), ũn0 , ṽn0 be the Skorokhod representations of the Faedo-
Galerkin approximations, cf. (7.3). Then, passing if necessary to subsequence as n→∞,

(i) ũn → ũ, ṽn → ṽ in L2
(
D̃, F̃ , P̃ ;L2(0, T ;L2(Ω))

)
,

(ii) ũn ⇀ ũ, ṽn ⇀ ṽ in L2
(
D̃, F̃ , P̃ ;L2(0, T ;H1(Ω))

)
,

(iii) ũn
?
⇀ ũ, ṽn

?
⇀ ṽ in L2

(
D̃, F̃ , P̃ ;L∞(0, T ;L2(Ω))

)
,

(iv) ũn → ũ, ṽn → ṽ in L2
(
D̃, F̃ , P̃ ;C

(
[0, T ];

(
H1(Ω)

)?))
,

(v)
√
|Ai1(ũn, ṽn)|∇ũn ⇀

√
|Ai1(ũ, ṽ)|∇ũ

in L2
(
D̃, F̃ , P̃ ;L2(0, T ;L2(Ω))

)
, i = 1, 2,

(vi)
√
|Ai2(ũn, ṽn)|∇ṽn ⇀

√
|Ai2(ũ, ṽ)|∇ṽ

in L2
(
D̃, F̃ , P̃ ;L2(0, T ;L2(Ω))

)
, i = 1, 2,

(vii) W̃n
u → W̃u, W̃n

v → W̃v in L2
(
D̃, F̃ , P̃ ;C([0, T ];U0)

)
,

(viii) ũn0 → ũi,0, ṽn0 → ṽ0 in L2
(
D̃, F̃ , P̃ ;L2(Ω)

)
.

(8.2)
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Proof. The strong convergences (i) follow from (7.4), the moment estimate (7.5) with
q > 2, and Vitali’s convergence theorem. The strong convergences (vii) and (viii) follow in
a similar way. The weak convergences (ii), (iii) are consequences of the n-uniform bounds
on ũn, ṽn in L2

ωL
2
tH

1
x and in L2

ωL
∞
t L

2
x, cf. (7.5), passing if necessary to a subsequence.

Part (iv) is a consequence of (7.4) and Vitali’s convergence theorem, given the moment
bounds (with some q > 2)

Ẽ ‖w‖q
C
(

[0,T ];(H1(Ω))?
) . Ẽ

[
‖w‖q−1/2

L∞(0,T ;L2(Ω)) ‖w‖
1/2

C
(

[0,T ];(H1(Ω))?
)] . 1,

for w = ũn, ṽn, ũ, ṽ, where we have used that w is bounded in L2q−1
ω L∞t L

2
x, see (7.5).

Let us verify part (v). Set an :=
√
|Ai2(ũn, ṽn)|, bn := ∇ũn, cn := anbn and

a :=
√
|Ai2(ũ, ṽ)|, b := ∇ũ, c = ab. By (ii), bn ⇀ b in L2

ω,t,x. By (i), passing to
a subsequence (not relabelled), we may as well assume that ũn → ũ, ṽn → ṽ almost
everywhere in (ω, t, x). By the global Lipschitz continuity of Ai2(·, ·), this transfers to
an → a almost everywhere in (ω, t, x). Besides, since ũn and ṽn are uniformly bounded
in L2

ω,t,x, an is uniformly bounded in L4
ω,t,x. Vitali’s convergence theorem then implies

that an → a in L2
ω,t,x. Next, given the bound (7.9) (with q = 2), cn converges weakly

to some limit c in L2
ω,t,x, passing if necessary to a subsequence (not relabelled). At the

same time, an → a and bn ⇀ b in L2
ω,t,x, and so the strong-weak product anbn converges

weakly to ab in L1
ω,t,x, which allows us to identify the weak limit c ∈ L2

ω,t,x as ab, i.e.,
cn = anbn ⇀ c = ab in L2

ω,t,x. This proves (v). The verification of (vi) is similar. �

Our final step is to pass to the limit in the Faedo-Galerkin equations (7.8).

Lemma 8.2 (limit equations). The limits ũ, ṽ, W̃u, W̃v , ũ0, ṽ0 of the Skorokhod a.s. repre-
sentations of the Faedo-Galerkin approximations—constructed in (7.3), (7.4)—satisfy the
following equations P̃ -a.s., for all t ∈ [0, T ]:∫

Ω

ũ(t)ϕu dx−
∫

Ω

ũ0 ϕu dx

+

∫ t

0

∫
Ω

(
Du

(∫
Ω

ũ(t, x) dx
)
∇ũ+A11(ũ, ṽ)∇ũ+A12(ũ, ṽ)∇ṽ

)
· ∇ϕu dx ds

=

∫ t

0

∫
Ω

F (ũ, ṽ)ϕu dx ds+

∫ t

0

∫
Ω

σu(ũ)ϕu dx dW̃u(s),

(8.3)

∫
Ω

ṽ(t)ϕv dx−
∫

Ω

ṽ0ϕv dx

+

∫ t

0

∫
Ω

(
Dv

(∫
Ω

ṽ(t, x) dx
)
∇ṽ +A21(ũ, ṽ)∇u+A22(ũ, ṽ)∇v

)
· ∇ϕv dx ds

=

∫ t

0

∫
Ω

G(ũ, ṽ)ϕv dx ds+

∫ t

0

∫
Ω

σv(ṽ)ϕv dx dW̃v(s),

(8.4)

for all ϕu, ϕv ∈W 1,4(Ω), where the laws of ũ0 and ṽ0 are µu0
and µv0 , respectively.

Proof. We will focus on (8.3). The second equation (8.4) can be treated similarly. First,
recall that the space H2

N is dense in W 1,4(Ω). Therefore, it is sufficient to establish (8.3)
under the assumption that ϕu ∈ H2

N ⊂ L∞. Indeed, given the bounds in Lemma 8.1, all
terms in (8.3)—except for cross-diffusion and the stochastic integral—are bounded by a
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(ω-dependent) constant times the L2(Ω) or H1(Ω) norm of ϕu. Via the BDG inequality
(2.5), the stochastic integral is bounded in expectation by a constant times the L2(Ω) norm
of ϕu. Finally, asA11(ũ, ṽ)∇ũ andA12(ũ, ṽ)∇ṽ can be bounded in L4/3((0, T )×Ω), the
cross-diffusion terms are bounded by a (ω-dependent) constant times ‖ϕ‖W 1,4(Ω).

Fix ϕu ∈ H2
N , and write (8.3) symbolically as Iu(ω, t) = 0, for (ω, t) ∈ D̃ × (0, T ).

As in [12], the strategy of the proof is to demonstrate that

‖Iu‖2L2(D̃×(0,T )) = Ẽ
∫ T

0

(Iu(ω, t))
2
dt = 0,

which would imply that Iu = 0 for dP̃ × dt-a.e. (ω, t) ∈ D̃ × (0, T ) and thus, by the
Fubini theorem, Iu = 0 P̃ -a.s., for a.e. t ∈ (0, T ). Since the simple functions are dense in
L2, it enough to prove that

(8.5) E

[∫ T

0

1Z(ω, t)Iu(ω, t)

]
dt = 0,

for a measurable set Z ⊂ D̃ × (0, T ), where 1Z(ω, t) ∈ L∞
(
D̃ × (0, T ); d̃P × dt

)
denotes the characteristic function of Z.

The Faedo-Galerkin equations (7.8) holds in L2(Ω), and hence pointwise in x. Mul-
tiplying the first (pointwise) equation with ϕu ∈ H2

N and then doing spatial integration
by parts, using the fact that ũn, ṽn ∈ H2

N—and thus ∂ũn

∂ν = ∂ṽn

∂ν = 0 on ∂Ω—and basic
properties of the projection operator Πn, we eventually arrive at∫

Ω

ũn(t)ϕu dx+

∫ t

0

∫
Ω

Du

(∫
Ω

ũn(t, x) dx
)
∇ũn · ∇Πnϕu dx ds

+

∫ t

0

∫
Ω

(
A11(ũn, ṽn)∇ũn +A12(ũn, ṽn)∇ṽn

)
· ∇Πnϕu dx ds

=

∫
Ω

ũn0ϕu dx+

∫ t

0

∫
Ω

F (ũn, ṽn)Πnϕu dx ds

+

∫ t

0

∫
Ω

σnu(ũn)Πnϕu dx dW̃
(n)
u (s).

(8.6)

We multiply (8.6) with 1Z(ω, t), integrate the result over (ω, t), and then we pass to the
limit n→∞ in each term separately.

By part (viii) of (8.2), we obtain Ẽ
∫ T

0

∫
Ω
1Z ũ

n
0ϕu dx

n↑∞−→ Ẽ
∫ T

0

∫
Ω
1Z ũ0ϕu dx. Recall

that un0 = Πnu0 → u0 in L2(Ω) and u0 ∼ µu0
(cf. Theorem 3.5 for the appearance of

µu0
). Hence, as the laws of un0 and ũn0 are the same, we conclude that ũ0 ∼ µu0

.
In what follows, we will make repeated use of the following simple fact: If Xn ⇀ X

in Lp(D̃ × (0, T )), p ∈ [1,∞), then
∫ t

0
Xn ds ⇀

∫ t
0
X ds in Lp(D̃ × (0, T )) as well.

Furthermore, we will use that

1Z(ω, t)ϕu(x) ∈ L∞
(
D̃ × (0, T )× Ω

)
=: L∞ω,t,x,

1Z(ω, t)∇ϕu(x) ∈ L2
(
D̃ × (0, T )× Ω

)
=: L2

ω,t,x.

The weak convergence in L2
ω,t,x of ∇̃un, cf. (8.2)–(ii), implies that

Ẽ

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

Du

(∫
Ω

ũn(t, x) dx
)
∇ũn · ∇Πnϕu dx ds

)
dt

]
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n↑∞−→ Ẽ

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

Du

(∫
Ω

ũ(t, x) dx
)
∇ũ · ∇ϕu dx ds

)
dt

]
,

where we have used thatDu

(∫
Ω
ũn(·, x) dx

)
∇Πnϕu

n↑∞−→ Du

(∫
Ω
ũ(·, x) dx

)
∇ϕu strongly

in L2
ω,t,x, recalling ∇Πnϕu → ∇ϕu in L2

x and noting that the strong L2
ω,t,x convergence

of ũn, cf. (8.2)–(i), and (1.7) imply the strong L2
ω,t convergence of Du

(∫
Ω
ũn(·, x) dx

)
.

Regarding the cross-diffusion terms, set (for w = u, v and i = 1, 2)

an :=
√
|A1i(ũn, ṽn)|, bn := ∇Πnϕu, cn := anbn,

a :=
√
|A1i(ũ, ṽ)|, b := ∇ϕu, c := ab,

dn =
√
|A1i(ũn, ṽn)|∇w̃n, d =

√
|A1i(ũ, ṽ)|∇w̃

and write
A1i(ũ

n, ṽn)∇w̃n · ∇Πnϕu = cn · dn.
Recalling that dn is weakly convergent to d in L2

ω,t,x, cf. (8.2)–(v), we need to prove
that cn = anbn is strongly convergent to c = ab in L2

ω,t,x, in order to conclude that
cn · dn ⇀ c · d in L1

ω,t,x. First, bn → b in L4:

‖b− bn‖L4(Ω) ≤ ‖ϕu −Πnϕu‖W 1,4(Ω) . ‖ϕu −Πnϕu‖H2
N

n↑∞−→ 0,

where we have used that H2
N ⊂ W 1,4(Ω) and {el}∞l=1 is a basis of H2

N . We also claim
that an → a in L4

ω,t,x. To see this, note that (8.2)–(i) and (1.8) imply

a2
n = |A1i(ũ

n, ṽn)| → |A1i(ũ, ṽ)| = a2 in L2
ω,t,x.

Thus, by the Brezis-Lieb lemma,∥∥a4
n

∥∥4

L4
ω,t,x

n↑∞−→
∥∥a4
∥∥4

L4
ω,t,x

.

Passing to a subsequence if necessary, we may as well assume that an → a a.e., and
further note that an is uniformly bounded in L4

ω,t,x, because ũn, ṽn are uniformly bounded
in L2

ω,t,x and A1i(·, ·) is globally Lipschitz continuous, cf. (1.8). Another application of
the Brezis-Lieb lemma then guarantees that an → a in L4

ω,t,x as n → ∞. Summarising,
cn = anbn → c = ab in L2

ω,t,x, dn ⇀ d in L2
ω,t,x, and thus cn · dn ⇀ c · d in L1

ω,t,x

As a result of
∫

Ω
cn · dn dx ⇀

∫
Ω
c · d dx in L1

ω,t, we obtain (w = u, v, i = 1, 2)

E

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

A1i(ũ
n, ṽn)∇w̃n · ∇Πnϕu dx ds

)
dt

]
n↑∞−→ E

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

A1i(ũ, ṽ)∇w̃ · ∇ϕu dx ds
)
dt

]
.

Using that F is globally Lipschitz, cf. (1.4) and (1.5), and the strong convergences
ũn → ũ, ṽn → ṽ in L2

ω,t,x, cf. (8.2)–(i), and recalling Πnϕu → ϕu in L2(Ω), we obtain

E

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

F (ũn, ṽn)Πnϕu dx ds

)
dt

]
n↑∞−→ E

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

F (ũ, ṽ)ϕu dx ds

)
dt

]
.
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For the stochastic integral, we will use Lemma 2.1 to prove that

(8.7)
∫ t

0

σnu(ũn) dW̃ (n)
u (s)

n↑∞−→
∫ t

0

σu(ũ) dW̃u(s) in L2
(
0, T ;L2(Ω)

)
,

in probability (with respect to P̃ ). Since W̃ (n)
u → W̃u in C([0, T ];U0), P̃ -a.s. and thus in

probability, cf. (7.4), it remains to prove that

(8.8) σnu(ũn)→ σu(ũ) in L2
(
0, T ;L2(U;L2(Ω))

)
, P̃ -almost surely.

Clearly, ∫ T

0

‖σu(ũ)− σnu(ũn)‖2L2(U;L2(Ω)) dt

≤
∫ T

0

‖σu(ũ)− σu(ũn)‖2L2(U;L2(Ω)) dt

+

∫ T

0

‖σu(ũ)− σnu(ũ)‖2L2(U;L2(Ω)) dt =: I1 + I2.

(8.9)

By (2.4) and (7.4), we easily obtain

(8.10) I1
n↑∞−→ 0, P̃ -almost surely.

For the I2-term, we proceed as follows:

I2 =

∫ T

0

∑
k≥1

∥∥σu,k(ũ)− σnu,k(ũ)
∥∥2

L2(Ω)
dt

=

∫ T

0

∑
k≥1

∥∥∥∥∥σu,k(ũ)−
n∑
l=1

σu,k,l(ũ)el

∥∥∥∥∥
2

L2(Ω)

dt

=

∫ T

0

∑
k≥1

∥∥σu,k(ũ)−Πn

(
σu,k(ũ)

)∥∥2

L2(Ω)
dt =:

∫ T

0

Σn(t) dt,

where σu,k, σu,k,l are defined respectively in (2.2), (4.6).
The integrand can be dominated by an L1

t := L1(0, T ) function (P̃ -a.s.):

0 ≤ Σn(t) ≤ 4
∑
k≥1

‖σu,k(ũ(t))‖2L2(Ω) = 4 ‖σu(ũ(t))‖2L2(U;L2(Ω))

(2.4)
≤ C

(
1 + ‖ũ(t)‖2L2(Ω)

)
∈ L1

t ,

recalling that ũ ∈ L2
ωL
∞
t L

2
x and thus t 7→ ‖ũ(t)‖2L2(Ω) ∈ L1(0, T ) (a.s.). This calculation

also shows that ‖σu(ũ)‖2L2(U;L2(Ω)) ∈ L1
t a.s. and

∑
k≥1 |σu,k(ũ)|2 ∈ L1

t,x a.s., so that

Πn

∑
k≥1

σu,k(ũ)

 n↑∞−→
∑
k≥1

σu,k(ũ) in L2(Ω),

for a.e. t and almost surely. In view of these facts and

Σn(t)
n↑∞−→ 0, a.e. on [0, T ] (and a.s),

an application of Lebesgue’s dominated convergence theorem supplies

(8.11) I2
n↑∞−→ 0, P̃ -almost surely.
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Combining (8.9), (8.10) and (8.11), we arrive at (8.8). By Lemma 2.1, this implies (8.7).
Passing to a subsequence (not relabeled), we may replace “in probability” by “P̃ -almost

surely” in (8.7). Fixing any number q ∈ (2, q0], cf. (3.2), we use the Burkholder-Davis-
Gundy inequality (2.5) and (2.3), (7.5) to work out the following estimate:

Ẽ

[∥∥∥∥∫ t

0

σnu(ũn) dW̃ (n)
u

∥∥∥∥q
L2((0,T );L2(Ω))

]

= Ẽ


∫ T

0

∥∥∥∥∥
n∑
k=1

∫ t

0

σnu,k(ṽn) dW̃n
u,k

∥∥∥∥∥
2

L2(Ω)

dt


q
2


≤ C̄T Ẽ

 sup
t∈[0,T ]

∥∥∥∥∥
n∑
k=1

∫ t

0

σnu,k(ũn) dW̃n
u,k

∥∥∥∥∥
q

L2(Ω)


≤ CT Ẽ

(∫ T

0

n∑
k=1

∥∥σnu,k(ũn)
∥∥2

L2(Ω)
dt

) q
2

 ≤ Cσ,T .
Hence, by Vitali’s convergence theorem, (8.7) implies∫ t

0

σnu(ũn) dW̃ (n)
u (s)→

∫ t

0

σu(ũ) dW̃u(s) in L2
(
D̃, F̃ , P̃ ;L2(0, T ;L2(Ω))

)
.

Using this and the fact that Πnϕu → ϕu in L2(Ω), we arrive at

Ẽ

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

σnu(ũn)Πnϕu dx dW̃
n
u (s)

)
dt

]

= Ẽ

[∫ T

0

∫
Ω

(∫ t

0

σnu(ũn) dW̃ (n)
u (s)

)(
1Z(ω, t)Πnϕu(x)

)
dx dt

]
n↑∞−→ Ẽ

[∫ T

0

1Z(ω, t)

(∫ t

0

∫
Ω

σu(ũ)ϕu dx dW̃u(s)

)
dt

]
.

This concludes the proof of (8.5), which implies that the desired (8.3) holds. �

Remark 8.3. We have proved that the Skorokhod representations (7.3), (7.4) satisfy the
weak formulation (8.3), (8.4) for a.e. t ∈ [0, T ]. As ũ, ṽ ∈ C

(
[0, T ];

(
H1(Ω)

)?)
a.s., the

weak form (8.3), (8.4) actually holds for every t ∈ [0, T ]. This weak continuity property
also ensures that ũ, ṽ are predictable in

(
H1(Ω)

)?
.

9. NONNEGATIVITY OF SOLUTIONS

This section proves that the martingale solution (u, v) constructed as the limit of the
Faedo-Galerkin approximations (un, vn) is non-negative, thereby ending the proof of The-
orem 3.5. The proof is based on the Stampacchia method, which was properly adapted to
the stochastic setting in [10]. It uses Itô’s formula to derive the SDEs satisfied by the nega-
tive parts (un,−, vn,−) of the Faedo-Galerkin solutions, an energy estimate, and a limiting
process with n → ∞, arriving eventually at E ‖(u−(t), v−(t))‖L2(Ω) = 0, if the initial
data are nonnegative. We write a− for the negative part, max(−a, 0), of a ∈ R. Below we
work with a smooth approximation Sε(·) of (·)−.

The nonnegativity result is contained in
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Lemma 9.1. The solution (u, v) constructed in Theorem 3.5 is non-negative.

Proof. In this proof we drop the tildes on the relevant functions, writing for example un, u
instead of ũn, ũ. For ε > 0, denote by Sε(w) the C2 approximation of (w−)

2 defined by

Sε(w) =


w2 − ε2

6 if w < −ε,
− w4

2ε2 −
4w3

3ε if −ε ≤ w < 0,

0 if w ≥ 0.

Observe that

S′ε(w) =


2w w < −ε,
− 2w3

ε2 −
4w2

ε w ∈ [−ε, 0),

0 w ≥ 0

S′′ε (w) =


2 w < −ε,
− 6w2

ε2 −
8w
ε w ∈ [−ε, 0),

0 w ≥ 0.

It is easy to see that Sε(w) ≥ 0, S′ε(w) ≤ 0, and S′′ε (w) ≥ 0 for all w ∈ R. Besides,
as ε → 0, the following convergences hold, uniformly in w ∈ R: Sε(w) → (w−)

2,

S′ε(w)→ −2w−, and S′′ε (w)→

{
2 if w < 0

0 if w ≥ 0
. An application of Itô formula to Sε(un),

where un solves (4.7), gives∫
Ω

Sε(u
n(t)) dx−

∫
Ω

Sε(u
n(0)) dx

= −
∫ t

0

∫
Ω

S′′ε (un(s))Du

(∫
Ω

un(s, x) dx
)
|∇un|2 dx ds

−
∫ t

0

∫
Ω

S′′ε (un(s))
(
A11(un, vn)∇un +A12(ũn, ṽn)∇vn

)
· ∇un dx ds

+

∫ t

0

∫
Ω

S′ε(u
n(s))F (un, vn) dx ds

+

n∑
k=1

∫ t

0

∫
Ω

S′ε(u
n(s))σnu,k(un) dx dWn

u,k

+
1

2

n∑
k=1

∫ t

0

∫
Ω

S′′ε (un(s))
(
σnu,k(un)

)2
dx ds =:

5∑
i=1

Ii.

(9.1)

It is easy to see that I1 ≤ 0. In view of (1.8) and Remark 1.1,

S′′ε (w) = 0 for w ≥ 0, and S′′ε (w) ≥ 0 for w ∈ R,
A11(w, ·) ≥ 0 and A12(w, ·) = 0, for w ≤ 0.

(9.2)

As a result,

I2 := −
∫ t

0

∫
Ω

S′′ε (un(t))

×
(
A11(un, vn)∇un +A12(ũn, ṽn)∇vn

)
· ∇un dx ds

= −
∫∫
{un(t,x)≥0}

S′′ε (un(t))

×
(
A11(un, vn)∇un +A12(un, vn)∇vn

)
· ∇un dx ds
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−
∫∫
{un(t,x)<0}

S′′ε (un(t))

×
(
A11(un, vn)∇un +A12(un, vn)∇vn

)
· ∇un dx ds

= −
∫∫
{un(t,x)<0}

S′′ε (un(t))

×
(
A11(un, vn)∇un +A12(un, vn)∇vn

)
· ∇un dx ds

(9.2)
≤ 0.

Similarly, from the definition of the function F , cf. (1.4) and (1.5), it follows that I3 = 0.
Keeping in mind the convergences in (8.2) (see also [10, Section 3.2]), we send n→∞

in (9.1) to arrive at the inequality:

E
[
‖Sε(u(t))‖2L2(Ω)

]
− E

[
‖Sε(u(0))‖2L2(Ω)

]
≤ E

[ ∞∑
k=1

∫ t

0

∫
Ω

S′′ε (u(t))
(
σnk,u(u)

)2
dx ds

]
, t ∈ [0, T ].

(9.3)

Sending ε→ 0 in (9.3), and proceeding exactly as in [10, Section 3.4], we arrive at

(9.4) E
[∥∥u−(t)

∥∥2

L2(Ω)

]
− E

[∥∥u−(0)
∥∥2

L2(Ω)

]
≤ C E

[∫ t

0

∥∥u−(s)
∥∥2

L2(Ω)
ds

]
,

for a.e. t ∈ [0, T ] where C > 0 is a constant. Finally, by the nonnegativity of u(0) and
applying Gronwall’s inequality in (9.4), we conclude that u− = 0 a.e. in (0, T )×Ω, almost
surely. Along the same lines, it follows that v ≥ 0 a.e. in (0.T )× Ω, almost surely. �
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