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Abstract

This thesis is concerned with operational analysis of UML 2.x sequence diagram spec-
ifications. By operational analysis we mean analysis based on a characterization of
the executions of sequence diagrams, or in other words an operational semantics for
sequence diagrams. We define two methods for analysis of sequence diagram specifi-
cations – refinement verification and refinement testing – and both are implemented
in an analysis tool we have named ‘Escalator’. Further, we make the first steps in the
direction of extending our approach with support for availability analysis.

In order to facilitate operational analysis, we define an operational semantics for
UML 2.x sequence diagrams. The operational semantics is loyal to the intended seman-
tics of UML, and is proven to be sound and complete with respect to the denotational
semantics for sequence diagrams defined in STAIRS – a framework for stepwise devel-
opment based on refinement of sequence diagram specifications.

The operational semantics has a formalized meta-level, on which we define execu-
tion strategies. This meta-level allows us to make distinctions between positive and
negative behavior, between potential and universal behavior, and between potential
and mandatory choice, all of which are inherently difficult in an operational semantics.

Based on the operational semantics and its formalized meta-level, we define trace
generation, test generation and test execution. Further, based on a formalization of
refinement in STAIRS, the trace generation is used to devise a method for refinement
verification, and the test generation and the test execution are used to define a method
for refinement testing. Both are methods for investigating whether or not a sequence
diagram specification is a correct refinement of another sequence diagram specification.

The operational semantics, the refinement verification and the refinement testing
are implemented with the term rewriting language Maude, and these implementations
are integrated in the Escalator tool. In addition, Escalator provides a graphical user
interface for working with sequence diagram specifications and for running the analyses.

In order to facilitate availability analysis, we define a conceptual model for service
availability where the basic properties of availability are identified. Further, we extend
the operational semantics with support for one class of these basic properties, namely
real-time properties, and outline how the operation semantics extended with time can
be applied to make methods for timed analysis of sequence diagram specifications.
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Chapter 1

Introduction

In the current practice of production of computer systems there are great challenges.
The size and complexity of software is ever increasing. Keeping track of all parts,
interactions and dependencies in these systems is likewise becoming more and more
difficult, and construction and management of them takes a conciderable effort.

Our dependency on computer systems and their correct operations is also increasing.
Software is now an integrated part of our infrastructure and therefore of our society.
In this situation it is vital that computer systems are dependable, available, safe and
secure. This thesis focuses in particularly on the property of availability, but the results
are also relevant for dependability in general.

Ensuring the desirable properties of large software systems requires good methods
and languages for specifying the systems and good methods and tools for analyzing
the systems. We believe analysis at the level of specifications could reveal problems of
the system design before the systems are built, and should therefore be beneficial for
system development. This view is consistent with the underlying ideas of both model
driven development1 (MDD) and formal methods2. Our aim is to work within both
MDD and formal methods, and to make contributions to both fields.

In this thesis we develop a theory and a tool for analyzing specifications of message
interactions. Specifications are made with the notation of sequence diagrams3, and
more precisely the tool analyses the relation between specifications of different levels
of abstraction and detail. We show how the specification language and tool may be
used to specify and analyse aspects of availability.

In software engineering4 and MDD the focus is often on practical usability of spec-
ification languages, analysis methods and tools. This means that if a method for
specification and analysis of a system is to have value, it should be practical. In formal
methods the focus has traditionally been the mathematical properties of the methods,
such as soundness, completeness and decidability. A formal foundation is necessary if
we are to make precise and sound methods and tools. Unfortunately, formal specifi-
cation languages and methods often require high competence in specific mathematical
formalisms and are difficult to use by people who do not possess that competence [50].

1Model driven development is software development with models as the artifacts driving the de-
velopment, as opposed to, e.g. code as the driving artifacts. See, e.g., [10, 42] for references on model
driven development.

2Formal methods refer to the practice of using mathematical and logical formalisms to specify and
analyze computer systems. See, e.g., [26, 76, 184,189] for more information on formal methods.

3Specifically we apply UML 2.x [134] sequence diagrams. See section 1.1 and chapter 4.
4Software engineering is the field and practice of building software systems. See, e.g. [170].
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Figure 1.1: Sequence diagram

We adopt sequence diagrams as our specification language and an existing deno-
tational formalization as its formal semantic foundation. By using sequence diagrams
we get a specification language that is used in practice, and by adopting a formalized
semantics we get the wanted formal foundation.

We implement a tool in which sequence diagrams are automatically analyzed. The
tool allows the user to carry out the analysis without deep understanding of its formal
basis. This means that the tool may be practical in use also for system developers
that are not experts in formal methods. The methods for analysis are based on formal
notions of refinement,5 but apply testing techniques.6

1.1 Sequence diagrams

Sequence diagrams is a graphical notation for specification of message interaction be-
tween system components. Several notations for sequence diagrams exist. Most promi-
nent are Unified Modeling Language (UML) sequence diagrams [134, 151] and their
predecessor Message Sequence Charts (MSC) [85]. Both are are specification languages
that have proved themselves to be of great practical value in system development.

We adopt UML sequence diagram as our notation. UML sequence diagrams have
wide-spread use and several tools for making sequence diagram specifications are avail-
able. The UML standard defines the graphical notation and a well-defined abstract
syntax. Figure 1.1 shows an example of a sequence diagram where two components
exchange messages. Chapter 4 provides a more detailed introduction to UML sequence
diagrams.

1.2 Formal semantics

The semantics of UML sequence diagrams is stated informally in the UML standard.
This opens for ambiguities and may lead to different interpretations of the same dia-
grams. However, when a modeling language such as sequence diagrams is used either

5Refinement is a formalization of the concept of a specification becoming less underspecified. See,
e.g., [27, 70, 158] for more information on refinement. See also section 5.4.

6See e.g. [24, 91, 178,179,183], and also chapter 12.
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1.3 Analysis

for development of a system or as documentation, it is important that the people in-
volved have a common interpretation of the language. This motivates formal semantics
in which the meaning of diagrams are unambiguously stated. This is even more im-
portant for tool makers. The only way to make sure that the makers and users of, for
example an analysis tool, have same understanding of what results the tool provides,
is by basing it on formal theory.

For this purpose we base our work on STAIRS.7 STAIRS provides a formal trace
based denotational semantics for sequence diagrams. This semantics assigns meaning to
a sequence diagram by characterizing the execution histories that the diagram specifies.
A thorough presentation of STAIRS is found in chapter 5.

1.3 Analysis

In model driven development one will typically start with a high-level model providing
a coarse specification of the system to be developed. Over the course of the develop-
ment the model will be refined into a specification closer to the implementation of the
system. Such refinements will consist of decompositions, adding details and possibly
functionality, and removing non-determinism. In practice there will always be a certain
amount of backtracking as new insights emerges, better solutions are found, require-
ments evolve etc. It might also be that parts of the system are developed before, or
faster than, other parts. However, the general direction will be more and more refined
models.

Our focus is that of analyzing the relationship between specifications at different
levels of abstraction, more specifically whether a low- level specification is a correct
refinement of a high-level specification. We can operate with the expression “correct
refinement” because we have a formal foundation on which we base our work, namely
STAIRS. In this formal framework, the notion of refinement is defined mathematically
in a way that captures our intuitive understanding of refinement of specifications.

Within formal methods there exists several approaches for doing analysis – manual
or automated proofs (see e.g. [63]) simulation and bisimulation (see e.g. [125]), and
model checking (see e.g. [34, 63]), among others. There are usability issues with these
methods similar to those of formal languages – they are often difficult to understand
and use for non-experts. A more fundamental issue with several of the formal methods
is their lack of scalability. A strive for completeness often leads to state-explosion when
the size of the analyzed systems increase (see e.g. [34]).

We aim at developing methods for analyzing sequence diagram specification based
on testing techniques. There exists a formal testing theory (see chapter 12). We can
apply this to make (formally) sound analysis methods based on testing techniques and
also relate them to refinement. Testing has a practical angle where completeness may
be sacrificed for the sake of the performance of the testing techniques and in this way
give better scalability.

Testing is in its nature operational – when we are doing testing we are studying
executions. This means we are in need of an operational semantics, a semantics that
precisely characterize executions step by step – instead of characterizing the resulting

7STAIRS is a denotational semantics and refinement theory for UML sequence diagrams. STAIRS
– with some variations – is defined in a number of publications; works cited in this thesis include
[68–70,144–147,153–159].
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histories as the denotational semantics of STAIRS does. This means we can apply
testing techniques to specifications in the same way testing techniques may be ap-
plied to implementations An important contribution of this thesis is an operational
semantics that is equivalent to the denotational semantics of STAIRS. This opera-
tional semantics constitutes the foundation for the development of analysis methods.
The operational semantics is implemented in Maude, a formal specification language
based on rewrite theory. With use of the operational semantics implemented in Maude
and the Maude interpreter, we are able to execute sequence diagrams. Because Maude
is a formal language, we may do our implementation without the risk that the meaning
of the semantics is lost because the language of the implementation is ambiguous. An
introduction to Maude in found in chapter 6.

1.4 Availability

Availability is often defined as the property of being accessible and usable on demand
by an authorized entity [78, 81]. Languages and methods for analyzing availability
properties require that availability is reduced to properties expressible by primitives
in the language. Using the above definition means that properties “accessible” and
“usable” must be reduced to something we can specify and analyze. In chapter 18
we present a model where availability is decomposed into basic aspects that may be
expressed and analyzed. One of these aspects is timeliness, a property closely related
to what is sometimes called soft real-time properties. We show how our specification
language and operational semantics can be enhanced to handle time, and hence one
aspect of availability.

1.5 Contributions

In this thesis there are five main contributions:

• We define an operational semantics for UML 2.x sequence diagrams. The op-
erational semantics is proved to be sound and complete with respect the deno-
tational semantics of STAIRS, and is implemented given an implementation in
rewrite logic.

• Based on the operational semantics a method for refinement verification is de-
fined.

• Based on the operational semantics we define a test generation algorithm for
sequence diagrams and characterize test execution with respect to sequence di-
agrams. Together, the test generation and test execution is used to device a
method for doing refinement testing.

• We build a tool for analysis of sequence diagrams based on our operational se-
mantics and our testing theory for sequence diagrams. This tool is based on the
implementation of the operational semantics, and implements both the refine-
ment verification method and the refinement testing method.

• We present a conceptual model of availability that shows how the high-level
property of availability may be decomposed and reduced into properties that can

4
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be specified and analyzed. In a first step towards using this conceptual model as a
basis for analyzing availability, we extend our operational semantics for sequence
diagrams to handle one of these properties, namely real-time.

1.6 Structure of thesis

The thesis is structured into six parts, where the main contributions are found in
parts III–V. Each of these parts starts with a introduction chapter and ends with a re-
lated work chapter. State-of-the-art is spread out through these introduction chapters,
in addition to part II which provides background chapters. Related work is spread out
through the related works chapters. In detail, the structure of the thesis is as follows:

Part I Research questions and methods provides a characterization of the prob-
lem to solve (chapter 2) and research methods (chapter 3).

Part II Background provides background on sequence diagrams (chapter 4), ST-
AIRS (chapter 5) and Maude (chapter 6).

Part III Operational semantics contains an introduction (chapter 7), the defini-
tion of the operational semantics (chapter 8), definition of meta-strategies for ex-
ecution of sequence diagram (chapter 9), the implementation of the operational
semantics (chapter 10), and related work with respect to operational semantics
of sequence diagrams (chapter 11).

Part IV Testing contains an introduction to testing theory (chapter 12), our testing
theory for sequence diagrams (chapter 13), a presentation of our tool (chapter 14),
a case study on use of the tool (chapter 15), and related work with respect to
testing based on sequence diagrams (chapter 16).

Part V Availability contains an introduction (chapter 17), a presentation of our con-
ceptual model for availability (chapter 18), definition of our operational semantics
with time (chapter 19), a case study in the use of our time enhanced sequence
diagrams (chapter 20), and related work with respect to timed specification and
analysis (chapter 21).

Part VI Discussion and conclusions provides discussions (chapter 22) and conclu-
sions (chapter 23).

In appendices A and B we provide detailed proofs, and in appendix C we provide
implementation details.

1.7 Relation to other publications by the author

Aspects of this thesis have been published earlier as preliminary results in the following
publications:

[A] M. S. Lund and K. Stølen. Deriving tests from UML 2.0 sequence diagrams with
neg and assert. In 1st International Workshop on Automation of Software Test
(AST’06), pages 22–28. ACM Press, 2006. (Same as [113] in the bibliography.)
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[B] M. S. Lund and K. Stølen. A fully general operational semantics for UML
2.0 sequence diagrams with potential and mandatory choice. In 14th Interna-
tional Symposium on Formal Methods (FM’06), number 4085 in Lecture Notes
in Computer Science, pages 380–395. Springer, 2006. (Same as [114] in the
bibliography.)

[C] M. S. Lund and K. Stølen. A fully general operational semantics for UML
sequence diagrams with potential and mandatory choice. Research report 330,
90 pages, Department of Informatics, University of Oslo, 2007. (Same as [115] in
the bibliography.)

[D] J. E. Y. Rossebø, M. S. Lund, A. Refsdal, and K. E. Husa. A conceptual model
for service availability. In Quality of Protection: Security Measurements and
Metrics (QoP’05), number 23 in Advances in Information Security, pages 107–
118. Springer, 2006. (Same as [149] in the bibliography.)

[E] J. E. Y. Rossebø, M. S. Lund, A. Refsdal, and K. E. Husa. A conceptual model
for service availability. Research report 337, 28 pages, Department of Informatics,
University of Oslo, 2006. (Same as [150] in the bibliography.)

In detail, the relations to these publications are:

• Chapter 4 is based on [C].

• Chapter 5 is based on [A,C].

• Chapter 7 is based on [C].

• Chapter 8 is based on [A,C].

• Chapter 9 is based on [A,C].

• Chapter 11 is based on [C].

• Sections 13.1–13.2 are based on [A].

• Chapter 16 is based on [A].

• Chapter 18 is based on [D,E].

• Appendix A is based on [C].
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Chapter 2

Problem statement

In chapter 1 we gave a brief presentation of the problems we seek to address and our
solutions to them. In this chapter we elaborate and state our aims more clearly and
explicitly. In section 2.1 we present our overall hypothesis and goal, and in section 2.2
we specify success criteria for our solution. The success criteria may be understood as
overall requirements to the artifacts resulting from our work.

2.1 Main hypothesis and goal

Stated very loosely our aim is to contribute to improving system development. Based
on our views presented in chapter 1, we formulate our overall hypothesis and starting
point as follows:

System development will benefit (become more effective and less costly, and produce
better software systems) from:

• Methods and tools for doing analysis of systems at the model or specification1

level. In this we include:

– Analysis of behavior, but also analysis of such properties as availability.

– Analysis of consistency between different levels of abstractions, i.e. that spec-
ifications at a lower level are refinements of specification at higher level.

• An integration of practical or pragmatic methods with formal methods. Specifically
this refers to:

– Integration of an approach based on diagram based specification languages
with an approach based on languages with formal semantics.

– Integration of formal refinement theory with practical testing techniques.

A full investigation of this hypothesis is an enormous task that lies far beyond the
scope of this thesis. However, we do seek to contribute to the investigation of the
hypothesis by formulating a goal that will, if it is reached, indicate the validity of the
hypothesis. We formulate our overall goal as:

1In the following we will use the terms model and specification interchangeably.
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Develop a method and tool to analyze refinements and decompositions of specifications
expressed in a diagram based language. The methods and tool should:

• Handle functional behavior as well as aspects of availability.

• Have a sound formal foundation.

• Apply testing techniques.

• Be practical in use also for people without background in formal methods.

Even though reaching this goal clearly does not validate the hypothesis, we may
argue that it supports the hypothesis. If such methods and tools as described in the goal
are developed and successfully applied, it would mean that a combination of practical
diagram based languages and formal semantics is feasible, as well as a combination
of formal refinement theory and testing techniques. Further it would indicate the
benefit from having methods and tools that analyze behavior and availability properties
at the specification level and in the relation between specifications at different levels
of abstraction. Since the feasibility and benefit from such methods and tools are
exactly what the hypothesis postulates, successful application of methods and tools as
described in the goal would indeed be support of the hypothesis.

2.2 Success criteria

In the following a number of success criteria for our analysis method and tool are
formulated. They may be seen partly as subgoals of the overall goal and partly as
additional requirements. The success criteria define a number of requirements for the
outcome of our project, and in chapter 22 we use these criteria for evaluating our results
and to determine to what degree our goal is reached.

Success criterion 1 The method should support model driven development by offering
the capability of analyzing the relation between models or specifications at different levels
of abstraction.

Model driven development is a way of doing system development where models always
are at the base of what is being done. Every stage of the development has specific
kinds of models associated to it. For every step the models evolve and new models are
made based on the models of the previous steps, and over the course of development
the models will become more and more refined and closer to code/implementation. In
this setting it is important that the models at different levels of abstraction, belonging
to different stages of the development, are related in the appropriate way. In this
sense a method that analyzes the relation between models will support model driven
development by ensuring the correct relation between models.

Success criterion 2 The method should offer the capability of analyzing aspects of
availability.

What is said above about specifications and models in general, holds equally well
for availability. In model driven development there is a need for keeping consistency
between specifications and models at different levels of abstraction, and this is also
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true for availability specifications. Hence our method should facilitate analyzing the
relation between specifications of availability aspects at different levels of abstractions.
This is especially important for availability and related properties as they often will be
important high-level requirements of software systems, and these requirements ideally
should be reflected in lower level specifications.

The high-level definitions of availability we find in standards such as [78,81] cannot
be applied directly to specification and analysis. We need to break the definitions down
to aspects we may express in a specification language, and that we are able to analyze
in a meaningful way. It is not realistic to develop a method to analyze all possible
aspects of availability within the scope of this thesis, hence we focus on some selected
aspects.

Success criterion 3 The method should make use of functional models.

System development is often focused on the behavior of systems, and hence around
functional models or specifications in model driven development. Properties such as
availability, sometimes referred to as non-functional properties2, are often specified
in separate text-based documents, e.g. stating the required availability. Instead of
operating with separate “availability documents” or “availability specifications” we
believe that specification of availability properties should be embedded in functional
specifications, and that this would increase the chance of these properties getting the
attention they deserve.

Success criterion 4 The method should handle modularity.

Industrial system development is moving towards component based development. Re-
use of components and the use of third party components is increasing. In large projects
few or no persons are involved in all parts of the development. In such a situation both
development methods and methods for analysis must handle modularity.

This means that our methods should be able to do analysis of components sepa-
rately. Even more relevant is analysis of whether the composition of components yields
the expected results.

Success criterion 5 The method should be based on practical testing techniques.

Testing is the chief method for establishing correctness of computer systems and their
conformance to requirements and specifications. This means testing is well understood,
is well known by practitioners and is supported by several tools. Testing is also prag-
matic in the sense that completeness (full coverage) usually is sacrificed for the sake
of performance of the testing, or in other words that it is possible to do useful testing
within time frames less that what would be needed to do a complete analysis.

We wish to use these characteristics of testing to our benefit. By basing ourselves
on testing techniques we should be able to make a method for analysis that can be
more easily applied in system development in its current state. We believe we may gain
these benefits even though we do testing of specifications rather than implementations.

Success criterion 6 The method should be formally sound.

2We do not necessarily recognize them as non-functional.
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Soundness in this respect is that the outcome of an analysis using our method is valid,
and that the outcome follows from the input.

As stated earlier we believe specification languages and analysis methods should be
founded on mathematical formalism. This is necessary for knowing what a specification
expresses and how results of an analysis should be interpreted. Further it is necessary
in tool making because the tool maker should have the same interpretation of the
methods as the tool users.

When we base our method on mathematical formalism it also means that we can
apply mathematical reasoning and mathematical proofs to ensure that the method is
sound.

Success criterion 7 The output from the method should useful.

By useful we mean that a software developer using the method should be able to use
its output for a practical purpose, such as to, e.g. improve a system design or make
a convincing argument that a specification will indeed fulfill specified requirements.
This is clearly a necessary criterion when developing methods for improving system
development.

In order to fulfill this criterion, output of our method must reflects our intuition
about the real world, and the method must be designed in such a way that anomalies
do not corrupt the output.

Success criterion 8 The method should be supported by a fully or partially automatic
tool.

As the above, this is a necessary criterion if our method should ever be applied in prac-
tical system development and not only remain an academic exercise. The development
of tools of industrial standard is clearly outside the scope of this thesis. We do however
think it is important to develop prototypes as “proofs of concept” to demonstrate that
our method may be practically applied.

Practical application requires that the tool must be usable also for persons without
high competence in the method and its theoretic foundation. Hence, for a tool to be
practical, is should automate the method to as high a degree as possible.

Success criterion 9 Application of the method at early stages of the system develop-
ment improves the quality of systems with availability requirements.

We have already stated that we aim at improving system development. Clearly then,
one of the success criteria is that the method we develop actually improves system
development. It might not be immediately evident what improved system development
is, but obviously improved products of the development is one important aspect of what
constitute an improvement in the development process.

Success criterion 10 Application of the method makes development of systems with
availability requirements more efficient and less costly.

This criterion is related to the pervious one, and refers to another aspect of improv-
ing system development. While the previous success criterion states that we aim at
improvements in the products of system development, this criterion states that these
products should be produced using less resources. In other words our success criterion
is that application of our method should make it possible to do system development
with less effort.
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Research method

In this chapter we discuss and motivate the research methods used in the work of this
thesis. We start by giving a general view of computer science as a scientific activity and
its relation to other sciences in section 3.1. Then in section 3.2 we present an overall
research process, and in section 3.3 we provide an overview of the research methods
available. Finally, in section 3.4 we account for the research methods used.

It is common to distinguish between various branches of studies of computer related
topics (sometimes informatics is used as a common name). An example is found in [37,
p. 10]:

This distinction can be simply (and perhaps contentiously) made by suggest-
ing that, while computer science is about how computers function as hardware
and software, and software engineering is about building technical systems and
ensembles of hardware and software that meet given specifications, information
systems is about understanding what is or might be done with these technical
systems, and their effects in the human/organizational/social world.

In many research projects these different branches are interwoven, so in the following
we use the term computer science broadly and loosely to embrace all of the above.
Hence we see computer science to be the study of computerized systems in all their
aspects.

3.1 Computer science as a science

A distinction may be made between pure science, applied science and technology [48,
166]. In pure science the objective is to investigate laws and properties of things and
the relation between them, to increase our knowledge of the world and to formulate
theories of the laws governing the world. In contrast to this, applied science is the
activity of using the knowledge and theories of pure science in order to fulfill some
purpose. The fundamental difference between pure science and applied science is that
pure science is about acquiring knowledge for the purpose of knowing, while applied
science is about using knowledge for practical purposes.

Technology, which includes engineering, is the invention, development and produc-
tion of artifacts, where by artifact we mean something human made, created to serve a
(not necessarily practical) purpose. Technology and applied science are closely related.
What distinguishes the two is that technology may be based on experience in addition
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to scientific knowledge and that applied science is not necessarily about creating arti-
facts. However, it is clear that there is a big overlap, and it is often impossible to place
a research project in one, but not the other, of these categories.

Also the distinction between pure science (characterized by knowledge) on the one
side and applied science and technology (characterized by purpose) on the other is not
always a sharp distinction. Often, advances in pure science may result from advances
in applied science and technology, and advances in applied science and technology may
be a result of advances in pure science. These advances may be strongly connected and
may appear from the same activity.

Computer science as a field belongs to both pure science, applied science and tech-
nology. For example the theory of computation [36, 105] may be seen as pure science
while compiler construction (which uses elements from the theory of computation) is
both applied science and technology. While compiler construction (designing and im-
plementing a compiler) is applied science, the designing and implementing of most
other computer programs must be seen as technology, but not as applied science. A
computer program is clearly an artifact created to serve a purpose, but seldom based
on scientific knowledge. Research in computer science is usually about inventing and
developing new artifacts or improving existing artifacts (see e.g. [54,55]), and therefore
lean over to the applied science/technology end of the scale.

What distinguishes artifacts from naturally occurring objects or entities is that
they are human creations and that they are created for a human purpose, see e.g.
[48, 164, 166]. At the same time, artifacts must obey the same natural laws as any
other objects and entities. An important remark here is that “artifact” must not
be confused with something necessarily physical. Computer science produces a wide
range of artifacts lacking a physical nature. Examples of non-physical artifacts of
computer science can be algorithms, programming languages and system development
methodologies.

While most computer scientists seldom are interested in the physical workings of a
computer they are often interested in the running or execution of a computer program.
The running of a computer program is a physical process, and may be studied as a
such, see e.g. [127] and [164, pp. 19–21]. This shows that computer science is (partly)
an empirical science and may be studied by means of experimental methods inspired by
empirical sciences. Several advocates of this view may be found, e.g., [15, 49, 165, 175,
176, 191]. However, we oppose the view that computer science is chiefly an empirical
science [127]. Mathematical artifacts such as algorithms and formal models may be
studied by mathematical methods such as formal proofs.

The artifacts of computer science are neither purely technical nor technological.
They may also be, e.g., organizational. Examples of this include system development
methodologies and other computer related processes. Also the more technical or tech-
nological artifacts often interact with humans, for example graphical user interfaces.
Hence, some parts of computer science, especially what is often called information sys-
tems, are closely related to social sciences such as organizational sciences or behavioral
sciences. The implication of this is that also research methods from the social sciences
are relevant for computer science [37, 72].

In summary we conclude that analytic, as well as empirical research methods, are
of great relevance for computer science research, and that research methods can be
borrowed from natural sciences and mathematics, as well as from the social sciences.
This means we oppose the view presented in e.g. [64, 65] that computer science is
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fundamentally different from other sciences and that research methods in computer
science must reflect this special nature of computer science rather than being inspired
by the research methods of other science.1

3.2 Research process

We have argued that computer science may apply methods from mathematics, natural
sciences and social sciences, but we still need to see this in relation to the applied
nature of computer science. Further, the methods need to be related to the research
activity as a processes.

In pure science, the investigation of an object aims to discover its properties or
to see whether it can be used to confirm or reject a theory. Either way the purpose
is that of gaining knowledge. In applied science and technology, the purpose of an
investigation of the properties of an artifact is to investigate the success of the artifact.
The success of an artifact is the degree to which it fulfills its purpose, see e.g. [116].

We can formulate hypotheses about, and do hypothesis testing on, artifacts the
same way we can formulate hypotheses about, and to hypothesis testing on, natural
occurring objects, see e.g. [15]. This means that we can apply the same research
methods and the same kind of research process for applied science and technology that
we apply for pure science.

Classical research is characterized by an iterative process. In classical research this
process may, very simplified, be described as 1) the observation of some phenomena
that are not explained by existing theory, 2) the making of a theory to explain the
observed phenomena, 3) justifying the new theory by arguing that it better explains
the phenomena and/or testing of the theory by experiments, or other methods.

For applied science and technology we can describe a similar process for conducting
research: 1) The possibility, need or wish for a new or improved artifact to serve some
purpose, 2) development of the artifact, 3) evaluating the success of the artifact by
arguing that it fulfills its purpose and/or testing the artifact by experiments, or other
methods.

A parallel may be observed. In classical research the iteration of the process will
ideally yield better and better theories to explain more and more phenomena. In
applied or technological research, iteration of the process will ideally yield better and
better artifacts to serve more and more purposes. Views similar to this is found in
e.g. [116, 166,169].

Even though this is a simplified account of research, and may be more normative
than descriptive, it is sufficient for our purpose. The research process that we have
followed in this work is a practical adaption of the process characterized above:

1. Specification of requirements for the artifacts that are developed in the work of
this thesis by means of success criteria (see chapter 2).

2. Development of the artifacts in accordance to the requirements.

3. Evaluation of the artifacts developed with respect to how well they fulfill the
success criteria (chapter 22).

1We do, however, recognize that computer science has some distinctive characteristics and accepts
demonstrations (“proof of concept”, prototyping) as a valid method in computer science [64,65,116]–
but not as its sole method.
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3.3 Research methods

In this section we give a brief presentation of various research methods and approaches.
We base the presentation of [37, 116, 122, 190, 191]. Taken together we believe they
provide a representative picture of the research methods available. In the presentation
we focus on the generality, precision and realism of the various methods. This is
important since no method can maximize all of these three simultaneously. Methods
that give high generality sacrifice precision and realism, and so forth [122].

Based on the above cited literature we may group and summarize a number of
research methods:

Demonstration. By demonstration we mean the production of an artifact and in-
vestigation of its feasibility by observing it working. This is similar to the in-
stantiation building activity in [116], technical development in [37] and assertion
in [191], and might also be referred to as prototyping and proof of concept. This
is a simple method that is often applied early in development projects, but to a
large degree lacks generality.

Field study. A field study is the systematic observation of an artifact (or pheno-
menon) in its natural (real world) environment. The researcher will usually try
not to interact with the object(s)/system(s) during the study and will often
observe specific variables to answer specific questions. This is a method which
gives high realism, but may lack precision and generality.

There also exists a number of variations of this method. What is called project
monitoring in [191] is a weak form of field study, where data is collected from
the field and analyzed, but without pre-established questions to be answered.
Related to this are also what are called lessons learned and legacy data in [191],
where historically recorded observations and data are analyzed.

A field experiment in [122] or replicated experiment in [191] is a field study where
one significant variable is changed and the effect of this is observed. An example
of this may be observing the effect of introducing a new development tool in
system development projects.

A variant of field study (or field experiment) is case study [190]. In a case study
one specific case or situation is studied, which may give deeper insight in the
case or situation, but less generality. A further variant of case study is action
research (or collaborative research). In action research the researcher ceases to
be an outside observer and takes part in the case or situation under study. The
researcher is then himself or herself part of the subject and contributes with his
or her skills and knowledge to the case or situation. This may give an even deeper
understanding of the case or situation, but with the sacrifice of generality and
the risk of observations being subjective.

Laboratory experiment. In a laboratory experiment (called synthetic environment
experiment in [191]) an artificial (synthetic) environment is created in which
the researcher can control the variables and make sure that conditions remain
stable throughout the experiment. A task is performed several times in this
artificial environment with or without changing the variables of the environment.
Specific variables of the subjects are observed or preferably measured. A typical
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laboratory experiment in computer science would be to let a number of users
perform specific tasks on a user interface with controlled variations in the tasks
they perform and/or the user interface. This method gives high precision because
of the controlled environment, but may lack realism for the same reason. The
generality may be reasonable if the subjects are carefully chosen.

A variant of laboratory experiment is what in [191] is called dynamic analysis.
This refers to exposing an artifact (e.g., a computer program) to various (con-
trolled) conditions or situations (e.g., input) and observe or measure the result.
An example may be performance, stress or load tests of computer programs. This
is also related to experimental simulation in [122]. Benchmarking is a specific
type of dynamic analysis. A benchmarking test usually applies a collection of
representative test data (a benchmark suite) that is given as input to several
computer programs of the same type in order to observe or measure differences
in, e.g. the performance of, the computer programs.

Simulation. A simulation refers to the study of a model instead of the actual thing,
usually running on a computer. In [191], simulation is closely related to dynamic
analysis with the difference being that a model of the environment is used instead
of a real environment. Examples may be running a computer program together
with a model of user behavior or on a simulated hardware platform while testing
its performance. In [122], computer simulation refers to observing the behavior
of a model of a real system while the model is running on a computer.

Survey. In a survey (sample survey in [122]) data is collected in form of responses
to questions addressed to the subjects of the study. Usually the responses are
collected by means of a questionnaire. If the subjects and questions are carefully
chosen this method gives high generality, but lacks precision and realism.

A variant is to have the questions answered in structured (or in-depth) interviews
[37] with the subjects. Often then, there will be fewer subjects, but the questions
and answers will typically be more extensive. This may give deeper understanding
of the topic under study, but compromises the generality. In another variant,
called judgment study in [122], responses are gathered from a small group of
judges subjected to a specific set of stimuli. This increases precision, but also
compromises generality. Gathering expert opinions may be a further variant of
survey.

Formal analysis. The archetype of formal analysis (formal theory in [122] and theo-
retical research or formal-mathematical analysis in [37]) is theorem proving. From
a set of axioms and/or a mathematical model a theorem concerning some proper-
ties of the topic under study is formulated and proved using mathematical proof
techniques.

We also consider less mathematical, but analytic, methods as formal analysis.
Building a structured argument, for example a thought experiment, must be con-
sidered formal analysis. Static analysis in [191] is a related type of formal analysis.
Static analysis is concerned with investigating the characteristics of an artifact
looking at its structural properties. An example of static analysis is complexity
measures of computer programs based on analyzing the code of the programs.
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The activity of building or developing concepts and relations between concept
(called conceptual development in [37]) must also be considered formal analysis.
This activity is related to the constructs and model building activities in [116].
Forming of concepts and models may be based on empiric observations and is
then related to empirical methods, but concept and model building may also be
purely analytical.

Formal analysis scores high on generality, but due to its analytic rather than
empirical nature, low in realism and precision.

Review. The method called (literature) review in [37] and literature search in [191]
is based on analyzing and comparing results from previously published research.
This method is sometimes called (literature) survey, but must not be confused
with the (sample) survey discussed above. Reviews are seldom the sole method
of a research project, but are often used for identifying the current state of, and
important results within, the domain of the research project. The purpose of a
review may be to gather published empirical results and use these for testing a
hypothesis. In this case, a review is sometimes called a meta-analysis. A potential
problem with reviews is bias in the selection of published works and data in the
study.

3.4 Choice of research methods

Our work is to a large degree about developing artifacts, more specifically a method and
a tool for analyzing specifications. Artifacts are produced to fulfill a purpose, and the
success of an artifact is the degree to which it fulfills this purpose. The success criteria
formulated in chapter 2 should be seen as high-level requirements to our method and
tool, and hence as statements of the purpose of the artifacts.

The technical work, i.e. the development, have constituted the main effort in the
work of this thesis. The aims of the work have been to not do everything from scratch,
but build on existing theories, to build a tool as well as a method, and to make a
method that is formally sound. The development was iterative in two ways. It has
been iterative in the sense that the operational semantics was developed first, then the
testing theory, and then the real-time extension. Each of these iterations have been
preceded by literature reviews in order to identify the state-of-the-art, and to determine
what existing theories could be used and where new development was needed. These
literature reviews are reflected in chapters 7, 11, 12, 16, 18 and 21.

The other way the work was iterative is that the implementation of the tool and the
proving of theorems have been carried out along with the development of the method.
This way, there has been continuously feedback to the method development that has
helped improving the method with respect to soundness, feasibility and usability.

When we evaluate our artifacts with respect to the success criteria, our chief research
methods are formal analysis and demonstrations. Formal analysis is used in several of
its forms to build arguments about the properties of our artifacts. Demonstrations are
applied to show the feasibility of our artifacts.

It can be argued that formal analysis and demonstrations are too weak in order to
properly evaluate some of the success criteria. In order to obtain a proper evaluation of
these success criteria, some variants of field study, laboratory experiment, simulation
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or survey should be applied. The main focus of our work has been the development
of artifacts and, though unfortunately, there has not been sufficient time within the
time-span of the project to conduct such kinds of evaluations in large scale. We have
however expose our method and tool two studies that may be considered as small and
limited laboratory experiments, in the from of dynamic analyses, and as small and
limited case studies.

Success criterion 1 The method should support model driven development by offering
the capability of analyzing the relation between models or specifications at different
levels of abstraction.

This success criterion is evaluated by formal analysis in form of structured ar-
guments, by demonstration in form of the development of a tool, and small and
limited laboratory experiments in form of dynamic analysis. The dynamic anal-
ysis consists of exposing our tool to example input and comparing the actual
output with expected output. Because we use a real specification we can also
categorize this analysis as a case study. The tool is documented on chapter 14
and the case study in chapter 15.

Success criterion 2 The method should offer the capability of analyzing aspects of
availability.

The research method applied for this success criterion is formal analysis in form
of conceptual development, in combination with a literature review, in order to
identify aspects of availability. In addition, a small and limited case study, in
combination with a literature review, was carried out to evaluate our treatment
of real-time. The conceptual development is documented in chapter 18, and the
case study is documented in chapter 20.

Success criterion 3 The method should make use of functional models.

This criterion is evaluated by means of formal analysis in form of structured
arguments.

Success criterion 4 The method should handle modularity.

The evaluation of this criterion is closely related to evaluation of success crite-
rion 1. The methods applied are formal analysis in form of structured argument
based on the tool development documented in chapter 14, and the case study
documented in chapter 15.

Success criterion 5 The method should be based on practical testing techniques.

This criterion is evaluated by means of formal analysis in the forms of struc-
tured argument and static analysis, but also by demonstration in the form of the
tool development documented in chapter 14, and the case study documented in
chapter 15.

Success criterion 6 The method should be formally sound.

This criterion is evaluated by means of formal analysis in the forms of theorem
proving (mathematical proof) and structured arguments. The proofs are docu-
mented in appendices A and B.
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Success criterion 7 The output from the method should useful.

This is evaluated by means of the case study documented in chapter 15, together
with formal analysis in form of static analysis and structured arguments.

Success criterion 8 The method should be supported by a fully or partially automatic
tool.

Obviously this criterion is evaluated by the tool development (demonstration).
Further, the criterion is evaluated by formal analysis in the form of structured
arguments and static analysis, and by the case study documented in chapter 15.

Success criterion 9 Application of the method at early stages of the system develop-
ment improves the quality of systems with availability requirements.

Ideally we should have conducted a larger field study in order to evaluate this
success criterion. However, since there has not been sufficient time to conduct
such field studies we have to resort formal analysis in the form of structured
arguments in order to evaluate this criterion.

Success criterion 10 Application of the method makes development of systems with
availability requirements more efficient and less costly.

As with success criterion 9, a proper evaluation of this criterion would require a
larger field study. Because we have not been able to carry out any field study
within the time-span of our project, for the evaluation of this criterion we also
have to resort to formal analysis in the form of structured arguments.
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Chapter 4

Sequence diagrams

Sequence diagrams are a graphical specification language defined in the Unified Mod-
eling Language (UML) 2.x1 standard [134]. Sequence diagrams as defined in the UML
2.x standard are the last of a sequence of languages that have evolved over the last 15
to 20 years. Both UML sequence diagrams and their predecessor Message Sequence
Charts (MSC) [85] are specification languages that have proved themselves to be of
great practical value in system development.

An early version called Time Sequence Diagrams was standardized in the 1980s
(see [47,82]). Better known are MSCs that were first standardized by ITU in 1993 (see
e.g. [20]). This standard is usually referred to as MSC-92, and describes what is now
called basic MSCs. This means that MSC-92 did not have high-level constructs such
as choice, but merely consisted of lifelines and messages. MSC-92 had a lifeline-centric
textual syntax2, and was given a semantics formalized in process algebra.

In 1996, a new MSC standard was defined, called MSC-96 [83]. In this standard,
high-level constructs and high-level MSCs were introduced, a kind of diagrams that
show how control flows between basic MSCs. Further an event-centric textual syntax3

and a new semantics were defined [84]. This semantics is also a kind of process alge-
bra, but holds substantial differences from the MSC-92 semantics. Finally, the MSC-96
standard was revised in 1999 and became MSC-2000 [85], but kept the MSC-96 seman-
tics. A further discussion on the MSC semantics is found in chapter 11.

The first versions of the Unified Modeling Language (UML 1.x) [131] included a
version of sequence diagrams similar to MSC-92, i.e., consisting of only lifelines and
messages and no high-level constructs. An important difference, however, was that the
sequence diagrams of UML 1.x did not have the frame around the diagram, which in
MSC-92 allowed messages to and from the environment of the specified system.

Sequence diagrams in UML 2.x may be seen as a successor of MSC-2000, since
many of the MSC language constructs have been incorporated in the UML 2.x variant

1The UML standard exists in versions 1.3, 1.4, 1.4.2, 1.5, 2.0 and 2.1.1. The for us relevant changes
occurred in the transition from version 1.5 to version 2.0. Hence, in this thesis we will operate with
UML 1.x and UML 2.x with versions 1.4 [131] and 2.1.1 [134] as representatives.

2Lifelines represent the timelines of communicating parts or components in a sequence diagram (see
section 4.1). In “MSC-terminology”, lifelines are called instances or instance lines. A lifeline-centric
syntax means that each lifeline is characterized by itself and a diagram as a collection of lifelines.

3In an event-centric syntax events, as opposed to lifelines, are the basic building blocks of a diagram.
The event-centric syntax of MSCs is more general than the lifeline centric-syntax in that all diagrams
expressed in the lifeline-centric syntax can be expressed in the event-centric syntax, but not the other
way around.
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Figure 4.1: Sequence diagram

of sequence diagrams. This means that even though we work with UML 2.x sequence
diagrams, much of the related work concerns MSCs. UML 2.x sequence diagrams are,
however, neither a subset nor a superset of MSC-2000; there are both similarities and
differences between the languages [67]. Most notably MSCs do not have any notion of
negative behavior (see below).

4.1 Graphical notation

The UML 2.x standard defines the graphical notation, but also an abstract syntax, for
the diagrams. Hence the language has a well-defined syntax.

Figure 4.1 shows a sequence diagram d in the graphical notation. A sequence dia-
gram consists of a frame, representing the environment of the specified system, and one
or more lifelines , representing components of the system. Arrows represent messages
sent between lifelines or between a lifeline and the environment of the diagram. If the
beginning or the end of an arrow is at a lifeline, this represents an event . Where an
arrow meets the frame, there is a gate. Combined fragments are operators, like the
choice operator alt, and each combined fragment has one or more operands.

In the diagram of figure 4.1 we see two components (lifelines) i and j. i receives a
message a from gate g and them makes a choice between sending message b or message
c to j.

4.2 Basic semantic model

The UML standard defines the semantics of sequence diagrams informally. Most no-
tably, this is a trace-based semantics:

The semantics of an Interaction4 is given as a pair of sets of traces. The two
trace sets represent valid traces and invalid traces. The union of these two sets
need not necessarily cover the whole universe of traces. The traces that are not
included are not described by this Interaction at all, and we cannot know whether
they are valid or invalid. [. . . ]

4In the UML standard, Interaction is used as the common name for diagrams specifying interaction
by sending and receiving of messages. Sequence diagrams are then one kind of Interaction [our note].
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Basic trace model: The semantics of an Interaction is given by a pair [P, I]
where P is the set of valid traces and I is the set of invalid traces. P ∪ I need
not be the whole universe of traces.

A trace is a sequence of event occurrences denoted 〈e1, e2, ..., en〉. [. . . ]

Two Interactions are equivalent if their pair of trace-sets are equal. [134, pp.
479–480]

The STAIRS semantics is a formalization of sequence diagrams based on an exten-
sion of this semantics model. We adopt the semantic model of STAIRS, and thereby
the semantic model described in the UML standard. This means we operate with the
concepts of positive and negative behavior.5 Behavior that is neither positive nor neg-
ative is referred to as inconclusive. A presentation of the STAIRS semantics is found
in chapter 5.

4.3 Operators

In the diagram of figure 4.1 we saw an operator alt. The UML standard defines a
number of operators of sequence diagrams that can be used in a similar way. Operators
are either unary or they have two or more operands. The standard defines eight unary
operators opt, break, loop, critical, neg, assert, ignore and consider, and four operators
seq, alt, par and strict that may be viewed as binary or n-ary. Of these we handle
the unary operators opt, loop, neg and assert, and all of latter, treated as binary. In
addition we introduce two additional operators: the unary operator refuse and the
binary operator xalt. We also introduce a constant skip. We consider seq, par and strict
as simple operators and the remaining as high-level operators. Below we give a short
description of each of the operators we use:

seq is called the weak sequencing operator, and defines a sequencing of its left argu-
ment and its right argument such that events on the left side must come before
event on the right side if they belong to the same lifeline. In addition the causal-
ity of messages is preserved, but except for these two constraints the result may
be any merge of the left side and the right side. See also section 7.3.3.

par is the parallel operator and defines interleaving of the events from each of its
arguments. The result is any merge of the left side and the right side that
preserves the causality of messages.

strict denotes strict sequencing, which means the left side must happen before the
right side.

opt is option. This unary operator represents a choice between its argument and
nothing.

neg is the negative operator and defines negative or invalid behavior. This oper-
ator represents a choice between this negative behavior or nothing. See also
section 7.3.4.

5We will use the terms negative and invalid interchangeably. Further, positive and valid should be
understood to be synonyms when we talk about behaviors.
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refuse is introduced to handle an ambiguity in the interpretation of neg (see [155]).
While neg defines a choice between negative behavior and nothing, refuse just
defines negative behavior.

assert is the assertion operator and defines what may be considered a kind of univer-
sal behavior. This means that only the behavior of its arguments may be positive
behavior and all other behavior is negative or invalid. See also section 7.3.1.

loop defines iteration of the behavior of its argument. The loop may be infinite or
have a specified number of iterations.

alt is the alternative operator and represents a (non-deterministic) choice between
its arguments.

xalt is called explicit alternative and is introduced to resolve an ambiguity in the
interpretation of alt. While alt represents underspecification, xalt defines a non-
deterministic choice representing an actual choice in the specified system. See
also section 7.3.5.

skip represents the empty diagram.
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Chapter 5

STAIRS

In this chapter we give a presentation of STAIRS. STAIRS may be seen as a develop-
ment method based on UML 2.x sequence diagrams. This chapter covers the two main
components of STAIRS, a denotational semantics for sequence diagrams and a refine-
ment theory based on this denotational semantics. In addition to these two components
there exist pragmatics for STAIRS [157], and extensions with time [70], data [158] and
probabilities [145, 146]. The time and data extensions are given a short treatment in
chapter 21.

In section 5.1 we give a brief introduction to the semantic model of STAIRS. Sec-
tion 5.2 presents an abstract textual syntax for sequence diagrams, based on [70],
that is used in defining the denotational semantics. In section 5.3 the denotational
semantics is presented. The presentation is heavily based on [68] but also includes
elements from [70,155], more specifically treatments of infinite loop and the refuse op-
erator which are not found in [68]. Section 5.4 provides a presentation of refinement
as defined in [70, 159].

5.1 Introduction

The STAIRS semantics is trace based and uses an extended version of the basic se-
mantic model from the UML standard. Instead of a single pair (p, n) of positive
(valid) and negative (invalid) traces, the semantic model of STAIRS is a set of pairs
{(p1, n1), (p2, n2), . . . , (pm, nm)}. A pair (pi, ni) is referred to as an interaction obliga-
tion. The word “obligation” is used in order to emphasize that an implementation
of a specification is required to fulfill every interaction obligation of the specification.
This semantic model makes it possible to distinguish between potential and mandatory
choice (see section 7.3.5).

A trace is a (finite or infinite) sequence of events 〈e1, e2, . . . , ei, . . .〉. Let H be the
trace universe. For each interaction obligation (pi, ni) we have that pi ⊆ H is inter-
preted as positive traces and ni ⊆ H as negative traces, and all interaction obligations
are independent of each other. The union pi ∪ ni needs not exhaust the trace universe,
so H \ (pi ∪ ni) may differ from ∅ and is referred to as inconclusive traces. Further we
allow specifications to be inconsistent, i.e., we may have that pi ∩ ni �= ∅.

In the following we assume the semantic model of STAIRS, and regard the STAIRS
semantics as a correct formalization of sequence diagrams. This means, e.g., that the
correctness of our operational semantics is evaluated with respect to the denotational
semantics of STAIRS.

27



STAIRS

5.2 Syntax

The graphical notation of sequence diagrams is not suited as a basis for defining seman-
tics, and the abstract syntax of the UML standard contains more information than we
need for the task. Instead we apply a simpler abstract syntax. This is an event centric
syntax in which the weak sequential operator seq is employed as the basic construct
for combining diagram fragments.

The atom of a sequence diagram is the event . An event consists of a message and
a kind where the kind decides whether it is the transmit or the receive event of the
message. A message is a signal, which represents the contents of the message, together
with the addresses of the transmitter and the receiver. Formally a signal is a label, and
we let S denote the set of all signals. The transmitters and receivers are lifelines. Let
L denote the set of all lifelines. Further let G denote the set of all gates. We treat gates
as a special kind of lifelines, hence we have G ⊂ L. Gates are conceptually different
from lifelines, but in this way definitions involving lifelines carry over to gates, and this
has some practical advantages.

5.2.1 Messages and events

A message m is defined as a triple

(s, t, r) ∈ S × L × L

of signal s, transmitter t and receiver r. M denotes the set of all messages. We
sometimes use the signal to denote the message when the lifelines are implicitly given
by, or not relevant in the context. On messages we define a transmitter function
tr. ∈M→ L and a receiver function re. ∈M→ L:

tr.(s, t, r)
def
= t re.(s, t, r)

def
= r

We let K = {!, ?} be the set of kinds, where ! represents transmit and ? represents
receive. An event e is then a pair of a kind and a message:

(k, m) ∈ K ×M

E denotes the set of all events. We sometimes write !s and ?s as shorthand for the
events (!, (s, t, r)) and (?, (s, t, r)). On events we define a kind function k. ∈ E → K
and a message function m. ∈ E →M:

k.(k, m)
def
= k m.(k, m)

def
= m

We let the transmitter and receiver functions also range over events, tr. , re. ∈ E → L:

tr.(k, m)
def
= tr.m re.(k, m)

def
= re.m

Further we define a lifeline function l. ∈ E → L that returns the lifeline of an event
and a function l−1. ∈ E → L that returns the inverse lifeline of an event (i.e. the
receiver of its message if its kind is transmit and the transmitter of its message if its
kind is receive), which may be a gate (since, as explained above, gates are defined as
a special kind of lifelines):

l.e
def
=

{
tr.e if k.e = !
re.e if k.e = ?

l−1.e
def
=

{
tr.e if k.e = ?
re.e if k.e = !
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5.2.2 Diagrams

A sequence diagram is built up of events, the binary operators seq, par, strict, alt
and xalt, and the unary operators opt, refuse, neg, assert and loop. Related to the
terminology of the graphical syntax, the operators represent combined fragments and
their arguments the operands. In addition we let skip represent the empty sequence
diagram. Let D be the set of all syntactically correct sequence diagrams. D is defined
recursively as the least set such that

skip ∈ D
e ∈ E ⇒ e ∈ D

d1, d2 ∈ D ⇒ d1 seq d2 ∈ D ∧ d1 par d2 ∈ D ∧
d1 strict d2 ∈ D ∧ d1 alt d2 ∈ D ∧
d1 xalt d2 ∈ D

d ∈ D ⇒ neg d ∈ D ∧ refuse d ∈ D ∧
opt d ∈ D ∧ assert d ∈ D

I ⊆ (N ∪ {0,∞}) ∧ di ∈ D for i ∈ I ⇒ alti∈I di ∈ D
d ∈ D ∧ I ⊆ (N ∪ {0,∞}) ⇒ loop I d ∈ D
d ∈ D ∧ n ∈ (N ∪ {0,∞}) ⇒ loop〈n〉 d ∈ D

with some additional constraints defined below.
Composition of diagrams by matching and elimination of gates are outside the scope

of this presentation. Note therefore that this is a grammar for sequence diagrams and
not composition as such.

The operator alti∈I is referred to as generalized alt. In the definition of this operator
and the two loops we have that N is the set of non-zero natural numbers and ∞ is a
number greater than all other numbers and has the property ∞−1 = ∞. The intention
behind loop I d is that d should be looped any number n ∈ I times. The operator
loop〈n〉 is referred to as loop with counter as the intention of loop〈n〉 d is that d should
be looped n times.

As can be expected, we have associativity of seq, par, strict, alt and xalt. We
also have commutativity of par, alt and xalt. Proofs with respect to the denotational
semantics can be found in [70]. Furthermore, the empty sequence diagram skip is the
identity element of seq, par and strict. The combination of skip and loop is discussed
in section 8.3.1. We assume the following precedence of the operators: refuse, assert,
loop, neg, opt, seq, strict, par, alt, xalt such that refuse binds stronger than assert, etc.

Note that an event at a gate cannot be part of a diagram. Hence, the representation
of diagram d in figure 5.1 is:

d = (?, (a, g, i)) seq ((!, (b, i, j)) seq (?, (b, i, j)) alt (!, (c, i, j)) seq (?, (c, i, j)))

A number of functions that we will need later is defined over the syntax of diagrams.
The function ll. ∈ D → P(L) returns the set of lifelines present in a diagram. For
e ∈ E and d, d1, d2, di ∈ D the function is defined recursively:

ll.e
def
= {l.e}

ll.skip
def
= ∅

ll.(op d)
def
= ll.d, op ∈ {neg, refuse, opt, assert, loop}

ll.(d1 op d2)
def
= ll.d1 ∪ ll.d2, op ∈ {seq, par, strict, alt, xalt}

ll.(alti∈I di)
def
=

⋃
i∈I ll.di
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The function gates. ∈ D → P(G) returns the gates of a diagram:

gates.e
def
=

{
{l−1.e} if l−1.e ∈ G
∅ if l−1.e �∈ G

gates.skip
def
= ∅

gates.(op d)
def
= gates.d, op ∈ {neg, refuse, opt, assert, loop}

gates.(d1 op d2)
def
= gates.d1 ∪ gates.d2, op ∈ {seq, par, strict, alt, xalt}

gates.(alti∈I di)
def
=

⋃
i∈I gates.di

The function msg. ∈ D → P(M) returns the messages of a diagram:

msg.e
def
= {m.e}

msg.skip
def
= ∅

msg.(op d)
def
= msg.d, op ∈ {neg, refuse, opt, assert, loop}

msg.(d1 op d2)
def
= msg.d1 ∪msg.d2, op ∈ {seq, par, strict, alt, xalt}

msg.(alti∈I di)
def
=

⋃
i∈I msg.di

The function ev. ∈ D → P(E) returns the events of a diagram:

ev.e
def
= {e}

ev.skip
def
= ∅

ev.(op d)
def
= ev.d, op ∈ {neg, refuse, opt, assert, loop}

ev.(d1 op d2)
def
= ev.d1 ∪ ev.d2, op ∈ {seq, par, strict, alt, xalt}

ev.(alti∈I di)
def
=

⋃
i∈I ev.di

5.2.3 Syntax constraints

We impose some restrictions on the set of syntactically correct sequence diagrams D.
First, we assert that a given event should syntactically occur only once in a diagram:

d1 op d2 ∈ D ⇒ ev.d1 ∩ ev.d2 = ∅, op ∈ {seq, par, strict, alt, xalt}
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Secondly, if both the transmitter and the receiver lifelines of a message are present
in a diagram, then both the transmit event and receive event of that message must be
in the diagram:

d ∈ D ∧m ∈ msg.d ∧ tr.m ∈ ll.d ∧ re.m ∈ ll.d ⇒ (!, m) ∈ ev.d ∧ (?, m) ∈ ev.d

Thirdly, if both the transmit event and the receive event of a message are present in
a diagram, they have to be inside the same argument of the same high-level operator.

op d ∈ D ∧m ∈ msg.d
⇒ (tr.m �∈ G ⇒ (!, m) ∈ ev.d) ∧ (re.m �∈ G ⇒ (?, m) ∈ ev.d),
op ∈ {refuse, assert, loop}

d1 op d2 ∈ D ∧m ∈ msg.di

⇒ (tr.m �∈ G ⇒ (!, m) ∈ ev.di) ∧ (re.m �∈ G ⇒ (?, m) ∈ ev.di),
op ∈ {alt, xalt}, i ∈ {1, 2}

A way of phrasing this constraint is that in the graphical notation, messages are not
allowed to cross the frame of a high-level operator or the dividing line between the
arguments of a high-level operator.

Fourthly, we assume there is no syntactical repetition of gates in a diagram:

d1 op d2 ∈ D ⇒ gates.d1 ∩ gates.d2 = ∅, op ∈ {seq, par, strict, alt, xalt}

Finally, we do not allow the operators refuse and assert to be empty:

refuse skip �∈ D
assert skip �∈ D

5.3 Denotational semantics

In this section we give the denotational semantics of STAIRS as presented in [68, 70,
155]. In [70] the semantics is given as a timed three event version. In our work, and
hence in the following presentation we apply the untimed two event version of [68,155].

The operators strict, generalized alt and loop with counter, defined in sections 5.3.5,
5.3.6 and 5.3.9, respectively, are additions we have made to STAIRS and are hence not
found in the above cited works. In addition we have given a new, however semantically
equivalent, definition of loop I.1

5.3.1 Well formed traces

STAIRS is a trace based semantics. A trace is a sequence of events, used to represent
a system run. In each trace, a transmit event should always be ordered before the
corresponding receive event. We let H denote the set of all traces that complies with
this requirement. Formally this is handled by a constraint on traces.

We use 〈〉 to denote the empty trace, and | and # to denote, respectively, trunca-
tion and length of traces. For concatenation of traces, filtering of traces, and filtering

of pairs of traces, we have the functions � , S© , and T© , respectively. t1
�t2 denotes a

1The proof of this equivalence may be found as lemma 16 in appendix B.3 of [115].
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trace that equals t1 if t1 is infinite or otherwise is the trace consisting of t1 immediately
followed by t2. The filtering function S© is used to filter away elements from a trace.
By A S©t we denote the trace obtained from the trace t by removing all elements in t
that are not in the set of elements A. For example, we have that:

{1, 3} S©〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

The function T© filters pairs of traces with respect to pairs of elements in the same way
as S© filters traces with respect to elements. For any set of pairs of elements P and
pair of traces u, by P T©u we denote the pair of traces obtained from u by 1) truncating
the longest trace in u at the length of the shortest traces in u if the two sequences are
of unequal length; 2) for each j ∈ [1 . . . k], where k is the length of the shortest trace
in u, selecting or deleting the two elements at index j in the two traces, depending on
whether the pair of these elements is in the set P or not. For example, we have that:

{(1, f), (1, g)} T©(〈1, 1, 2, 1, 2〉, 〈f, f, f, g, g〉) = (〈1, 1, 1〉, 〈f, f, g〉)

Definitions of S© and T© are found as definition 4 on page 267 and definition 7 on
page 275 in appendix A.2.

The semantic constraint on traces may now be formalized. It asserts that for all
traces h ∈ H, if at a point in a trace we have an receive event of a message, then up to
that point we must have had at least as many transmits of that message as receives.

∀i ∈ [1..#h] : k.h[i] = ! ⇒ #({(!, m.h[i])} S©h|i) > #({(?, m.h[i])} S©h|i) (5.1)

5.3.2 The denotation function

As explained above, the semantic model of STAIRS is a set of interaction obligations,
where an interaction obligation is a pair (p, n) of sets of traces where the first set is
interpreted as a set of positive traces and the second set is a set of negative traces.
In the following we let O be the set of all interaction obligations. The semantics of
sequence diagrams is defined by a function

[[ ]] ∈ D → P(O) (5.2)

that for any sequence diagram d yields a set [[ d ]] of interaction obligations.
The semantics of the empty sequence diagram skip is defined as only the empty

positive trace:

[[ skip ]]
def
= {({〈〉}, ∅)} (5.3)

For a sequence diagram consisting of a single event e, its semantics is given by:

[[ e ]]
def
= {({〈e〉}, ∅)} (5.4)

5.3.3 Weak sequencing

Weak sequencing is the implicit composition mechanism combining constructs of a
sequence diagram, and is defined by the seq operator. First, we define weak sequencing
of trace sets:

s1 � s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : e.l S©h = e.l S©h1

�e.l S©h2} (5.5)
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where e.l denotes the set of events that may take place on the lifeline l:

e.l
def
= {e ∈ E | l.e = l}

Weak sequencing of interaction obligations is defined as:

(p1, n1) � (p2, n2)
def
= (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2)) (5.6)

Using this definition, the semantics of the seq operator is defined as:

[[ d1 seq d2 ]]
def
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (5.7)

5.3.4 Interleaving

The par operator represents a parallel merge of traces such that the order of the events
in the merged traces is preserved in the resulting traces. In order to define par, we first
define parallel execution on trace sets:

s1 ‖ s2
def
= {h ∈ H | ∃p ∈ {1, 2}∞ :

π2(({1} × E) T©(p, h)) ∈ s1 ∧
π2(({2} × E) T©(p, h)) ∈ s2}

(5.8)

In this definition, we make use of an oracle, the infinite sequence p, to resolve the non-
determinism in the interleaving. It determines the order in which events from traces
in s1 and s2 are sequenced. π2 is a projection operator returning the second element
of a pair. Formally:

πi(s1, s2)
def
= si, i ∈ {1, 2}

Parallel merge of interaction obligations is defined as:

(p1, n1) ‖ (p2, n2)
def
= (p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2)) (5.9)

The semantics of the par operator is then defined as:

[[ d1 par d2 ]]
def
= {o1 ‖ o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (5.10)

5.3.5 Strict sequencing

The strict operator specifies strict sequencing. Strict sequencing of trace sets is defined
as:

s1 � s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : h = h1

�h2} (5.11)

Strict sequencing of interaction obligations is defined as:

(p1, n1) � (p2, n2)
def
= (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2)) (5.12)

The semantics of the strict operator is defined as:

[[ d1 strict d2 ]]
def
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (5.13)
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5.3.6 Choice

The alt operator defines potential choice. The semantics is the inner union of the
interaction obligations:

[[ d1 alt d2 ]]
def
= {(p1 ∪ p2, n1 ∪ n2) | (p1, n1) ∈ [[ d1 ]] ∧ (p2, n2) ∈ [[ d2 ]]} (5.14)

The unary operator opt is defined as a derived operator from alt:

opt d
def
= skip alt d (5.15)

Let
⊎

be a generalization inner union of interaction obligations such that

⊎
i∈I

Oi
def
= {

(⋃
i∈I

pi,
⋃
i∈I

ni

)
| ∀i ∈ I : (pi, ni) ∈ Oi} (5.16)

where Oi are sets of interaction obligations. We define the generalized alt in the fol-
lowing fashion:

[[ alt
i∈I

di ]]
def
=

⊎
i∈I

[[ di ]] (5.17)

The xalt operator defines mandatory choice. All implementations must be able to
handle every interaction obligation, so the the semantics of xalt is defined as the union
of interaction obligations defined by its arguments:

[[ d1 xalt d2 ]]
def
= [[ d1 ]] ∪ [[ d2 ]] (5.18)

5.3.7 Negative behavior

To specify negative behavior we use the operator refuse. The reason for this is that
the UML operator neg is ambiguous and has (at least) two distinct interpretations.
Following [155] we define refuse as one of the interpretations and let neg represent the
other as a derived operator. refuse is defined as:

[[ refuse d ]]
def
= {(∅, p ∪ n) | (p, n) ∈ [[ d ]] } (5.19)

Note that refuse defines all positive and negative behavior as negative, so nested refuse
does not yield positive behavior. The neg operator is defined as a derived operator
from refuse:

neg d
def
= skip alt refuse d (5.20)

5.3.8 Universal behavior

Universal behavior is specified by the operator assert:

[[ assert d ]]
def
= {(p, n ∪ (H \ p)) | (p, n) ∈ [[ d ]]} (5.21)

Note that assert defines all behavior that is not positive as negative and hence empties
the set of inconclusive traces.
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5.3.9 Iteration

The semantics of loop is defined by a semantic loop construct μn, where n is the number
of times the loop should be iterated. For n ∈ N ∪ {0} (finite loop), μn is defined as:

μ0 O
def
= {({〈〉}, ∅)}

μ1 O
def
= O

μn O
def
= O � μn−1 O if n > 1

(5.22)

With this loop construct, loop〈n〉 is defined as:

[[ loop〈n〉 d ]]
def
= μn [[ d ]] (5.23)

loop I is defined a derived operator:

loop I d
def
= alt

i∈I
loop〈i〉 d (5.24)

In order to define infinite loop we need some auxiliary definitions. We define the chains
of interaction obligation as:

chains(O)
def
= {ō ∈ O∞ | ō[1] ∈ O ∧

∀j ∈ N : ∃o ∈ O : ō[j + 1] = ō[j] � o}
(5.25)

From a chain of interaction obligations we define its chains of positive and negative
traces:

pos(ō)
def
= {t̄ ∈ H∞ | ∀j ∈ N : t̄[j] ∈ π1(ō[j]) ∧

∃t ∈ H : t̄[j + 1] ∈ {t̄[j]} � {t}}
(5.26)

negs(ō)
def
= {t̄ ∈ H∞ | ∃i ∈ N : ∀j ∈ N : t̄[j] ∈ π2(ō[j + i− 1]) ∧

∃t ∈ H : t̄[j + 1] ∈ {t̄[j]} � {t}}
(5.27)

For every chain of traces t̄ we have that for all l ∈ L, the sequence

e.l S©t̄[1], e.l S©t̄[2], e.l S©t̄[3], . . .

is a chain ordered by the prefix relation �. We let �lt̄ denote the least upper bound
of this chain and define the approximations of t̄ as:

�t̄
def
= {h ∈ H | ∀l ∈ L : e.l S©h = �l t̄ } (5.28)

For a chain of interaction obligations we define:

�ō
def
=

( ⋃
t̄∈pos(ō)

�t̄,
⋃

t̄∈negs(ō)

�t̄

)
(5.29)

and let infinite loop be defined as:

μ∞ O
def
= {�ō | ō ∈ chains(O)} (5.30)

The UML standard defines two loops loop(n) and loop(n, m), where n is the minimum
number and m the maximum number of iterations. We may define these as derived
operators:

loop(n) d
def
= loop [n..∞] d

loop(n, m) d
def
= loop [n..m] d
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5.4 Refinement

Refinement is to make a specification more concrete and closer to implementation by
removing underspecification. For sequence diagrams, which are partial specifications,
this means two things:

1. Making the specification more specific by removing inconclusive behavior, i.e.,
making inconclusive behavior positive or negative.

2. Making the specification more concrete by removing non-determinism, i.e., mak-
ing positive behavior negative.

In the following we formalize a number of refinement relations, based on [70, 159], to
capture various aspects of the intuitive understanding of refinement. The refinement
relations are relations �x ∈ D × D → B between sequence diagrams, where x
represents decorations we apply for distinguishing the different relations. For diagrams
d, d′, the relation d �x d′ is to be read “d′ is an x-refinement of d” or “d′ x-refines d.”

5.4.1 Refinement of interaction obligations

In order to define the refinement relations for diagrams we first need to define refinement
of interaction obligations. The most general refinement, which captures both the above
items, is the relation �r ∈ O ×O → B:

(p, n) �r (p′, n′) def
= p ⊆ p′ ∪ n′ ∧ n ⊆ n′

Each of the above items give rises to a special case of this general refinement. Item 1 is
referred to as (proper) supplementing and is formalized by a relation �s ∈ O×O →
B:

(p, n) �s (p′, n′) def
= (n ⊂ n′ ∧ p ⊆ p′) ∨ (n ⊆ n′ ∧ p ⊂ p′)

Item 2 is called (proper) narrowing and is formalized by the relation �n ∈ O×O →
B:

(p, n) �n (p′, n′) def
= p′ ⊂ p ∧ n′ = n ∪ (p \ p′)

In some situations it may by useful to assert that no new functionality should be added
to the specification, or in other words that the set of positive behavior is not allowed
to increase. This is formalized in a relation �rr ∈ O × O → B called restricted
refinement:

(p, n) �rr (p′, n′) def
= (p, n) �r (p′, n′) ∧ p′ ⊆ p

5.4.2 Refinement of sequence diagrams

The denotation [[ d ]] of a diagram d characterizes a set of interaction obligations. In
the most general case we say that a diagram d′ refines diagram d if and only if all
interaction obligations of [[ d ]] are refined by an interaction obligation in [[ d′ ]]. This is
formalized by the general refinement relation �g ∈ D ×D → B:

d �g d′ def
= ∀o ∈ [[ d ]] : ∃d′ ∈ [[ o′ ]] : o �r o′
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Likewise we define a restricted general refinement relation �rg ∈ D×D → B based
on restricted refinement of interaction obligations:

d �rg d′ def
= ∀o ∈ [[ d ]] : ∃o′ ∈ [[ d′ ]] : o �rr o′

Both general refinement and restricted general refinement allow a diagram d′, which
refines a diagram d, to include new interaction obligations, i.e. interaction obligations
that are not refinements of interaction obligations of d. In some situations it may be
useful to disallow this option of adding interaction obligations in a refinement. Limited
refinement �l ∈ D×D → B and restricted limited refinement �rl ∈ D×D → B

are refinement relations that formalize this limitation with respect to general refinement
and restricted general refinement:

d �l d′ def
= d �g d′ ∧ ∀o′ ∈ [[ d′ ]] : ∃o ∈ [[ d ]] : o �r o′

d �rl d′ def
= d �rg d′ ∧ ∀o′ ∈ [[ d′ ]] : ∃o ∈ [[ d ]] : o �rr o′
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Chapter 6

Maude

As stated earlier, one of our main contributions is an operational semantics and its
implementation in Maude. In this chapter we give a brief introduction to Maude, in
order to present the capabilities of Maude and to help the reader better understand
our Maude implementation.

Maude is two things; a specification language and an interpreter of this language.
We start by presenting the language in a example driven fashion (section 6.1), and then
introducing the main functionality of the interpreter (section 6.2). Also we present some
of the reflexive properties of Maude (section 6.3). We do not apply the full language,
and only present the parts that we use. For a more thorough introduction we refer
to [35, 121, 139]. For more formal treatments of rewrite logic we refer to [28, 123].

6.1 Specification language

Maude specifications are organized in modules, and modules contain definitions of
sorts, operators, equations and rules. A module may be a functional module or a
system module. The only real difference is that system modules may contain rewrite
rules, while functional modules may not. As an example we define a module for lists
of natural numbers:

mod LIST is

endm

This is a system module. A functional module would start with fmod and end with
endfm. A module may include other models. Maude contains a number of predefined
modules for common data types like the natural numbers or the Booleans, so we may
add the line

include NAT .

to the module above to include the predefined definitions of the natural numbers.
Data types in Maude are called sorts. In our example we add the following lines to

our module:

sort List .
subsort Nat < List .
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This means we define a sort List, and define the sort Nat from the included module
NAT as a subsort of List. This way a single natural number is also regarded as a
singleton list.

Operators are functions from a Cartesian product of sorts to a single sort. Special
operators called constructors are used to define the values of sorts. The members
of a sort are those terms (called ground terms) that are built from the constructor
operators. We define the constructors of our lists as:

op nil : -> List [ctor] .
op _,_ : List List -> List [ctor assoc id: nil] .

Here nil is meant to represent the empty list, and since it has zero arguments it
is a constant. The keyword ctor is used to assert that it a constructor. As list
concatenation operator we use comma in mixfix notation. This is also a constructor,
and the statement assoc id: nil defines it as associative and with nil as the identity
element. In addition to these two constructors, the constructors of the sort Nat become
constructors of the sort List because Nat is a subsort of List. Now we have that, e.g.,

2 , 4 , 3, 1

and

0 , nil , nil , 1

are ground terms of the sort List. Operators that are not constructors may be seen
as functions that operate on sorts. If we want a length function of the lists we define
its signature as:

op length : List -> Nat .

A operator is defined by a set of equations. The operator length may for example be
defined as

eq length(nil) = 0 .
eq length(N , L) = 1 + length(L) .

if we first have defined N as a variable of type Nat and L as a variable of type List.
Equations may be conditional. An alternative definition the upper equation above
could be:

ceq length(L) = 0 if L == nil .

Condition may also be of the form L :: List, which checks for sort membership,
or N := M * K, which assigns a value to a variable. Also the condition may be a
conjunction of several sub-conditions. This is called the functional part of Maude, and
as we can see, it is quite similar to a functional programming language.

In addition to functional definitions we may define rewrite rules, which also may
be conditional or unconditional. As an example we define a rule for sorting a list of
natural numbers:

crl [sort] : L , N , N’ , L’ => L , N’ , N , L’ if N’ < N .

In the condition of a rule, we may also have rewrites as sub-conditions.
Put together the whole module becomes:
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mod LIST is
including NAT .

sort List .
subsort Nat < List .

op nil : -> List [ctor] .
op _,_ : List List -> List [ctor assoc id: nil] .
op length : List -> Nat .

vars N N’ : Nat .
vars L L’ : List .

eq length(nil) = 0 .
eq length(N , L) = 1 + length(L) .

crl [sort] : L , N , N’ , L’ => L , N’ , N , L’ if N’ < N .
endm

This module defines lists of natural numbers, a length function for these lists, and a
rule for sorting the lists.

6.2 Interpreter

The Maude interpreter has three main commands; reduce, rewrite and search. The
command reduce applies the equations from left to right on the provided term and
reduces it until it becomes a ground term. If, for example, we issue the command

reduce in LIST : length(2 , 4 , 3 , 1) .

the Maude interpreter will produce the result:

rewrites: 9 in 2283767000ms cpu (0ms real) (0 rewrites/second)
result NzNat: 4

Because we have defined the list concatenation operator to be associative and have nil
as the identity element, all reductions will happen modulo associativity and identity.

The rewrite command applies the rules of a module, from left to right, on a given
term, until no more rewrites are possible. Giving the command

rewrite in LIST : 2 , 4 , 3 , 1 .

will result in:

rewrites: 31 in 2283764000ms cpu (1ms real) (0 rewrites/second)
result List: 1,2,3,4

Between each rewrite, the interpreter will reduce as much as possible, and also rewrites
are applied modulo associativity, commutativity and identity if specified in the con-
structors. If the left side of more than one rule matches the term, the rules will be
applied semi non-deterministically. (By semi non-deterministically we mean that the

41



Maude

interpreter does not have real non-determinism in application of the rules, but simu-
lates non-determinism by chosing which rule to apply based on the, usually arbitrary,
order in which the rules appear in the Maude code.)

serach makes a breadth first search on all possible sequences of rewrites and returns
the terms matching the search criteria. Let us say we want to know what the result
may be after only one rewrite. We specify the search

search in LIST : 2 , 4 , 3 , 1 =>1 L:List .

and the Maude interpreter returns two solutions:

Solution 1 (state 1)
states: 2 rewrites: 5 in 24958464280ms cpu (1ms real)

(0 rewrites/second)
L --> 2,3,4,1

Solution 2 (state 2)
states: 3 rewrites: 13 in 24958464280ms cpu (1ms real)

(0 rewrites/second)
L --> 2,4,1,3

No more solutions.
states: 3 rewrites: 17 in 24958464280ms cpu (1ms real)

(0 rewrites/second)

If we specify the search

search in LIST : 2 , 4 , 3 , 1 =>! N:Nat , L:List , N’:Nat
such that N:Nat > N’:Nat .

we ask the interpreter to do as many rewrites as possible and look for solutions where
the first number of the list is greater than the last number. Luckily, the interpreter
gives us this result:

No solution.
states: 8 rewrites: 111 in 4767057229ms cpu (2ms real)

(0 rewrites/second)

In addition we may specify searches using =>* and =>+, in which the interpreter will
look for solutions after, respectively, zero or more rewrites and one or more rewrites.

6.3 Reflexivity

Maude is a reflexive language. This means that modules, equations, etc. have meta-
representations and that these meta-representations may be manipulated as any other
terms. To access the meta-level the predefined module META-LEVEL must be included.
In the example we define a module LIST-META in which we can perform manipulations
of the meta-level of the module LIST:

mod LIST-META is
including LIST .
including META-LEVEL .

endm
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We can now get a meta-representation of a term by using the predefined function
upTerm:

reduce in LIST-META : upTerm(0,1) .
rewrites: 1 in -17206397862ms cpu (0ms real) (~ rewrites/second)
result GroundTerm: ’_‘,_[’0.Zero,’s_[’0.Zero]]

The result is a term of type GroundTerm. ’0.Zero is the meta-representation of 0,
’s_[’0.Zero] is the meta-representation of 1 (actually s 0, the successor function
s_ applied to 0) and ’_‘,_[...] is the meta-representation of the list concatenation
operator _,_. The command

reduce in LIST-META : upModule(’LIST, false) .

gives us a meta-representation of the module LIST. The parameter false asserts that
included modules should not be included in the meta-representation, whereas using
the parameter true instead would give a meta-representation that included the meta-
representation of the included modules. The result is as a term of type Module:

result Module: mod ’LIST is
including ’BOOL .
including ’NAT .
sorts ’List .
subsort ’Nat < ’List .
op ’_‘,_ : ’List ’List -> ’List [assoc ctor id(’nil.List)] .
op ’length : ’List -> ’Nat [none] .
op ’nil : nil -> ’List [ctor] .
none
eq ’length[’nil.List] = ’0.Zero [none] .
eq ’length[’_‘,_[’N:Nat,’L:List]]

= ’_+_[’s_[’0.Zero],’length[’L:List]] [none] .
crl ’_‘,_[’L:List,’N:Nat,’N’:Nat,’L’:List]

=> ’_‘,_[’L:List,’_‘,_[’N’:Nat,’_‘,_[’N:Nat,’L’:List]]]
if ’_<_[’N’:Nat,’N:Nat] = ’true.Bool [label(’sort)] .

endm

There is a number of functions that may be applied at the meta-level. metaReduce
and metaRewrite work as the commands reduce and rewrite, but at the meta-level.
metaApply and metaXapply make one rewrite on a term with a specified rule, the former
at the top level of the term and the latter somewhere within the term. metaSearch does
search at the meta-level. In the following we will look closer at metaApply. The argu-
ments of this function is the meta-representation of a module, the meta-representation
of a term to be rewritten, the name of a rule, a possible empty set of substitutions
of values for the variables in the rule and a counter used to differentiate between dif-
ferent possible applications of the rule. The function returns a meta-representation of
the term after the rewrite, the type of the resulting term and the substitutions of the
values to variables used in the rewrite. By applying the sort rule to the list 3, 2, 1

and varying the counter we will see that there are two ways to apply the rule on the
list:

reduce in LIST-META : metaApply(upModule(’LIST, false), upTerm(3,2,1),
’sort, none, 0) .
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rewrites: 5 in -17329373866ms cpu (6ms real) (~ rewrites/second)
result ResultTriple:

{’_‘,_[’s_^2[’0.Zero],’s_^3[’0.Zero],’s_[’0.Zero]],’List,
’L’:List <- ’s_[’0.Zero] ;
’L:List <- ’nil.List ;
’N’:Nat <- ’s_^2[’0.Zero] ;
’N:Nat <- ’s_^3[’0.Zero]}

reduce in LIST-META : metaApply(upModule(’LIST, false), upTerm(3,2,1),
’sort, none, 1) .

rewrites: 5 in -13449941426ms cpu (0ms real) (~ rewrites/second)
result ResultTriple:

{’_‘,_[’s_^3[’0.Zero],’s_[’0.Zero],’s_^2[’0.Zero]],’List,
’L’:List <- ’nil.List ;
’L:List <- ’s_^3[’0.Zero] ;
’N’:Nat <- ’s_[’0.Zero] ;
’N:Nat <- ’s_^2[’0.Zero]}

reduce in LIST-META : metaApply(upModule(’LIST, false), upTerm(3,2,1),
’sort, none, 2) .

rewrites: 3 in 6603855571ms cpu (1ms real) (0 rewrites/second)
result ResultTriple?: (failure).ResultTriple?

The Maude interpreter will typically use the first possible rewrite, which in this case is
swapping 3 and 2 in the list. If we for some reason would like to sort the list in such a
way that the sorting starts at the end of the list instead of the beginning, we could use
metaApply and define a rewriting strategy that always uses the rewrite that does the
rightmost possible swap of numbers in the list. One way this can be done is by adding
the following definitions to the module LIST-META:

sort ResultList .
subsort ResultTriple < ResultList .

op empty : -> ResultList [ctor] .
op _&_ : ResultList ResultList -> ResultList [ctor assoc id: empty] .

op mySort : List -> List .
op sorted : List -> Bool .
op getPossibilities : List Nat -> ResultList .
op findRightmost : ResultList -> ResultTriple .
op getTail : ResultTriple -> List .
op findTail : Substitution -> List .

op error : -> [List] .

var L : List .
vars N N’ : Nat .
var RT? : ResultTriple? .
vars RT RT’ : ResultTriple .
var RL : ResultList .
var V : Variable .
var T : Term .
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var S : Substitution .

ceq mySort(L) = L if sorted(L) .
ceq mySort(L)

= mySort(downTerm(getTerm(findRightmost(getPossibilities(L,0))),
error))

if not sorted(L) .

eq sorted(nil) = true .
eq sorted(N) = true .
eq sorted(N,N’,L) = N <= N’ and sorted(N’,L) .

ceq getPossibilities(L,N) =
if RT? :: ResultTriple then

RT? & getPossibilities(L,s N)
else

empty
fi
if RT? := metaApply(upModule(’LIST,false),upTerm(L),’sort,none,N) .

eq findRightmost(RT) = RT .
ceq findRightmost(RT & RL) =

if length(getTail(RT)) < length(getTail(RT’)) then
RT

else
RT’

fi
if RT’ := findRightmost(RL) .

eq getTail(RT) = findTail(getSubstitution(RT)) .

eq findTail(none) = nil .
eq findTail(V <- T ; S) =
if V == ’L’:List then

downTerm(T,error)
else

findTail(S)
fi .

The function mySort will sort a list of numbers by using the sort rule, but in such a
way that the swapping of numbers always occur as the rightmost possible swap in the
list.
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Chapter 7

Introduction to operational
semantics

One of the main contributions of this thesis is an operational semantics for UML
sequence diagrams. In this chapter we motivate this (section 7.1) and have a look at
the differences between denotational semantics and operational semantics (section 7.2).
Further we discuss some challenges specific for defining operational semantics for UML
sequence diagrams (section 7.3).

The operational semantics itself is defined in chapter 8. After that we present meta-
strategies for execution of the operational semantics in chapter 9, implementation of
the operational semantics in chapter 10 and other approaches to defining operational
semantics for sequence diagrams in chapter 11.

7.1 Motivation

When sequence diagrams are used to get a better understanding of the system through
modeling, as system documentation or as means of communication between stakehold-
ers of the system, it is important that the precise meaning of the diagrams is under-
stood; in other words, there is need for a well-defined semantics. Sequence diagrams
may also be put to further applications, such as simulation, testing and other kinds
of automated analysis. This further increases the need for a formalized semantics; not
only must the people who make and read diagrams have a common understanding of
their meaning, but also the makers of methods and tools for analyzing the diagrams
must share this understanding.

Methods of analysis like simulation and testing are in their nature operational;
they are used for investigating what will happen when a system is executing. When
developing techniques for such analysis, not only do we need to understand the precise
meaning of a specification, we also need to understand precisely the executions that
are specified. This motivates formalization of semantics in an operational style.

In our work we have aimed at defining an operational semantics that is close to the
UML standard in both syntax and semantics. Further we have aimed at facilitating ease
of extension and modification when adapting the semantics to different interpretations
and applications of sequence diagrams.
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7.2 Definition

STAIRS provides a denotational semantics for sequence diagrams, and we have mo-
tivated the need for operational semantics. Before we proceed, let us have a look at
the distinction between operational semantics and denotational semantics. David A.
Schmidt [161, p. 3] suggests the following:

The operational semantics method uses an interpreter to define a language. The
meaning of a program in the language is the evaluation history that the inter-
preter produces when it interprets the program. The evaluation history is a
sequence of internal configurations [. . . ]

The denotational semantics method maps a program directly to its meaning,
called its denotation. The denotation is usually a mathematical value, such as
a number or function. No interpreters are used; a valuation function maps a
program directly to its meaning.

As a methodology for language development he suggests that “a denotational semantics
is defined to give the meaning of the language” and that “the denotational definition
is implemented using an operational definition” [161, p. 4]. Hoare and He [75, p. 258]
describe more explicitly the notion of an operational semantics:

An operational semantics of a programming language is one that defines not
the observable overall effect of a program but rather suggests a complete set of
possible individual steps which may be taken in its execution. The observable
effect can then be obtained by embedding the steps into an iterative loop [. . . ]

Taken together, these two descriptions suggest that formalizing an operational seman-
tics of a language is to define an interpreter for the language. The formal definition of
the interpreter describes every step that can be made in the execution of the language
in such a way that the executions are in conformance with the meaning of the language
as defined by a denotational semantics. In our case the input to the interpreter is a
sequence diagram represented in an abstract syntax. The output of the interpreter is
a trace of events representing an execution.

7.3 Challenges

There are a number of challenges connected with making semantics for sequence dia-
grams, and obviously, choices must be made where the UML standard is ambiguous.
This section is dedicated to looking into these challenges in more detail.

7.3.1 Partial vs. complete specification

An old discussion related to sequence diagrams and MSCs is whether a specification
consisting of a set of diagrams represents the full behavior of the specified system or
just examples of the behavior. In the former case we say that the set of sequence
diagrams is a complete specification, and in the latter case a partial specification.

The UML standard states clearly that sequence diagrams are partial specifications
since “[the union of valid and invalid traces] need not be the whole universe of traces”
[134, p. 480]. However, the operator assert can be used for specifying universal behavior
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in the sense that all behavior other than the behavior which is enclosed by the assert
is made negative.

This makes defining an operational semantics somewhat more complicated than
in the case of complete specifications. It rules out solutions such as just viewing
sequence diagrams as, or translating them to, other formalisms for making complete
specifications, such as transition systems. In effect, the trace universe becomes a
quantity that must be considered in the definition of the semantics. This excludes
a solution where the negative traces are considered as just the complement of the
positive traces.

7.3.2 Global vs. local view

In a certain sense, a sequence diagram has a global and a local view at the same
time. The lifelines of a sequence diagram do not synchronize and represent processes
that execute independently. This is the local view of the sequence diagram. At the
same time, the syntax allows operators that cover several lifelines, and hence provide
a global view. The best example is the alternative operator alt without guards, i.e. a
non-deterministic choice. Since the lifelines are independent and do not synchronize,
one of the lifelines may start executing the arguments of the operator before the other
lifelines. The choice, however, is global in the sense that all lifelines must choose the
same argument when resolving the choice. In [89, p. 369], Jonsson and Padilla make
the same observation:

The transition system will [. . . ] maintain a local state for each instance [. . . ] The
execution [. . . ] may follow either of two paths, depending on which alternative
is chosen in the [alt]. The crucial point here is that all three instances must
choose the same alternative even if they do not arrive simultaneously to the [alt]
in their execution. [. . . ] Thus, [one instance’s] entry into the first alternative
has global consequences in that it “forces” the other instances to also choose the
first alternative.

The result of this is that the semantics must reflect this duality; the semantics must
provide both the local and the global view of the specifications. A discussion of this
problem is also found in [94].

7.3.3 Weak sequencing

The weak sequencing operator seq is the implicit operator for composing sequence
diagrams. The operator defines a partial order of the events in a diagram, such that
the order along each lifeline and the causal relationship between the transmission and
the reception of messages are preserved while any other ordering of events is arbitrary.
Further there is no implicit synchronization between the lifelines in a sequence diagram.

An operational semantics must characterize the step by step execution specified
by the diagram. For each step, all enabled events must be selectable. This poses a
challenge, since due to the weak sequencing, there may be enabled events at arbitrary
depths in the syntactical term representing the diagram.
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7.3.4 Negative behavior

UML 2.x allows negative behavior to be specified by the neg operator in sequence
diagrams. In the semantic model, these behaviors end up in the set of negative traces
(see section 4.2). In denotational semantics like STAIRS or the trace semantics of
Harald Störrle [173,174] this is easily handled by manipulation of the traces and trace
sets (even though these two formalizations do not agree on the interpretation of neg).

It is however not clear what negative behavior means in an operational semantics.
If an operational semantics should describe a step by step the execution of a sequence
diagram it is not clear how we should distinguish a positive execution from a negative
execution. Immediate abortion, which is the naive solution, is not satisfactory for two
reasons: 1) We may be interested in complete negative executions, and 2) we need to
know that the execution was stopped because it reached a state in which it became
negative. The alternative is some way of waving a flag. With this solution a meta-level
at which the flag is seen and the behavior interpreted as negative is needed in order to
assign meaning to negative behavior.

We cannot know at the execution level that we are in a negative execution, and
it seems obvious that the only way of assigning meaning to negative behavior is by
adding a meta-level at which we may interpret behavior as positive or negative.

Even though he does not need it for his denotational semantics, Störrle [174] men-
tions the option:

One might also consider both the assert- and negate-operators as being meta-
logical in the sense that they express properties of traces rather that defining or
modifying traces.

The solution for Live Sequence Charts (LSC) (for more on LSC see section 11) is
described in [62, p. 88]:

A hot condition [. . . ] must always be true. If an execution reaches a hot condition
that evaluates to false this is a violation of the requirements, and the system
should abort. For example, if we form an LSC from a prechart Ch and a main
chart consisting of a single false hot condition, the semantics is that Ch can never
occur. In other words, it is forbidden, an anti-scenario.

Even though they choose to abort a negative execution, this is guided by a meta-
variable Violating in their operational semantics [61].

Cengarle and Knapp offer two ways of interpreting negative behavior. The first [30],
is based on satisfies relations. Two such relations are provided: positively satisfies,
t |=p S, meaning that t is a positive trace of the diagram S, and negatively satisfies,
t |=n S, meaning that t is an negative trace of S. The second [31] is an operational
semantics. Two transition relations S

e−→p S ′ and S
e−→n S ′ are provided, where the

former means that specification S may produce event e in a positive execution and
the latter that S may produce e in a negative execution. Their exact interpretation
of negative behavior is not relevant in this discussion, but we notice that also their
solutions resort to use of a meta-level to distinguish between positive and negative
traces.

Whether it is obtained by waving a flag, like in the LSC semantics, or by defining
an extra structure, as in the approach of Cengarle and Knapp, an extra meta-level is
needed for giving an interpretation to neg and the related refuse operator.
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7.3 Challenges

7.3.5 Potential vs. mandatory choice

A final question is the ambiguity of the alternative operator alt, whether the non-
determinism introduced by the alternative operator represents underspecification or
real choices in the specified system.

It can be argued that the alternative operator is useful for underspecification, i.e.
that it represents a design decision to be made later, but practitioners often interpret it
as a choice between two alternatives that should both be present in the implementation.
Both interpretations have some problems attached to them.

The first interpretation fits well with the observation that sequence diagrams are
used for high-level specification and that several steps of refinement are needed on the
way to implementation. From this viewpoint it makes sense to interpret an alternative
as underspecification. A problem with this is that if a sequence diagram is interpreted
as a partial specification, the specification becomes very weak; in effect every behavior is
allowed if no negative behavior is specified. Another drawback is that it is not clear how
to represent non-deterministic choices that should be preserved in the implementation.
Such choices are essential in, e.g., specification of security properties [87].

It may be argued that the second interpretation is more intuitive because the choice
operator is used for representing choices in the system and not design choices. The
drawback is of course that the possibility of underspecification is then restricted.

In [68,70] this ambiguity is resolved by interpreting alt in the first sense, as under-
specification, and by introducing xalt (explicit alternative) as a choice operator in the
second sense; a choice that represents a choice in the system.

It is however not possible to distinguish these two kinds of choices at the execution
level; for a single execution it is irrelevant whether a choice is specified by an alt or an
xalt. But the distinction is relevant with respect to, e.g., refinement and implementa-
tion, which means at the meta-level. As with the operator neg, an extra meta-level is
needed for giving an interpretation of xalt and to distinguish between the two kinds of
choice.
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Chapter 8

Definition of operational semantics

In this chapter we present operational semantics for UML sequence diagrams. As far as
possible the semantics is faithful to the standard and is sound and complete with respect
to the denotational semantics of STAIRS. The semantics is defined so as to be easy to
extend and modify. This allows us to give a “default” or “standard” interpretation,
but also to experiment with the semantics and make variations on points unspecified
by the standard. Specifically it has a formalized meta-level which allows definition of
different execution strategies. It is not based on transformations to other formalisms,
which makes it easy to work with.

Our solution to the challenges identified in section 7.3 is the combination of two
transition systems, which we refer to as the execution system and the projection system.
The execution system is a transition system over

[ , ] ∈ B × D (8.1)

where B represents the set of all states of the communication medium and D the set

of all syntactically correct sequence diagrams. We let EX def
= B × D, and refer to the

elements of EX as execution states.

The projection system is a transition system over

Π( , , ) ∈ P(L)× B ×D (8.2)

where P(L) is the powerset of the set of all lifelines. The projection system is used for
finding enabled events at each stage of the execution and is defined recursively. This
system handles the challenges related to weak sequencing and related to the global vs.
the local view in sequence diagrams.

These two systems work together in such a way that for each step in the execution,
the execution system updates the projection system by passing on the current state of
the communication medium, and the projection system updates the execution system
by selecting the event to execute and returning the state of the diagram after the
execution of the event.

In section 8.1 we define the execution system. Section 8.2 is devoted to the com-
munication medium, and in section 8.3 the projection system is defined. In section 8.4
we define fairness, and in section 8.5 we present soundness and completeness results.
The meta-level is dealt with in chapter 9.
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Definition of operational semantics

8.1 The execution system

The execution system has two rules. The first rule represents the execution of a single
event and uses the projection system to find an enabled event to execute. It is defined
as:

[β, d]
e−→ [update(β, e), d′] if Π(ll.d, β, d)

e−→ Π(ll.d, β, d′) ∧ e ∈ E (8.3)

In general we assume the structure of the communication medium, i.e. the means
of communication, to be underspecified. The only requirement is that the following
functions are defined:

• add ∈ B ×M→ B: Adds a message.

• rm ∈ B ×M→ B: Removes a message.

• ready ∈ B ×M → B: Returns true if the communication medium is in a state
where it can deliver the message and false otherwise.

The function update ∈ B × E → B is defined as:

update(β, e)
def
=

{
add(β, m.e) if k.e = !
rm(β, m.e) if k.e = ?

(8.4)

Since transmitter and receiver information is embedded into the messages, these func-
tions are sufficient. Usually we assume the most general communication model, i.e.
no ordering on the messages. This means that, e.g., message overtaking is possible.
Different communication models are described in section 8.2 below.

The second rule of the execution system executes silent events. The rules of the
projection system handle the sequence diagram operators alt, xalt, refuse, assert and
loop〈n〉. (The operators opt, neg and loop I are derived operators, and therefore do
not have their own rules.) Resolving these operators, such as choosing the branch of
an alt, are considered silent events. We define the set of silent events to be

T = {τalt, τxalt, τrefuse , τassert , τloop} (8.5)

with T ∩E = ∅. The reason for introducing all these different silent events is that they
give high flexibility in defining execution strategies by making the silent events and
their kinds available at the meta-level. The rule is simple:

[β, d]
τ−→ [β, d′] if Π(ll.d, β, d)

τ−→ Π(ll.d, β, d′) ∧ τ ∈ T (8.6)

The empty diagram skip cannot be rewritten, but we assert that it produces the empty
trace, i.e.:

[β, skip]
〈〉−→ [β, skip] (8.7)

This also means that execution terminates when skip is reached.
Throughout this thesis we apply the following shorthand notation:

• If there exists a sequence of transitions

[β, d]
e1−→ [β1, d1]

e2−→ · · · en−→ [βn, dn]

we write

[β, d]
〈e1,e2,...,en〉−−−−−−−→ [βn, dn]
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8.2 Communication model

• We say that an event e is enabled in execution state [β, d] iff there exists a
transition

[β, d]
e−→ [β ′, d′]

for some β ′, d′.

• We write
[β, d]

e−→
for

∃β ′, d′ : [β, d]
e−→ [β ′, d′]

• If an event e is not enabled in [β, d] we write

[β, d]
e

�

• If for all events e we have that e is not enabled in [β, d] (i.e. no events are enabled
in [β, d]) we write

[β, d] �

8.2 Communication model

We assume that lifelines communicate by means of asynchronous message passing.
This assumption is however not sufficient in order to fully define the operational se-
mantics. We also need to make assumptions regarding the communication model, i.e.
the mechanisms for transporting messages between lifelines. In [44], a classification of
four general communication models for Message Sequence Charts are characterized:

• One FIFO1 buffer for each message. This is equivalent to what may be called a
random access buffer.

• One FIFO buffer for each (ordered) pair of lifelines. All messages from one lifeline
to another will pass through a specific buffer.

• One FIFO buffer for each lifeline. All messages to a lifeline pass through the
same buffer.

• One global FIFO buffer. All messages sent between all lifelines pass through the
same buffer.

Further it is shown that the choice of communication model affects the semantics of
the diagrams.

We adopt this classification, but do not make any decision on which of these com-
munication models should be regarded as the “correct” one. Instead we define all four
and let them be options for instantiation of the underspecified communication medium
characterized in section 8.1. The “one FIFO for each message” model must be con-
sidered the most general of the models, and is also the model (implicitly) assumed by
STAIRS. We therefore use this model, defined in section 8.2.1 below, as the default,
and apply this communication model in our soundness and completeness proofs.

1First In First Out.
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Definition of operational semantics

In the following sub-sections, we define the set of states of the communication
medium B, and the functions add ∈ B ×M → B, rm ∈ B ×M → B and ready ∈
B×M→ B. For all four we assume arbitrary size, i.e. that no messages are discarded
due to overflow.

Because events at gates are not present in the syntactical representation of a se-
quence diagram, we must assume that messages sent from gates are available in the
execution of the diagram (see also appendix A.1). For the first two of our commini-
cation models we can handle this by defining a function initC ∈ D → B that returns
a initial state of the commnuication medium containing the necessary messages for
execution of the diagram. For the other two communication models it does not make
sense to define such a function becuase the specific syntactic representation of the di-
agrams will affect the order of the messages in the initial state of the communication
medium, and therefore also the order or the execution of events. In other words, dif-
ferent syntactic representations of semantically equivalent diagrams may give different
inital states of the communication medium. In these communication models the initial
state of the communication medium should be explicitely specified.

8.2.1 One FIFO for each message

In this communication model, each message is assumed to have its own channel from
the transmitter to the receiver, something that allows for message overtaking. Because
we assume all messages to be unique and the messages to contain transmitter and
receiver information, there is no need for defining the channels or buffers explicitly
– at any point in time a set of messages is sufficient to represent the state of the
communication medium. Hence, the set of states of the communication medium are
defined as a powerset of the set of messages:

B def
= P(M)

The functions add, rm and ready for manipulating the state of the communication
medium can then be defined using set operations:

add(β, m)
def
= β ∪ {m}

rm(β, m)
def
= β \ {m}

ready(β, m)
def
= m ∈ β

(8.8)

The function initC for this communication medium is defined as follows:2

initC (e)
def
=

{
{m.e} if k.e = ? ∧ tr.e ∈ G
∅ if k.e = ! ∨ tr.e �∈ G

initC (skip)
def
= ∅

initC (op d)
def
= initC (d), op ∈ {refuse, assert}

initC (d1 op d2)
def
= initC (d1) ∪ initC (d2), op ∈ {seq, par, strict, alt, xalt}

initC (loop〈n〉 d)
def
= initC (d) ∪ initC (loop〈n− 1〉 d)

2We assume in this definition that messages from different iterations of a loop is distinguishable.
See appendix A.3 for details.
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8.2 Communication model

8.2.2 One FIFO for each pair of lifelines

In this communication model, each pair of lifelines in a diagram is assumed to have a
directed channel in each direction through which the messages are transported. The
set of states of FIFO buffers F is defined as sequences of messages:

F def
= M∗

Each state of the communication model is represented as a function from pair of lifelines
to FIFO buffers, and the set of states of the communication medium B is then defined
as the set of functions from pairs of lifelines to FIFOs:

B def
= L× L → F

We can think of a state of the commuinication medium β as a mapping from pairs of
lifelines to FIFOs:

β = {(l1, l1) �→ b11, (l1, l2) �→ b12, . . . , (l2, l1) �→ b21, . . .}

Let emptyComm ∈ B be the set of empty channels, defined as

emptyComm
def
= {(l, l′) �→ 〈〉 | l, l′ ∈ L}

Further, let β[(l, l′) �→ b] be the state β updated with the mapping (l, l′) �→ b, such
that:

(β[(l, l′) �→ b])(l′′, l′′′) =

{
b if l = l′′ ∧ l′ = l′′′

β(l′′, l′′′) otherwise

We then define a function comm ∈M→ B that returns the state of the commuinica-
tion medium that only contains a single message m:

comm(m)
def
= emptyComm[(tr.m, re.m) �→ 〈m〉]

For manipulation of the state of the communication medium we first define an auxillary
“FIFO concatenation” function � ∈ B × B → B:

β1 � β2
def
= {(l, l′) �→ β1(l, l

′)�β2(l, l
′) | l, l′ ∈ L}

The functions add, rm and ready for manipulating the state of the communication
medium are defined as follows:

add(β, m)
def
= β � comm(m)

rm(β, m)
def
=

⎧⎨
⎩
〈〉 if β(tr.m, re.m) = 〈〉
β[(tr.m, re.m) �→ tail(β(tr.m, re.m))] if ready(β, m)
β if ¬ready(β, m)

ready(β, m)
def
= head(β(tr.m, re.m)) = m

The functions head ∈ M∗ →M and tail ∈ M∗ →M∗ are functions that return the
head and tail of a sequence in the usual fashion:

head(〈m〉�b)
def
= m

tail(〈m〉�b)
def
= b
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Definition of operational semantics

We define the initial state of the communication medium in the following way:

initC .e
def
=

{
comm(m.e) if k.e =? ∧ tr.e ∈ G
emptyComm if k.e = ! ∨ tr.e �∈ G

initC .skip
def
= emptyComm

initC .(op d)
def
= initC .d, op ∈ {refuse, assert}

initC .(d1 op d1)
def
= initC .d1 � initC .d2, op ∈ {seq, par, strict, alt, xalt}

initC .(loop〈n〉 d)
def
= initC .d � initC .(loop〈n− 1〉 d)

Because all gate names are unique, this means the initial state of the communication
medium will contain a separate FIFO for each message sent from a gate to lifelines in
the diagram. The exception is messages from gates inside loops, where the FIFO will
be a sequence of messages whose length corresponds to the number of iterations of the
loop.

8.2.3 One FIFO for each lifeline

This communication model assumes that each lifeline has a single channel through
which all incomming messages are transported, regardless of the transmitters of the
messages. Similar to the above communication model, a state of the communication
medium is a function from lifelines to FIFOs. The difference is that the function only
takes as argument the receiver lifeline. The set of states of the communication medium
is defined as

B def
= L → F

where F is defined as above.
We also define similar emptyComm, comm and � functions for this communi-

cation medium:

emptyComm
def
= {l �→ 〈〉 | l ∈ L}

comm(m)
def
= emptyComm[re.m �→ 〈m〉]

β1 � β2
def
= {l �→ β1(l)

�β2(l) | l ∈ L}

The functions add, rm and ready for manipulation of the state of the communication
medium are defined as follows:

add(β, m)
def
= β � comm(m)

rm(β, m)
def
=

⎧⎨
⎩
〈〉 if β(re.m) = 〈〉
β[re.m �→ tail(β(re.m))] if ready(β, m)
β if ¬ready(β, m)

ready(β, m)
def
= head(β(re.m)) = m

8.2.4 One global FIFO

In this communication model, all messages are transported through a single channel
regardless of sender and receiver. This channel is represented by a FIFO buffer, and the
states of the communication medium are then equal the states of the buffer. Further
no transmitter and receiver information is needed.
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8.3 The projection system

The states of the communication medium is hence defined as the set of sequences
of messages:

B def
= F

The functions add, rm and ready for manipulating the state of the communication
medium are defined by use of sequnce manipulation operators:

add(β, m)
def
= β�〈m〉

rm(β, m)
def
=

⎧⎨
⎩
〈〉 if β = 〈〉
tail(β) if ready(β, m)
β if ¬ready(β, m)

ready(β, m)
def
= head(β) = m

(8.9)

8.3 The projection system

In the following sub-sections we present the rules of the projection system for each of
the syntactic constructs.

8.3.1 The empty diagram

It is not possible to rewrite Π(L, β, skip). skip is the identity element of seq, par and
strict, and we therefore have that skip seq d, d seq skip, skip par d, d par skip, skip strict d
and d strict skip are treated as identical to d. We can also note that skip alt skip = skip
and skip xalt skip = skip. We do not allow the constructions refuse skip and assert skip.

loop〈∞〉 skip is more problematic (see section 8.3.9 for the definition of loop〈∞〉).
Seen as a program, this construct is similar to the java fragment while(true) { },
i.e., a program that produces nothing and never terminates. When related to the
denotational semantics, however, the semantics of loop〈∞〉 skip should be the empty
trace 〈〉, since the denotational semantics characterize observation after infinite time.
A simple solution would be to syntactically disallow the construct all together. Because
we do not want to make too many syntactic constraints, and because we want to stay
close to the denotational semantics we choose to let loop〈∞〉 skip reduce to skip, even
though this may be seen as counter-intuitive from an operational point of view.

8.3.2 Event

The simplest case is the diagram consisting of only one event e. In this case the system
delivers the event if the event is enabled, given the set L of lifelines and the state of
the communication medium. This means first that the event must belong to one of the
lifelines in the set L, and secondly that the event either must be a transmit event or
its message must be available in the communication medium. The need for L will be
evident in the definition of rules for seq below.

Π(L, β, e)
e−→ Π(L, β, skip)

if l.e ∈ L ∧ (k.e = ! ∨ ready(β, m.e))
(8.10)
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Definition of operational semantics

8.3.3 Weak sequencing

The weak sequencing operator seq defines a partial order on the events in a diagram;
the ordering of events on each lifeline and between the transmit and receive of a message
is preserved, but all other ordering of events is arbitrary. Because of this, there may
be enabled events in both the left and the right argument of a seq if there are lifelines
present in the right argument of the operator that are not present in the left argument.
This leads to two rules for the seq operator.

If there is an overlap between the given set of lifelines and the lifelines of the left
hand side of the seq, it means that the lifelines in this intersection may have enabled
events on the left hand side only. Hence, with respect to these lifelines, the system
must look for enabled events in the left operand.

Π(L, β, d1 seq d2)
e−→ Π(L, β, d′

1 seq d2)

if ll.d1 ∩ L �= ∅ ∧Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′

1)
(8.11)

If the lifelines of the left hand side do not exhaust the given set of lifelines, it means
there are lifelines that are only present on the right hand side, and that there may be
enabled events on the right hand side of the operator. This means the system may
look for enabled events on the right hand side of the seq, but only with respect to the
lifelines not represented on the left hand side.

Π(L, β, d1 seq d2)
e−→ Π(L, β, d1 seq d′

2)

if L \ ll.d1 �= ∅ ∧ Π(L \ ll.d1, β, d2)
e−→ Π(L \ ll.d1, β, d′

2)
(8.12)

Note that the two conditions ll.d1∩L �= ∅ and ll.d1 \L �= ∅ are not mutually exclusive.
If both these condition are true at the same time there may be enabled events on both
sides of the seq operator. In such a case the rules may be applied in arbitrary order.

The transitions of the system are used as conditions in the recursion of these rules.
Therefore the rules will not be applied unless an enabled event is found deeper in the
recursion. Because of this, the system will always be able to return an enabled event
if enabled events exist.

8.3.4 Interleaving

The parallel operator par specifies interleaving of the events from each of its arguments;
in other words parallel merge of the executions of each of the arguments. The rules
of par are similar to the rules of seq, but simpler since we do not have to preserve
any order between the two operands. One of the operands is chosen arbitrarily. As
with the seq rules, the use of transitions as the conditions of the rules ensures that an
enabled event is found if enabled events exist.

Π(L, β, d1 par d2)
e−→ Π(L, β, d′

1 par d2)

if Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′

1)
(8.13)

Π(L, β, d1 par d2)
e−→ Π(L, β, d1 par d′

2)

if Π(ll.d2 ∩ L, β, d2)
e−→ Π(ll.d2 ∩ L, β, d′

2)
(8.14)
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8.3 The projection system

8.3.5 Strict sequencing

The strict operator defines a strict ordering of events, so that all events on the left side
of the operator must be executed before the events on the right side. Obviously then,
only one rule is needed:

Π(L, β, d1 strict d2)
e−→ Π(L, β, d′

1 strict d2)

if ll.d1 ∩ L �= ∅ ∧ Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′

1)
(8.15)

As we see, this rule is essentially equal to the left side rule for seq.

8.3.6 Choice

The rules for the two choice operators end the recursion; the choice is resolved and a
silent event is produced. By resolving the choice instead of looking for events deeper
down, we ensure that the same choice is made for all the lifelines covered by a choice
operator.

Π(L, β, d1 alt d2)
τalt−→ Π(L, β, dk) if L ∩ ll.(d1 alt d2) �= ∅, for k ∈ {1, 2} (8.16)

Π(L, β, d1 xalt d2)
τxalt−→ Π(L, β, dk) if L ∩ ll.(d1 xalt d2) �= ∅, for k ∈ {1, 2} (8.17)

The rules for alt and xalt are identical except for the kind of silent event they produce.
This reflects the fact that the operators are indistinguishable at the execution level.
Since they produce different events, the kind of the choice is available at the meta-level
and this is used in the definition of meta-strategies. As with rule (8.10), there is a
condition that makes sure the rules are only applied if the event produced is relevant
to the set L of lifelines.

The operator opt is treated as an alt with one empty argument (see section 5.3.6).

8.3.7 Negative behavior

The rule for refuse produces a silent event when a refuse operator is resolved. This
flags that the execution becomes negative and makes this information available at the
meta-level.

Π(L, β, refuse d)
τrefuse−−−→ Π(L, β, d) if ll.(refuse d) ∩ L �= ∅ (8.18)

Similar to the choice rules, we have the condition that ll.(refuse d) ∩ L = ll.d ∩ L �= ∅
to ensure that the produced event is relevant to the set of lifelines L.

The operator neg is treated as a choice between a negative branch and an empty
branch by making it a derived operator from alt and refuse (see section 5.3.7).

8.3.8 Universal behavior

The rule assert simply resolves the operator and produces a silent event. The silent
event makes the information that the execution has entered an “asserted” region avail-
able to the meta-level.

Π(L, β, assert d)
τassert−−−→ Π(L, β, d) if ll.(assert d) ∩ L �= ∅ (8.19)

Again we have the same condition on the set of lifelines.
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Definition of operational semantics

8.3.9 Iteration

Informally, in loop I d there is a non-deterministic choice between the numbers of I,
which is formalized by making loop I a derived operator of generalized alt and loop〈n〉
(see section 5.3.9). If n ∈ I is picked, d should be iterated n times.

loop〈n〉 d is a loop with a counter. In the rule the counter is decreased by one
for each iteration. We also produce a silent event to represent the iteration of a loop.
Even though iteration of a loop in itself is not the most relevant information at the
meta-level, it may be useful for defining execution strategies, for example if we want
to give iteration of the loop low priority.

Π(L, β, loop〈n〉 d)
τloop−→ Π(L, β, d seq loop〈n− 1〉 d) if ll.(loop〈n〉 d) ∩ L �= ∅ (8.20)

Also here we have the condition that ll.(loop〈n〉 d) ∩ L = ll.d ∩ L �= ∅. Since we have
that ∞− 1 = ∞, loop〈∞〉 d specifies an infinite loop. Further we assert that loop〈0〉 d

is equal to skip, i.e., loop〈0〉 d
def
= skip, so we do not need a special rule for this situation.

8.4 Fairness

With respect to diagrams that contain infinite loop, we must assume weak fairness
between diagram parts for the operational semantics to be complete. This means that
an arbitrary diagram part may not be enabled infinitely many consecutive execution
steps without being executed. With this assumption we avoid situations where some
part of a diagram is both enabled and starved for a inifinitely long time. Below we
formalize this notion of weak fairness.

8.4.1 Diagram projection part

We define diagram projection parts to be the parts (or fragments) of a diagram that may
be reached by the recursion of the projection system. This means that any argument
of seq or par and the left argument of strict are projection parts, while arguments of
the high-level operators are not. In addition skip is a projection part of any diagram.
For example in the diagram

d = d1 seq ((d2 alt d3) par d4)

we have that skip, d1, d2 alt d3 and d4 are projection parts, while d2 and d3 are not.

The reason why the arguments of the high-level operators are not projection parts
is that events inside an argument of a high-level operator in a given state will not be
reached by the projection system and therefore will not be executed. Hence, for char-
acterizing what is executable in a state, the events inside the arguments of high-level
operators are irrelevant since it is the enclosing operator itself that will be executed.
Because skip is the identity element of seq, par and strict, skip will by definition be
a projection part of any diagram. We nevertheless formalize this explicitly in the
definition.

We define a relation � ∈ D × D → B where d � d′ should be read as “d is a
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projection part of d′.” We let �1 ∈ D ×D → B be defined as

d �1 d′ def
= d = skip ∨
∃d′′ ∈ D : d′ = d seq d′′ ∨

d′ = d′′ seq d ∨
d′ = d par d′′ ∨
d′ = d′′ par d ∨
d′ = d strict d′′

(8.21)

and define � to be the reflexive and transitive closure of �1.

8.4.2 Enabled and executed projection parts

A diagram projection part d is executed in a execution step [β, d′] x−→ [β ′, d′′], x ∈ E∪T ,
if d is changed in the execution of the step (i.e. what is executed is d itself or a part of
d). We formalize this by means of a relation executed ∈ D×EX × (E ∪T )×EX → B:

executed(d, [β, d′], x, [β ′, d′′]) def
=

d � d′ ∧
[β, d′] x−→ [β ′, d′′] ∧
∃d′′′ ∈ D : (Π(ll.d, β, d)

x−→ Π(ll.d, β, d′′′) ∧ d′′′ � d′′)

(8.22)

Obviously a diagram projection part d is enabled in [β, d′] if there exists an execution
step starting in [β, d′] in which d may be executed. This is formalized by the relation
enabled ∈ D × EX → B:

enabled(d, [β, d′]) def
= ∃x, β ′, d′′ : executed(d, [β, d′], x, [β ′, d′′]) (8.23)

8.4.3 Weak fairness

We are now able to formalize the notion of weak fairness described above. An execution
is a sequence of execution steps:

[β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · ·

We define

Ξ
def
= {[β1, d1]

x1−→ [β2, d2]
x2−→ [β3, d3]

x3−→ · · · ∈ (EX × (E ∪ T ))∞ |
∀i ∈ N : executed(di, [βi, di], xi, [βi+1, di+1])}

to be the set of all infinite executions. We say that an execution is weakly fair if
no diagram projection part that eventually becomes enabled, stays enabled forever,
without being executed infinitely often.3 This is formalized in the relation wfe ∈ Ξ →
B:

wfe([β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ) def

=
∀d ∈ D, i ∈ N : (∀j ∈ N ∪ {0} : enabled(d, [βi+j, di+j]) ⇒

∃k ∈ N ∪ {0} : executed(d, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))

(8.24)

3An intuitive discussion of weak fairness can be found in [100].
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This definition is based on the assumption that all diagram fragments are unique,
something that follows from the assumption that every event in a diagram is unique.

An equivalent expression for wfe, that perhaps is closer to the above formulation
of a weakly fair execution, is the following:

wfe([β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ) =

¬∃d ∈ D, i ∈ N : (∀j ∈ N ∪ {0} : enabled(d, [βi+j, di+j]) ∧
¬∃k ∈ N ∪ {0} : executed(d, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))

(8.25)

To ensure weak fairness of the operational semantics we place the following condition
on executions:

∀σ ∈ Ξ : wfe(σ) (8.26)

By using the definition of weakly fair executions we may express that a trace is
weakly fair. Let tr ∈ Ξ → (E ∪ T )∞ be a function that picks out all the events of an
execution and returns a trace:

tr([β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ) def

= 〈x1, x2, x3, . . .〉

The relation wft ∈ (E ∪T )×D → B formalizes that a trace is weakly fair with respect
to a diagram:

wft(t, d)
def
= ∃σ ∈ Ξ : π2(head(σ)) = d ∧ tr(σ) = t ∧ wfe(σ) (8.27)

The function head returns the first element of σ, which is an execution state, and π2

returns the second element of an execution state, which is a diagram. The composition
π2(head(σ)) then gives the first diagram in execution σ. Hence, wft(t, d) expresses that
the trace t represents a weakly fair execution starting with the diagram d.

8.5 Soundness and completeness

The operational semantics is sound and complete with respect to the denotational
semantics presented in section 5.3. Informally, the soundness property means that if
the operational semantics produces a trace from a given diagram, this trace should be
included in the denotational semantics of that diagram. By completeness we mean that
all traces in the denotational semantics of a diagram should be producible applying the
operational semantics on that diagram. In addition it can be shown that execution of
a diagram without initite loop always will terminate.

Let O be the set of all interaction obligations. [[ d ]] ∈ P(O) is the denotation of d.
We write t ∈ [[ d ]] for t ∈

⋃
(p,n)∈[[ d ]](p ∪ n). E S©t denotes the trace t with all events not

in E filtered away. env!
M.d is the set of messages m such that the receive event but

not the transmit event of m is present in d.

Theorem (Termination) Given a diagram d ∈ D without infinite loops. Then exe-
cution of [env!

M.d, d] will terminate.

The proof is found as proof of theorem 3 on page 297 in appendix A.3.
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Theorem (Soundness) Given a diagram d ∈ D. For all t ∈ (E ∪ T )∗, if there exists

β ∈ B such that [env!
M.d, d]

t−→ [β, skip] then E S©t ∈ [[ d ]].

The soundness theorem is a combination of theorem 1 on page 279 in appendix A.2,
that proves soundness of diagram with simple operators, theorem 4 on page 279 in
appendix A.3, that proves soundness of diagrams with high-level operators, and theo-
rem 6 on page 311 in appendix A.4, which proves soundess of diagrams with inifinite
loops.

Theorem (Completeness) Given a diagram d ∈ D. For all t ∈ E∗, if t ∈ [[ d ]] then

there exist trace t′ ∈ (E ∪T )∗ and β ∈ B such that [env!
M.d, d]

t′−→ [β, skip] and E S©t′ =
t.

This theorem a combination of theorem 2 on page 293 in appendix A.2, which proves
completeness of diagrams with simple operators, theorem 5 on page 306 in appen-
dix A.3, that proves completeness of diagrams with high-level operators and theorem 7
on page 317 in appendix A.4, where completeness of diagrams with infinite loops is
proved.
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Chapter 9

Meta-strategies

There are several strategies we may choose when executing a sequence diagram and
generating the histories of its possible executions. Examples of this may be generating
one or a specific number of random traces, all traces, all prefixes of a certain length,
etc. We wish to have the possibility of varying the execution strategy without changing
the operational semantics of the sequence diagrams. The way to do this is to define
different meta-strategies for executing the diagrams with the operational semantics.

In this chapter we formalize meta-levels that enclose the execution system. At these
meta-levels we can define meta-strategies that guide the execution and can be used for
handling the challenges related to negative behavior, and potential and mandatory
choice. Specifically, two such meta-levels, or meta-systems are defined. In section 9.1
we introduce a meta-system with mode, i.e. a way of assigning properties to executions,
that are later used in the test generation algorithm of chapter 13. In section 9.2
we present a meta-system for generating all traces of a diagram and give refinement
verification as an application of this system.

9.1 The one trace with mode strategy

In this section we show how we can produce a trace while capturing the high-level
properties of the trace, e.g. the trace representing negative behavior.

In order to capture these properties we define a meta-system over

〈〈〈 , , , 〉〉〉 ∈ H × EX × P(L)×MO

where MO is a set of modes. The place of this tuple is a “container” for a trace,
the second place holds a state of the execution system, the third place holds a set of
lifelines that can be used for hiding internal communication in case we want a black
box view of the execution and the forth place represents the mode of the execution.

For this system we define the following execution rules:

〈〈〈t, [β, d], L, mo〉〉〉 −→ 〈〈〈t�〈e〉, [β ′, d′], L, mo〉〉〉
if [β, d]

e−→ [β ′, d′] ∧ e ∈ E ∧ (l.e ∈ L ∨ l−1.e ∈ L)
(9.1)

〈〈〈t, [β, d], L, mo〉〉〉 −→ 〈〈〈t, [β ′, d′], L, mo〉〉〉
if [β, d]

e−→ [β ′, d′] ∧ e ∈ E ∧ l.e �∈ L ∧ l−1.e �∈ L
(9.2)

The idea of these rules is that we collect the trace from the execution, but only events
with messages related with the lifelines and gates in L. By applying gates.d as the set of
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lifelines we get a trace where all events represent communication with the environment
of the diagram, i.e. a black box view. If, instead, ll.d is used as the set of lifelines, we
get a glass box view.

The silent events are not visible in the trace collected, but may change the mode
of the execution by means of a function mode ∈ T ×MO →MO:

〈〈〈t, [β, d], L, mo〉〉〉 −→ 〈〈〈t, [β ′, d′], L, mode(τ, mo)〉〉〉 if [β, d]
τ−→ [β ′, d′] ∧ τ ∈ T (9.3)

So far the set MO of modes and the mode function has been undefined, and
obviously there are several way they may be defined. Below we give the most obvious
definition as an example. When this meta-system is applied in the test generation
algotithm in chapter 13, a second definition of the mode set and the mode function is
used (see section 13.2.1).

Let the set of modes be defined as:

MO def
= {postive, negative}

Further, let the function mode be defined as:

mode(τ, mo)
def
=

{
postitive if mo = positive ∧ τ �= τrefuse

negative if mo = negative ∨ τ = τrefuse

If we use these definitions, and we have postive as the initial mode an execution, the
mode will represent the property of the produced trace of being positive or negative
behavior.

9.2 The all traces strategy and a method for refine-

ment verification

With this strategy we want to generate all possible traces of a diagram d and place them
in the correct semantic structure of STAIRS,1 i.e. as a set of interaction obligations
{(p1, n1), (p2, n2), . . . , (pm, nm)} where each interaction obligation (pi, ni), pi is a set of
positive traces and ni is a set of negative traces.

We make use of a meta-system over

{| , , |} ∈ H × EX × P(L)

As with the meta-system of section 9.1, the places of the triple is for collecting a
trace, holding a state of the execution system and specifying a set of lifelines used for
filtering the produced trace. Each element {|t, [β, d], L|} ∈ H × EX × P(L) we refer to
as a meta-system state.

Instead of sets of traces we use “interaction obligations” of sets of positive and
negative executions, i.e. meta-system states. Initially we have a set consisting of a
single interaction obligation with the initial state of d as the only positive element and
no negative elements

{({{|〈〉, [initC .d, d], L|}}, ∅)} (9.4)

1We omit assert because this would require a way of producing all unspecified traces. Further, we
only concider finite loop and generalized loop with finite index set, so that the resulting semantics is
a finite structure.
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where L ⊆ L is the specified set of lifelines. From this we generate the full semantic
structure by defining rules that for each execution state deduce the next steps to be
made, and in executing these steps rewrite the whole structure.

A feature of the strategy is that the executions are split every time an alt is executed
and that the interaction obligations are split every time an xalt is executed. Therefore,
the order in which the high level operators is resolved is significant; in some cases,
resolving an alt before an xalt will lead to interaction obligations not characterized by
the denotational semantics because this will result in first branching the execution and
then splitting the interaction obligation for each of these brances.2

In this strategy we therefore apply a normal form of sequence diagrams where loops
are eliminated and the high-level operators xalt, alt and refuse are pushed to the top
of the diagram (remember we only have finite loops, and no assert operators). In
the normal form all xalts are at the top of the diagram (i.e. as the most significant
operators), followed by the altss which again are followed by the refuse operators.
Details of the normal form is found in appendix B. For the remainder of this section
we assume diagrams to be in this normal form.

Because of this normal form we can also assume the rules of the strategy to be
applied in a specific order; first the rule for xalts, then the rule for alts, then the rules
for refuses, and finally the rules for execution of normal events.

The rule for resolving xalts is the first to be applied. The rule involves splitting an
interaction obligation:

O ∪ {({{|t, [β, d], L|}}, ∅)} −→ O ∪ {({{|t, [β ′, d′], L|}}, ∅) | [β, d]
τxalt−→ [β ′, d′]} (9.5)

After resolving all xalts, there will be a set of interaction obligations with one execution
in each interaction obligation.

If we want all traces, we need to make a branch in the execution for every alt. Hence
the rule for resolving alts splits executions inside the interaction obligations:

O ∪ {(P ∪ {{|t, [β, d], L|}}, ∅)} −→
O ∪ {(P ∪ {{|t, [β ′, d′], L|} | [β, d]

τalt−→ [β ′, d′]}, ∅)}
if [β, d]

τxalt
�

(9.6)

The rules for resolving a refuse are more complicated since they concern an inter-
action obligation and not only one of the sets of an interaction obligation. Let P and
N be sets. The rule for resolving a refuse in a positive execution is then:

O ∪ {(P ∪ {{|t, [β, d], L|}}, N)} −→ O ∪ {(P, N ∪ {{|t, [β ′, d′], L|}})}
if [β, d]

τrefuse−→ [β ′, d′] ∧ [β, d]
τxalt
� ∧ [β, d]

τalt
�

(9.7)

In an already negative execution, resolving a refuse makes no difference:

O ∪ {(P, N ∪ {{|t, [β, d], L|}})} −→ O ∪ {(P, N ∪ {{|t, [β ′, d′], L|}})}
if [β, d]

τrefuse−→ [β ′, d′] ∧ [β, d]
τxalt
� ∧ [β, d]

τalt
�

(9.8)

The rules for executing events are first applied after all high-level operators are
resoleved by the above rules. There are two rules; one for positive executions and
one for negative executions. Every time there is a possibility of more than one event

2An elaboration of this is found in appendix B.2.
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occurring first, the execution must branch. Hence, the rules for executing events asserts
that for a given state, the generation must branch for every enabled event:

O ∪ {(P ∪ {{|t, [β, d], L|}}, N)} −→
O ∪ {(P ∪ {{|t�〈e〉, [β ′, d′], L|} |

[β, d]
e−→ [β ′, d′] ∧ e ∈ E ∧ (l.e ∈ L ∨ l−1.e ∈ L)}, N)}

∪ {(P ∪ {{|t, [β ′, d′], L|} |
[β, d]

e−→ [β ′, d′] ∧ e ∈ E ∧ l.e �∈ L ∧ l−1.e �∈ L}, N)}
if [β, d]

τxalt
� ∧ [β, d]

τalt
� ∧ [β, d]

τrefuse
�

(9.9)

O ∪ {(P, N ∪ {{|t, [β, d], L|}})} −→
O ∪ {(P, N ∪ {{|t�〈e〉, [β ′, d′], L|} |

[β, d]
e−→ [β ′, d′] ∧ e ∈ E ∧ (l.e ∈ L ∨ l−1.e ∈ L)})}

∪ {(P, N ∪ {{|t, [β ′, d′], L|} |
[β, d]

e−→ [β ′, d′] ∧ e ∈ E ∧ l.e �∈ L ∧ l−1.e �∈ L})}
if [β, d]

τxalt
� ∧ [β, d]

τalt
� ∧ [β, d]

τrefuse
�

(9.10)

Note also that these rules only append the executed events to the trace if the events
are related to the set of lifelines L.

In summary, these rules ensure that the structure first is split into interaction
obligations by resolving xalts. After that executions are split by resolving alts, and then
moved to the negative executions if there are refuses to be resolved. When all high-level
operators have been removed, we have a structre consisting of simple diagrams which
then are executed until we have all the traces of the original diagram.

Refinement verification The “all traces” meta-strategy defined above can be ap-
plied to devise a simple refinement verification method. The strategy produces sets of
interaction obligations of meta-system states, but by adding the following rules to the
system, we get a strategy that gives us sets of interaction obligations of traces:

O ∪ {(P ∪ {{|t, [β, d], L|}, N)} −→ O ∪ {(P ∪ {t}, N)}
if ∀x ∈ E ∪ T : [β, d]

x
�

(9.11)

O ∪ {(P, N ∪ {{|t, [β, d], L|})} −→ O ∪ {(P, N ∪ {t})}
if ∀x ∈ E ∪ T : [β, d]

x
�

(9.12)

The refinement verification is then conducted as follows. Let d1 and d2 be diagrams
in the normal form, and let O1 and O2 be sets of interaction obligations obtained by:

{({{|〈〉, [initC .d1, d1], L|}}, ∅)} −→! O1

and
{({{|〈〉, [initC .d2, d2], L|}}, ∅)} −→! O2

where −→! means applying the rules that define the relation −→ until no more appli-
cations are possible. L is the set of lifelines specified to be external in this verification.

The different types of refinement, as defined in section 5.4.2, can then be verified
by applying the following equivalences:

d1 �g d2 ⇔ ∀o1 ∈ O1 : ∃o2 ∈ O2 : o1 �r o2

d1 �rg d2 ⇔ ∀o1 ∈ O1 : ∃o2 ∈ O2 : o1 �rr o2

d1 �l d2 ⇔ d1 �g d2 ∧ ∀o2 ∈ O2 : ∃o1 ∈ O1 : o1 �r o2

d1 �rl d2 ⇔ d1 �rg d2 ∧ ∀o2 ∈ O2 : ∃o1 ∈ O1 : o1 �rr o2
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The refinement relations o1 �r o2 and o1 �rr o2 used here are the same as defined in
section 5.4.1.
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Chapter 10

Implementation of operational
semantics

In chapter 8 we presented an operational semantics for UML 2.x sequence diagrams. In
this chapter we present an implementation of the operational semantics in the rewrite
language Maude. Further we give some remarks on conventions for the use of the
implementation.

The main purpose of this chapter is that of documenting the implementation. We
do not implement infinite behavior, but except from that, the full operational seman-
tics is implemented. Further the implementation is made with the property of being
extensible and configurable. In this sense, what is presented in this chapter is not
merely an implementation of the operational semantics, but also an implementation
of the underlying idea of a general, modifiable, extendible and configurable semantics
that provides a firm foundation for analysis of sequence diagrams and a tool box for
implementing sound methods of analysis.

We do not repeat definitions from other chapters, but it should still be possible to
read and understand it as a self-contained text. We do not assume familiarity with
Maude beyond what is presented in chapter 6. All the same, familiarity with chapter 8
and with Maude should provide a great advantage for the reader.

In the presentation of the Maude implementation we will stay close to the module
structure of the implementation. We will, however, sometimes drop the definitions
of auxiliary sorts and functions. In section 10.1 the implementation of the syntax
of sequence diagrams is presented. The implementation of the operational semantics
is presented in section 10.2. In section 10.3 we present conventions for usage of the
implementation and provide an example. The full code of the implementation is found
in appendix C.

10.1 Syntax

In this section we present the syntax of sequence diagrams, as defined in section 5.2,
implemented in Maude.

10.1.1 Lifelines and gates

Lifelines and gates are defined by the functional module LIFELINE:
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fmod LIFELINE is
sorts LLName Lifeline Gate .
subsort Gate < Lifeline .

op l : LLName -> Lifeline [ctor] .
op g : LLName -> Gate [ctor] .

endfm

The sort LLName defines the set of names of lifelines. It does, however, not have any
constructors. The idea behind this is that when a specific diagram is defined, names
of lifelines and gates should be provided. This is further discussed in section 10.3.

The module further defines two sorts Lifeline and Gate, and Gate is defined
as subsort of Lifeline. This means that the set of gates is included in the set of
lifelines and that gates are treated as lifelines. The constructors are operators l and
g, respectively, which both take a lifeline name as argument.

In addition, a functional module LLSET defines the sort LLSet as sets of lifelines.
We not do provide the module here, but refer to appendix C.1.

10.1.2 Messages and events

Messages are defined by the functional module MESSAGE:

fmod MESSAGE is
including LIFELINE .

sorts Signal Msg .

op (_,_,_) : Signal Lifeline Lifeline -> Msg [ctor] .

ops tr re : Msg -> Lifeline .

var S : Signal .
vars T R : Lifeline .

eq tr(S, T, R) = T .
eq re(S, T, R) = R .

endfm

The module includes the module LIFELINE and defines two sorts Signal and Msg. As
with lifeline names, the sort Signal has no constructors; the signals should be provided
when defining a specific diagram.

As in section 5.2.1, messages are defined as tuples of signals, transmitter lifelines and
receiver lifelines. On messages we define a transmitter function tr and receiver function
re that return the transmitter lifeline and receiver lifeline of a message, respectively.

Events are defined in the functional module EVENT:

fmod EVENT is
including MESSAGE .

sorts Event EventKind SEvent SEventKind .
subsort SEvent < Event .
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ops ! ? : -> EventKind [ctor] .
op (_,_) : EventKind Msg -> Event [ctor] .
op tau : SEventKind -> SEvent [ctor] .

op k : Event -> EventKind .
op m : Event -> Msg .
ops tr re l l-1 : Event -> Lifeline .

var M : Msg .
var K : EventKind .

eq k(K,M) = K .
eq m(K,M) = M .
eq tr(K,M) = tr(M) .
eq re(K,M) = re(M) .
ceq l(K,M) = tr(M) if K = ! .
ceq l(K,M) = re(M) if K = ? .
ceq l-1(K,M) = re(M) if K = ! .
ceq l-1(K,M) = tr(M) if K = ? .

endfm

The module defines four sorts: Event, representing the set of events, EventKind rep-
resenting the set of kinds (transmit and receive) of events, SEvent representing the
set of silent events, and SEventKind, the set of kinds of the silent events. The sort
EventKind has the two constants ! and ? as its constructors and only members. Events
are defined as a tuples of kinds and messages. The sort SEvent has the constructor
tau which takes a silent event kind as parameter. The members of SEventKind are
not defined in this module, but are defined in operator specific modules as part of the
configuration mechanism described later.

On the set of events we define a number of functions: k returns the kind of an event,
tr and re overload the functions defined in MESSAGE and return the transmitter and
receiver of an event, l returns the lifeline of an event (i.e. the transmitter if the kind
is transmit and receiver if the kind is receive), and l-1 returns the opposite lifeline of
an event (i.e. the receiver of the message if the kind is transmit and the transmitter of
the message if the kind is receive).

10.1.3 Diagrams

In this section we present the Maude representation of the syntax of sequence diagrams.
The definitions are structured such that a module SD-SYNTAX gives the definition of
simple diagrams, i.e., diagrams built from events and the operators seq, par and strict.
The high-level sequence diagram operators, such as alt and loop are defined in separate
modules (allowing configurability).

The syntax of simple diagrams is defined in the functional module SD-SYNTAX:

fmod SD-SYNTAX is
including EVENT .
including LLSET .
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sort SD .
subsort Event < SD .

op skip : -> SD [ctor] .
op _seq_ : SD SD -> SD [ctor assoc prec 20] .
op _strict_ : SD SD -> SD [ctor assoc prec 25] .
op _par_ : SD SD -> SD [ctor assoc comm prec 30] .

op ll : SD -> LLSet .
op gates : SD -> LLSet .

vars D D’ : SD .
var E : Event .

eq D par skip = D .
eq skip seq D = D .
eq D seq skip = D .
eq D strict skip = D .
eq skip strict D = D .

eq ll(skip) = emptyLLSet .
eq ll(E) = l(E) .
eq ll(D seq D’) = ll(D) ; ll(D’) .
eq ll(D par D’) = ll(D) ; ll(D’) .
eq ll(D strict D’) = ll(D) ; ll(D’) .

eq gates(skip) = emptyLLSet .
eq gates(E) = if l-1(E) :: Gate then l-1(E) else emptyLLSet fi .
eq gates(D seq D’) = gates(D) ; gates(D’) .
eq gates(D par D’) = gates(D) ; gates(D’) .
eq gates(D strict D’) = gates(D) ; gates(D’) .

endfm

A sequence diagram is a defined as a term of the sort SD. Event is defined as a subsort
of SD, so that a single event is also a sequence diagram. SD has four constructors: The
constant skip for representing the empty diagram, and the binary, mixfix operators
seq, strict and par for building diagrams. The arguments of the constructor defini-
tions define seq and strict as associative and par as associative and commutative.
Further the argument prec gives the precedence of the operators. In this case this
means that seq binds stronger than strict and strict binds stronger than par.

Even though skip is the identity element of the constructor operators we do not
specify this in the constructor definitions (as in the list example in chapter 6), but
define this by means of equations reducing, e.g., D seq skip to D for a diagram D. The
reason for this is pragmatic; the way in which equations and rewrite rules are defined is
sometimes dependent of how identity is defined. In our case this way makes the nicest
equations and rules.

The module defines two functions on sequence diagrams, the function ll which
returns the set of lifelines of a diagram and the function gates which returns the gates
of a diagram as a set of lifelines.

Every high-level operator is defined in a separate module EXTENSION-〈operator
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name〉. The purpose of this is to allow configurability when defining diagrams by
inclusion of the appropriate extension. This is further explained in section 10.3.

10.1.3.1 Choice

The module EXTENSION-ALT and EXTENSION-XALT define the alt operator and xalt
operator respectively:

fmod EXTENSION-ALT is
including SD-SYNTAX .

op _alt_ : SD SD -> SD [ctor assoc comm prec 35] .
op opt_ : SD -> SD [ctor prec 15] .
op alt : -> SEventKind [ctor] .

vars D D’ : SD .

eq skip alt skip = skip .
eq opt D = D alt skip .

eq ll(D alt D’) = ll(D) ; ll(D’) .
eq gates(D alt D’) = gates(D) ; gates(D’) .

endfm

fmod EXTENSION-XALT is
including SD-SYNTAX .

op _xalt_ : SD SD -> SD [ctor assoc comm prec 40] .
op xalt : -> SEventKind [ctor] .

vars D D’ : SD .

eq skip xalt skip = skip .

eq ll(D xalt D’) = ll(D) ; ll(D’) .
eq gates(D xalt D’) = gates(D) ; gates(D’) .

endfm

There are two things to notice in these modules: 1) We define alt and xalt as constants
of the sort SEventKind, which means we have tau(alt) and tau(xalt) as silent events.
2) The modules define the functions ll and gates also for diagrams containing the
operators alt and xalt.

Also note that the module EXTENSION-ALT in addition defines the unary operator
opt as an operator derived from alt by the equation eq opt D = D alt skip, and
that skip alt skip and skip xalt skip are reduced to skip.

10.1.3.2 Negative behavior

The module defining the operators for negative behavior is similar to the other exten-
sions, and with neg defined as an operator derived from refuse, alt and skip:
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fmod EXTENSION-REFUSE is
including SD-SYNTAX .
including EXTENSION-ALT .

op refuse_ : SD -> SD [ctor prec 1] .
op refuse : -> SEventKind [ctor] .
op neg_ : SD -> SD [ctor prec 10] .

var D : SD .

eq neg D = refuse D alt skip .

eq ll(refuse D) = ll(D) .
eq gates(refuse D) = gates(D) .

endfm

10.1.3.3 Universal behavior

The module defining the operator assert is similar to the other extensions:

fmod EXTENSION-ASSERT is
including SD-SYNTAX .

op assert_ : SD -> SD [ctor prec 5] .
op assert : -> SEventKind [ctor] .

var D : SD .

eq ll(assert D) = ll(D) .
eq gates(assert D) = gates(D) .

endfm

10.1.3.4 Iteration

In order to define loop in the same way as in section 5.3.9 we need to define a sort
for the set of natural numbers. This is provided by the module NAT-SET (consult
appendix C.1 for details). Note that since we only implement finite behavior, we are
only dealing with finite sets of natural numbers. The module provides a function toSet

that converts an interval represented by the lower and upper bounds of the interval
such that, e.g., toSet(2, 5) = {2, 3, 4, 5}.

The loop operator is defined in the module EXTENSION-LOOP:

fmod EXTENSION-LOOP is
including SD-SYNTAX .
including NAT-SET .
including EXTENSION-ALT .

op loop{_}_ : NatSet SD -> SD [ctor prec 7] .
op loop<_>_ : Nat SD -> SD [ctor prec 7] .
op loop(_,_)_ : Nat Nat SD -> SD [ctor prec 7] .
op loop : -> SEventKind [ctor] .
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var D : SD .
vars N N’ : Nat .
var I : NatSet .

eq loop< 0 > D = skip .
eq loop(N,N’) D = loop{toSet(N,N’)} D .
eq loop{emptyNatSet} D = skip .
eq loop{N} D = loop< N > D .
ceq loop{N , I} D = loop< N > D alt loop{I} D if I =/= emptyNatSet .

eq ll(loop< N > D) = ll(D) .
eq gates(loop< N > D) = gates(D) .

endfm

In this implementation we only define the finite loop. Note that we define three loops.
loop{I} D is the “standard STAIRS loop” where the set I represents a choice for how
many time the loop should be iterated, and loop< N > D is a loop to be iterated N

times. loop(N,N’) D is the loop as it is defined in the UML standard and is treated as
a short hand notation for loop{I} D where I is the interval of natural numbers from N

to N’. As in section 5.3.9, loop{I} is defined as a derived operator of loop< N > and
alt, but without defining the generalized alt explicitly.

10.1.3.5 Full syntax

For use of the full syntax, a module SD-FULL-SYNTAX may be applied:

fmod SD-FULL-SYNTAX is
including SD-SYNTAX .
including EXTENSION-ALT .
including EXTENSION-XALT .
including EXTENSION-REFUSE .
including EXTENSION-ASSERT .
including EXTENSION-LOOP .

endfm

10.2 Operational semantics

In the implementation of the operational semantics, rules for both the execution system
and the projection system are implemented as rewrite rules in Maude. The rules of
our operational semantics are based on placing events on the arrows of the rules, like
labels on transitions of a labeled transition system. The rewrite rules of Maude do not
have an equivalent of this. Inspired by [185] we solve this by making the event part
of the state after the transition/rewrite. The event is in other words placed after the
arrow instead of above the arrow, and a transition of the form [β, d]

e−→ [β ′, d′] is in
the Maude implementation represented by a rewrite [B,D] => {E}[B’,D’].

The signature of the projection system is defined by an operator PI of sort Pi in
module PI:

fmod PI is
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including SD-SYNTAX .
including COMMUNICATION .

sort Pi .

op PI : LLSet Comm SD -> Pi [ctor] .
op {_}_ : Event Pi -> Pi [ctor] .

endfm

Similar, the module EXEC defines a sort Exec for execution states, but for technical
reasons this module does not provide the signature itself. However the function update

is defined and the signature of a function init is defined.

fmod EXEC is
including PI .

sort Exec .

op {_}_ : Event Exec -> Exec [ctor] .

op init : SD -> Exec .
op update : Comm Event -> Comm .

var B : Comm .
var E : Event .

ceq update(B,E) =
(if k(E) == ! then

add(B,m(E))
else

rm(B,m(E))
fi)

if not E :: SEvent .

ceq update(B,E) = B if E :: SEvent .
endfm

Both these modules define a constructor operator {_}_ that allows for having the event
as part of the state as described above.

The module PI imports the module COMMUNICATION which provides a type COMM for
the communication medium as well as the signatures of the functions to manipulate
the communication medium:

fmod COMMUNICATION is
including MESSAGE .
including SD-FULL-SYNTAX .

sort Comm .

op emptyComm : -> Comm [ctor] .
ops add rm : Comm Msg -> Comm .
op ready : Comm Msg -> Bool .
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op initC : SD -> Comm .
endfm

In this module the type and the functions are undefined; the definitions are provided by
a separate module depending on the choice of communication model. Implementations
of the four communication models defined in section 8.2 are found in appendix C.2.1.

10.2.1 Execution system

The execution system is defined in a module Execution where both the signature of
the execution states and the execution rules are given.

The most natural way of defining the execution system would be to have two rewrite
rules, one implementing the rule for execution of a normal events, rule (8.3), and one
implementing the rule for execution of silent events, rule (8.6). The rules would look
like

crl [execute] :
[B, D] => {E}[update(B,E), D’]
if PI(ll(D), B, D) => {E}PI(L, B, D’)

/\ not E :: SEvent .

crl [execute-silent] :
[B, D] => {E}[B, D’]
if PI(ll(D), B, D) => {E}PI(L, B, D’)

/\ E :: SEvent .

where E :: SEvent is a test for whether E is a silent event or not (and in the latter
case a normal event). Because of performance issues, we instead implement this as a
single rule (the Maude interpreter in some cases works faster with fewer rules). This is
easily obtained by letting the function update (defined in the module EXEC above) also
handle silent events (by doing nothing with the state of the communication medium in
case of a silent event). The implementation of the execution system is then defined as
follows:

mod EXECUTION is
including EXEC .

op [_,_] : Comm SD -> Exec [ctor] .

var B : Comm .
vars D D’ : SD .
var E : Event .
var L : LLSet .

eq init(D) = [initC(D), D] .

crl [execute] :
[B, D] => {E}[update(B,E), D’]
if PI(ll(D), B, D) => {E}PI(L, B, D’) .

endm

83



Implementation of operational semantics

10.2.2 Projection system

The implementation of the projection system is a straight forward implementation
of every rule defined in the system as a rewrite rule in Maude. The module below,
PI-SIMPLE, implements the rules of the projection system for simple diagrams, i.e.
rule (8.10) for events, rules (8.11) and (8.12) for seq, rules (8.13) and (8.14) for par and
rule (8.15) for strict. Because par, in the module SD-SYNTAX, is defined as associative,
it is sufficient with one rule in the implementation.

mod PI-SIMPLE is
including PI .

vars D1 D1’ D2 D2’ : SD .
var E : Event .
vars L L’ : LLSet .
var B : Comm .

crl [PI-event] :
PI(L, B, E) => {E}PI(L, B, skip)
if l(E) in L /\

k(E) == ! or ready(B,m(E)) .

crl [PI-seq-left] :
PI(L, B, D1 seq D2) => {E}PI(L, B, D1’ seq D2)
if intersect(ll(D1),L) =/= emptyLLSet /\

PI(intersect(ll(D1),L), B, D1) => {E}PI(L’, B, D1’) .

crl [PI-seq-right] :
PI(L, B, D1 seq D2) => {E}PI(L, B, D1 seq D2’)
if L \ ll(D1) =/= emptyLLSet /\

PI(L \ ll(D1), B, D2) => {E}PI(L’, B, D2’) .

crl [PI-par] :
PI(L, B, D1 par D2) => {E}PI(L, B, D1’ par D2)
if PI(intersect(ll(D1),L), B, D1) => {E}PI(L’, B, D1’) .

crl [PI-strict] :
PI(L, B, D1 strict D2) => {E}PI(L, B, D1’ strict D2)
if intersect(ll(D1), L) =/= emptyLLSet /\

PI(intersect(ll(D1), L), B, D1) => {E}PI(L’, B, D1’) .
endm

For each of the modules EXTENSION-〈operator name〉 there is a module PI-〈operator
name〉. Below we show the module PI-ALT which implements the rule (8.16) for re-
solving alts. Also here, only one rule is necessary since the alt operator is defined as
associative.

mod PI-ALT is
including PI .
including EXTENSION-ALT .

vars D1 D2 : SD .
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var L : LLSet .
var B : Comm .

crl [PI-alt] :
PI(L, B, D1 alt D2) => {tau(alt)}PI(L, B, D1)
if intersect(ll(D1 alt D2), L) =/= emptyLLSet .

endm

The other modules PI-〈operator name〉 follow exactly the same pattern, and may
be found in appendix C.2.2. For use of the full projection system, a model PI-FULL
that imports all the PI-modules may be applied:

mod PI-FULL is
including PI-SIMPLE .
including PI-ALT .
including PI-XALT .
including PI-REFUSE .
including PI-ASSERT .
including PI-LOOP .

endm

10.2.3 Meta-strategies

In order to implement the meta-strategies we first define a module TRACE that defines
a type SDTrace for finite traces:

fmod TRACE is
including EVENT .

sort SDTrace .
subsort Event < SDTrace .

op emptyTrace : -> SDTrace [ctor] .
op _._ : SDTrace SDTrace -> SDTrace [ctor assoc id: emptyTrace] .

endfm

10.2.3.1 One trace with mode

For the implementation of the execution strategy of section 9.1 we introduce a module
META-EXEC-MODE where we define a type Meta and use this to define the signature of
the meta-system. Further we define a type Mode to represent the set of modes MO,
and provide the signature of the mode function:

mod META-EXEC-MODE is
including EXEC .
including TRACE .

sort Meta .
sort Mode .

op <_,_,_,_> : SDTrace Exec LLSet Mode -> Meta [ctor] .
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op mode : SEvent Mode -> Mode .
endm

The default modes defined in section 9.1 are implemented in a seperat module
DEFAULT-MODE where the type Mode is given the values positive and negative, and
the function mode is defined:

mod DEFAULT-MODE is
including META-EXEC-MODE .

ops positive negative : -> Mode [ctor] .

var T : SEvent .
var MO : Mode .

ceq mode(T,MO) = positive if MO == positive /\ T =/= tau(refuse) .
ceq mode(T,MO) = negative if MO == negative or T == tau(refuse) .

endm

In the module EXTERNAL-TRACE-MODE, the rules (9.1), (9.2) and (9.3) are imple-
mented as rewrite rules. These rules use transitions of the execution system as condi-
tion, which means we apply the built in mechanism in the Maude interpreter for (semi)
non-deterministic application of the rule:

mod EXTERNAL-TRACE-MODE is
including META-EXEC-MODE .
including SD-FULL-SYNTAX .

var T : SDTrace .
var E : Event .
vars V V’ : Exec .
var L : LLSet .
vars M M’ : Mode .
var D : SD .
var B : Comm .
var TAU : SEvent .

crl < T, V, L, M > => < T . E , V’, L, M >
if V => {E}V’ /\

not E :: SEvent /\
(l(E) in L or l-1(E) in L) .

crl < T, V, L, M > => < T, V’, L, M >
if V => {E}V’ /\

not E :: SEvent /\
not l(E) in L /\
not l-1(E) in L .

crl < T , V, L, M > => < T, V’, L, mode(TAU,M) >
if V => {TAU}V’ .

endm
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In addition to this implementation of the meta-strategy, we also provide another
implementation of the strategy. In this other implementation, the execution of the sys-
tem is randomized instead of using the build in mechanism in the Maude interpreter for
applications of the rules. We do not give the details here, but refer to appendix C.3.1.

10.2.3.2 All traces

When implementing the strategy for producing all traces, more work is required. Sim-
ilar to the above strategy we make use of the type SDTrace, and provide a module
where a type Meta is defined and the signature of the meta-system given:

mod META-EXEC is
including EXEC .
including TRACE .

sort Meta .

op {|_,_,_|} : SDTrace Exec LLSet -> Meta [ctor] .
endm

In addition we define a module SEMANTICS that defines the types TraceSet, Inter-
actionObligation and IOSet which we need for characterizing the semantic structure
of STAIRS. We also need the transformation rules for obtaining the normal form of
diagram (see section B.1). An implementation of these is provided by the module
TRANSFORMATIONS.

The execution strategy is implemented by a module ALL-TRACES. In this module
the type Meta is made subsort of SDTrace. This way the semantic structure defined in
SEMANTICS can be used to structure states of the meta-system as well as traces. In the
implementation we make use of the meta-level capabilities of Maude (see section 6.3)
so that for every state of the execution system we are able to obtain every possible
transition. In this way we define a function allTraces that from an execution state
produces the semantics of the diagram of that execution state. The implementation
of this execution strategy is rather lengthy so we do not provide it here, but it can be
found in appendix C.3.2.

Refinement verification. The refinement verification mechanism is implemented
in a module REFINEMENT. This module contains straight forward definintions of the
refinement relations as Boolean operators:

ops _~>r_ _~>rr_ : InteractionObligation InteractionObligation -> Bool .
ops _~>g_ _~>rg_ _~>l_ _~>rl_ : IOSet IOSet -> Bool .

In addition, a mechanism for substitution of lifelines in traces is provided by a
module MAPPING. This mechanism may be applied if the refinement verification is used
for comparing diagrams with different lifeline names. See appendix C.3.2.1 for details.

10.3 Conventions for use

In this section we present some conventions for the use of the implementation of the
operational semantics we have presented in this chapter. Further, we give examples of
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use of the Maude implementation together with the Maude interpreter. As example we
use the diagram d of figure 5.1 on page 30. As we saw in section 5.2.2, the syntactical
representation of this diagram is:

d = (?, (a, g, i)) seq ((!, (b, i, j)) seq (?, (b, i, j)) alt (!, (c, i, j)) seq (?, (c, i, j)))

We let a diagram be represented by a module, so the diagram d is represented by a
module D. This module must import the modules defining the syntax of at least the
operators that are used in the diagram.

The types LLName (lifeline name) and Signal are without any values. In the module
D we therefore define the lifelines and gates of the diagram as constants of type LLName
and the signals of the diagram as constants of type Signal:

ops i j g : -> LLName .
ops a b c : -> Signal .

We can now build lifelines and gates from lifeline names, messages from lifelines, gates
and signal, events from messages, and diagrams from events. For increased readability
we also give names to lifelines, gates, messages and events ($ in these names is just
for avoiding name collisions, and ! and ? are used for readability). For example do we
define the event “reception of message a”, i.e. (?, (a, g, i)), by:

op $i : -> Lifeline .
eq $i = l(i) .
op $g : -> Gate .
eq $g = g(g) .
op $a : -> Msg .
eq $a = (a,$g,$i) .
op ?a : -> Event .
eq ?a = (?,$a) .

In the same fashion we give an explicit name to the diagram. The full definition of
diagram d may be:

mod D is
including SD-FULL-SYNTAX .

ops i j g : -> LLName .
ops $i $j : -> Lifeline .
op $g : -> Gate .
eq $i = l(i) .
eq $j = l(j) .
eq $g = g(g) .

ops a b c : -> Signal .
ops $a $b $c : -> Msg .
eq $a = (a,$g,$i) .
eq $b = (b,$i,$j) .
eq $c = (c,$i,$j) .

ops ?a !b ?b !c ?c : -> Event .
eq ?a = (?,$a) .
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eq !b = (!,$b) .
eq ?b = (?,$b) .
eq !c = (!,$c) .
eq ?c = (?,$c) .

op d : -> SD .
eq d = ?a seq (!b seq ?b alt !c seq ?c) .

endm

Use of the Maude interpreter With the above Maude representation D of the
diagram d, we can use the commands of the Maude interpreter to execute and, in other
ways, manipulate the diagram. In the following we give some examples.

By applying the command

reduce in D : d .

we get the Maude definition of the diagram:

result SD: (?,a,g(g),l(i)) seq ((!,b,l(i),l(j)) seq (?,b,l(i),l(j))
alt (!,c,l(i),l(j)) seq (?,c,l(i),l(j)))

In order to execute the diagram we need to import modules implementing the opera-
tional semantics. If we, e.g., want the full projection system and the communication
model with no ordering on messages, we add the following lines to the module:

including EXECUTION .
including PI-FULL .
including ONE-FIFO-MESSAGE .

If we want to apply the meta-system for generating a single trace with the default
definition of modes we also include the lines:

including EXTERNAL-TRACE-MODE .
including DEFAULT-MODE .

We can now execute the diagram using the rewrite command in the Maude interpreter:

rewrite in D : < emptyTrace,[$a,d],ll(d),positive > .

Because the diagram contains a message going from a gate to the lifeline of the diagram
(i.e. a), we start the execution with this message (i.e. $a) in the communication medium
in the initial state. This way the message is available for execution of ?a and execution
may proceed as it should and not stop because the event is disabled by the absence
of the message. In order to get a glass box view of the execution we provide all the
lifelines of the diagram to the meta-system, using the function ll(d).

The result is a state of the meta-system where further execution is not possible:

result Meta: < (?,a,g(g),l(i)) . (!,b,l(i),l(j)) . ?,b,l(i),l(j),
[emptyComm,skip],l(i) ; l(j),positive >

This way we obtain a (semi) non-deterministically generated trace. If we would like to
get all possible traces from this diagram we can apply the search command:
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search in D : < emptyTrace,[$a,d],ll(d),positive > =>!
< T:SDTrace,X:Exec,L:LLSet,M:Mode > .

Solution 1 (state 37)
states: 43 rewrites: 25065 in 7672014078ms cpu (274ms real)

(0 rewrites/second)
T:SDTrace --> (?,a,g(g),l(i)) . (!,b,l(i),l(j)) . ?,b,l(i),l(j)
X:Exec --> [emptyComm,skip]
L:LLSet --> l(i) ; l(j)
M:Mode --> positive

Solution 2 (state 38)
states: 43 rewrites: 25069 in 7672014078ms cpu (275ms real)

(0 rewrites/second)
T:SDTrace --> (?,a,g(g),l(i)) . (!,c,l(i),l(j)) . ?,c,l(i),l(j)
X:Exec --> [emptyComm,skip]
L:LLSet --> l(i) ; l(j)
M:Mode --> positive

No more solutions.
states: 43 rewrites: 25169 in 7672014078ms cpu (277ms real)

(0 rewrites/second)

Note, however, that this only gives us the traces (essentially as a flat set) and not
the semantic structure of STAIRS. This we can obtain by applying the “all traces”
strategy, even though the result in this case is not particulary interesting:

reduce in D : allTraces([$a,d], ll(d)) .

rewrites: 1215 in -4295712345ms cpu (551ms real) (~ rewrites/second)

result InteractionObligation:
(((?,a,g(g),l(i)) . (!,b,l(i),l(j)) . ?,b,l(i),l(j)) +
(?,a,g(g),l(i)) . (!,c,l(i),l(j)) . ?,c,l(i),l(j)),

emptyTSet

90



Chapter 11

Related work on operational
semantics

In this chapter we present related work, which means other approaches to defining
operational semantics to sequence diagrams. This presentation cannot, however, be
seen independently of the history of sequence diagrams. The various approaches of
defining semantics to sequence diagrams have emerged at different points in this history,
and are clearly influenced by the state of the language(s) at the time of their emergence
(see introduction of chapter 4).

In addition to the STAIRS semantics there exist some other approaches to defining
denotational semantics for UML 2.x sequence diagrams [30,98,173,174]. As explained
section 7.2, denotational and operational semantics are complementary and serve dif-
ferent purposes. For this reason we do not go into detail on these approaches in this
discussion, nor on existing approaches to denotational semantics of MSC, like [92].

Several approaches to defining operational semantics to UML 2.x sequence diagrams
and MSCs exist. We do, however, find that none of these semantic definitions are
satisfactory for our purposes.

The approach of Cengarle and Knapp [31] has some similarities to our operational
semantics; for every execution step an event is produced and at the same time the syn-
tactical representation of the diagram is reduced by the removal of the event produced.
Contrary to ours, however, their semantics treats sequence diagrams as complete speci-
fications (with no inconclusive behavior), something that does not conform to the UML
standard (see sections 4.2 and 7.3.1). The rules are defined so that a given diagram
produces a set of positive and negative traces that together exhaust the trace universe.
The neg operator is replaced by an operator not. This operator is defined so that the
sets of positive and negative traces are swapped. This is unfortunate since specifying
some behavior as negative means also specifying the complement of this behavior as
positive. We claim that this is not what you intuitively expect when specifying negative
behavior.

There are also some problems on the technical level. The semantics is based on
a notion of composition of basic interactions where basic interactions are defined as
partially ordered multisets (pomsets), but it is not clear how the pomsets are obtained;
in other words it is not clear what the atoms of the compositions are. If the atoms are
taken to be single events the reduction rules defining the seq operator do not preserve
the message invariant (causality between transmission and reception of a message).

Cavarra and Klüster-Filipe [29] present an operational semantics of UML 2.x se-
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quence diagrams inspired by Live Sequence Charts (LSC) (see below). The semantics
is formalized in pseudo-code that works on diagrams represented as locations in the
diagram, but no translation from diagrams to this representation is provided. A more
serious problem is the treatment of the choice operator alt. The operands of alts have
guards and there is nothing to prevent the guards of more operands in an alt to evalu-
ate to true. In this case the uppermost operand will be chosen, which means that the
alts essentially are treated as nested if-then-else statements and may not be used for
underspecification. Further, each lifeline is executed separately which means that syn-
chronization at the entry of alt-fragments is necessary to ensure that all lifelines choose
the same operand. They also make the same assumption about negative behavior as in
LSCs, that if negative (neg) fragment is executed, then execution aborts (see section
7.3.4).

Harel and Maoz [60] use LSC semantics (see below) to define neg and assert. The
operators are defined using already existing constructs of LSCs, and hence no changes
or additions to the LSC semantics are needed in their approach. Because of this they
also inherit the problems connected to LSCs.

In [58], Grosu and Smolka provide a semantics for UML 2.x sequence diagrams
based on translating the diagrams to Büchi automata. The approach is based on
composing simple sequence diagrams (no high-level operators) in high-level sequence
diagrams (interaction overview diagrams), where a simple diagram may be a positive
or a negative fragment of the high-level diagram it belongs to. Positive behavior is
interpreted as liveness properties and negative behavior as safety properties. Hence,
for a high-level diagram two Büchi automata is derived; a liveness automaton charac-
terizing the positive behavior of the diagram and a safety automaton characterizing
the negative behavior. Compared to our operational semantics the approach is based
on a large amount of transformation. Further the diagrams are composed by strict
sequencing rather than weak sequencing, and hence has implicit synchronization of
lifelines when entering or leaving a simple diagram.

In 1995 a formal algebraic semantics for MSC-92 was standardized by ITU [117,118].
MSC-92 has a lifeline-centric syntax and its semantics is based on characterizing each
lifeline as a sequence (total order) of events. These sequences are composed in parallel
and a set of algebraic rules transforms the parallel composition into a structure of
(strict) sequential composition and choice. The message invariant is obtained by a
special function that removes from the structure all paths that violate the invariant.
The main drawbacks of this semantics are that it is not a proper operational semantics
since a diagram first has to be transformed into the event structure before runs can be
obtained, and that this transformation replaces parallel composition with choice and
hence creates an explosion in the size of the representation of the diagram. Further, the
lifeline-centric syntax is not suitable for defining nested high-level constructs. In [137]
a similar semantics for UML 1.x sequence diagram is given.

MSC-96 got a standardized process algebra semantics in 1998 [84, 119, 120]. This
semantics is event-centric and has semantic operators for all the syntactic operators in
MSC-96. Further these operators are “generalized” to preserve the message invariant
by coding information about messages into the operators in the translation from syn-
tactical diagrams to semantic expressions. Runs are characterized by inference rules
over the semantic operators. Compared to our work, the most notable thing about
this semantics is that it has no notion of negative behavior, and therefore also makes
no distinction between negative behavior and inconclusive behavior (behavior that is
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neither positive nor negative). This is no surprise since MSC does not have the neg
operator, but it is still a shortcoming with respect to UML sequence diagrams. The
only available meta-level is a flat transition graph, and this does not give sufficient
strength to extend the semantics with negative behavior. Neither is it possible to dis-
tinguish between potential and mandatory choice. Another shortcoming is the lack of
an explicit communication medium; the communication model is “hardcoded” in the
semantics by the “generalized operators” and does not allow for variation.

Another process algebra semantics of MSC is presented in [104]. This semantics
may in some respects be seen as more general than both the MSC-92 and the MSC-96
semantics. A simple “core semantics” for MSCs is defined and this semantics is then
inserted into an environment definition. Varying the definition of the environment
allows for some of the same semantic variability and extendibility that we aim for in
our semantics, e.g., with respect to the communication model. However, the semantics
is heavily based on synchronization of lifelines on the entry of referenced diagrams and
combined fragments and diverges in this respect from the intended semantics of MSCs
and UML sequence diagrams. Further, the same strategy as for the MSC-92 semantics
is applied; interleaving is defined by means of choice, and the message invariant is
obtained by removing deadlocks. In our opinion, this results in an unnecessary amount
of computation, especially in the cases where we do not want to produce all traces but
rather a selection of the traces that a diagram defines.

In [99] a semantics for MSC-92 is presented which is based on translating MSCs to
finite automata with global states. This approach has no high-level operators, but con-
ditions may be used for specifying choices between or iterations of diagrams. However,
the insistence on translating the diagrams to finite automata makes it impossible to
represent all reachable states because the combination of weak sequencing and loops
may produce infinitely many states.

Realizability of MSCs is the focus of both [5,6] and [182]. They define synthesis of
MSC to concurrent automata and parallel composition of labeled transition systems
(LTS), respectively. (Each lifeline is represented as an automaton or LTS, which are
then composed in parallel.) Further they define high-level MSCs as graphs where
the nodes are basic MSCs. In addition, [182] defines both syntax and semantics for
negative behavior. In both approaches the translation of high-level MSCs to concurrent
automata/LTSs removes the semi-global nature of choices in a specification, and the
high-level MSC graphs are non-hierarchical disallowing nesting of high-level operators.
Further, in [182] communication is synchronous.

Various attempts at defining Petri net semantics for MSCs have been made [57,59,
73,163]. In [57,163] only basic MSCs are considered, and hence are of limited interest.
In [59], high-level MSCs are defined as graphs where each node is a basic MSC. As
with the above mentioned semantics it is then possible to express choices and loops,
but the approach does not allow for nesting of high-level operators. In [73] a Petri net
translation of the alternative operator alt is sketched, but no loop defined. In [19] a
Petri-net semantics for UML 1.x sequence diagrams is presented, but as with the Petri
net semantics of basic MSCs it has major limitations and is of little interest.

Kosiuczenko and Wirsing [96] make a formalization of MSC-96 in Maude. Their
semantics is problematic for two reasons: Every lifeline in a diagram is translated into
an object specified in Maude, and the behavior of these objects are specified by the
means of states and transition rules. We find this problematic because in general the
states of a lifeline are implicit while this formalism assumes explicit states. Further,
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this way of reducing diagrams to sets of communicating objects has the effect that all
choices are made locally in the objects and the choice operator alt looses its semi-global
nature. Hence, this formalization does not capture the intended understanding of the
alt operator.

An interesting approach is that of Jonsson and Padilla [89]. They present a se-
mantics of MSC which is based on syntactical expansion and projection of diagram
fragments during execution. Each lifeline is represented by a thread of labels where
the labels refer to events or diagram fragments. The threads are executed in paral-
lel and when a label referring to a fragment is reached the fragment is projected and
expanded into the threads. Among the approaches referred to in this chapter, this
is probably the approach that most resembles our operational semantics since their
execution/expansion scheme resembles our execution/projection scheme. Because ex-
pansion produces silent events, the semantics can with small changes be extended with
neg and xalt. Expansions may happen at arbitrary points since there are no rules in
the semantics itself for when to expand. This creates a need for execution strategies,
and the approach may be seen as having an informal meta-level where ad hoc strate-
gies are described. However, if completeness is to be ensured, or if the semantics is
to be extended with negative and potential/mandatory behavior this meta-level must
be formalized. A problem with this semantics is that it requires explicit naming of all
diagram fragments and this yields an unnecessary complicated syntax. Another short-
coming is the lack of an explicit communication medium; the communication model is
“hardcoded” into the semantics and does not allow for variation.

Live Sequence Charts (LSC) [39, 61, 62] is a variant of MSC that does define a
meta-level. Diagrams may be tagged as universal or existential, and parts of diagrams
as hot or cold, and this is evaluated at the meta-level. This yields something similar
to the potential/mandatory distinction, and allows for specifying negative behavior.
There is however a difference; LSCs specify what must or may happen given that some
conditions are fulfilled, while our semantics distinguish between choices that must or
may be present in an implementation. Further the semantics complies with neither the
MSC nor the UML standard. Most importantly it requires synchronization between
lifelines at every entry point of diagram fragments, e.g. when resolving a choice.

As we see, none of these approaches to defining operational semantics for UML
sequence diagrams and MSCs fulfill the intentions and criteria we have set for our
semantics. The shortcomings that dominate are:

• Non-conformance with the intended semantics of UML.

• No notion of explicit negative behavior and no distinction between negative be-
havior and inconclusive behavior (behavior that is neither positive nor negative).

• No distinction between potential and mandatory choice. (This is no surprise as
the alt/xalt distinction is an invention of STAIRS.)

• Lack of a proper meta-level that may be used for assigning meaning to negative
and potential/mandatory behavior.

• Lack of possibility and freedom in defining and formalizing a meta-level.

• Lack of modifiability and extensibility, e.g., with respect to the communication
model.

94



• Requiring transformations from the textual syntax into the formalism of the
approach.

Since our intentions have been to stay close to the UML standard in both syntax
and semantic, and to facilitate ease of extension and modification when adapting the
semantics to different interpretations and applications of sequence diagrams, it is clear
that none of the existing approaches suffice for our purposes.
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Testing
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Chapter 12

Introduction to testing

Most system development methodologies recommend testing as the method for im-
proving the correctness and quality of the software developed. In the most general
case, testing means that an executable program is subjected to experiments where the
program is observed in order to find out how it behaves under certain circumstances.
Typically the circumstances are input to the program and what is observed is the out-
put of the program, in which case the process is called functional testing.1 A typical
definition of functional testing is found in [16, p. 4]:

In functional testing the element is treated as a black box. It is subjected to
inputs and its outcomes are verified for conformance to its specification.

This definition also brings in a second element, i.e. that the observations that are
made should be used for ensuring that the program is operating in accordance with
the specification of the program.

In what is usually referred to as model based testing or specification based testing,
this is taken a step further. In [183], four main approaches that may be called model
based testing are characterized:

1. Generation of test input data from a domain model.

2. Generation of test cases from an environment model.

3. Generation of test cases from a behavioral model.

4. Generation of test scripts from abstracts tests.

In the following we concentrate on the third of these forms of model based testing.
Test are derived from formal or semi-formal models (specifications) of the system under
development – often state machines, statecharts or as in our case sequence diagrams
– and the tests are used for investigating whether the program conforms to the model
(specification).

Important system development methodologies, such as the Rational Unified Pro-
cess (RUP) [97], and other variants of the Unified Process, emphasize use case based
and scenario based development. In such development, requirements to the system

1There are of course other types of testing as well (see e.g. [91, 178, 188] for different overviews).
E.g. if the circumstances are the hardware the program is executed on and what is observed is how
fast it performs, we can talk about performance testing. In the following, however, we concentrate on
functional testing.
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are specified as usage scenarios which then become the basis for system design, im-
plementation and testing. Also agile methods like Agile Model Driven Development
(AMDD) [8] and Test Driven Development (TDD) [88] recommend scenario or use case
based specification.

Sequence diagrams easily find their place in this kind of development, since they
can be applied for specifying usage scenarios. Both their focus on interactions and their
partial nature make them well suited for this. This in itself motivates test generation
from sequence diagrams, because it combines the approach of model based or speci-
fication based testing with the approach of use case or scenario based development.
In [183] it is shown how a model based testing approach fits together with the Unified
Process and with agile methods, and in [152] an agile methodology based on modeling
with UML and model based testing is outlined.

To bring matters even a step further, we argue for testing not only implementations,
but also specifications. In an iterative model based development process, like e.g.
RUP, both requirement specifications (use cases) and design specifications are likely to
become more and more refined as the project loops through the iterations. In the same
way as we would be interested in investigating whether an implementation conforms
to the specification, we should also be interested in investigating whether a refinement
of a specification conforms to the original specification (if not for any other reason
then that the implementation is more likely to be based on the refinement). Because
we have an operational semantics for sequence diagrams, that essentially executes a
sequence diagram, we can treat a sequence diagram specification as a program for the
purpose of testing. By this observation we can use testing as a means for investigating
whether a refinement of a sequence diagram specification is correct. We refer to this
as refinement testing.

Many of the testing methods that have been created are based on heuristics, and
must be considered informal (see e.g. [91, 178, 179]). Our view is that the methods we
apply for analysis should have a formally sound foundation, and we hold this view also
with respect to methods for testing. When we define our testing method for sequence
diagrams it therefore makes sense to use formal testing theory as the staring point.

For the remainder of this chapter we have a brief look at formal testing theory. In
chapter 13 we present our testing theory for sequence diagrams, and in chapter 14 a
tool based on our operational semantics and our testing theory. Chapter 15 provides
a case study using the tool and chapter 16 provides related work.

Formal testing theory In the above definition of functional testing it is stated that
the outcome of the testing should be verified for conformance to its specification. This
raises the question of how we should understand “conformance to specification”. In
order to answer such a question in a satisfactory manner it is essential to have a theory
for testing that precisely states what conformance is.

In this context the most notable (formal) models for computer programs and pro-
cesses are process algebras/calculi (such as CCS [125] and CSP [74]), labeled transition
systems (LTS) [128] and finite state machines (FSM) [102,105]. The studies into these
formal models have lead to the definition of a number of equivalence relations and
preorders on processes, such as observation equivalence, trace equivalence, simulation,
bisimulation, and several more.

In [129], De Nicola and Hennessy formulated a theory for what they called “testing
equivalence” for CCS based on the notion of observer processes, and showed how the
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“testing preorders” they defined could be used to characterize a number of already
defined equivalence relations. In [128] the same testing relations where defined for
labeled transition systems. Others, such as Phillips [142] and Abramsky [3] continued
this work by defining even stronger testing relations.

The purpose of formulating these testing relations was to study the semantics of
programs and processes, but the theory turned out to be suitable as a theoretical
foundation for software testing. In [23], Brinksma made the first attempts at using
this theory for test generation. The elaboration of this has led to the definition of a
number of conformance relations, and several tools based on these theories have been
developed (see e.g. [24, 25, 177, 180, 184]). A similar development originated from the
theory of finite state machines (see e.g. [32, 93, 95, 102]).

All formal testing theory is based on what is called the test hypothesis, which may
be formulates as follows [24]:

Correctness and validity of [the] specification is assumed [...] [T]here is an im-
plementation [...] which is treated as a black box, exhibiting external behavior.
The [implementation] is a physical, real object that is in principle not amendable
to formal reasoning. We can only deal with implementations in a formal way, if
we make the assumption that any real implementation has a formal model with
which we could reason formally. This formal model is only assumed to exist, but
need not be known a priori. [This] allows to reason about implementations as
if they were formal objects, and, consequently, to express conformance of imple-
mentations with respect to specifications by means of a formal relation between
such models of implementations and specifications.

An implication of this assumption is that for a given formalism we can formulate a
testing theory, as long as we are able to characterize observation in the formalism
and we accept it as a model for implementations. A testing theory is general in the
sense that it is not based on any specific formalism, but rather on general principles of
processes and observations.

Having a formal theory for testing makes it possible to answer the question of
exactly what we mean by conformance and what it means for a test to fail or succeed.
Further it is possible to say formally what it means for a set of tests to be sound or
complete, give exact definitions of test coverage and formally state requirements for
test selection and test prioritizing.

Input-output conformance testing We base our work on the theory called input-
output conformance testing, or “ioco-testing” for short [177–179]. The theory is formal
and is based on labeled transition systems (LTSs). This makes it suitable as a starting
point for us, as our operational semantics can easily be related to LTSs.

The LTSs of the ioco theory distinguishs between input and output actions. In
addition, in these LTSs it is also possible to observe the absence of output, called
quiescence. Quiescence is treated as an action δ, and hence it can appear in the traces
of an LTS. A trace where δ is allowed to appear repeatedly is called a suspension trace.

A conformance relation ioco relates implementations and specifications such that
i ioco s holds if the implementation i conformers to the specification s, where i and s
are LTSs. The relation is defined as

i ioco s
def
= ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)
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where Straces(s) is the set of all finite suspension traces of s, after is a function
that returns all states of an LTS reachable by a (suspension) trace and out returns all
outputs, including δ, possible in a set of states. In other words, the relation states that
after every finite suspension trace, the possible outputs of the implementation should be
a subset of the outputs possible by the specification. It can be shown that this relation
is stronger than trace inclusion (i.e. traces(i) ⊆ traces(s)) because the quiescence can
distinguish paths with the same finite traces but that differs with respect to quiescence
in their states.

The ioco theory also provides a test generation algorithm. The algorithm is based on
providing stimulus to a specification and making observations of its outputs or absence
of outputs, and based on that assigning verdicts pass and fail to the execution paths.
The algorithm has the property that, if U is a complete set of tests (test suite) generated
from a specification s, then

∀i : i ioco s ⇐⇒ i passes U

where i passes U expresses that none of the tests in U , when executed in parallel with
i, has an execution path that result in a verdict fail.
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Chapter 13

Testing of sequence diagram
specifications

In this chapter we define an algorithm for generating tests from UML 2.x sequence
diagrams based on the operational semantics defined in chapter 8. Further we show
how these tests can be applied for testing of refinement. The algorithm is a modified and
adapted version of the algorithm presented in [178, 179] that takes into consideration
the partial nature of sequence diagrams as well as the notion of negative and universal
behavior introduced in UML 2.x with the operators refuse/neg and assert. We do not
consider the xalt operator. Distinguishing between potential and mandatory choice
requires building semantic structures that are not available in the framework we have
chosen for our testing theory. Hence, in this chapter we assume that the semantics of a
diagram d is a single interaction obligation, [[ d ]] = (p, n). We also make the restriction
that the loop operator is provided with a finite counter and that any generalized alt
operator have a finite index set. This ensures that p and n are finite sets of finite traces.
Because the STAIRS semantics considers prefixes of positive behavior as inconclusive
(unless assert is applied, in which case they are negative behavior) we seek to generate
maximal tests, i.e. tests that represent complete behavior. This is only possible if the
specification from which we generate traces has finite behavior.

The algorithm generates tests in the form of sequence diagrams. These are abstract
tests in the terminology of [183], i.e. tests defined by means of the abstract operations
and values used in the specification the tests are generated from. We see the possibility
of transforming our abstract tests into test scripts, i.e. executable test cases designed
for testing implementations built on specific technologies [183] (see also the discussion
of the UML testing profile in chapter 16), but do not pursue this any further.

In order to test refinements we execute these abstract tests against other specifi-
cations. In conformance testing, tests are generated from specifications and executed
against implementations. We define test execution where the “implementation” is a
sequence diagram. Conceptually this is unproblematic, since formal conformance test-
ing always assumes the existence of a formal model of the implementation even though
this model is unknown (the test hypothesis). We, instead, do test execution against a
formal model. A difference, however, is that an implementation can always be assumed
to be complete while our specifications may be partial.

This partiality of specifications has the result that generating tests from an abstract
specification and executing them against a more concrete specification does not capture
all fault situations we may want to detect. Specifically, if a trace is explicitly specified
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in the abstract specification as positive or negative, but is inconclusive (i.e. unspecified)
in the more concrete specification, this is an incorrect refinement we are not able to
capture by this way of testing.

We therefore make a distinction between “testing down” and “testing up”. “Testing
down” refers to the process described above where tests are generated from an abstract
specification and executed against a more concrete specification. “Testing up” refers
to the process of generating tests from the concrete specification and executing them
against the abstract specification. By “testing up” we capture the incorrect refinements
overlooked by “testing down”, and hence the two “testing directions” complement each
other. However, if we are in a position where we can assume that the “implementation”
is complete, “testing down” is sufficient.

In sum the contents of this chapter is: 1) A test generation algorithm based on
a well-known algorithm for conformance testing and a formal operational semantics
for sequence diagrams, which takes as input sequence diagrams that may contain the
operators assert and neg/refuse and that produces abstract tests in the form of sequence
diagrams. 2) A characterization of how the same operational semantics can be applied
to execute the tests against sequence diagrams and how this may be used to test
refinement steps in system development. We are not aware of any other approach that
does this.

The structure of the chapter is as follows: Section 13.1 presents the format of our
tests and section 13.2 the test generation algorithm. In section 13.3 we characterize
test execution. In addition, section 13.4 provides some considerations with respect to
asynchronous testing.

13.1 Test format

In the following we will have two kinds of sequence diagrams. “Normal” sequence
diagrams that specify systems we refer to as specifications. The other kind of diagrams
we call tests. Tests are special sequence diagrams that may be seen as specifications of
test programs or test cases.

A test is a sequence diagram consisting of only one lifeline. We use tester as a
generic name of this lifeline. A test specifies how a test program operates by sending
messages to the system under test and observing the messages received. In a test
we may also specify observation of absence of messages from the system under test.
Intuitively this can be thought of as timeouts in the test programs as they wait for
output from the system under test. In a test we also specify verdicts that the test
program will return after being executed against the system under test. Based on the
observations the test program does, it will give one out of three possible verdicts: pass,
fail or inconclusive.

The timeout/absence of reception is represented in a test by a special event θ(l)

where l is the lifeline of the test. Let Θ
def
= {θ(l) | l ∈ L} and Θ ∩ (E ∪ T ) = ∅. We

let θ range over the elements of Θ and use θ as shorthand notation for θ(l) when l is

implicitly given. We let l. also range over Θ so that l.θ(l′) def
= l′.

The verdicts are represented by three terminating diagrams (similar to skip). These
three terminating diagrams then extend the definition of sequence diagrams:

pass, fail, inconc ∈ D

104



13.2 Test generation

but

liq

choc

sd d

automaton

alt

i

o1

o2

Figure 13.1: Example specification
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Figure 13.2: Example test

We let V def
= {pass, fail, inconc} denote the set of verdicts.

In figure 13.1 we show a specification of a simple vending machine; if a button
(represented by the message but) is pushed, the machine will make a non-deterministic
choice and provide either liquorice or chocolate (represented by the messages liq and
choc).1 A test generated from this specification would typically look like:

T =!but seq (?liq seq pass alt ?choc seq pass alt θ seq inconc)

A graphical representation of this test is shown in figure 13.2. The intuitive under-
standing of this test should be the following: The test program sends a message but to
the system under test and then waits for output from the system. If the test observes
the system sending a message liq or a message choc it terminates with the verdict pass
because these are positive behaviors in the specification d in figure 13.1 from which it is
generated. If the test observes absence of output from the system, this is inconclusive
behavior in the specification d and the result is the verdict inconc.

13.2 Test generation

We define an algorithm for test generation. The algorithm takes specifications as input
and produces tests of the format shown above. The algorithm is based on the algorithm
provided in [178,179], which produce tests in the form of LTSs from LTS specifications.
The execution system defined in section 8.1 may be interpreted as an LTS, and because
of this, defining test generation in the fashion of [178, 179] is a natural choice for our
algorithm.

Both the UML standard and the STAIRS semantics divide the trace universe into
positive, negative and inconclusive traces for a given diagram, and hence regard se-
quence diagrams as partial specifications. This differs from the approach of [178, 179]
which only operates with positive and negative traces. Hence it lacks the distinction
between negative and inconclusive behavior and the distinction between potential and

1This vending machine example is borrowed from [179].
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universal behavior we get from the sequence diagram operators refuse/neg and assert.
Therefore, one of the modifications we make to the test generation algorithm is an
adaption to a semantic model with inconclusive traces.

13.2.1 Preliminaries

As we have shown earlier (see section 7.3 and chapter 9), a meta-level is needed to
make the distinction between positive and negative behavior and between potential and
universal behavior. Because knowing these properties of executions is necessary in the
test generation (in order to have the tests terminate with the appropriate verdicts), we
apply the meta-system for generating traces with mode in the test generation algorithm.
(See section 9.1 for more background on the mode concept.) We need to distinguish
both negative and universal behavior from normal (positive partial) behavior. We use
the following set of modes:

MO def
= {norm, ref, ass, assref}

The mode norm denotes a normal execution. ref denotes an execution that has entered
a refuse operator and ass denotes an execution that has entered an assert operator,
while assref denotes that both a refuse and an assert have been entered. The mode
function is defined as:

mode(τ, mo)
def
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ass if τ = τassert ∧mo = norm
ref if τ = τrefuse ∧mo = norm
assref if (τ = τrefuse ∧mo = ass) ∨

(τ = τassert ∧mo = ref)
mo otherwise

(13.1)

Before we present the test generation algorithm, we also introduce some auxiliary
definitions. First of all we distinguish between internal and external events. The
external events of a specification d are those events that transmit messages to gates or
receive messages from gates. We define Ed

O and Ed
I to be the external transmit events

and external receive events of d, respectively:

Ed
O

def
= {e ∈ ev.d | k.e = ! ∧ l−1.e ∈ G}

Ed
I

def
= {e ∈ ev.d | k.e = ? ∧ l−1.e ∈ G}

The events in ev.d\(Ed
O∪Ed

I ) are then the internal events. A function enabledEvents ∈
EX → P(E) returns the set of enabled events of an execution state:

enabledEvents([β, d])
def
= {e ∈ E | ∃t ∈ T ∗, β ′ ∈ B, d′ ∈ D : [β, d]

t
�〈e〉−−−→ [β ′, d′]}

Note that this function returns the proper events that are possible next events from
an execution state, after the execution of any number of silent events.

We define quiescence in the manner of [179]. An execution state is quiescent if no
external transmit events or internal events are enabled. This is the same as saying that
only external receive events are enabled. We define a quiescence function δ ∈ EX → B

that returns true iff an execution state is quiescent:

δ([β, d])
def
= enabledEvents([β, d]) ⊆ Ed

I
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Quiescence may be treated as an observable event. We let δ be a special event that we
use as a placeholder for observation of quiescence in a specification; is not part of the
syntax of the specifications but an abstract event we make use of to denote quiescence
while generating tests.

A function out ∈ EX → P(E ∪ {δ}) returns the set of possible observations of an
execution state of a specification:

out([β, d])
def
=

{
{δ} if δ([β, d])
Ed

O ∩ enabledEvents([β, d]) if ¬δ([β, d])

The test generation algorithm involves maintaining a set of states. We do have the
execution states, but also need a way of keeping track of the modes of these execution
states. We therefore define a test generation state as a pair of an execution state and
a mode, and let ST denote the set of all test generation states:

ST def
= EX ×MO

In the following we let S range over sets of test generation states, i.e., S ⊆ ST . We
overload the function out to range over sets of test generation states, and define:

out(S)
def
=

⋃
([β,d],mo)∈S

out([β, d])

The out function then returns the set of possible observations from a set of states,
independent of the modes of the states.

Similar to out, we define an overloaded function in ∈ EX → P(E), P(ST ) → P(E):

in([β, d])
def
= Ed

I ∩ enabledEvents([β, d])

in(S)
def
=

⋃
([β,d],mo)∈S

in([β, d])

Let EO be the set of external events. We define an overloaded function after ∈
ST × E∗

O → P(ST ),∈ P(ST ) × E∗
O → P(ST ) that returns the new test generation

states after execution of a trace of external events:

([β, d], mo) after t
def
= {([β ′, d′], mo′) |

〈〈〈〈〉, [β, d], gates.d, mo〉〉〉 −→∗ 〈〈〈t, [β ′, d′], gates.d, mo′〉〉〉}

S after t
def
=

⋃
([β,d],mo)∈S

([β, d], mo) after t

In the definition, −→∗ denotes the reflexive, transitive closure of the transition relation
−→ defined by the meta-system. In order to get external traces from the meta-system
we use gates.d as the set of lifelines.

13.2.2 Test generation algorithm

We define a test generation algorithm that takes a specification as input and produces a
test as output. Both the specification and the test is in the form of sequence diagrams.
The structure of the algorithm is as follows:
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• A set of test generation states S and a set of events E are maintained. S changes
throughout the test generation, and initially it is the set of all states reachable
by zero or more internal or silent events, i.e. ([initC .d, d] after 〈〉) if d is the
specification from which the test is generated from. E is a set of transmit events
such that Ed

O ⊆ E and remains unchanged thoughout the test generation. We
allow E to be bigger than Ed

O in order to generate tests that can observe a bigger
alphabet than the specification we are generating tests from.

• For each step there is a non-deterministic choice of whether the test should 1)
observe the system under test or 2) provide stimulus to the system. Later we
formalize the algorithm by means of three rules (13.2), (13.3) and (13.2).

– If the first option, formalized by rule (13.2), is chosen, the set of all possi-
ble observations that can be made in the curret set of states is calculated,
possibly including δ.

∗ For each event e in E a branch is made where e is converted to a re-
ceive event of the test. For the cases where e is among the possbible
observation the test generation continues with a new set of test gener-
ation states (S after 〈e〉). In the cases e is not in E, we have observed
something not specified by the specification. We then get the verdict
fail or inconc depending on the set of test generation states S and the
test generation terminates in this branch.

∗ An additional branch is also made where the test specifies a timeout
event θ. In this branch test generation continues (with the set of test
generation states (S after 〈〉)) only if δ is among the possible observa-
tions. In the other case we have observed something not specified by
the specification; we get the verdict fail or inconc depending on the set
of test generation states S and the test generation terminates for that
branch.

In order to avoid an inifinite recursion of producing timeout events in the
test generation we insist that immediately after a timeout event has been
generated, the choice of providing stimulus must be chosen.

– If the option, formalized by rule (13.3), of letting the test make stimulus to
the system is chosen, the set of receive events that the states of S accept is
calculated. One of these events is chosen, let us call it e, and transformed
to a transmit event of the test. The test generation then continues with the
set (S after 〈e〉) of states.

– If the last event produced in a branch of the test generation is a timeout
event and set of possible stimuli is empty, we have nothing more to do and
the generation of this branch terminates. We then give the verdict pass or fail
depending on the set of test generation states S and the “testing direction”.
Because we are interested in maxiaml tests (i.e. complete observations), this
is the only way we can get the verdict pass. (When we have termination
as decribed in the first point we have inconclusive behavior unless assert is
used in the specification.) This termination is formalized in rule (13.4).

The algorithm is formalized by means of a function:

testGen ∈ P(ST )× {0, 1} → D
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The function is defined by means of three rules shown below. Because the algo-
rithm sometimes makes non-deterministic choices, the application of these rules is
non-deterministic. The restrictions in the application of the rules explained above is
guided by a bit such that the bit is 1 when a timeout was the last generated event, or
else 0.

When a test is built with the algorithm, we need to construct the events of the test
from the events of the specification. A transmit event of the diagram corresponds to a
receive event of the test and vice versa. Further, the gates of the messages (remember
we are only dealing with external events) must be replaced with the lifeline of the test.
Let tester ∈ L be the lifeline of the test. We define a function p ∈ E → E that produce
an event for the test from an event of the specification:

p((!, (s, l, g)))
def
= (?, (s, l, tester))

p((?, (s, g, l)))
def
= (!, (s, tester, l))

where we have that l �∈ G and g ∈ G.
The rule (13.2) is responsible for generating the parts of a test that do observation

of output from the system under test:

testGen(S, 0) =
[alte∈E (p(e) seq if e ∈ out(S) then

testGen(S after 〈e〉, 0)
else verdictObs(S ) fi)]

alt [θ(tester) seq if δ ∈ out(S) then
testGen(S after 〈〉, 1)

else verdictObs(S) fi]

(13.2)

Two main branches (enclosed in brackets) of the test are made, each of which becomes
the argument of an alt operator. The first main branch is divided into one branch for
each of the events in the set E of transmit events. For each event e in E, a branch
is produced; in case e is an event the specification may provide the test generation
continues; in the opposite case, the specification cannot provide e, so a verdict is given
by the function verdictObs and the test generation terminates. The second main branch
represents observation of timeout; if quiescence is a possible observation in one of the
states in S, a timeout in the test is considered correct and the test generation continues,
or else a verdict based on S is provided by the function verdictObs. The rule can only
be applied if the argument bit is 0 in order to avoid infinite recursion of generating
timeout events.

The verdict function verdictObs ∈ P(S) → V is defined as follows:

verdictObs(S)
def
=

{
fail if ∀([β, d], mo) ∈ S : mo ∈ {ass, assref}
inconc if ∃([β, d], mo) ∈ S : mo ∈ {norm, ref}

If all states have mode either ass or assref, we only have universal behavior and observ-
ing something not specified by the in specification would be bad. In all resulting cases
we just observe something unspecified, and hence the behavior is inconclusive.

The rule (13.3) generates the parts of the test that provide stimuli:

testGen(S, b) = p(e) seq testGen(S after 〈〉, 0) for some e ∈ in(S) (13.3)
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This stimulus must be something that one of the test generation states of S is ready
to accept, i.e. a specified reception, and is chosen non-deterministically from the set
in(S). The value of the argument bit b is irrelevant for this rule. After the event,
the test generation continues with all test generation states that are reachable after
execution of this event.

The rule (13.4) is the one that terminates the test generation:

testGen(S, 1) = verdictTermdir(S) if in(S) = ∅ (13.4)

As we see, this rule only applies if the argument bit is 1, i.e. if the last generated event
was a timeout, and if the set of possible stimuli in(S) is empty. Because this ensures
maximal tests, the verdicts given by this rule is different from the verdicts given by
rule 13.2 above. The verdicts are determined by a function verdictTermdir ∈ P(ST ) →
V:

In the assignment of these verdicts it is necessary to consider whether the test is
generated for “testing down” or “testing up”. The subscript dir is instantiated by down
or up depending on the selected testing direction. Because this branch of the test is
maximal, we can use the verdicts pass and fail instead of inconc, but we have to use
them differently depending on the direction. If the test is generated for “testing down”,
positive behavior is considered more general than negative behavior. The reason for
this is that in a refinement d1 �r d2, a positive trace of d1 can be both positive or
negative in d2 and we still have a correct refinement. Hence, the verdict pass is given
if there is at least one state with mode norm or ass in this branch, and the verdicts are
as follows:

verdictTermdown(S) =

{
pass if ∃([β, d], mo) ∈ S : mo = norm ∨mo = ass
fail if ∀([β, d], mo) ∈ S : mo = ref ∨mo = assref

On the other hand, if the test is generated for “testing up”, negative behavior is
considered more general than positive behavior because a negative trace in d2 can be
either positive or negative in d1. Therefore we give the verdict fail if at least one state
at this point in the generation has the verdict ref or assref:

verdictTermup(S) =

{
pass if ∀([β, d], mo) ∈ S : mo = norm ∨mo = ass
fail if ∃([β, d], mo) ∈ S : mo = ref ∨mo = assref

We start test generation by applying the function testGen function on the set of
test generation states reachable from the initial state of the specification by execution
of only silent and internal events. Hence, if want to generate a test T ∈ D from
specification d, we apply:

T = testGen(([initC .d, d], norm) after 〈〉, 0)

Because the application of the rules defined above are non-deterministic, there may
be several possible tests that can be derived from d, and a new application of the
testGen function may provide a different result. However, because of the restrictions
on the specifications from which we generate tests (loops only with finite counter and
generalized alts only with finite index set), and because of the restrictions with respect
to timeout events in the algorithm, the test generation will always terminate.

A set of tests we refer to as a test suite. The maximal test suite that can be derived
from a specification d can expressed by:

U = {T | T = testGen(([initC .d, d], norm) after 〈〉)}
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13.3 Test execution

In this section we show how we can apply the operational semantics to execute the
tests we generate against specifications. In order to do that we need to define a special
modified projection system for tests. Further we define a special meta-system for test
execution.

13.3.1 Projection system for tests

Test execution is, as test generation, based on our operational semantics. We do,
however, make two changes to the operational semantics of tests:

• Tests consists of timeout events in addition to transmit and receive events. We
must allow tests to execute these timeout events.

• In a test, an alt always occur in connection with observations of the system
under test. We do not want a test to non-deterministically chose what it wants
to observe, but to let the actual observation determine the choice. Therefore,
the alts of tests are deterministic choices based on observations, as opposed to
non-deterministic choices in specifications.

In order to achieve this we define a projection system for tests. We denote this
system the Π′ system. The Π′ system consists of rules identical to the Π system’s rules
for events and seq, i.e. the rules (8.10), (8.11) and (8.12) on page 61. In addition the
system has two rules. The first is a rule for execution of timeout events:

Π′(L, β, θ)
θ−→ Π′(L, β, skip) if θ ∈ Θ ∧ l.θ ∈ L (13.5)

The second additional rule is a rule that resolved an alt in connection with execution
of an event:

Π′(L, β, d1 alt d2)
e−→ Π′(L, β, d′

k)

if Π′(L, β, dk)
e−→ Π′(L, β, d′

k), k ∈ {1, 2} (13.6)

This Π′ system is only applied for tests, while specification being tested use the original
Π system. Because seq and alt are the only operators of tests, rules (8.10), (8.11), (8.12),
(13.5) and (13.6) are sufficient for a projection system for tests.

13.3.2 Meta-system for test execution

In the test generation algorithm the observation point is at the lifelines, which means
we do not assume any communication medium between the lifelines and the points
we do our observations. As a result of this we also have to define test execution with
the lifelines as the observation point. (A way to simulate a communication medium is
discussed in section 13.4.)

We achieve this by defining a special meta-system for test execution, similar to the
system used in the test generation. In this system the specifications execute normally,
produce τ events and use the communication medium for internal communication be-
tween their lifelines. However, execution of tests is in accordance with the Π′ system
defined above. Because we have the observation point directly at the lifeline and no
communication medium between the test and the specification, messages sent between
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the specification and the test are treated as being instantaneous. Further, the meta-
system handles timeout events in the appropriate way.

The meta-system is a system

〈〈〈 , , , 〉〉〉 ∈ H × EX ×MO×D

where the last place is for the test. In the following we define the rules of this system.
The first two rules are concerned with execution of internal and silent events in the
specification:

〈〈〈t, [β, d], mo, T〉〉〉 −→ 〈〈〈t, [β ′, d′], mo, T〉〉〉
if [β, d]

e−→ [β ′, d′] ∧ e ∈ E ∧ tr.e �= tester ∧ re.e �= tester

〈〈〈t, [β, d], mo, T〉〉〉 −→ 〈〈〈t, [β ′, d′], mode(τ, mo), T〉〉〉
if [β, d]

τ−→ [β ′, d′] ∧ τ ∈ T
In the latter of these rules, the function mode is identical to the definition (13.1) above.

For communication between the test and the specification there are two rules; one
for the case where the test sends a message and the specification receives, and one
where the specification sends a message and the test receives:

〈〈〈t, [β, d], mo, T〉〉〉 −→ 〈〈〈t�〈(!, m), (?, m)〉, [β, d′], mo, T ′〉〉〉
if Π′(ll.T, ∅, T )

(!,m)−→ Π′(ll.T, ∅, T ′) ∧
Π(ll.d, {m}, d)

(?,m)−→ Π(ll.d, {m}, d′)

〈〈〈t, [β, d], mo, T〉〉〉 −→ 〈〈〈t�〈(!, m), (?, m)〉, [β, d′], mo, T ′〉〉〉
if Π(ll.d, ∅, d)

(!,m)−→ Π(ll.d, ∅, d′) ∧
Π′(ll.T, {m}, T )

(?,m)−→ Π′(ll.T, {m}, T ′)

In both rules we see that when the message m is transmitted and received, the trace
〈(!, m), (?, m)〉 is appended to the trace collected during the execution. This is due to
the fact that communication between the test and the specification is instantaneous and
no other events may come in between. However, the order of these events is important
to preserve the message invariant in the trace, i.e. that the transmit of a message m
must precede the receive of m.

The final rule is the rule that executes a timeout event in the test:

〈〈〈t, [β, d], mo, T〉〉〉 −→ 〈〈〈t�〈θ〉, [β, d], mo, T ′〉〉〉
if Π′(ll.T, ∅, T )

θ−→ Π(ll.T, ∅, T ′) ∧ θ ∈ Θ ∧
∀x ∈ E ∪ T : Π(ll.d, β, d)

x
�

This rule is applicable only if no external transmit or internal events in the specifica-
tion is possible. As we can see, this is the same condition that makes a specification
quiescent in the test generation algorithm. However, here we have no need for the δ
event to denote the situation explicitly.

As in the test generation, we let −→∗ denote the reflexive, transitive closure of −→.
Further we define the relation −→! as:

〈〈〈t, [β, d], mo, T〉〉〉 −→! 〈〈〈t′, [β ′, d′], mo′, T ′〉〉〉 def
=

〈〈〈t, [β, d], mo, T〉〉〉 −→∗ 〈〈〈t′, [β ′, d′], mo′, T ′〉〉〉 ∧ 〈〈〈t′, [β ′, d′], mo′, T ′〉〉〉 �
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Similar to the function p defined as part of the test generation, we define a function
pr ∈ D → D that prepares a specification for testing by substituting the gates with
the lifeline of the test:

pr((s, tr, re))
def
=

⎧⎨
⎩

(s, tr, re) if tr �∈ G ∧ re �∈ G
(s, tester, re) if tr ∈ G
(s, tr, tester) if re ∈ G

pr((k, m))
def
= (k, pr(m))

pr(skip)
def
= skip

pr(op d)
def
= op pr(d), op ∈ {refuse, assert, loop}

pr(d1 op d2)
def
= pr(d1) op pr(d2), op ∈ {seq, strict, par, alt}

With this system a test run is characterized by:

〈〈〈〈〉, [∅, pr(d)], norm, T〉〉〉 −→! 〈〈〈t, [β, d′], mo, v〉〉〉

Here, T ∈ D is the test and d ∈ D is the specification that we execute the test against.
Further, t ∈ H is the trace resulting from the test execution, mo ∈ MO is the mode
resulting from the execution of the specification and v ∈ V is the verdict given by the
test. Note that the test may terminate before the specification, but also that we may
have d′ = skip. Because we use the −→! relation, the specification will be executed as
much as possible (with internal and silent event) after the test has terminated.

13.3.3 Test runs and verdicts

We let the result of a test execution be a pair of a verdict and a trace (v, t) ∈ V ×H.
We distinguish between the verdict that the test returns in the test execution and
the verdict of the test run itself. The reason for this is that we also must take into
consideration the mode of the test execution to determine the final verdict. Further,
this also depends on the direction of the testing (whether we are “testing down” or
“testing up”) and the state of the specification after execution of the test.

The set of all test runs for a given test and specification can be characterized by a
function:

execdir ∈ D ×D → P(V ×H)

where dir indicates the direction of the testing and may stand for either down or up.
In both cases the function is defined as:

execdir(T, d)
def
= {(verdir(v, mo, d′), t) | ∃β, d′ :

〈〈〈〈〉, [∅, pr(d)], norm, T〉〉〉 −→! 〈〈〈t, [β, d′], mo, v〉〉〉}

The function
verdir ∈ V ×MO×D → V

is used to determine the final verdict of each test run. It takes as its arguments the
verdict of the test, the mode of the execution, and the state of the specification after
execution of the test. We need the latter do distinguish complete behavior in the
specification from prefixes of complete behavior. In the semantic model of STAIRS,
only the complete behavior specified in a specification is considered positive; prefixes
are considered inconclusive (or negative if assert is applied) if they are not at the same
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time explicitly specified as complete behavior (something which may be the case if for
example the operator opt is used in the specification). Further, an extension of positive
behavior may be inconclusive behavior for the same reason. The same considerations
also hold for negative behavior. If the state of the specification after the execution of
the test equals skip, we know that the test run represents a complete behavior in the
specification. In the other case, the test run represents behavior that is not complete
in the specification, but a prefix of specified behavior.

The definitions of verdown and verup are based on the notion of refinement of in-
teraction obligations defined in [70], which is to say: Let d1 and d2 be diagrams with
denotation [[ d1 ]] = (p1, n1) and [[ d2 ]] = (p2, n2). Then d2 refines d1, denoted d1 �r d2,
iff p1 ⊆ p2 ∪ n2 ∧ n1 ⊆ n2 (see also section 5.4).

When we define the function verdown, this is based on the following analysis of the
possible cases: Assume we are interested in the refinement d1 �r d2. We generate a
test T from specification d1 and executes it against specification d2, i.e. we are “testing
down”.

• If the test terminates with pass it means that the test run represents behavior
that is specified as positive in d1. Further, the pass indicates that the behavior
is maximal in d1. If the specification after the test execution equals skip, the test
run represents complete (positive or negative) behavior in d2. In this case we
have correct refinement and keep the verdict pass.

In the other case we also give the verdict pass for the following reason: The test
run has a extension in d2 (positive or negative) that is inconclusive behavior in
d1. We can know this because the test is maximal with respect to d1. We can
therefore consider the test run as a representative of inconclusive behavior in d1

that becomes positive or negative in d2, which is correct refinement.

• If the test terminates with inconc it means the test run represents behavior that
is inconclusive in d1. It is then irrelevant what status this behavior has in d2 and
the final verdict of the test run is pass regardless of the mode of the execution
and the state of the specification.

• If the test terminates with fail it means the test run represents behavior that is
negative in d1. If the mode of the test execution is ref or assref, then the test
run represents behavior that is negative in d2, in which case it represents correct
refinement and the final verdict is therefore changed to pass. If the mode is norm
or ass, we may have two different situations, and we need more information to
distinguish these two cases. If the specification has terminated, i.e. what remains
of the specification is skip, the test run represents complete positive behavior in
d2. It is not a correct refinement and the verdict fail is given.

If what remains of the specification is different from skip we have the situation,
as we had above, that the rest run is a representative of a behavior that extends
the test run in such a way that it is inconclusive in d1 and positive or negative
in d2. In this case it can be considered a correct refinement and the final verdict
is changed to pass.

In summary we see that there is one case that gives the verdict fail, and all other cases
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give pass. Hence, we define verdown:

verdown(v, mo, d)
def
=

{
fail if v = fail ∧mo ∈ {norm, ass} ∧ d = skip
pass otherwise

For “testing up” we do a similar analysis. Again we are interested in the refinement
d1 �r d2, but this time we generate a test T from d2 and execute it against d1:

• If the test terminates with the verdict fail it means the test run represents behavior
that is negative in d2. Whatever the status of this behavior in d1 it must be a
correct refinement, and we return the final verdict pass.

• If the verdict of the test is inconc, the execution represents behavior that is
inconclusive in d2. Because the tests are maximal, there exist no extensions of
the behavior that is not inconclusive in d2. However, the behavior is specified in
d1 (as positive or negative). We are therefore dealing with an incorrect refinement
where positive or negative behavior is made inconclusive, and the final verdict of
the test run is given as fail.

• If the test gives the verdict pass, a more thorough analysis is necessary. The test
run represents behavior that is positive in d2, and the behavior must therefore
be positive or inconclusive in d1 for the refinement to be correct.

If the remainer of the specification is equal to skip, the test run represents com-
plete behavior in d1. If the mode is norm or ass, this complete behavior is positive
in d1, and we give the verdict pass. On the other hand, if the mode is ref or assref,
the behavior is negative in d1, and we give the verdict fail.

If the reminder of the specification is different from skip, the test run represents
a prefix of specified behavior in d1. If the mode is norm or ref, no assert operator
has been executed during the test execution. The test run represents behavior
that is inconclusive in d1, and we give the verdict pass. If the mode is ass or assref,
an assert operator have been executed during the test run. An assert makes all
unspecified behavior negative, so the test run represent negative behavior in d1

and the verdict fail must be given.

For “testing up” we then define these verdicts:

verup(v, mo, d)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pass if v = fail ∨
(v = pass ∧ (mo = norm ∨

(mo = ass ∧ d = skip) ∨
(mo = ref ∧ d �= skip)))

fail if v = inconc ∨
(v = pass ∧ (mo = assref ∨

(mo = ass ∧ d �= skip) ∨
(mo = ref ∧ d = skip)))

The functions execdir return sets of pairs of verdicts and traces. Each such pair
represent a test run. Given a test T and diagram d we say that d passes the test T if
no verdicts are fail, i.e.:

d passesdir T ⇐⇒ ∀(v, t) ∈ execdir(T, d) : v = pass
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Figure 13.5: Spec. d3

A diagram passes a test suite iff it passes all the tests of the suite:

d passesdir U ⇐⇒ ∀T ∈ U : d passesdir T

If we want to compare two specifications d and d′, and we have test suites U and U ′

generated from d and d′ we can do this by checking whether

d′ passesdown U

and
d passesup U ′

Together, these two operations constitute what we call refinement testing.

13.3.4 Examples

In figures 13.3, 13.4 and 13.5 we show three specifications d, d2 and d3 that are related
in the following manner:

d �r d, d �r d2, d �r d3, d2 �r d2, d3 �r d3

d2 ��r d, d2 ��r d3, d3 ��r d, d3 ��r d2

Figures 13.6, 13.7 and 13.8 show three tests T , T2 and T3 generated from d, d2

and d3, respectively.2 Using these tests we now investigate the relation between the
diagrams. The results of this testing are shown in table 13.1, where we use the following
shorthand notation for the traces:

tliq = 〈!but, ?but, !liq, ?liq〉
tchoc = 〈!but, ?but, !choc, ?choc〉

2Several things should be noted about these tests. 1) We have that Ed
O = Ed2

O = {!liq, !choc},
while Ed3

O = {!choc}. In the generation of all three tests we have applied E = {!liq, !choc}. 2) The
constraint that test generation only terminates after a timeout event is relaxed to make the tests
more readable. 3) The tests are identical whether the option for “testing down” or for “testing up” is
applied and can therefore be used in both testing directions.
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Figure 13.8: Test T3

From these results we make three observations. First, we see that the specifications
pass the tests in exactly the cases of correct refinement, which gives an indication that
our testing scheme actually may be applied for checking of refinement. Secondly, we see
that in two cases an incorrect refinement was refuted by “testing down” alone, which
means “testing down” and “testing up” complement each other. Thirdly, we see that
none of the incorrect refinements were refuted by “testing up” alone. This tells us that
none of the incorrect refinements were due to introduction of new inconclusive behavior

Refinement Test runs Result

d �r d execdown(T, d) = {(pass, tliq), (pass, tchoc)} d passesdown T
execup(T, d) = {(pass, tliq), (pass, tchoc)} d passesup T

d �r d2 execdown(T, d2) = {(pass, tliq), (pass, tchoc)} d2 passesdown T
execup(T2, d) = {(pass, tliq), (pass, tchoc)} d passesup T2

d �r d3 execdown(T, d3) = {(pass, tchoc)} d3 passesdown T
execup(T3, d) = {(pass, tliq), (pass, tchoc)} d passesup T3

d2 ��r d execdown(T2, d) = {(pass, tliq), (fail, tchoc)} ¬(d passesdown T2)
execup(T, d2) = {(pass, tliq), (fail, tchoc)} ¬(d2 passesup T )

d2 �r d2 execdown(T2, d2) = {(pass, tliq), (pass, tchoc)} d2 passesdown T2

execup(T2, d2) = {(pass, tliq), (pass, tchoc)} d2 passesup T2

d2 ��r d3 execdown(T2, d3) = {(fail, tchoc)} ¬(d3 passesdown T2)
execup(T3, d2) = {(pass, tliq), (fail, tchoc)} ¬(d2 passesup T3)

d3 ��r d execdown(T3, d) = {(fail, tliq), (pass, tchoc)} ¬(d passesdown T3)
execup(T, d3) = {(pass, tchoc)} d3 passesup T

d3 ��r d2 execdown(T3, d2) = {(fail, tliq), (pass, tchoc)} ¬(d2 passesdown T3)
execup(T2, d3) = {(pass, tchoc)} d3 passesup T2

d3 �r d3 execdown(T3, d3) = {(pass, tchoc)} d3 passesdown T3

execup(T3, d3) = {(pass, tchoc)} d3 passesup T3

Table 13.1: Test results
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sd d1

l1

a

l2

b

x
o1

o2

Figure 13.9: Specification d1

(which would be the case with e.g. d �r d3 if d3 did not have the assert operator), and
the examples presented in this section therefore do not exhaust all interesting cases.

13.4 Asynchronous testing

In the test generation and test execution defined in the preceeding sections, the obser-
vation point is at the lifelines of the specifications. As a result, the test execution is
defined as a form of synchronous communication between the test and the specifica-
tion being tested (because messages between test and specification are assumed to be
instantanuous).

Assume the specification d1 of figure 13.9. Because the test generation algorithm
operates directly on the interface of the specification, it will consider observation of
〈!b, !a〉 as inconclusive because !a must happen before !b.

However, if we were to assume that there is one communication link from l1 to the
point of observation and one from l2 to the point of observation, it would mean that
the message b may overtake message a so that we observe !b before !a. Because we
mainly deal with asynchronous communication, this must be considered an assumption
we would want to make in certain situations.

A solution to this is proposed by [181,186]. The proposed solution is to still define
the test generation and execution with the observation point direcly at the interface,
but to model the communication link explicitely as a process composed in parallel with
the processes we generate tests from and execute tests against.

sd d1*

l1

a

l2

b

xo1

o2

out

a

b

par

Figure 13.10: Specification d∗
1
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We can obain this by including a new lifeline out in d1 which receives and retrans-
mits all messages bound for the frame. The resulting specification, called d∗

1 is shown
in figure 13.10. This modified specification is then used in test generation or test
execution.

When generating tests from d∗
1 both 〈!a, !b〉 and 〈!b, !a〉 will be treated as observa-

tions of positive behavior, which is the desired situation. We may, of course, do the
same thing for receive events.

Further, we can state this as a general procedure for every given communication
model. Given a specification d and the communication model with a single communi-
cation link for each message, we obtain a specification d∗ in the following way:

1. If lifeline names in or out are used in d, i.e. in ∈ ll.d or out ∈ ll.d, rename these
lifelines with names not in ll.d.

2. Add the lifelines in and out to the specification.

3. Let in have a par operator with one operand for each event in Ed
I .

4. Let out have a par operator with one operand for each event in Ed
O.

5. For each e ∈ Ed
I let the message m.e from the frame to l.e instead go from the

frame to in and then further from in to l.e is such a way that this happens within
its designated par operand, and so that all ordering, choices, loops, etc. on l.e are
preserved.

6. For each e ∈ Ed
O let the message m.e from l.e to the frame instead go from l.e

to out and then further from out to the frame in such a way that this happens
within its designated par operand, and so that all ordering, choices, loops, etc.
on l.e are preserved.

In the test generation and execution we defined in sections 13.2 and 13.3 we implic-
itly assumed that the specification that a test is generated from, and the specification
the test is executed against, have the same names on their external lifelines. As a nice
byproduct of the procedure for producing “starred” specifications, we do not have to
worry about lifeline names when generating and executing tests as long as we maintain
a convention for naming these inserted lifelines in the “starred” specifications.
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Chapter 14

The ‘Escalator’ tool

Escalator is a prototype tool developed to demonstrate the use of our operational se-
mantics and the analysis mechanisms we have defined over the semantics, in particular
the test generation and test execution defined in chapter 13. The tool makes direct use
of the Maude implementation of the operational semantics and the testing theory, but
also provides a user interface with a graphical sequence diagram editor to ease the use
sequence diagram specifications.

One of the strengths of sequence diagrams as a specification language is their graph-
ical and diagram based appearance, which makes them easy to comprehend and work
with. The Maude implementation of the operational semantics does not have this
advantage because it presupposes a textual representation of the diagrams. However,
using the Maude interpreter for execution of diagrams via the operational semantics
has the advantage that Maude is a formal language and the that Maude interpreter is
developed to preserve the semantics of Maude. With an implementation of the oper-
ational semantics and the test generation algorithm in, e.g., a programming language
like Java or C, we would face the risk of unintentionally changing the semantics. By
using Maude, this risk of compromising the formality of our approach is reduced.

With Escalator we combine these two considerations by having a graphical editor as
frontend and the Maude interpreter as backend. This way we get both the benefits of a
graphical diagram based specification language and the benefits of a formal foundation.

In section 14.1 we present the main use cases of Escalator, while in section 14.2 we
describe its architecture. Section 14.3 presents the user interface and its intended use.
In chapter 15 we conduct a case study with the help of Escalator.

14.1 Use cases of Escalator

The main functionality of Escalator is shown as use cases in the UML use case diagram
of figure 14.1.1 Below we give a brief, informal characterization of each of the use cases:

Draw sequence diagram. The user of Escalator can make a sequence diagram in
the graphical sequence diagram editor.

Configure semantics. The operational semantics allows various instantiations, e.g.,
with respect to the communication model. Making choices with respect to these

1The use cases are represented as ovals. An arrow labed �include� going from use case X to use
case Y indicates that conducting X involves conducting Y .
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Draw sequence 
diagram Configure

semantics

Generate Maude
representation of 
sequence diagram

Refinement
verification

Execute tests

Generate tests

Generate traces

Generate
all traces

Generate random
traces

Escalator
user

Escalator

«include»

«include»

«include»

«include»

«include»
«include»

«include»

Refinement
testing

«include»

«include»

Figure 14.1: Use cases for Escalator

possible variations is what we call configuration of the semantics.

Generate Maude representation of sequence diagram. For sequence diagrams
to be executed by the Maude interpreter we need to have Maude representations
of the sequence diagrams that have been made in the graphical editor. Obviously
this requires that diagrams actually have been made.

Generate tests. Escalator can generate tests from sequence diagrams applying the
test generation algorithm defined in section 13.2. This presupposes a Maude
representation of the diagram from which tests are generated.

Execute tests. Tests can be executed against sequence diagrams using the method
described in section 13.3. This requires that tests have been generated and that
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Escalator Maude

SeDi plugin Escalator 
plugin

Escalator 
user Eclipse

Figure 14.2: Class diagram

a Maude representation of the diagram against which the tests are executed is
generated.

Refinement testing. As explained in chapter 13, test execution and test generation
can togehter be used as a method for analysing the correctness of a refinement.
This we refer to as refinement testing.

Generate traces. Escalator can generate traces by executing a sequence diagram
with the Maude interpreter. This requires that a Maude generation of the dia-
gram is made.

Generate random traces. A specialization of test generation is the possibility of
generating a random sample of all the traces that a diagram characterizes using
the method described in sections 9.1 and 10.2.3.1.

Generate all traces. A specialization of test generation is the possibility of generat-
ing all traces characterized by a sequence diagram using the method described in
sections 9.2 and 10.2.3.2.

Refinement verification. By comparison of the traces generated from two sequence
diagrams, based on the definitions of refinement given by STAIRS, Escalator
can analyse whether a diagram is a correct refinement of another diagram. This
requires that all traces of the two diagrams have been generated, and is based on
the method for refinement verification described in sections 9.2 and 10.2.3.2.

14.2 Architecture of Escalator

Escalator is developed as an Eclipse plugin [43]. We do not ourselves implement an
editor, but integrate a simple, open source sequence diagram editor called SeDi [107],
itself an Eclipse plugin, into our tool. Maude is integrated into the tool by imple-
mentation of a kind of wrapper that can start the Maude interpreter as a separate
process. This wrapper provides a Java interface to facilitate communication with the
command-line interface of the Maude interpreter.

One can then perceive Escalator as consisting of three main component:
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Escalator

:Maude:Escalator 
plugin:SeDi plugin

Figure 14.3: Parts diagram

Escalator context

:Escalator

:Eclipse

:Escalator 
user

Figure 14.4: Collaboration diagram

• The SeDi plugin providing the sequence diagram editor.

• TheMaude wrapper enabling execution of and communication with the Maude
interpreter.

• The Escalator plugin providing the necessary functionality for analyzing sequence
diagrams with the operational semantics and the testing mechanisms.

The Escalator plugin serves two main purposes:

1. Generating Maude representations of sequence diagrams specified with the editor.

2. Providing user interfaces for specifying analyses of the diagrams, including con-
figuration of the operational semantics, and for presentation of analysis results.

While specification of sequence diagrams is done by means of the SeDi editor and the
analysis is carried out by using the Maude interpreter, the Escalator plugin can be seen
as lying between these to other components.

A class diagram giving a high-level view of Escalator is shown in figure 14.2.2

Escalator is represented as a class that contains the tree classes ‘Escalator plugin’,

2Classes are represented as boxes. The arrows between the boxes represents associations or relations
between the classes, and the direction of the arrows represent navigability or visibility. A black
diamond indicates that the class connected to the diamond is composed of the class the arrow points
to.
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sd Escalator scenario

:Maude:Escalator 
plugin:SeDi plugin :Eclipse:Escalator 

user

Make diagram

Save diagram

Request operation

Get model

Get diagram

Diagram

Model Generate 
Maude rep.

Maude rep.

Command

Result

Save result

View result

Get result

Result

Result

Figure 14.5: Generic user scenario

‘SeDi plugin’ and ‘Maude’. We see that both the SeDi plugin and Maude is visible
to the Escalator plugin, but not the other way. This reflects the fact that SeDi and
Maude in a way stand alone, while the Escalator plugin integrates functionality from
these two components.

Escalator, through the SeDi plugin and the Escalator plugin, also gets functionality
from Eclipse itself, such as file and window management. For this reason Eclipse is
related to the SeDi plugin and the Escalator plugin, while Maude stands by itself and is
not related to Eclipse in the same way. The user communicates with Escalator through
the functionality provided by the Escalator plugin, the SeDi plugin and Eclipse, and
is therefore related to these three classes. The user does not, however, communicate
directly with Maude and is related directly to the Maude class.

In figure 14.3 a parts diagram for Escalator is provided.3 We have communication

3A parts diagram shows the structre of a class. The boxes represents parts (objects, roles) contained
by the class. The lines between the parts represents connectors (communication links).
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Figure 14.6: The SeDi editor

links between the SeDi plugin and Escalator plugin and between the Escalator plugin
and Maude. Through the link to the SeDi plugin, the Escalator plugin obtains diagrams
(represented in an internal model), and through the link to Maude it sends commands
and receives results from the executions of the Maude interpreter.

Both the SeDi plugin and the Escalator plugin have two external communication
links. For each of the components, one is a link for communication with Eclipse and one
is a link for communication with the user. Figure 14.4 shows the context of Escalator
in a collaboration diagram4, where we see the two communication links from Escalator
to the user and the two links from Escalator to Eclipse. In addition there is an obvious
link between the the user and Eclipse since the user is also able to communicate with
Eclipse independent of the functionality provided by Escalator.

4The oval represents a collaboration, which is a structural relationship between parts (objects,
roles). The lines between parts represent connectors (comminication links). The difference from a
parts diagram is that the parts of an collaboration exist independently and prior to the creation of
an instance of the collaboration, while the parts of a class is created togehter with an instance of the
class containing them.
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Figure 14.7: Testing wizard

14.3 Use of Escalator

Most of the operations of Escalator follows a specific pattern: The user draws a diagram
in SeDi, saves it in the Eclipse file system and then requests an operation on the diagram
from Escalator. The Escalator plugin then retrieves the diagram in the form of SeDi’s
internal model and generates a textual Maude representation of the diagram. This
representation together with the appropriate commands are sent to Maude. When the
results are received from Maude, they are stored in Eclipse’s file system. The user can
request to view the results, in which case they are retrieved from Eclipse and presented
to the user is a suitable fashion. This generic scenario is presented in the sequence
diagram of figure 14.5. With some variations, this scenario applies to most of the
central use cases of figure 14.1.
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Figure 14.8: Test viewer

In the following we show how such a scenario will manifest itself for the user with
respect to combined test generation and test execution. The first thing the user does
is to draw one or more diagrams with the SeDi editor. In figure 14.6 we see the editor
in which the diagram d from figure 13.3 is drawn. On the left we see the file manager,
where the diagram is saved as d.sd.

The user tells Escalator to perform operations on the diagrams with the help of
wizards. Figure 14.7 shows the wizard for combined test generation and test execution.
In this example the user tells Escalator to generate tests from the diagram d, and to
execute them against a diagram d2. The user has specified that five tests should
be generated from d and that each test should be run three times againt d2, both
applying the “testing down” option. The process should use random seeds, and the
process should be terminated if it has not completed within five minutes. Further it is
specified that the communication model with one FIFO buffer for each message should
be applied, that the resulting tests should be saved in a file tests.sui and that the
results of the test exectuion should be saved in a file tests.res. Clicking the Finish

button causes the test generation and execution to be carried out as specified. For all
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the use cases in figure 14.1 involving the user, similar wizards are provided.
When the test generation and test execution have completed, the tests and test

execution results are saved in the files tests.sui and tests.res, respectively. For
each kind of results (tests, test execution results, traces) Escalator provides a viewer
for the user to review the results. In figure 14.8 we show the viewer for test suites
(sets of tests) presenting the contents of tests.sui. Even though the user asked for
five tests the suite only contains two, because the same tests where generated several
times and Escalator does not keep duplicates of tests in a suite. Test2 in the suite can
be recognized as the test T of figure 13.6 (with the exception that in the generation
of T , for presentation purposes, the test generation algorithm was terminated one step
earlier than in generation of Test2). In the file manager on the left we can also observe
that in the process of generating and executing tests, Maude representations of the
diagrams have been generated and stored in the files d.maude and d2.maude.
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Chapter 15

Case study

In this chapter we apply the Escalator tool on a case study. The main hypothesis is
that the tool is able to handle a medium sized case, and the main functions of the tool,
i.e. the refinement verification and the refinement testing, provide the expected results.

The chosen case is a STAIRS specification of a system called the “BuddySync
system”, documented in [154]. BuddySync is an imaginary and generic system for
management of services, for example ordering of taxis by SMS. Subscribers to Bud-
dySync may request and offer services, and the system will match the requests with
the offers and notify the users when matches are found. An elaborated description of
the system is found in section 15.1 below.

The reasons for choosing BuddySync for the case study are are follows:

• The case is developed for STAIRS, i.e. the case consists of a number of STAIRS
specifications and therefore applies STAIRS features such as mandatory choice.

• The case specifies the system at different levels of abstraction and hence is suitable
for applying the refinement verification and the refinement testing functionality
of Escalator.

• The original BuddySync specification was made by other people than the au-
thor of this thesis. Therefore the specification of the case is not made with the
Escalator tool in mind.

• The size is suitable, i.e. the case is bigger then being a mere toy example, but
still manageable within a reasonable time frame.

Our case study consists of two parts. In the first part we use the refinement veri-
fication functionality of Escalator on the BuddySync specification, and in the second
part we apply the refinement testing functionality on the specification. As is explained
in detail later, we use two different versions of the specification in the two cases, none
of which is identical to the original specification in [154]. In section 15.2 the refinement
verification part of the case is presented and in section 15.3 we present the refinement
testing part of the case.

15.1 The BuddySync system

The BuddySync case as defined in [154] is a STAIRS specification of the BuddySync
system. The system provides six usages specified by six diagrams RequestService,
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Level Lifelines

0 Requester, Provider, User, System
1 Requester, Provider, User, System
2 Requester, Provider, User, Control, MessageBoard
3 Requester, Provider, User, Control, MessageBoard
4 Requester, Provider, User, Control, MessageBoard, MemberList

Table 15.1: Lifelines at the different abstraction levels

OfferService, RemoveRequest, RemoveOffer, SubscribeService and UnsubscribeService.
The full specification is a diagram Overview that combines these six diagrams using
xalt:

Overview = RequestService xalt
OfferService xalt
RemoveRequest xalt
RemoveOffer xalt
SubscribeService xalt
UnsubscribeService

Through refinement steps, variants of these diagrams exist at several levels of abstrac-
tion. We have identified five such levels, which we refer to as level 0 through level 4. In
order to distinguish between the variants of the diagrams at the different levels we give
them names RequestService0, RequestService1, etc. in such a way that RequestService0

is the diagram RequestService at level 0, RequestService1 the diagram RequestService
at level 1, and so forth.

At the most abstract levels of the specification of [154], the diagrams have two
lifelines :System and :User.1 In lower levels :System is decomposed into :Control,
:MessageBoard and :MemberList. It should also be noted that the specification operates
with three instances of :User, namely requester:User, provider:User and user:User. For
simplicity we treat these instances as three different lifelines Requester, Provider and
User. We also drop the colon in the lifeline names, as this no longer has any function
when we treat lifeline instances as separate lifelines. The lifelines present at the different
levels of abstraction is presented in table 15.1.

Only the diagrams RequestService and OfferService are updated at every level.
Table 15.2 shows which diagrams we have at the different levels. The placement of
the updated versions of the four remaining diagrams may seem somewhat arbitrary,

1The colon in front of the names denote that these lifelines are classes from which instances can
be made.

Level Diagrams

0 RequestService0, OfferService0, RemoveRequest0, RemoveOffer 0,
SubscribeService0, UnsubscribeService0

1 RequestService1, OfferService1

2 RequestService2, OfferService2, RemoveRequest2, RemoveOffer 2

3 RequestService3, OfferService3

4 RequestService4, OfferService4, SubscribeService4, UnsubscribeService4

Table 15.2: Diagrams at the different abstraction levels
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but is based on the lifelines they contain. RemoveRequest2 and RemoveOffer 2 are
placed at level 2 because they contain the lifelines Control and MessageBoard, while
SubscribeService4 and UnsubscribeService4 are placed at level 4 because they contain
the lifeline MemberList, which is introduced at that level.

Because we use different versions of the BuddySync specification in the refinement
verification and the refinement testing parts of the case, we do not give the detailed
presentation of the diagrams of the specification here. The version used in the refine-
ment verification part is presented in section 15.2.2, and the version used in refinement
testing part is presented in section 15.3.2. There we also account for the differences
between the two versions.

15.2 Refinement verification

In this part of the study we applied the refinement verification functionality of the
Escalator tool on the BuddySync specification, i.e. we used the tool to investigate
whether the more concrete levels of the specification are correct refinements of the
more abstract levels. In section 15.2.1 we provide assumptions and success criteria for
this part of the case. Section 15.2.2 presents the BuddySync specification as we used it
in the refinement verification, and in section 15.2.3 we present the setup of the case. In
section 15.2.4 we provide the results of the refinement verification and in section 15.2.5
we discuss the results.

15.2.1 Assumptions and success criteria

The success criterion for the refinement verification part of the case study is formulated
as follows:

The refinement verification functionality of the tool provides the expected
results when applied to the BuddySync specification.

The BuddySync case is originally a case study in refinement, and this should indicate
that the expected results are that level 1 of the specification is a correct refinement of
level 0, that level 2 is a correct refinement of level 1 and so forth. However, because
we make some changes to the original specification (these are explained below), this
might not necessarily be the case. Therefore, it is part of the success criterion that
any unexpected results are explained by identifying incorrect refinements in a separate
analysis of the specifications.

15.2.2 The BuddySync specification for the refinement verifi-

cation

In this section we present the specification of the BuddySync system as we used it in
the refinement verification. Some simplifications have been made with respect to the
diagrams provided in [154], due to the use of STAIRS features not supported by the
refinement verification functionality of Escalator. These simplifications are:

• We have removed the assert operator where it is used in the original specification.
This also means that we have alts some places where assert was used to refine
alts.
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• Parameters of diagrams and messages have been removed.

• User, Requester and Provider are treated as independent lifelines, as explained
in section 15.1.

• Actions, constraints and guards are removed. Some places we use a combination
of alt and refuse to simulate constraints.

We do not, however, find the application of these features fundamental for the case.
The specification follows in the sub-sections below, together with some explanatory

text. As the specification is “borrowed”, we do not give much rationale for the way
the diagrams look or are made. The purpose of the presentation is merely that of
documenting the case. The presentation is structured by level.

15.2.2.1 Level 0

Level 0 gives the most abstract specification of the functionality of the BuddySync
system. The specification consists of the six diagrams of figures 15.1–15.6, which show
the interaction between users and the system. RequestService0 shows how a user of
the system in the role of requester can request a service form the system and get the
response either that somebody has agreed to perform the service or that the request
is registered. OfferService0 is symmetric for the provider role; the user offers a service
to the system and gets one of two possible responses: an instruction to perform the
service or a message that the offer has been registered.

RemoveRequest0 and RemoveOffer 0 allow requesters and providers to remove the
requests or offers they have communicated to the system. In response they receive a
confirmation that the request or offer has been removed.

Finally, SubscribeService0 and UnsubscribeService0 allow users to subscribe and
unsubscribe to services. A user that subscribes to a service will get the answer that
he/she has been added as provider or requester, and a user that unsubscribes will get
the answer that he/she has been unsubscribed from the service.

It should be noted that in [154], messages are parameterized with variables to
identify the service that is invocated, and other information to the system. Both at
level 0 and at the remaining levels, we have suppressed this and left it unspecified.

request

requestRegistered

agreed

sd RequestService0

Requester

xalt

System

Figure 15.1: RequestService0

offer

offerRegistered

perform

sd OfferService0

System

xalt

Provider

Figure 15.2: OfferService0
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removeRequest

requestRemoved

sd RemoveRequest0

Requester System

Figure 15.3: RemoveRequest0

removeOffer

offerRemoved

sd RemoveOffer0

System Provider

Figure 15.4: RemoveOffer 0

subscribe

addedAsRequester

addedAsProvider

sd SubscribeService0

User

xalt

System

Figure 15.5: SubscribeService0

unsubscribe

unsubscribed

sd UnsubscribeService0

User System

Figure 15.6: UnsubscribeService0

15.2.2.2 Level 1

At level 1, the diagrams RequestService0 and OfferService0 are refined into RequestSer-
vice1 and OfferService1. These refined diagrams are shown in figures 15.7 and 15.8. In
these diagrams, the sequence diagram feature interaction occurrence is applied, repre-
sented in the diagrams as boxes with the label ref attached to them. RequestService1

refers to Match1 (figure 15.9) and SaveRequest1 (figure 15.10), and OfferService1 to
Match1 and SaveOffer 1 (figure 15.11).

We treat these references simply as syntactic substitutions of the references by the
diagrams to which they refer. This means that in the textual syntax we do for example
have:

Match1 = !perform seq ?perform seq !agreed seq ?agreed
SaveOffer1 = !offerRegistered seq ?offerRegistered

OfferService1 = !offer seq ?offer seq
(ref(Match1) xalt ref(SaveOffer1))

= !offer seq ?offer seq
(!perform seq ?perform seq !agreed seq ?agreed xalt
!offerRegistered seq ?offerRegistered)

Since this is purely syntactic, it has no effect on the semantics of the diagrams.
The main difference compared to level 0 is that both Requester and Provider are

now present in the diagrams. Both messages perform and agreed are sent in both
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request

sd RequestService1

Requester

xalt

System Provider

ref
Match1

ref
SaveRequest1

Figure 15.7: RequestService1

offer

sd OfferService1

Requester

xalt

System Provider

ref
Match1

ref
SaveOffer1

Figure 15.8: OfferService1

perform

sd Match1

Requester System Provider

agreed

Figure 15.9: Match1
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needed

sd SaveRequest1

Requester System Provider

requestRegistered

opt

Figure 15.10: SaveRequest1

offerRegistered

sd SaveOffer1

Requester System Provider

Figure 15.11: SaveOffer 1

RequestService1 and OfferService1 (through the reference to Match1) to Provider and
Requester, respectively.

In SaveOffer 1, merely a notification to the provider that the offer is registered is
sent, so this represent no change with respect to the second xalt operand of OfferSer-
vice0. However, in SaveRequest1 an optional message needed to Provider is specified,
and hence represents a refinement with respect to the second xalt operand of Request-
Service0.

15.2.2.3 Level 2

At level 2, the lifeline System is decomposed into the lifelines Control and Message-
Board. In accordance with this change, this level has the diagrams RequestService2,
OfferService2, RemoveRequest2 and RemoveOffer 2 as refinements of RequestService1,
OfferService1, RemoveRequest0 and RemoveOffer 0.

After the decomposition of System into Control and MessageBoard, Control is the
interface towards the users of the system, while MessageBoard is an internal lifeline
that keeps track of pending offers and requests. In RequestService2 (figure 15.12)
and OfferService2 (figure 15.13) this has the effect that Control, upon reception of a
request or offer message, sends findOffer or findRequest to MessageBoard and receives
a message matchFound or noMatch as reply.

Match1 in RequestService1 and OfferService1 is replaced by MatchRequest2 (fig-
ure 15.14) and MatchOffer 2 (figure 15.15), respectively, in RequestService2 and Of-
ferService2. Both sends the matchFound reply before referring to Match2 (figure 15.16).
Match2 is identical to Match1 except that the lifeline System is replaced by Control.

The diagrams SaveRequest2 (figure 15.17) and SaveOffer 2 (figure 15.18), referred
to by RequestService2 and OfferService2, are identical to SaveRequest1 and SaveOffer 1
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request

sd RequestService2

Requester

xalt

Control MessageBoard

ref
MatchRequest2

ref
SaveRequest2

Provider

findOffer

Figure 15.12: RequestService2

findRequest

sd OfferService2

Requester

xalt

Control MessageBoard

ref
MatchOffer2

ref
SaveOffer2

Provider

offer

Figure 15.13: OfferService2

with the exceptions that the noMatch message is sent from MessageBoard to Control
and that Control, instead of System, sends messages to the users.

The alt constructs in these diagrams where the messages matchFound and noMatch
are specified as both positive and negative might seem strange. The rationale for this
is to express that both messages may be both positive and negative; matchFound is
positive if a match is found and negative if a match is not found. Similarly, noMatch
is positive if a match is not found, but negative if a match is found. In [154] this is
made explicit by use of constraints, but since we de not apply constraints in this case
study we have chosen this way of representing it.

The updated diagrams RemoveRequest2 (figure 15.19) and RemoveOffer 2 (figure
15.20) are similar to RemoveRequest0 and RemoveOffer 0. The difference is that Con-
trol, instead of System, communicates with the user of the system, and that Control

138



15.2 Refinement verification

matchFound
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Figure 15.14: MatchRequest2
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ref
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Figure 15.15: MatchOffer 2

sd Match2

Requester Control MessageBoard Provider

perform

agreed

Figure 15.16: Match2
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noMatch
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alt

Figure 15.17: SaveRequest2

noMatch
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Figure 15.18: SaveOffer 2
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Figure 15.19: RemoveRequest2
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Figure 15.20: RemoveOffer 2
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Figure 15.21: RequestService3
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sends messages removeReq and removeOff to MessageBoard when users remove re-
quests or offers.

15.2.2.4 Level 3

At level 3, RequestService3 and OfferService3 refine RequestService2 and OfferService2.
The transition from RequestService2 to RequestService3 (figure 15.21) introduces two
changes. The main difference is that in each of the xalt operands of the diagram, the

matchFound

matchFound

sd MatchRequest3

Requester Control MessageBoard

ref
Match3

Provider

refuse

alt

Figure 15.22: MatchRequest3

noMatch

sd SaveRequest3

Requester Control MessageBoard Provider

noMatch

refuse

needed

requestRegistered

opt

alt

par

Figure 15.23: SaveRequest3
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Figure 15.24: Match3
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Figure 15.25: OfferService3
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matchFound

matchFound

sd MatchOffer3

Requester Control MessageBoard

ref
Match3

Provider

refuse

alt

Figure 15.26: MatchOffer 3

contents of the other operand is made negative with a combination of alt and refuse.
The other difference is that MatchRequest2 and SaveRequest2 in RequestService2 are

replaced by MatchRequest2 (figure 15.22) and SaveRequest3 (figure 15.23). MatchRe-
quest3 is identical to MatchRequest2 with the sole exception that if refers to Match3

(figure 15.24) instead of Match2. In Match3, a par operator is placed around the mes-
sages perform and agreed, making them interleaved rather than sequenced along the
Control lifeline. The transition from SaveRequest2 to SaveRequest3 is similar; a par
operator is placed around the messages requestRegistered and needed, making them
interleaved on Control.

The changes from OfferService2 to OfferService3 (figure 15.25) are almost iden-
tical to the changes from RequestService2 to RequestService3; the contents of each
xalt operand is made negative in the other operand, and MatchOffer 2 is replaced by
MatchOffer 3 (figure 15.26). Note, however, that OfferService3 still refers to SaveOf-
fer 2. As with MatchRequest3, the only difference from MatchOffer 2 to MatchOffer 3 is
that MatchOffer 3 refers to Match3 instead of Match2.

15.2.2.5 Level 4

Level 4 deals with refining the subscription functionality of the BuddySync system.
A lifeline MemberList is added to the specification. The diagrams SubscribeService4

(figure 15.27) and UnsubscribeService4 (figure 15.28) refine SubscribeService0 and Un-
subscribeService0 by decomposing the lifeline System into Control and MemberList.
Upon reception of a subscribe or unsubscribe message, Control sends a message add or
remove, respectively, to MemberList and receives a message ok from MemberList.

RequestService4 (figure 15.29) and OfferService4 (figure 15.30) are updates of Re-
questService3 and OfferService3 where the MemberList lifeline is added. Control sends
a message checkSubscription to MemberList after reception of request or offer messages,
and receives as reply either a message subscriptionFound or a message subscriptionNot-
Found. A new xalt is introduced in each of the diagrams to represent this choice. In the
first operand the message subscriptionNotFound is followed by a message notSubscribed
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subscribe
add

sd SubscribeService4

User

xalt

Control MemberList

ok
addedAsProvider

ok
addedAsRequester

Figure 15.27: SubscribeService4

remove

unsubscribe

sd UnsubscribeService4

User Control MemberList

ok
unsubscribed

Figure 15.28: UnsubscribeService4

from Control to the user (Requester in the case of RequestService4 and Provider in the
case of OfferService4). In the second operand of the new xalt, the message subscrip-
tionFound is sent from MemberList to Control, and the reminder is identical to the
versions of the diagrams at level 3.
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Figure 15.29: RequestService4
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Figure 15.30: OfferService4
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15.2.3 Setup

The refinement verification case was carried out with the prototype version of the
Escalator tool available at the time of the conclusion of the work of this thesis. The
refinement verification mechanism of the tool compares two diagrams by generating
their traces and comparing their sets of interaction obligations.

In [70, 159] four refinement relations are defined: general refinement, restricted
general refinement, limited refinement and restricted limited refinement. These refine-
ment relations are presented in section 5.4. In refinement verification, the Escalator
tool checks all of these four refinement relations.

The refinement verification was applied to each diagram of the BuddySync specifi-
cation for every update. This means, for example, that RequestService1 was compared
to RequestService0, RequestService2 was compared to RequestService1, RemoveRequest2

was compared to RemoveRequest0, and SubscribeService4 was compared to Subscribe-
Service0.

In addition to the verification of these refinements, we also did refinement veri-
fications of the Overview diagram for some of the levels. The diagrams Overview 0,
Overview 1 and Overview 4 were defined as follows:

Overview0 = RequestService0 xalt
OfferService0 xalt
RemoveRequest0 xalt
RemoveOffer0 xalt
SubscribeService0 xalt
UnsubscribeService0

Overview1 = RequestService1 xalt
OfferService1 xalt
RemoveRequest0 xalt
RemoveOffer0 xalt
SubscribeService0 xalt
UnsubscribeService0

Overview4 = RequestService4 xalt
OfferService4 xalt
RemoveRequest2 xalt
RemoveOffer2 xalt
SubscribeService4 xalt
UnsubscribeService4

Using these diagrams we did refinement verification between Overview 0 and Over-
view 4, and between Overview 1 and Overview 4.

Because some of the refinements involve decomposition of lifelines, special care
was taken when the refinements were specified. Escalator has a mechanism for hiding
lifelines in the trace generation, by specifying which lifelines should be considered
external. When traces are generated, only events that have a lifeline in the set of
external lifelines as transmitter or receiver will be present in the traces, and all other
events hidden. In Escalator it is also possible to specify lifeline mappings to be applied
in the refinement verification. When applied, lifelines in the events of the traces are
substituted according to the mappings. In this way, diagrams may be compared even
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if the names of their lifelines differ. Both these mechanisms were carefully applied to
handle the decompositions of lifelines appropriately when investigating the refinements
of the case.

15.2.4 Results

Table 15.3 provides the results of the refinement verification of the diagrams of the Bud-
dySync specification. The leftmost column shows which refinements that were checked.
For each refinement the table shows which lifelines that were considered external in the
refinement and the lifeline mappings applied, if any. The results are shown for each
of the four refinement relations, abbreviated g for general, rg for restricted general, l
for limited and rl for restricted limited refinement, where “Y” means it is a correct
refinement and “N” that it is not a correct refinement.

In addition to the refinements reported in table 15.3, we also did refinement ver-
ification of the Overview 0, Overview 1 and Overview 4 diagrams defined in the above

Refinement Lifelines Mapping g rg l rl

RequestService0
?� Requester Y Y Y Y

RequestService1

OfferService0
?� Provider Y Y Y Y

OfferService1

RequestService1
?� Requester, Control �→ System Y Y Y Y

RequestService2 Provider

OfferService1
?� Requester, Control �→ System Y Y Y Y

OfferService2 Provider

RemoveRequest0
?� Requester Control �→ System Y Y Y Y

RemoveRequest2

RemoveOffer 0
?� Provider Control �→ System Y Y Y Y

RemoveOffer2

RequestService2
?� All Y N Y N

RequestService3

OfferService2
?� All Y N Y N

OfferService3

RequestService3
?� Requester, Y Y N N

RequestService4 Provider,
MessageBoard

OfferService3
?� Requester, Y Y N N

OfferService4 Provider,
MessageBoard

SubscribeService0
?� User Control �→ System Y Y Y Y

SubscribeService4

UnsubscribeService0
?� User Control �→ System Y Y Y Y

UnsubscribeService4

Table 15.3: Refinement verification results
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Refinement Lifelines Mappings g rg l rl

Overview 0
?� Requester, Control �→ System N N N N

Overview4 Provider,
User

Overview 1
?� Requester, Control �→ System Y N N N

Overview4 Provider,
User

Table 15.4: Refinement verification results of Overview diagrams

section. The result of these refinement verifications are presented in table 15.4.

15.2.5 Discussion

From table 15.3, we see that most of the steps in the development of the specification are
correct refinements with respect to all of the four refinement relations. The exceptions
are RequestService2 � RequestService3 and OfferService2 � OfferService3 that are
not restricted (general or limited) refinements, and RequestService3 � RequestService4

and OfferService3 � OfferService4 that are not limited (restricted or unrestricted)
refinements. An analysis of the diagrams reveals that the reason for the former is that
new positive behaviors are introduced in RequestService3 and OfferService3 by the
par operators introduced in the referred diagrams SaveRequest3 and Match3. Adding
positive traces to a specification is not allowed in restricted refinement.

The latter is a result of the new xalt operator in RequestService4 and OfferService4.
These xalts introduce new interaction obligations in the diagrams that are not refine-
ments of pre-existing interaction obligations. This is not allowed in limited refinement.

When we look at table 15.4 we note that Overview 4 is not a refinement of Over-
view 0. The reason for this is that RequestService0 and OfferService0 do not have
communication involving, respectively, Provider and Requester, while this is introduced
in later levels. When in table 15.3, RequestService1 and OfferService1 are refinements
of RequestService0 and OfferService0, it is because only Requester was external lifeline
in the case of RequestService and only Provider in the case of OfferService. When we
used both Requester and Provider as external lifelines in the refinement verification of
Overview, these refinements were no longer valid.

Table 15.4 shows that Overview 4 is indeed a general refinement of Overview 1, where
RequestService0 and OfferService0 are replaced by RequestService1 and OfferService1.
Overview 4 is not a restricted nor a limited refinement of Overview 1. This is expected
since 1) RequestService3 and OfferService3 are not restricted refinements of Request-
Service2 and OfferService2, 2) RequestService4 and OfferService4 are not limited re-
finements of RequestService3 and OfferService3, and 3) we know that the refinement
relations are transitive and monotonic.

To summarize, we see that all unexpected results (in the sense that the tool re-
ported incorrect refinements) can be explained as actual incorrect refinements. An
analysis of the diagrams for the remaining cases reveals that these are in fact correct
refinements. We can therefore conclude that the results of the refinement verification of
the BuddySync specification are as expected, and that the success criterion is fulfilled.
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15.3 Refinement testing

In this second part of the case study we apply the refinement testing functionality of the
Escalator tool to the BuddySync specification. In section 15.3.1 we provide assumptions
and success criteria for the refinement testing part of the study. Section 15.3.2 presents
the version of the BuddySync specification applied, and section 15.3.3 presents the
setup of the refinement testing part of the case study. In section 15.3.4 the results of
the refinement testing are provided and in section 15.3.5 we discuss the results.

15.3.1 Assumptions and success criteria

In this part of the case study we still apply a simplified version of the BuddySync
specification, but due to specifics of the refinement testing functionality there are some
differences from the version applied in the refinement verification. These difference are
explained in the following section. We do refinement testing of the same refinements
that we applied the refinement verification to in the first part of the case study.

For this part of the case study we formulate two success criteria:

1. The refinement testing functionality of the tool provides the expected results when
applied to the BuddySync specification. As with the first part of the case, the
expected result is that all refinements are correct, but also here we must con-
sider the possibility that the changes we have done in the specification result in
incorrect refinements.

2. The refinement testing applied to the BuddySync specification gives a reasonable
coverage of the specification. As opposed to the refinement verification, the re-
finement testing is randomized. We therefore have no guarantee for full coverage
of the specification in the refinement testing. A desired property is that we have
reasonable coverage. By this we mean that even though not all details of the
specification are covered by the refinement testing, at least the major parts or
branches (e.g. alt operands) of the specification are covered.

15.3.2 The BuddySync specification for the refinement testing

We make four changes to the BuddySync specification with respect to the specification
presented in section 15.2.2:

• The most visible change is that we remove the lifelines Requester, Provider and
User from all the diagrams so that all messages going to and from these lifelines
instead go to and from the frames of the diagrams. The reason for this is that in
the test generation and execution, the frame is used to define the interface of a
diagram.

• The testing mechanism does not handle the difference between alt and xalt; for
this reason we replace all xalts with alts. This applies to the diagrams Re-
questService0, OfferService0, SubscribeService0, RequestService1, OfferService1,
RequestService2, OfferService2, RequestService3, OfferService3, RequestService4,
OfferService4 and SubscribeService4.
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• In contrast to the refinement verification mechanism, the testing functional-
ity of Escalator does handle the assert operator. We therefore insert asserts
in the diagrams where there are asserts in the original specification of [154].
This applies to the diagrams RemoveRequest0, RemoveOffer 0, UnsubscribeSer-
vice0, RemoveRequest2, RemoveOffer 2, RequestService4, OfferService4 and Un-
subscribeService4.

• In levels 2 through 4 we rename the lifeline Control to System. The reason for
this is that we need the interface/observation point of the diagrams to be the
same throughout the levels, and choose to use the lifeline name System to be this
interface/observation point.

The simplification we did in the refinement verification when we removed actions,
constraints and guards from the original specification of [154], still apply.

With these changes, the specification of the BuddySync system is presented below:

• Level 0 of the specification of the BuddySync system is found in figures 15.31–
15.36.

• Level 1 is found in figures 15.37–15.41.

• Level 2 is found in figures 15.42–15.50.

• Level 3 is found in figures 15.51–15.56.

• Finally, level 4 of the specification is found in figures 15.57–15.60.

In this presentation we do not provide any explanatory text, but refer to the explana-
tions of the specification given in section 15.2.2.
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Figure 15.31: RequestService0
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Figure 15.32: OfferService0
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Figure 15.33: RemoveRequest0
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Figure 15.34: RemoveOffer 0
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Figure 15.35: SubscribeService0
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Figure 15.36: UnsubscribeService0
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requestRegistered

needed

sd SaveRequest1

System

opt
o2

o10

Figure 15.39: SaveRequest1
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Figure 15.42: RequestService2
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Figure 15.47: SaveRequest2
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Figure 15.54: MatchOffer 3
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Figure 15.60: UnsubscribeService4

15.3.3 Setup

As with the refinement verification part of the case, the refinement testing part was
carried out with the prototype version of the Escalator tool available at the time of
the conclusion of the work on this thesis, however with the following reservation: Some
changes were made to the test generation and test execution (specifically some changes
in the assignment of verdicts) after the refinement testing was conducted, and these
changes affect the testing of some, but not all, of the refinements. Some of the results
have therefore been updated according to these changes so that the results presented
below reflect the state of the tool at the time of the conclusion of the thesis. This
means that we present the results as they would have been if the refinement testing
was conducted again using the same specification on the updated tool.

In the refinement testing part of the study we tested the same refinements as were
checked by the refinement verification, with exception of the Overview diagrams. In
the refinement testing we only handle diagrams with a single interaction obligation,
and hence only check for refinement of interaction obligations, i.e. the relation �r (see
section 5.4.1). For all pairs of diagrams tested we applied both “testing down” and
“testing up”. When doing refinement testing of a refinement d �r d′, “testing down”
means tests are generated from d and executed against d′, while “testing up” means
tests are generated from d′ and executed against d. In the cases where a diagram that
tests were executed against had a larger alphabet of external transmit events than the
diagram the tests were generated from, these extra events were given as input to the
test generation.

Refinement Direction Tests Runs

OfferService2 �r OfferService3 down 5 5
RequestService3 �r RequestService4 down 5 3
RequestService3 �r RequestService4 up 5 3
RequestService3 �r RequestService4 up 1 5
OfferService3 �r OfferService4 down 5 3
OfferService3 �r OfferService4 up 5 3

Table 15.5: Exceptions to specification of number of tests and runs
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The refinement testing is randomized, and therefore the number of tests and number
of runs of each test must be specified. For the testing of most refinements we specified 10
tests to be generated for each testing direction and 5 runs of each test. The exceptions
are shown in table 15.5. (Note that “testing up” of the refinement RequestService3 �r

RequestService4 was conducted twice. When presenting the results, the results of these
two iterations are aggregated.) All refinement tests were carried out with random
seeds.

Also a timeout must be specified when doing refinement testing. Due to a perfor-
mance issue in the implementation of the refinement testing the time needed to carry
out the refinement testing seems to increase exponentially with the number of oper-
ators in the specification. We believe this to be an implementation issue and not a
fundamental flaw in our test generation and test execution, and in view of this we find
the time used by the tool for the refinement testing uninteresting to report.

15.3.4 Results

The results of the refinement testing are shown in tables 15.6 and 15.7. Each generated
test is given a name. The names numerate the tests and indicate whether they have
been generated and executed during “testing down” or “testing up”.

For each pair of diagrams that were tested we list the tests involved and the number

Diagrams Events Tests Runs Verdict

RequestService0 RequestService1 !perform, T down
1 3 pass

!needed T down
2 3 pass

T up
3 2 fail

T up
4 2 fail

OfferService0 OfferService1 !agreed T down
5 2 pass

T down
6 2 pass

T up
7 2 fail

T up
8 2 fail

RequestService1 RequestService2 T down
9 2 pass

T down
10 3 pass

T up
11 3 pass

T up
12 3 pass

OfferService1 OfferService2 T down
13 2 pass

T down
14 2 pass

T up
15 2 pass

T up
16 2 pass

RemoveRequest0 RemoveRequest2 T down
17 1 pass

T down
18 1 pass

T up
19 1 pass

T up
20 1 pass

RemoveOffer 0 RemoveOffer 2 T down
21 1 pass

T down
22 1 pass

T up
23 1 pass

T up
24 1 pass

Table 15.6: Testing results
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Diagrams Events Tests Runs Verdict

RequestService2 RequestService3 T down
25 3 pass

T down
26 3 pass

T up
27 3 pass

T up
28 3 pass

OfferService2 OfferService3 T down
29 3 pass

T down
30 2 pass

T up
31 2 pass

T up
32 2 pass

RequestService3 RequestService4 !notSubscribed T down
33 3 pass

T down
34 2 pass

T up
35 4 pass

T up
36 3 pass

OfferService3 OfferService4 !notSubscribed T down
37 3 pass

T down
38 2 pass

T up
39 3 pass

T up
40 3 pass

SubscribeService0 SubscribeService4 T down
41 2 pass

T down
42 2 pass

T up
43 2 pass

T up
44 2 pass

Unsubscribe- Unsubscribe- T down
45 1 pass

Service0 Service4 T down
46 1 pass

T up
47 1 pass

T up
48 1 pass

Table 15.7: Testing results cont.

of different runs that were made with each test. The numbers reported here are lower
that the specified number of tests and test runs because the same tests and test runs
sometimes are generated more than once, due to the randomization. The tables also
show the verdict of each test. These verdicts are the verdicts of the runs of a test seen
together. The verdict pass is given if all the test runs gave verdict pass and fail is
given if at least one test run gave the verdict fail. The tables also specify which extra
events were given to the test generation algorithm.

As an example, the first line of the table 15.6 should be read: Test T down
1 was

generated from RequestService0 with the “down” option and the events !perform and
!needed as additions to the output alphabet of the diagram. The test was executed
against RequestService1 with the “down” option, which resulted in three different runs
that all gave the verdict pass. Further, line three should be read: Test T up

3 was
generated from RequestService1 using the “up” option and with no additional events
in the output alphabet. It was executed against RequestService0 with the “up” option,
which resulted in two runs of which at least one gave the verdict fail.

15.3.5 Discussion

When we look at tables 15.6 and 15.7 we observe that the testing of all refinements
returned the verdict pass, except for the “testing up” of the refinements RequestSer-
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vice0 �r RequestService1 and OfferService0 �r OfferService1.
In the first of these cases we see that some of the test runs of T up

3 and T up
4 give the

verdict fail. The actual test runs that give this verdict are the test runs

〈θ, !request , ?request , !agreed , ?agreed〉

and
〈!request , ?request , !agreed , ?agreed〉

These runs both represent a trace that is present (positive) in RequestService0 but is
not present (inconclusive) in RequestService1. Hence this is not a correct refinement
according to the definition of �r.

The case of T up
7 and T up

8 is analogous. The runs of these tests giving the verdict
fail are

〈θ, !offer , ?offer , !perform, ?perform, θ〉
and

〈!offer , ?offer , !perform, ?perform, θ〉
Both represent a trace that is positive in OfferService0 but inconclusive in OfferSer-
vice1.

By inspecting the rest of the specification we find that the other tested refinements
are indeed correct. We can therefore conclude that the refinement testing gave the
expected results, and that the first of the success criteria is fulfilled.

From tables 15.6 and 15.7 we see that for each of the refinements, two tests were
generated in the “testing down” and two tests were generated in the “testing up”. If we
look at the diagrams in the refinement testing part of the study, we observe that they
all follow a pattern where the System lifeline first receives a message from the frame
of the diagram and then transmits one or more messages back to the frame. Stated
differently, all diagrams specify that the system receives an input and then does one
or more outputs. If we see this characteristic of the diagrams together with the test
generation algorithm, we realize that there are only two tests that can be generated
from each of the diagrams. We can therefore consider the test generation in this case
study to be complete.

The same is not true for test execution. Table 15.8 shows the potential (based on
an analysis of the diagrams in the study) and actual test runs of each test. What we
observe is that for most, but not all, of the tests, all possible test runs did appear in
the test execution. By inspecting the test runs we discover that for tests T down

9 , T down
25 ,

T down
26 , T down

30 , T down
33 , T up

35 , T up
36 an T down

37 we still had all main branches (i.e. alt operands)
covered. This leaves the tests T down

34 and T down
38 , where one branch each of the diagrams

they were tested against was not covered. These branches were, however, covered by
the test runs of tests T down

33 and T down
37 , which were part of testing the same refinement

as T down
34 and T down

38 , respectively.
Based on this analysis of the test runs, we can safely say that the test execution had

reasonable coverage of the specification. With complete test generation (i.e. all possible
tests were generated) and reasonable coverage in the test execution, we can conclude
that we have reasonable coverage of the specification in the refinement testing. This
means we also have fulfillment of the second success criterion.
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Case study

Test Potential Actual

T down
1 3 3

T down
2 3 3

T up
3 2 2

T up
4 2 2

T down
5 2 2

T down
6 2 2

T up
7 2 2

T up
8 2 2

T down
9 3 2

T down
10 3 3

T up
11 3 3

T up
12 3 3

T down
13 2 2

T down
14 2 2

T up
15 2 2

T up
16 2 2

T down
17 1 1

T down
18 1 1

T up
19 1 1

T up
20 1 1

T down
21 1 1

T down
22 1 1

T up
23 1 1

T up
24 1 1

Test Potential Actual

T down
25 5 3

T down
26 5 3

T up
27 3 3

T up
28 3 3

T down
29 3 3

T down
30 3 2

T up
31 2 2

T up
32 2 2

T down
33 6 3

T down
34 6 2

T up
35 5 4

T up
36 5 3

T down
37 4 3

T down
38 4 2

T up
39 3 3

T up
40 3 3

T down
41 2 2

T down
42 2 2

T up
43 2 2

T up
44 2 2

T down
45 1 1

T down
46 1 1

T up
47 1 1

T up
48 1 1

Table 15.8: Potential and actual test runs
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Chapter 16

Related work on testing

Several approaches to generating tests from UML statecharts have been made (see
e.g. [66, 93, 136]) as well as other state based formalisms (see e.g. [102, 177–179, 183]
and also chapter 12). Several of these have been implemented in tools (e.g. [95, 180]).
Characteristic for such approaches is that statecharts and state based formalisms are
complete specifications, and further that they are methods for conformance testing of
implementations. They can therefore be seen as establishing a relation between design
and code, and further as operating on a lower level of abstraction that our sequence
diagram based approach. Because of this, they can be seen as being orthogonal to
our approach. We do not go any deeper into this, and in the following concentrate on
sequence diagram or MSC based approaches.

The UML Testing Profile [133] is an extension of UML that defines a method
for specifying tests as sequence diagrams. In [13] a methodology for model driven
development with the profile is provided. The profile contains an informal notion of
test execution as well as mappings from tests specified with this profile to tests in
JUnit and Testing and Test Control Notation (TTCN-3). TTCN-3 is a language for
specification of tests in a MSC like notation, as well as a textual notation, and can
be seen as a predecessor of the UML Testing Profile (see e.g. [38, 160]). Neither do,
however, specify or define test generation, and in this respect our work may be seen as
complementary to the UML Testing Profile and TTCN-3.

Different approaches to generating tests from sequence diagrams and MSCs exist.
In [167,168] a scheme for generating tests from UML 2.x sequence diagrams is described
in an informal manner. The sequence diagrams are allowed to contain the operator neg
in order to specify negative cases, but can not contain alt or other high-level operators.
The approach is based on also having UML protocol state machines describing the
system to obtain information on behavior that is inconclusive in the sequence diagrams.

In [52] a method for executing sequence diagrams as tests is described, and [22]
describes a method for extracting tests from sequence diagram specifications. Also in
these approaches the level of formality is not very high, and they seem to be mostly
experience and heuristic based approaches. Further, they are based on UML 1.x and
hence do not deal with high-level operators such as alt, assert and neg.

In [56] test generation from the Specification and Description Language (SDL) [86]
with MSCs as test purposes is described, and [12] defines test generation from MSCs.
These approaches are more formal than the above mentioned UML sequence diagram
approaches, but still they are less general than our approach, because MSCs do not
contain the assert and neg operators.
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Related work on testing

In [103] an approach for generating tests from MSCs is presented that is based on
first translating MSCs to finite state machines and then apply other existing methods
for test generation from state machines. This approach therefore considers MSCs
as complete specifications. Further, the approach simplifies the MSC semantics by
interpreting message passing as synchronous and by letting the lifelines synchronize.

Similar to our approach in some aspects is the approach of [143]. Tests are generated
from UML models (statecharts, class diagrams and object diagrams) with sequence dia-
grams as test objectives. The sequence diagrams may characterize acceptance scenarios
or rejection scenarios, and the partial nature of sequence diagrams is recognized. Both
statecharts and sequence diagrams are translated into LTSs, and the ioco algorithm is
used for test generation from these LTSs. The generated tests are then translated back
to a sequence diagram like notation.

Also the approach of [126] have some similarities to our work. In this approach,
abstract tests expressed as sequence diagrams are generated from a combination of
formalized use cases and sequence diagrams. The sequence diagrams are based on
UML 1.x and are interpreted with strict sequencing.

Our refinement testing differs from the above presented approaches in several ways.
Our test generation is based purely on generating tests from sequence diagrams with-
out any additional information. We stay loyal to the intended semantics of sequence
diagrams by interpreting them as partial specifications and with weak sequencing, and
we do not make simplifications to the semantics (e.g. by interpreting sequence diagrams
as complete specification or with strict sequencing) to simplify the test generation. In
addition, our approach is more general as we allow sequence diagrams to contain the
operators neg and assert.

The approach of [177–179] and its implementation in the TorX tool [180] can prob-
ably be applied to validate ioco conformance between labeled transition systems, even
though this is not necessarily the intended use of the theory and the tool. In earlier
work [109–111] we have applied testing techniques to investigate refinements of SDL
specifications. Except from these, we are not aware of any other approaches where
test generation and test execution are applied for investigating the relation between
specifications at different levels of abstraction. Our refinement testing is still unique as
an approach that is developed specifically for the purpose of testing refinements and
that is based on sequence diagrams.
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Availability
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Chapter 17

Introduction to availability

This part of the thesis is concerned with developing methods for specifying and analyz-
ing availability based on specifications. An important trend in current system develop-
ment is the focus on services, cf. service oriented architecture (SOA) (see e.g. [46,130]).
We therefore find it natural to apdopt a service oriented view of availability. This
works both ways; with a service oriented view on availability we find an application
area for our approach to system specification and analysis, but on the other hand a
sevice oriented view on system development creates an increasing demand for availabil-
ity of services. This also fits our overall apporach to system specification, as there is a
long tradition of using sequence diagrams and similar notations for specifying services.

In chapter 18 we present a conceptual model for service availability. There we
argue that in order to properly specify and analyze availability, the notion of service
availability must be decomposed into measurable properties. We view availability as
being a collection of exclusivity properties and accessibility properties. Exclusivity
properties are closely related to authentication, while accessibility is seen as a com-
bination of timeliness properties and quality properties. While quality is related to
quality of service (QoS), timeliness may be seen as a generalization of real-time prop-
erties. Within real-time, we may distinguish between hard real-time and soft real-time.
Services with hard real-time are characterized by strict deadlines to which they should
provided responses, while in services with soft real-time this requirement is relaxed
so that reasonable deviations to the deadlines are allowed. What distinguishes soft
real-time from hard real-time may be expressed by application of probabilities; where
hard real-time specifies a deadline, soft real-time may specify a deadline with an as-
sociated probability, i.e., expressing that the deadline must be reached with a certain
probability.

While soft real-time may be a more appropriate model for many services, hard real-
time is easier to specify and analyze because we do not have to take the probabilities
into consideration. In this thesis we concentrate on hard real-time properties, and do
not go further into the topics of quality and soft real-time.

In chapter 19 we take a first step towards specifying and analyzing availability prop-
erties by extending our operational semantics with support for hard real-time. Then,
in section 20, we investigate the possibility of applying our operational semantics ex-
tended with data and time to the specification and analysis of availability properties by
conducting a case study. Chapter 21 provides related work with respect to specification
and analysis of real-time properties.

171



Introduction to availability

172



Chapter 18

A conceptual model for service
availability1

Availability is an important aspect of today’s society. Vital functions as e.g. air traffic
control and telecom systems, especially emergency telecommunications services, are
totally dependent on available computer systems. The consequences are serious if even
parts of such systems are unavailable when their services are needed.

Traditionally, the notion of availability has been defined as the probability that a
system is working at time t, and the availability metric has been given by the “uptime”
ratio, representing the percentage of time that a system is “up” during its lifetime [148].
This system metric has been applied successfully worldwide for years in the PSTN/-
ISDN2 telephony networks along with failure reporting methodologies [45]. This metric
does not sufficiently characterize important aspects of service availability. Service avail-
ability needs a more enhanced metric in order to measure availability in a way that
meets the demands of today’s services which have been shown to have much more
bursty patterns of use than traditional PSTN/ISDN services [33].

Indeed, as the environment where services are deployed becomes more and more
complex [9] a more fine-grained view on “what is availability” is needed. Several global
virus attacks have shown that availability is indeed affected by security breaches, e.g.,
when e-mail servers are flooded by infected e-mails, the availability for ordinary e-mails
decreases. Another example is denial of service (DoS) attacks, for which a service is
overloaded with requests with the only purpose of making the service unavailable for
other users.

In order to model and analyze the availability of computerized systems in a world
where the dependency on and the complexity of such systems are increasing, the tra-
ditional notion of availability is no longer sufficient. We present a conceptual model
for service availability designed to handle these challenges. The core of this model is
a characterization of service availability by means of accessibility properties and ex-
clusivity properties. Further, we seek to preserve well-established definitions from our
main sources of inspiration to the extent possible: security, dependability, real-time
systems, and quality of service (QoS).

In section 18.1 we provide the basis of our investigation into availability, including
different viewpoints on and approaches to availability, and other aspects in the fields

1This chapter is based on [149, 150] and represents joint work with Judith E. Y. Rossebø, Atle
Refsdal and Knut Eilif Husa.

2Public Switched Telephone Network/Integrated Services Digital Network.
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A conceptual model for service availability

of security and dependability. In section 18.2 the properties of service availability are
discussed, and in section 18.3 the overall conceptual model is presented. In section 18.4
a summary is provided.

18.1 Characterizing aspects of service availability

The setting for our investigation is derived from the fields of dependability and security,
and we therefore strive to conform to the well-established concepts and definitions
from these fields where there is a consensus. We also look to different approaches
and viewpoints in dependability and security research to motivate and derive a set
of requirements for a service availability concept model which enables an augmented
treatment of availability that is more suited to securing availability in today’s and
future services.

18.1.1 Definitions of availability

Availability has been treated by the field of dependability and the field of security. The
definitions of availability commonly used in these fields are:

1. Readiness for correct service [11].

2. Ensuring that authorized users have access to information and associated assets
when required [80].

3. The property of being accessible and usable on demand by an authorized en-
tity [78, 81].

We find the first of these definitions to be insufficiently constraining for practical ap-
plication to design of services with high availability requirements. An integral part of
securing availability is ensuring that that the service is provided to authorized users;
this is not addressed by the first definition. It is, however, addressed by the second, but
neither the first nor the second captures the aspect of a service being usable. The third
definition captures all of these aspects, and therefore is the basis for our development
of a more refined availability model.

In order to ensure service availability, it is essential to refine this notion to include
addressing the aspect of ensuring that the service is provided to the authorized users
only. For example, in order to calculate penetration and usage parameters, the total
number of authorized users that are expected to access the service at a given time must
be known. This is important to prevent the service from being overloaded.

As already argued, there is a need to provide an enhanced classification and model
of service availability in order to thoroughly analyze and enable the rigorous treatment
of availability throughout the design process depending on the requirements of the
individual services.

18.1.2 Attributes, means and threats

The IFIP WG 10.4 view on dependability is provided in [11]. Figure 18.1 shows their
concept model of dependability.
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18.1 Characterizing aspects of service availability

Dependability

Attributes

Safety

Availability

Reliability

Confidentiality

Integrity

Maintainability

Fault Tolerance

Fault Prevention

Fault Removal

Fault Forecasting

Faults

Errors

Failures

Means

Threats

Security

Figure 18.1: Conceptual model of dependability

This conceptual model of dependability consists of three parts: the attributes of, the
threats to and the means by which dependability is attained. This is a nice approach
which motivates us to use a similar approach in our classification of service availability.
Clearly, threats to availability such as denial of service, and means to availability such as
applying redundancy dimensioning techniques, have an important place in availability
analysis.

In [11], the means by which dependability can be attained are fault prevention,
fault tolerance, fault removal and fault forecasting. Fault prevention: how to prevent
introduction of faults. Fault tolerance: how to deliver correct service in the presence of
faults. Fault removal : how to reduce the number of faults, and finally fault forecasting :
how to estimate the present number, future incidents and likely consequences of faults.

This approach does not address all of the means by which service availability can
be obtained. This is because incidents resulting in loss of service availability do not
necessarily transpire due to faults and therefore classification of means in terms of
faults as in [11] is, in our view, insufficient for availability analysis. An example is the
hijacking of user sessions by an attacker or group of attackers, preventing the authorized
user or group of users from accessing the service. This incident results in loss of service
availability for a set of users, without incurring a fault in the system.

An unwanted incident is defined in [171] as an incident such as loss of confidentiality,
integrity and/or availability. A fault is an example of an unwanted incident. Therefore,
in order to classify threats to availability and means to achieve availability in a security
setting, we are also motivated by the approach used in the security field of risk analysis
and risk management as in [40, 112].
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Threat
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introduction

Non-user
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vulnerability

Figure 18.2: Jonsson’s conceptual model

In [11], the threats to dependability are defined as faults, errors and failures, and
these are seen as a causal chain of threats:

fault −→ error −→ failure

This understanding of threats serves nicely in the dependability model, however, we use
the definition of threat as defined in [81]: a threat is a potential cause of an unwanted
event, which may result in harm to a system or organization and its assets. Unlike [11],
we do not consider such causal chains alone as the sole threats to availability, as service
availability may be reduced by e.g. a denial of service (DoS) attack which reduces the
service availability without causing a fault, error, or failure to the actual service itself.

18.1.3 Viewpoints

For our availability analysis, it is appropriate to evaluate whether we should consider a
system from a black box or white box perspective. In [90], Jonsson provides a concep-
tual model for security/dependability with a black box view as shown in figure 18.2.

In this system model view, Jonsson considers availability to be a purely behavioral
aspect related to the outputs of the system, solely with respect to the users. As can
been deduced from figure 18.2, exclusivity is a means to ensure availability. This
viewpoint is valid and useful for some aspects of availability analysis; however, we see
the need for evaluating availability from other viewpoints as well. Availability aspects
of the internal components of the system must also be analyzed.

We claim that aspects of availability must indeed be observed from both the input
side and the output side as well as the internal components of the system. For example,
denial of service attacks can be observed as malicious input to a system to flood the
system.

It is also important to observe and analyze the internal behavior in the system in or-
der to analyze the availability aspects of components, in particular service components
which collaborate to deliver the service. Motivated by a service-oriented system view,
only a white box view allows and facilitates the specification of the internal means to
achieve availability and the examination of internal causes that affect availability.

Figure 18.3 summarizes the different concerns for analyzing availability. From the
point of view of the user, the service is either available, or it is not. The system
view is well understood in the dependability field, and as discussed above, Jonsson
provides an evaluation from a system viewpoint and with a security point of view.
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Figure 18.3: Viewpoints for analyzing availability

The Service Availability Forum (SAF) is working on standardizing middleware for the
open interfaces between the layers [162], see figure 18.4. In our work on securing
availability in service composition, we are analyzing availability from the decomposed
service viewpoint, according to requirements of the users.

18.1.4 Diversity of services

In the current and future telecommunications market, there are many different types
of services each of which may have different requirements with respect to availability.
Telephony services, and in particular, emergency services, are examples of services with
stringent availability requirements. Internet-based services, however, have somewhat
different requirements. Requirements for what may be tolerated of delays or timing
out of services are rather lax currently for e.g., online newspaper services.

For traditional telecommunications services, the requirement of 99, 999% availability
is still valid, however, it does not sufficiently address all of the differentiated require-
ments with respect to service availability. More precisely, as advocated by SAF, there
is also a need for a customer centric approach to defining availability requirements. The
availability concern of the Service Availability Forum is readiness for correct service
and in particular continuity of service, with a focus on the demands of the customers.
Service availability as defined by the Service Availability Forum aims to meet the fol-
lowing demands:

• Customers demand and expect continuous service availability.

• Customers want always-on services and connections that are maintained without
disruption – regardless of hardware, software, or operator-caused system faults
or failures.

The availability concern of the Service Availability Forum is readiness for correct service
and in particular continuity of service, with a focus on the demands of the customers.
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Figure 18.4: The Service Availability Forum framework

The Service Availability Forum is concerned with availability of today’s systems from
the dependability perspective providing a transition from the application of dependabil-
ity to traditional telecommunications systems to current systems which are distributed.

We incorporate the ideas of the Service Availability Forum in our model, to enable
customer oriented availability requirements, however, extending these to include the
aspects of ensuring that unauthorized users cannot interrupt, hijack, or prevent the
authorized users from accessing a service.

18.1.5 Measures

As discussed above, we need a more fine grained measure of availability than pure “up”
or “down”. Services can exist in numerous degraded but operational/usable/functional
states between “up” and “down” or “correct” and “incorrect”. It should be possible
to describe various states of availability in order to specify just how much a reduction
of service quality may be tolerated.

While both the Common Criteria [79] and Johnson [90] define security measures
and provide techniques for measuring security in general, there is a need for a more fine
grained metric for measuring service availability that takes into account, for example,
measurement of how well user requirements are fulfilled, as well as a need for measuring
the ability to adequately provision a service to all of the authorized users requiring the
service at a given moment. Such a metric needs to take into account the appropriate set
of parameters, not just the usual average based on the mean time to failure (MTTF)
and the mean time to repair (MTTR).

18.2 Properties of service availability

We claim that service availability encompasses both exclusivity, the property of being
able to ensure access to authorized users only, and accessibility, the property of being at
hand and usable when needed. As such, contrary to, e.g. [11], which treats availability
as an atomic property, we see service availability as a composite notion consisting of
the following aspects:

• Exclusivity

• Accessibility

We elaborate on these two properties in the following sub-sections.
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18.2 Properties of service availability

18.2.1 Exclusivity

By exclusivity we mean the ability to ensure access for authorized users only. More
specifically, this involves ensuring that unauthorized users cannot interrupt, hijack, or
prevent the authorized users from accessing a service. This aspect is essential to prevent
the denial of legitimate access to systems and services. That is, to focus on prohibiting
unauthorized users from interrupting, or preventing authorized users from accessing
services. Our definition of exclusivity involves both users and non-users, i.e., ensuring
access to users while keeping unauthorized users out. This is in order to properly
address means of achieving exclusivity some of which will address ensuring access for
authorized users and others will address techniques for preventing unauthorized users
from accessing or interrupting services.

The goal with respect to exclusivity is to secure access to services for authorized
users in the best possible way. Essentially this means:

• Secure access to services for the authorized users.

• Provide denial of service defence mechanisms. Here we focus on prohibiting
unauthorized users from interrupting, or preventing users from accessing services.

• Ensure that unauthorized users do not gain access to services.

Note that attacks via covert channels or by eavesdropping can lead to loss of con-
fidentiality without loss of exclusivity as the attacker is not accessing the service, but
passively listening in on service activity. Confidentiality, however, consists of exclusiv-
ity and absence of unauthorized disclosure of information.

18.2.2 Accessibility

We define accessibility as the quality of being at hand and usable when needed. The
notion of “service” is rather general, and what defines the correctness of a service may
differ widely between different kinds of services. Accessibility is related to QoS [14,
135, 187], but what is considered relevant qualities vary from one domain to another.
Furthermore, QoS parameters tend to be technology dependent. An example of this
is properties like video resolution and frame rates [187], which are clearly relevant for
IP-based multimedia services and clearly not relevant in other service domains, such
as the Short Message Service (SMS) or instant messaging services.

What all services do seem to have in common is the requirement of being timely; for
a service to be accessible it must give the required response within reasonable time. In
addition to being timely, a service will be required to perform with some quality to be
usable. Hence, we divide accessibility properties into two major classes of properties:
timeliness properties and quality properties. Timeliness is the ability of a service to
perform its required functions and provide its required responses within specified time
limits. A service’s quality is a measure of its correctness and/or how usable it is.

Consider an online booking service. From the viewpoint of a user at a given point in
time, we could say that the quality of the service is either 1 or 0 depending on whether
the user gets a useful reply (e.g. confirmation) or unuseful reply (e.g. timeout). (Over
time this can be aggregated to percentages expressing how often one of the two kinds
of responses will be given.)
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Figure 18.6: Quality vs. timeliness

In a multimedia service like video streaming, the frame rate may be seen as a
timeliness property (each frame should be timely) while the resolution of each frame
and the color depth are quality properties.

In both these examples we may see a dependency between timeliness and quality.
In the first example (figure 18.5) we may assume a deadline t2 for the response to the
user for the service to be accessible. However, we must also assume some processing
time t1 for the service to be able to produce an answer. This means that the quality
requirement enforces a lower bound on the timeliness; if the deadline is too short the
user will always receive the timeout message. In other words we must have that t1 < t2
for the service to be accessible.

In the other example (figure 18.6) we may assume that higher quality requires more
processing time per frame. This means that a required quality q1 provides a lower limit
t1 on the processing time of each frame. Further, to get the required frame rate there
must be a deadline t2 for each frame, which provide an upper bound q2 on the quality.
This means the service must stay between this lower and upper bound to be accessible.
This approach may be seen as an elaboration of Meyer’s concept of performability
evaluation [124].

These considerations motivate a notion of service degradation. We define service
degradation to be reduction of service accessibility. Analogous to accessibility we de-
compose service degradation into timeliness degradation and quality degradation, and
see that these are quantities mutually dependent on each other. For example, graceful
degradation in timeliness may be a way of avoiding quality degradation if resources are
limited, or the other way around. A combination of graceful degradation in timeliness
and graceful degradation in quality may also be applied. Related to QoS, accessibility
may actually be considered a QoS tolerance cut-off, i.e., the point at which the QoS
deteriorates to a level where the service is deemed no longer usable, so that the service
is considered unavailable.

18.3 The conceptual model

Based on the above discussion we propose the overall model presented in figure 18.7
(presented as a UML class diagram) and further explained in the following text.

In the figure the relationships between availability, threats and means are shown.

180



18.4 Summary

Service
availability

Property Means Threat

Accessibility Exclusivety Incident
prevention

Incident
detection

Active 
threat

Passive 
threat

may case reduction of

ensures
protects against

Recovery
from incident

Figure 18.7: The overall picture

Availability is affected by means and threats. Means ensures availability by preventing
and countering unwanted incidents and protects against threats. Threats may lead to
unwanted incidents causing reduction of availability.

There are many different types of services, and they may have different require-
ments with respect to availability. Availability requirements should be flexible enough
to address the different services consistently. We propose that availability is speci-
fied by the means of availability policies and predicates over measurable properties of
services, and that these policies and predicates are decomposed in accordance to the
decomposition of availability in the conceptual model. An availability policy consists
of an accessibility policy (e.g., required resources) and an exclusivity policy (e.g., which
entities have permissions to use the service or system).

18.4 Summary

In this chapter we have presented a conceptual model for service availability that
takes into account a much broader spectrum of aspects that influence availability than
previously addressed by work in this area. We have argued that exclusivity is an aspect
of availability that has been generally neglected in the literature, and have shown where
it fits in an enhanced notion of service availability. Further we have shown how QoS,
real-time and dependability considerations may be integrated in the model and treated
as accessibility properties.

Our conceptual model for availability embraces both a white box view as well
as a black box view of availability and, hence, addresses both internal and external
concerns of availability. The need for this is apparent in our current work on ensuring
availability in service composition that encompasses a collaboration of roles, which are
slices of behavior across distributed systems. These must be composed correctly in
order to achieve a service with the required availability.

The model also establishes the relationship between threats, means and availability
properties. Together these elements provide a framework in which all relevant views
and considerations of availability may be integrated, and a complete picture of service
availability may be drawn.
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Chapter 19

Towards analyzing availability

This chapter takes a first step towards specifying and analyzing availability properties
by extending our operational semantics with support for hard real-time. As explained
below we choose an approach where time is treated as data. This means that we start
by extending the operational semantics with data handling, and then apply the data
handling mechanisms to extend the operational semantics with time. Data handling is
presented in section 19.1 and time in section 19.2.

19.1 Operational semantics with data and variables

In this section we present an extension of the operational semantics with data and
variables. Though inspired by STAIRS with data [156], there are certain differences.
These differences are explained in section 21.1.1.

We find that the graphical syntax suggested by the UML standard is somewhat
sparse for a consistent treatment of data. Imagine you want to specify a scenario
where a lifeline l sends a value (e.g. 5) to a lifeline k, lifeline k squares the value and
sends the result back to l, and l then performs a check of whether or not it received the
square of the value it sent. This could be specified by the diagram sqr5 in figure 19.1.
The problem with this diagram is that it lacks bindings between the data present in its
various events. While this may be OK in a declarative setting we find this unsatisfactory
when defining an operational semantics; we want to actually execute the diagram and

b(m)

a(5)

sd sqr5

l k

m := 5 · 5

{m = 25}

Figure 19.1: Diagram with data

b(j := m)

a(i := n)

sd sqr

l k

n := 5

m := i · i

{j = n · n}

Figure 19.2: Diagram with data
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Towards analyzing availability

perform the calculations. We therefore propose a more detailed notation, as exemplified
by the diagram sqr in figure 19.2. In this diagram all bindings are explicit and we have
the information necessary to do the calculations specified in the diagram.

All details of the textual syntax are given in section 19.1.2, after we have presented
some necessary preliminaries on data and variables in section 19.1.1. In section 19.1.3
the extended operational semantics with data is presented, and in section 19.1.4 we
provide a treatment of guarded choices.

19.1.1 Data and variables

We assume common data types such as Booleans, natural numbers, integers, reals,
strings, etc. and use common operators for these types when building expressions.
Further, we allow any data type as long as an axiomatic definition is provided, but we
will not provide such definitions. In order to keep things simple we let the types be
implicit and assume that all expressions are correct with respect to syntax and type.

Let Var , Val and Expr denote the sets of variables, values (constants) and expres-
sions, respectively. Obviously we have that Var ⊂ Expr and Val ⊂ Expr . Further let
var ∈ Expr → P(Var) be a function that returns the free variables of an expression.
An expression x ∈ Expr is closed if var(x) = ∅. We let CExpr denote the set of closed
expressions, defined as:

CExpr
def
= {x ∈ Expr | var(x) = ∅}

We assume the existens of a function eval ∈ CExpr → Val that evaluates any closed
expression to a value.

Let σ ∈ Var → Expr be a (partial) mapping from variables to expressions. We
denote such a mapping σ = {v1 �→ x1, v2 �→ x2, . . . , vn �→ xn} for v1, v2, . . . , vn ∈ Var
and x1, x2, . . . , xn ∈ Expr . If x1, x2, . . . , xn ∈ Val we call it a data state. We let Σ
denote the set of all mappings and Σ̂ the set of all data states.

The empty mapping is denoted by ∅. dom.σ denotes the domain of σ, i.e.:

dom.{v1 �→ x1, v2 �→ x2, . . . , vn �→ xn} def
= {v1, v2, . . . , vn}

For every σ ∈ Σ we assert that #σ = #(dom.σ). σ[v �→ x] is the mapping σ except
that it maps v to x, i.e.:

{v1 �→ x1, . . . , vn �→ xn}[v �→ x]
def
=

⎧⎪⎪⎨
⎪⎪⎩

{v1 �→ x1, . . . , vn �→ xn, v �→ x}
if v �= vi for all i ∈ {1, . . . , n}

{v1 �→ x1, . . . , vi �→ x, . . . vn �→ xn}
if v = vi for some i ∈ {1, . . . , n}

We generalize σ[v �→ x] to σ[σ′] in the following way:

σ[{v1 �→ x1, v2 �→ x2, . . . , vn �→ xn}] def
= σ[v1 �→ x1][v2 �→ x2] · · · [vn �→ xn]

σ(v) returns the expression that v maps to, and is only defined for v ∈ dom.σ, i.e.:

{v1 �→ x1, . . . , vi �→ xi, . . . vn �→ xn}(vi)
def
= xi

x{{{σ}}} denotes the expression obtained from x by simultaneously substituting the
free variables of x with the expressions that these variables map to in σ. For example
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19.1 Operational semantics with data and variables

we have that (y+z){{{{y �→ 1, z �→ 2}}}} = 1+2. In addition we let σ′{{{σ}}} be the mapping
where this process is applied to all expressions in the range of σ′, i.e.:

{v1 �→ x1, v2 �→ x2, . . . , vn �→ xn}{{{σ}}} def
= {v1 �→ x1{{{σ}}}, v2 �→ x2{{{σ}}}, . . . , vn �→ xn{{{σ}}}}

We also overload the function eval to evaluate all expressions in range of a mapping
only containing closed expressions:

eval({v1 �→ x1, . . . , vn �→ xn}) def
= {v1 �→ eval(x1), . . . , vn �→ eval(xn)}

Similar to the mappings from variables to expressions we also operate with mappings
Δ ∈ L → Σ̂ from lifelines to data states. On these mappings we define operations
Δ[l �→ σ], Δ(l) and dom.Δ identical to the definition of σ[v �→ x], σ(v) and dom.σ
given above.

19.1.2 Syntax

In our approach lifelines are non-synchronizing. In recognition of lifelines as inde-
pendent entities, and messages as the only means of communication, we assume all
variables to be local to a lifeline. Assignments to variables are events belonging to
lifelines, and may also occur within parameterized messages. Formally, a variable of
a message is a local variable in both the transmitter and the receiver lifeline of the
message. This means that, for example in the diagram sqr of figure 19.2 above, both
lifeline l and lifeline k have a local variable i because the message a has a parameter i,
but the i of l and the i of k are not the same variable.

In the syntax defined in section 5.2, the set of signals S is merely a set of labels. In
order to add parameters to messages we let N denote the set of all signal labels, and
define the set of signals to be:

S def
= N × Σ

A signal (an element of S) is then a pair (s, σ). This way, all other definitions related
to messages carry over. Syntactically we represent a signal (s, σ) as s(σ).

We extend the definition of sequence diagrams (see page 29) with two new syntactic
constructs, assign and constr, to represent assignments and constraints. Let A and C
denote the set of assignments and constraints, respectively. A and C are defined as

v ∈ V ar ∧ x ∈ Expr ∧ l ∈ L ⇒ assign(v, x, l) ∈ A
b ∈ Expr ∧ l ∈ L ⇒ constr(b, l) ∈ C

where we assume b in constr(b, l) to be a Boolean expression. We let A ⊂ D and C ⊂ D.
Note that A, C, E and T are pairwise disjoint. We let the function l. also range over
assignments and constraints:

l.assign(v, x, l)
def
= l

l.constr(x, l)
def
= l

With these new syntactical constructs, the textual representation of the diagram
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Towards analyzing availability

sqr of figure 19.2 becomes:

sqr = assign(n, 5, l) seq
(!, (a({i �→ n}), l, k)) seq
(?, (a({i �→ n}), l, k)) seq
assign(m, i · i, k) seq
(!, (b({j �→ m}), k, l)) seq
(?, (b({j �→ m}), k, l)) seq
constr(j = n · n, l)

We let the function var be overloaded to also range over diagrams in such a way
that it returns the variables manipulated or accessed by a diagram:

var((!, (s(ϕ), tr, re)))
def
=

⋃
v∈dom.ϕ({v} ∪ var(ϕ(v)))

var((?, (s(ϕ), tr, re)))
def
= dom.ϕ

var(assign(v, x, l))
def
= {v} ∪ var(x)

var(constr(x, l))
def
= var(x)

var(skip)
def
= ∅

var(op d)
def
= var(d), op ∈ {neg, refuse, opt, assert, loop}

var(d1 op d2)
def
= var(d1) ∪ var(d2), op ∈ {seq, par, strict, alt, xalt}

There is an asymmetry in the definition of the variables of transmit events and receive
events. The reason for this is that we assume the expressions in the parameters of
messages to be evaluated at the transmission point, and therefore the variables of
these expressions are not accessed by the receiver lifeline.

We let π ( ) ∈ L×D → D be a function that projects a diagram on a given lifeline
such that, e.g.:

πl(sqr) = assign(n, 5, l) seq
(!, (a({i �→ n}), l, k)) seq
(?, (b({j �→ m}), k, l)) seq
constr(j = n · n, l)

πk(sqr) = (?, (a({i �→ n}), l, k)) seq
assign(m, i · i, k) seq
(!, (b({j �→ m}), k, l))

We then have:
var(πl(sqr)) = {n, i, j}
var(πk(sqr)) = {m, i, j}

This provides an unambiguous assignment of the variables visible in a diagram to
lifelines.

19.1.3 Semantics

The execution system of the operational semantics provides us with execution states,
and this is something we make use of in our handling of data. We extend the execution
states to also hold mappings from lifelines to data states:

[β, d, Δ] ∈ B × D × (L → Σ̂)
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19.1 Operational semantics with data and variables

Δ contains a data state for each lifeline in d. In the initial state of an execution, each
of these data states should map all variables of the lifeline to values, i.e. all variables
should be defined at the start of the execution. The set of possible initial mappings
from lifelines to data states, given a diagram d, can then be expressed by the following
function:

initData(d)
def
= {Δ ∈ L → Σ̂ | ∀l ∈ ll.d : Δ(l) ∈ Σ̂ ∧ var(πl(d)) ⊆ dom.(Δ(l))}

The rules of the projection system remain unchanged, with the exception of two
new rules for handling assignments and constraints:

Π(L, β, a)
a−→ Π(L, β, skip) if a ∈ A ∧ l.a ∈ L (19.1)

Π(L, β, c)
c−→ Π(L, β, skip) if c ∈ C ∧ l.c ∈ L (19.2)

The rules of the execution system, on the other hand, are redefined to handle the
data states, the assignments and the constraints. Rule (8.6) for executing silent events
does not really change, but is adapted to the extended execution states:

[β, d, Δ]
τ−→ [β, d′, Δ] if Π(ll.d, β, d)

τ−→ Π(ll.d, β, d′) ∧ τ ∈ T (19.3)

For executing assignments and constraints we define separate rules and special
events. For assignments we introduce the special event write(Δ, Δ′) where Δ and
Δ′ are the data states of the lifelines before and after the assignment. The rule for
assignment is defined as:

[β, d, Δ]
write(Δ,Δ′)−−−−−−−→ [β, d′, Δ′] if Π(ll.d, β, d)

assign(v,x,l)−−−−−−→ Π(ll.d, β, d′) (19.4)

with
σ = Δ(l)

Δ′ = Δ[l �→ σ[v �→ eval(x{{{σ}}})]]
What happens is that values from σ, the data state of lifeline l, are substituted for the
free variables in x, and x is then evaluated to a value. This value then replaces the old
value of v in the data state, and the new data state replaces the old data state of l.

The write event may be seen as superfluous since the execution states contain data
states. When we still produce this event it is for two reasons: 1) It provides us with
the possibility of doing analysis based on the produced traces alone. 2) It makes the
connection to the denotational semantics stronger, since the denotational semantics
with data operates with this kind of write events.

For constraints we introduce the special event check(b) with b ∈ B. The rule is
defined as:

[β, d, Δ]
check(b)−−−−→ [β, d′, Δ] if Π(ll.d, β, d)

constr(x,l)−−−−−→ Π(ll.d, β, d′) (19.5)

with
σ = Δ(l)
b = eval(x{{{σ}}})

I.e., σ is the data state of lifeline l, and values from σ are substituted for free variables
in x, and then x is evaluated to the Boolean value b. The event check(true) is produced
if the constraint evaluates to true in σ and check(false) if the constraint evaluates to
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Towards analyzing availability

false. This is a property we may use to distinguish positive from negative traces with
a suitable meta-level, i.e. a meta-level that treats the occurrence of check(false) in the
same way as an occurrence of τrefuse .

The rule for executing events is divided into two rules; one for transmit events and
one for receive events. When a transmit event occurs, the expressions representing the
parameters of the event’s message is evaluated with the values of the data state of the
transmitter lifeline. The evaluated data of the message is then used to update the data
state of the lifeline:

[β, d, Δ]
e−→ [update(β, e), d′, Δ′] if Π(ll.d, β, d)

(!,(s(ϕ),tr,re))−−−−−−−−→ Π(ll.d, β, d′) (19.6)

where
σ = Δ(tr)
ϕ′ = eval(ϕ{{{σ}}})
e = (!, (s(ϕ′), tr, re))

Δ′ = Δ[tr �→ σ[ϕ′]]

This means that when the message is transmitted it’s variables no longer maps to
expressions, but to values, and these are the values that the message contains when it
is placed in the communication medium.

When a receive event is executed we would like this event’s message to contain
the evaluated values. Therefore we include in the set of functions that manipulate
the communication medium a function getData ∈ B × M → Σ̂ that retrieves the
data from a message in the communication medium. As with the other functions that
manipulate the communication medium (add, rm and ready), this function must be
defined specifically for each communication model.

In the rule for executing a receive event (?, m), we retrieve the parameter values of
the message m from the communication medium and place them in the event instead of
the expressions we get from the syntactical representation of the event. The retrieved
parameter values are also used to update the data state of the receiver lifeline. The
rule is hence:

[β, d, Δ]
e−→ [update(β, e), d′, Δ] if Π(ll.d, β, d)

(?,(s(ϕ),tr,re))−−−−−−−−→ Π(ll.d, β, d′) (19.7)

where
σ = Δ(re)
ϕ′ = getData(β, (s(ϕ), tr, re))
e = (?, (s(ϕ′), tr, re))

Δ′ = Δ[re �→ σ[ϕ′]]

19.1.4 Guards

In the UML standard, the choice operator alt may be guarded, as illustrated in fig-
ure 19.3. Following [158] we also allow the xalt operator to have guards, as in figure 19.4.

For both alt and xalt we choose the same approach as [158] and view guarded
choices as special applications of the constraint construct. There is, however, a subtle
difference in the interpretation of alt and xalt; in a guarded alt, execution is allowed to
skip the alt altogether if none of the guards of the operands evaluate to true, while in
a guarded xalt this is not the case. The rationale for this with respect to alt is to stay
close to the UML standard. The reason for not having the option of skipping an xalt
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19.2 Operational semantics with time

a

sd ga

l k

b

alt
[n = 0]

[n ≥ 0]

Figure 19.3: Guarded alt

c

sd gx

l k

d

xalt
[m = 0]

[m ≥ 0]

Figure 19.4: Guarded xalt

when all guards evaluate to false is that xalts are used for specifying choices that must
be present in an implementation, and it is then not desirable to have implicit operands
of the operator.

We do not introduce any special textual syntax for guarded choices. Hence, the
textual syntax of the two diagrams is:

ga = (constr(n = 0, l) seq !a seq ?a) alt
(constr(n ≥ 0, l) seq !b seq ?b) alt
constr(¬(n = 0 ∨ n ≥ 0), l)

gx = (constr(m = 0, l) seq !c seq ?c) xalt
(constr(m ≥ 0, l) seq !d seq ?d)

The operational semantics has already been defined since guarded choices are just
macros on top of the syntactic constructs already dealt with above.

What should be noted is that we allow guards of different operands of the same
choice to be true at the same time. Further, we do consider the lifeline a guard is
placed on as relevant, and therefore assign the constraint representing a guard to the
lifeline the guard in placed on in the diagram.

19.2 Operational semantics with time

In this section we show how the operational semantics with data defined above may
be extended with time. The same way as the operational semantics with data is
inspired by STAIRS with data, the operational semantics with time is inspired by
timed STAIRS [70]. Though inspired by timed STAIRS, there are also differences.
These differences are discussed in section 21.1.2.

Section 19.2.1 introduces our handling of time, while section 19.2.2 provides our
approach to timestamps of events. In section 19.2.3 we provide an example of how our
time and data enhanced sequence diagrams can be applied.
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Towards analyzing availability

19.2.1 Time

In order to model time we introduce a special variable now ∈ Var .1 Because we
only have local variables, this variable is placed in the data state of every lifeline in a
diagram. We do, however, consider it a global variable in the sense that we make sure
that all the local now variables are updated simultaneously and with equal increments,
i.e. that the time of all lifelines are synchronized. Except for increments by a special
tick rule, the now variables are read only, something that may be ensured by the
following syntax constraint:

v = now ⇒ assign(v, x, l) �∈ D.

Because now is a variable in the data state of each lifeline of a diagram, it must
be initialized at the start of an execution. Further, it is necessary that all the now
variables are initialized with the same value. This can be obtained by constraining the
set of possible initial mappings from lifelines to data states:

initDataTime(d)
def
= {Δ ∈ initData(d) | ∃r ∈ R+ : ∀l ∈ ll.d : Δ(l)(now ) = r}

where R+ denotes the positive non-zero real numbers.
We introduce a special event tick(r), with r ∈ R+, that represents elapse of time

with increment r. Further we add to the execution system a rule that allows time to
elapse:

[β, d, Δ]
tick(r)−−−→ [β, d, nowInc(Δ, r)] (19.8)

with
r = δ(β, d, Δ)

being the time increment.
nowInc ∈ (L → Σ̂) × R+ → (L → Σ̂) is a function that increments the now

variable in every data state with the time increment, so that the time of all lifelines
remain synchronized:

nowInc(Δ, r)
def
= {l �→ σ[now �→ (σ(now) + r)] | l ∈ dom.Δ ∧ σ = Δ(l)}

δ ∈ B × D × (L → Σ̂) → R+ is a function that determines the time increment based
on the current state. The idea is then that the time model we choose to use in an
execution may be specified by the function δ. This can be either discrete or dense
time, with fixed or randomized time increments, dependent or independent of the state
of execution, and with lazy or eager time. The simplest imaginable case may be a
discrete time model with unit time increments. In this case δ is defined as:

δ([β, d, σ])
def
= 1

We do not go further into this, other than recognizing that there exists a variety of
ways to define the time increment function.

There are some properties one might desire of a time model to avoid a counter-
intuitive representation of time and anomalies. The first of these is progress, i.e. that
time does not stop, but eventually advances. (Because advancement of time is alway

1For a discussion on difference approaches to modeling time, see section 21.2.
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enabled, progress and fairness become equivalent.) The other is to avoid Zeno’s para-
dox, i.e. that even if time always advances, it never reaches a given point in time.
Both these properties can be ensured by placing a requirement on execution similar to
what we did to ensure weak fairness of the operational semantics in section 8.4. The
requirement basically states that for every execution, at some point it will overtake
every possible points in time:

∀[β1, d1, Δ1]
x1−→ [β2, d2, Δ2]

x2−→ [β3, d3, Δ3]
x3−→ · · · ∈ Ξ, r ∈ R+ :

∃i ∈ N : ∀l ∈ ll.di : Δi(li)(now) > r

This requirement also becomes a requirement on the time increment function δ; the
possibility of defining δ is restricted to definitions that allow the requirement on exe-
cutions to be fulfilled.

19.2.2 Events with timestamps

In timed STAIRS, events have timestamps. This is defined so that in the syntactic
representation of an event (i.e. in a diagram), it contains a timestamp tag, and in the
semantics representation of the event (i.e. in a trace) the timestamp tag is mapped to
a real number representing the point in time of the occurrence of the event.

It must be noted that timed STAIRS operates with three events: transmission,
reception and consumption. The difference between reception and consumption is that
reception is the event that a message is placed in the input buffer of the receiver,
and consumption the event that the message is removed from the input buffer and
the receiver starts processing the message. In the untimed version of the operational
semantics we have not dealt explicitly with this difference, but in the context of time
constraints this becomes relevant because we may want to place time constraints ex-
plicitly on the communication medium or on a lifeline. In the following we assume the
receive events of our operational semantics to be the receive events of timed STAIRS,
and hence that the consumption events are hidden. However, we assume that this does
not affect the ordering of events.

The timestamp tags can be considered variables. Hence, in the operational seman-
tics, events are triples of kinds, messages and variables in the syntactic representation:

(k, m, t) ∈ K ×M×Var

In the following we use E def
= K ×M× Var as the definition of the set of events E .

We let all functions on the old definition of E , e.g., k.e, m.e and l.e carry over to this
new definition. We define a function t. ∈ E → Var that returns the timestamp tag of
an event:

t.(k, m, t)
def
= t

In addition we put the constraint on diagrams that each timestamp tag is only allowed
to occure ones.

In the semantic representation of events, i.e. events that are produced in an execu-
tion step, they are tuples of kinds, messages, variables and reals:

(k, m, t �→ r) ∈ K ×M× Var × R+

We write t �→ r to emphasize that we view r as a value that t maps to. In timed
STAIRS the set of “semantic events” is denoted [[ E ]]. It should be noted that while
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the operational semantics as defined in chapter 8 produces traces h ∈ (E ∪ T )ω, the
redefined operational semantics with data and time produces traces h ∈ ([[ E ]] ∪ T ∪
{write(Δ, Δ′) |Δ, Δ′ ∈ L → Σ̂} ∪ {check(b) | b ∈ B} ∪ {tick(r) | r ∈ R+})ω.2

In addition to having these timestamp tags as part of events, we also consider them
variables of the lifelines on which the events occur. Hence, the function var is redefined
for events to be:

var((!, (s(ϕ), tr, re), t))
def
= {t} ∪

⋃
v∈dom.ϕ({v} ∪ var(ϕ(v)))

var((?, (s(ϕ), tr, re), t))
def
= {t} ∪ dom.ϕ

In the initial data states, these timestamp variables will have arbitrary values as any
other variable. When an event is executed, two things happen: The timestamp tag t
of the event is assigned the current value of now, and at the same time an implicit
assignment assigns the value of now to the variable t of the lifeline on which the event
occurs. Thus, rule (19.6) for execution of transmit events is redefined to:

[β, d, Δ]
e−→ [update(β, e), d′, Δ′] if Π(ll.d, β, d)

(!,(s(ϕ),tr,re),t)−−−−−−−−−→ Π(ll.d, β, d′) (19.9)

where
σ = Δ(tr)
ϕ′ = eval(ϕ{{{σ}}})
e = (!, (s(ϕ′), tr, re), t �→ σ(now))

Δ′ = Δ[tr �→ σ[ϕ′][t �→ σ(now)]]

As can be seen, the only difference from rule (19.6) is that the timestamp tag and
variable t is set to have the value of now .

The rule (19.7) for receive events is redefined analogously:

[β, d, Δ]
e−→ [update(β, e), d′, Δ] if Π(ll.d, β, d)

(?,(s(ϕ),tr,re),t)−−−−−−−−−→ Π(ll.d, β, d′) (19.10)

where
σ = Δ(re)
ϕ′ = getData(β, (s(ϕ), tr, re))
e = (?, (s(ϕ′), tr, re), t �→ σ(now))

Δ′ = Δ[re �→ σ[ϕ′][t �→ σ(now)]]

Because the time of all lifelines are synchronized, these rules produce traces where
the events are ordered accoring to their timestamps.

19.2.3 Example

In order to illustrate the use of our formalism we apply an example from the UML
standard. The UML standard allows specification of time constraints in sequence
diagrams in a declarative fashion, as shown in the following example [134, p. 509]:

The Sequence Diagram in Figure [19.5] shows how time and timing notation
may be applied to describe time observation and timing constraints. The User
sends a message Code and its duration is measured. The ACSystem will send

2We use Aω to denote the set A∗ ∪A∞, i.e. the set of finite and infinite traces of elements from a
set A.

192



19.2 Operational semantics with time

Unlock

{d..3·d}
OK

sd UserAccepted

User ACSystem

CardOut {0..13}

Code d=duration

{t..t+3}
t=now

Figure 19.5: Sequence diagram with time constraints

two messages back to the User. CardOut is constrained to last between 0 and
13 time units. Furthermore the interval between the sending of Code and the
reception of OK is constrained to last between d and 3·d where d is the measured
duration of the Code signal. We also notice the observation of the time point
t at the sending of OK and how this is used to constrain the time point of the
reception of CardOut.

By using just our mechanisms for recording the points in time that messages are
transmitted and received, and for manipulating and putting constraints on data, we are
able to express the same time constraints with our time and data enhanced sequence
diagrams. Assume the events of the diagram have the following timestamp tags:

t.!Code = t1 t.?Code = t2
t.!CardOut = t3 t.?CardOut = t4

t.!OK = t5 t.?OK = t6
t.!Unlock = t7

Syntactically we place these timestamp tags along the lifelines, beside the events to
which they belong. The diagram UserAccepted ′ of figure 19.6 then expresses the same
time constraints as in UserAccepted .

The point in time of transmission of message Code is stored in the variable t1
and is also transmitted to ACSystem by having c := now as a parameter in the
message. Upon reception of the message Code, the point in time of the reception is
assigned to the variable t2. The duration of the message is calculated by the assignment
d := t4 − c, and this duration is transmitted back to User by the variable d′ in the
message OK. The timestamp tag of the reception of OK is t6, so the time constraint
between the transmission of Code and reception of OK is expressed by the constraint
{d′ ≤ t6 − t1 ≤ 3 · d′}. t, which is the point of time for transmission of OK is obtained
by having t := now as parameter to OK. Similarly, the point in time of transmission of
CardOut is made available to User by having co := now as a parameter in CardOut.
The timestamp tag for reception of CardOut is t4. The time constraint on the reception
of CardOut is then expressed by the constraint {t ≤ t4 ≤ t+3}, and the time constraint
on the duration of CardOut is expressed by the constraint {0 ≤ t4 − co ≤ 13}.
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Unlock

Code(c := now)

CardOut(co := now)

OK(d’ := d, t := now)

sd UserAccepted’

User ACSystem

d := t2 – c

{t ≤ t4 ≤ t + 3}

{0 ≤ t4 – co ≤ 13}

{d’ ≤ t6 – t1 ≤ 3 · d’}

t1 t2

t3

t4

t5t6

t7

Figure 19.6: Time constraints expressed with variables, timestamps and constraints
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Chapter 20

Case study

This chapter reports on a case study on the use of the time enhanced sequence dia-
grams defined in chapter 19. The study focuses on the expressiveness of our approach to
specify timing properties in sequence diagrams. A number of different approaches and
notations for expressing real-time properties in sequence diagrams and similar specifi-
cation languages exists. Our hypothesis is that our approach is sufficiently general to
capture real-time properties expressed by other approaches and that it has sufficient
expressiveness to capture interesting real-time properties.

The case study consisted of two parts. In the first part a literature survey was con-
ducted. In the survey a number of publications containing sequence diagram or MSC
specifications with time constraints or other characterizations of real-time properties
were identified. A collection of specifications were chosen from these publications and
harmonized in their notation (with the exception of their notation for time constraints
and properties). In the second part of the study we made new versions of the specifi-
cations of the collection where we applied our approach to specifying time constraints
and properties, as defined in chapter 19.

In section 20.1 we present assumptions and success criteria. Section 20.2 presents
the results of the study. In section 20.3, the results are discussed.

20.1 Assumptions and success criteria

In this study there are two main assumptions. The first assumption is that the speci-
fications we have been able to identify through the literature survey are representative
for the variety of techniques and notation for expressing time constraints and real-time
properties one may expect to be applied to sequence diagrams and similar specification
languages.

The second assumption is that our collection of specifications also represents speci-
fication of what we in the hypothesis called interesting real-time properties. By this we
mean that we expect the authors of the publications we have surveyed to present spec-
ifications that illustrate how they intend their notation for real-time properties to be
used, and that they present examples of real-time properties they consider interesting
to specify.

With these assumptions we can concretize the hypothesis of this case study in two
success criteria:

1. Our approach is sufficiently general to capture real-time properties expressed by

195



Case study

the approaches identified through the literature survey.

2. Our approach has sufficient expressiveness to capture the real-time properties in
the collection of specifications identified in the literature survey.

20.2 Results

This section presents the results of the case study. Section 20.2.1 presents the results
of the literature survey. In order to make the presentation easier to follow, we do not
present the collection of specifications identified in the survey separately, but present
them together with our new versions of the specifications. Each specification in the
collection, together with our version of the specification, is given a separate sub-section
following section 20.2.1. After these presentations, a summary of the results is provided
in section 20.2.14.

20.2.1 Results of the literature survey

The literature survey had four kinds of sources:

• Publications on STAIRS.

• Scientific papers with titles containing words like “UML”, “MSC”, “sequence
diagrams”, “interactions”, “time”, “timing” and “real-time”.

• Text books on using UML or MSC in development of real-time systems.

• Standards defining notation for time constraints or real-time properties for UML
sequence diagrams or MSCs.

The result of the survey is a collection of specifications containing time constraints
or other characterizations of real-time properties. The specifications in the collection

Description Source Figure

Request-reply 1 [153, p. 14] 20.1
Request-reply 2 [53, p. 42] 20.2
Delayed message [53, p. 41] 20.5
Absolute and relative delay [192, p. 87] 20.7
Specification of timer [7] 20.9
Use of timer [192, p. 96] 20.11
Examples of timing constraints [106, p. 662] 20.13
Pacemaker setup scenario [41, p. 239] 20.15
Protocol for an audio/video component [51, pp. 655–657] 20.17
Heartbeat packet emission [71, p. 710] 20.19
ATM example [145, p. 2] & [144, p. 33] 20.21
AMT test case [133, p. 54] 20.23
ATM specification [17, pp. 15–17] & 20.25–20.31

[18, pp. 103–104]

Table 20.1: Specifications with real-time properties
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are presented in table 20.1. A short description to identify each specification is given,
together with the source of the specification and a reference to the figure(s) where we
present it.

In addition to this collection, we also identified some specifications with real-time
properties that we have decided to keep out of the study. The reason for not including
them in the collection is mainly to keep the study to a manageable size. The specifi-
cations were selected to facilitate a large variation in notation for real-time properties,
large variation in the real-time properties characterized in the specifications and large
variation in the types of the sources. In addition we wanted at least one specifica-
tion with some considerably size (i.e. more than one diagram). The criterion for size
is fulfilled by the ATM specification, which is the only specification in the collection
consisting of more than one diagram.

The specifications with real-time properties we identified, but did not chose for the
collection, are found in [70, 71, 77, 132, 134, 193–195]. In [132] there are two examples
of “proposed notation”, but the same notation is used by similar examples from [41],
which are included in the collection. In [194] we find more or less the same examples
as in [192], with the exception of a concept called “instance delay” that only applies
to high-level MSCs. In [70, 77, 193, 195] there are examples of real-time properties,
but they use techniques and notations that we feel are covered by other specifications
in the collection. In [71] there are some larger specifications, but they are based on
using only MSC timers, which we also find well covered by our selection. Also in the
UML standard [134] there is an example. We consider this example as an attempt to
present as may features as possible at the same time, and hence not an “interesting”
specification as such. We have, however, used it as an example in section 19.2.3.

In the following we present the specifications of the collection together with our
versions. In order to make the presentation more consistent we have done some har-
monizing of the notation in the diagrams. Most notably we have “translated” MSCs
into UML sequence diagrams and we have removed irrelevant elements from some of
the specifications. In the specification from [17] we have made some simplifications.
We have, however, kept the notation for time constraints and real-time properties as
they are in the original, with the exception that we have removed the units of mea-
surement such as seconds and milliseconds. Despite the changes we have implemented
to harmonize the notation, we believe we have managed to stay faithful to the time
related parts. We apply the convention that the name of a diagram is the same as
the name it has in the source, or a suitable descriptive name if it lacks a name in the
source. Our version of a diagram uses the same name, but followed by an apostrophe
mark ’.

20.2.2 Request-reply

A commonly used example of time constraints in sequence diagrams is what we may
call “request-reply” examples. What these examples have in common is that a life-
line receives a message and should relpy to the sender within some time limit. As
representatives for these we have chosen an example from [153, p. 14], reproduced in
figure 20.1, and an example from [53, p. 42], reproduced in figure 20.2. In the first of
these specifications we see a notation where the time constraint is placed on the lifeline,
restraining the time span between reception of the message request and transmission
of message response in a declarative fashion. In the other example, the messages a and
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{0..5}

request

response

sd TimeConstaint1

Client Server

Figure 20.1: Request-reply

a

b

sd TimeConstaint2

O1 O2

{b.sendTime –
a.receiveTime < 1}

Figure 20.2: Request-reply

request

response

sd TimeConstaint1’

Client Server

{0 ≤ t2 – t1 ≤ 5}
t2

t1

Figure 20.3: Request-reply

a

b

sd TimeConstaint2’

O1 O2

{t2 – t1 < 1}
t2

t1

Figure 20.4: Request-reply

b are given attributes sendTime and receiveTime that are used for expressing a time
constraint between reception of a and transmission of b that is placed on the diagram.
It is, however, not clear whether there is any semantics related to the fact that the
constraint graphically is placed on the lifeline O2.

In our approach, the time constraints of both these specification are treated in
the same way. We introduce timestamp tags on the events that are involved in the
time constraints, and use these timestamp tags to express the time constraints as con-
straint events on the lifelines on which the time constraints apply.1 Our versions of the
specifications of figures 20.1 and 20.2 are shown in figures 20.3 and 20.4, respectively.

20.2.3 Delayed message

In [53, p. 41], the same mechanism as used in the specification of figure 20.2 is applied
for specifying a message with time delay. The specification is found in figure 20.5. The
attributes sendTime and receiveTime of a message c is used in a constraint to say that
the message has transmission time greater than zero.

Our version of the specification is shown in figure 20.6. The transmit event and send
event of the message are given the timestamp tags t1 and t2 respectively, but because
a timestamp tag must belong to a lifeline, the timestamp tag t1 is not available in
the constraint that we place on lifeline O2. We handle this by giving the message a
parameter t which is assigned the value of now at the transmission. The variable t is

1In these and in later specifications in this chapter, we sometimes hide the timestamp tags that
are not used in constraints.

198



20.2 Results

c

sd DelayedMessage

O1 O2

{c.receiveTime –
c.sendTime > 0}

Figure 20.5: Delayed message

c(t := now)

sd DelayedMessage’

O1 O2

{t2 – t > 0}

t2t1

Figure 20.6: Delayed message

available for O2 and holds the same value as t1, and can then be used to express the
time constraint on the message.

20.2.4 Absolute and relative delay

In a specification from [192, p. 87], reproduced in figure 20.7, time constraints on the
lifelines are used for specifying both time delay of messages and time delay between
events at the same lifeline. In [192] this is referred to as relative delay. In addition, the
specification gives constraints on the absolute points in time of occurrences of events,
referred to as absolute delay. Absolute time is denoted by a @. Both relative and
absolute delay are features of the MSC-2000 standard [85].

In the specification, each event is given a label. In our version of the specification,
shown in figure 20.8, we use these labels as timestamp tags. Because we have these
timestamp tags that are assigned the point in time that an event occur, we can easily
express both the absolute and relative delays using the same kind of constraints; {3 ≤
e − a ≤ 4} expresses the relative delay between transmission of m1 and transmission
of m3, while {3 ≤ e ≤ 4} expresses the absolute time delay of the transmission of
m3. The delay between transmission and reception of m1 is specified using the same

m3

[1,2)m1

m2

sd T

i j

[2]

[3,4]

[@0]

@[3,4]

a
b

c

d

e f

Figure 20.7: Absolute and relative delay

m3

m1(t := now)

m2

sd T’

i j

a b

cd

e f

{1 ≤ t – b < 2}

{f – c = 2}

{a = 0}

{3 ≤ e – a ≤ 4}

{3 ≤ e ≤ 4}

Figure 20.8: Absolute and relative delay
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m1 [1,2]

m2 [1,2]

sd Timer

p1 p2

s1

r2

r1

s2

[1,2]
set_timer

expire

timer
[5,6]

4

Figure 20.9: Specification of a timer

{1 ≤ set_timer – s1 ≤ 2}

m1(t1 := now)

m2(t2 := now)

sd Timer’

p1 p2

s1

r2

r1

s2

set_timer

expire

timer {1 ≤ r1 – t1 ≤ 2}

{expire – set_timer  = 4}

{1 ≤ r2 – t2 ≤ 2} {5 ≤ s2 – r1 ≤ 6}

Figure 20.10: Specification of a timer

method as we did for the delayed message in figure 20.5 above.

20.2.5 Specification of timer

In [7], the MSC-2000 mechanism for specifying time constraints is applied to specify a
timer, in addition to specifying time constraints on messages and lifelines. The speci-
fication is reproduced in figure 20.9. (The original is without labels on the messages;
in figure 20.9 these are added by us.)

As in the specification of figure 20.7 the events are labeled. In our version, given in
figure 20.10, we use these labels as timestamp tags. We express the time constraints
in the same fashion as we did in figure 20.8. However, because the timer is specified as
a message with the lifeline p1 as both sender and receiver, we do not have to pass the
point in time that the timer was sent along with the message.

20.2.6 Use of timer

In [192, p. 96], an example of use of the timer construct from MSC-2000 is given. This
example is shown in figure 20.11, with the difference that the original is made with a
high-level MSC while in our reproduction we use the high-level operator xalt instead.
In the example a timer T1 is set, with five time units, by lifeline i after the transmission
of the message m1. The choice specifies two alternatives: In the first alternative the
timer is stopped after lifeline i has received a message n, while in the other, the timer
expires.

When we make our version of this specification, shown in figure 20.12, we choose to
specify the timer as a lifeline, and not as a message as in figure 20.10. The new lifeline
T1 represents the timer, and again we use the event labels in the original specification
as our timestamp tags. According to the explanation of the example in [192], the timer
specifies a time delay of 5 between r and s, and a time delay in the interval (0, 5)
between r and t. We could easily have specified this by placing constraints {s− r = 5}
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n

m1

sd TimerUse

i j

e

r

e’

f f’

s

t

xalt

T1 [5]

T1

T1

Figure 20.11: Use of a timer

m1

n

sd TimerUse’

i j

e

r

e’

f f’
s

t

xalt

T1

startTimer(d := 5)

stopTimer

timeout
t3

t2

t1

expire := t1 + d

{t2 < expire}

{t3 = expire}

Figure 20.12: Use of a timer

and {0 < t−r < 5} on lifeline i. We do, however, chose a more operational approach to
specifying timers: The timer is set by sending a message startTimer with the delay of
5 time units assigned to a parameter d. A variable expire is assigned the point in time
the timer should expire as the sum of the timestamp of the reception of startTimer
and the delay d. In the first alternative, lifeline i sends a message stopTimer to T1,
and the reception of stopTimer on T1 is followed by a time constraint stating that
the timestamp of the event should be less that the value of expire. In the second
alternative, the timer sends a message timeout to lifeline i, followed by a constraint
specifying that the timestamp of transmission of timeout should be equal to the value
stored in expire.

This is obviously not the only way of specifying a timer, but in an operational
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m4

m3

m2

m1

sd TimingConstraints

obj2 obj3

e2

e3

e1

e5 e6

e7e8

obj1

{2 ≤ e4 – e1 < 5}
e4

{2(e5 – e3) – (e8 – e5) ≥ 0}

Figure 20.13: Examples of time constraints

m1

m2

m3

m4

obj2 obj3

e2

e3

e1

e5 e6

e7e8

obj1

{2 ≤ e4 – e1 < 5}

e4

{2(e5 – e3) – (e8 – e5) ≥ 0}

sd TimingConstraints’

Figure 20.14: Examples of time constraints

setting we find this the most natural way. This is because it recognizes the timer as an
independent entity in the specification, and because it places all the responsibilities of
a timer on the timer itself.

20.2.7 Examples of timing constraints

In [106, p. 662] an example of a sequence diagram with time constraints is given. We
reproduce the diagram in figure 20.13. Each event in the diagram is given a label
representing the point in time of its occurrences, and two time constraints using these
labels are placed on the diagram.

Our version of the diagram is given in figure 20.14. The event labels are consistent
with our timestamp tags, so we simply have to place the time constraints as constraint
events on the appropriate lifelines to express the same restrictions on the timing of the
events.
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set(75,10,15,AAI)

ACK

set(75,10,15,AAI)

sd PacemakerSetup

Communications Pacing Engine
Device 

Programmer

«RTstimulus»
{RTstart = 8
RTend = 10

«RTstimulus»
{RTstart = 0
RTend = 8

{0}

{15}

{10}

Figure 20.15: Pacemaker setup scenario

20.2.8 Pacemaker setup scenario

In [41, p. 239] a specification of a setup scenario for a pacemaker is provided. The
specification uses constructs (stereotypes) from the UML Profile for Schedulability,
Performance, and Time (often abbreviated UML-RT, for “UML Real-Time”) [132].
We reproduce the specification in figure 20.15. A simplification is made in that use
of executions specifications, a UML construct we do not deal with in our formalism,
and time constraints on these are removed. Time constraints on messages are given by
constraints labeled �RTstimulus� attached to the messages. In these constraints the
points in time of the transmission and reception of a message are given by the variables
RTstart and RTend, respectively. In addition, constraints on the occurrence of events
are given beside the lifelines.

Because all the time constraints in the specification are simple references to points
in time, we can simply introduce timestamp tags and constraints on timestamps after

ACK

set(a2:=a1,b2:=b1,
c2:=c1,d2:=d1)

set(a1:=75,b1:=10, 
     c1:=15,d1:=AAI)

sd PacemakerSetup’

Communications Pacing Engine
Device 

Programmer

{t1 = 0}

t3

t2t1

t4

t6 t5

{t2 = 8}

{t3 = 8} {t4 = 10}

{t6 = 15}

Figure 20.16: Pacemaker setup scenario
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zero

zero

zero

one

zero

zero

{e_next – g = 40}

{e_first – d = 40}

one

zero

sd T5

Sender Bus

{b – a = 40}

loop〈10〉 one

one

a

b

c

d

e
f

g

h

i

j

{c – b = 741}
{d – c = 781}

{f – e = 741}
{g – f = 781}

{i – h = 741}
{j – i = 781}

{h – g_last = 40}

Figure 20.17: Part of a protocol for an audio/video component

the occurrences of transmit or receive events. In order to stay consistent with our
handling of data, we have also introduced variables in the messages to hold the values
that are passed with the messages. Our version of the diagram is shown in figure 20.16.

20.2.9 Protocol for an audio/video component

In [51, pp. 655–657] a specification of a simple protocol for communication within an
audio/video component is presented. The specification consists of five diagram, but
because they are all very similar we choose to use only one of them in this study.
This diagram is reproduced in figure 20.17. The way of specifying time constraints in
this specification is similar to what we saw in figure 20.13; events are given labels and
constraints over these labels are placed on the diagram along one of the lifelines. A
difference, however, is that this diagram contains a loop, and in the constraints, x first,
x next and x last are used to denote the first, next and last occurrence of a label x
within the loop.

In our version of the specification, shown in figure 20.18, we use the label as times-
tamp tags and place the time constraints as constraint events on the lifeline Sender.
Because of our operational view of sequence diagrams, and because timestamp tags are
variables that are assigned values when their events are executed, the elimination of
the x first, x next and x last constructs almost resolves itself. Only some clever use of
a variable to handle the time constraint containing e next is needed.

20.2.10 Heartbeat packet emission

In [71, p. 710] an MSC specification of Reliable Multicast Transport Protocol (RMTP2)
is provided. We have chosen a diagram from this specification. In this diagram, repro-
duced in figure 20.19, a new construct for specifying a special kind of time constraint
is introduced. The message heartbeat inside the loop will be transmitted repeatedly
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zero

zero

zero

one

one

one

zero

zero

one

zero

sd T5’

Sender Bus

{b – a = 40}

loop〈10〉

a

b

c

d

e

f

g

h

i

j

{c – b = 741}

{d – c = 781}

{f – e = 741}

{g – f = 781}

{i – h = 741}

{j – i = 781}

{h – t = 40}

t := d

t := g

{e – t = 40}

Figure 20.18: Part of a protocol for an audio/video component

heartbeat

sd SendHeartbeatPacket

Control
Node Children

loop
Thb

Figure 20.19: Heartbeat packet emission

heartbeat

sd SendHeartbeatPacket’

Control
Node Children

loop

last := now

t

{t = last + Thb}

last := t

Figure 20.20: Heartbeat packet emission
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by the lifeline Control Node. The circle attached to the transmit event of the message
means that there should be Thb time units between each transmission of the message.

Because of our operational approach to sequence diagrams we can specify the time
delay between the repeated transmission of the message by means of a variable that is
assigned the timestamp of the transmit event after each transmission, and a suitable
constraint event. Our version of this diagram is presented in figure 20.20.

20.2.11 ATM example

An example ATM specification is found in [145, p. 2] (and also in [144, p. 33]). In this
specification, shown in figure 20.21, some of the events are labeled by timestamp tags
and time constraints are expressed by means of notes that are attached to the last of
the events which timestamp is used in the constraint.

In our formalism we can easily express the same time constraints by placing them
as constraint events on the appropriate lifeline, using the same timestamp tags. Our
version of the specification is found in figure 20.22.

withdraw(amount)

sd CashWithdrawal

ATM Bank

card

Customer

prompt ”Enter amount”

request(amount)

prompt ”Transaction 
accepted”

t3

t2

t1

accept

card back

money(amount)

t3 – t2 < 5

t2 – t1 < 10

Figure 20.21: ATM example
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withdraw(a1 := amount)

sd CashWithdrawal’

ATM Bank

card

Customer

request(a2 := amount)

t3

t2

t1

accept

card back

money(a3 := amount)

prompt ”Enter amount”

prompt ”Transaction 
accepted”

amount := a1

{t3 – t2 < 5}

{t2 – t1 < 10}

Figure 20.22: ATM example

20.2.12 AMT test case

In the UML Testing Profile (UML-TP) [133, p. 54] an example specification of a test
case with time constraints is given. We reproduce the specification in figure 20.23, with
some simplification; testing specific information and execution specifications have been
removed, and return messages have been replaced by ordinary messages.

isPinCorrect(false)

isPinCorrect(invalidPIN)

sd InvalidPin

ATM Current

storeCardData(current)

HWE

display(”Enter PIN”)

isPinCorrect(invalidPIN)

display(”Invalid PIN”)

display(”Enter PIN again”)

isPinCorrect(false)

t1(2.0)

t1

{0..3}

Figure 20.23: ATM test case
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isPinCorrect(ret := false)

isPinCorrect(pin :=
                       invalidPIN)

sd InvalidPin’

ATM Current

storeCardData(c:=current)

HWE

display(s:=Enter PIN”)

isPinCorrect(pin’ := pin)

display(s:=”Invalid PIN”)
display(s :=
         ”Enter PIN again”)

isPinCorrect(ret’ := ret)

t1

startTimer(d := 2.0)

stopTimer
r2

r1

expire := r1 + d

{0 ≤ r4 – r3 ≤ 3}

r4

r3

{r2 < expire}

Figure 20.24: ATM test case

The specification uses both a timer and a time constraint between events at the
lifeline HWE. When we make our version of the specification, shown in figure 20.24,
we use the same method for specifying the timer as we did for the timer in figure 20.11
and use the same method for specifying the time constraint as we did for the time
constraint in figure 20.1.

20.2.13 ATM specification

From [17, pp. 15–17] (and also [18, pp. 103–104]) we get a larger specification of an
example ATM that uses both timers and time delays. We reproduce this specification
in figures 20.25–20.31, however with several changes. The specification is originally
made by means of high-level MSCs while we use high-level operators and references.
In the original specification there are at some places specified time delays between the
top of a diagram and the first event, or between the last event and the bottom of the
diagram. In the transformation from MSCs to UML sequence diagrams, the structure
has been somewhat altered so that time delays are always between events. We have
also made sure that the starting, stopping and expiring of a timer always are present
in the same diagram. In addition we have removed all loops in the specification,
some inconsistencies have been corrected, and we have added a new message (the
welcome msg message) in order to make the specification more consistent. Despite
these changes, all the main functionality and all time constraints of the specification
are intact.
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valid

[0,4]

invalid

(5,60)

sd ATM

ATM Bank

card

User

verify

cancel

req_pin

processing

xalt

ref
ReturnCard

enter_pin

T1

xalt
T1

ref
TryAgain

T1

ref
ConfiscateCard

T1

ref
Transaction

Figure 20.25: ATM specification

[2,3)

sd ReturnCard

ATM Bank

return_card

User

welcome_msg

Figure 20.26: ReturnCard
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sd TryAgain

ATM Bank

timeout_msg

User

abort

ref
ReturnCard

Figure 20.27: TryAgain

[2,3)

sd ConfiscateCard

ATM Bank

inv_pin_msg

User

take_card_msg

welcome_msg

Figure 20.28: ConfiscateCard

[Q1,Q2]

[0,4]

sd Transaction

ATM BankUser

withdraw

cancel

xalt
ref

GetBalance

option

xalt

ref
ReturnCard

ref
Withdraw

Figure 20.29: Transaction
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[Q1,Q2]

[0,T1]

[3,5)

sd GetBalance

ATM Bank

option

User

statement

print_stmt

req_balance

balance

Figure 20.30: GetBalance

[B1,B2]

[W1,W2]

[W1,W2]

[0,T1]

[2,3)

balance
[3,5)

sd Withdraw

ATM Bank

req_amount

User

approve_amt

req_balance

ent_amount

not_possible

xalt

ref
ReturnCard

give_money

T1

T1

ref
TryAgain

T1

not_approved

T1

amt_approved

print_record

return_card

welcome_msg

Figure 20.31: Withdraw
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Our version of this specification is presented in figures 20.32–20.38. The time con-
straints are handled by introduction of timestamp tags and constraint events over the
timestamps. The timers are handled in the same manner as the timers of figures 20.11
and 20.23. In the original, the timers are labeled by T1, and it is somewhat unclear
whether this is the name of the timer or the time delay of the timer. Since T1 also
occurs in time constraints in the specification, we interpret it as a constant value and
assume the timer to be anonymous. In our version of the specification we simply call
the timer lifeline for Timer.

timeout

valid

invalid

sd ATM’

ATM Bank

card

User

verify

cancel

req_pin

processing

xalt

ref
ReturnCard’

enter_pin

xalt

ref
Transaction’

Timer

t1

t2
{0 ≤ t2 – t1 ≤ 4}

{5 < t3 – t1 < 60}
t3

startTimer(d := T1) t4
expire := t4 + d

{t6 < expire}

{t5 = expire}
ref

TryAgain’

stopTimer

ref
ConfiscateCard’

{t7 < expire}
stopTimer

t5

t6

t7

Figure 20.32: ATM specification
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sd ReturnCard’

ATM Bank

return_card

User

welcome_msg
t8

t9

{2 ≤ t9 – t8 < 3}

Figure 20.33: ReturnCard’

sd TryAgain’

ATM Bank

timeout_msg

User

abort

ref
ReturnCard’

Figure 20.34: TryAgain’

sd ConfiscateCard’

ATM Bank

inv_pin_msg

User

take_card_msg

welcome_msg
t10

t11

{2 ≤ t11 – t10 < 3}

Figure 20.35: ConfiscateCard’
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sd Transaction’

ATM BankUser

withdraw

cancel

xalt
ref

GetBalance’

option

ref
ReturnCard’

ref
Withdraw’

t12t13

{0 ≤ t14 – t12 ≤ 4}
t14

t15
{Q1 ≤ t15 – t13 ≤ Q2}

xalt

Figure 20.36: Transaction’

t18

t19

t16

t17

sd GetBalance’

ATM Bank

option

User

statement

print_stmt

req_balance

balance{Q1 ≤ t17 – t16 ≤ Q2}

{3 ≤ t20 – t19 < 5}

{0 ≤ t19 – t18 ≤ T1}

t20

Figure 20.37: GetBalance’
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req_amount

balance

sd Withdraw’

ATM BankUser

approve_amt

req_balance

ent_amount

not_possible

ref
ReturnCard’

give_money

ref
TryAgain’

not_approved

amt_approved

welcome_msg

Timer

startTimer(d := T1) t22

expire := t22 + d

timeout

{t23 = expire}
t23

t21

{t24 < expire}

stopTimer t24

{W1 ≤ t25 – t21 ≤ W2}
t25

{t26 < expire}

stopTimer t26

t27

{W1 ≤ t27 – t21 ≤ W2}

xalt

{0 ≤ t29 – t28 ≤ T1}
print_record

{3 ≤ t30 – t29 < 5}
return_card

{B1 ≤ t31 – t30 ≤ B2}

{2 ≤ t32 – t31 < 3}

t29

t28

t30

t31

t32

Figure 20.38: Withdraw’
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Description Original Our version Result

Request-reply 1 20.1 20.3
√

Request-reply 2 20.2 20.4
√

Delayed message 20.5 20.6
√

Absolute and relative delay 20.7 20.8
√

Specification of timer 20.9 20.10
√

Use of timer 20.11 20.12
√

Examples of timing constraints 20.13 20.14
√

Pacemaker setup scenario 20.15 20.16
√

Protocol for an audio/video component 20.17 20.18
√

Heartbeat packet emission 20.19 20.20
√

ATM example 20.21 20.22
√

AMT test case 20.23 20.24
√

ATM specification 20.25–20.31 20.32–20.38
√

Table 20.2: Results of the case study

20.2.14 Summary of results

In table 20.2 we summarize the results of the case study. Each specification in the
collection has one row in the table. In each row we give the short description of
the specification, a reference to the figure(s) where we have reproduced the original
specification, and a reference to the figure(s) with our version. In the last column
of the table we have checked of the specifications where we were able to express the
real-time properties of the original with our time enhanced sequence diagrams.

20.3 Discussion

In section 20.1 we formulated two success criteria for the case study. The first criterion
was that we, with our time enhanced sequence diagrams, have sufficient generality to
express the real-time properties formalized by the variety of techniques and notations
identified trough our literature survey. This criterion must be said to be fulfilled. As is
shown by table 20.2 we were able to express all real-time properties in the collection,
even though there is a large variation in the approaches to specifying the properties.
Further, we can say that in all but one of the cases (the “protocol for an audio/video
component” specification) we found a general way “translating” the specification, which
may be applied to similar cases. From this we cannot draw the conclusion that we
have the generality to express every real-time property that can be express by all
of the other approaches. It is most likely possible to construct examples we cannot
handle, specifically because we only have local variables and local constraints. We do,
however, have the generality to express all of the real-time properties the authors of
the publications in the survey considered interesting to present, and most of them in
a schematic fashion.

The second success criterion stated that our time enhanced sequence diagrams
should have the expressiveness to capture the real-time properties of the specifications
in the collection. As shown by table 20.2, we were able express all the real-time
properties present in the collection of specification, and can say that the criterion is
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fulfilled. However, as explained below, this conclusion must be restricted to hard real-
time properties expressed as time constraints strictly over transmit and receive events
of messages.

It is possible to criticize the collection of specifications made on basis of the litera-
ture survey. As explained in section 20.2.1, we do consider the collection representative
of the specifications found in the literature. But this only applies to time constraints
strictly over events of messages, as there are things we deliberately have overlooked
because they are out of scope. Examples of this are the time constraints on execution
specification we removed from the specification we got from [41], and specifications
in [144, 145] where time constraints are given certain probabilities with which they
apply.

We clearly have no guarantee that there are not any publications that we have over-
looked or that our selection based on the surveyed publications is not biased. Further,
we do not have any guarantee that such a literature survey reveals all interesting cases.
Despite these shortcomings, we have managed to sample and handle a large class of
the existing approaches for specifying real-time properties in sequence diagrams, and a
large class of what must be considered interesting real-time specifications. Hence, we
believe we can conclude that the case study has given support to the hypothesis that
our approach to specifying real-time properties has the generality to capture real-time
properties expressed by other approaches and the expressiveness to capture interesting
real-time properties.
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Chapter 21

Related work on timed specification
and analysis

This chapter presents work related to our operational semantics with data and time.
We start by discussing the relation to STAIRS in section 21.1. Then, in section 21.2
we have a look at other formalisms for timed specification and analysis. Finally, in
section 21.3 we discuss other approaches to data and time in sequence diagrams.

21.1 Relation to STAIRS

In the following we discuss the relation between STAIRS and the operational semantics
with data and time. In section 21.1.1 the extended operational semantics is related
to STAIRS’ treatment of data, and in section 21.1.2 we do the same with respect to
timed STAIRS.

21.1.1 Relation to STAIRS with data

STAIRS with data is defined in [158]. The operational semantics with data is inspired
by STAIRS with data, but we have at some points deviated from it. In the following
we have a look at the similarities and differences, and provide rationale for our choices
where the two semantics differ.

An obvious difference is that the variables are local to the lifeline in the opera-
tional semantics, while in the denotational semantics, variables are global. By naming
conventions and constraints on the syntax one can easily simulate local variables by
global variables, so in this sense the denotational semantics is more general than the
operational semantics. This is however not the main difference, and we do not consider
the local/global distinction any further in the following discussion.

The main difference between the operational semantics with data and STAIRS
with data is the intention with which they have been defined. In [158] the intention
is to define an extension to the denotational semantics of STAIRS in which earlier
established results with respect of refinement of STAIRS specifications still hold. In
contrast, our intention when defining the operational semantics with data, was to make
a semantics where we actually do manipulation of data while executing a diagram.
This difference in intention results in some differences between the denotational and
our operational semantics.
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The denotational semantics does not have states in the sense of the execution states
of the operational semantics. An assignment is therefore characterized by an event
write(σ, σ′) that holds the data state σ before the assignment and that data state σ′

after the assignment. The denotational definition of assignment is:

[[ assign(v, x, l) ]]
def
= {({〈write(σ, σ′)〉 | σ′(v) = eval(x{{{σ}}}) ∧

∀v′ ∈ Var : (v = v′ ∨ σ′(v′) = σ(v′))}, ∅)}

This provides one trace for each possible pair of data states that satisfy the assignment.
In difference, the operational semantics will only provide the data states before and
after assignment as they exist in the execution states. This means that in a trace of the
denotational semantics the values in the data state may implicitly change at any time
between assignments, while this will never happen in the operational semantics. Hence,
the operational semantics is sound, but not complete, with respect to the denotational
semantics.

The difference with respect to constraints is similar. In the denotational semantics,
a constraint is characterized by an event check(σ) where σ represent the data state at
the time of the evaluation of the constraint. The denotational definition is:

[[ constr(x, l) ]]
def
=

{({〈check(σ)〉 | eval(x{{{σ}}}) = true}, {〈check(σ)〉 | eval(x{{{σ}}}) = false})}

A positive trace with an event check(σ) is produced for every σ that satisfies the
constraint (i.e. evaluates the constraint to true) and a negative trace is produced for
every σ that does not satisfy the constraint. In the operational semantics, however,
we evaluate the constraint based on the data state at that point in the execution and
produce check(true) or check(false) depending on whether it was evaluated to true
or false.

In summary we can say that the difference is that the operational semantics does
exactly the data manipulation that is specified in the diagram (and nothing more),
while the denotational semantics characterizes the traces of all possible implicit data
manipulations that satisfy the explicit specification of data manipulation.

A more visible difference in addition to this, is that the operational semantics
allows messages to carry data, while STAIRS with data has no syntax for this. This
is a result of the difference described above, because in STAIRS with data, messages
may implicitly carry data, while all data handling must be explicit in the operational
semantics.

21.1.2 Relation to timed STAIRS

Timed STAIRS is defined in [70].1 In timed STAIRS there is a distinction between
syntactic and semantic events. In the syntax an event is a tripple (k, m, t) ∈ E of a
kind k, message m and timestamp tag t. The semantic events are defined as:

[[ E ]]
def
= {(k, m, t �→ r) | (k, m, t) ∈ E ∧ r ∈ R}

1As explained in section 19.2.2, timed STAIRS is a three event semantics that for each message m
defines three events (!, m), (∼, m) and (?, m), where (∼, m) denotes that m is placed in the receiver’s
input buffer. We do not operate with explicit input buffers in the lifelines in our operational semantics
and regard our receive events (?, m) as the same as the receive events (∼, m) of timed STAIRS.
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Unlock

{d..3·d}
OK

sd UserAccepted

User ACSystem

CardOut {0..13}

Code d=duration

{t..t+3}
t=now

Figure 21.1: Sequence diagram with time constraints

In other words events where the timestamp tag maps to a timestamp represented by
a real number. With the exception that we apply variables as timestamp tags, our
definitions of events are identical to those given by timed STAIRS. In timed STAIRS a
requirement is placed on traces to ensure that time increases monotonic in every trace.
In the operational semantics, this is obtained by letting the clock variable now of all
lifelines be synchronized by the tick rule, and by asserting that time increments always
are positive numbers.

A time constraint in timed STAIRS is a Boolean expression over the timestamp
tags of the events of a diagram. The denotation of a time constraint is defined as

[[ d tc x ]]
def
= {(p � x, n ∪ (p � ¬x)) | (p, n) ∈ [[ d ]]}

where

s � x def
= {h ∈ s | h |= x}

and h |= x expresses that x is true when the timestamp tags of x is replaced by the
timestamps they map to in the events of trace h.

Let us again consider the diagram UserAccepted from section 19.2.3 as an example.
The diagram is shown in figure 21.1. In timed STAIRS, the diagram may be expressed
as

UserAccepted = (!Code seq ?Code seq !CardOut seq !OK
seq ?OK seq ?CardOut seq !Unlock) tc T

with timestamp tags

t.!Code = t1 t.?Code = t2
t.!CardOut = t3 t.?CardOut = t4

t.!OK = t5 t.?OK = t6
t.!Unlock = t7
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and the time constraint
T = (d = t2 − t1 ∧

d ≤ t6 − t1 ∧
t6 − t1 ≤ 3 · d ∧
t = t5 ∧
t ≤ t4 ∧
t4 ≤ t + 3 ∧
0 ≤ t4 − t3 ∧
t4 − t3 ≤ 13)

The resulting denotation of the diagram is

[[ UserAccepted ]] = {(p, n)}

where p contains all the traces of the diagram that has assignments of real numbers to
t1, t2, . . . , t7 that satisfy T , and n contains the traces with assignments of real numbers
to t1, t2, . . . , t7 that do not satisfy T .

In the operational semantics we have the timestamp tags available as variables. We
can therefore simulate the time constraints of timed STAIRS with the use of constraint
events with constraints over these variables, as already illustrated in section 19.2.3.
The check events produced by executing these constraints will determine whether the
traces are positive or negative. The monotonicity of time is ensured by the tick rule,
and every possible assignment of timestamps to timestamp tags can be obtained by
providing a suitable general time model.

The only real difference between the time enhanced operational semantics and timed
STAIRS is then that the time constraints of timed STAIRS are global while the con-
straint events of the operational semantics are local to the lifelines. This means that
the constraint events of the operational semantics do not have the full generality of
the time constraints of timed STAIRS. However, as illustrated by the example diagram
UserAccepted’ of figure 19.6 in section 19.2.3, some of the limitation in having local,
rather than global, constraints may be overcome by clever use of data transmission by
messages.

21.2 Formalisms for timed specification and analy-

sis

Several approaches to making timed specifications exist. Best known is maybe the
approach of timed automata found in [4]. Timed automata accepts timed words, i.e.
sequences of labels where each label has been assigned a timestamp. A timed automa-
ton has a finite set of clocks. These clocks are incremented implicitly and simultane-
ously according to global time by giving each state in a run of the automaton a clock
interpretation that assigns time values to the clocks. This means time is incremented
at the transitions of the automaton. Transitions may reset one or more of the clocks
to zero, and transitions may have constraints over the clocks so that a transition may
only fire if its clock constraints are evaluated to true.

In [21], a formalism for timed labeled transitions systems (LTSs) is applied. In
this formalism, each state holds a time value, and special transitions labeled with time
delays specify the advancement of time. We have, in chapter 13, made an analogy
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between our operational semantics and LTSs. By interpreting our now variables as
the time value of the states and our tick rule as the time delayed transitions, we can
make a similar analogy between our operational semantics with time and timed LTSs.

In [140, 141], a timed rewrite theory is defined. The rewrite theory is implemented
as Real-Time Maude [138]. In this theory a special type Time for time variables is
provided and several time domains – such as discrete or dense time – defined. Special
timed rewrite rules can be defined. These rules provide time increments that are in
accordance with the time domain chosen, and that may or may not be restricted by
constraints. In addition, methods for timed analysis, such as timed search are provided.

In [1, 101] a simple approach to real-time specifications is suggested where an or-
dinary variable now ∈ R is added to the specification, and advancement of time is
modeled by a special transition rule incrementing this variable. Time related concepts
such as timers and time constraints are then expressed by use of expressions over the
variable now and possibly other variables. A similar approach is used in SDL [86] where
a special expression now gives access to the system clock, i.e. returning the absolute
system time.

This is the approach we have followed, finding this to be the most suitable for
our purposes. This allows us to be more explicit in advancement of time than, e.g.,
the timed automata approach of [4]. Further, the timed automata are very focused
on the transitions of the system, which in our approach are more implicit. In our
approach we are in any case able to simulate clocks and clock constraints. Much of
the same applies to timed LTSs. The timed rewrite logic of [140,141], while providing
a solid framework for making real-time specification in rewrite logic, and has tool
support [138], becomes too technical for our purposes. We are mostly concerned with
enabling specification of real-time properties in sequence diagrams, and we only apply
rewrite logic indirectly through the implementation of our operational semantics. Still,
this approach is relevant to our work because it offers the configurability of time models
that we are aiming at with our time extended operational semantics.

Several methods for timed analysis based on the formalisms discussed above exist.
These include analysis of clock regions (see [4]), timed search (see [140, 141]), timed
model checking (see [101, 141]), and timed testing (see [21]). As with the time models
we do not go into details on these analysis methods, but recognize that timed analysis
has been defined for approaches to timed specification similar to ours. We see a clear
potential in applying such methods for timed analysis to our operational semantics
for sequence diagrams with time. The most obvious approach for further work on this
would be an adaption of the implementation of the operational semantics to Real-Time
Maude [138, 140, 141] and make use of the time models and timed analysis methods
provided there.

21.3 Sequence diagrams with data and time

The syntax for sequence diagrams defined by the UML standard [134] allows parame-
terized messages where values are assigned to named or anonymous attributes of the
message. However, the semantics of this is unclear. This handling of data may appear
to be more flexible then our approach, but what we loose in flexibility we gain in control
over the parameters.

In the MSC standard [85] a treatment of data is defined that is similar to, but
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more general than, ours. Variables are owned by lifelines and each lifeline maintains
a state that maps the variables to values. An assignment, called a binding, binds an
expression to a variable and in the new state the expression is evaluated based on the
values of the old state. Bindings can also occur in messages, in which case the variable
to which the expression is bound must be owned by the receiving lifeline.

What makes this approach more general than ours is that the bindings may contain
wildcards, on both sides of the assignment symbol, in order to facilitate refinement.
However, a binding with a wildcard cannot be evaluated without identifying the wild-
cards, e.g. by substituting arbitrary values. Modifying our data handling to allow a
version of the wildcards in bindings in MSC would require rather elaborate rules for
updating the data states, as expressions cannot always be evaluated, but it could be a
topic for further work.

As is obvious from the case study presented in chapter 20, a number of approaches
to specifying real-time properties in sequence diagrams and MSCs exist. The MSC
standard [85] defines three timing concepts: The timer that we saw applied in [192]
(see section 20.2.6) and [17, 18] (see section 20.2.13), the relative time constraints
or relative time delays we saw in [192] (see sections 20.2.4), [7] (see section 20.2.5)
and [17, 18] (see section 20.2.13), and the absolute measure or timing that we saw
in [192] (see section 20.2.4). The UML standard [134] defines four timing concepts:
Duration observation, duration constraint, time observation and time constraint. These
are demonstrated by the example reproduced in figure 21.1. The examples from [153]
(see section 20.2.2), [106] (see section 20.2.7), [144,145] (see section 20.2.11), and partly
the example from [51] (see section 20.2.9), can be considered variants over the duration
constraints specified in the UML standard. The timing concepts of the UML Testing
Profile [133] are a combination of the timing concepts from the UML standard and the
timers from MSC. These are illustrated by the example reproduced in figure 20.23 (see
section 20.2.12). In the UML Profile for Schedulability, Performance, and Time [132]
timing is specified by timestamps on events. An example of this we get from [41]
(see section 20.2.8). This is conceptually similar to the sendTime and receiveTime
attributes of messages we saw in [53] (see sections 20.2.2 and 20.2.3). The UML profile
also has the notion of a timer and a notion of a system clock that can produce interrupt
events. In addition to the timing concepts listed above, we did in the case study also
note two constructs for specifying time constraints in loops. They are found in [51]
(see section 20.2.9) and [71] (see section 20.2.10).

What most of these approaches have in common is that they provide basically
declarative treatments of time. Even where timing concepts that may be seen as more
operational are provided, such as the timers in MSC and the time observation in UML,
the semantics given is in a denotational fashion, i.e. without any indication of how time
advances.

An exception is [51] where sequence diagrams are translated to timed automata, but
in the process they make considerably deviations from what we consider standard UML
or MSC semantics. Also in [108], timed MSCs are translated to timed automata, with
the restrictions it imposes to translate MSCs to finite automata. Another denotational
approach is the formal sematics for Time Sequence Diagrams presented in [47].

There also exist some other more operational approaches. In [62] a time extension to
LSCs (see chapter 11) is presented. This is similar to our extension to the operational
semantics, in that a clock variable Time is added to the formalism. Time is then
treated as data and time constraints can be expressed by means of ordinary variables.
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In [38], time extensions to the graphical notation of TTCN-3 are introduced, including
a now variable. In [96] timed MSCs are formalized in a timed version of Maude.
This approach, however, only deals with timers, and as explained in chapter 11 their
formalization makes restrictions on the MSC semantics.

Some of the publications cited above also describe methods for timed analysis.
When sequence diagrams are translated to timed automata they may be subjected
to timed model checking, as is done in [51]. In [7] a tool is described that analyzes
an MSC for timing conflicts. In [17, 18] an algorithm for time consistency analysis is
presented. The work is based on [7], but extends the approach to high-level MSCs.
The algorithm is based on constructing weighted graphs from (high-level) MSCs and
analyzing the paths of the graphs. A somewhat stronger variant of this kind of analysis
of timed MSCs is presented in [195]. In [106] an algorithm is presented that checks
time consistency of paths of high-level MSCs by means of linear programming.

In our view, these kinds of analysis are somewhat restricted, as they only analyze
consistency of time constraints in sequence diagrams/MSCs. We have more belief in a
direction where an operational semantics is connected to more general approaches to
timed analysis, as described in section 21.2.
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Discussion and conclusions
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Chapter 22

Discussion

In chapter 2 we formulated the goal for the work of this thesis as follows:

Develop a method and tool to analyze refinements and decompositions of specifications
expressed in a diagram based language. The methods and tool should:

• Handle functional behavior as well as aspects of availability.

• Have a sound formal foundation.

• Apply testing techniques.

• Be practical in use also for people without background in formal methods.

In addition we formulated 10 success criteria as requirements for the method and tool
referred to in the goal.

In this thesis we have developed an operational semantics for sequence diagrams,
a refinement verification technique and a refinement testing technique for sequence di-
agrams, all based on the operational semantics, and an extension of the operational
semantics with data and time. These artifacts must together be considered the method
referred to in the goal. The operational semantics, the refinement testing and the refine-
ment verification have been implemented in the Escalator tool, described in chapter 14.
Escalator is obviously the tool in the goal.

In the following we reproduce the success criteria formulated in chapter 2, and
evaluate each of them with respect to the method, as defined above, and the tool.
At the end of this chapter, we also review the overall hypothesis we formulated in
chapter 2.

Success criterion 1 The method should support model driven development by offer-
ing the capability of analyzing the relation between models or specifications at different
levels of abstraction.

The method provides two techniques for analyzing the relation between specifications
at different levels of abstraction, namely the refinement verification and the refinement
testing. Specifically, the specifications are UML 2.x sequence diagrams and the relation
is refinement as defined in STAIRS [70,159]. The case study documented in chapter 15
demonstrates that our method can be applied to model driven development.
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While we have not done work in that direction, we believe the tests we generate from
sequence diagram specifications can be applied to more than testing other sequence di-
agram specifications. The obvious candidates are testing of state machine/statechart
specifications, and testing of code (by transforming our abstract tests into tests for test-
ing of code). We would also consider such kinds of application of our tests as “analyzing
the relation between models or specifications at different levels of abstraction”.

Success criterion 2 The method should offer the capability of analyzing aspects of
availability.

In chapter 18 we analyzed the aspects of service availability and found the main prop-
erties of availability to be exclusivity – broken down to securing access for authorized
users, providing denial of service defense mechanisms and ensuring exclusion of unau-
thorized users – and accessibility – decomposed to quality and timeliness. Our method
includes a technique for specifying real-time properties in sequence diagrams and an
operational semantics for sequence diagrams with time. These real-time properties are
closely related to timeliness. The generality and expressiveness of this technique have
been demonstrated in a case study, presented in chapter 20. While we have not imple-
mented any analysis of real-time properties, we believe, as outlined in chapter 21, that
existing techniques for doing real-time analysis can be applied to our the operational
semantics with time.

We have not done any work in the direction of exclusivity. We have, however,
great belief in sequence diagrams as a language for specifying protocols and believe
our method can be applied for analysis of authentication and authorization protocols,
which are related to exclusivity.

Success criterion 3 The method should make use of functional models.

Our method is based on UML 2.x sequence diagrams. Sequence diagram specifications
must be considered functional models, and hence we can say that our method make
use of functional models.

Success criterion 4 The method should handle modularity.

The method does not have any particular support for modularity except from what
is inherited from STAIRS. This does not mean that there is no modularity in the
method. The refinement relations in STAIRS [70, 159] are modular. Because the re-
finement verification is based directly on these refinement relations, this makes the re-
finement verification modular. This is demonstrated by the refinement verification case
study documented in chapter 15, by the fact that refinement verification of composed
diagrams (the Overview diagrams) gave the same result as applying the refinement
verification on the composites separately.

This must still be considered modularity in a weak sense because the case study
was related to modularity of services and not modularity of components. We do see a
potential for extending our method with stronger support for modularity via the refine-
ment testing. In earlier work [109–111] we have demonstrated how testing techniques
can be applied for analyzing decomposition of components specified in a contract ori-
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ented1 fashion. We believe something similar can be done based on our refinement
testing.

Success criterion 5 The method should be based on practical testing techniques.

Part of the method, namely the refinement testing, is based on testing techniques. More
specifically, both the test generation and the test execution are based on the testing
theory often referred to as ioco theory [177–179]. The refinement testing is implemented
in the Escalator tool where both the test generation and the test execution are carried
out automatically. The case study on the use of this functionality, documented in
chapter 15, demonstrates the practicality of the testing techniques, by demonstrating
that the refinement testing can be applied in practice.

Success criterion 6 The method should be formally sound.

The operational semantics has been proven to be sound and complete with respect to
the denotational semantics of STAIRS. (The proofs are found in appendix A.) The
refinement verification is based on the definitions of refinement given in STAIRS. These
refinement relations have in [70, 158, 159] been proved to be transitive and monotone,
properties that our refinement verification inherits by applying the same definitions.
The refinement verification applies the “generate all traces” meta-strategy defined in
chapter 9. The soundness of this strategy has been given additional justification in
appendix B. The refinement testing is based a formal testing theory [177–179], and
in chapter 13 we provide arguments for its soundness with respect to refinement. Re-
garding the data and time extensions of the operational semantics we have not done
any proofs, but in chapter 21 we present arguments for its soundness with respect to
STAIRS with data and time. While we do not have formal proofs and irrefutable sup-
port for the soundness of all the aspects of the method, the proofs and justifications
we have listed above should still provide strong support for its soundness.

Success criterion 7 The output from the method should useful.

The method provides four kinds of output:

• Execution traces from the operational semantics with or without data and time.
In addition these traces may be categorized as positive and negative traces, or
may be structured in interaction obligations.

• From the refinement verification, the answer “yes” or “no” to the question of
whether a sequence diagram is a correct refinement of another diagram, or not.

• Tests generated from sequence diagrams.

• Verdicts of test executions with test runs represented as traces. These verdicts
also answers the question of whether or not a sequence diagram is a correct
refinement of another diagram.

1See e.g. [2, 172]. Contract oriented specifications are also called assumption/guarantee specifica-
tions, rely/guarantee specifications and assumption/commitment specifications.
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In the case study on the use of the Escalator tool, documented in chapter 15, we saw
that both the refinement verification and the refinement testing gave results that de-
termined whether the refinement steps of the specification were correct or not. Further
we saw that the reasons for unexpected results (i.e. incorrect refinements) could be
identified by manual analysis of traces and test runs generated by the tool. In the set-
ting of development by stepwise refinement, these outputs must be considered useful.
In the case study we also got the expected results with respect to a manual analysis of
the specification, and we have not been able to identify any anomalies in the output.

We also believe the tests themselves can be made useful by applying them to con-
formance testing, i.e. testing of code. As discussed in chapter 12, iterative development
methodologies such as RUP [97] and agile methods [8, 88] recommend scenario based
specifications and a short way from specification to testing. In such settings, tests
generated from sequence diagrams could be useful.

Because we have not defined or implemented any availability analysis beyond trace
generation from sequence diagrams with data and time, it is hard to say something
about the usefulness of the output of our method with respect to availability.

Success criterion 8 The method should be supported by a fully or partially auto-
matic tool.

As documented in chapter 14, the refinement verification and the refinement testing
have been implemented in the Escalator tool. As part of the former, also the operational
semantics, with its capabilities of producing execution traces, is implemented. Further,
the tool includes a graphical sequence diagram editor and implements a transformation
from sequence diagrams in the graphical editor to the internal textual representation
of sequence diagrams. The whole process starting with diagrams (made in the editor)
to the presentation of results is carried out by the tool without intervention from the
user. The only part of the method that is not fully automated is the setup of and
analysis of results from the refinement testing, since the “testing down” part and the
“testing up” part must be specified and carried out separately.

Success criterion 9 Application of the method at early stages of the system devel-
opment improves the quality of systems with availability requirements.

We have no direct support for this from the work of this thesis. However, we did
carry out a case study (see chapter 15) that demonstrates that our method can be
applied to stepwise development of sequence diagram specifications, something that
would typically be part of the early stages of a system development. There are reasons
to believe that this can improve the quality of the specifications and that this again
can improve the quality of systems. A real investigation of this would however require
empirical studies of a much larger scale than the case studies we have carried out in
our work.

Success criterion 10 Application of the method makes development of systems with
availability requirements more efficient and less costly.
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We have no real support to say whether this statement is true or not, as this would
require empirical studies at a much larger scale than we have had time and resources
to conduct within the work of this thesis.

In chapter 2 we stated our overall hypothesis as follows:

System development will benefit (become more effective and less costly, and produce
better software systems) from:

• Methods and tools for doing analysis of systems at the model or specification level.

• An integration of practical or pragmatic methods with formal methods.

We cannot say that our work implies the validity of this hypothesis, but we can suggest
that our work demonstrates the feasibility of making methods and tools for doing
analysis at the specification level, and the feasibility of making such methods and tools
by the integration of practical methods and formal methods.
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Chapter 23

Conclusions

The main contributions of this thesis are:

• An operational semantics for UML 2.x sequence diagrams, including a character-
ization of how execution strategies for this operational semantics can be defined.

• A method for refinement verification of sequence diagram specifications.

• A method for refinement testing of sequence diagram specifications, including a
test generation algorithm and a characterization of test execution.

• A prototype tool for analysis of sequence diagram specifications implementing
the operational semantics, the refinement verification and the refinement testing.

• A characterization of the basic aspects of availability and an extension of the
operational semantics with support for one of them: real-time properties.

In section 23.1 below we go into more detail about the main contributions. In sec-
tion 23.2 we discuss the possibilities for further work.

23.1 Main contributions

We are not aware of any other operational semantics for UML 2.x sequence diagrams or
MSCs with the same strength and generality as ours. Several other approaches exist,
but all with significant shortcomings.

Our operational semantics is simple and is defined with extensibility and variation
in mind. An example of this is the possibility of defining the communication model
separately from the operational semantics. This extensibility also made it possible to
make the data and time extensions with only minor adjustments. It does not involve
any translation or transformation of the diagrams into other formalisms, which makes
it easy to use and understand. It is sound and complete with respect to a reasonable
denotational formalization of the UML standard.

A major insight in the work with the operational semantics was identification of
the need for a meta-level to assign properties to the executions and give structure to
sets of executions. This is in particular due to the semantic structure of STAIRS with
interaction obligations of positive and negative traces. For this reason the operational
semantics has a formalized meta-level. This meta-level is used for such things as distin-
guishing positive from negative traces, and distinguishing between traces of different
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interaction obligations. In addition, this meta-level can be be used for defining exe-
cution strategies. We have provided two such meta-strategies, one for generating all
traces of a diagram and one for generating an arbitrary trace and assigning properties
to it. The former is applied in the refinement verification and the latter in the test
generation algorithm.

The operational semantics is implemented in the term rewriting language Maude.
Maude is itself a formal language, and using Maude for the implementation reduces the
risk of unintentionally changing the semantics while doing the implementation. This
implementation is one of the cornerstones of the Escalator tool.

In order to analyze real-time properties, the operational semantics was given a
simple, but powerful, extension for the handling of data and time. A case study in
specification of real-time properties showed that a broad range real-time properties
defined in a wide range of approaches to timed sequence diagrams can be specified
by our time enhanced sequence diagrams. The operational semantics with time was
defined with the same idea of variability as the untimed version of the operational
semantics. Therefore the time model can be defined separately from the operational
semantics itself, allowing a variety of time models to be implemented.

Based on the operational semantics we have defined and implemented a test gen-
eration algorithm and a characterization of test execution. What is special with our
approach is that tests are generated from sequence diagram specifications, the tests
are themselves sequence diagrams and the tests are executed against sequence diagram
specifications. Together this forms a method for refinement testing, i.e. a method for
investigating whether or not a sequence diagram is a correct refinement of another
sequence diagram by application of testing techniques. We are not aware of any other
methods that can do this.

The test generation algorithm is an adaption of a well-known algorithm for gener-
ation of tests for conformance testing from LTS specifications. What distinguishes our
algorithm is that it takes sequence diagrams that may contain the operators neg/refuse
and assert as input. Furhter, it is adapted to the semantic model of UML 2.x which
defines sequence diagrams as partial specifications with positive, negative and incon-
clusive behavior. The output of the test generation algorithm are tests in the format of
sequence diagrams. With a small adaption we can use the same operational semantics
for tests as for ordinary sequence diagrams. Not surprisingly, test execution is defined
by a meta-strategy for this purpose. Also the test execution is adapted to the semantic
model with positive, negative and inconclusive traces.

The Escalator tool offers an implementation of the analysis methods that we have
defined. The main functionality is obviously the refinement verification and the refine-
ment testing methods, but also trace generation, test generation and test execution
are available independently of these. The backbone of the tool is the Maude imple-
mentation of the operational semantics. The motivation behind the tool has been to
make the analysis methods easily available and practical in use. For this reason the
tool integrates a sequence diagram editor that allows the user to work with sequence
diagrams in their graphical notation rather than the abstract textual syntax of STAIRS
or the Maude representation of diagrams we use as input to the Maude implementation
of the operational semantics. All parts of trace generation, refinement verification, test
generation and test execution are automated. This means the user only has to care
about diagrams in the graphical editor and the results of the analysis, and does not
have to be bothered with internal representations and processes. While the tool is a
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prototype and is far from industrial standard, the case study we carried out using the
tool demonstrated the feasibility of our approach.

23.2 Further work

There are several possible direction for further work. With respect to the operational
semantics the most obvious is defining a repository of execution strategies to support a
wider variety of analysis. One suggestion could be an execution strategy that searches
for a particular trace or traces of a particular pattern. Another possibility of fur-
ther work on the operational semantics is to define a repository of more sophisticated
communication models. An example of this could be defining a lossy communication
medium, which could be useful in different kinds of analysis, e.g. protocol analysis.

With respect to the operational semantics with data, a possibility for further work
is to make the data handling more general in the direction of the data handling in
MSC. Regarding the operational semantics with time, the obvious continuation of the
work is to define a more sophisticated time model, or a repository of time models.
This would support the work on defining and implementing timed analysis of sequence
diagram specifications based on the timed operational semantics, which is the natural
next step with respect to availability analysis. Real-Time Maude seems to be a good
candidate for implementing time models and timed analysis for our timed operational
semantics.

Another possibility of further work with availability is to extend the operational
semantics with a notion of probabilities, which would support specification and analysis
of soft real-time properties, and not only hard real-time properties. We also believe a
possibly interesting direction could be specification and analysis of authentication and
authorization protocols, in order to support the exclusivity aspects of availability, and
not only the accessibility aspects.

Also with respect to testing there are several possibilities for continuation of the
work. At the moment the test generation and test execution, and hence also the re-
finement testing, do not support the mandatory choice operator xalt from STAIRS. An
investigation into the possibilities of extending the testing approach to support xalt,
e.g. by some use of test purpose, could be feasible. Another way of increasing the
scope of our approach to testing could be to define execution of testing against state
machines/statecharts and do refinement testing between sequence diagram specifica-
tions and state machine/statechart specifications. We could also define transformations
from our abstract tests to implementation specific tests and do conformance testing
against code. Both these variants could include establishing a formal relation to the
UML Testing Profile.

There are other, more sophisticated, extensions we could make to the refinement
testing. A possibility for further work is to define a testing strategy to support the spe-
cial class of refinements that decompositions constitute. Such a testing strategy should
be based on principles from contract oriented specifications (assumption/guarantee
specifications) to handle the challenges related to mutually dependencies between the
resulting components. Other possibilities that can be considered are to extend the
refinement testing with support for data or do timed testing of refinements based on
the operational semantics with data and time.

Further work on the Escalator tool will obviously depend on further work on the
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analysis methods, and the implementations of these. In addition to this there are sev-
eral things we could do with the tool at the more practical level. There is a performance
problem in the implementation of the refinement testing, and solving this problem is
the most pressing issue with respect to improving the quality of the tool. Other obvi-
ous improvements of the tool would be to implement such things as syntax checking of
diagrams, and improving error messages and other feedback to the user. With respect
to implementing new functionality, other than new methods of analysis, we consider
import of UML models from third party UML tools, increasing the configurability (e.g.
by allowing the users to define their own communication media and execution strate-
gies) and making the tool more interactive (e.g. by providing animations of executions)
interesting possibilities.

Finally, a possible direction for further work is to strengthen the empirical support
for our hypothesis. A way to do this could be to carry out a larger industrial case
study or other experiments with the tools. This would of course require some of the
proposed improvements of the tool suggested above.
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sis from UML models of distributed software. IEEE Transactions on Software
Engineering, 33(4):252–268, 2007.

[144] A. Refsdal, K. E. Husa, and K. Stølen. Specification and refinement of soft real-
time requirements using sequence diagrams. In 3rd International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS’05), number 3829
in Lecture Notes in Computer Science, pages 32–48. Springer, 2005.

[145] A. Refsdal, K. E. Husa, and K. Stølen. Specification and refinement of soft real-
time requirements using sequence diagrams. Research report 323, Department of
Informatics, University of Oslo, 2007. Extended and revised version of [144].

[146] A. Refsdal, R. K. Runde, and K. Stølen. Underspecification, inherent nondeter-
minism and probability in sequence diagrams. Research report 335, Department
of Informatics, University of Oslo, 2006. Extended and revised version of [147].
Reprinted as chapter 14 in [153].

248



Bibliography

[147] A. Refsdal, R. K. Runde, and K. Stølen. Underspecification, inherent non-
determinism and probability in sequence diagrams. In 8th IFIP Interna-
tional Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS’06), number 4037 in Lecture Notes in Computer Science, pages 138–
155. Springer, 2006.

[148] S. M. Ross. Introduction to probability models. Academic Press, 6th edition,
1997.

[149] J. E. Y. Rossebø, M. S. Lund, A. Refsdal, and K. E. Husa. A conceptual model
for service availability. In Quality of Protection: Security Measurements and
Metrics (QoP’05), number 23 in Advances in Information Security, pages 107–
118. Springer, 2006.

[150] J. E. Y. Rossebø, M. S. Lund, A. Refsdal, and K. E. Husa. A conceptual model for
service availability. Research report 337, Department of Informatics, University
of Oslo, 2006. Extended and revised version of [149].

[151] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language ref-
erence manual. Addison-Wesley, 2nd edition, 2004.

[152] B. Rumpe. Agile test-based modeling. In International Conference on Software
Engineering Research and Practice (SERP’06), volume 1, pages 10–15. CSREA
Press, 2006.

[153] R. K. Runde. STAIRS - Understanding and developing specifications expressed
as UML interaction diagrams. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2007.

[154] R. K. Runde. STAIRS case study: The BuddySync system. Research report 345,
Department of Informatics, University of Oslo, 2007. Reprinted as chapter 16
in [153].

[155] R. K. Runde, Ø. Haugen, and K. Stølen. How to transform UML neg into a
useful construct. In Norsk Informatikkonferanse (NIK’05), pages 55–66. Tapir,
2005. Reprinted as chapter 11 in [153].

[156] R. K. Runde, Ø. Haugen, and K. Stølen. Refining UML interactions with under-
specification and nondeterminism. Nordic Journal of Computing, 12(2):175–188,
2005.

[157] R. K. Runde, Ø. Haugen, and K. Stølen. The pragmatics of STAIRS. In
5th International Symposium on Formal Methods for Components and Objects
(FMCO’06), number 4111 in Lecture Notes in Computer Science, pages 88–114.
Springer, 2006. Reprinted as chapter 13 in [153].

[158] R. K. Runde, Ø. Haugen, and K. Stølen. Refining UML interactions with under-
specification and nondeterminism. Research report 325, Department of Informat-
ics, University of Oslo, 2007. Revised and extended version of [156]. Reprinted
as chapter 12 in [153].

249



Bibliography

[159] R. K. Runde, A. Refsdal, and K. Stølen. Relating computer systems to se-
quence diagrams with underspecification, inherent nondeterminism and proba-
bilistic choice. Part 1. Research report 346, Department of Informatics, University
of Oslo, 2007. Reprinted as chapter 15 in [153].

[160] I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch. The UML Testing
Profile and its relation to TTCN-3. In 15th IFIP International Conference on
Testing of Communicating Systems (TestCom’03), number 2644 in Lecture Notes
in Computer Science, pages 79–94. Springer, 2003.

[161] D. A. Schmidt. Denotational Semantics. A Methodology for Language Develop-
ment. wcb, 1988.

[162] Service Availability Forum. SAF Backgrounder, 2004.

[163] M. Sgroi, A. Kondratyev, Y. Watanabe, L. Lavagno, and A. Sangiovanni-
Vincentelli. Synthesis of petri nets from Message Sequence Charts specifications
for protocol design. In Design, Analysis and Simulation of Distributed Systems
Symposium (DASD’04), pages 193–199, 2004.

[164] H. A. Simon. The sciences of the artificial. MIT Press, 3rd edition, 1996.

[165] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanović,
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Appendix A

Proofs of soundness, completeness
and termination of the operational
semantics

In this appendix we provide proofs of the soundness and completeness of the operational
semantics presented in chapter 8 with respect to the denotational semantics presented
in section 5.3. We also prove termination of execution of diagrams without infinite
loop.

Informally, the soundness property means that that if the operational semantics
produces a trace from a given diagram, this trace should be included in the denotational
semantics of that diagram. By completeness we mean that all traces in the denotational
semantics of a diagram should be producible applying the operational semantics on that
diagram.

The proofs are based on interpreting the rules of the operational semantics as a
rewrite theory. For a formal treatment of rewrite theories, see [28,123]. We assume the
communication model with one FIFO buffer for each message as defined in section 8.2.1.

In section A.1 we define a notion of environment of diagrams. In section A.2 we
prove soundness and completeness of simple diagrams (theorem 1 on page 279 and
theorem 2 on page 293). In section A.3 we prove termination (theorem 3 on page
297), soundness (theorem 4 on page 304) and completeness (theorem 5 on page 306) of
diagrams with high-level operators, but without infinite loop. In section A.4 we prove
soundness (theorem 6 on page 311) and completeness (theorem 7 on 317) of diagrams
with infinite loops.

A.1 Environment

The denotational semantics has an implicit notion of environment, which allows for,
e.g., the diagram in figure A.1 which consists of only one input event as long as the
lifeline of the corresponding output event does not occur in the diagram. In the op-
erational semantics, the state of the communication medium β in an execution state
[β, d] may be seen as an explicit notion of the environment. Given the diagram d in
figure A.1, the operational semantics produces the trace of [[ d ]] only if the message m
is available in the state of the communication medium, i.e.

(m, j, i) ∈ β ⇒ [β, d]
(?,(m,j,i))−−−−−→ [β \ {(m, j, i)}, skip]
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sd d

i

m

d = (?, (m, j, i))
[[ d ]] = {〈(?, (m, j, i))〉}

Figure A.1: Diagram with single receive event

(m, j, i) �∈ β ⇒ [β, d] �

In order to align the two semantics we must make explicit the environment of the
denotational semantics.

Definition 1 (Environment) The function env. ∈ D → P(E) returns the environ-
ment of a diagram d

env.d
def
= {(k, m)|k ∈ {!, ?} ∧m ∈ msg.d ∧ (k, m) �∈ ev.d}

Further we define

envM.d
def
= {m.e|e ∈ env.d}

envk.d
def
= {(k, m)|(k, m) ∈ env.d}

envk
M.d

def
= {m|(k, m) ∈ env.d}

A.2 Simple sequence diagrams

In this section we prove soundness and completeness of what we refer to as simple
diagrams; diagrams without high-level constructs such as loop and choice. The general
case is addressed in section A.3. In section A.3 we also prove termination.

Definition 2 (Simple diagram) A diagram is called simple iff it only contains

• events

• skip

• the operators seq, par and strict

In this section we are only concerned with simple diagrams. We also restrict our-
selves to diagrams where no event occurs more than once:

d = d1 seq d2 ⇒ ev.d1 ∩ ev.d2 = ∅
d = d1 par d2 ⇒ ev.d1 ∩ ev.d2 = ∅

d = d1 strict d2 ⇒ ev.d1 ∩ ev.d2 = ∅

It follows from this condition that no message can occur in more than one transmit
and one receive event.

Lemma 1 If d is a simple diagram, then

[[ d ]] = {(T, ∅)} with T ⊆ H
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Proof of lemma 1
Assume: d simple
Prove: [[ d ]] = {(T, ∅)} ∧ T ⊆ H
Proof: by induction on the structure of d
〈1〉1. Case: d = skip (induction step)
〈2〉1. [[ d ]] = {({〈〉}, ∅)}

Proof: Def. 5.3.
〈2〉2. {〈〉} ⊆ H

Proof: Def. of H and (5.1)
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2
〈1〉2. Case: d = e (induction step)
〈2〉1. [[ e ]] = {({〈e〉}, ∅)}

Proof: Def. 5.4.
〈2〉2. {〈e〉} ⊆ H

Proof: Def. of H and (5.1).
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. d = d1 seq d2 (induction step)

Assume: 1. [[ d1 ]] = {(T1, ∅)} (induction hypothesis)
2. [[ d2 ]] = {(T2, ∅)} (induction hypothesis)
3. T1, T2 ⊆ H (induction hypothesis)

Prove: [[ d1 seq d2 ]] = {(T, ∅)} ∧ T ⊆ H
〈2〉1. [[ d1 seq d2 ]] = {o1 � o2|o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

Proof: Def. (5.7).
〈2〉2. [[ d1 seq d2 ]] = {(T1, ∅) � (T2, ∅)}

Proof: 〈2〉1 and induction hypothesis.
〈2〉3. [[ d1 seq d2 ]] = {(T1 � T2, (∅ � T2) ∪ (∅ � ∅) ∪ (T1 � ∅))}

Proof: 〈2〉2 and def. (5.6).
〈2〉4. [[ d1 seq d2 ]] = {(T, ∅)}, with T = T1 � T2 ⊆ H
〈3〉1. T1 � T2 is a set, and T1 � T2 ⊆ H

Proof: Def. (5.5).
〈3〉2. (∅ � T2) ∪ (∅ � ∅) ∪ (T1 � ∅) = ∅

Proof: Def. (5.5).
〈3〉3. Q.E.D.

Proof: 〈2〉3, 〈3〉1 and 〈3〉2.
〈2〉5. Q.E.D.

Proof: 〈2〉4
〈1〉4. d = d1 par d2 (induction step)

Assume: 1. [[ d1 ]] = {(T1, ∅)} (induction hypothesis)
2. [[ d2 ]] = {(T2, ∅)} (induction hypothesis)
3. T1, T2 ⊆ H (induction hypothesis)

Prove: [[ d1 par d2 ]] = {(T, ∅)} ∧ T ⊆ H
〈2〉1. [[ d1 par d2 ]] = {o1 ‖ o2|o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

Proof: Def. (5.10).
〈2〉2. [[ d1 par d2 ]] = {(T1, ∅) ‖ (T2, ∅)}

Proof: 〈2〉1 and induction hypothesis.
〈2〉3. [[ d1 par d2 ]] = {(T1 ‖ T2, (∅ ‖ T2) ∪ (∅ ‖ ∅) ∪ (T1 ‖ ∅))}
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Proof: 〈2〉2 and def. (5.9).
〈2〉4. [[ d1 par d2 ]] = {(T, ∅)}, with T = T1 ‖ T2 ⊆ H
〈3〉1. T1 ‖ T2 is a set, and T1 ‖ T2 ⊆ H

Proof: Def. (5.8).
〈3〉2. (∅ ‖ T2) ∪ (∅ ‖ ∅) ∪ (T1 ‖ ∅) = ∅

Proof: Def. (5.8).
〈3〉3. Q.E.D.

Proof: 〈2〉3, 〈3〉1 and 〈3〉2.
〈2〉5. Q.E.D.

Proof: 〈2〉4
〈1〉5. d = d1 strict d2 (induction step)

Assume: 1. [[ d1 ]] = {(T1, ∅)} (induction hypothesis)
2. [[ d2 ]] = {(T2, ∅)} (induction hypothesis)
3. T1, T2 ⊆ H (induction hypothesis)

Prove: [[ d1 strict d2 ]] = {(T, ∅)} ∧ T ⊆ H
〈2〉1. [[ d1 strict d2 ]] = {o1 � o2|o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

Proof: Def. (5.13).
〈2〉2. [[ d1 strict d2 ]] = {(T1, ∅) � (T2, ∅)}

Proof: 〈2〉1 and induction hypothesis.
〈2〉3. [[ d1 strict d2 ]] = {(T1 � T2, (∅ � T2) ∪ (∅ � ∅) ∪ (T1 � ∅))}

Proof: 〈2〉2 and def. (5.12).
〈2〉4. [[ d1 strict d2 ]] = {(T, ∅)}, with T = T1 � T2 ⊆ H
〈3〉1. T1 � T2 is a set, and T1 � T2 ⊆ H

Proof: Def. (5.11).
〈3〉2. (∅ � T2) ∪ (∅ � ∅) ∪ (T1 � ∅) = ∅

Proof: Def. (5.11).
〈3〉3. Q.E.D.

Proof: 〈2〉3, 〈3〉1 and 〈3〉2.
〈2〉5. Q.E.D.

Proof: 〈2〉4
〈1〉6. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4 and 〈1〉5.

�

Given lemma 1 we will in the following associate [[ d ]] with T , and write t ∈ [[ d ]]
when t ∈ T as shorthand notation.

Lemma 2 Given two simple diagrams d1, d2 ∈ D, then

env.(d1 seq d2) = env.(d1 par d2) = env.(d1 strict d2) = (env.d1\ev.d2)∪(env.d2\ev.d1)

Proof of lemma 2
〈1〉1. env.(d1 seq d2)

= {(k, m) | k ∈ {!, ?} ∧m ∈ msg.(d1 seq d2)
∧ (k, m) �∈ ev.(d1 seq d2)} (Def. 1 of env. )

= {(k, m) | k ∈ {!, ?} ∧m ∈ (msg.d1 ∪msg.d2)
∧ (k, m) �∈ (ev.d1 ∪ ev.d2)} (Defs. of ev. and msg. )
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〈1〉2. env.(d1 par d2)
= {(k, m) | k ∈ {!, ?} ∧m ∈ msg.(d1 par d2)

∧ (k, m) �∈ ev.(d1 par d2)} (Def. 1 of env. )
= {(k, m) | k ∈ {!, ?} ∧m ∈ (msg.d1 ∪msg.d2)

∧ (k, m) �∈ (ev.d1 ∪ ev.d2)} (Defs. of ev. and msg. )
〈1〉3. env.(d1 strict d2)

= {(k, m) | k ∈ {!, ?} ∧m ∈ msg.(d1 strict d2)
∧ (k, m) �∈ ev.(d1 strict d2)} (Def. 1 of env. )

= {(k, m) | k ∈ {!, ?} ∧m ∈ (msg.d1 ∪msg.d2)
∧ (k, m) �∈ (ev.d1 ∪ ev.d2)} (Defs. of ev. and msg. )

〈1〉4. {(k, m) | k ∈ {!, ?} ∧m ∈ (msg.d1 ∪msg.d2) ∧ (k, m) �∈ (ev.d1 ∪ ev.d2)}
= {(k, m) | k ∈ {!, ?} ∧ (m ∈ msg.d1 ∨m ∈ msg.d2)

∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2}
= {(k, m) | (k ∈ {!, ?} ∧m ∈ msg.d1 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2)

∨ (k ∈ {!, ?} ∧m ∈ msg.d2 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2)
= {(k, m) | k ∈ {!, ?} ∧m ∈ msg.d1 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2}

∪{(k, m) | k ∈ {!, ?} ∧m ∈ msg.d2 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2}
= ({(k, m) | k ∈ {!, ?} ∧m ∈ msg.d1 ∧ (k, m) �∈ ev.d1} ∩

{(k, m) | (k, m) �∈ ev.d2}) ∪
({(k, m) | k ∈ {!, ?} ∧m ∈ msg.d2 ∧ (k, m) �∈ ev.d2} ∩

{(k, m) | (k, m) �∈ ev.d1})
= ({(k, m) | k ∈ {!, ?} ∧m ∈ msg.d1 ∧ (k, m) �∈ ev.d1} \

{(k, m) | (k, m) �∈ ev.d2}) ∪
({(k, m) | k ∈ {!, ?} ∧m ∈ msg.d2 ∧ (k, m) �∈ ev.d2} \

{(k, m) | (k, m) �∈ ev.d1})
= (env.d1 \ {(k, m) | (k, m) ∈ ev.d2})

∪ (env.d2 \ {(k, m) | (k, m) ∈ ev.d1})
= (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1)

Proof: Def. of env. , and set theory.
〈1〉5. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3 and 〈1〉4.

�

Definition 3 The function ev. ∈ E∗ → P(E) returns the events of a trace t. The
function is defined recursively:

ev.〈〉 def
= ∅

ev.(〈e〉�t)
def
= {e} ∪ ev.t

Lemma 3 Given t1, t2 ∈ E∗, then ev.(t1
�t2) = ev.t1 ∪ ev.t2

Proof of lemma 3
Assume: t1, t2 ∈ E∗

Prove: ev.(t1
�t2) = ev.t1 ∪ ev.t2

Proof: by induction on t1.
〈1〉1. Induction start. t1 = 〈〉
〈2〉1. ev.(t1

�t2) = ev.(〈〉�t2) = ev.t2
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Proof: 〈1〉1 and identity of � .
〈2〉2. ev.t1 ∪ ev.t2 = ev.〈〉 ∪ ev.t2 = ∅ ∪ ev.t2 = ev.t2

Proof: 〈1〉1 and def. of ev. .
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉2. Induction step

Assume: ev.(t1
�t2) = ev.t1 ∪ ev.t2 (induction hypothesis)

Prove: ev.((〈e〉�t1)
�t2) = ev.(〈e〉�t1) ∪ ev.t2

〈2〉1. ev.((〈e〉�t1)
�t2) = ev.(〈e〉�(t1

�t2)) = {e} ∪ ev.(t1
�t2)

= {e} ∪ ev.t1 ∪ ev.t2

Proof: Associativity of � , def. of ev. and induction hypothesis.

〈2〉2. ev.(〈e〉�t1) ∪ ev.t2 = {e} ∪ ev.t1 ∪ ev.t2
Proof: Def. of ev. .

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉3. Q.E.D.
〈1〉1 and 〈1〉2.

�

Lemma 4 Given simple diagrams d, d′ ∈ D without repetition of events. Then, for all
traces t, if there exist β, β ′ ∈ B such that

[β, d]
t−→ [β ′, d′]

then
ev.t = ev.d \ ev.d′

Proof of lemma 4
Assume: [β, d]

t−→ [β ′, d′]
Prove: e ∈ ev.t ⇐⇒ e ∈ (ev.d \ ev.d′)
〈1〉1. e ∈ (ev.d \ ev.d′) ⇐⇒ (e ∈ ev.d ∧ e �∈ ev.d′)

Proof: Set theory.
〈1〉2. e ∈ ev.t ⇒ e ∈ ev.d ∧ e �∈ ev.d′

Proof: Assume e ∈ ev.t. Then there must exist t1, t2 such that t = t1
�〈e〉�t2 and

β1, β2, d1, d2 such that

[β, d]
t1−→ [β1, d1]

e−→ [β2, d2]
t2−→ [β ′, d′]

By the assumption that d, and therefore also d1 and d2, are simple and have no
repetition of events, and by rules (8.3)-(8.14) we must have that e ∈ ev.d1 and
e �∈ ev.d2. Because events cannot reappear during rewrite of a diagram, this also
means that e ∈ ev.d and e �∈ ev.d′

〈1〉3. e ∈ ev.d ∧ e �∈ ev.d′ ⇒ e ∈ ev.t
Proof: Assume e ∈ ev.d and e �∈ ev.d′. Because application of rules (8.3)-(8.14) is
the only way of removing an event there must exist a sequence of rewrites such that

[β, d]
t1
�〈e〉�t2−−−−−−→ [β ′, d′]

which means there must exist t1 and t2 such that t = t1
�〈e〉�t2. By the definition

of ev.t we then have that e ∈ ev.t.
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〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

�

Lemma 5 Given simple diagram d ∈ D. For all traces t, if there exist β, β ′ ∈ B such
that

[β, d]
t−→ [β ′, skip]

then
ev.t = ev.d

Proof of lemma 5 Assume [β, d]
t−→ [β ′, skip]. By lemma 4 and the definition of

ev.skip, we have
ev.t = ev.d \ ev.skip = ev.d \ ∅ = ev.d

�

Definition 4 We formally define the filtering operator S© for finite sequences over
A:

V S©〈〉 def
= 〈〉

v ∈ V ⇒ V S©(〈v〉�t)
def
= 〈v〉�(V S©t)

v �∈ V ⇒ V S©(〈v〉�t)
def
= V S©t

(with V ⊆ A and t ∈ A∗).

Lemma 6 Given simple diagram d ∈ D. For all t ∈ E∗, if there exists β such that

[env!
M.d, d]

t−→ [β, skip]

then
t ∈ H

Proof of lemma 6
Assume: [env!

M.d, d]
t−→ [β, skip]

Prove: t ∈ H
〈1〉1. t ∈ H ⇐⇒

∀i ∈ [1..#t] : k.t[i] = ! ⇒ #({(!, m.t[i])} S©t|i) > #({(?, m.t[i])} S©t|i)
Proof: Semantic constraint on traces (5.1).

〈1〉2. ∀i ∈ [1..#t] : k.t[i] = ! ⇒ #({(!, m.t[i])} S©t|i) > #({(?, m.t[i])} S©t|i)
Let: j be arbitrary j ∈ [1..#t]
Prove: k.t[j] = ! ⇒ #({(!, m.t[j])} S©t|j) > #({(?, m.t[j])} S©t|j)
〈2〉1. Case: t[j] transmit event

Let: t[j] = (!, m). Then k.t[j] = ! and m.t[j] = m
Prove: #({(!, m)} S©t|j) > #({(?, m)} S©t|j)
〈3〉1. #({(!, m)} S©t|j) = 1

Proof: The assumptions that d is simple and has no repetition of events, and
lemma 5.

〈3〉2. #({(?, m)} S©t|j) = 0
Proof: by contradiction
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Assume: #({(?, m)} S©t|j) > 0
〈4〉1. There exist s, s′ such that

t|j = s�〈(?, m)〉�s′

Proof: Defs. of # and S© .
〈4〉2. There exist β ′, β ′′, β ′′ ∈ B, d′, d′′, d′′ ∈ D such that

[env!
M.d, d]

s−→ [β ′, d′]
(?,m)−→ [β ′′, d′′] s′−→ [β ′′′, d′′′]

Proof: Assumption and 〈4〉1.
〈4〉3. m ∈ β ′

Proof: 〈4〉2 and rules (8.3)-(8.14).
〈4〉4. m �∈ env!

M.d
Proof: (!, m) ∈ ev.t = ev.d (by assumption, and lemma 5) and def. 1 of
env!

M. .
〈4〉5. (!, m) ∈ ev.s

Proof: 〈4〉3, 〈4〉4 and rules (8.3)-(8.14).
〈4〉6. #({(!, m)} S©t|j−1) = 0

Proof: 〈3〉1 and defs. of # and S© and assumption that t[j] = (!, m).
〈4〉7. (!, m) �∈ ev.t|j−1

Proof: 〈4〉6 and def. of S© .
〈4〉8. (!, m) �∈ ev.s

Proof: 〈4〉7, 〈4〉1 and def. of ev. .
〈4〉9. Q.E.D.

Proof: 〈4〉5 and 〈4〉8 yield a contradiction, so we must have that
#({(?, m)} S©t|j) = 0

〈3〉3. Q.E.D.
Proof: 〈3〉1 and 〈3〉2

〈2〉2. Case: t[j] receive event
Let: t[j] = (?, m)
〈3〉1. Q.E.D.

Proof: Trivial since k.t[j] = ? and therefore (k.t[j] = !) = false.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Q.E.D.

Proof:〈1〉1 and 〈1〉2.

�

Lemma 7 Given simple diagrams d1, d2 ∈ D. For all traces t, if there exists β ∈ B
such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]

then there exist traces t1, t2 and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[end!

M.d2, d2]
t2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2
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Proof of lemma 7
Assume: There exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
Prove: There exist traces t1, t2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2

〈1〉1. There exist trace t1, t2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip]

〈2〉1. Let: t = 〈e〉�t′

〈2〉2. There exist β ′
1, β

′
2 ∈ B, d′

1, d
′
2 ∈ D such that

[env!
M.d1, d1]

e−→ [β ′
1, d

′
1] �

[env!
M.d2, d2]

e−→ [β ′
2, d

′
2]

(where � denotes exclusive or)
〈3〉1. There exist β ′ ∈ B, d′ ∈ D such that

[env!
M.(d1 seq d2), d1 seq d2]

e−→ [β ′, d′] t′−→ [β, skip]
Proof: Assumption and 〈2〉1

〈3〉2. [env!
M.(d1 seq d2), d1 seq d2]

e−→ [β ′, d′
1 seq d2] �

[env!
M.(d1 seq d2), d1 seq d2]

e−→ [β ′, d1 seq d′
2]

Proof: 〈3〉1, rules (8.3), (8.11) and (8.12), the assumption ev.d1 ∩ ev.d2 = ∅
and lemma 4.

〈3〉3. Case: [env!
M.(d1 seq d2), d1 seq d2]

e−→ [β ′, d′
1 seq d2]

Prove: [env!
M.d1, d1]

e−→ [β ′
1, d

′
1] ∧ [env!

M.d2, d2]
e

�

〈4〉1. [env!
M.d1, d1]

e−→ [β ′
1, d

′
1]

〈5〉1. Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d
′
1 seq d2)

Proof: By rule (8.3) this is a necessary condition for 〈3〉3 to be satisfied.
〈5〉2. Π(ll.d1 ∩ ll.(d1 seq d2), env!

M.(d1 seq d2), d1)
e−→

Π(ll.d1 ∩ ll.(d1 seq d2), env!
M.(d1 seq d2), d

′
1)

Proof: By rule (8.11) this is a necessary condition for 〈5〉1 to be satisfied.
〈5〉3. Π(ll.d1, env!

M.d1, d1)
e−→ Π(ll.d1, env!

M.d1, d
′
1)

〈6〉1. ll.d1 ∩ ll.(d1 seq d2) = ll.d1 ∩ (ll.d1 ∪ ll.d2) = ll.d1

Proof: Def. of ll.
〈6〉2. Case: e = (!, m)

It follows from the rules that the state of the communication medium is
irrelevant.

〈6〉3. Case: e = (?, m)
In this case it must be shown that m ∈ env!

M.d1.
〈7〉1. m ∈ msg.d1

Proof: Defs. of ev. and msg. , rules (8.10)-(8.14), 〈6〉3 and 〈5〉2.
〈7〉2. m ∈ env!

M.(d1 seq d2)
Proof: It follows from the recursive use of rules (8.3)-(8.14), and def.
of ready that this is a necessary condition for 〈3〉3 to be satisfied.

〈7〉3. m ∈ env!
M.(d1 seq d2) ⇐⇒ m ∈ env!

M.d1 ∧ (!, m) �∈ ev.d2

Proof: m ∈ env!
M.(d1 seq d2)
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⇔ (!, m) ∈ env.(d1 seq d2) (Def. 1)
⇔ (!, m) ∈ (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1) (Lemma 2)
⇔ ((!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2) ∨

((!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1)
⇔ ((!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2) ∨

((!, m) ∈ env.d2 ∧ (!, m) ∈ env.d1) (〈7〉1)
⇔ (!, m) ∈ env.d1 ∧

((!, m) �∈ ev.d2 ∨ (!, m) ∈ env.d2)
⇔ (!, m) ∈ env.d1 ∧ ((!, m) �∈ ev.d2 ∨

((!, m) �∈ ev.d2 ∧m ∈ msg.d2)) (Def. 1)
⇔ (!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2

⇔ m ∈ env!
M.d1 ∧ (!, m) �∈ ev.d2 (Def. 1)

〈7〉4. Q.E.D.
Proof: 〈7〉2 and 〈7〉3.

〈6〉4. Q.E.D.
Proof: 〈5〉2, 〈6〉1, 〈6〉2 and 〈6〉3.

〈5〉4. Q.E.D.
Proof: 〈5〉3 and rule (8.3)

〈4〉2. [env!
M.d2, d2]

e
�

〈5〉1. e �∈ ev.d2

Proof: 〈3〉3 and application of rules imply e ∈ ev.d1, and by assumption,
ev.d1 ∩ ev.d2 = ∅.

〈5〉2. e �∈ ev.d2 \ ev.d′
2

Proof: 〈5〉1.
〈5〉3. ¬([env!

M.d2, d2]
e−→ [β ′

2, d
′
2])

Proof: 〈5〉2 and lemma 4.
〈5〉4. Q.E.D.

Proof: 〈5〉3
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2
〈3〉4. Case: [env!

M.(d1 seq d2), d1 seq d2]
e−→ [β ′, d1 seq d′

2]
Prove: [env!

M.d2, d2]
e−→ [β ′

2, d
′
2] ∧ [env!

M.d1, d1]
e

�

〈4〉1. [env!
M.d2, d2]

e−→ [β ′
2, d

′
2]

〈5〉1. Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d1 seq d′
2)

Proof: By rule (8.3) this is a necessary condition for 〈3〉4 to be satisfied.
〈5〉2. Π(ll.(d1 seq d2) \ ll.d1, env!

M.(d1 seq d2), d2)
e−→

Π(ll.(d1 seq d2) \ ll.d2, env!
M.(d1 seq d2), d

′
2)

Proof: By rule (8.12) this is a necessary condition for 〈5〉1 to be satisfied.
〈5〉3. Π(ll.d2, env!

M.d2, d2)
e−→ Π(ll.d2, env!

M.d2, d
′
2)

〈6〉1. l.e ∈ ll.d2

〈7〉1. l.e ∈ ll.(d1 seq d2) \ ll.d1

Proof: This follows from 〈5〉2 and the rules.
〈7〉2. l.e ∈ ll.(d1 seq d2) \ ll.d1 ⇒ l.e ∈ (ll.d1∪ ll.d2)∧ l.e �∈ ll.d1 ⇒ (l.e ∈

ll.d1 ∨ l.e ∈ ll.d2) ∧ l.e �∈ ll.d1 ⇒ l.e ∈ ll.d2

Proof: Def. of ll. and 〈7〉1.
〈7〉3. Q.E.D.

Proof: 〈7〉2.
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〈6〉2. Case: e = (!, m)
It follows from the rules that the state of the communication medium is
irrelevant.

〈6〉3. Case: e = (?, m)
In this case it must be shown that m ∈ env!

M.d2.
〈7〉1. m ∈ msg.d2

Proof: Defs. of ev. and msg. , rules (8.10)-(8.14), 〈6〉3 and 〈5〉2.
〈7〉2. m ∈ env!

M.(d1 seq d2)
Proof: It follows from the recursive use of rules (8.3)-(8.14), and def.
of ready that this is a necessary condition for 〈3〉4 to be satisfied.

〈7〉3. m ∈ env!
M.(d1 seq d2) ⇐⇒ m ∈ env!

M.d2 ∧ (!, m) �∈ ev.d1

Proof: m ∈ env!
M.(d2 seq d1)

⇔ (!, m) ∈ env.(d1 seq d2) (Def. 1)
⇔ (!, m) ∈ (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1) (Lemma 2)
⇔ ((!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2) ∨

((!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1)
⇔ ((!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1) ∨

((!, m) ∈ env.d1 ∧ (!, m) ∈ env.d2) (〈7〉1)
⇔ (!, m) ∈ env.d2 ∧

((!, m) �∈ ev.d1 ∨ (!, m) ∈ env.d1)
⇔ (!, m) ∈ env.d2 ∧ ((!, m) �∈ ev.d1 ∨

((!, m) �∈ ev.d1 ∧m ∈ msg.d1)) (Def. 1)
⇔ (!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1

⇔ m ∈ env!
M.d2 ∧ (!, m) �∈ ev.d1 (Def. 1)

〈7〉4. Q.E.D.
Proof: 〈7〉2 and 〈7〉3.

〈6〉4. Q.E.D.
Proof: 〈5〉2, 〈6〉1, 〈6〉2 and 〈6〉3.

〈5〉4. Q.E.D.
Proof: 〈5〉3 and rule (8.3)

〈4〉2. [env!
M.d1, d1]

e
�

〈5〉1. e �∈ ev.d1

Proof: 〈3〉4 and application of rules imply e ∈ ev.d1, and by assumption,
ev.d1 ∩ ev.d2 = ∅.

〈5〉2. e �∈ ev.d1 \ ev.d′
1

Proof: 〈5〉1.
〈5〉3. ¬([env!

M.d1, d1]
e−→ [β ′

1, d
′
1])

Proof: 〈5〉2 and lemma 4.
〈5〉4. Q.E.D.

Proof: 〈5〉3
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2
〈3〉5. Q.E.D.

Proof: 〈3〉2, 〈3〉3 and 〈3〉4.
〈2〉3. Q.E.D.

Proof: We now have that [β ′, d′] t′−→ [β, skip] where d′ = d′
1 seq d2 or d′ =

d1 seq d′
2. By substituting [env!

M.d′, d′] t′−→ [β, skip] for the assumption we may
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repeat the argument until t′ = 〈〉, and we get 〈1〉1. The justification of the
substitution is that if e = (?, m) then β ′ = env!

M.d \ {m}, but we know that
e �∈ ev.d′. If e = (!, m), then β ′ = env!

M.d∪{m}, and env!
M.d′ = env!

M.d∪{m} ⇔
(?, m) ∈ ev.d′ and env!

M.d′ = env!
M.d ⇔ (?, m) �∈ ev.d.

〈1〉2. ∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2

Proof: by contradiction
Assume: 1. The traces t1 and t2 from 〈1〉1

2. l arbitrary chosen lifeline in L
3. e.l S©t �= e.l S©t1

�e.l S©t2
〈2〉1. #t = #t1 + #t2

Proof: This follows from ev.t = ev.d = ev.d1 ∪ ev.d2 = ev.t1 ∪ ev.t2 (lemma 5)
and the assumption that there is no repetition of events in d.

〈2〉2. There exist e1, e2 ∈ e.l such that {e1, e2} S©t �= {e1, e2} S©t1
�{e1, e2} S©t2

Proof: By assumption 3, 〈2〉1 and the assumption that there is no repetition of
events, such events must exist.

〈2〉3. Case: e1, e2 �∈ ev.d1 ∪ ev.d2

〈3〉1. {e1, e2} S©t = 〈〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈〉�〈〉 = 〈〉

Proof: Lemma 5
〈2〉4. Case: e1 �∈ ev.d1 ∪ ev.d2 ∧ e2 ∈ ev.d1

〈3〉1. {e1, e2} S©t = 〈e2〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈e2〉�〈〉 = 〈e2〉

Proof: Lemma 5
〈2〉5. Case: e1 �∈ ev.d1 ∪ ev.d2 ∧ e2 ∈ ev.d2

〈3〉1. {e1, e2} S©t = 〈e2〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈〉�〈e2〉 = 〈e2〉

Proof: Lemma 5
〈2〉6. Case: e1 ∈ ev.d1 ∧ e2 �∈ ev.d1 ∪ ev.d2

〈3〉1. {e1, e2} S©t = 〈e1〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈e1〉�〈〉 = 〈e1〉

Proof: Lemma 5
〈2〉7. Case: e1 ∈ ev.d2 ∧ e2 �∈ ev.d1 ∪ ev.d2

〈3〉1. {e1, e2} S©t = 〈e1〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈〉�〈e1〉 = 〈e1〉

Proof: Lemma 5
〈2〉8. Case: e1, e2 ∈ ev.d1

〈3〉1. e1, e2 �∈ ev.d2

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1

�{e1, e2} S©t2

= {e1, e2} S©(ev.d1 S©t)�{e1, e2} S©(ev.d2 S©t)
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= ({e1, e2} ∩ ev.d1) S©t�({e1, e2} ∩ ev.d2) S©t

= {e1, e2} S©t�∅ S©t

= {e1, e2} S©t�〈〉
= {e1, e2} S©t

Proof: 〈3〉2, {e1, e2} ⊆ ev.d1 (〈2〉8) and {e1, e2} ∩ ev.d2 = ∅ (〈3〉1).
〈2〉9. Case: e1, e2 ∈ ev.d2

〈3〉1. e1, e2 �∈ ev.d1

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1

�{e1, e2} S©t2

= {e1, e2} S©(ev.d1 S©t)�{e1, e2} S©(ev.d2 S©t)

= {e1, e2} ∩ ev.d1 S©t�{e1, e2} ∩ ev.d2 S©t

= ∅ S©t�{e1, e2} S©t

= 〈〉�{e1, e2} S©t
= {e1, e2} S©t

Proof: 〈3〉2, {e1, e2} ⊆ ev.d2 (〈2〉9) and {e1, e2} ∩ ev.d1 = ∅ (〈3〉1).
〈2〉10. Case: e1 ∈ ev.d1 ∧ e2 ∈ ev.d2

〈3〉1. e1 �∈ ev.d2 ∧ e2 �∈ ev.d1

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1 = {e1, e2} S©(ev.d1 S©t) = {e1, e2} ∩ ev.d1 S©t = {e1} S©t = 〈e1〉

Proof: Lemma 4, 〈2〉10, 〈3〉1 and 〈3〉2.
〈3〉4. {e1, e2} S©t2 = {e1, e2} S©(ev.d2 S©t) = {e1, e2} ∩ ev.d2 S©t = {e2} S©t = 〈e2〉

Proof: Lemma 4, 〈2〉10, 〈3〉1 and 〈3〉2.
〈3〉5. {e1, e2} S©t = 〈e2, e1〉

Proof: By assumption 3, 〈3〉3 and 〈3〉4 we have that {e1, e2} S©t �= 〈e1, e2〉. By
〈2〉10 and lemma 5 we have that {e,e2} ⊆ ev.t.

〈3〉6. There exist traces s1, s2, s3 such that t = s1
�〈e2〉�s2

�〈e1〉�s3

Proof: 〈3〉5.
〈3〉7. There exist β, β ′ ∈ B, d′

1, d
′
2, d

′′
2 ∈ D such that

[env!
M.(d1 seq d2), d1 seq d2]

s1−→ [β, d′
1 seq d′

2]
e2−→ [β ′, d′

1 seq d′′
2]

Proof: e2 ∈ ev.d2 and 〈3〉6.
〈3〉8. l.e1 = l.e2 = l

Proof: 〈2〉2, defs. of e. and l. .
〈3〉9. l �∈ ll.d′

1

〈4〉1. l ∈ ll.(d′
1 seq d′

2) \ ll.d′
1

Proof: By 〈3〉7 and application of the rules this is a necessary condition for
〈3〉8.

〈4〉2. l ∈ ll.(d′
1 seq d′

2) ∧ l �∈ ll.d′
1

Proof: 〈4〉1.
〈4〉3. Q.E.D.

Proof: 〈4〉2
〈3〉10. l ∈ ll.d′

1

〈4〉1. e1 ∈ ev.d′
1
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Proof: 〈2〉10, e1 �∈ ev.s1 and lemma 4.
〈4〉2. Q.E.D.

Proof: 〈3〉8 and def. of ll. .
〈2〉11. Case: e1 ∈ ev.d2 ∧ e2 ∈ ev.d1

〈3〉1. e1 �∈ ev.d1 ∧ e2 �∈ ev.d2

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1 = {e1, e2} S©(ev.d1 S©t) = {e1, e2} ∩ ev.d1 S©t = {e2} S©t = 〈e2〉

Proof: Lemma 4, 〈2〉11, 〈3〉1 and 〈3〉2.
〈3〉4. {e1, e2} S©t2 = {e1, e2} S©(ev.d2 S©t) = {e1, e2} ∩ ev.d2 S©t = {e1} S©t = 〈e1〉

Proof: Lemma 4, 〈2〉11, 〈3〉1 and 〈3〉2.
〈3〉5. {e1, e2} S©t = 〈e1, e2〉

Proof: By assumption 3, 〈3〉3 and 〈3〉4 we have that {e1, e2} S©t �= 〈e2, e1〉. By
〈2〉10 and lemma 5 we have that {e,e2} ⊆ ev.t.

〈3〉6. There exist traces s1, s2, s3 such that t = s1
�〈e1〉�s2

�〈e2〉�s3

Proof: 〈3〉5.
〈3〉7. There exist β, β ′ ∈ B, d′

1, d
′
2, d

′′
2 ∈ D such that

[env!
M.(d1, d2), d1 seq d2]

s1−→ [β, d′
1 seq d′

2]
e1−→ [β ′, d′

1 seq d′′
2]

Proof: e1 ∈ ev.d2 and 〈3〉6.
〈3〉8. l.e1 = l.e2 = l

Proof: 〈2〉2, defs. of e. and l. .
〈3〉9. l �∈ ll.d′

1

〈4〉1. l ∈ ll.(d′
1 seq d′

2) \ ll.d′
1

Proof: By 〈3〉7 and application of the rules this is a necessary condition for
〈3〉8.

〈4〉2. l ∈ ll.(d′
1 seq d′

2) ∧ l �∈ ll.d′
1

Proof: 〈4〉1.
〈4〉3. Q.E.D.

Proof: 〈4〉2
〈3〉10. l ∈ ll.d′

1

〈4〉1. e2 ∈ ev.d′
1

Proof: 〈2〉11, e2 �∈ ev.s1 and lemma 4.
〈4〉2. Q.E.D.

Proof: 〈3〉8 and def. of ll. .
〈2〉12. Q.E.D.

Proof: All possible cases yield a contradiction, so we must have that e.l S©t =

e.l S©t1
�e.l S©t2. Since l was arbitrary chosen, this must be true for all lifelines in L.

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Definition 5 We define a function Ω ∈ P(E)× P(E)× E∗ → {1, 2}∗ in the following
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way

Ω(E1, E2, 〈〉) def
= 〈〉

Ω(E1, E2, 〈e〉�t)
def
=

⎧⎪⎨
⎪⎩
〈1〉�Ω(E1, E2, t) if e ∈ E1

〈2〉�Ω(E1, E2, t) if e ∈ E2

Ω(E1, E2, t) otherwise

where we assume E1 ∩ E2 = ∅.

Definition 6 We generalize the concatenation operator � to range over pairs of
traces:

(t1, t2)
�(s1, s2)

def
= (t1

�s1, t2
�s2)

Lemma 8 πi(t1
�s1, t2

�s2) = πi(t1, t2)
�πi(s1, s2), i ∈ {1, 2}

Proof of lemma 8
〈1〉1. πi(t1

�s1, t2
�s2) = ti

�si

Proof: Def. of πi.

〈1〉2. πi(t1, t2)
�πi(s1, s2) = ti

�si

Proof: Def. of πi.
〈1〉3. Q.E.D.

Proof: 〈1〉1 and 〈1〉2.

�

Definition 7 We formally define the pair filtering operator T© (for finite sequences):

P T©(t1, t2)
def
= P T©(t1|min(#t1,#t2), t2|min(#t1,#t2))

P T©(〈〉, 〈〉) def
= (〈〉, 〈〉)

(v1, v2) ∈ P ⇒ P T©(〈v1〉�t1, 〈v2〉�t2)
def
= (〈v1〉, 〈v2〉)�P T©(t1, t2)

(v1, v2) �∈ P ⇒ P T©(〈v1〉�t1, 〈v2〉�t2)
def
= P T©(t1, t2)

where P is a set of pairs (P ⊆ A×B, t1 ∈ A∗, t2 ∈ B∗).

Lemma 9 Given simple diagrams d1, d2 ∈ D. For all traces t, if there exists β ∈ B
such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]

then there exist traces t1, t2 and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧ π2(({1} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t1 ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧ π2(({2} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t2

Proof of lemma 9
Assume: There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
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Prove: There exist traces t1, t2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

π2(({1} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t1 ∧
π2(({2} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t2 ∧

〈1〉1. Let: t = 〈e〉�t′

〈1〉2. There exist β ′
1, β

′
2 ∈ B, d′

1, d
′
2 ∈ D such that

([env!
M.d1, d1]

e−→ [β ′
1, d

′
1] ∧

π2(({1} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′)) =

〈e〉�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′))) �

([env!
M.d2, d2]

e−→ [β ′
2, d

′
2] ∧

π2(({2} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′)) =

〈e〉�π2(({2} × E) T©(Ω(ev.d1, ev.d2, t
′), t′)))

〈2〉1. There exist β ′ ∈ B, d′ ∈ D such that

[env!
M.(d1 par d2), d1 par d2]

e−→ [β ′, d′] t′−→ [β, skip]
Proof: Assumption and 〈1〉1

〈2〉2. [env!
M.(d1 par d2), d1 par d2]

e−→ [β ′, d′
1 par d2] �

[env!
M.(d1 par d2), d1 par d2]

e−→ [β ′, d1 par d′
2]

Proof: 〈2〉1, rules (8.3), (8.13), (8.14), assumption that ev.d1 ∩ ev.d2 = ∅, and
lemma 4.

〈2〉3. Case: [env!
M.(d1 par d2), d1 par d2]

e−→ [β ′, d′
1 par d2]

〈3〉1. There exists β ′
1 ∈ B such that

[env!
M.d1, d1]

e−→ [β ′
1, d

′
1]

Proof: Identical to proof of lemma 7.
〈3〉2. [env!

M.d2, d2]
e

�

Proof: Identical to proof of lemma 7.

〈3〉3. π2(({1} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′))

= 〈e〉�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′))

〈4〉1. e ∈ ev.d1

Proof: 〈3〉1 and lemma 4.

〈4〉2. Ω(ev.d1, ev.d2, 〈e〉�t′) = 〈1〉�Ω(ev.d1, ev.d2, t
′)

Proof: 〈4〉1, def. 5 of Ω and the assumption that ev.d1 ∩ ev.d2 = ∅.
〈4〉3. π2(({1} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′))

= π2(({1} × E)

T©(〈1〉�Ω(ev.d1, ev.d2, t
′), 〈e〉�t′)) (〈4〉2)

= π2((〈1〉, 〈e〉)
�(({1} × E) T©(Ω(ev.d1, ev.d2, t

′), t′))) (Def. 7 of T©)
= π2((〈1〉, 〈e〉))

�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′)) (Lemma 8)

= 〈e〉�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′)) (Def. of π2)

〈4〉4. Q.E.D.
Proof: 〈4〉2 and 〈4〉3.

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉4. Case: [env!
M.(d1 par d2), d1 par d2]

e−→ [β ′′, d1 par d′
2]

276



A.2 Simple sequence diagrams

Proof: Identical to proof of 〈2〉3.
〈2〉5. Q.E.D.

Proof: 〈2〉2, 〈2〉3 and 〈2〉4.
〈1〉3. Q.E.D.

Proof: We now have that [β ′, d′] t′−→ [β, skip] where d′ = d′
1 par d2 or d′ = d1 par d′

2.

By substituting [env!
M.d′, d′] t′−→ [β, skip] for the assumption we may repeat the

argument until t′ = 〈〉, and we get what we wanted to prove. The justification of the
substitution is that if e = (?, m) then β ′ = env!

M.d\{m}, but we know that e �∈ ev.d′.
If e = (!, m), then β ′ = env!

M.d∪{m}, and env!
M.d′ = env!

M.d∪{m} ⇔ (?, m) ∈ ev.d′

and env!
M.d′ = env!

M.d ⇔ (?, m) �∈ ev.d.

�

Lemma 10 Given simple diagrams d1, d2 ∈ D. For all traces t, if there exists β ∈ B
such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]

then there exist traces t1, t2 and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[end!

M.d2, d2]
t2−→ [β2, skip] ∧

t = t1
�t2

Proof of lemma 10
Assume: There exists β such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]
Prove: There exists traces t1, t2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

t = t1
�t2

〈1〉1. There exist traces t′, t′′, and β ′ ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t′−→ [β ′, skip strict d2] ∧
[β ′, d2]

t′′−→ [β, skip]
Proof: Assumption and rules (8.3) and (8.15).

〈1〉2. [env!
M.d1, d1]

t1−→ [β1, skip]

〈2〉1. [env!
M.(d1 strict d2), d1]

t′−→ [β ′, skip]
Proof: 〈1〉1.

〈2〉2. There exists β ′′ ∈ B such that [env!
M.d1, d1]

t′−→ [β ′′, skip]
Proof: by contradiction
Assume: 〈2〉2 is not the case. By 〈2〉1 and rules (8.3), (8.10), (8.11), (8.12),

(8.13), (8.14) and (8.15), two cases must be considered.
〈3〉1. Case: There exists e ∈ ev.t′ such that l.e ∈ ll.(d1 strict d2) but l.e �∈ ll.d1.

Proof: By 〈2〉1 and lemma 5, e ∈ ev.d1 so by def. of ev. and ll. we must have
that l.e ∈ ll.d1. Thus this is impossible.

〈3〉2. Case: There exists message m such that (?, m) ∈ ev.t′ and
m ∈ env!

M.(d1 strict d2), but m �∈ env!
M.d1.
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〈4〉1. m ∈ msg.d1

Proof: (?, m) ∈ ev.t′ (〈3〉2)
⇒ (?, m) ∈ ev.d1 (Lemma 5)
⇒ m ∈ msg.d1 (Defs. of msg and ev)

〈4〉2. (!, m) ∈ ev.d1

Proof: m �∈ env!
M.d1 (〈3〉2)

⇒ (!, m) �∈ env.d1 (Def. 1)
⇒ m �∈ msg.d1 ∨ (!, m) ∈ ev.d1 (Def. 1)
⇒ (!, m) ∈ ev.d1 (〈4〉1)

〈4〉3. (!, m) �∈ ev.d1

Proof: m ∈ env!
M.(d1 strict d2) (〈3〉2)

⇒ (!, m) ∈ env.(d1 strict d2) (Def. 1)
⇒ m ∈ msg.(d1 strict d2) ∧ (!, m) �∈ ev.(d1 strict d2) (Def. 1)
⇒ m ∈ msg.d1 ∪msg.d2 ∧ (!, m) �∈ ev.d1 ∪ ev.d2 (Def. of ev. )
⇒ (!, m) �∈ ev.d1 ∧ (!, m) �∈ ev.d2 (Set theory)
⇒ (!, m) �∈ ev.d1

〈4〉4. Q.E.D.
Proof: 〈4〉2 and 〈4〉3 yield a contradiction, so 〈3〉2 must be impossible.

〈3〉3. Q.E.D.
Proof: Since 〈3〉1 and 〈3〉2 are impossible, we must have 〈2〉2

〈2〉3. Q.E.D.
Proof: 〈2〉2 by letting t1 = t′ and β1 = β ′′.

〈1〉3. [env!
M.d2, d2]

t2−→ [β2, skip]

〈2〉1. [β ′, d2]
t′′−→ [β, skip]

Proof: 〈1〉1.

〈2〉2. There exist β ′′′ ∈ B such that [env!
M.d2, d2]

t′′−→ [β ′′′, skip]
Proof: by contradiction
Assume: 〈2〉2 is not the case
〈3〉1. There exists message m such that (?, m) ∈ ev.t′′ and m ∈ β ′, but m �∈

env!
M.d2

Proof: 〈2〉1, assumption 〈2〉2 is not the case, and rules (8.3), (8.10), (8.11),
(8.12), (8.13), (8.14) and (8.15).

〈3〉2. m ∈ msg.d2

Proof: (?, m) ∈ ev.t′′ (〈3〉1)
⇒ (?, m) ∈ ev.d2 (Lemma 5)
⇒ m ∈ msg.d2 (Defs. of msg and ev)

〈3〉3. (!, m) ∈ ev.d2

Proof: m �∈ env!
M.d2 (〈3〉1)

⇒ (!, m) �∈ env.d2 (Def. 1)
⇒ m �∈ msg.d2 ∨ (!, m) ∈ ev.d2 (Def. 1)
⇒ (!, m) ∈ ev.d2 (〈3〉2)

〈3〉4. (!, m) �∈ ev.d2
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Proof: m ∈ β ′ (〈3〉1)
⇒ m ∈ env!

M.(d1 strict d2) ∨ (!, m) ∈ ev.t′ (〈1〉1 and rules)
⇒ m ∈ env!

M.(d1 strict d2) ∨ (!, m) ∈ ev.d1 (Lemma 5)
⇒ m ∈ env!

M.(d1 strict d2) (ev.d1 ∩ ev.d2 = ∅)
⇒ (!, m) ∈ env.(d1 strict d2) (Def. 1)
⇒ m ∈ msg.(d1 strict d2) ∧

(!, m) �∈ ev.(d1 strict d2)
⇒ (m ∈ msg.d1 ∨m ∈ msg.d2) ∧

(!, m) �∈ ev.d1 ∧ (!, m) �∈ ev.d2 (Def. 1)
⇒ (!, m) �∈ ev.d2

〈3〉5. Q.E.D.
Proof: 〈3〉3 and 〈3〉4 yield a contradiction, so we must have 〈2〉2.

〈2〉3. Q.E.D.
Proof: 〈2〉2 by letting t2 = t′′ and β2 = β ′′′.

〈1〉4. t = t1
�t2

Proof: By assumption and 〈1〉1, t = t′�t′′. By proofs of 〈1〉2 and 〈1〉3, t′ = t1 and
t′′ = t2.

〈1〉5. Q.E.D.
Proof: 〈1〉2, 〈1〉3 and 〈1〉4.

�

Theorem 1 (Soundness) Given a simple diagram d ∈ D. Then, for all traces t, if
there exists β ∈ B such that

[env!
M.d, d]

t−→ [β, skip]

then
t ∈ [[ d ]]

Proof of theorem 1
Assume: There exists β ∈ B such that

[env!
M.d, d]

t−→ [β, skip]
Prove: t ∈ [[ d ]]
Proof: by induction on the structure of d
〈1〉1. Case: d = skip (induction start: empty diagram)

Assume: There exists β ∈ B such that

[env!
M.skip, skip]

t−→ [β, skip]
Prove: t ∈ [[ skip ]]
〈2〉1. t = 〈〉

Proof: Rule (8.7)
〈2〉2. 〈〉 ∈ [[ skip ]]
〈3〉1. [[ skip ]] = {〈〉}

Proof: Definition (5.3).
〈3〉2. Q.E.D.

Proof: 〈〉 ∈ {〈〉}
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
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〈1〉2. Case: d = (!, m) (induction start: single transmit event)
Assume: There exists β ∈ B such that

[env!
M.(!, m), (!, m)]

t−→ [β, skip]
Prove: t ∈ [[ (!, m) ]]
〈2〉1. t = 〈(!, m)〉
〈3〉1. [env!

M.(!, m), (!, m)]
(!,m)−→ [update(env!

M.(!, m), m.(!, m)), skip]
〈4〉1. Π(ll.(!, m), env!

M.(!, m), (!, m))
(!,m)−→ Π(ll.(!, m), env!

M.(!, m), skip)
〈5〉1. ll.(!, m) = {l.(!, m)}

Proof: Def. of ll.
〈5〉2. l.(!, m) ∈ ll.(!, m)

Proof: 〈5〉1
〈5〉3. k.(!, m) =!

Proof: Def. of k.
〈5〉4. Q.E.D.

Proof: 〈5〉2, 〈5〉3 and rule (8.10)
〈4〉2. Q.E.D.

Proof: 〈4〉1 and rule (8.3)
〈3〉2. Q.E.D.

Proof: 〈3〉1 and lemma 5
〈2〉2. 〈(!, m)〉 ∈ [[ (!, m) ]]
〈3〉1. [[ (!, m) ]] = {〈(!, m)〉}

Proof: Def. (5.4).
〈3〉2. Q.E.D.

Proof: 〈(!, m)〉 ∈ {〈(!, m)〉}.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Case: d = (?, m) (induction start: single receive event)

Assume: There exists β ∈ B such that

[env!
M.(?, m), (?, m)]

t−→ [β, skip]
Prove: t ∈ [[ (?, m) ]]
〈2〉1. t = 〈(?, m)〉
〈3〉1. env!

M.(?, m) = {m}
〈4〉1. env.(?, m) = {(!, m)}

Proof: Def. 1
〈4〉2. Q.E.D.

Proof: 〈4〉1 and def. 1

〈3〉2. [{m}, (?, m)]
(?,m)−→ [update({m}, m.(?, m)), skip]

〈4〉1. Π(ll.(?, m), {m}, (?, m))
(?,m)−→ Π(ll.(?, m), {m}, skip)

〈5〉1. ll.(?, m) = {l.(?, m)}
Proof: Def. of ll.

〈5〉2. l.(?, m) ∈ ll.(?, m)
Proof: 〈5〉1

〈5〉3. ready({m}, m.(?, m))
Proof: ready({m}, m.(?, m)) = m ∈ {m} = true (def. (8.8) and def.
of m. )
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〈5〉4. Q.E.D.
Proof: 〈5〉2, 〈5〉3 and rule (8.10)

〈4〉2. Q.E.D.
Proof: 〈4〉1 and rule (8.3)

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and lemma 5

〈2〉2. 〈(?, m)〉 ∈ [[ (?, m) ]]
〈3〉1. [[ (?, m) ]] = {〈(?, m)〉}

Proof: Def. (5.4).
〈3〉2. Q.E.D.

Proof: 〈(?, m)〉 ∈ {〈(?, m)〉}.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉4. Case: d = d1 seq d2 (induction step)

Assume: 1. There exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
2. For all traces t1, if there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip],
then t1 ∈ [[ d1 ]] (induction hypothesis)

3. For all traces t2, if there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip],
then t2 ∈ [[ d2 ]] (induction hypothesis)

Prove: t ∈ [[ d1 seq d2 ]]
〈2〉1. [[ d1 seq d2 ]] = {h ∈ H|∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] :

∀l ∈ L : e.l S©h = e.l S©h1
�e.l S©h2}

Proof: Assumption that d is simple, and defs. (5.5), (5.7) and (5.6).
〈2〉2. t ∈ H

Proof: Assumption 1 and lemma 6.

〈2〉3. ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : ∀l ∈ L : e.l S©t = e.l S©h1
�e.l S©h2

〈3〉1. There exist traces s1, s2, and β1, β2 ∈ B such that
[env!

M.d1, d1]
s1−→ [β1, skip] ∧

[env!
M.d2, d2]

s2−→ [β2, skip] ∧
∀l ∈ L : e.l S©t = e.l S©s1

�e.l S©s2

Proof: Assumption 1 and lemma 7.
〈3〉2. s1 ∈ [[ d1 ]], s2 ∈ [[ d2 ]]

Proof: 〈3〉1and assumptions 2 and 3 (induction hypothesis).
〈3〉3. Q.E.D.

Proof: 〈3〉1 and 〈3〉2
〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and 〈2〉3.
〈1〉5. Case: d = d1 par d2 (induction step)

Assume: 1. There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
2. For all traces t1, if there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip],
then t1 ∈ [[ d1 ]] (induction hypothesis)
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3. For all traces t2, if there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip],
then t2 ∈ [[ d2 ]] (induction hypothesis)

Prove: t ∈ [[ d1 par d2 ]]
〈2〉1. [[ d1 par d2 ]] = {h ∈ H|∃p ∈ {1, 2}∞ :

π2(({1} × E) T©(p, h)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, h)) ∈ [[ d2 ]] }

Proof: Assumption that d is simple, and defs. (5.8), (5.10) and (5.9).
〈2〉2. t ∈ H

Proof: Assumption 1 and lemma 6.
〈2〉3. ∃p ∈ {1, 2}∞ : π2(({1} × E) T©(p, t)) ∈ [[ d1 ]] ∧

π2(({2} × E) T©(p, t)) ∈ [[ d2 ]]
〈3〉1. There exist traces s1, s2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

s1−→ [β1, skip] ∧
[env!

M.d2, d2]
s2−→ [β2, skip] ∧

π2(({1} × E) T©(Ω(ev.d1, ev.d2, t), t)) = s1 ∧
π2(({2} × E) T©(Ω(ev.d1, ev.d2, t), t)) = s2

Proof: Assumption 1 and lemma 9.
〈3〉2. s1 ∈ [[ d1 ]], s2 ∈ [[ d2 ]]

Proof: 〈3〉1 and assumptions 2 and 3 (induction hypothesis).

〈3〉3. Let: p = Ω(ev.d1, ev.d2, t)
�{1}∞

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2, 〈3〉3 and def. of T© .

〈2〉4. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and 〈2〉3.

〈1〉6. Case: d = d1 strict d2 (induction step)
Assume: 1. There exists β ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]
2. For all traces t1, if there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip],
then t1 ∈ [[ d1 ]] (induction hypothesis)

3. For all traces t2, if there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip],
then t2 ∈ [[ d2 ]] (induction hypothesis)

Prove: t ∈ [[ d1 strict d2 ]]

〈2〉1. [[ d1 strict d2 ]] = {h ∈ H | ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : h = h1
�h2}

Proof: Assumption that d is simple, and defs. (5.11), (5.13) and (5.12).
〈2〉2. t ∈ H

Proof: Assumption 1 and lemma 6.

〈2〉3. ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : t = h1
�h2

〈3〉1. There exist traces s1, s2, and β1, β2 ∈ B such that
[env!

M.d1, d1]
s1−→ [β1, skip] ∧

[env!
M.d2, d2]

s2−→ [β2, skip] ∧
t = s1

�s2

Proof: Assumption 1 and lemma 10.
〈3〉2. s1 ∈ [[ d1 ]], s2 ∈ [[ d2 ]]
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Proof: 〈3〉1and assumptions 2 and 3 (induction hypothesis).
〈3〉3. Q.E.D.

Proof: 〈3〉1 and 〈3〉2
〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and 〈2〉3.
〈1〉7. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5 and 〈1〉6.

�

Lemma 11 Given t ∈ E∗. Then ev.t =
⋃

l∈L ev.(e.l S©t).

Proof of lemma 11
Assume: t ∈ E∗

Prove: ev.t =
⋃

l∈L ev.(e.l S©t)
Proof: by induction on t
〈1〉1. Induction start: t = 〈〉
〈2〉1. ev.t = ev.〈〉 = ∅

Proof: 〈1〉1 and def. of ev. .
〈2〉2.

⋃
l∈L ev.(e.l S©t)

=
⋃

l∈L ev.(e.l S©〈〉) (〈1〉1)
=

⋃
l∈L ev.〈〉 (def. of S© )

=
⋃

l∈L ∅ (def. of ev. )
= ∅

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉2. Induction step
Assume: ev.t =

⋃
l∈L ev.(e.l S©t) (induction hypothesis)

Prove: ev.(〈e〉�t) =
⋃

l∈L ev.(e.l S©(〈e〉�t))
〈2〉1. Assume: 1. L = {l1, l2, . . . , li, . . . , lk, . . .}

2. l.e = li
〈2〉2. e ∈ e.li

Proof: Assumption 2 and defs. of l. and e. .
〈2〉3. i �= j ⇒ e �∈ e.lj

Proof: Assumption 2 and defs. of l. and e. .

〈2〉4. ev.(〈e〉�t) = {e} ∪ ev.t
Proof: Def. of ev. .

〈2〉5.
⋃

l∈L ev.(e.l S©(〈e〉�t))
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= ev.(e.l1 S©(〈e〉�t)) ∪ ev.(e.l2 S©(〈e〉�t)) ∪ · · ·
∪ ev.(e.li S©(〈e〉�t)) ∪ · · ·
∪ ev.(e.lk S©(〈e〉�t)) ∪ · · · (Assumption 1)

= ev.(e.l1 S©t) ∪ ev.(e.l2 S©t) ∪ · · · (〈2〉2, 〈2〉3 and

∪ ev.(〈e〉�e.li S©t) ∪ · · · ∪ ev.(e.lk S©t) ∪ · · · def. of S© )
= ev.(e.l1 S©t) ∪ ev.(e.l2 S©t) ∪ · · ·

∪ {e} ∪ ev.(e.li S©t) ∪ · · · ∪ ev.(e.lk S©t) ∪ · · · (Def. of ev. )
= {e} ∪ ev.(e.l1 S©t) ∪ ev.(e.l2 S©t) ∪ · · ·

∪ ev.(e.li S©t) ∪ · · · ∪ ev.(e.lk S©t) ∪ · · · (Prop. of ∪)
= {e} ∪

⋃
l∈L ev.(e.l S©t) (Assumption 1)

= {e} ∪ ev.t (Ind. hyp.)
〈2〉6. Q.E.D.

Proof: 〈2〉4 and 〈2〉5.
〈1〉3. Q.E.D.

Proof: 〈1〉1 and 〈1〉2.

�

Lemma 12 Given diagram d ∈ D. If there exist β, β ′ ∈ B, d′ ∈ D, e1, e2 ∈ E such
that

[β, d]
〈e1,e2〉−→ [β ′, d′]

and

l.e1 �= l.e2, m.e1 �= m.e2

then

[β, d]
〈e2,e1〉−→ [β ′, d′]

Proof of lemma 12
Assume: There exist d′ ∈ D, β, β ′ ∈ B, e1, e2 ∈ E such that

1. [β, d]
〈e1,e2〉−→ [β ′, d′]

2. l.e1 �= l.e2

3. m.e1 �= m.e2

Prove: [β, d]
〈e2,e1〉−→ [β ′, d′]

Proof: by contradiction

〈1〉1. Assume not [β, d]
〈e2,e1〉−→ [β ′, d′]. Then there must exist β ′′ ∈ B, d′′ ∈ D such

that [β, d]
e1−→ [β ′′, d′′] e2−→ [β ′, d′] and something in [β, d], that is not present in

[β ′′, d′′], prevents e2 from being enabled (i.e. [β, d]
e2
�). There are two ways in

which this can be the case.
〈2〉1. Case: There exist d1, d

′
1, d2 ∈ D such that d = d1 seq d2, d′′ = d′

1 seq d2,
e2 ∈ ev.d2, l.e2 ∈ ll.d1 and l.e2 �∈ ll.d′

1.
This implies that e1 ∈ ev.d1 and l.e1 = l.e2 (because only e has been removed
from the diagram), which is impossible because of assumption 2.

〈2〉2. Case: k.e2 = ?, ready(β, m.e2) = false and ready(β ′′, m.e2) = true.
This implies that β ′′ = add(β, m.e2) which again implies that k.e1 = ! and
m.e1 = m.e2. But this is impossible because of assumption 3

〈1〉2. Q.E.D.
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Proof: Because the assumption of 〈1〉1 leads to contradiction we must have that

[β, d]
〈e2,e1〉−→ [β ′, d′] is possible.

�

Lemma 13 For all traces t, if there exit traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D such
that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2 ∧

t ∈ H
then there exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]

Proof of lemma 13
Assume: t is given and there exit traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D such that

1. [env!
M.d1, d1]

t1−→ [β1, skip]

2. [env!
M.d2, d2]

t2−→ [β2, skip]

3. ∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2

4. t ∈ H
Prove: There exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
〈1〉1. ev.t = ev.t1 ∪ ev.t2

Proof: ev.t =
⋃

l∈L ev.(e.l S©t) (Lemma 11)

=
⋃

l∈L ev.(e.l S©t1
�e.l S©t2) (Assumption 3)

=
⋃

l∈L(ev.(e.l S©t1) ∪ ev.(e.l S©t2)) (Lemma 3)
=

⋃
l∈L ev.(e.l S©t1) ∪

⋃
l∈L ev.(e.l S©t2) (Properties of ∪)

= ev.t1 ∪ ev.t2 (Lemma 11)
〈1〉2. t1 = ev.d1 S©t
〈2〉1. ev.t = ev.d1 ∪ ev.d2, ev.d1 = ev.t1

Proof: 〈1〉1, assumptions 1 and 2, and lemma 5.
〈2〉2. Let: ev.d1 S©t = t′1

Assume: t1 �= t′1
〈2〉3. ev.d1 = ev.t1 = ev.t′1

Proof: 〈2〉1 and 〈2〉2.
〈2〉4. There exist e1, e2 ∈ ev.d1, and traces s1, s2, s

′
2, s3, s

′
3 such that

t1 = s1
�〈e1〉�s2

�〈e2〉�s3

t′1 = s1
�s′2

�〈e2, e1〉�s′3
Proof: By 〈2〉2, t1 and t′1 are unequal. By 〈2〉3 and the assumption that d has
no repetition of events, we do not have the case that t1 is a proper prefix of t′1 or
that t′1 is a proper prefix of t1. Let s1 be the longest trace such that s1 � t1 and
s1 � t′1 and let e1 be the first element of t1 after s1 (e1 = t1[#s1 + 1]). Then we
must have that e1 �= t′1[#s1 +1], and, by 〈2〉3, that e1 = t′1[j] for some j > #s1 +1.
Let e2 = t′1[j − 1]. By 〈2〉3, the assumption that there are no repetition of events
and the fact that t1 and t′1 is equal up to s1, we must have that e2 = t1[k] for some
k > #s1 + 1.
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〈2〉5. There exist e1, e2 ∈ ev.d1 such that
{e1, e2} S©t1 = 〈e1, e2〉 and
{e1, e2} S©t′1 = 〈e2, e1〉.

Proof: 〈2〉4.
〈2〉6. {e1, e2} S©t = 〈e2, e1〉

Proof: 〈2〉2 and 〈2〉5.
〈2〉7. l.e1 �= l.e2

Proof: If there exists l such that l.e1 = l.e2 = l, then e1, e2 ∈ e.l which, by 〈2〉5
and 〈2〉6, imply that ({e1, e2} ∩ e.l) S©t �= ({e1, e2} ∩ e.l) S©t1. But this contradicts
assumption 3.

〈2〉8. m.e1 �= m.e2

Proof: If we assume that m.e1 = m.e2, we must have, by the assumption that
there are no repetition of events, that there exists m such that e1 = (!, m) and
e2 = (?, m) or e1 = (?, m) and e2 = (!, m). The first case contradicts, by 〈2〉6, the
assumption that t ∈ H (assumption 4), and the second case contradicts, by 〈2〉5,
the fact that t1 ∈ H (assumption 1 and lemma 6).

〈2〉9. Q.E.D.
Proof: If we assume that t1 �= ev.d1 S©t (〈2〉2) we get the result that l.e1 �= l.e2

(〈2〉7) and m.e1 �= m.e2 (〈2〉8) for any pair of events e1, e2 ∈ ev.d1 = ev.t1 such
that {e1, e2} S©t1 �= ({e1, e2}∩ ev.d1) S©t. By lemma 12, this means that the order of
e1 and e2 in t′1 is arbitrary and we may swap their position without this affecting
assumption 1. We may repeat this argument until t′1[#s1 + 1] = e1. We may then

substitute s1
�〈e1〉 for s1 in 〈2〉4 and repeat the argument until t1 = t′1 = s1. For

this reason we can assume 〈1〉2 without this affecting the rest of the proof.
〈1〉3. t2 = ev.d2 S©t

Proof: Identical to proof of 〈1〉2
〈1〉4. We may now describe a sequence of transitions such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]

〈2〉1. Let: t = 〈e〉�t′

〈2〉2. We have that either

there exists t′1 such that t1 = 〈e〉�t′1 and e �∈ ev.t2, or

there exists t′2 such that t2 = 〈e〉�t′2 and e �∈ ev.t1.
Proof: 〈1〉1, 〈1〉2, 〈1〉3, the overall assumption that ev.d1 ∩ ev.d2 = ∅, and the
facts that ev.d1 = ev.t1 and ev.d2 = ev.t2 (assumptions 1 and 2, and lemma 5.

〈2〉3. Case: t1 = 〈e〉�t′1 and e �∈ ev.t2
Prove: There exists d′

1 ∈ D and β ′ ∈ B such that
[env!

M.(d1 seq d2), d1 seq d2]
e−→ [β ′, d′

1 seq d2]
〈3〉1. There exists d′

1 ∈ D such that
Π(ll.d1, env!

M.d1, d1)
e−→ Π(ll.d1, env!

M.d1, d
′
1)

Proof: Case assumption 〈2〉3, assumption 1 and rule (8.3).
〈3〉2. There exists d′

1 ∈ D such that
Π(ll.d1 ∩ ll.(d1 seq d2), env!

M.(d1 seq d2), d1)
e−→

Π(ll.d1 ∩ ll.(d1 seq d2), env!
M.(d1 seq d2), d

′
1)

〈4〉1. ll.d1 ∩ ll.(d1 seq d2) = ll.d1 ∩ (ll.d1 ∪ ll.d2) = ll.d1

Proof: Def. of ll. .
〈4〉2. k.e = ! implies that the state of the communication medium is irrelevant.

k.e = ? implies that m.e ∈ env!
M.(d1 seq d2)
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Proof: Rule (8.10). k.e = ? implies that m.e ∈ env!
M.d1 and also that

(!, m.e) �∈ ev.t′ because t ∈ H (assumption 4), which means (!, m.e) �∈ ev.d′
1 ∪

ev.d2 (〈1〉1 and lemma 5). This implies m.e ∈ env!
M.(d1 seq d2) because

m.e ∈ env!
M.(d1 seq d2) ⇔ m.e ∈ env!

M.d1 ∧ (!, m.e) �∈ ev.d2 (see proof of
lemma 7).

〈4〉3. Q.E.D.
Proof: 〈3〉1, 〈4〉1, 〈4〉2.

〈3〉3. There exists d′
1 ∈ D such that

Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d
′
1 seq d2)

〈4〉1. ll.d1 ∩ ll.(d1 seq d2) �= ∅
Proof: e ∈ ev.d1 and def. of ll. .

〈4〉2. Q.E.D.
Proof: 〈3〉2, 〈4〉1 and rule (8.11)

〈3〉4. Q.E.D.
Proof: 〈3〉3 and rule (8.3).

〈2〉4. Case: t2 = 〈e〉�t′2 and e �∈ ev.t1
Prove: There exists d′

2 ∈ D and β ′ ∈ B such that
[env!

M.(d1 seq d2), d1 seq d2]
e−→ [β ′, d1 seq d′

2]
〈3〉1. There exists d′

2 ∈ D such that
Π(ll.d2, env!

M.d2, d2)
e−→ Π(ll.d2, env!

M.d2, d
′
2)

Proof: Case assumption 〈2〉4, assumption 2 and rule (8.3).
〈3〉2. There exists d′

2 ∈ D such that
Π(ll.(d1 seq d2) \ ll.d1, env!

M.(d1 seq d2), d2)
e−→

Π(ll.(d1 seq d2) \ ll.d1, env!
M.(d1 seq d2), d

′
2)

〈4〉1. l.e ∈ ll.(d1 seq d2) \ ll.d1

〈5〉1. l.e ∈ ll.(d1 seq d2) \ ll.d1

⇔ (l.e ∈ ll.e1 ∨ l.e ∈ ll.d2) ∧ l.e �∈ ll.d1

⇔ l.e ∈ ll.d2 ∧ l.e �∈ ll.d1

Proof: Def. of ll. and basic set theory.
〈5〉2. l.e ∈ ll.d2

Proof: Assumption 2, case assumption, lemma 5 and def. of ll. .
〈5〉3. l.e �∈ ll.d1

Proof: From assumption 3, 〈2〉1 and the case assumption we know that
e.(l.e) S©t1 = 〈〉. This implies that e.(l.e)∩ ev.t1 = e.(l.e)∩ ev.d2 = ∅, which
again imply that l.e �∈ ll.d1 (lemma 5, defs. of e. , l. , ev. and ll. ).

〈5〉4. Q.E.D.
Proof: 〈5〉1, 〈5〉2 and 〈5〉3.

〈4〉2. k.e = ! implies that the state of the communication medium is irrelevant.
k.e = ? implies that m.e ∈ env!

M.(d1 seq d2)
Proof: Rule (8.10). k.e = ? implies that m.e ∈ env!

M.d1 and also that
(!, m.e) �∈ ev.t′ because t ∈ H (assumption 4), which means (!, m.e) �∈ ev.d′

1 ∪
ev.d2 (〈1〉1 and lemma 5). This implies m.e ∈ env!

M.(d1 seq d2) because
m.e ∈ env!

M.(d1 seq d2) ⇔ m.e ∈ env!
M.d1 ∧ (!, m.e) �∈ ev.d2 (see proof of

lemma 7).
〈4〉3. Q.E.D.

Proof: 〈3〉2, 〈4〉1, 〈4〉2.
〈3〉3. There exists d′

2 ∈ D such that
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Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d1 seq d′
2)

〈4〉1. ll.(d1 seq d2) \ ll.d1 �= ∅
Proof: l.e ∈ ll.(d1 seq d2) \ ll.d1 (see 〈3〉2).

〈4〉2. Q.E.D.
Proof: 〈3〉2, 〈4〉1 and rule (8.12)

〈3〉4. Q.E.D.
Proof: 〈3〉3 and rule (8.3).

〈2〉5. We may now substitute t for t′ and repeat the argument until t = 〈〉. (For
justification of this see proof of lemma 7.)

〈2〉6. Q.E.D.
Proof: 〈2〉1-〈2〉4

〈1〉5. Q.E.D.
Proof: 〈1〉1-〈1〉4

�

Lemma 14 Given traces t, t1, t2 and oracle p ∈ {1, 2}∞. If

π2(({1} × E) T©(p, t)) = t1 ∧
π2(({2} × E) T©(p, t)) = t2

then
ev.t = ev.t1 ∪ ev.t2

Proof of lemma 14
Assume: t, t1, t2 and p ∈ {1, 2}∞ given, and

1. π2(({1} × E) T©(p, t)) = t1

2. π2(({2} × E) T©(p, t)) = t2

Prove: ev.t = ev.t1 ∪ ev.t2
Proof: by induction on t

〈1〉1. Induction start: t = 〈〉
Prove: ev.t = ev.t1 ∪ ev.t2

〈2〉1. ev.t = ev.〈〉 = ∅
Proof: 〈1〉1 and def. of ev. .

〈2〉2. ev.t1 ∪ ev.t2
= ev.π2(({1} × E) T©(p, 〈〉))
∪ ev.π2(({2} × E) T©(p, 〈〉)) (Assumptions 1 and 2, and 〈1〉1)

= ev.π2(({1} × E) T©(〈〉, 〈〉))
∪ ev.π2(({2} × E) T©(〈〉, 〈〉)) (Def. 7 of T© )

= ev.π2(〈〉, 〈〉) ∪ ev.π2(〈〉, 〈〉) (Def. 7 of T© )
= ev.〈〉 ∪ ev.〈〉 (Def. of π2)
= ∅ ∪ ∅ (Def. of. ev. )
= ∅

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉2. Induction step
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Assume: ev.t = ev.t1 ∪ ev.t2 (induction hypothesis)

Prove: ev.(t�〈e〉) = ev.π2(({1} × E) T©(p, t�〈e〉))
∪ ev.π2(({2} × E) T©(p, t�〈e〉))

〈2〉1. ev.(t�〈e〉)
= ev.t ∪ ev.〈e〉 (lemma 3)
= ev.t ∪ {e} (def. of ev. )

〈2〉2. Let: k ∈ {1, 2}
〈2〉3. ev.π2(({k} × E) T©(p, t�〈e〉))

= ev.π2(({k} × E) T©(p|#t+1, t
�〈e〉)) (Def. 7 of T© )

= ev.π2(({k} × E) T©(p|#t
�〈j〉, t�〈e〉)) (j ∈ {1, 2})

= ev.π2((({k} × E) T©(p|#t, t))
�(({k} × E) T©(〈j〉, 〈e〉))) (Defs. of � and T© )

= ev.(π2(({k} × E) T©(p|#t, t))
�π2(({k} × E) T©(〈j〉, 〈e〉))) (Lemma 8)

= ev.π2(({k} × E) T©(p|#t, t))
∪ ev.π2(({k} × E) T©(〈j〉, 〈e〉)) (Lemma 3)

= ev.π2(({k} × E) T©(p, t))
∪ ev.π2(({k} × E) T©(〈j〉, 〈e〉)) (Def. 7 of T© )

= tk ∪ ev.π2(({k} × E) T©(〈j〉, 〈e〉)) (Assumptions 1 and 2)

〈2〉4. ev.π2(({1} × E) T©(p, t�〈e〉))
∪ ev.π2(({2} × E) T©(p, t�〈e〉))
= t1 ∪ ev.π2(({1} × E) T©(〈j〉, 〈e〉))
∪ t2 ∪ ev.π2(({2} × E) T©(〈j〉, 〈e〉)) (〈2〉3, j ∈ {1, 2})

= t ∪ ev.π2(({1} × E) T©(〈j〉, 〈e〉))
∪ ev.π2(({2} × E) T©(〈j〉, 〈e〉)) (induction hypothesis)

〈2〉5. Case: j = 1
t ∪ ev.π2(({1} × E) T©(〈1〉, 〈e〉))
∪ ev.π2(({2} × E) T©(〈1〉, 〈e〉))
= t ∪ ev.π2(〈1〉, 〈e〉) ∪ ev.π2(〈〉, 〈〉) (Def. 7 of T© )
= ev.t ∪ ev.〈e〉 ∪ ev.〈〉 (Def. of π2)
= ev.t ∪ {e} ∪ ∅ (Def. of ev. )
= ev.t ∪ {e}

〈2〉6. Case: j = 2
t ∪ ev.π2(({1} × E) T©(〈2〉, 〈e〉))
∪ ev.π2(({2} × E) T©(〈2〉, 〈e〉))
= t ∪ ev.π2(〈〉, 〈〉) ∪ ev.π2(〈2〉, 〈e〉) (Def. 7 of T© )
= ev.t ∪ ev.〈〉 ∪ ev.〈e〉 (Def. of π2)
= ev.t ∪ ∅ ∪ {e} (Def. of ev. )
= ev.t ∪ {e}

〈2〉7. Q.E.D.
Proof: 〈2〉1-〈2〉6

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2

�
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Lemma 15 For all t, if there exist traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D, and p ∈
{1, 2}∞ such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

π2(({1} × E) T©(p, t)) = t1 ∧
π2(({2} × E) T©(p, t)) = t2 ∧
t ∈ H

then there exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]

Proof of lemma 15
Assume: t is given and there exist traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D, and p ∈

{1, 2}∞ such that

1. [env!
M.d1, d1]

t1−→ [β1, skip]

2. [env!
M.d2, d2]

t2−→ [β2, skip]
3. π2(({1} × E) T©(p, t)) = t1
4. π2(({2} × E) T©(p, t)) = t2
5. t ∈ H

Prove: There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
〈1〉1. ev.t = ev.t1 ∪ ev.t2

Proof: Assumptions 3 and 4, and lemma 14.
〈1〉2. We describe a sequence of transitions such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
We do this with guidance of the oracle p

〈2〉1. Let: t = 〈e〉�t′

〈2〉2. Case: p = 〈1〉�p′

Prove: There exists d′
1 ∈ D and β ′ ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

e−→ [β ′, d′
1 par d2]

〈3〉1. t1 = 〈e〉�π2(({1} × E) T©(p′, t′))
Proof: t1 = π2(({1} × E) T©(p, t)) (Assumption 3)

= π2(({1} × E) T©(〈1〉�p′, 〈e〉�t′)) (〈2〉1 and 〈2〉2)

= π2((〈1〉, 〈e〉)�(({1} × E) T©(p′, t′))) (Def. 7 of T© )

= π2(〈1〉, 〈e〉)�π2(({1} × E) T©(p′, t′)) (Lemma 8)

= 〈e〉�π2(({1} × E) T©(p′, t′)) (Def. of π2)
〈3〉2. There exists d′

1 ∈ D such that
Π(ll.d1, env!

M.d1, d1)
e−→ Π(ll.d1, env!

M.d1, d
′
1)

Proof: 〈3〉1, assumption 1 and rule (8.3).
〈3〉3. There exists d′

1 ∈ D such that
Π(ll.d1 ∩ ll.(d1 par d2), env!

M.(d1 par d2), d1)
e−→

Π(ll.d1 ∩ ll.(d1 par d2), env!
M.(d1 par d2), d

′
1)

〈4〉1. ll.d1 ∩ ll.(d1 par d2) = ll.d1 ∩ (ll.d1 ∪ ll.d2) = ll.d1

Proof: Def. of ll. .
〈4〉2. k.e = ! implies that the state of the communication medium is irrelevant.

k.e = ? implies that m.e ∈ env!
M.(d1 par d2)
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Proof: Rule (8.10). k.e = ? implies that m.e ∈ env!
M.d1 and also that

(!, m.e) �∈ ev.t′ because t ∈ H (assumption 5), which means (!, m.e) �∈ ev.d′
1 ∪

ev.d2 (〈1〉1 and lemma 5). This implies m.e ∈ env!
M.(d1 par d2) because

m.e ∈ env!
M.(d1 par d2) ⇔ m.e ∈ env!

M.d1 ∧ (!, m.e) �∈ ev.d2 (see proof of
lemma 7).

〈4〉3. Q.E.D.
Proof: 〈3〉2, 〈4〉1, 〈4〉2.

〈3〉4. There exists d′
1 ∈ D such that

Π(ll.(d1 par d2), env!
M.(d1 par d2), d1 par d2)

e−→
Π(ll.(d1 par d2), env!

M.(d1 par d2), d
′
1 par d2)

Proof: 〈3〉3, and rule (8.13)
〈3〉5. Q.E.D.

Proof: 〈3〉4 and rule (8.3).

〈2〉3. Case: p = 〈2〉�p′

Prove: There exists d′
2 ∈ D and β ′ ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

e−→ [β ′, d1 par d′
2]

Proof: Identical to proof of 〈2〉2 with t2 and rule (8.14) substituted for t1 and
rule (8.13).

〈2〉4. We may now substitute t for t′ and repeat the argument until t = 〈〉. (For
justification of this see proof of lemma 9.)

〈2〉5. Q.E.D.
Proof: 〈2〉1-〈2〉3

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2

�

Lemma 16 For all traces t, if there exit traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D such
that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

t = t1
�t2 ∧

t ∈ H
then there exists β ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]

Proof of lemma 16
Assume: t is given and there exist traces t1, t2 and β1, β2 ∈ B such that

1. [env!
M.d1, d1]

t1−→ [β1, skip]

2. [env!
M.d2, d2]

t2−→ [β2, skip]

3. t = t1
�t2

4. t ∈ H
Prove: There exists β ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]
〈1〉1. There exists β ′ ∈ B such that

[env!
M.(d1 strict d2), d1]

t1−→ [β ′, skip]
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Proof: by contradiction
Assume: 〈1〉1 is not the case. By assumption 1 and rules (8.3), (8.10), (8.11), (8.12),

(8.13), (8.14) and (8.15), two cases must be considered.
〈2〉1. Case: There exists e ∈ ev.t1 such that l.e ∈ ll.d1, but l.e �∈ ll.(d1 strict d2)

Proof: By def. of ll. , ll.d1 ⊆ ll.(d1 strict d2) = ll.d1 ∪ ll.d2 so this is impossible.
〈2〉2. Case: There exists message m such that (?, m) ∈ ev.t1 and m ∈ env!

M.d1, but
m �∈ env!

M.(d1 strict d2)
〈3〉1. m ∈ msg.d1

Proof: (?, m) ∈ ev.t1 (〈2〉2)
⇒ (?, m) ∈ ev.d1 (Lemma 5)
⇒ m ∈ msg.d1 (Defs. of msg and ev)

〈3〉2. (!, m) �∈ ev.d1

Proof: m ∈ env!
M.d1 (〈2〉2)

⇒ (!, m) ∈ env.d1 (Def. 1)
⇒ m ∈ msg.d1 ∧ (!, m) �∈ ev.d1 (Def. 1)
⇒ (!, m) �∈ ev.d1

〈3〉3. (!, m) ∈ ev.t2
Proof: m �∈ env!

M.(d1 strict d2) (〈2〉2)
⇒ (!, m) �∈ env.(d1 strict d2) (Def. 1)
⇒ m �∈ msg.(d1 strict d2) ∨

(!, m) ∈ ev.(d1 strict d2) (Def. 1)
⇒ (m �∈ msg.d1 ∧m �∈ msg.d2) ∨

(!, m) ∈ ev.d1 ∨ (!, m) ∈ ev.d2 (Defs. of msg and ev)
⇒ (!, m) ∈ ev.d1 ∨ (!, m) ∈ ev.d2 (〈3〉1)
⇒ (!, m) ∈ ev.d2 (〈3〉2)
⇒ (!, m) ∈ ev.t2 (Assumption 2 and Lemma 5)

〈3〉4. There exist traces s1, s2, s3, s4 such that

t1 = s1
�〈(?, m)〉�s2 and

t2 = s3
�〈(!, m)〉�s4

Proof: 〈2〉2, 〈3〉3 and def. 3 of ev. .
〈3〉5. Q.E.D.

Proof: By 〈3〉4 and assumption 3, t = s1
�〈(?, m)〉�s2

�s3
�〈(!, m)〉�s4. But

by assumption 4 this is impossible, so we get a contradiction and 〈2〉2 is impos-
sible.

〈2〉3. Q.E.D.
Proof: Since both 〈2〉1 and 〈2〉2 are impossible we must have 〈1〉1.

〈1〉2. There exists β ′ ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t1−→ [β ′, d2]
Proof: 〈1〉1, rules (8.3) and (8.15), and def. of skip as the identity element of strict.

〈1〉3. There exists β ′′ ∈ B such that

[β ′, d2]
t2−→ [β ′′, skip]

Proof: by contradiction
Assume: 〈1〉3 is not the case
〈2〉1. There exists message m such that (?, m) ∈ ev.t2 and m ∈ env!

M.d2, but m �∈ β ′

Proof: Assumption 2, assumption 〈1〉3 is not the case, and rules (8.3), (8.10),
(8.11), (8.12), (8.13), (8.14) and (8.15).

〈2〉2. m ∈ msg.d2
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Proof: (?, m) ∈ ev.t2 (〈2〉1)
⇒ (?, m) ∈ ev.d2 (Lemma 5)
⇒ m ∈ msg.d2 (Defs. of msg and ev)

〈2〉3. (!, m) �∈ ev.d2

Proof: m ∈ env!
M.d2 (〈2〉1)

⇒ (!, m) ∈ env.d2 (Def. 1)
⇒ m ∈ msg.d2 ∧ (!, m) �∈ ev.d2 (Def. 1)
⇒ (!, m) �∈ ev.d2

〈2〉4. (!, m) ∈ ev.d2

Proof: m �∈ β ′ (〈2〉1)
⇒ m �∈ env!

M.(d1 strict d2) ∧ (!, m) �∈ ev.t1 (〈1〉1 and rules)
⇒ (!, m) �∈ env.(d1 strict d2) ∧ (!, m) �∈ ev.d1 (Def. 1 and lemma 5)
⇒ (m �∈ msg.(d1 strict d2) ∨

(!, m) ∈ ev.(d1 strict d2)) ∧ (!, m) �∈ ev.d1 (Def. 1)
⇒ ((m �∈ msg.d1 ∧m �∈ msg.d2) ∨

(!, m) ∈ ev.d1 ∨ (!, m) ∈ ev.d2) ∧
(!, m) �∈ ev.d1 (Defs. of msg and ev)

⇒ ((!, m) ∈ ev.d1 ∨ (!, m) ∈ ev.d2) ∧
(!, m) �∈ ev.d1 (〈2〉2)

⇒ (!, m) ∈ ev.d2

〈2〉5. Q.E.D.
Proof: 〈2〉3 and 〈2〉4 yield a contradiction, so we must have that 〈1〉3 holds.

〈1〉4. Q.E.D.
Proof: 〈1〉2, 〈1〉3 and assumption 3 by letting β = β ′′.

�

Theorem 2 (Completeness) Given a simple diagram d. Then, for all traces t, if

t ∈ [[ d ]]

then there exists β ∈ B such that

[env!
M.d, d]

t−→ [β, skip]

Proof of theorem 2
Assume: t ∈ [[ d ]]
Prove: There exists β ∈ B such that

[env!
M.d, d]

t−→ [β, skip]
Proof: by induction on the structure of d.
〈1〉1. Case: d = skip (induction start: empty diagram)

Assume: t ∈ [[ skip ]]
Prove: There exists β ∈ B such that

[env!
M.skip, skip]

t−→ [β, skip]
〈2〉1. t = 〈〉
〈3〉1. [[ skip ]] = {〈〉}

Proof: Assumption that d is simple, and definition (5.3).
〈3〉2. Q.E.D.
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Proof: 〈3〉1.

〈2〉2. [env!
M.skip, skip]

〈〉−→ [∅, skip]
Proof: Rule (8.7) and def. of env!

M.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉2. Case: d = (!, m) (induction start: single output)

Assume: t ∈ [[ (!, m) ]]
Prove: There exists β ∈ B such that

[env!
M.(!, m), (!, m)]

t−→ [β, skip]
〈2〉1. t = 〈(!, m)〉
〈3〉1. [[ (!, m) ]] = {〈(!, m)〉}

Proof: Assumption that d is simple and def. (5.4).
〈3〉2. Q.E.D.

Proof: 〈3〉1
〈2〉2. [env!

M.(!, m), (!, m)]
(!,m)−→ [{m}, skip]

〈3〉1. Π(ll.(!, m), env!
M.(!, m), (!, m))

(!,m)−→ Π(ll.(!, m), env!
M.(!, m), skip)

Proof: l.(!, m) ∈ ll.(!, m) = {l.(!, m)} (def. of ll. ), k.(!, m) = ! (def. of
k. ), and rule (8.10).

〈3〉2. Q.E.D.
Proof: 〈3〉1, rule (8.3) and def. of env!

M.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Case: d = (?, m) (induction start: single input)

Assume: t ∈ [[ (?, m) ]]
Prove: There exists β ∈ B such that

[env!
M.(?, m), (?, m)]

t−→ [β, skip]
〈2〉1. t = 〈(?, m)〉
〈3〉1. [[ (?, m) ]] = {〈(?, m)〉}

Proof: Assumption that d is simple and def. (5.4).
〈3〉2. Q.E.D.

Proof: 〈3〉1
〈2〉2. [env!

M.(?, m), (?, m)]
(?,m)−→ [∅, skip]

〈3〉1. Π(ll.(?, m), env!
M.(?, m), (?, m))

(?,m)−→ Π(ll.(?, m), env!
M.(?, m), skip)

Proof: l.(?, m) ∈ ll.(?, m) = {l.(?, m)} (def. of ll. ),
ready(env!

M.(?, m)), m.(?, m) = ready({m}, m) = m ∈ {m} (defs. of
ready, env!

M. and m. ), and rule (8.10).
〈3〉2. Q.E.D.

Proof: 〈3〉1, rule (8.3) and def. of env!
M.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉4. Case: d = d1 seq d2 (induction step)
Assume: 1. t ∈ [[ d1 seq d2 ]]

2. For all t1, if t1 ∈ [[ d1 ]], then there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] (induction hypothesis)
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3. For all t2, if t2 ∈ [[ d2 ]], then there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip] (induction hypothesis)
Prove: There exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
〈2〉1. t ∈ {h ∈ H | ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] :

∀l ∈ L : e.l S©h = e.l S©h1
�e.l S©h2}

Proof: Assumption d is simple, assumption 1, and defs. (5.5), (5.7) and
(5.6).

〈2〉2. t ∈ H ∧ ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : ∀l ∈ L : e.l S©t = e.l S©h1
�e.l S©h2

Proof: 〈2〉1
〈2〉3. There exist traces h1, h2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

h1−→ [β1, skip] ∧
[env!

M.d2, d2]
h2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©h1
�e.l S©h2 ∧

t ∈ H
Proof: Assumptions 2 and 3 (induction hypothesis), and 〈2〉2.

〈2〉4. There exist β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
Proof: 〈2〉3 and lemma 13.

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉5. Case: d = d1 par d2 (induction step)
Assume: 1. t ∈ [[ d1 par d2 ]]

2. For all t1, if t1 ∈ [[ d1 ]], then there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] (induction hypothesis)
3. For all t2, if t2 ∈ [[ d2 ]], then there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip] (induction hypothesis)
Prove: There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
〈2〉1. t ∈ {h ∈ H | ∃p ∈ {1, 2}∞ :

π2(({1} × E) T©(p, h)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, h)) ∈ [[ d2 ]]

Proof: Assumption d is simple, assumption 1, and defs. (5.8), (5.10) and
(5.9).

〈2〉2. t ∈ H ∧ ∃p ∈ {1, 2}∞ :
π2(({1} × E) T©(p, t)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, t)) ∈ [[ d2 ]]

Proof: 〈2〉1
〈2〉3. There exist β1, β2 ∈ B, p ∈ {1, 2}∞ such that

[env!
M.d1, d1]

π2(({1}×E) T©(p,t))−−−−−−−−−−→ [β1, skip] ∧
[env!

M.d2, d2]
π2(({2}×E) T©(p,t))−−−−−−−−−−→ [β2, skip]

Proof: 〈2〉2 and assumptions 2 and 3 (induction hypothesis).
〈2〉4. There exist traces t1, t2, and β1, β2 ∈ B, p ∈ {1, 2}∞ such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧
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π2(({1} × E) T©(p, t)) = t1 ∧
π2(({2} × E) T©(p, t)) = t2 ∧
t ∈ H

Proof: 〈2〉3
〈2〉5. There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
Proof: 〈2〉4 and lemma 15.

〈2〉6. Q.E.D.
Proof: 〈2〉5.

〈1〉6. Case: d = d1 strict d2 (induction step)
Assume: 1. t ∈ [[ d1 strict d2 ]]

2. For all t1, if t1 ∈ [[ d1 ]], then there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] (induction hypothesis)
3. For all t2, if t2 ∈ [[ d2 ]], then there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip] (induction hypothesis)
Prove: There exists β ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]

〈2〉1. t ∈ {h ∈ H | ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : h = h1
�h2}

Proof: Assumption d is simple, assumption 1, and defs. (5.11), (5.13) and
(5.12).

〈2〉2. t ∈ H ∧ ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : t = h1
�h2

Proof: 〈2〉1
〈2〉3. There exist traces h1, h2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

h1−→ [β1, skip] ∧
[env!

M.d2, d2]
h2−→ [β2, skip] ∧

t = h1
�h2 ∧

t ∈ H
Proof: Assumptions 2 and 3 (induction hypothesis), and 〈2〉2.

〈2〉4. There exist β ∈ B such that

[env!
M.(d1 strict d2), d1 strict d2]

t−→ [β, skip]
Proof: 〈2〉3 and lemma 16.

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉7. Q.E.D.
Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5 and 〈1〉6.

�

A.3 Sequence diagrams with high-level operators

and finite behavior

In this section we prove termination, soundness and completeness of diagrams with
high-level operators with finite behavior. This means the operators refuse, assert, alt,
xalt, and loop〈n〉 with n �= ∞. Diagrams with infinite loops are addresed in section
A.4.
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In the above section we assumed [[ d ]] = {(T, ∅)} for any diagram d. In this section
we assume the general semantic model [[ d ]] = {(p1, n1), (p2, n2), . . . , (pm, pm)}, but
write t ∈ [[ d ]] as a shorthand for t ∈

⋃
i=1,...,m(pi ∪ ni) when we find this suitable.

Further we treat the denotation of assert to be [[ assert d ]] = [[ d ]] for the purpose of the
following proofs.

By termination we mean a state [β, d] where no further execution steps are possible.
Usually this means that d = skip, but it is possible to make other diagrams where no
execution is possible, e.g. the diagram d = (?, (m, l, l)) seq (!, (m, l, l)) which specify
that lifeline l receives message m from itself before it sends it.

Theorem 3 (Termination) Given a diagram d ∈ D without infinite loops. If we
assume progression of execution, then execution of [env!

M.d, d] will terminate.

Proof of theorem 3
Assume: Diagram d ∈ D without infinite loops
Prove: Execution of [env!

M.d1, d1] terminates
〈1〉1. Let: w ∈ D → N be a weight function defined as

w(skip)
def
= 0

w(e)
def
= 1 (for e ∈ E)

w(d1 seq d2)
def
= w(d1 par d2)

def
= w(d1 strict d2)

def
= w(d1) + w(d2) + 1

w(d1 alt d2)
def
= w(d1 xalt d2)

def
= max(w(d1), w(d2)) + 1

w(refuse d1)
def
= w(assert d1)

def
= w(d1) + 1

w(loop〈n〉 d1)
def
= n · (w(d1) + 2)

〈1〉2. w(d) ≥ 0
Proof: by induction on the structure of d.
Induction start:
〈2〉1. Case: d = skip
〈3〉1. w(d) = 0

Proof: Def. of w.
〈3〉2. Q.E.D.

Proof: 〈3〉1.
〈2〉2. Case: d = e (single event)
〈3〉1. w(d) = 1

Proof: Def. of w.
〈3〉2. Q.E.D.

Proof: 〈3〉1.
Induction step:
Assume: w(d1) ≥ 0 ∧ w(d2) ≥ 0 (Induction hypothesis)
〈2〉3. Case: d = d1 seq d2 or d = d1 par d2 or d = d1 strict d2

〈3〉1. w(d) = w(d1) + w(d2) + 1 > 0
Proof: Def. of w and induction hypothesis.

〈3〉2. Q.E.D.
Proof: 〈3〉1

〈2〉4. Case: d = d1 alt d2 or d = d1 xalt d2

〈3〉1. w(d) = max(w(d1), w(d2)) + 1 > 0
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Proof: Def. of w and max(w(d1), w(d2)) ≥ 0 (induction hypothesis and prop-
erties of max).

〈3〉2. Q.E.D.
Proof: 〈3〉1

〈2〉5. Case: d = refuse d1 or d = assert d1

〈3〉1. w(d) = w(d1) + 1 > 0
Proof: Def. of w and induction hypothesis.

〈3〉2. Q.E.D.
Proof: 〈3〉1.

〈2〉6. Case: d = loop〈n〉 d1

〈3〉1. w(d) = n · (w(d1) + 2)
Proof: Def. of w.

〈3〉2. w(d1) + 2 > 0
Proof: Induction hypothesis.

〈3〉3. n ≥ 0
Proof: Def. of D.

〈3〉4. w(d) ≥ 0
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈3〉5. Q.E.D.
Proof: 〈3〉4.

〈2〉7. Q.E.D.
Proof: 〈2〉1-〈2〉6.

〈1〉3. [β, d]
e−→ [β ′, d′] ∧ e ∈ E ∪ T ⇒ w(d) > w(d′)

Assume: [β, d]
e−→ [β ′, d′] ∧ e ∈ E ∪ T

Prove: w(d) > w(d′)
Proof: by induction on the structure of d
Induction start:
〈2〉1. Case: d = e (single event)
〈3〉1. d′ = skip

Proof: Rules (8.3) and (8.10).
〈3〉2. w(d) = 1 < 0 = w(d′)

Proof: 〈2〉1, 〈3〉1 and def. of w.
〈3〉3. Q.E.D.

Proof: 〈3〉2.
Induction step:
Assume: [βk, dk]

e−→ [βk, d
′
k] ∧ e ∈ E ∪ T ⇒ w(dk) > w(d′

k), k ∈ {1, 2} (induction
hypothesis)

〈2〉2. Case: d = d1 alt d2 or d = d1 xalt d2

〈3〉1. (d′ = d1 ∨ d′ = d2) ∧ e ∈ T
Proof: Rules (8.6), (8.16) and (8.17).

〈3〉2. Case: d′ = d1

〈4〉1. w(d) = max(w(d1), w(d2)) + 1 > w(d1) = w(d′)
Proof: Def. of w and max(w(d1), w(d2)) ≥ w(d1).

〈4〉2. Q.E.D.
Proof: 〈4〉1.

〈3〉3. Case: d′ = d2

〈4〉1. w(d) = max(w(d1), w(d2)) + 1 > w(d2) = w(d′)
Proof: Def. of w and max(w(d1), w(d2)) ≥ w(d2).
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〈4〉2. Q.E.D.
Proof: 〈4〉1.

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉3. Case: d = refuse d1 or d = assert d1

〈3〉1. d′ = d1 ∧ e ∈ T
Proof: Rules (8.6), (8.18), (8.19).

〈3〉2. w(d) = w(d1) + 1 > w(d1) = w(d′)
Proof: Def. of w.

〈3〉3. Q.E.D.
Proof: 〈3〉2.

〈2〉4. Case: d = loop〈n〉 d1

〈3〉1. n > 0
Proof: Assumption and n = 0 ⇒ d = skip (see section 8.3.9).

〈3〉2. d = d1 seq loop〈n− 1〉 d1 ∧ e ∈ T
Proof: 〈3〉1 and rules (8.6) and (8.20).

〈3〉3. w(d) = n · (w(d1) + 2) = n · w(d1) + 2 · n
Proof: Def. of w.

〈3〉4. w(d′) = w(d1) + (n− 1) · (w(d1) + 2) + 1
= w(d1) + n · w(d1) + 2 · n− w(d1)− 2 + 1 = n · w(d1) + 2 · n− 1

Proof: 〈3〉2 and def. of w.
〈3〉5. w(d) = n · w(d1) + 2 · n > n · w(d1) + 2 · n− 1 = w(d′)

Proof: 〈3〉3 and 〈3〉4.
〈3〉6. Q.E.D.

Proof: 〈3〉5
〈2〉5. Case: d = d1 seq d2

〈3〉1. ((d′ = d′
1 seq d2 ∧ [β1, d1]

e−→ [β ′
1, d

′
1])

∨(d′ = d1 seq d′
2 ∧ [β2, d2]

e−→ [β ′
2, d

′
2]))

∧ e ∈ E ∪ T
Proof: By rules (8.3), (8.11) and (8.12) either d1 or d2 is executed (see also
proof of lemma 7).

〈3〉2. Case: d′ = d′
1 seq d2 ∧ [β1, d1]

e−→ [β ′
1, d

′
1] ∧ e ∈ E ∪ T

〈4〉1. w(d1) > w(d′
1)

Proof: Case assumption 〈3〉2 and induction hypothesis.
〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d′

1) + w(d2) + 1 = w(d′)
Proof: Case assumption 〈2〉5, case assumption 〈3〉2, 〈4〉1 and def. of w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉3. Case: d′ = d1 seq d′
2 ∧ [β2, d2]

e−→ [β ′
2, d

′
2] ∧ e ∈ E ∪ T

〈4〉1. w(d2) > w(d′
2)

Proof: Case assumption 〈3〉3 and induction hypothesis.
〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d1) + w(d′

2) + 1 = w(d′)
Proof: Case assumption 〈2〉5, case assumption 〈3〉3, 〈4〉1 and def. of w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉6. Case: d = d1 par d2
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〈3〉1. ((d′ = d′
1 par d2 ∧ [β1, d1]

e−→ [β ′
1, d

′
1])

∨(d′ = d1 par d′
2 ∧ [β2, d2]

e−→ [β ′
2, d

′
2]))

∧ e ∈ E ∪ T
Proof: By rules (8.3), (8.13) and (8.14) either d1 or d2 is executed (see also
proof of lemma 9).

〈3〉2. Case: d′ = d′
1 par d2 ∧ [β1, d1]

e−→ [β ′
1, d

′
1] ∧ e ∈ E ∪ T

〈4〉1. w(d1) > w(d′
1)

Proof: Case assumption 〈3〉2 and induction hypothesis.
〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d′

1) + w(d2) + 1 = w(d′)
Proof: Case assumption 〈2〉6, case assumption 〈3〉2, 〈4〉1 and def. of w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉3. Case: d′ = d1 par d′
2 ∧ [β2, d2]

e−→ [β ′
2, d

′
2] ∧ e ∈ E ∪ T

〈4〉1. w(d2) > w(d′
2)

Proof: Case assumption 〈3〉3 and induction hypothesis.
〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d1) + w(d′

2) + 1 = w(d′)
Proof: Case assumption 〈2〉6, case assumption 〈3〉3, 〈4〉1 and def. of w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉7. Case: d = d1 strict d2

〈3〉1. d′ = d′
1 strict d2 ∧ [β1, d1]

e−→ [β ′
1, d

′
1]) ∧ e ∈ E ∪ T

Proof: Rules (8.3) and (8.15).
〈3〉2. w(d1) > w(d′

1)
Proof: 〈3〉1 and induction hypothesis.

〈3〉3. w(d) = w(d1) + w(d2) + 1 > w(d′
1) + w(d2) + 1 = w(d′)

Proof: Case assumption 〈2〉7, 〈3〉2, and def. of w.
〈3〉4. Q.E.D.

Proof: 〈3〉3
〈2〉8. Q.E.D.

Proof: 〈2〉1-〈2〉7.
〈1〉4. Q.E.D.

Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

�

In the previous section we assumed that diagrams do not have repetition of events.
We make the same assumption for diagrams that are have high level operators. For
the operators refuse, assert, alt and xalt this is straight forward by assuming that for a
diagram d:

d = d1 alt d2 ∨ d = d1 xalt d2 ⇒ ev.d1 ∩ ev.d2 = ∅

However, the loop is a bit more problematic. Given a diagram d, assume that we
rename every signal s in d and give it the new name sk where k ∈ N. Let dk denote
the resulting diagram. We now assume, both in the denotational and the operational
semantics, that we have an implicit counter and a way of doing this renaming every
time the body of a loop is “copied” out of the loop. A way to do this could be to
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redefine the Π rule for loop as

Π(L, β, loopc〈n〉 d)
τloop−→ Π(L, β, dc seq loopc+1〈n− 1〉 d) (A.1)

and the definition of semantic loop to

μc
n [[ d ]]

def
= [[ dc ]] � μc+1

n−1 [[ d ]] (A.2)

where c ∈ N is a counter. Further we could redefine ev. and msg. as follows

msg.loopc〈n〉 d
def
= msg.dc ∪msg.loopc+1〈n− 1〉 d

ev.loopc〈n〉 d
def
= ev.dc ∪ ev.loopc+1〈n− 1〉 d

In the following we assume these new definitions, also when not writing it out explicitly.

Lemma 17 Given a diagram d. For all traces t such that (there exists β such that)

[env!
M.d, d]

t−→ [β, skip]

we may find a simple diagram d′ (and β ′) such that

[env!
M.d′, d′] E S©t−→ [β ′, skip]

Proof of lemma 17
Assume: ∃β : [env!

M.d, d]
t−→ [β, skip]

Prove: ∃d′, β ′ : [env!
M.d′, d′] E S©t−→ [β ′, skip], d′ simple

Proof: by induction on d.
〈1〉1. Induction start: d simple

Proof: Trivial by letting d = d′ and β = β ′. By lemma 5, E S©t = t.
Induction step:

Assume: ∀dk, tk : ∃βk : [env!
M.dk, dk]

tk−→ [βk, skip] ⇒
∃d′

k, β
′
k : [env!

M.d′
k, d

′
k]

E S©tk−−−→ [β ′
k, skip], d′

k simple (induction hypothesis)
〈1〉2. Case: d = d1 seq d2 or d = d1 par d2 or d = d1 strict d2

Proof: By rules (8.3), (8.11), (8.12), (8.13), (8.14) and (8.15), t is obtained by
alternately executing d1 and d2 in some suitable fashion. This means there must

exist traces t1 and t2 (and β1 and β2) such that [env!
M.dk, dk]

tk−→ [βk, skip] for
k ∈ {1, 2} and t is (some kind of) merge of t1 and t2. By the induction hypothesis
we may find d′

k such that it produces E S©tk (for k ∈ {1, 2}). Let d′ = d′
1 seq d′

2 or
d′ = d′

1 par d′
2 or d′ = d′

1 strict d′
2. Then clearly d′ is simple. Further, by applying

the same execution scheme (i.e., alternation between the left and right hand side of
the operator), except for the silent events in t, d′ produces E S©t.

〈1〉3. Case: d = refuse d1

Proof: By assumption and rules (8.6) and (8.18), t = 〈τrefuse〉�t1 such that

[env!
M.refuse d1, d1]

t1−→ [β, skip]. By env!
M.refuse d1 = env!

M.d1 and the induction

hypothesis, we may find simple d′
1 such that [env!

M.d′
1, d

′
1]

E S©t1−−−→ [β ′
1, skip]. Let d′ =

d′
1. Clearly d′ is simple. Further, we have that [env!

M.d′, d′] E S©t−−→ [β ′
1, skip] since

E S©〈τrefuse〉�t1 = E S©t1 (by def. of S© and τrefuse �∈ E).
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〈1〉4. Case: d = assert d1

Proof: By assumption and rules (8.6) and (8.19), t = 〈τassert〉�t1 such that

[env!
M.assert d1, d1]

t1−→ [β, skip]. By env!
M.assert d1 = env!

M.d1 and the induction

hypothesis, we may find simple d′
1 such that [env!

M.d′
1, d

′
1]

E S©t1−−−→ [β ′
1, skip]. Let d′ =

d′
1. Clearly d′ is simple. Further, we have that [env!

M.d′, d′] E S©t−−→ [β ′
1, skip] since

E S©〈τassert〉�t1 = E S©t1 (by def. of S© and τassert �∈ E).
〈1〉5. Case: d = d1 alt d2

Proof: By assumption and rules (8.6) and (8.16), t = 〈τalt〉�tk such that

[env!
M.d, dk]

tk−→ [β, skip], for k = 1 or k = 2. Because env!
M.d = env!

M.d1∪env!
M.d2,

env!
M.d1∩ env!

M.d2 = ∅ and by the induction hypothesis we may find simple d′
k such

that [env!
M.d′

k, d
′
k]

E S©tk−−−→ [β ′
k, skip] for the appropriate choice of k. Let d′ = d′

k (for this

choice of k). Clearly d′ is simple. Further, we have that [env!
M.d′, d′] E S©t−−→ [β ′

k, skip]

since E S©t = E S©〈τalt〉�tk = E S©tk (by def. of S© and τalt �∈ E).
〈1〉6. Case: d = d1 xalt d2

Proof: By assumption and rules (8.6) and (8.17), t = 〈τxalt〉�tk such that

[env!
M.d, dk]

tk−→ [β, skip], for k = 1 or k = 2. Because env!
M.d = env!

M.d1∪env!
M.d2,

env!
M.d1∩ env!

M.d2 = ∅ and by the induction hypothesis we may find simple d′
k such

that [env!
M.d′

k, d
′
k]

E S©tk−−−→ [β ′
k, skip] for the appropriate choice of k. Let d′ = d′

k (for this

choice of k). Clearly d′ is simple. Further, we have that [env!
M.d′, d′] E S©t−−→ [β ′

k, skip]

since E S©t = E S©〈τxalt〉�tk = E S©tk (by def. of S© and τxalt �∈ E).
〈1〉7. Case: d = loop〈n〉 d1

Proof: by induction on n.
〈2〉1. Induction start: n = 1

Proof: By assumption and rules (8.6) and (8.20), t = 〈τloop〉�t1 such that

[env!
M.loop〈1〉 d1, loop〈1〉 d1]

τloop−→ [env!
M.loop〈1〉 d1, d1 seq loop〈0〉 d1] = [env!

M.d1∪
env!

M.skip, d1 seq skip] = [env!
M.d1, d1]. By the induction hypothesis we may find

simple d′
1 such that [env!

M.d′
1, d

′
1]

E S©t1−−−→ [β ′
1, skip]. Let d′ = d′

1. Clearly d′ is simple.

Further, we have that [env!
M.d′, d′] E S©t−−→ since E S©t = E S©〈τloop〉�t1 = E S©t1 (by def.

of S© and τloop �∈ E).
〈2〉2. Induction step: n = k + 1

Assume: For all t and d1, if these exists β such that

[env!
M.loop〈k〉 d1, loop〈k〉 d1]

t−→ [β, skip] then we may find simple d′

(and β ′) such that [env!
M.d′, d′] E S©t−−→ [β ′, skip] (induction hypothesis 2)

Proof: By assumption and rules (8.6) and (8.20), t = 〈τloop〉�t′ such that

[env!
M.loop〈k +1〉 d1, loop〈k +1〉 d1]

τloop−−→ [env!
M.loop〈k +1〉 d1, d1 seq loop〈k〉 d1]

t′−→ [β, skip]. We have that env!
M.loop〈k + 1〉 d1 = env!

M.d1 ∪ env!
M.loop〈k〉 d1 =

env!
M.d1 seq loop〈k〉 d1. By this, the induction hypotheses and 〈1〉2 we may find

simple d′′ such that [env!
M.d′′, d′′] E S©t′−−−→ [β ′, skip]. Let d′ = d′′. Clearly d′ is simple.

Further, we have that [env!
M.d′, d′] E S©t−−→ since E S©t = E S©〈τloop〉�t′ = E S©t′ (by def.

of S© and τloop �∈ E).
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
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〈1〉8. Q.E.D.
Proof: 〈1〉1-〈1〉7.

�

Lemma 18 Given a diagram d. For all traces t such that

t ∈ [[ d ]]

we may find a simple diagram d′ such that

t ∈ [[ d′ ]]

Proof of lemma 18
Assume: t ∈ [[ d ]]
Prove: ∃d′ : t ∈ [[ d′ ]], d′ simple.
Proof: by induction on d.
〈1〉1. Induction start: d simple

Proof: Trivial: Let d = d′.
Induction step:
Assume: If tk ∈ [[ dk ]] then there exists simple d′

k such that tk ∈ [[ d′
k ]] (induction

hypothesis)
〈1〉2. d = d1 seq d2 or d = d1 par d2 or d = d1 strict d2

Proof: By definitions (5.5)-(5.6), (5.8)-(5.9), and (5.11)-(5.12) there exist traces t1
and t2 such that t is obtained from t1 and t2. By the induction hypothesis we may
find simple d′

1 and d′
2 such that t1 ∈ [[ d′

1 ]] and t2 ∈ [[ d′
2 ]]. Let d′ = d′

1 seq d′
2 or

d′ = d′
1 par d′

2 or d′ = d′
1 strict d′

2. Clearly d′ is simple and t ∈ [[ d′ ]].
〈1〉3. d = refuse d1

Proof: By def. [[ d1 ]] = {(p1, n1), . . . , (pm, nm)} iff [[ d ]] = {(∅, p1 ∪ n1), . . . , (∅, pm ∪
nm)}, so t ∈ [[ d ]] iff t ∈ pi or t ∈ ni (for some i ∈ {1, . . . , m}) iff t ∈ [[ d1 ]]. By
induction hypothesis there exists simple d′

1 such that t ∈ [[ d′
1 ]]. Let d′ = d′

1. Clearly
d′ is simple and t ∈ [[ d′ ]].

〈1〉4. d = assert d1

Proof: We have assumed that [[ assert d1 ]] = [[ d1 ]] so t ∈ [[ d ]] iff t ∈ [[ d1 ]]. By
induction hypothesis there exists simple d′

1 such that t ∈ [[ d′
1 ]]. Let d′ = d′

1. Clearly
d′ is simple and t ∈ [[ d′ ]].

〈1〉5. d = d1 alt d2 or d = d1 xalt d2

Proof: By def. t ∈ [[ d1 alt d2 ]] or t ∈ [[ d1 xalt d2 ]] iff t ∈ [[ d1 ]]  [[ d2 ]] or t ∈
[[ d1 ]]∪ [[ d2 ]] iff t ∈ [[ d1 ]] or t ∈ [[ d2 ]]. Chose the appropriate k ∈ {1, 2}. By induction
hypothesis there exist simple d′

k such that t ∈ [[ d′
k ]]. Let d′ = d′

k. Clearly d′ is simple
and t ∈ [[ d′ ]].

〈1〉6. d = loop〈n〉 d1

Proof: By def. [[ d ]] = [[ loop〈n〉 d1 ]] = μn [[ d1 ]] = [[ d1
1 ]] � [[ d2

1 ]] � · · · � [[ dn
1 ]].

By this and defs. (5.5)-(5.6) we have that [[ d ]] = [[ d1
1 seq d2

1 seq · · · seq dn
1 ]]. By

the induction hypothesis and 〈1〉2 we may find simple d1
1
′
, d2

2
′
, . . . , dn

2
′ such that t ∈

[[ d1
1
′
seq d2

1
′
seq · · · seq dn

1
′ ]]. Let d′ = d1

1
′
seq d2

1
′
seq · · · seq dn

1
′. Clearly d′ is simple

and t ∈ [[ d′ ]].
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〈1〉7. Q.E.D.
Proof: 〈1〉1-〈1〉6.

�

Theorem 4 (Soundness) Given diagram d ∈ D without infinite loops. For all traces
t ∈ (E ∪ T )∗, if there exists β ∈ B such that

[env!
M.d, d]

t−→ [β, skip]

then
E S©t ∈ [[ d ]]

Proof of theorem 4
Assume: ∃β : [env!

M.d, d]
t−→ [β, skip]

Prove: E S©t ∈ [[ d ]]
Proof: by induction on d.
〈1〉1. Induction start: d = skip, d = (!, m), d = (?, m)

Proof: This carries over from theorem 1.
Induction step:

Assume: ∃βk : [env!
M.dk, dk]

tk−→ [βk, skip] ⇒ E S©tk ∈ [[ d ]]
〈1〉2. Case: d = d1 seq d2 or d = d1 par d2 or d = d1 strict d2

Proof: By lemmas 17 and 18 this follows from theorem 1
〈1〉3. Case: d = refuse d1

〈2〉1. t = 〈τrefuse〉�t1 such that [env!
M.d, d]

τrefuse−−−→ [env!
M.d, d1]

t1−→ [β, skip]
Proof: Assumptions and rules (8.6) and (8.18).

〈2〉2. E S©t = E S©〈τrefuse〉�t1 = E S©t1
Proof: 〈2〉1, def. of S© and τrefuse �∈ E .

〈2〉3. E S©t ∈ [[ d1 ]]
Proof: 〈2〉2 and induction hypothesis (by env!

M.refuse d1 = env!
M.d1).

〈2〉4. E S©t ∈ [[ refuse d1 ]]
Proof: Def. (5.19) of the denotation of refuse.

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉4. Case: d = assert d1

〈2〉1. t = 〈τassert〉�t1 such that [env!
M.d, d]

τassert−−−→ [env!
M.d, d1]

t1−→ [β, skip]
Proof: Assumptions and rules (8.6) and (8.19).

〈2〉2. E S©t = E S©〈τassert〉�t1 = E S©t1
Proof: 〈2〉1, def. of S© and τassert �∈ E .

〈2〉3. E S©t ∈ [[ d1 ]]
Proof: 〈2〉2 and induction hypothesis (by env!

M.assert d1 = env!
M.d1).

〈2〉4. E S©t ∈ [[ assert d1 ]]
Proof: Assumption that [[ assert d1 ]] = [[ d1 ]].

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉5. Case: d = d1 alt d2

〈2〉1. t = 〈τalt〉�tk such that [env!
M.d, d]

τalt−→ [env!
M.d, dk]

tk−→ [β, skip] for k = 1 or
k = 2
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Proof: Assumptions and rules (8.6) and (8.16).

〈2〉2. E S©t = E S©〈τalt〉�tk = E S©tk
Proof: 〈2〉1, def. of S© and τalt �∈ E .

〈2〉3. E S©t ∈ [[ dk ]] for k = 1 or k = 2
Proof: 〈2〉2 and induction hypothesis (by env!

M.d = env!
M.d1 ∪ env!

M.d2,
env!

M.d1 ∩ env!
M.d2 = ∅).

〈2〉4. E S©t ∈ [[ d1 alt d2 ]]
Proof: 〈2〉3 and def. (5.14).

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉6. Case: d = d1 xalt d2

〈2〉1. t = 〈τxalt〉�tk such that [env!
M.d, d]

τxalt−→ [env!
M.d, dk]

tk−→ [β, skip] for k = 1 or
k = 2

Proof: Assumptions and rules (8.6) and (8.17).

〈2〉2. E S©t = E S©〈τxalt〉�tk = E S©tk
Proof: 〈2〉1, def. of S© and τxalt �∈ E .

〈2〉3. E S©t ∈ [[ dk ]] for k = 1 or k = 2
Proof: 〈2〉2 and induction hypothesis (by env!

M.d = env!
M.d1 ∪ env!

M.d2,
env!

M.d1 ∩ env!
M.d2 = ∅).

〈2〉4. E S©t ∈ [[ d1 xalt d2 ]]
Proof: 〈2〉3 and def. (5.18).

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉7. Case: d = loop〈n〉 d1

Proof: Induction on n
〈2〉1. Induction start: n = 1

〈3〉1. t = 〈τloop〉�t1 such that [env!
M.loop〈1〉 d1, loop〈1〉 d1]

τloop−→
[env!

M.loop〈1〉 d1, d1 seq loop〈0〉 d1]
t1−→ [β, skip]

Proof: Assumptions and rules (8.6) and (8.20).
〈3〉2. E S©t1 ∈ [[ d1 ]]

Proof: 〈3〉1 and induction hypothesis (by d1 seq loop〈0〉 d1 = d1 seq skip = d1

and env!
M.loop〈1〉 d1 = env!

M.d1 ∪ env!
M.skip = env!

M.d1).

〈3〉3. E S©t = E S©〈τloop〉�t1 = E S©t1
Proof: 〈3〉1, def. of S© and τloop �∈ E .

〈3〉4. [[ loop〈1〉 d1 ]] = μ1[[ d1 ]] = [[ d1 ]]
Proof: Defs. (5.22), (5.23).

〈3〉5. E S©t = E S©t1 ∈ [[ d1 ]] = [[ loop〈1〉 d1 ]] = [[ d ]]
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
Proof: 〈3〉5

〈2〉2. Induction step: n = k + 1
Assume: ∀d1, s : ∃β : [env!

M.loop〈k〉 d1, loop〈k〉 d1]
s−→ [β, skip] ⇒ E S©s ∈

[[ loop〈k〉 ]] (induction hypothesis 2)

〈3〉1. t = 〈τloop〉�t′ such that [env!
M.loop〈k + 1〉 d1, loop〈k + 1〉 d1]

τloop−→
[env!

M.loop〈k + 1〉 , d1 seq loop〈k〉 d1]
t′−→ [β, skip]

Proof: Assumptions and rules (8.6) and (8.20).
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〈3〉2. E S©t′ ∈ [[ d1 seq loop〈k〉 d1 ]]
Proof: 〈3〉1, induction hypotheses (by env!

M.loop〈k + 1〉 d1 = env!
M.d1 ∪

env!
M.loop〈k〉 d1 = env!

M.d1 seq loop〈k〉 d1) and 〈1〉2.

〈3〉3. E S©t = E S©〈τloop〉�t′ = E S©t′

Proof: 〈3〉1, def. of S© and τloop �∈ E .
〈3〉4. [[ loop〈k + 1〉 d1 ]] = μk+1[[ d1 ]] = [[ d1 ]] � μk[[ d1 ]]

= [[ d1 ]] � [[ loop〈k〉 d1 ]] = [[ d1 seq loop〈k〉 d1 ]]
Proof: Defs. (5.5), (5.7), (5.6), (5.22), (5.23).

〈3〉5. E S©t = E S©t′ ∈ [[ d1 seq loop〈k〉 d1 ]] = [[ loop〈k + 1〉 d1 ]] = [[ d ]]
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
Proof: 〈3〉5.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉8. Q.E.D.
Proof: 〈1〉1-〈1〉7.

�

Theorem 5 (Completeness) Given a diagram d ∈ D without infinite loops. For all
traces t ∈ E∗, if

t ∈ [[ d ]]

then there exist trace t′ ∈ (E ∪ T )∗ and β ∈ B such that

[env!
M.d, d]

t′−→ [β, skip] and E S©t′ = t

Proof of theorem 5
Assume: t ∈ [[ d ]]

Prove: ∃t′, β : [env!
M.d, d]

t′−→ [β, skip] ∧ E S©t′ = t
Proof: by induction on d.
〈1〉1. Induction start: d = skip, d = (!, m), d = (?, m)

Proof: This carries over from theorem 2.
Induction step:

Assume: tk ∈ [[ dk ]] ⇒ ∃t′k, βk : [env!
M.dk, dk]

t′k−→ [βk, skip] ∧ E S©t′k = tk (induction
hypothesis)

〈1〉2. Case: d = d1 seq d2 or d = d1 par d2 or d = d1 strict d2

Proof: By 17 and 18 this follows from theorem 2.
〈1〉3. d = refuse d1

〈2〉1. t ∈ [[ d1 ]]
Proof: Assumption and def. (5.19).

〈2〉2. ∃t′1, β1 : [env!
M.d1, d1]

t′1−→ [β1, skip] ∧ E S©t′1 = t
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. Let: t′ = 〈τrefuse〉�t′1
〈2〉4. [env!

M.d, d]
τrefuse−−−→ [env!

M.d, d1]
t′1−→ [β1, skip]

Proof: 〈2〉2, 〈2〉3, rules (8.6) and (8.18) and env!
M.d = env!

M.refuse d1 = env!
M.d1.

〈2〉5. E S©t′ = E S©〈τrefuse〉�t′1 = E S©t′1 = t
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Proof: 〈2〉2, 〈2〉3, def. of S© and τrefuse �∈ E .
〈2〉6. Q.E.D.

Proof: 〈2〉3, 〈2〉4 and 〈2〉5.
〈1〉4. d = assert d1

〈2〉1. t ∈ [[ d1 ]]
Proof: Assumption that [[ assert d1 ]] = [[ d1 ]].

〈2〉2. ∃t′1, β1 : [env!
M.d1, d1]

t′1−→ [β1, skip] ∧ E S©t′1 = t
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. Let: t′ = 〈τassert〉�t′1
〈2〉4. [env!

M.d, d]
τassert−−−→ [env!

M.d, d1]
t′1−→ [β1, skip]

Proof: 〈2〉2, 〈2〉3, rules (8.6) and (8.19) and env!
M.d = env!

M.assert d1 = env!
M.d1.

〈2〉5. E S©t′ = E S©〈τassert〉�t′1 = E S©t′1 = t
Proof: 〈2〉2, 〈2〉3, def. of S© and τassert �∈ E .

〈2〉6. Q.E.D.
Proof: 〈2〉3, 〈2〉4 and 〈2〉5.

〈1〉5. d = d1 alt d2

〈2〉1. t ∈ [[ d1 ]] ∨ t ∈ [[ d2 ]]
Proof: 〈1〉5 and def. (5.14).

〈2〉2. ∃t′k, βk : [env!
M.dk, dk]

t′k−→ [βk, skip] ∧ E S©t′k = t for k = 1 or k = 2
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. [env!
M.d, d]

τalt−→ [env!
M.d, dk]

t′k−→ [βk, skip] for k = 1 or k = 2
Proof: 〈2〉2, rules (8.6) and (8.16), and env!

M.d = env!
M.d1∪env!

M.d2, env!
M.d1∩

env!
M.d2 = ∅.

〈2〉4. Let: t′ = 〈τalt〉�t′k for the appropriate choice of k ∈ {1, 2}
〈2〉5. E S©t′ = E S©〈τalt〉�t′k = E S©t′k = t

Proof: 〈2〉2, 〈2〉4, def. of S© and τalt �∈ E .
〈2〉6. Q.E.D.

Proof: 〈2〉3, 〈2〉4 and 〈2〉5.
〈1〉6. d = d1 xalt d2

〈2〉1. t ∈ [[ d1 ]] ∨ t ∈ [[ d2 ]]
Proof: 〈1〉6 and def. (5.18).

〈2〉2. ∃t′k, βk : [env!
M.dk, dk]

t′k−→ [βk, skip] ∧ E S©t′k = t for k = 1 or k = 2
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. [env!
M.d, d]

τxalt−→ [env!
M.d, dk]

t′k−→ [βk, skip] for k = 1 or k = 2
Proof: 〈2〉2, rules (8.6) and (8.17), and env!

M.d = env!
M.d1∪env!

M.d2, env!
M.d1∩

env!
M.d2 = ∅.

〈2〉4. Let: t′ = 〈τxalt〉�t′k for the appropriate choice of k ∈ {1, 2}
〈2〉5. E S©t′ = E S©〈τxalt〉�t′k = E S©t′k = t

Proof: 〈2〉2, 〈2〉4, def. of S© and τxalt �∈ E .
〈2〉6. Q.E.D.

Proof: 〈2〉3, 〈2〉4 and 〈2〉5.
〈1〉7. d = loop〈n〉 d1

Proof: by induction on n
〈2〉1. Induction start: n = 1
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〈3〉1. t ∈ [[ loop〈1〉 d1 ]] = μ1[[ d1 ]] = [[ d1 ]]
Proof: 〈1〉7, 〈2〉1 and defs. (5.22), (5.23).

〈3〉2. ∃t′1, β1 : [env!
M.d1, d1]

t′1−→ [β1, skip] ∧ E S©t′1 = t
Proof: 〈3〉1 and induction hypothesis.

〈3〉3. [env!
M.loop〈1〉 d1, loop〈1〉 d1]

τloop−→
[env!

M.loop〈1〉 d1, d1 seq loop〈0〉 d1]
t′1−→ [β1, skip]

Proof: 〈3〉2 and d1 seq loop〈0〉 d1 = d1 seq skip = d1, env!
M.loop〈1〉 d1 =

env!
M.d1 ∪ env!

M.skip = env!
M.d1.

〈3〉4. Let: t′ = 〈τloop〉�t′1
〈3〉5. E S©t′ = E S©〈τloop〉�t′1 = E S©t′1 = t

Proof: 〈3〉2, 〈3〉4, def. of S© and τloop �∈ E .
〈3〉6. Q.E.D.

Proof: 〈3〉3, 〈3〉4 and 〈3〉5.
〈2〉2. Induction step: n = k + 1

Assume: s ∈ [[ loop〈k〉 d1 ]] ⇒ ∃s′, β ′ : [env!
M.loop〈k〉 d1, loop〈k〉 d1]

s′−→ [β ′, skip]∧
E S©s′ = s (induction hypothesis 2)

〈3〉1. t ∈ [[ loop〈k + 1〉 d1 ]] = μk+1[[ d1 ]] = [[ d1 ]] � μk[[ d1 ]]
= [[ d1 ]] � [[ loop〈k〉 d1 ]] = [[ d1 seq loop〈k〉 d1 ]]

Proof: Assumption, 〈2〉2 and definitions (5.23), (5.22), (5.5), (5.7) and (5.6).

〈3〉2. ∃t′′, β ′ : [env!
M.(d1 seq loop〈k〉 d1), d1 seq loop〈k〉 d1]

t′′−→ [β ′, skip]∧ t = E S©t′′

Proof: 〈1〉2, 〈3〉1 and induction hypotheses.

〈3〉3. [env!
M.loop〈k + 1〉 d1, loop〈k + 1〉 d1]

τloop−→
[env!

M.loop〈k + 1〉 d1, d1 seq loop〈k〉 d1]
t′′−→ [β ′, skip]

Proof: 〈3〉2, rules (8.6) and (8.20), and env!
M.(d1 seq loop〈k〉 d1) =

env!
M.d1 ∪ env!

M.loop〈k〉 d1 = env!
M.loop〈k + 1〉 d1.

〈3〉4. Let: t′ = 〈τloop〉�t′′

〈3〉5. E S©t′ = E S©〈τloop〉�t′′ = E S©t′′ = t
Proof: 〈3〉2, 〈3〉4, def. of S© and τloop �∈ E .

〈3〉6. Q.E.D.
Proof: 〈3〉3, 〈3〉4 and 〈3〉5.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉8. Q.E.D.
Proof: 〈1〉1-〈1〉7.

�

A.4 Sequence diagrams with infinite loops

In this section we prove soundness and completeness of diagrams that also contain the
infinite loop, loop〈∞〉 d. As in the previous sections we treat the denotation [[ d ]] of a
diagram d as a flat set, i.e. we write t ∈ [[ d ]] for t ∈

⋃
(p,n)∈[[ d ]](p ∪ n). This means we

disregard negative behavior and interaction obligations. For simplicity we assume that
env.d = ∅.
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We let dk for k ∈ N denote the diagram d with every signal s renamed to sk and
apply the loop with implicit counter loopc〈n〉 d as described by rule (A.1) and definition
(A.2). Further we define:

[[ d ]]≤1 def
= [[ d1 ]]

[[ d ]]≤n+1 def
= [[ d ]]≤n � [[ dn+1 ]] for n ≥ 1

(A.3)

Let U = P(H) be the powerset of H. We have that [[ d ]] ∈ U and define the chains of
trace sets of [[ d ]] as

chains([[ d ]])
def
= {ū ∈ U∞ | ū[1] = [[ d1 ]] ∧ ∀j ∈ N : ū[j + 1] = ū[j] � [[ dj+1 ]]}

Because we treat [[ d ]] as a flat set, we see that chains([[ d ]]) is a singleton set {ū} where

ū = [[ d ]]≤1, [[ d ]]≤2, [[ d ]]≤3, . . .

which means we have that ū[j] = [[ d ]]≤j for all j ∈ N. The function pos may then be
simplified to

pos(ū)
def
= {t̄ ∈ H∞ | ∀j ∈ N : t̄[j] ∈ ū[j] ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}}

The approximation �ū becomes

�ū
def
=

⋃
t̄∈pos(ū)

�t̄

where �t̄ is defined as in appendix 5.3. Because chains([[ d ]]) is a singleton set we can
let

μ∞[[ d ]] = �ū for chains([[ d ]]) = {ū}
which means

μ∞[[ d ]] =
⋃

t̄∈pos(ū)

�t̄ for chains([[ d ]]) = {ū}

In fact, if we define

tra([[ d ]])
def
=

{t̄ ∈ H∞ | ∀j ∈ N : t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}}
(A.4)

we get that

μ∞[[ d ]]
def
=

⋃
t̄∈tra([[ d ]])

�t̄ (A.5)

In the following we use this definition of μ∞[[ d ]].
We start by assuming that the body d of an infinite loop loop〈∞〉 d only character-

izes finite behavior, i.e., we have no nesting of infinite loops. Further we assume that
loop〈∞〉 is the outermost operator of a diagram. When soundness and completeness of
this case are established we consider combinations of infinite loop with other operators.

Lemma 19 t ∈ [[ loop〈∞〉 d ]] ⇐⇒ t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧
∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t = �lt̄)
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Proof of lemma 19
Prove: t ∈ [[ loop〈∞〉 d ]] ⇐⇒ t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧

∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t = �lt̄)
〈1〉1. t ∈ [[ loop〈∞〉 d ]] = μ∞[[ d ]] =

⋃
t̄∈tra([[ d ]])�t̄

Proof: Defs. (5.23) and (A.5).
〈1〉2. t ∈ �t̄ for some t̄ ∈ tra([[ d ]])

Proof: 〈1〉1.
〈1〉3. t ∈ H ∧ ∀l ∈ L : e.l S©t = �lt̄ for some t̄ such that t̄ ∈ H∞ ∧ ∀j ∈ N : t̄[j] ∈

[[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}
Proof: 〈1〉2 and defs. (5.28) and (A.4).

〈1〉4. Q.E.D.
Proof: 〈1〉3.

�

Lemma 20 Given diagram d ∈ D without infinite loops. If [∅, loop1〈∞〉 d] may pro-
duce trace t, then, for any k, there exists a trace t′ such that [∅, d1 seq d2 seq · · · seq dk seq
loopk+1〈∞〉 d] may produce t′ and E S©t = E S©t′.

Proof of lemma 20
Assume: t is produced by [∅, loop1〈∞〉 d]
Prove: There exists a trace t′ such that t′ is produced by [∅, d1 seq d2 seq · · · seq dk

seq loopk+1〈∞〉 d] and E S©t = E S©t′.
Proof: by induction on k
〈1〉1. Case: k = 1

(induction start)

〈2〉1. The only possible execution step from [∅, loop1〈∞〉 d] is [∅, loop1〈∞〉 d]
τloop−→

[∅, d1 seq loop2〈∞〉 d]
Proof: Rules (8.6) and (A.1).

〈2〉2. There exists trace s such that s is produced by [∅, d1 seq loop2〈∞〉 d] and

t = 〈τloop〉�s
Proof: Assumption and 〈2〉1.

〈2〉3. Let: t′ = s

〈2〉4. E S©t = E S©(〈τloop〉�t′) = E S©t′

Proof: 〈2〉1, 〈2〉2, 〈2〉3, def. of S© and τloop �∈ E .
〈2〉5. Q.E.D.

Proof: 〈2〉4.
〈1〉2. Case: k = j + 1 (induction step)

Assume: t′ is produced by [∅, d1 seq d2 seq · · · seq dj seq loopj+1〈∞〉 d] and E S©t =
E S©t′ (induction hypothesis)

Prove: t′′ is produced by [∅, d1 seq d2 seq · · · seq dj seq dj+1 seq loopj+2〈∞〉 d]
and E S©t = E S©t′′

〈2〉1. There exist traces s, s′, diagram d′ ∈ D, and β ∈ B such that

[∅, d1 seq d2 seq · · · seq dj seq loopj+1〈∞〉 s−→ [β, d′ seq loopj+1〈∞〉 d]
τloop−→

[β, d′ seq dj+2 seq loopj+1〈∞〉 d]
s′−→

and t′ = s�〈τloop〉�s′

Proof: Induction hypothesis and rules (8.6), (8.11), (8.12) and (A.1).
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〈2〉2. [∅, d1 seq d2 seq · · · seq dj seq dj+1loopj+2〈∞〉 d]
s−→

[β, d′ seq dj+1 seq loopj+2〈∞〉 d]
s′−→

Proof: 〈2〉1.

〈2〉3. Let: t′′ = s�s′

〈2〉4. E S©t′ = E S©(s�〈τloop〉�s′) = E S©(s�s′) = E S©t′′

Proof: 〈2〉1, 〈2〉3, properties of S© and τloop �∈ E .
〈2〉5. E S©t = E S©t′′

Proof: Induction hypothesis and 〈2〉4.
〈2〉6. Q.E.D.

Proof: 〈2〉2, 〈2〉4 and 〈2〉5.
〈1〉3. Q.E.D.

Proof: 〈1〉1 and 〈1〉2.

�

Theorem 6 (Soundness) Let d be a diagram without infinite loops. If
[∅, loop〈∞〉 d] produces the trace t, then E S©t ∈ [[ loop〈∞〉 d ]].

Proof of theorem 6
Assume: 1. d is a diagram without infinite loops

2. [∅, loop1〈∞〉 d] produces trace t
Let: t′ = E S©t
Prove: t′ ∈ [[ loop〈∞〉 d ]]
〈1〉1. t′ ∈ [[ loop〈∞〉 d ]] ⇐⇒ t′ ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧

∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t′ = �l t̄)
Proof: Lemma 19.

〈1〉2. t′ ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} �
{h}) ∧ ∀l ∈ L : e.l S©t′ = �l t̄)

Proof: by contradiction
Assume: t′ �∈ H ∨ ∀t̄ ∈ H∞ : (∃j ∈ N : (t̄[j] �∈ [[ d ]]≤j ∨ ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} �

{h}) ∨ ∃l ∈ L : e.l S©t′ �= �l t̄)
Prove: Contradiction
〈2〉1. Case: t′ �∈ H

Proof: We have assumed that all messages are unique, so this must mean that
there exist a message m, traces s, s′, diagrams d1, d2, d3, d4 and states of the com-
munication medium β ′

1, β
′
2, β

′
3, β

′
4 such that

[∅, loop1〈∞〉 d]
s−→ [β ′

1, d1]
(?,m)−→ [β ′

2, d2]
s′−→ [β ′

3, d3]
(!,m)−→ [β ′

4, d4]

and

E S©(s�〈(?, m)〉�s′�〈(!, m)〉) � t′

By rules (8.3) and (8.10) this is clearly not possible and we must have that t′ ∈ H
and the case assumption is impossible.

〈2〉2. Case: ∀t̄ ∈ H∞ : (∃j ∈ N : (t̄[j] �∈ [[ d ]]≤j ∨ ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} �
{h}) ∨ ∃l ∈ L : e.l S©t′ �= �l t̄)

〈3〉1. Let: s1, s2, s3, . . . , si, . . . be traces and β1, β2, β3, . . . , βi, . . . be states of the
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communication medium such that

[∅, d1]
s1−→ [β1, skip]

[∅, d1 seq d2]
s1−→ [β1, d

2]
s2−→ [β2, skip]

[∅, d1 seq d2 seq d3]
s1

�
s2−−−−→ [β2, d

3]
s3−→ [β3, skip]

...

[∅, d1 seq d2 · · · seq di]
s1

�
s2

�···�si−1−−−−−−−−−−→ [βi−1, d
i]

si−→ [βi, skip]
...

where we choose s1, s2, . . . , si, . . . such that ev.di
S©si = ev.di

S©t. Fur-
ther we let t1, t2, t3, . . . , ti, . . . be traces such that

t1 = E S©s1

t2 = t1
�(E S©s2)

t3 = t2
�(E S©s3)

...

ti = ti−1
�(E S©si)

...

〈3〉2. tj ∈ [[ d ]]≤j for all j ∈ N

Proof: 〈3〉1 and theorem 4.
〈3〉3. Let: t̄ = t1, t2, t3, . . . , ti, . . .
〈3〉4. Case: ∃j ∈ N : (t̄[j] �∈ [[ d ]]≤j ∨ ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} � {h})
〈4〉1. Choose arbitrary j ∈ N

〈4〉2. Case: t̄[j] �∈ [[ d ]]≤j

〈5〉1. t̄[j] ∈ [[ d ]]≤j

Proof: By 〈3〉3, t̄[j] = tj and by 〈3〉2, tj ∈ [[ d ]]≤j.
〈5〉2. Q.E.D.

Proof: By 〈5〉1, 〈4〉2 is impossible.
〈4〉3. Case: ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} � {h}
〈5〉1. t̄[j + 1] = tj+1 = tj

�(E S©sj+1) = t̄[j]�(E S©sj+1)
Proof: 〈3〉1 and 〈3〉3.

〈5〉2. t̄[j + 1] ∈ {t̄[j]} � {E S©sj+1}
Proof: 〈5〉1.

〈5〉3. E S©sj+1 ∈ H
Proof: By 〈3〉1, [βj , d

j+1]
sj+1−→ [βj+1, skip], so this follows from lemma 6

and theorem 4.
〈5〉4. Q.E.D.

Proof: Let h = E S©sj+1. By 〈5〉2 and 〈5〉3 it is clear that 〈4〉3 is impossible.
〈4〉4. Q.E.D.

Proof: Since j is chosen arbitrarily, and 〈4〉2 and 〈4〉3 are impossible for this
arbitrarily chosen j, 〈3〉4 is impossible.

〈3〉5. Case: ∃l ∈ L : e.l S©t′ �= �l t̄
This means that there must exist l such that e.l S©t′ � �l t̄ or �lt̄ � e.l S©t′ or
∃j ∈ N : (e.l S©t′)[j] �= (�lt̄)[j].

〈4〉1. Choose arbitrary l ∈ L.

〈4〉2. For any k, e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk � e.l S©t
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〈5〉1. There exists t′′ such that t′′ is produced by [∅, d1 seq d2 seq · · · seq dk seq
loopk+1〈∞〉 d] and E S©t = E S©t′′

Proof: Lemma 20.
〈5〉2. (e.l ∩ ev.d1) S©s1

�(e.l ∩ ev.d2) S©s2
� · · ·�(e.l ∩ dk) S©sk

= e.l ∩ (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) S©t′′

Proof: 〈3〉1, ev.dm ∩ ev.dn = ∅ for m �= n, and rules (8.3), (8.11) and
(8.12) (which handles the ordering on l).

〈5〉3. (e.l ∩ ev.d1) S©s1
�(e.l ∩ ev.d2) S©s2

� · · ·�(e.l ∩ ev.dk) S©sk

= e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk

Proof: ev.di
S©si = E S©si for 1 ≤ i ≤ k (〈3〉1) and e.l ⊆ E (by def. of

e. ), which implies that (e.l ∩ ev.di) S©si = e.l S©(ev.di
S©si) = e.l S©(E S©si) =

(e.l ∩ E) S©si = e.l S©si.
〈5〉4. e.l ∩ (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) S©t′′ � e.l S©t′′

Proof: (ev.d1∪ev.d2∪· · ·∪ev.dk)∩ (ev.loopk+1〈∞〉 d) = ∅ and rules (8.3),
(8.11) and (8.12).

〈5〉5. Q.E.D.

Proof: e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk

= (e.l ∩ ev.d1) S©s1
�(e.l ∩ ev.d2) S©s2

�

· · ·�(e.l ∩ ev.dk) S©sk (〈5〉3)
= e.l ∩ (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) S©t′′ (〈5〉2)
� e.l S©t′′ (〈5〉4)
= e.l S©t (〈5〉1 and e.l ⊆ E)

〈4〉3. e.l S©t′ = e.l S©t
Proof: Assumption that t′ = E S©t and e.l ⊆ E .

〈4〉4. Case: e.l S©t′ � �l t̄

〈5〉1. ∃h ∈ H : h �= 〈〉 ∧ �l t̄ = (e.l S©t′)�h
Proof: Case assumption (〈4〉4) and the properties of �.

〈5〉2. #(e.l S©t′) �= ∞ (i.e. e.l S©t′ is finite)

Proof: 〈5〉1 and #s = ∞⇒ s�r = s

〈5〉3. Let: k be the smallest number such that e.l S©tk = e.l S©s1
�e.l S©s2

� · · ·
�e.l S©sk = e.l S©t′

Proof: By 〈4〉2, 〈4〉3 and 〈5〉2 such k must exist (because at some point
the si stops containing events from e.l or else e.l S©t′ would not be finite).

〈5〉4. e.l S©si = 〈〉 for all i > k
Proof: This follows direclty from 〈5〉3.

〈5〉5. �lt̄ = e.l S©tk
Proof: By 〈3〉1, 〈3〉3 and def. of �lt̄, �lt̄ is the least upper bound of

e.l S©t1, e.l S©t2, . . . , e.l S©tk, e.l S©tk+1, . . . = e.l S©s1, e.l S©(s1
�s2), . . . ,

e.l S©(s1
�s2

� · · ·�sk), e.l S©(s1
�s2

� · · ·�sk
�sk+1), . . .

By 〈5〉4 we must have that �l t̄ = e.l S©tk or else it would not be the least
upper bound.

〈5〉6. �lt̄ = e.l S©t′

Proof: 〈5〉3 and 〈5〉5.
〈5〉7. Q.E.D.

Proof: 〈5〉5 contradicts 〈5〉1, and hence e.l S©t′ � �lt̄ is impossible.
〈4〉5. Case: �lt̄ � e.l S©t′
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〈5〉1. ∃h ∈ H : h �= 〈〉 ∧ e.l S©t′ = (�lt̄)
�h

Proof: Case assumption (〈4〉5) and properties of �.
〈5〉2. #(�lt̄) �= ∞ (i.e. �lt̄ is finite)

Proof: 〈5〉1 and #s = ∞⇒ s�r = s.
〈5〉3. There exists k such that e.l S©tk = e.l S©ti for all i > k

Proof: By 〈5〉2, �lt̄ is finite and by def. e.l S©ti � �lt̄ for all i, so there
exists a finite bound on e.l S©ti and a place where the e.l S©ti for i ∈ N stop
growing.

〈5〉4. e.l S©si = 〈〉 for all i > k
Proof: 〈3〉1 and 〈5〉3.

〈5〉5. �lt̄ = e.l S©tk
Proof: 〈3〉3, 〈5〉3 and the def. of �lt̄ as the least upperbound of

e.l S©t̄[1], e.l S©t̄[2], . . . , e.l S©t̄[k], . . .

〈5〉6. Let: h[1] = e. Then (�lt̄)
�〈e〉 � e.l S©t′

Proof: This follows directly from 〈5〉1.
〈5〉7. There exists n ∈ N such that t′[n] = e

Proof: 〈5〉6.
〈5〉8. There exists j ∈ N such that e ∈ ev.dj

Proof: 〈5〉7, assumption 2, assumption that t′ = E S©t and lemma 20.
〈5〉9. e.l S©tj � e.l S©t′

Proof: 〈4〉2 and 〈4〉3.
〈5〉10. j > k

Proof: By 〈5〉5 and 〈5〉6, (e.l S©tk)
�〈e〉 � e.l S©t′, so by 〈5〉8 and 〈5〉9 this

must be the case (or else rule (8.12) is violated).

〈5〉11. (e.l S©tk)
�〈e〉 � e.l S©tj = e.l S©s1

�e.l S©s2
� · · ·�e.l S©sk

� · · ·�e.l S©sj

Proof: 〈3〉1, 〈4〉3, 〈5〉5, 〈5〉6, 〈5〉9 and 〈5〉10.
〈5〉12. e.l S©sj �= 〈〉

Proof: 〈3〉1, 〈5〉8 and 〈5〉11.
〈5〉13. Q.E.D.

Proof: 〈5〉10 and 〈5〉12 contradicts 〈5〉4, so we must have that 〈4〉5 is
impossible.

〈4〉6. Case: ∃j ∈ N : (e.l S©t′)[j] �= (�lt̄)[j]
Assume: j is the smallest such number, i.e.:

(e.l S©t′)|j−1 = (�lt̄)|j−1 ∧ (e.l S©t′)[j] �= (�lt̄)[j]
〈5〉1. Let: k be the smallest number such that #(e.l S©t̄[k]) ≥ j

Proof: Such k must exist. �l t̄ is defined as the least upper bound of
e.l S©t̄[1], e.l S©t̄[2], . . . , e.l S©t̄[i], . . . If �l t̄ is finite, then by the case assumption
(〈4〉6), #(�l t̄) ≥ j, and there must exist k such that e.l S©t̄[k] = �lt̄ (or else
it is not the least upper bound), which implies #(e.l S©t̄[k]) ≥ j. If �l t̄ is
infinite this means there is no finite bound on the length of the e.l S©t̄[i] and
we may find k such that #(e.l S©t̄[k]) ≥ n for any n ∈ N.

〈5〉2. e.l S©t̄[k] � e.l S©t′

〈6〉1. e.l S©t̄[k] = e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk

〈7〉1. t̄[k] = tk = E S©s1
�E S©s2

� · · ·�E S©sk

Proof: 〈3〉1 and 〈3〉3.
〈7〉2. Q.E.D.
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Proof: 〈7〉1 and e.l ⊆ E .

〈6〉2. e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk � e.l S©t
Proof: 〈4〉2.

〈6〉3. Q.E.D.
Proof: 〈4〉3, 〈6〉1 and 〈6〉2.

〈5〉3. e.l S©t̄[k] � �l t̄
Proof: This follow directly from the definition of �l t̄.

〈5〉4. (e.l S©t′)[j] = (�lt̄)[j]
Proof: From 〈5〉2 and 〈5〉3 we have that e.l S©t̄[k] � e.l S©t′ and e.l S©t̄[k] �
�l t̄. By assumption j ≤ #(e.l S©t̄[k]), so we must have that (e.l S©t′)[j] =
(e.l S©t̄[k])[j] = (�l t̄)[j].

〈5〉5. Q.E.D.
Proof: From 〈5〉4 it is clear that 〈4〉6 is impossible.

〈4〉7. Q.E.D.
Proof: Because 〈4〉4, 〈4〉5 and 〈4〉6 is impossible for an arbitrarily chosen l,
〈3〉5 is also impossible.

〈3〉6. Q.E.D.
Proof: Because 〈3〉4 and 〈3〉5 are impossible, we have found a t̄ that contradicts
〈2〉2.

〈2〉3. Q.E.D.
Proof: Because 〈2〉1 and 〈2〉2 are impossible we must have that 〈1〉2 is true.

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Lemma 21 Let d be a diagram without infinite loops and with env.d = ∅ (i.e. no
external communication). If t ∈ [[ loop〈∞〉 d ]], then for all k ∈ N∪{0} there exist trace
t′, β ∈ B and d′ ∈ D such that

[∅, loop1〈∞〉 d]
t′−→ [β, d′] ∧ E S©t′ = t|k

Proof of lemma 21
Assume: 1. d is a diagram without infinite loops

2. env.d = ∅
3. t ∈ [[ loop〈∞〉 d ]]

Prove: For all k ∈ N ∪ {0} there exist t′, β, d′ such that

[∅, loop1〈∞〉 d]
t′−→ [β, d′] ∧ E S©t′ = t|k

Proof: by induction on k
〈1〉1. Case: k = 0 (induction start)
〈2〉1. t|k = t|0 = 〈〉

Proof: 〈1〉1 and properties of | .
〈2〉2. Let: t′ = 〈τloop〉
〈2〉3. E S©〈τloop〉 = 〈〉

Proof: τloop �∈ E and properties of S© .

〈2〉4. [∅, loop1〈∞〉 d]
t′−→ [∅, d1 seq loop2〈∞〉 d] ∧ E S©t′ = t|k

Proof: This follows trivially from 〈2〉1, 〈2〉2, and rule (A.1).
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〈2〉5. Q.E.D.
Proof: This follows from 〈2〉3 and 〈2〉4 by letting β = ∅ and d′ = d1 seq loop2〈∞〉 d.

〈1〉2. Case: k + 1 (induction step)

Assume: ∃t′′, β ′, d′′ : [∅, loop1〈∞〉 d]
t′′−→ [β ′, d′′]∧E S©t′′ = t|k (induction hypothesis)

Prove: ∃t′, β, d′ : [∅, loop1〈∞〉 d]
t′−→ [β, d′] ∧ E S©t′ = t|k+1

〈2〉1. Let: t[k + 1] = e

〈2〉2. t|k+1 = t|k�〈e〉 � t
Proof: 〈2〉1 (here we assume t to be infinite, but the case t|k+1 = t would not
change the following argument).

〈2〉3. ∀l ∈ L : e.l S©t|k+1 = e.l S©(t|k�〈e〉) � e.l S©t
Proof: 〈2〉1, 〈2〉2 and properties of l. and S© .

〈2〉4. t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} �
{h}) ∧ ∀l ∈ L : e.l S©t = �lt̄)

Proof: Assumption 3 and lemma 19.
〈2〉5. Let: n ∈ N be the number such that e ∈ dn and let m ∈ N be the largest

number such that ev.dm ∩ ev.t|k �= ∅
Proof: By our assumption that all messages are unique and are enumerated by
the iterations of the loop (cf. rule (A.1)), both n and m are uniquely identified.

〈2〉6. Let: j = max(m, n)
〈2〉7. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t|k+1 � e.l S©t̄[j] � e.l S©t
〈3〉1. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t = �l t̄

Proof: 〈2〉4.
〈3〉2. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t̄[j] � �l t̄ = e.l S©t

Proof: 〈3〉1 and def. of �l.
〈3〉3. ∀l ∈ L : e.l S©t|k+1 � e.l S©t

Proof: 〈2〉3.
〈3〉4. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t|k+1 � e.l S©t̄[j]

Proof: By 〈3〉2 and 〈3〉3 we must have that, for all l, e.l S©t|k+1 � e.l S©t̄[j],
e.l S©t|k+1 = e.l S©t̄[j] or e.l S©t̄[j] � e.l S©t|k+1. But by 〈2〉5 and 〈2〉6 we must have
that #t̄[j] ≥ #t|k+1, so the latter is not possible.

〈3〉5. Q.E.D.
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈2〉8. Let: t̄ be such that t̄ ∈ H∞ ∧ t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t|k+1 � e.l S©t̄[j] �
e.l S©t

Proof: By 〈2〉6, such t̄ exists.

〈2〉9. ∃β ′, t′′, d′′ : E S©t′′ = t|k ∧ [∅, loop1〈∞〉 d]
t′′−→ [β ′, d′′ seq loopj+1〈∞〉 d] ∧

t′′[#t′′] ∈ E
Proof: This follows from the induction hypothesis, 〈2〉5 and 〈2〉6. (Because m
is the largest number such that ev.dm ∩ ev.t|k �= ∅ and j ≥ m, j iterations of the
loop is sufficient to produce t′′.) t′′[#t′′] ∈ E is obtained by not execution silent
events after the execution of t[k].

〈2〉10. ∃β ′, t′′, d′′ : E S©t′′ = t|k ∧ [∅, loop1〈j〉 d]
t′′−→ [β ′, d′′] ∧ t′′[#t′′] ∈ E

Proof: This follows directly from 〈2〉9.

〈2〉11. Let: β ′, t′′ and d′′ be such that E S©t′′ = t|k ∧ [∅, loop1〈j〉 d]
t′′−→ [β ′, d′′] ∧

t′′[#t′′] ∈ E
Proof: By 〈2〉10, such β ′, t′′ and d′′ must exist.
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〈2〉12. t̄[j] ∈ [[ loop〈j〉 d ]]
Proof: This follows from 〈2〉8 (see theorem 8 on page 332).

〈2〉13. ∃tj , βj : E S©tj = t̄[j] ∧ [∅, loop1〈j〉 d]
tj−→ [βj, skip]

Proof: 〈2〉12 and theorem 5.

〈2〉14. Let: tj , and βj be such that E S©tj = t̄[j] ∧ [∅, loop1〈j〉 d]
tj−→ [βj, skip]

Proof: By 〈2〉13 such tj and βj exist.
〈2〉15. Let: l.e = l

〈2〉16. e.l S©t|k+1 = e.l S©(t|k�〈e〉) = e.l S©(t|k)�〈e〉 � e.l S©t̄[j]
Proof: This follows from 〈2〉2 and 〈2〉7 by 〈2〉2, e.l ⊆ E and the properties of S© .

〈2〉17. e.l S©t′′�〈e〉 � e.l S©tj
Proof: This follow from 〈2〉11, 〈2〉14 and 〈2〉16 by e.l ⊆ E and properties of S© .

〈2〉18. ∃s, β ′′, d′′′ : s ∈ T ∗ ∧ [β ′, d′′]
s
�〈e〉−−−→ [β ′′, d′′′]

Proof: There are three way this may not be the case. 1) e is blocked by an event
on lifeline e. But by 〈2〉14 and 〈2〉17 we know that a execution with e following
l.e S©t′′ is possible. 2) e is a receive event and its message is not available in β ′. But
we have assumed no external communication, t must obey the message invariant
and we have assumed all messages to be unique, so this is not possible. 3) e is
selected away in the execution of a choice operator. But, by 〈2〉8 and 〈2〉14 we
know that all events of t|k can be executing without choosing away e, and after
the execution of t[k] we have full control over the choices by choosing s in the
appropriate way.

〈2〉19. Let: s, β ′′ and d′′′ be such that s ∈ T ∗ ∧ [β ′, d′′]
s
�〈e〉−−−→ [β ′′, d′′′]

Proof: By 〈2〉18 such s, β ′′ and d′′′ exist.

〈2〉20. Let: t′ = t′′�s�〈e〉, β = β ′′ and d′ = d′′′ seq loopj+1〈∞〉 d

〈2〉21. [∅, loop1〈∞〉 d]
t′−→ [β, d]

Proof: This follows from 〈2〉20, because from 〈2〉9, 〈2〉11 and 〈2〉18 we have

[∅, loop1〈∞〉 d]
t′′−→ [β ′, d′′ seq loopj+1〈∞〉 d]

s
�〈e〉−→ [β ′′, d′′′ seq loopj+1〈∞〉 d].

〈2〉22. E S©t′ = t|k+1

Proof: By 〈2〉1, 〈2〉11, 〈2〉19 and 〈2〉20 we have

E S©t′ = E S©(t′′�s�〈e〉) = (E S©t′′)�(E S©s)�(E S©〈e〉) = t|k�〈〉�〈e〉 = t|k�t[k + 1] =
t|k+1.

〈2〉23. Q.E.D.
Proof: 〈2〉21 and 〈2〉22.

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Theorem 7 (Completeness) Let d be a diagram without infinite loop, and env.d = ∅
(i.e. without external communication). If t ∈ [[ loop〈∞〉 d ]] then there exists trace t′

such that E S©t′ = t and [∅, loop〈∞〉 d] produces t′.

Proof of theorem 7
Assume: 1. d is a diagram without infinite loop
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2. env.d = ∅
3. t ∈ [[ loop〈∞〉 d ]]

Prove: There exists t′ such that E S©t′ = t and [∅, loop1〈∞〉 d] produces t′

Proof: by contradiction
There are two cases that must be considered: 1) There exists some point where
further execution of t is impossible. 2) t does not satisfy the fairness constraints of
the operational semantics.

〈1〉1. Case: ∃k ∈ N : ∀s, β, d′ : (E S©s = t|k ∧ [∅, loop1〈∞〉 d]
s−→ [β, d′]) ⇒ [β, d′]

t[k+1]
�

〈2〉1. t|k+1 = t|k�〈t[k + 1]〉 � t
Proof: Properties of | and [ ].

〈2〉2. Q.E.D.
Proof: By 〈2〉1, t|k+1 is a finite prefix of t. But by assumptions 1, 2 and 3, and
lemma 21 we are able to produce any finite prefix, so 〈1〉1 is impossible.

〈1〉2. Case: ∀k ∈ N : ∃s, β, d′ : (E S©s = t|k ∧ [∅, loop1〈∞〉 d]
s−→ [β, d′]

∧ [β, d′]
t[k+1]−−−→) ∧ ∀t′ : (E S©t′ = t ⇒ ¬wft(t′, loop1〈∞〉 d))

〈2〉1. ∀k ∈ N : ∃s, β, d′ : (E S©s = t|k ∧ [∅, loop1〈∞〉 d]
s−→ [β, d′] ∧ [β, d′]

t[k+1]−−−→)
Proof: This follows from the fact that 〈1〉1 is impossible.

〈2〉2. ∀t′ : (E S©t′ = t ⇒ ¬wft(t′, loop1〈∞〉 d))
Proof: 〈1〉2 and 〈2〉1.

〈2〉3. Assume: t′ is such that E S©t′ = t
〈2〉4. ¬wft(loop1〈∞〉 d, t′)

Proof: 〈2〉2 and 〈2〉3.
〈2〉5. ¬∃σ ∈ Ξ : π2(head(σ)) = loop1〈∞〉 d ∧ tr(σ) = t′ ∧ wfe(σ)

Proof: 〈2〉4 and def. (8.27) of wft .
〈2〉6. ∀σ ∈ Ξ : π2(head(σ)) �= loop1〈∞〉 d ∨ tr(σ) �= t′ ∨ ¬wfe(σ)

Proof: 〈2〉5.
〈2〉7. Assume: σ is an execution such that

σ = [β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ∧

[β1, d1] = [∅, loop1〈∞〉 d] ∧ tr(σ) = 〈x1, x2, x3, . . .〉 = t′

Proof: By 〈2〉1 such σ must exist.
〈2〉8. ¬wfe(σ)

Proof: 〈2〉6 and 〈2〉7.
〈2〉9. ∃d′ ∈ D, i ∈ N : (∀j ∈ N ∪ {0} : enabled(d′, [βi+j, di+j]) ∧ ¬∃k ∈ N ∪ {0} :

executed(d′, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))
Proof: 〈2〉8 and def. (8.25) of wfe.

〈2〉10. Let: d′ be the least complex diagram projection part (as by the weight func-
tion w defined in the proof of theorem 3) such that
∃i ∈ N : (∀j ∈ N ∪ {0} : enabled(d′, [βi+j , di+j]) ∧ ∀k ∈ N ∪ {0} :
¬executed(d′, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))

Proof: By 〈2〉9 such d′ exists, and we must then be able to find the least complex
d′.

〈2〉11. Let: i be the smallest number such that
∀j ∈ N ∪ {0} : enabled(d′, [βi+j, di+j]) ∧
∀k ∈ N ∪ {0} : ¬executed(d′, [βi+k, di+k], xi+k, [βi+k+1, di+k+1])

Proof: By 〈2〉10 such i exists, and we may then find the smallest.
〈2〉12. enabled(d′, [βi, di])

Proof: 〈2〉11.
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〈2〉13. d′ is a single event or d′ is a diagram with a high-level operator as its most
significant operator

Proof: Assume not. Then there exists d′′ and d′′′ such that d′ = d′′ seq d′′′,
d′ = d′′ par d′′′ or d′ = d′′ strict d′′′. But then by defs. (8.21), (8.22) and (8.23) we
must have enabled(d′, [βn, dn]) ⇒ enabled(d′′, [βn, dn]) ∨ enabled(d′′′, [βn, dn]) and
likewise for executed . But d′′ and d′′′ are less complex that d′, so then d′ is not the
least complex diagram projection part that satisfy 〈2〉10.

〈2〉14. Case: d′ is a single event
〈3〉1. Let: d′ = e ∈ E
〈3〉2. e � d1

Proof: 〈2〉12 and defs. (8.22) and (8.23) of executed and enabled .
〈3〉3. ∃c ∈ N, d′′ ∈ D : di = d′′ seq loopc〈∞〉 d ∧ e � d′′

Proof: By 〈2〉7, rules (A.1) and (8.6), and def. (8.21) of � this is the only way
to obtain 〈3〉2.

〈3〉4. Let: c be the smallest number and d′′ be such that di = d′′ seq loopc〈∞〉 d∧
e � d′′

Proof: By 〈3〉3 such c and d′′ exists.
〈3〉5. e ∈ ev.dc−1

Proof: By 〈3〉4, c is the smallest number such that di = d′′ seq loopc〈∞〉 d ∧
e � d′′. If there existed n < c − 1 such that e ∈ ev.dn there would have existed
d′′′ such that di = d′′′ seq loopn+1〈∞〉 d, but then c would not be the smallest
number to satisfy 〈3〉3.

〈3〉6. [∅, loop1〈∞〉 d]
〈x1,x2,...,xi−1〉−−−−−−−−→ [βi, d

′′ seq loopc〈∞〉 d]
Proof: 〈2〉7 and 〈3〉4.

〈3〉7. [∅, loop1〈c− 1〉 d]
〈x1,x2,...,xi−1〉−−−−−−−−→ [βi, d

′′]
Proof: By 〈3〉6 and definition of the loop rules.

〈3〉8. There exist s, β such that [βi, d
′′] s−→ [β, skip]

Proof: Because of the syntactical constraints we can assume this to be the
case, i.e. that there is nothing in d′′ that prevent the execution to reach skip.

〈3〉9. Let: s and β be such that [βi, d
′′] s−→ [β, skip]

Proof: By 〈3〉8, s and β must exist.
〈3〉10. e ∈ ev.(E S©s)

Proof: By 〈3〉3, e � d′′, so by the rules of the operational semantics this must
be the case in an execution from d′′ to skip.

〈3〉11. E S©(〈x1, x2, . . . , xi−1〉�s) ∈ [[ d ]]≤c−1

Proof: loop1〈c − 1〉 d and be considered as d1 seq d2 seq · · · seq dc−1, so by
〈3〉7, 〈3〉9, defs. (5.23), (A.2) and (A.3), and theorem 4 this must be the case.

〈3〉12. t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} �
{h}) ∧ ∀l ∈ L : e.l S©t = �lt̄)

Proof: Assumption 3 and lemma 19.
〈3〉13. Let: t̄ ∈ H∞ be such that

∀j ∈ N : t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L :
e.l S©t = �l t̄

Proof: By 〈3〉12 such t̄ exists.
〈3〉14. e ∈ ev.t̄[c− 1]

Proof: We have established that E S©(〈x1, x2, . . . , xi−1〉�s) ∈ [[ d ]]≤c−1 with e ∈
ev.(E S©s) (〈3〉10 and 〈3〉11), t̄[c − 1] ∈ [[ d ]]≤c−1 (〈3〉13) and e ∈ ev.dc−1 (〈3〉5).

319



Proofs of soundness, completeness and termination of the operational semantics

The only way we may have e �∈ ev.t̄[c − 1] is that e is inside and alt or xalt in
dc−1. But then, by theorem 4, there does not exist any finite execution

σ′ = [β ′
1, d

′
1]

x′
1−→ [β ′

2, d
′
2]

x′
2−→ · · ·

x′
n−1−→ [β ′

n, d′
n]

with β ′
1 = ∅, d′

1 = loop1〈c − 1〉 d and d′
n = skip such that ∃j ∈ [1..n − 1] :

executed(e, [β ′
j , d

′
j], e, [β

′
j+1, d

′
j+1]). I.e. we have that

∀j ∈ [1..n− 1] : ¬executed(e, [βj,
′ d′

j ], e, [β
′
j+1, d

′
j+1])

but then we we also have that

∀j ∈ [1..n] : ¬enabled(e, [β ′
j , d

′
j])

because reaching skip means either that e is executed or is never enabled, and
enabled(e, [β ′

n, d′
n]) is impossible since d′

n = skip. Because we have chosen an
execution σ = [β1, d1]

x1−→ [β2, d2]
x2−→ · · · with enabled(e, [βi, di]) (〈2〉7, 〈2〉12

and 〈3〉1) this is not an interesting situation, and we may safely assume 〈3〉14.
〈3〉15. ∃m ∈ N : t[m] = e
〈4〉1. Let: l.e = l
〈4〉2. ∃p ∈ N : (�lt̄)[p] = e

Proof: 〈3〉14, def. of �lt̄ (because e.l S©t̄[c − 1] � �lt̄) and 〈4〉1 (because
l.e = l ⇔ e ∈ e.l)

〈4〉3. ∃p ∈ N : (e.l S©t)[p] = e
Proof: �lt̄ = e.l S©t (by 〈3〉13) and 〈4〉2.

〈4〉4. Q.E.D.
Proof: By 〈4〉3 and properties of e. , l. and S© such m must exist.

〈3〉16. ∃q ∈ N : q ≥ i ∧ xq = e
Proof: 〈2〉3, 〈2〉7, 〈2〉12 and 〈3〉15.

〈3〉17. executed(e, [βq, dq], e, [βq+1, dq+1])
Proof: 〈3〉16 and the assumption that all events are unique.

〈3〉18. Q.E.D.
Proof: 〈3〉17 contradict 〈2〉10.

〈2〉15. Case: d′ is a diagram with a high-level operator as its most significant oper-
ator

〈3〉1. ∃x, β†, d† : executed(d′, [βi, di], x, [β†, d†])
Proof: 〈2〉12 and def. (8.23) of enabled .

〈3〉2. Let: x, β† and d† be such that executed(d′, [βi, di], x, [β†, d†])
Proof: By 〈3〉1 such x, β† and d† must exist.

〈3〉3. x ∈ T ∧ β† = βi

Proof: By 〈2〉15 and rule (8.6) this must be the case.
〈3〉4. Let: xi = x, βi+i = βi = β† and di+1 = d†

Proof: This not affect t because, by 〈2〉3 and 〈2〉7, t = E S©tr(σ) and, by 〈3〉3,
xi = x ∈ T . By 〈2〉2 and 〈2〉6 we can use any σ and t′ that have the property
that tr(σ) = t′ and E S©t′ = t, and hence, by 〈3〉2 and 〈3〉3, we can safely do the
assumption that xi = x, βi+1 = βi and di+1 = d†.

〈3〉5. executed(d′, [βi, di], xi, [βi+1, di+1])
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
Proof: 〈3〉5 contradicts 〈2〉10.

〈2〉16. Q.E.D.
Proof: Both 〈2〉14 and 〈2〉15 leads to contradictions, so 〈1〉2 is impossible.

〈1〉3. Q.E.D.
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Proof: Both 〈1〉1 and 〈1〉2 are impossible, so we must have that there exists trace
t′ such that E S©t′ = t and [∅, loop1〈∞〉 d] produces t′.

�

The above soundness and completeness theorems are concerned with diagrams that
have only one infinite loop, and the infinite loop as the most significant operator. In
the following we make some reflections on how these results carry over to other more
complex cases. There are three main cases that must be considered:

1. Combinations d1 op d2 where op is an simple operator and d1 or d2 or both
characterize infinite behavior.

2. Infinite loops inside other high-level operators.

3. The body d of an infinite loop loop〈∞〉 d itself contains infinite loops.

In the first case, we have two simple sub-cases, and one more complicated. Consider
the diagram (loop〈∞〉 d1) strict (loop〈∞〉 d2). It is obvious that the left operand of the
strict will block the right operand, so that the diagram is semantically equivalent to
loop〈∞〉 d1. The other simple sub-case is the diagram (loop〈∞〉 d1) par (loop〈∞〉 d2),
which simply yields the merges of the traces of loop〈∞〉 d1 and loop〈∞〉 d2. The weak
fairness ensures that none of the par operands are starved infinitely long. Soundness
and completeness considerations are then reduced to considerations of the oracle p in
the denotational definition of par with respect to our definition of weak fairness. The
complicated sub-case is the case of (loop〈∞〉 d1) seq (loop〈∞〉 d2). If we have that
ll.d2 ⊆ ll.d1 this is semantically equivalent to (loop〈∞〉 d1) strict (loop〈∞〉 d2). If, on
the other hand ll.d1∩ ll.d2 = ∅, the case is equivalent to (loop〈∞〉 d1) par (loop〈∞〉 d2).
The difficult situation is when ll.d1 �= ll.d2 and ll.d1 ∩ ll.d2 �= ∅, because d1 will
block some, but not all of the lifelines, in d2. However, this means that the result of
(loop〈∞〉 d1) seq (loop〈∞〉 d2) is the behavior of loop〈∞〉 d1 merged with the behavior
of loop〈∞〉 d2 not blocked by loop〈∞〉 d1, which easily can be handled.

The case of a infinite loop inside the high-level operators refuse, assert, alt and xalt
poses no problems as its result is just the execution of a silent event before execution
of the loop itself. The diagram loop〈n〉 (loop〈∞〉 d) is equivalent to loop〈∞〉 d, because
the first iteration of the outer loop will block all subsequent iterations.

Finally, consider a diagram of the form loop〈∞〉 (d1 seq (loop〈∞〉 d2) seq d3). The
behavior characterized by this diagram is actually the same behavior as characterized
by a diagram d1 seq ((loop〈∞〉 d2) par (loop〈∞〉 (d′

3 seq d′
1)) where d′

1 and d′
3 are the

parts of d1 and d3 not blocked by loop〈∞〉 d2.
Because diagrams with nested infinite loops can be reduced to diagrams without

nested infinite loops, and because composition of diagrams with infinite loop can be
accounted for, there are strong indications that the soundness and completeness results
carry over to these more complex situations.
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Appendix B

The normal form used in the “all
traces” execution strategy

In the “all traces” meta-strategy for execution of sequence diagrams defined in sec-
tion 9.2, a normal form for the sequence diagrams is applied. This appendix provides
additional information on this normal form. In section B.1 we provides details on how
to obtain the normal of a diagram. In section B.2 we elaborate on the justification for
using such a normal form. In section B.3, proofs of the equivalence of the normal form
are given.

B.1 Normal form for sequence diagrams

The normal form is such that xalts, if present, must be the most significant operators
of the diagram. After xalts, alts are the most significant, and after alts, the refuse
operator is the most significant operator. Below these high-level operators, the simple
operators seq, par and strict may occur in any order. The “all traces” meta-strategy
is not defined for the assert operator, so this operator is not part of the normal form.
Neither does the normal form have loops, but finite loops may be represented by the
weak sequencing operator seq as we will see below.

For a diagram that contains the operators seq, par, strict, xalt, alt, refuse and loop〈n〉
(finite loop), the normal from can be obtained by application of the 24 transformation
rules defined below. The rules should be applied from left to right and should be
applied repeatedly until no more applications are possible.

1. loop〈n〉 d1 = d1 seq d1 seq · · · seq d1︸ ︷︷ ︸
n times

2. d1 alt (d2 xalt d3) = (d1 alt d2) xalt (d1 alt d3)

3. (d1 xalt d2) alt d3 = (d1 alt d3) xalt (d2 alt d3)

4. d1 par (d2 xalt d3) = (d1 par d2) xalt (d1 par d3)

5. (d1 xalt d2) par d3 = (d1 par d3) xalt (d2 par d3)

6. d1 seq (d2 xalt d3) = (d1 seq d2) xalt (d1 seq d3)

7. (d1 xalt d2) seq d3 = (d1 seq d3) xalt (d2 seq d3)
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8. d1 strict (d2 xalt d3) = (d1 strict d2) xalt (d1 strict d3)

9. (d1 xalt d2) strict d3 = (d1 strict d3) xalt (d2 strict d3)

10. refuse (d1 xalt d2) = (refuse d1) xalt (refuse d2)

11. d1 par (d2 alt d3) = (d1 par d2) alt (d1 par d3)

12. (d1 alt d2) par d3 = (d1 par d3) alt (d2 par d3)

13. d1 seq (d2 alt d3) = (d1 seq d2) alt (d1 seq d3)

14. (d1 alt d2) seq d3 = (d1 seq d3) alt (d2 seq d3)

15. d1 strict (d2 alt d3) = (d1 strict d2) alt (d1 strict d3)

16. (d1 alt d2) strict d3 = (d1 strict d3) alt (d2 strict d3)

17. refuse (d1 alt d2) = (refuse d1) alt (refuse d2)

18. refuse refuse d1 = refuse d1

19. d1 par refuse d2 = refuse (d1 par d2)

20. (refuse d1) par d2 = refuse (d1 par d2)

21. d1 seq refuse d2 = refuse (d1 seq d2)

22. (refuse d1) seq d2 = refuse (d1 seq d2)

23. d1 strict refuse d2 = refuse (d1 strict d2)

24. (refuse d1) strict d2 = refuse (d1 strict d2)

Each of these transformations preserves the semantics of the diagram being trans-
formed. This result is stated and proved as theorem 8 on page 332 in section B.3
below.

With respect to the constraint that an event syntactically should occur only once
in a diagram, we assume that events are implicitly given a unique identity (similar to
the handling of loop in section A.3) if they are duplicated in the transformation to the
normal form.

B.2 Justification for the normal form

Consider the diagram
d = (e1 alt e2) seq (e3 xalt e4)

where (for simplicity) the events e1, e2, e3, e4 are all on the same lifeline. The denotation
of d is:

[[ d ]] = {({〈e1, e3〉, 〈e2, e3〉}, ∅), ({〈e1, e4〉, 〈e2, e4〉}, ∅)}
The operational semantics gives us executions:

[β0, (e1 alt e2) seq (e3 xalt e4)]
τalt−→ [β0, ei seq (e3 xalt e4)]

ei−→ [β1, e3 xalt e4]
τxalt−→ [β1, ej]

ej−→ [β2, skip]
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with i ∈ {1, 2} and j ∈ {3, 4}. If the meta-strategy for all traces is applied on this
diagram (without applying the normal form), the execution first branches because of
the alt, and then the xalt makes a split of the interaction obligation for each of these
executions. Because of this we would get four interaction obligations:

{({〈e1, e3〉, 〈e2, e3〉}, ∅), ({〈e1, e4〉, 〈e2, e4〉}, ∅),
({〈e1, e3〉, 〈e2, e4〉}, ∅), ({〈e1, e4〉, 〈e2, e3〉}, ∅)}

By applying the normal form we avoid this.

B.3 Proofs of equivalence of the normal form

Definition 8 Let O, O′ ⊆ O be sets of interaction obligations and let p, p′, n, n′ ⊆ H
be trace sets. We then define �,  and ¬ as follows:

O � O′ def
= {o � o′ | o ∈ O ∧ o′ ∈ O′}

(p, n)  (p′, n′) def
= (p ∪ p′, n ∪ n′)

O  O′ def
= {o  o′ | o ∈ O ∧ o′ ∈ O′}

¬(p, n)
def
= (∅, p ∪ n)

¬O
def
= {¬o | o ∈ O}

Lemma 22 Let d1, d2 be diagrams. Then

1. [[ d1 seq d2 ]] = [[ d1 ]] � [[ d2 ]]

2. [[ d1 alt d2 ]] = [[ d1 ]]  [[ d2 ]]

3. [[ refuse d1 ]] = ¬[[ d1 ]]

Proof of lemma 22
〈1〉1. Prove: [[ d1 seq d2 ]] = [[ d1 ]] � [[ d2 ]]

Proof: [[ d1 seq d2 ]]
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (Def. seq)
= [[ d1 ]] � [[ d2 ]] (Def. �)

〈1〉2. Prove: [[ d1 alt d2 ]] = [[ d1 ]]  [[ d2 ]]
Proof: [[ d1 alt d2 ]]

= {(p1 ∪ p2, n1 ∪ n2) | (p1, p2) ∈ [[ d1 ]] ∧ (p2, n2) ∈ [[ d2 ]]} (Def. alt)
= {(p1, n1)  (p2, n2) | (p1, p2) ∈ [[ d1 ]] ∧ (p2, n2) ∈ [[ d2 ]]} (Def.  )
= [[ d1 ]]  [[ d2 ]] (Def.  )

〈1〉3. Prove: [[ refuse d1 ]] = ¬[[ d1 ]]
Proof: [[ refuse d1 ]]

= {(∅, p ∪ n) | (p, n) ∈ [[ d1 ]]} (Def. refuse)
= {¬(p, n) | (p, n) ∈ [[ d1 ]]} (Def. ¬)
= ¬[[ d1 ]] (Def. ¬)

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

�
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Lemma 23 o1‖(o2  o3) = (o1‖o2)  (o1‖o3)

Proof of lemma 23
Prove: o1‖(o2  o3) = (o1‖o2)  (o1‖o3)
Proof: o1‖(o2  o3)

= (p1, n1)‖((p2, n2)  (p3, n3))
= (p1, n1)‖(p2 ∪ p3, n2 ∪ n3) (Def.  )
= (p1‖(p2 ∪ p3),

n1‖(p2 ∪ p3) ∪ n1‖(n2 ∪ n3) ∪ p1‖(n2 ∪ n3)) (Def. ‖)
= (p1‖p2 ∪ p1‖p3,

n1‖p2 ∪ n1‖p3 ∪ n1‖n2 ∪ n1‖n3 ∪ p1‖n2 ∪ p1‖n3) (1)
= (p1‖p2 ∪ p1‖p3,

(n1‖p2 ∪ n1‖n2 ∪ p1‖n2) ∪ (n1‖p3 ∪ n1‖n3 ∪ p1‖n3)) (2)
= (p1‖p2, n1‖p2 ∪ n1‖n2 ∪ p1‖n2)

 (p1‖p3, n1‖p3 ∪ n1‖n3 ∪ p1‖n3) (Def.  )
= ((p1, n1)‖(p2, n2))  ((p1, n1)‖(p3, n3)) (Def. ‖)
= (o1‖o2)  (o1‖o3)

Notes:
1. s1‖(s2 ∪ s3) = (s1‖s2) ∪ (s1‖s3) [70, Lemma 12].
2. Associativity and commutativity of ∪.

�

Lemma 24 o1 � (o2  o3) = (o1 � o2)  (o1 � o3)

Proof of lemma 24
Prove: o1 � (o2  o3) = (o1 � o2)  (o1 � o3)
Proof: o1 � (o2  o3)

= (p1, n1) � ((p2, n2)  (p3, n3))
= (p1, n1) � (p2 ∪ p3, n2 ∪ n3) (Def.  )
= (p1 � (p2 ∪ p3),

n1 � (p2 ∪ p3) ∪ n1 � (n2 ∪ n3) ∪ p1 � (n2 ∪ n3)) (Def. �)
= (p1 � p2 ∪ p1 � p3,

n1 � p2 ∪ n1 � p3 ∪ n1 � n2 ∪ n1 � n3 ∪ p1 � n2 ∪ p1 � n3) (1)
= (p1 � p2 ∪ p1 � p3,

(n1 � p2 ∪ n1 � n2 ∪ p1 � n2) ∪ (n1 � p3 ∪ n1 � n3 ∪ p1 � n3)) (2)
= (p1 � p2, n1 � p2 ∪ n1 � n2 ∪ p1 � n2)

 (p1 � p3, n1 � p3 ∪ n1 � n3 ∪ p1 � n3) (Def.  )
= ((p1, n1) � (p2, n2))  ((p1, n1) � (p3, n3)) (Def. �)
= (o1 � o2)  (o1 � o3)

Notes:
1. s1 � (s2 ∪ s3) = (s1 � s2) ∪ (s1 � s3) [70, Lemma 14].
2. Associativity and commutativity of ∪.

�

Lemma 25 (o1  o2) � o3 = (o1 � o3)  (o2 � o3)
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Proof of lemma 25
Prove: (o1  o2) � o3 = (o1 � o3)  (o2 � o3)
Proof: (o1  o2) � o3)

= ((p1, n1)  (p2, n2)) � (p3, n3))
= (p1 ∪ p2, n1 ∪ n2) � (p3, n3) (Def.  )
= ((p1 ∪ p2) � p3,

(n1 ∪ n2) � p3 ∪ (n1 ∪ n2) � n3 ∪ (p1 ∪ p2) � n3) (Def. �)
= (p1 � p3 ∪ p2 � p3,

n1 � p3 ∪ n2 � p3 ∪ n1 � n3 ∪ n2 � n3 ∪ p1 � n3 ∪ p2 � n3) (1)
= (p1 � p3 ∪ p2 � p3,

(n1 � p3 ∪ n1 � n3 ∪ p1 � n3) ∪ (n2 � p3 ∪ n2 � n3 ∪ p2 � n3)) (2)
= (p1 � p3, n1 � p3 ∪ n1 � n3 ∪ p1 � n3)

 (p2 � p3, n2 � p3 ∪ n2 � n3 ∪ p2 � n3) (Def.  )
= ((p1, n1) � (p3, n3))  ((p2, n2) � (p3, n3)) (Def. �)
= (o1 � o3)  (o2 � o3)

Notes:
1. (s1 ∪ s2) � s3 = (s1 � s3) ∪ (s2 � s3) [70, Lemma 15].
2. Associativity and commutativity of ∪.

�
Lemma 26 s1 � (s2 ∪ s3) = (s1 � s2) ∪ (s1 � s3)

Proof of lemma 26
Prove: s1 � (s2 ∪ s3) = (s1 � s2) ∪ (s1 � s3)
Proof: s1 � (s2 ∪ s3)

= {h ∈ H | ∃h1 ∈ s1, h2 ∈ (s2 ∪ s3) : h = h1
�h2} (Def. �)

= {h ∈ H | ∃h1, h2 : h1 ∈ s1 ∧ h2 ∈ (s2 ∪ s3) ∧ h = h1
�h2} (1)

= {h ∈ H | ∃h1, h2 : h1 ∈ s1 ∧ (h2 ∈ s2 ∨ h2 ∈ s3) ∧ h = h1
�h2} (2)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s2 ∧ h = h1
�h2)

∨ (h1 ∈ s1 ∧ h2 ∈ s3 ∧ h = h1
�h2)} (3)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s2 ∧ h = h1
�h2)

∨ ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s3 ∧ h = h1
�h2)} (4)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s2 ∧ h = h1
�h2)}

∪ {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s3 ∧ h = h1
�h2)} (5)

= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : h = h1
�h2)}

∪ {h ∈ H | ∃h1 ∈ s1, h2 ∈ s3 : h = h1
�h2)} (1)

= (s1 � s2) ∪ (s1 � s3) (Def. �)
Notes:
1. ∃x ∈ X : P (x) ⇔ ∃x : x ∈ X ∧ P (x).
2. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
3. DeMorgan: (A ∨B) ∧ C ⇔ (A ∧ C) ∨ (B ∧ C).
4. Propositional logic: ∃x : A(x) ∨ B(x) ⇔ ∃x : A(x) ∨ ∃x : B(x).
5. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

�
Lemma 27 (s1 ∪ s2) � s3 = (s1 � s3) ∪ (s2 � s3)
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Proof of lemma 27
Prove: (s1 ∪ s2) � s3 = (s1 � s3) ∪ (s2 � s3)
Proof: (s1 ∪ s2) � s3

= {h ∈ H | ∃h1 ∈ (s1 ∪ s2), h2 ∈ s3 : h = h1
�h2} (Def. �)

= {h ∈ H | ∃h1, h2 : h1 ∈ (s1 ∪ s2) ∧ h2 ∈ s3 ∧ h = h1
�h2} (1)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∨ h1 ∈ s2) ∧ h2 ∈ s3 ∧ h = h1
�h2} (2)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s3 ∧ h = h1
�h2)

∨ (h1 ∈ s2 ∧ h2 ∈ s3 ∧ h = h1
�h2)} (3)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s1 ∧ h2 ∈ s3 ∧ h = h1
�h2)

∨ ∃h1, h2 : (h1 ∈ s2 ∧ h2 ∈ s3 ∧ h = h1
�h2)} (4)

= {h ∈ H | ∃h1, h2 : (h1 ∈ s2 ∧ h2 ∈ s3 ∧ h = h1
�h2)}

∪ {h ∈ H | ∃h1, h2 : (h1 ∈ s2 ∧ h2 ∈ s3 ∧ h = h1
�h2)} (5)

= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s3 : h = h1
�h2)}

∪ {h ∈ H | ∃h1 ∈ s2, h2 ∈ s3 : h = h1
�h2)} (1)

= (s1 � s3) ∪ (s2 � s3) (Def. �)
Notes:
1. ∃x ∈ X : P (x) ⇔ ∃x : x ∈ X ∧ P (x).
2. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
3. DeMorgan: (A ∨ B) ∧ C ⇔ (A ∧ C) ∨ (B ∧ C).
4. Propositional logic: ∃x : A(x) ∨ B(x) ⇔ ∃x : A(x) ∨ ∃x : B(x).
5. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

�

Lemma 28 o1 � (o2  o3) = (o1 � o2)  (o1 � o3)

Proof of lemma 28
Prove: o1 � (o2  o3) = (o1 � o2)  (o1 � o3)
Proof: o1 � (o2  o3)

= (p1, n1) � ((p2, n2)  (p3, n3))
= (p1, n1) � (p2 ∪ p3, n2 ∪ n3) (Def.  )
= (p1 � (p2 ∪ p3),

n1 � (p2 ∪ p3) ∪ n1 � (n2 ∪ n3) ∪ p1 � (n2 ∪ n3)) (Def. �)
= (p1 � p2 ∪ p1 � p3,

n1 � p2 ∪ n1 � p3 ∪ n1 � n2 ∪ n1 � n3 ∪ p1 � n2 ∪ p1 � n3) (1)
= (p1 � p2 ∪ p1 � p3,

(n1 � p2 ∪ n1 � n2 ∪ p1 � n2) ∪ (n1 � p3 ∪ n1 � n3 ∪ p1 � n3)) (2)
= (p1 � p2, n1 � p2 ∪ n1 � n2 ∪ p1 � n2)

 (p1 � p3, n1 � p3 ∪ n1 � n3 ∪ p1 � n3) (Def.  )
= ((p1, n1) � (p2, n2))  ((p1, n1) � (p3, n3)) (Def. �)
= (o1 � o2)  (o1 � o3)

Notes:
1. s1 � (s2 ∪ s3) = (s1 � s2) ∪ (s1 � s3) (Lemma 26).
2. Associativity and commutativity of ∪.

�
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Lemma 29 (o1  o2) � o3 = (o1 � o3)  (o2 � o3)

Proof of lemma 29
Prove: (o1  o2) � o3 = (o1 � o3)  (o2 � o3)
Proof: (o1  o2) � o3)

= ((p1, n1)  (p2, n2)) � (p3, n3))
= (p1 ∪ p2, n1 ∪ n2) � (p3, n3) (Def.  )
= ((p1 ∪ p2) � p3,

(n1 ∪ n2) � p3 ∪ (n1 ∪ n2) � n3 ∪ (p1 ∪ p2) � n3) (Def. �)
= (p1 � p3 ∪ p2 � p3,

n1 � p3 ∪ n2 � p3 ∪ n1 � n3 ∪ n2 � n3 ∪ p1 � n3 ∪ p2 � n3) (1)
= (p1 � p3 ∪ p2 � p3,

(n1 � p3 ∪ n1 � n3 ∪ p1 � n3) ∪ (n2 � p3 ∪ n2 � n3 ∪ p2 � n3)) (2)
= (p1 � p3, n1 � p3 ∪ n1 � n3 ∪ p1 � n3)

 (p2 � p3, n2 � p3 ∪ n2 � n3 ∪ p2 � n3) (Def.  )
= ((p1, n1) � (p3, n3))  ((p2, n2) � (p3, n3)) (Def. �)
= (o1 � o3)  (o2 � o3)

Notes:
1. (s1 ∪ s2) � s3 = (s1 � s3) ∪ (s2 � s3) (Lemma 27).
2. Associativity and commutativity of ∪.

�

Lemma 30 ¬(o1  o2) = ¬o1  ¬o2

Proof of lemma 30
Prove: ¬(o1  o2) = ¬o1  ¬o2

Proof: ¬(o1  o2)
= ¬((p1, n1)  (p2, n2))
= ¬(p1 ∪ p2, n1 ∪ n2) (Def.  )
= (∅, p1 ∪ p2 ∪ n1 ∪ n2) (Def. ¬)
= (∅, (p1 ∪ n1) ∪ (p2 ∪ n2)) (1)
= (∅, p1 ∪ n1)  (∅, p2 ∪ n2) (Def.  )
= ¬(p1, n1)  ¬(p2, n2) (Def. ¬)
= ¬o1  ¬o2

Notes:
1. Associativity and commutativity of ∪.

�

Lemma 31 ¬¬o = ¬o
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Proof of lemma 31
Prove: ¬¬o = ¬o
Proof: ¬¬o

= ¬¬(p, n)
= ¬(∅, p ∪ n) (Def. ¬)
= (∅, ∅ ∪ p ∪ n) (Def. ¬)
= (∅, p ∪ n)
= ¬(p, n) (Def. ¬)
= ¬o

�

Lemma 32 o1‖¬o2 = ¬(o1‖o2)

Proof of lemma 32
Prove: o1‖¬o2 = ¬(o1‖o2)
Proof: o1‖¬o2

= (p1, n1)‖¬(p2, n2)
= (p1, n1)‖(∅, p2 ∪ n2) (Def. ¬)
= (p1‖∅, n1‖∅ ∪ n1‖(p2 ∪ n2) ∪ p1‖(p2 ∪ n2)) (Def. ‖)
= (∅, n1‖(p2 ∪ n2) ∪ p1‖(p2 ∪ n2)) (1)
= (∅, n1‖p2 ∪ n1‖n2 ∪ p1‖p2 ∪ p1‖n2) (2)
= (∅, p1‖p2 ∪ n1‖p2 ∪ n1‖n2 ∪ p1‖n2) (3)
= ¬(p1‖p2, n1‖p2 ∪ n1‖n2 ∪ p1‖n2) (Def. ¬)
= ¬((p1, n1)‖(p2, n2)) (Def. ‖)
= ¬(o1‖o2)

Notes:
1. s‖∅ = ∅‖s = ∅.
2. s1‖(s2 ∪ s3) = (s1‖s2) ∪ (s1‖s3) [70, Lemma 12].
3. Associativity and commutativity of ∪.

�

Lemma 33 o1 � ¬o2 = ¬(o1 � o2)

Proof of lemma 33
Prove: o1 � ¬o2 = ¬(o1 � o2)
Proof: o1 � ¬o2

= (p1, n1) � ¬(p2, n2)
= (p1, n1) � (∅, p2 ∪ n2) (Def. ¬)
= (p1 � ∅, n1 � ∅ ∪ n1 � (p2 ∪ n2) ∪ p1 � (p2 ∪ n2)) (Def. �)
= (∅, n1 � (p2 ∪ n2) ∪ p1 � (p2 ∪ n2)) (1)
= (∅, n1 � p2 ∪ n1 � n2 ∪ p1 � p2 ∪ p1 � n2) (2)
= (∅, p1 � p2 ∪ n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (3)
= ¬(p1 � p2, n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (Def. ¬)
= ¬((p1, n1) � (p2, n2)) (Def. �)
= ¬(o1 � o2)

Notes:
1. s � ∅ = ∅ � s = ∅.
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2. s1 � (s2 ∪ s3) = (s1 � s2) ∪ (s1 � s3) [70, Lemma 14].
3. Associativity and commutativity of ∪.

�

Lemma 34 (¬o1) � o2 = ¬(o1 � o2)

Proof of lemma 34
Prove: (¬o1) � o2 = ¬(o1 � o2)
Proof: (¬o1) � o2

= (¬(p1, n1)) � (p2, n2)
= (∅, p1 ∪ n1) � (p2, n2) (Def. ¬)
= (∅ � p2, (p1 ∪ n1) � p2 ∪ (p1 ∪ n1) � n2 ∪ ∅ � n2) (Def. �)
= (∅, (p1 ∪ n1) � p2 ∪ (p1 ∪ n1) � n2) (1)
= (∅, p1 � p2 ∪ n1 � p2 ∪ p1 � n2 ∪ n1 � n2) (2)
= (∅, p1 � p2 ∪ n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (3)
= ¬(p1 � p2, n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (Def. ¬)
= ¬((p1, n1) � (p2, n2)) (Def. �)
= ¬(o1 � o2)

Notes:
1. s � ∅ = ∅ � s = ∅.
2. (s1 ∪ s2) � s3 = (s1 � s3) ∪ (s2 � s3) [70, Lemma 15].
3. Associativity and commutativity of ∪.

�

Lemma 35 o1 � ¬o2 = ¬(o1 � o2)

Proof of lemma 35
Prove: o1 � ¬o2 = ¬(o1 � o2)
Proof: o1 � ¬o2

= (p1, n1) � ¬(p2, n2)
= (p1, n1) � (∅, p2 ∪ n2) (Def. ¬)
= (p1 � ∅, n1 � ∅ ∪ n1 � (p2 ∪ n2) ∪ p1 � (p2 ∪ n2)) (Def. �)
= (∅, n1 � (p2 ∪ n2) ∪ p1 � (p2 ∪ n2)) (1)
= (∅, n1 � p2 ∪ n1 � n2 ∪ p1 � p2 ∪ p1 � n2) (2)
= (∅, p1 � p2 ∪ n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (3)
= ¬(p1 � p2, n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (Def. ¬)
= ¬((p1, n1) � (p2, n2)) (Def. �)
= ¬(o1 � o2)

Notes:
1. s � ∅ = ∅ � s = ∅.
2. s1 � (s2 ∪ s3) = (s1 � s2) ∪ (s1 � s3) (Lemma 26).
3. Associativity and commutativity of ∪.

�

Lemma 36 (¬o1) � o2 = ¬(o1 � o2)
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Proof of lemma 36
Prove: (¬o1) � o2 = ¬(o1 � o2)
Proof: (¬o1) � o2

= (¬(p1, n1)) � (p2, n2)
= (∅, p1 ∪ n1) � (p2, n2) (Def. ¬)
= (∅ � p2, (p1 ∪ n1) � p2 ∪ (p1 ∪ n1) � n2 ∪ ∅ � n2) (Def. �)
= (∅, (p1 ∪ n1) � p2 ∪ (p1 ∪ n1) � n2) (1)
= (∅, p1 � p2 ∪ n1 � p2 ∪ p1 � n2 ∪ n1 � n2) (2)
= (∅, p1 � p2 ∪ n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (3)
= ¬(p1 � p2, n1 � p2 ∪ n1 � n2 ∪ p1 � n2) (Def. ¬)
= ¬((p1, n1) � (p2, n2)) (Def. �)
= ¬(o1 � o2)

Notes:
1. s � ∅ = ∅ � s = ∅.
2. (s1 ∪ s2) � s3 = (s1 � s3) ∪ (s2 � s3) (Lemma 27).
3. Associativity and commutativity of ∪.

�

Theorem 8 Given diagrams d1, d2, d3 we have the following equations:

1. [[ loop〈n〉 d1 ]] = [[ d1 seq d1 seq · · · seq d1︸ ︷︷ ︸
n times

]]

2. [[ d1 alt (d2 xalt d3) ]] = [[ (d1 alt d2) xalt (d1 alt d3) ]]

3. [[ (d1 xalt d2) alt d3 ]] = [[ (d1 alt d3) xalt (d2 alt d3) ]]

4. [[ d1 par (d2 xalt d3) ]] = [[ (d1 par d2) xalt (d1 par d3) ]]

5. [[ (d1 xalt d2) par d3 ]] = [[ (d1 par d3) xalt (d2 par d3) ]]

6. [[ d1 seq (d2 xalt d3) ]] = [[ (d1 seq d2) xalt (d1 seq d3) ]]

7. [[ (d1 xalt d2) seq d3 ]] = [[ (d1 seq d3) xalt (d2 seq d3) ]]

8. [[ d1 strict (d2 xalt d3) ]] = [[ (d1 strict d2) xalt (d1 strict d3) ]]

9. [[ (d1 xalt d2) strict d3 ]] = [[ (d1 strict d3) xalt (d2 strict d3) ]]

10. [[ refuse (d1 xalt d2) ]] = [[ (refuse d1) xalt (refuse d2) ]]

11. [[ d1 par (d2 alt d3) ]] = [[ (d1 par d2) alt (d1 par d3) ]]

12. [[ (d1 alt d2) par d3 ]] = [[ (d1 par d3) alt (d2 par d3) ]]

13. [[ d1 seq (d2 alt d3) ]] = [[ (d1 seq d2) alt (d1 seq d3) ]]

14. [[ (d1 alt d2) seq d3 ]] = [[ (d1 seq d3) alt (d2 seq d3) ]]

15. [[ d1 strict (d2 alt d3) ]] = [[ (d1 strict d2) alt (d1 strict d3) ]]

16. [[ (d1 alt d2) strict d3 ]] = [[ (d1 strict d3) alt (d2 strict d3) ]]
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17. [[ refuse (d1 alt d2) ]] = [[ (refuse d1) alt (refuse d2) ]]

18. [[ refuse refuse d1 ]] = [[ refuse d1 ]]

19. [[ d1 par refuse d2 ]] = [[ refuse (d1 par d2) ]]

20. [[ (refuse d1) par d2 ]] = [[ refuse (d1 par d2) ]]

21. [[ d1 seq refuse d2 ]] = [[ refuse (d1 seq d2) ]]

22. [[ (refuse d1) seq d2 ]] = [[ refuse (d1 seq d2) ]]

23. [[ d1 strict refuse d2 ]] = [[ refuse (d1 strict d2) ]]

24. [[ (refuse d1) strict d2 ]] = [[ refuse (d1 strict d2) ]]

Proof of theorem 8
〈1〉1. Prove: [[ loop〈n〉 d1 ]] = [[ d1 seq d1 seq · · · seq d1︸ ︷︷ ︸

n times

]]

Proof: [[ loop〈n〉 d1 ]]
= μn[[ d1 ]] (Def. loop)
= [[ d1 ]] � μn−1[[ d1 ]] (Def. μ)
= [[ d1 ]] � [[ d1 ]] � μn−2[[ d1 ]] (Def. μ)

...
= [[ d1 ]] � [[ d1 ]] � · · · � [[ d1 ]]︸ ︷︷ ︸

n−1 times

� μ1[[ d1 ]] (Def. μ)

= [[ d1 ]] � [[ d1 ]] � · · · � [[ d1 ]]︸ ︷︷ ︸
n−1 times

� [[ d1 ]] (Def. μ)

= [[ d1 ]] � [[ d1 ]] � · · · � [[ d1 ]]︸ ︷︷ ︸
n times

= [[ d1 seq d1 seq · · · seq d1︸ ︷︷ ︸
n times

]] (Lemma 22)

〈1〉2. Prove: [[ d1 alt (d2 xalt d3) ]] = [[ (d1 alt d2) xalt (d1 alt d3) ]]
Proof: [[ d1 alt (d2 xalt d3) ]]

= {o1  o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 xalt d3 ]]} (Def. alt)
= {o1  o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]] ∪ [[ d3 ]]} (Def. xalt)
= {o1  o2 | o1 ∈ [[ d1 ]] ∧ (o2 ∈ [[ d2 ]] ∨ o2 ∈ [[ d3 ]])} (1)
= {o1  o2 | (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]])

∨ (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]])} (2)
= {o1  o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

∪ {o1  o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]} (3)
= [[ d1 alt d2 ]] ∪ [[ d1 alt d3 ]] (Def. alt)
= [[ (d1 alt d2) xalt (d1 alt d3) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
2. DeMorgan: A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).
3. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉3. Prove: [[ (d1 xalt d2) alt d3 ]] = [[ (d1 alt d3) xalt (d2 alt d3) ]]
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Proof: [[ (d1 xalt d2) alt d3 ]]
= [[ d3 alt (d1 xalt d2) ]] (1)
= [[ (d3 alt d1) xalt (d3 alt d2) ]] (〈1〉2)
= [[ (d1 alt d3) xalt (d2 alt d3) ]] (1)

Notes:
1. of alt [70, theorem 1].

〈1〉4. Prove: [[ d1 par (d2 xalt d3) ]] = [[ (d1 par d2) xalt (d1 par d3) ]]
Proof: [[ d1 par (d2 xalt d3) ]]

= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 xalt d3 ]]} (Def. par)
= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]] ∪ [[ d3 ]]} (Def. xalt)
= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ (o2 ∈ [[ d2 ]] ∨ o2 ∈ [[ d3 ]])} (1)
= {o1‖o2 | (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]])

∨ (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]])} (2)
= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

∪ {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]} (3)
= [[ d1 par d2 ]] ∪ [[ d1 par d3 ]] (Def. par)
= [[ (d1 par d2) xalt (d1 par d3) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
2. DeMorgan: A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).
3. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉5. Prove: [[ (d1 xalt d2) par d3 ]] = [[ (d1 par d3) xalt (d2 par d3) ]]
Proof: [[ (d1 xalt d2) par d3 ]]

= [[ d3 par (d1 xalt d2) ]] (1)
= [[ (d3 par d1) xalt (d3 par d2) ]] (〈1〉4)
= [[ (d1 par d3) xalt (d2 par d3) ]] (1)

Notes:
1. Commutativity of par [70, theorem 5].

〈1〉6. Prove: [[ d1 seq (d2 xalt d3) ]] = [[ (d1 seq d2) xalt (d1 seq d3) ]]
Proof: [[ d1 seq (d2 xalt d3) ]]

= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 xalt d3 ]]} (Def. seq)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]] ∪ [[ d3 ]]} (Def. xalt)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ (o2 ∈ [[ d2 ]] ∨ o2 ∈ [[ d3 ]])} (1)
= {o1 � o2 | (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]])

∨ (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]])} (2)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

∪ {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]} (3)
= [[ d1 seq d2 ]] ∪ [[ d1 seq d3 ]] (Def. seq)
= [[ (d1 seq d2) xalt (d1 seq d3) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
2. DeMorgan: A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).
3. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉7. Prove: [[ (d1 xalt d2) seq d3 ]] = [[ (d1 seq d3) xalt (d2 seq d3) ]]
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Proof: [[ (d1 xalt d2) seq d3 ]]
= {o1 � o2 | o1 ∈ [[ d1 xalt d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def. seq)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∪ [[ d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def. xalt)
= {o1 � o2 | (o1 ∈ [[ d1 ]] ∨ o1 ∈ [[ d2 ]]) ∧ o2 ∈ [[ d3 ]]} (1)
= {o1 � o2 | (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]])

∨ (o1 ∈ [[ d2 ]] ∧ o2 ∈ [[ d3 ]])} (2)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]}

∪ {o1 � o2 | o1 ∈ [[ d2 ]] ∧ o2 ∈ [[ d3 ]]} (3)
= [[ d1 seq d3 ]] ∪ [[ d2 seq d3 ]] (Def. seq)
= [[ (d1 seq d3) xalt (d2 seq d3) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
2. DeMorgan: (A ∨ B) ∧ C ⇔ (A ∧ C) ∨ (B ∧ C).
3. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉8. Prove: [[ d1 strict (d2 xalt d3) ]] = [[ (d1 strict d2) xalt (d1 strict d3) ]]
Proof: [[ d1 strict (d2 xalt d3) ]]

= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 xalt d3 ]]} (Def. strict)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]] ∪ [[ d3 ]]} (Def. xalt)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ (o2 ∈ [[ d2 ]] ∨ o2 ∈ [[ d3 ]])} (1)
= {o1 � o2 | (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]])

∨ (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]])} (2)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

∪ {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]} (3)
= [[ d1 strict d2 ]] ∪ [[ d1 strict d3 ]] (Def. strict)
= [[ (d1 strict d2) xalt (d1 strict d3) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
2. DeMorgan: A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).
3. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉9. Prove: [[ (d1 xalt d2) strict d3 ]] = [[ (d1 strict d3) xalt (d2 strict d3) ]]
Proof: [[ (d1 xalt d2) strict d3 ]]

= {o1 � o2 | o1 ∈ [[ d1 xalt d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def. strict)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∪ [[ d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def. xalt)
= {o1 � o2 | (o1 ∈ [[ d1 ]] ∨ o1 ∈ [[ d2 ]]) ∧ o2 ∈ [[ d3 ]]} (1)
= {o1 � o2 | (o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]])

∨ (o1 ∈ [[ d2 ]] ∧ o2 ∈ [[ d3 ]])} (2)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]}

∪ {o1 � o2 | o1 ∈ [[ d2 ]] ∧ o2 ∈ [[ d3 ]]} (3)
= [[ d1 strict d3 ]] ∪ [[ d2 strict d3 ]] (Def. strict)
= [[ (d1 strict d3) xalt (d2 strict d3) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪B ⇔ u ∈ A ∨ u ∈ B.
2. DeMorgan: (A ∨ B) ∧ C ⇔ (A ∧ C) ∨ (B ∧ C).
3. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉10. Prove: [[ refuse (d1 xalt d2) ]] = [[ (refuse d1) xalt (refuse d2) ]]
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Proof: [[ refuse (d1 xalt d2) ]]
= {(∅, p ∪ n) | (p, n) ∈ [[ d1 xalt d2 ]]} (Def. refuse)
= {(∅, p ∪ n) | (p, n) ∈ [[ d1 ]] ∪ [[ d2 ]]} (Def. xalt)
= {(∅, p ∪ n) | (p, n) ∈ [[ d1 ]] ∨ (p, n) ∈ [[ d2 ]]} (1)
= {(∅, p ∪ n) | (p, n) ∈ [[ d1 ]]}

∪ {(∅, p ∪ n) | (p, n) ∈ [[ d2 ]]} (2)
= [[ refuse d1 ]] ∪ [[ refuse d2 ]] (Def. refuse)
= [[ (refuse d1) xalt (refuse d2) ]] (Def. xalt)

Notes:
1. Set theory: u ∈ A ∪ B ⇔ u ∈ A ∨ u ∈ B.
2. Set theory: {x |φ1(x) ∨ φ2(x)} = {x |φ1(x)} ∪ {x |φ2(x)}.

〈1〉11. Prove: [[ d1 par (d2 alt d3) ]] = [[ (d1 par d2) alt (d1 par d3) ]]
Proof: [[ d1 par (d2 alt d3) ]]

= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 alt d3 ]]} (Def. par)
= {o1‖o2 | o1 ∈ [[ d1 ]] ∧

o2 ∈ {o3  o4 | o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]}} (Def. alt)
= {o1‖(o3  o4) | o1 ∈ [[ d1 ]] ∧

o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]} (1)
= {(o1‖o3)  (o1‖o4) | o1 ∈ [[ d1 ]] ∧

o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]} (Lemma 23)
= {o1‖o3 | o1 ∈ [[ d1 ]] ∧ o3 ∈ [[ d2 ]]}

 {o1‖o4 | o1 ∈ [[ d1 ]] ∧ o4 ∈ [[ d3 ]]} (Def.  )
= [[ d1 par d2 ]]  [[ d1 par d3 ]] (Def. par)
= [[ (d1 par d2) alt (d1 par d3) ]] (Lemma 22)

Notes:
1. This can be shown using the set theory operation
∀u : [u ∈ {〈x1, . . . , xn〉 |φ(x1, . . . , xn, Y1, . . . , Ym)}
⇔ ∃x1, . . . , xn : u = 〈x1, . . . , xn, Y1, . . . , Ym〉 ∧ φ(x1, . . . , xn, Y1, . . . , Ym)] like
this:

{o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ {o3  o4 | o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]}}
= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 = o3  o4 ∧ o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]}
= {o1‖(o3  o4) | o1 ∈ [[ d1 ]] ∧ o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]}

〈1〉12. Prove: [[ (d1 alt d2) par d3 ]] = [[ (d1 par d3) alt (d2 par d3) ]]
Proof: [[ (d1 alt d2) par d3 ]]

= [[ d3 par (d1 alt d2) ]] (1)
= [[ (d3 par d1) alt (d3 par d2) ]] (〈1〉11)
= [[ (d1 par d3) alt (d2 par d3) ]] (1)

Notes:
1. Commutativity of par [70, theorem 5].

〈1〉13. Prove: [[ d1 seq (d2 alt d3) ]] = [[ (d1 seq d2) alt (d1 seq d3) ]]
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Proof: [[ d1 seq (d2 alt d3) ]]
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 alt d3 ]]} (Def. seq)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧

o2 ∈ {o3  o4 | o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]}} (Def. alt)
= {o1 � (o3  o4) | o1 ∈ [[ d1 ]] ∧

o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]} (1)
= {(o1 � o3)  (o1 � o4) | o1 ∈ [[ d1 ]] ∧

o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]} (Lemma 24)
= {o1 � o3 | o1 ∈ [[ d1 ]] ∧ o3 ∈ [[ d2 ]]}

 {o1 � o4 | o1 ∈ [[ d1 ]] ∧ o4 ∈ [[ d3 ]]} (Def.  )
= [[ d1 seq d2 ]]  [[ d1 seq d3 ]] (Def. seq)
= [[ (d1 seq d2) alt (d1 seq d3) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉14. Prove: [[ (d1 alt d2) seq d3 ]] = [[ (d1 seq d3) alt (d2 seq d3) ]]
Proof: [[ (d1 alt d2) seq d3) ]]

= {o1 � o2 | o1 ∈ [[ d1 alt d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def. seq)
= {o1 � o2 | o1 ∈ {o3  o4 | o3 ∈ [[ d1 ]] ∧ o4 ∈ [[ d2 ]]} ∧

o2 ∈ [[ d3 ]]} (Def. alt)
= {(o3  o4) � o2 | o3 ∈ [[ d1 ]] ∧ o4 ∈ [[ d2 ]] ∧

o2 ∈ [[ d3 ]]} (1)
= {(o3 � o2)  (o4 � o2) | o3 ∈ [[ d1 ]] ∧ o4 ∈ [[ d2 ]] ∧

o2 ∈ [[ d3 ]]} (Lemma 25)
= {o3 � o2 | o3 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]}

 {o4 � o2 | o4 ∈ [[ d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def.  )
= [[ d1 seq d3 ]]  [[ d2 seq d3 ]] (Def. seq)
= [[ (d1 seq d3) alt (d2 seq d3) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉15. Prove: [[ d1 strict (d2 alt d3) ]] = [[ (d1 strict d2) alt (d1 strict d3) ]]
Proof: [[ d1 strict (d2 alt d3) ]]

= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 alt d3 ]]} (Def. strict)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧

o2 ∈ {o3  o4 | o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]}} (Def. alt)
= {o1 � (o3  o4) | o1 ∈ [[ d1 ]] ∧

o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]} (1)
= {(o1 � o3)  (o1 � o4) | o1 ∈ [[ d1 ]] ∧

o3 ∈ [[ d2 ]] ∧ o4 ∈ [[ d3 ]]} (Lemma 28)
= {o1 � o3 | o1 ∈ [[ d1 ]] ∧ o3 ∈ [[ d2 ]]}

 {o1 � o4 | o1 ∈ [[ d1 ]] ∧ o4 ∈ [[ d3 ]]} (Def.  )
= [[ d1 strict d2 ]]  [[ d1 strict d3 ]] (Def. strict)
= [[ (d1 strict d2) alt (d1 strict d3) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉16. Prove: [[ (d1 alt d2) strict d3 ]] = [[ (d1 strict d3) alt (d2 strict d3) ]]
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Proof: [[ (d1 alt d2) strict d3) ]]
= {o1 � o2 | o1 ∈ [[ d1 alt d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def. strict)
= {o1 � o2 | o1 ∈ {o3  o4 | o3 ∈ [[ d1 ]] ∧ o4 ∈ [[ d2 ]]} ∧

o2 ∈ [[ d3 ]]} (Def. alt)
= {(o3  o4) � o2 | o3 ∈ [[ d1 ]] ∧ o4 ∈ [[ d2 ]] ∧

o2 ∈ [[ d3 ]]} (1)
= {(o3 � o2)  (o4 � o2) | o3 ∈ [[ d1 ]] ∧ o4 ∈ [[ d2 ]] ∧

o2 ∈ [[ d3 ]]} (Lemma 29)
= {o3 � o2 | o3 ∈ [[ d1 ]] ∧ o2 ∈ [[ d3 ]]}

 {o4 � o2 | o4 ∈ [[ d2 ]] ∧ o2 ∈ [[ d3 ]]} (Def.  )
= [[ d1 strict d3 ]]  [[ d2 strict d3 ]] (Def. strict)
= [[ (d1 strict d3) alt (d2 strict d3) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉17. Prove: [[ refuse (d1 alt d2) ]] = [[ (refuse d1) alt (refuse d2) ]]
Proof: [[ refuse (d1 alt d2) ]]

= {¬o | o ∈ [[ d1 alt d2 ]]} (Def. refuse)
= {¬o | o ∈ {o1  o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}} (Def. alt)
= {¬(o1  o2) | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (1)
= {¬o1  ¬o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (Lemma 30)
= {¬o1 | o1 ∈ [[ d1 ]]}  {¬o2 | o2 ∈ [[ d2 ]]} (Def.  )
= [[ refuse d1 ]]  [[ refuse d2 ]] (Def. refuse)
= [[ (refuse d1) alt (refuse d2) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉18. Prove: [[ refuse refuse d1 ]] = [[ refuse d1 ]]
Proof: [[ refuse refuse d1 ]]

= {¬o | o ∈ [[ refuse d1 ]]} (Def. refuse)
= {¬o | o ∈ {¬o′ | o′ ∈ [[ d1 ]]}} (Def. refuse)
= {¬¬o′ | o′ ∈ [[ d1 ]]} (1)
= {¬o′ | o′ ∈ [[ d1 ]]} (Lemma 31)
= ¬{o′ | o′ ∈ [[ d1 ]]} (Def. ¬)
= ¬[[ d1 ]]
= [[ refuse d1 ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉19. Prove: [[ d1 par refuse d2 ]] = [[ refuse (d1 par d2) ]]
Proof: [[ d1 par refuse d2 ]]

= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ refuse d2 ]]} (Def. par)
= {o1‖o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ {¬o | o ∈ [[ d2 ]]}} (Def. par)
= {o1‖¬o | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (1)
= {¬(o1‖o) | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (Lemma 32)
= ¬{o1‖o | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (Def. ¬)
= ¬[[ d1 par d2 ]] (Def. par)
= [[ refuse (d1 par d2) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉20. Prove: [[ (refuse d1) par d2 ]] = [[ refuse (d1 par d2) ]]
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Proof: [[ (refuse d1) par d2 ]]
= [[ d2 par refuse d1 ]] (1)
= [[ refuse (d2 par d1) ]] (〈1〉20)
= [[ refuse (d1 par d2) ]] (1)

Notes:
1. Commutativety of par [70, theorem 5].

〈1〉21. Prove: [[ d1 seq refuse d2 ]] = [[ refuse (d1 seq d2) ]]
Proof: [[ d1 seq refuse d2 ]]

= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ refuse d2 ]]} (Def. seq)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ {¬o | o ∈ [[ d2 ]]}} (Def. seq)
= {o1 � ¬o | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (1)
= {¬(o1 � o) | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (Lemma 33)
= ¬{o1 � o | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (Def. ¬)
= ¬[[ d1 seq d2 ]] (Def. seq)
= [[ refuse (d1 seq d2) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉22. Prove: [[ (refuse d1) seq d2 ]] = [[ refuse (d1 seq d2) ]]
Proof: [[ (refuse d1) seq d2 ]]

= {o1 � o2 | o1 ∈ [[ refuse d1 ]] ∧ o2 ∈ [[ d2 ]]} (Def. seq)
= {o1 � o2 | o1 ∈ {¬o | o ∈ [[ d2 ]]} ∧ o2 ∈ [[ d2 ]]} (Def. seq)
= {(¬o) � o2 | o ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (1)
= {¬(o � o2) | o ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (Lemma 34)
= ¬{o � o2 | o ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (Def. ¬)
= ¬[[ d1 seq d2 ]] (Def. seq)
= [[ refuse (d1 seq d2) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉23. Prove: [[ d1 strict refuse d2 ]] = [[ refuse (d1 strict d2) ]]
Proof: [[ d1 strict refuse d2 ]]

= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ refuse d2 ]]} (Def. strict)
= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ {¬o | o ∈ [[ d2 ]]}} (Def. strict)
= {o1 � ¬o | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (1)
= {¬(o1 � o) | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (Lemma 35)
= ¬{o1 � o | o1 ∈ [[ d1 ]] ∧ o ∈ [[ d2 ]]} (Def. ¬)
= ¬[[ d1 strict d2 ]] (Def. strict)
= [[ refuse (d1 strict d2) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉24. Prove: [[ (refuse d1) strict d2 ]] = [[ refuse (d1 strict d2) ]]
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Proof: [[ (refuse d1) strict d2 ]]
= {o1 � o2 | o1 ∈ [[ refuse d1 ]] ∧ o2 ∈ [[ d2 ]]} (Def. strict)
= {o1 � o2 | o1 ∈ {¬o | o ∈ [[ d2 ]]} ∧ o2 ∈ [[ d2 ]]} (Def. strict)
= {(¬o) � o2 | o ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (1)
= {¬(o � o2) | o ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (Lemma 36)
= ¬{o � o2 | o ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (Def. ¬)
= ¬[[ d1 strict d2 ]] (Def. strict)
= [[ refuse (d1 strict d2) ]] (Lemma 22)

Notes:
1. This operation is the same as the one found in 〈1〉11.

〈1〉25. Q.E.D.
Proof: 〈1〉1-〈1〉24.

�
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Appendix C

Maude implementation of the
operational semantics

This appendix provides all the details of the implementation of the operational seman-
tics presented in chapter 10. Section C.1 contains the implementation of the syntax
presented in section 5.2, section C.2 contains the implementation of the operational
semantics presented in chapter 8, and section C.3 contains the implementation of the
meta-strategies presented in chapter 9.

C.1 Syntax

fmod LIFELINE is
sorts LLName Lifeline Gate .
subsort Gate < Lifeline .

op l : LLName -> Lifeline [ctor] .
op g : LLName -> Gate [ctor] .

endfm

fmod LLSET is
including LIFELINE .
including NAT .
sort LLSet .
subsort Lifeline < LLSet .

op emptyLLSet : -> LLSet [ctor] .
op _;_ : LLSet LLSet -> LLSet [ctor assoc comm id: emptyLLSet] .

op _in_ : Lifeline LLSet -> Bool .
op intersect : LLSet LLSet -> LLSet .
op _\_ : LLSet Lifeline -> LLSet .
op _\_ : LLSet LLSet -> LLSet .

vars L L’ : Lifeline .
vars LS LS’ : LLSet .

eq L ; L = L .
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eq L in emptyLLSet = false .
eq L in (L’ ; LS) =

if L == L’ then
true

else
L in LS

fi .

eq intersect(emptyLLSet, LS) = emptyLLSet .
eq intersect(L ; LS, LS’) =

(if L in LS’ then L else emptyLLSet fi) ;
intersect(LS, LS’) .

eq LS \ emptyLLSet = LS .
ceq LS \ (L ; LS’) = (LS \ L) \ LS’ if LS’ =/= emptyLLSet .
eq (L ; LS) \ L’ =
if L == L’ then

LS
else

L ; (LS \ L’)
fi .

eq emptyLLSet \ L = emptyLLSet .
endfm

fmod MESSAGE is
including LIFELINE .

sorts Signal Msg .

op (_,_,_) : Signal Lifeline Lifeline -> Msg [ctor] .

ops tr re : Msg -> Lifeline .

var S : Signal .
vars T R L : Lifeline .

eq tr(S, T, R) = T .
eq re(S, T, R) = R .

endfm

fmod EVENT is
including MESSAGE .

sorts Event EventKind SEvent SEventKind .
subsort SEvent < Event .

ops ! ? : -> EventKind [ctor] .
op (_,_) : EventKind Msg -> Event [ctor] .
op tau : SEventKind -> SEvent [ctor] .
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op k : Event -> EventKind .
op m : Event -> Msg .
ops tr re l l-1 : Event -> Lifeline .

var M : Msg .
var K : EventKind .

eq k(K,M) = K .
eq m(K,M) = M .
eq tr(K,M) = tr(M) .
eq re(K,M) = re(M) .
ceq l(K,M) = tr(M) if K = ! .
ceq l(K,M) = re(M) if K = ? .
ceq l-1(K,M) = re(M) if K = ! .
ceq l-1(K,M) = tr(M) if K = ? .

endfm

fmod SD-SYNTAX is
including EVENT .
including LLSET .

sort SD .
subsort Event < SD .

op skip : -> SD [ctor] .
op _seq_ : SD SD -> SD [ctor assoc prec 20] .
op _strict_ : SD SD -> SD [ctor assoc prec 25] .
op _par_ : SD SD -> SD [ctor assoc comm prec 30] .

op ll : SD -> LLSet .
op gates : SD -> LLSet .

vars D D’ : SD .
var E : Event .

eq D par skip = D .
eq skip seq D = D .
eq D seq skip = D .
eq D strict skip = D .
eq skip strict D = D .

eq ll(skip) = emptyLLSet .
eq ll(E) = l(E) .
eq ll(D seq D’) = ll(D) ; ll(D’) .
eq ll(D par D’) = ll(D) ; ll(D’) .
eq ll(D strict D’) = ll(D) ; ll(D’) .

eq gates(skip) = emptyLLSet .
eq gates(E) = if l-1(E) :: Gate then l-1(E) else emptyLLSet fi .
eq gates(D seq D’) = gates(D) ; gates(D’) .
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eq gates(D par D’) = gates(D) ; gates(D’) .
eq gates(D strict D’) = gates(D) ; gates(D’) .

endfm

fmod EXTENSION-ALT is
including SD-SYNTAX .

op _alt_ : SD SD -> SD [ctor assoc comm prec 35] .
op opt_ : SD -> SD [ctor prec 15] .
op alt : -> SEventKind [ctor] .

vars D D’ : SD .

eq skip alt skip = skip .
eq opt D = D alt skip .

eq ll(D alt D’) = ll(D) ; ll(D’) .
eq gates(D alt D’) = gates(D) ; gates(D’) .

endfm

fmod EXTENSION-XALT is
including SD-SYNTAX .

op _xalt_ : SD SD -> SD [ctor assoc comm prec 40] .
op xalt : -> SEventKind [ctor] .

vars D D’ : SD .

eq skip xalt skip = skip .

eq ll(D xalt D’) = ll(D) ; ll(D’) .
eq gates(D xalt D’) = gates(D) ; gates(D’) .

endfm

fmod EXTENSION-REFUSE is
including SD-SYNTAX .
including EXTENSION-ALT .

op refuse_ : SD -> SD [ctor prec 1] .
op refuse : -> SEventKind [ctor] .
op neg_ : SD -> SD [ctor prec 10] .

var D : SD .

eq neg D = refuse D alt skip .

eq ll(refuse D) = ll(D) .
eq gates(refuse D) = gates(D) .

endfm
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fmod EXTENSION-ASSERT is
including SD-SYNTAX .

op assert_ : SD -> SD [ctor prec 5] .
op assert : -> SEventKind [ctor] .

var D : SD .

eq ll(assert D) = ll(D) .
eq gates(assert D) = gates(D) .

endfm

fmod NAT-SET is
including NAT .

sort NatSet .
subsort Nat < NatSet .

op emptyNatSet : -> NatSet [ctor] .
op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: emptyNatSet] .

op toSet : Nat Nat -> NatSet .

vars N N’ : Nat .
var NS : NatSet .

eq N , N = N .

ceq toSet(N,N’) = N , toSet(s N, N’) if N <= N’ .
ceq toSet(N,N’) = emptyNatSet if N > N’ .

endfm

fmod EXTENSION-LOOP is
including SD-SYNTAX .
including NAT-SET .
including EXTENSION-ALT .

op loop{_}_ : NatSet SD -> SD [ctor prec 7] .
op loop<_>_ : Nat SD -> SD [ctor prec 7] .
op loop(_,_)_ : Nat Nat SD -> SD [ctor prec 7] .
op loop : -> SEventKind [ctor] .

var D : SD .
vars N N’ : Nat .
var I : NatSet .

eq loop< 0 > D = skip .
eq loop(N,N’) D = loop{toSet(N,N’)} D .
eq loop{emptyNatSet} D = skip .
eq loop{N} D = loop< N > D .
ceq loop{N , I} D = loop< N > D alt loop{I} D if I =/= emptyNatSet .
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eq ll(loop< N > D) = ll(D) .
eq gates(loop< N > D) = gates(D) .

endfm

fmod SD-FULL-SYNTAX is
including SD-SYNTAX .
including EXTENSION-ALT .
including EXTENSION-XALT .
including EXTENSION-REFUSE .
including EXTENSION-ASSERT .
including EXTENSION-LOOP .

endfm

C.2 Operational semantics

C.2.1 Communication medium

fmod COMMUNICATION is
including MESSAGE .
including SD-FULL-SYNTAX .

sort Comm .

op emptyComm : -> Comm [ctor] .
ops add rm : Comm Msg -> Comm .
op ready : Comm Msg -> Bool .
op initC : SD -> Comm .

endfm

fmod ONE-FIFO-MESSAGE is
including COMMUNICATION .

subsort Msg < Comm .

op _::_ : Comm Comm -> Comm [ctor assoc comm id: emptyComm] .

vars M M’ : Msg .
var B : Comm .
vars D1 D2 : SD .
var N : Nat .
var E : Event .

eq add(B,M) = B :: M .
eq rm(emptyComm, M) = emptyComm .
eq rm(M :: B, M) = B .
ceq rm(M :: B, M’) = M :: rm(B,M’) if M =/= M’ .
eq ready(emptyComm, M) = false .
eq ready(M :: B, M’) = (M == M’) or ready(B,M’) .
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eq initC(skip) = emptyComm .
ceq initC(E) = emptyComm if k(E) == ! or not tr(E) :: Gate .
ceq initC(E) = m(E) if k(E) == ? and tr(E) :: Gate .
eq initC(D1 seq D2) = initC(D1) :: initC(D2) .
eq initC(D1 par D2) = initC(D1) :: initC(D2) .
eq initC(D1 strict D2) = initC(D1) :: initC(D2) .
eq initC(D1 alt D2) = initC(D1) :: initC(D2) .
eq initC(D1 xalt D2) = initC(D1) :: initC(D2) .
eq initC(refuse D1) = initC(D1) .
eq initC(assert D1) = initC(D1) .
eq initC(loop< s N > D1) = initC(D1) :: initC(loop< N > D1) .

endfm

fmod ONE-FIFO-PAIR-LIFELINES is
including COMMUNICATION .

sort Channel .
sort Fifo .
subsort Msg < Fifo .
subsort Channel < Comm .

op emptyFifo : -> Fifo [ctor] .
op _::_ : Fifo Fifo -> Fifo [ctor assoc id: emptyFifo] .

op _,_:_ : Lifeline Lifeline Fifo -> Channel [ctor] .
op _;_ : Comm Comm -> Comm [ctor assoc comm id: emptyComm] .

op _<<_ : Comm Channel -> Comm .
op _<<_ : Comm Comm -> Comm .

vars T T’ R R’ : Lifeline .
vars B B’ : Fifo .
vars C C’ : Comm .
vars M M’ : Msg .
vars D1 D2 : SD .
var N : Nat .
var E : Event .

eq emptyComm << (T,R : B) = T,R : B .
eq ((T,R : B) ; C) << (T,R : B’) = (T,R : B :: B’) ; C .
ceq ((T,R : B) ; C) << (T’,R’ : B’) = (T,R : B) ; (C << (T’,R’ : B’))

if T =/= T’ or R =/= R’ .

eq C << emptyComm = C .
ceq C << ((T,R : B) ; C’) = (C << (T,R : B)) << C’

if C’ =/= emptyComm .

eq add(C,M) = C << (tr(M),re(M) : M) .
eq rm((T,R : M :: B) ; C , M’) =

if tr(M) == T and re(M) == R and M == M’ then
(T,R : B) ; C
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else
(T,R : M :: B) ; rm(C,M’)

fi .
eq ready (emptyComm,M) = false .
eq ready((T,R : M :: B) ; C, M’) = (tr(M) == T and re(M) == R and M == M’)

or ready(C,M’) .

eq initC(skip) = emptyComm .
ceq initC(E) = emptyComm if k(E) == ! or not tr(E) :: Gate .
ceq initC(E) = tr(E),re(E) : m(E) if k(E) == ? and tr(E) :: Gate .
eq initC(D1 seq D2) = initC(D1) << initC(D2) .
eq initC(D1 par D2) = initC(D1) << initC(D2) .
eq initC(D1 strict D2) = initC(D1) << initC(D2) .
eq initC(D1 alt D2) = initC(D1) << initC(D2) .
eq initC(D1 xalt D2) = initC(D1) << initC(D2) .
eq initC(refuse D1) = initC(D1) .
eq initC(assert D1) = initC(D1) .
eq initC(loop< s N > D1) = initC(D1) << initC(loop< N > D1) .

endfm

fmod ONE-FIFO-LIFELINE is
including COMMUNICATION .

sort Channel .
sort Fifo .
subsort Msg < Fifo .
subsort Channel < Comm .

op emptyFifo : -> Fifo [ctor] .
op _::_ : Fifo Fifo -> Fifo [ctor assoc id: emptyFifo] .

op _:_ : Lifeline Fifo -> Channel [ctor] .
op _;_ : Comm Comm -> Comm [ctor assoc comm id: emptyComm] .

op _<<_ : Comm Channel -> Comm .
op _<<_ : Comm Comm -> Comm .

vars L L’ : Lifeline .
vars F F’ : Fifo .
var B : Comm .
vars M M’ : Msg .
vars D1 D2 : SD .
var N : Nat .
var E : Event .

eq L : emptyFifo = emptyComm .

eq emptyComm << (L : F) = L : F .
eq ((L : F) ; B) << (L : F’) = (L : F :: F’) ; B .
ceq ((L : F) ; B) << (L’ : F’) = (L : F) ; (B << (L’ : F’))

if L =/= L’ .
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eq add(B,M) = B << (re(M) : M) .
eq rm(emptyComm, M) = emptyComm .
eq rm((L : (M :: F)) ; B, M’) =

if re(M) == L and M == M’ then
(L : F) ; B

else
(L : (M :: F)) ; rm(B, M’)

fi .
eq ready(emptyComm, M) = false .
eq ready((L : (M :: F)) ; B, M’) = (re(M) == L and M == M’)

or ready(B,M’) .
endfm

fmod GLOBAL-FIFO is
including COMMUNICATION .

subsort Msg < Comm .

op _::_ : Comm Comm -> Comm [ctor assoc id: emptyComm] .

vars M M’ : Msg .
var B : Comm .

eq add(B,M) = B :: M .
eq rm(emptyComm, M) = emptyComm .
eq rm(M :: B, M) = B .
ceq rm(M :: B, M’) = M :: B if M =/= M’ .
eq ready(emptyComm, M) = false .
eq ready(M :: B, M’) = (M == M’) .

endfm

C.2.2 Projection system

fmod PI is
including SD-SYNTAX .
including COMMUNICATION .

sort Pi .

op PI : LLSet Comm SD -> Pi [ctor] .
op {_}_ : Event Pi -> Pi [ctor] .

endfm

mod PI-SIMPLE is
including PI .

vars D1 D1’ D2 D2’ : SD .
var E : Event .
vars L L’ : LLSet .
var B : Comm .
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crl [PI-event] :
PI(L, B, E) => {E}PI(L, B, skip)
if l(E) in L /\

k(E) == ! or ready(B,m(E)) .

crl [PI-seq-left] :
PI(L, B, D1 seq D2) => {E}PI(L, B, D1’ seq D2)
if intersect(ll(D1),L) =/= emptyLLSet /\

PI(intersect(ll(D1),L), B, D1) => {E}PI(L’, B, D1’) .

crl [PI-seq-right] :
PI(L, B, D1 seq D2) => {E}PI(L, B, D1 seq D2’)
if L \ ll(D1) =/= emptyLLSet /\

PI(L \ ll(D1), B, D2) => {E}PI(L’, B, D2’) .

crl [PI-par] :
PI(L, B, D1 par D2) => {E}PI(L, B, D1’ par D2)
if PI(intersect(ll(D1),L), B, D1) => {E}PI(L’, B, D1’) .

crl [PI-strict] :
PI(L, B, D1 strict D2) => {E}PI(L, B, D1’ strict D2)
if intersect(ll(D1), L) =/= emptyLLSet /\

PI(intersect(ll(D1), L), B, D1) => {E}PI(L’, B, D1’) .
endm

mod PI-ALT is
including PI .
including EXTENSION-ALT .

vars D1 D2 : SD .
var L : LLSet .
var B : Comm .

crl [PI-alt] :
PI(L, B, D1 alt D2) => {tau(alt)}PI(L, B, D1)
if intersect(ll(D1 alt D2), L) =/= emptyLLSet .

endm

mod PI-XALT is
including PI .
including EXTENSION-XALT .

vars D1 D2 : SD .
var L : LLSet .
var B : Comm .

crl [PI-xalt] :
PI(L, B, D1 xalt D2) => {tau(xalt)}PI(L, B, D1)
if intersect(ll(D1 alt D2), L) =/= emptyLLSet .

endm
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mod PI-REFUSE is
including PI .
including EXTENSION-REFUSE .

var D : SD .
var L : LLSet .
var B : Comm .

crl [PI-refuse] :
PI(L, B, refuse D) => {tau(refuse)}PI(L, B, D)
if intersect(ll(refuse D), L) =/= emptyLLSet .

endm

mod PI-ASSERT is
including PI .
including EXTENSION-ASSERT .

var D : SD .
var L : LLSet .
var B : Comm .

crl [PI-assert] :
PI(L, B, assert D) => {tau(assert)}PI(L, B, D)
if intersect(ll(assert D), L) =/= emptyLLSet .

endm

mod PI-LOOP is
including PI .
including EXTENSION-LOOP .

var D : SD .
var L : LLSet .
var B : Comm .
var N : Nat .

crl [PI-loop-dec] :
PI(L, B, loop< s N > D) => {tau(loop)}PI(L, B, D seq loop< N > D)
if intersect(ll(loop< s N > D), L) =/= emptyLLSet .

endm

mod PI-FULL is
including PI-SIMPLE .
including PI-ALT .
including PI-XALT .
including PI-REFUSE .
including PI-ASSERT .
including PI-LOOP .

endm
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C.2.3 Execution system

fmod EXEC is
including PI .

sort Exec .

op {_}_ : Event Exec -> Exec [ctor] .
op init : SD -> Exec .
op update : Comm Event -> Comm .

var B : Comm .
var E : Event .

ceq update(B,E) =
(if k(E) == ! then

add(B,m(E))
else

rm(B,m(E))
fi)

if not E :: SEvent .

ceq update(B,E) = B if E :: SEvent .
endfm

mod EXECUTION is
including EXEC .

op [_,_] : Comm SD -> Exec [ctor] .

var B : Comm .
vars D D’ : SD .
var E : Event .
var L : LLSet .

eq init(D) = [initC(D), D] .

crl [execute] :
[B, D] => {E}[update(B,E), D’]
if PI(ll(D), B, D) => {E}PI(L, B, D’) .

endm

C.3 Meta-strategies

fmod TRACE is
including EVENT .

sort SDTrace .
subsort Event < SDTrace .

op emptyTrace : -> SDTrace [ctor] .
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op _._ : SDTrace SDTrace -> SDTrace [ctor assoc id: emptyTrace] .
endfm

mod TRACES-COMMON is
including META-LEVEL .
including EXEC .

op mod : -> Module .
op getExec : Substitution -> Exec .
op getEvent : Substitution -> Event .
op getComm : Substitution -> Comm .
op getDiagram : Substitution -> SD .
op external : Event LLSet -> Bool .

op error : -> [Exec] .
op error : -> [Event] .
op error : -> [SD] .
op error : -> [Comm] .

var S : Substitution .
var TERM : Term .
var V : Variable .
var EV : Event .
var L : LLSet .

ceq getExec(S ; V <- TERM) = downTerm(TERM, (error).Exec)
if V == ’E:Exec .

ceq getExec(S ; V <- TERM) = getExec(S) if V =/= ’E:Exec .

ceq getComm(S ; V <- TERM) = downTerm(TERM, (error).Comm)
if V == ’B:Comm .

ceq getComm(S ; V <- TERM) = getComm(S) if V =/= ’B:Comm .

ceq getDiagram(S ; V <- TERM) = downTerm(TERM, (error).SD)
if V == ’D’:SD .

ceq getDiagram(S ; V <- TERM) = getDiagram(S) if V =/= ’D’:SD .

ceq getEvent(S ; V <- TERM) = downTerm(TERM, (error).Event)
if V == ’F:Event .

ceq getEvent(S ; V <- TERM) = getEvent(S) if V =/= ’F:Event .

eq external(EV, L) = (l(EV) in L) or (l-1(EV) in L) .
endm

C.3.1 One trace with mode

mod META-EXEC-MODE is
including EXEC .
including TRACE .

sort Meta .
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sort Mode .

op <_,_,_,_> : SDTrace Exec LLSet Mode -> Meta [ctor] .

op mode : SEvent Mode -> Mode .
endm

mod DEFAULT-MODE is
including META-EXEC-MODE .

ops positive negative : -> Mode [ctor] .

var T : SEvent .
var MO : Mode .

ceq mode(T,MO) = positive if MO == positive /\ T =/= tau(refuse) .
ceq mode(T,MO) = negative if MO == negative or T == tau(refuse) .

endm

fmod MYRANDOM is
protecting RANDOM .

op ran : Nat Nat Nat -> Nat .

vars N M K R MAX : Nat .

ceq ran(N, M, K) = N + ((sd(N,M) + 1) * R) quo MAX
if R := random(K) /\

MAX := 4294967295 .
endfm

mod EXTERNAL-TRACE-MODE is
including META-EXEC-MODE .
including SD-FULL-SYNTAX .

var T : SDTrace .
var E : Event .
vars V V’ : Exec .
var L : LLSet .
vars M M’ : Mode .
var D : SD .
var B : Comm .
var TAU : SEvent .

crl < T, V, L, M > => < T . E , V’, L, M >
if V => {E}V’ /\

not E :: SEvent /\
(l(E) in L or l-1(E) in L) .

crl < T, V, L, M > => < T, V’, L, M >
if V => {E}V’ /\
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not E :: SEvent /\
not l(E) in L /\
not l-1(E) in L .

crl < T , V, L, M > => < T, V’, L, mode(TAU,M) >
if V => {TAU}V’ .

endm

mod RESULT-LIST is
including META-LEVEL .

sort ResultList TraceAndMode .
subsort ResultTriple < ResultList .

op emptyRL : -> ResultList [ctor] .
op _::_ : ResultList ResultList -> ResultList [ctor assoc id: emptyRL] .

op length : ResultList -> Nat .
op _[_] : ResultList Nat -> ResultTriple .

var R3 : ResultTriple .
var RL : ResultList .
var N : Nat .

eq length(emptyRL) = 0 .
eq length(R3 :: RL) = s length(RL) .

eq (R3 :: RL)[1] = R3 .
ceq (R3 :: RL)[s N] = RL[N] if N > 0 .

endm

mod RANDOM-TRACE is
including META-EXEC-MODE .
including DEFAULT-MODE .
including RESULT-LIST .
including MYRANDOM .
including TRACES-COMMON .
including PI-FULL .

op {_|_} : SDTrace Mode -> TraceAndMode [ctor] .

op randomTrace : Exec LLSet Nat -> TraceAndMode .
op exec : Meta Nat -> TraceAndMode .
op getExecs : Exec Nat -> ResultList .

var RL : ResultList .
var R3? : ResultTriple? .
vars N K R : Nat .
var X : Exec .
var L : LLSet .
var T : SDTrace .
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var M : Mode .
var EV : Event .
var TAU : SEvent .

eq randomTrace(X, L, N) = exec( < emptyTrace, X, L, positive > , N ) .

ceq exec( < T , X , L , M > , N ) =
if K == 0 then

{T | M}
else

exec( < (if not (EV :: SEvent) and external(EV, L) then
T . EV

else
T

fi),
getExec(getSubstitution(RL[R])),
L,
(if EV :: SEvent then

mode(EV, M)
else

M
fi) > , s N)

fi
if RL := getExecs(X, 0) /\

K := length(RL) /\
R := if K == 0 then 0 else ran(1,K,N) fi /\
EV := if K == 0 then tau(loop)

else getEvent(getSubstitution(RL[R])) fi .

ceq getExecs(X, N) =
if R3? :: ResultTriple then
R3? :: getExecs(X, s N)

else
emptyRL

fi
if R3? := metaSearch(mod, upTerm(X), ’‘{_‘}_[’F:Event,’E:Exec],

nil, ’+, 1, N) .
endm

C.3.2 All traces

mod META-EXEC is
including EXEC .
including TRACE .

sort Meta .

op {|_,_,_|} : SDTrace Exec LLSet -> Meta [ctor] .
endm

mod SEMANTICS is
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including TRACE .

sort TraceSet .
sort InteractionObligation .
sort IOSet .
subsort SDTrace < TraceSet .
subsort InteractionObligation < IOSet .

op emptyTSet : -> TraceSet [ctor] .
op _+_ : TraceSet TraceSet -> TraceSet [ctor assoc comm id: emptyTSet] .
op _in_ : SDTrace TraceSet -> Bool .
op subseteq : TraceSet TraceSet -> Bool .

op (_,_) : TraceSet TraceSet -> InteractionObligation [ctor] .

op emptyIOSet : -> IOSet [ctor] .
op _&_ : IOSet IOSet -> IOSet [ctor assoc comm id: emptyIOSet] .

vars T T’ : SDTrace .
vars TS P N TS’ : TraceSet .
var O : InteractionObligation .

eq T in emptyTSet = false .
eq T in (T’ + TS) =

if T == T’ then
true

else
T in TS

fi .

eq T + T = T .
eq O & O = O .

eq subseteq(emptyTSet, TS’) = true .
eq subseteq(T + TS, TS’) = T in TS’ and subseteq(TS, TS’) .

endm

fmod TRANSFORMATIONS is
including SD-FULL-SYNTAX .

vars D1 D2 D3 : SD .
var N : Nat .

eq loop< s N > D1 = D1 seq loop< N > D1 .
eq D1 alt (D2 xalt D3) = (D1 alt D2) xalt (D1 alt D3) .
eq D1 par (D2 xalt D3) = (D1 par D2) xalt (D1 par D3) .
eq D1 seq (D2 xalt D3) = (D1 seq D2) xalt (D1 seq D3) .
eq (D1 xalt D2) seq D3 = (D1 seq D3) xalt (D2 seq D3) .
eq D1 strict (D2 xalt D3) = (D1 strict D2) xalt (D1 strict D3) .
eq (D1 xalt D2) strict D3 = (D1 strict D3) xalt (D2 strict D3) .
eq refuse (D1 xalt D2) = (refuse D1) xalt (refuse D2) .
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eq D1 par (D2 alt D3) = (D1 par D2) alt (D1 par D3) .
eq D1 seq (D2 alt D3) = (D1 seq D2) alt (D1 seq D3) .
eq (D1 alt D2) seq D3 = (D1 seq D3) alt (D2 seq D3) .
eq D1 strict (D2 alt D3) = (D1 strict D2) alt (D1 strict D3) .
eq (D1 alt D2) strict D3 = (D1 strict D3) alt (D2 strict D3) .
eq refuse (D1 alt D2) = (refuse D1) alt (refuse D2) .
eq refuse refuse D1 = refuse D1 .
eq D1 par refuse D2 = refuse (D1 par D2) .
eq D1 seq refuse D2 = refuse (D1 seq D2) .
eq (refuse D1) seq D2 = refuse (D1 seq D2) .
eq D1 strict refuse D2 = refuse (D1 strict D2) .
eq (refuse D1) strict D2 = refuse (D1 strict D2) .

endfm

mod ALL-TRACES is
including META-EXEC .
including TRANSFORMATIONS .
including SEMANTICS .
including TRACES-COMMON .
including EXECUTION .

subsort Meta < SDTrace .

op allTraces : Exec LLSet -> IOSet .
op execXalt : IOSet -> IOSet .
op getXalts : InteractionObligation -> IOSet .
op execAlt : IOSet -> IOSet .
op execAlt : TraceSet -> TraceSet .
op getAlts : SDTrace -> TraceSet .
op execRefuse : IOSet -> IOSet .
ops getPos getNeg : TraceSet -> TraceSet .
op execEvents : IOSet -> IOSet .
op execEvents : TraceSet -> TraceSet .
op getEvents : SDTrace Nat -> TraceSet .
ops xaltTop altTop refuseTop : SD -> Bool .

var X : Exec .
var L : LLSet .
var IOS : IOSet .
var R3? : ResultTriple? .
var T : SDTrace .
var N : Nat .
vars TS TS’ POS NEG : TraceSet .
vars D1 D2 D : SD .
var B : Comm .
var E : Event .

eq xaltTop(D1 xalt D2) = true .
eq xaltTop(D1 alt D2) = false .
eq xaltTop(refuse D) = false .
eq xaltTop(D1 seq D2) = false .
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eq xaltTop(D1 par D2) = false .
eq xaltTop(D1 strict D2) = false .
eq xaltTop(E) = false .
eq xaltTop(skip) = false .

eq altTop(D1 xalt D2) = false .
eq altTop(D1 alt D2) = true .
eq altTop(refuse D) = false .
eq altTop(D1 seq D2) = false .
eq altTop(D1 par D2) = false .
eq altTop(D1 strict D2) = false .
eq altTop(E) = false .
eq altTop(skip) = false .

eq refuseTop(D1 xalt D2) = false .
eq refuseTop(D1 alt D2) = false .
eq refuseTop(refuse D) = true .
eq refuseTop(D1 seq D2) = false .
eq refuseTop(D1 par D2) = false .
eq refuseTop(D1 strict D2) = false .
eq refuseTop(E) = false .
eq refuseTop(skip) = false .

eq allTraces(X, L) = execEvents(execRefuse(execAlt(
execXalt(({| emptyTrace, X, L |}, emptyTSet))))) .

ceq getXalts( ( {| T, [B,D] , L |}, emptyTSet ) ) =
( {| T , [B, D] , L |}, emptyTSet )
if not xaltTop(D) .

eq getXalts( ( {| T, [B,D1 xalt D2], L |}, emptyTSet ) ) =
getXalts( ( {| T, [B, D1], L |} , emptyTSet ) ) &
getXalts( ( {| T, [B, D2], L |} , emptyTSet ) ) .

eq execXalt(emptyIOSet) = emptyIOSet .
eq execXalt( IOS & ( {| T, X, L |}, emptyTSet ) ) =

execXalt(IOS) & getXalts( ( {| T, X, L |}, emptyTSet ) ) .

ceq getAlts( {| T, [B, D], L |} ) = {| T, [B, D], L |}
if not altTop(D) .

eq getAlts( {| T, [B, D1 alt D2], L |} ) =
getAlts( {| T, [B,D1], L |} ) + getAlts( {| T, [B,D2], L |} ) .

eq execAlt(emptyIOSet) = emptyIOSet .
eq execAlt( IOS & ( TS , emptyTSet ) ) =

execAlt(IOS) & ( execAlt(TS), emptyTSet ) .

eq execAlt(emptyTSet) = emptyTSet .
eq execAlt( TS + {| T, X, L |} ) =

execAlt(TS) + getAlts( {| T, X, L |} ) .

359



Maude implementation of the operational semantics

eq getPos(emptyTSet) = emptyTSet .
eq getPos( TS + {| T, [B, refuse D], L |} ) = getPos(TS) .
ceq getPos( TS + {| T, [B,D], L |} ) = getPos(TS) + {| T, [B,D], L |}

if not refuseTop(D) .

eq getNeg(emptyTSet) = emptyTSet .
eq getNeg( TS + {| T, [B, refuse D], L |} ) =

getNeg(TS) + {| T, [B, D], L |} .
ceq getNeg( TS + {| T, [B,D], L |} ) = getNeg(TS)

if not refuseTop(D) .

eq execRefuse(emptyIOSet) = emptyIOSet .
ceq execRefuse(IOS & (TS , emptyTSet)) = execRefuse(IOS) & ( POS, NEG )

if POS := getPos(TS) /\
NEG := getNeg(TS) .

eq execEvents(emptyIOSet) = emptyIOSet .
eq execEvents(IOS & (POS, NEG) ) =

execEvents(IOS) & (execEvents(POS), execEvents(NEG)) .

eq execEvents(emptyTSet) = emptyTSet .
ceq execEvents( TS + {| T, X, L |} ) =

if TS’ =/= emptyTSet then
execEvents(TS + TS’)

else
execEvents(TS) + T

fi
if TS’ := getEvents( {| T, X, L |}, 0 ) .

ceq getEvents( {| T, X, L |}, N) =
if R3? :: ResultTriple then
{| (if external(getEvent(getSubstitution(R3?)), L) then

T . getEvent(getSubstitution(R3?))
else

T
fi) ,
getExec(getSubstitution(R3?)), L |} +
getEvents( {| T, X, L |} , s N )

else
emptyTSet

fi
if R3? := metaSearch(mod, upTerm(X), ’‘{_‘}_[’F:Event,’E:Exec],

nil, ’+, 1, N) .
endm

C.3.2.1 Refinement verification

mod MAPPING is
including SEMANTICS .
including LLSET .
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sort Mapping .

op _->_ : Lifeline Lifeline -> Mapping [ctor prec 10] .
op emptyMapping : -> Mapping [ctor] .
op _*_ : Mapping Mapping -> Mapping

[ctor assoc comm id: emptyMapping prec 20] .

op dom : Mapping -> LLSet .
op get : Mapping Lifeline -> Lifeline .

op subst : IOSet Mapping -> IOSet .
op subst : InteractionObligation Mapping -> InteractionObligation .
op subst : TraceSet Mapping -> TraceSet .
op subst : SDTrace Mapping -> SDTrace .
op subst : Event Mapping -> Event .
op subst : Msg Mapping -> Msg .

vars L L’ : Lifeline .
vars MP MP’ : Mapping .
var M : Msg .
var E : Event .
var T : SDTrace .
var S : Signal .
var K : EventKind .
var IO : InteractionObligation .
var IOS : IOSet .
vars P N TS : TraceSet .

eq dom(emptyMapping) = emptyLLSet .
eq dom(L -> L’) = L .
ceq dom(MP * MP’) = dom(MP) ; dom(MP’)

if MP =/= emptyMapping /\ MP’ =/= emptyMapping .

eq get((L -> L’) * MP , L) = L’ .

eq subst(emptyIOSet, MP) = emptyIOSet .
ceq subst(IO & IOS, MP) = subst(IO, MP) & subst(IOS,MP)

if IOS =/= emptyIOSet .
eq subst((P,N), MP) = (subst(P,MP),subst(N,MP)) .
eq subst(emptyTSet, MP) = emptyTSet .
ceq subst(T + TS, MP) = subst(T,MP) + subst(TS,MP)

if TS =/= emptyTSet .

eq subst(emptyTrace, MP) = emptyTrace .
ceq subst(E . T, MP) = subst(E, MP) . subst(T, MP)

if T =/= emptyTrace .
eq subst((K, M), MP) = (K, subst(M,MP)) .
eq subst((S, L, L’), MP) =

(S, if L in dom(MP) then get(MP,L) else L fi,
if L’ in dom(MP) then get(MP,L’) else L’ fi) .
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endm

mod REFINEMENT is
including MAPPING .

ops _~>r_ _~>rr_ : InteractionObligation InteractionObligation -> Bool .
ops _~>g_ _~>rg_ _~>l_ _~>l’_ _~>rl_ _~>rl’_ : IOSet IOSet -> Bool .
ops _~>g_ _~>rg_ : InteractionObligation IOSet -> Bool .
ops _~>l’_ _~>rl’_ : IOSet InteractionObligation -> Bool .

vars P1 N1 P2 N2 : TraceSet .
vars IOS1 IOS2 : IOSet .
vars IO1 IO2 : InteractionObligation .

eq (P1,N1) ~>r (P2,N2) = subseteq(P1, P2 + N2) and subseteq(N1, N2) .
eq (P1,N1) ~>rr (P2,N2) = (P1,N1) ~>r (P2,N2) and subseteq(P2,P1) .

eq emptyIOSet ~>g IOS2 = true .
ceq (IO1 & IOS1) ~>g IOS2 = (IO1 ~>g IOS2) and (IOS1 ~>g IOS2)

if IOS1 =/= emptyIOSet .
eq IO1 ~>g emptyIOSet = false .
eq IO1 ~>g (IO2 & IOS2) = (IO1 ~>r IO2) or (IO1 ~>g IOS2) .

eq emptyIOSet ~>rg IOS2 = true .
ceq (IO1 & IOS1) ~>rg IOS2 = (IO1 ~>rg IOS2) and (IOS1 ~>rg IOS2)

if IOS1 =/= emptyIOSet .
eq IO1 ~>rg emptyIOSet = false .
eq IO1 ~>rg (IO2 & IOS2) = (IO1 ~>rr IO2) or (IO1 ~>rg IOS2) .

eq IOS1 ~>l IOS2 = (IOS1 ~>g IOS2) and (IOS1 ~>l’ IOS2) .
eq IOS1 ~>l’ emptyIOSet = true .
ceq IOS1 ~>l’ (IO2 & IOS2) = (IOS1 ~>l’ IO2) and (IOS1 ~>l’ IOS2)

if IOS2 =/= emptyIOSet .
eq emptyIOSet ~>l’ IO2 = false .
eq (IO1 & IOS1) ~>l’ IO2 = (IO1 ~>r IO2) or (IOS1 ~>l’ IO2) .

eq IOS1 ~>rl IOS2 = (IOS1 ~>rg IOS2) and (IOS1 ~>rl’ IOS2) .
eq IOS1 ~>rl’ emptyIOSet = true .
ceq IOS1 ~>rl’ (IO2 & IOS2) = (IOS1 ~>rl’ IO2) and (IOS1 ~>rl’ IOS2)

if IOS2 =/= emptyIOSet .
eq emptyIOSet ~>rl’ IO2 = false .
eq (IO1 & IOS1) ~>rl’ IO2 = (IO1 ~>rr IO2) or (IOS1 ~>rl’ IO2) .

endm
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