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Abstract

In this thesis, the gamma strength functions (GSF) of 44Sc, 50,51V, and
64Zn have been studied using numerical shell model calculations with the
software KSHELL. The scandium and vanadium calculations were compared
to existing experimental Oslo method data. This work has a focus on
the different contributions of E1 and M1 transitions to the GSFs with a
particular emphasis on the low energy enhancement (LEE) part of the GSFs.
The applicability of the generalised Brink-Axel (gBA) hypothesis has been
studied for all of the nuclei, supplemented by a statistical analysis of the
reduced transition probabilities (B values) from the calculations. The shell
model and KSHELL have been pushed to the limit of what is computationally
feasible to produce as high quality calculations as possible.

In all cases, the shell model calculations of this work show that the
LEE is caused by M1 transitions, not E1 transitions. The calculated GSFs
fit well with the experimental data in the entire gamma energy range of
Eγ = [0, 10] MeV, and the inclusion of E1 transitions is generally necessary
for a good fit. The GSFs of all nuclei seem to be approximately independent
of angular momentum, supporting the validity of the gBA hypothesis for
these calculations. The distribution of B values from different selections of
excitation energies closely match the Porter-Thomas (χ2

ν=1) distribution for
all nuclei, while in some cases the B distributions from selections of angular
momenta show systematic deviations from the Porter-Thomas distribution,
particularly for the E1 transitions. Using a sufficient amount of levels (and
hence B values) per jπ in the shell model calculations is important for the
quality of the resulting GSFs, particularly at the highest gamma energies.
A correspondence between where fluctuations in the GSF starts and where
the accompanying level density stops rising exponentially is seen. The GSFs
of 50,51V and 64Zn have to our knowledge for the first time been calculated
with E1 and M1 transitions in the same framework.
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Chapter 1

Introduction

You, me and almost everything we can see, touch and feel are made up
of atoms. Atoms are tiny particles of matter which were initially thought
to be indivisible, an idea which originates from the natural philosophy of
atomism dating back to ancient Greece and India. The idea of the atom
was initially a purely philosophical one, and it wasn’t until the early 1800s
that the English chemist John Dalton gave what we today call an atom its
name. The name atom comes from the Greek word atomos which roughly
translates to indivisible, and it was initially thought that the atoms were
indeed indivisible fundamental building blocks of nature. The indivisibility
of the atom was discarded after the discovery of the electron in 1897 by
J. J. Thomson and the discovery of the atomic nucleus in 1909 with the
famous gold foil experiment by Hans Geiger, Ernest Marsden, and Ernest
Rutherford. The neutron was discovered by James Chadwick in 1932, and at
this point it was known that the atom is built up by a nucleus of positively
charged protons and neutral neutrons surrounded by a cloud of negatively
charged electrons. The protons and neutrons (collectively nucleons) are held
together by the nuclear force, while the electrons are attracted to the nucleus
by the electromagnetic force.

Models for the atomic nucleus were quickly developed after the discovery
of the neutron, and one such model is the highly successful nuclear shell
model – developed by Maria Goeppert Mayer, Eugene Paul Wigner and
J. Hans D. Jensen in 1949 – which borrows many concepts from the also
highly successful electron shell model. The nuclear shell model uses the Pauli
exclusion principle to describe the structure of the nucleus. Since protons
(and neutrons) are fermions, two or more are not allowed by nature to occupy
the same quantum state. When, for example, two protons and two neutrons
combine to form 4He1 the nuclear force pulls the nucleons together, but
the exclusion principle forces the two protons to occupy different quantum
states (and the two neutrons separately). As more nucleons are added to the
nucleus they occupy distinct quantum states and a pattern emerges. The
pattern – which is based on quantum properties like angular momentum and
parity – is exactly what we have named shell structure in the nuclear shell
model.

1Pronounced helium four and alternatively written helium-4.
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Figure 1.1: Chart of the nuclides. The nuclei used in this thesis are
highlighted. Colours indicate half-lives. Figure from NuDat: nndc.bnl.gov/
nudat3/.

Understanding the behaviour of the nucleus is important to a breadth
of scientific fields, including medicine, astrophysics, material science, and
nuclear energy. Today we have particle accelerators which let us create all
sorts of nuclei, as well as letting us inject energy into nuclei placing them in
excited states. A nucleus being in an excited state means that the nucleus
contains an excess amount of energy which it wants to get rid of. Most nuclei
usually gets rid of the excess energy by emitting electromagnetic radiation, a
process which is called gamma decay. An excited nucleus might get rid of all
the excess energy by a single large energy gamma decay or by several smaller
energy gamma decays which sum up to the total excess energy. We study
the preferred ways of gamma decay for an excited nucleus with the gamma
strength function (GSF), a quantity which is essential to this thesis. Different
nuclei have different preferred ways of gamma decay, and understanding the
different preferences are of vital importance to the mentioned scientific fields.
A particular feature of the GSF, called the low energy enhancement (LEE),
reveals that some nuclei have an enhanced probability of decaying by low
energy gamma decay. This thesis will have a particular focus on the LEE.
The behaviour of an excited nucleus might affect how a nuclear reactor works,
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what types of nuclei we can use for cancer treatment, and the reaction rates
for stellar nucleosynthesis.

In all disciplines of science, it is of great importance to develop models
which describe what we see experimentally, and nuclear physics is no
exception. The nuclear shell model has proven to be very successful in
predicting the energy, angular momentum and parity of excited nuclei, but
there is a problem. The nucleus is a complicated many-particle system and
the number of particles (nucleons) often makes calculations with the shell
model computationally very heavy. Take 44Sc as an example; it has 21
protons and 23 neutrons in its nucleus, and these 44 nucleons can occupy an
enormous amount of different quantum states. Letting all of the nucleons do
as they please is not computationally feasible for any computer in existence
today so we must set some limitations. We approximate the nucleus by
locking some of the nucleons in an inert core which is surrounded by a set of
valence nucleons free to move about and interact with each other. By fixing
the core and letting only a limited number of valence nucleons be excitable,
we can drastically reduce the computational cost. We also limit the number
of possible quantum states which the valence nucleons are allowed to occupy.
The set of allowed quantum states is called the model space of the shell model
calculations.

In this thesis I will perform shell model calculations with the nuclear shell
model solver code KSHELL [1] to study the GSFs of the nuclei scandium-44,
vanadium-50, vanadium-51, and zinc-64 with a particular focus on the LEE.
The goal of this work is to numerically reproduce the LEE which has been
seen experimentally in the scandium and vanadium isotopes [2, 3] to find
out which parts of the GSF is causing the LEE. The goal of this work is
also to push the limits of what is computationally possible to do with the
shell model by calculating for 64Zn which is one of the heaviest shell model
calculations performed to this date, and also by using large model spaces for
the other nuclei of this work. This is made possible by the supercomputer
Betzy and the software KSHELL.

Setting limitations on shell model calculations is absolutely necessary
for all calculations in this thesis even when using Betzy which is the most
powerful supercomputer in Norway2. In fig. 1.1 we see the chart of the
nuclides where the nuclei used in this thesis are highlighted. Even though
these nuclei – 44Sc, 50,51V, and 64Zn – have fewer nucleons than most of
the other nuclei in the chart, they still have to be limited for any computer
today to be able to compute them with the shell model. This thesis presents
some of the largest shell model calculations ever performed to date, and in
particular, presents calculations where the electric and magnetic dipole (E1
andM1) contributions to the GSF are calculated within the same framework
which is important in the study of the LEE. As of today, there is no standard
model in nuclear physics as there is in particle physics. Models of the nucleus
must be developed and compared to empirical data to further develop our
understanding of nuclear physics, and the work of this thesis will hopefully
help to further this cause!

2documentation.sigma2.no/hpc_machines/betzy.html

3

documentation.sigma2.no/hpc_machines/betzy.html


In this thesis I start with presenting the theoretical concepts in chapter 2.
I present theoretical concepts which are strictly necessary for understanding
the results. Those concepts are the nuclear level density, the gamma
strength function, the generalised Brink-Axel hypothesis, the low energy
enhancement, and the nuclear shell model. The theory chapter also
includes additional information which gives a greater depth to the theoretical
understanding as a whole, though not strictly necessary for understanding
the results. This includes quantum mechanical concepts like what quantum
spin really is, why (quantum) total angular momentum, orbital angular
momentum, and spin can be regarded as vector quantities even though
they are represented by operators, why we use the magnitude of the angular
momentum vector together with its z component, and what parity is. We
will also visit electromagnetism to figure out what the multipolarity of
electromagnetic radiation really means and how it relates to electromagnetic
transition selection rules. In chapter 3 the software and hardware setup will
be presented, including KSHELL, kshell-utilities, and Betzy. The results will
be presented and discussed in chapter 4, and the thesis will be concluded in
chapter 5 with conclusions and future outlook. All code used to produce the
figures of this work is available at www.github.com/GaffaSnobb/master-tasks.
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Chapter 2

Theory

2.1 Formalism

In this thesis I will use j for the total angular momentum, l for the orbital
angular momentum, and s for the spin angular momentum. The term spin
refers to the quantum mechanical intrinsic angular momentum, if not stated
otherwise. Lower case l refers to the orbital angular momentum quantum
number while upper case with a hat L̂i, i ∈ {x, y, z} refers to operators.
Bold face indicates vector quantities. The elements of a vector might be
operators, and in that case we have for example the momentum operator

p = −i~∇ = −i~
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= (p̂x, p̂y, p̂z), (2.1)

which makes p both a vector and an operator.

2.2 Basic quantum mechanical concepts

2.2.1 What is quantum mechanical spin?

Spin is one of the fundamental quantities in quantum physics and it is one
of the first quantum mechanical concepts introduced to students of quantum
physics. Yet, a simple explanation on what it actually is does not seem
to exist! Quantum mechanics is well known for its many analogies, which
without, we would have a terrible intuition on the quantum world. One of
these analogies is revealed by the name spin. A reason for why we like to
think that quantum mechanical spin is similar to classical spin is because
it is easy to imagine a spinning ball. In classical physics, a ball might have
two types of angular momentum. If the entire ball is rotating about some
point in space, we call it orbital angular momentum. If the ball is rotating
about its centre of mass, we call it spin. Actually, classical spin is nothing
but a special case of orbital angular momentum where the constituents of
the ball are all rotating about their collective centre of mass, meaning that
the distinction is due to convenience and not due to a fundamental difference
between the two.

However, in quantum physics there is an actual fundamental difference
between orbital angular momentum and spin. Consider the electron which is
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believed to be an elementary point particle. A point particle has no spatial
size, which means it has no constituents which can collectively move about
their centre of mass. In addition, it is impossible to change the magnitude
of the spin of a particle. What crazy type of ball keeps spinning at the
exact same rate no matter what you do to it? The classical analogy cannot
be pushed too far, but it has its merits. For example, through spin-orbit
coupling, angular momentum can be transferred between spin and orbital
angular momentum. A particle with quantum mechanical spin can have a
magnetic moment just like a rotating electrically charged body in classical
electrodynamics. On a more technical note, the fundamental commutation
relations of angular momentum

[L̂i, L̂j ] = i~εijkL̂k, (2.2)

is the same as the commutation relation for spin

[Ŝi, Ŝj ] = i~εijkŜk, (2.3)

where ε is the Levi-Civita symbol. We know that the orbital angular
momentum operators L̂i, i ∈ {x, y, z} describe rotations in space, and since
the two commutation relations are the same, it is tempting to use the analogy
of quantum mechanical spin to a classically spinning object. As you might
see, the quantum and classical similarities are many, but there are also stark
differences. I believe this quote, of unknown origin, sums it all up quite
beautifully:

Electron spin explained: Imagine a spinning ball. Except it is not
spinning and it is not a ball.

To summarise: Quantum mechanical spin is an intrinsic property of
matter, just like mass and charge. It is in units of ~ and it is a type of angular
momentum, meaning that angular momentum can be transferred between
spin and orbital angular momentum. It is tempting to imagine quantum
mechanical spin as a rotating ball, but this analogy must not be pushed
too far since quantum and classical spin are fundamentally two different
properties, which happen to have several similarities, both physically and
mathematically.

I’ll end this section with some food for thought. When Wolfgang Pauli
theorised the electron spin for the first time in the 1920’s, he did not call it
spin, but rather two-valuedness not describable classically [4]. Maybe using
the name spin was not such a good idea? Though it does roll better off the
tongue!

2.2.2 Operators and commutators

In classical physics, the orbital angular momentum of a particle is given by

l = r× p, (2.4)
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where r is the position of the particle and p is the momentum. Getting to the
quantum orbital angular momentum is easy; we just need to use the position
and momentum quantum operators in place of the classical counterparts,

r = (x̂, ŷ, ẑ), (2.5)
p = −i~∇.

Note that p and r are considered to be vectors in the classical definition and
both vectors and operators in the quantum definition.

Now, take the orbital angular momentum operator L = (L̂x, L̂y, L̂z) as
an example. Let ψ be an eigenfunction of the L̂2 operator. We extract the
orbital angular momentum by

L̂2 = L̂2
x + L̂2

y + L̂2
z, (2.6)

L̂2ψ = ~2l(l + 1)ψ.

The eigenvalue ~2l(l + 1) can be thought of as the squared magnitude of
the orbital angular momentum vector, but it is common to refer to l as the
orbital angular momentum of the system represented by ψ1. A fundamental
part of the theory of quantum angular momentum is that the operator L̂2

commutes with the operators L̂x, L̂y and L̂z, or in other words

[L̂2,L] = 0. (2.7)

This means that L̂2 and L̂i, i ∈ {x, y, z} are compatible observables.
Compatible observables means that both operators in each pair represent
observable quantities and that they can be measured at the same time with
arbitrary precision. This is seen from the generalised uncertainty principle,
which for these pairs of operators is

σ2
L̂2σ

2
L̂i
≥
∣∣∣∣ 1

2i
〈[L̂2, L̂i]〉

∣∣∣∣ = 0. (2.8)

Equation (2.8) tells us that the expectation values of L̂2 and L̂i can both
have a standard deviation of zero at the same time, which in turn says that
the magnitude and the z component of the orbital angular momentum can
be precisely measured at the same time. On the other hand, the components
of L do not commute with each other. In fact [5]

[L̂x, L̂y] = i~L̂z,

[L̂y, L̂z] = i~L̂x, (2.9)

[L̂z, L̂x] = i~L̂y,

meaning that we cannot hope to measure any pair of these values without
uncertainty in at least one of them, making them incompatible observables.

Due to the limitations which the aforementioned commutation relations
impose on us, it is normal to measure (or calculate) l from the eigenvalue

1l is also called the angular momentum quantum number and the azimuthal quantum
number.
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produced by the L̂2 operator and the eigenvalue from one of the components
of L. The choice of axis really is arbitrary, but it is common to pick the L̂z
operator. The eigenvalue equation reads

L̂zψ = ~lzψ, (2.10)

where lz can be thought of as the z component of l 2.
In the next section we will see that it is indeed fruitful and mathemat-

ically correct to think of quantum mechanical angular momentum as vector
quantities. Note that the commutation relations of the total angular mo-
mentum operators J, and the spin operators S follow the exact same rules as
described here for the orbital angular momentum operators L. The squared
of the operator commutes with each of the components, while the compon-
ents themselves do not commute with each other [5].

2.2.3 Coupling of angular momentum vectors

In classical physics, spin s = (sx, sy, sz) and orbital angular momentum
l = (lx, ly, lz) are represented by real vectors in three dimensional space:
s, l ∈ R3 3. They also hold the same unit and can therefore easily be added
together, without much thought, to create a total angular momentum vector

j = l + s. (2.11)

This simply means that the components of j are the sum of the components
of l and s, namely

j = (lx + sx, ly + sy, lz + sz). (2.12)

Squaring the vector is an easy process where we use the normal rules for the
vector dot product and distributive multiplication

j2 = (l + s)(l + s) (2.13)

= l2 + 2l · s + s2.

Can we do the same thing in the quantum case? Let us look at the quantum
total angular momentum J. Remember, it is the squared operator we want
since it commutes with any of the component operators. It is tempting to do
just as in eq. (2.13), but we must be careful; remember that the components
of S and L are operators. What does it mean to add together vectors whose
elements are operators, and different types of operators at that? Let us start
by looking at Ĵz, which in the classical case would just be the sum of Ŝz
and L̂z. The operators Ŝz and L̂z are actually working on different Hilbert
spaces which means that we add them as

Ĵz = L̂z ⊗ 1S + 1L ⊗ Ŝz. (2.14)

2The value lz is normally denoted ml or just m and is sometimes referred to as the
magnetic quantum number.

3I’m using lower case letters just to make sure we do not confuse them with the QM
"vector operators" S = (Ŝx, Ŝy, Ŝz), L = (L̂x, L̂y, L̂z) and J = (Ĵx, Ĵy, Ĵz).
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1S and 1L are the identity operators for spin and orbital angular momentum
respectively, while ⊗ denotes the tensor product. Remember that we want
Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z so we need to square each component. Squaring Ĵz gives

Ĵ2
z = (L̂z ⊗ 1S)(L̂z ⊗ 1S) + (L̂z ⊗ 1S)(1L ⊗ Ŝz)

+ (1L ⊗ Ŝz)(L̂z ⊗ 1S) + (1L ⊗ Ŝz)(1L ⊗ Ŝz)
= L̂zL̂z ⊗ 1S1S + L̂z1L ⊗ 1SŜz (2.15)

+ 1LL̂z ⊗ Ŝz1S + 1L1L ⊗ ŜzŜz
= L̂2

z ⊗ 1S + 2L̂z ⊗ Ŝz + 1L ⊗ Ŝ2
z .

The x and y components are analogous to eq. (2.15) (just swap the labels).
We now add the squared components

Ĵ2 =
∑

i=x,y,z

(L̂2
i ⊗ 1S + 2L̂i ⊗ Ŝi + 1L ⊗ Ŝ2

i )

= L̂2
x ⊗ 1S + L̂2

y ⊗ 1S + L̂2
z ⊗ 1S

+ 2(L̂x ⊗ Ŝx + L̂y ⊗ Ŝy + L̂z ⊗ Ŝz) (2.16)

+ 1L ⊗ Ŝ2
x + 1L ⊗ Ŝ2

y + 1L ⊗ Ŝ2
z

= L̂2 ⊗ 1S + 2(L̂x ⊗ Ŝx + L̂y ⊗ Ŝy + L̂z ⊗ Ŝz) + 1L ⊗ Ŝ2.

This final equality has similarities to eq. (2.13). We have two squared terms
and a cross term, thus we might be tempted to write eq. (2.16) in shorthand
as

Ĵ2 = L̂2 + 2L · S + Ŝ2. (2.17)

Neat! The "classical approach" in eq. (2.13) actually gets us to the correct
answer for the quantum case, if we are a bit liberal with the notation!4 We
can now meaningfully combine the spin and orbital angular momentum of
a quantum system to create a (squared) total angular momentum operator.
And what’s more, we are able to treat the different forms of quantum angular
momentum as vector quantities, which greatly simplifies the maths5.

We cannot talk about the theory of angular momentum without taking
special care of the famous z component. From section 2.2.2 we saw that
[Ĵ2, Ĵz] = 0, which means that we can decide both the magnitude and the
z component of an angular momentum vector at the same time (remember
that this holds for L̂2 and Ŝ2 too). We have seen that the eigenvalue of
Ĵz is the z component of the vector, namely ~jz (~ is often omitted for
brevity). The magnitude of the z component is of course constrained by the
magnitude of j, and in particular, jz can take values of integer steps from
−j to j. Figure 2.1 shows the possible jz values for a system of j = 2. Since
jx and jy are undefined when jz is defined, the magnitude of j is represented

4By liberal I of course mean sloppy!
5It is not obvious that it is correct to treat quantum angular momentum as vector

quantities since the vector operator quantities S,L,J have component operators which do
not commute. How can we define angular momentum vectors if only one component can
be precisely given at any time? Turns out that maths is on our side this time!
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Figure 2.1: The possible jz values of a system of j = 2. The radius of the
sphere is ~

√
j(j + 1); the magnitude of the angular momentum vector. The

circles at each jz value indicate the indeterminacy of jx and jy when jz is
defined. The axes are in units of ~.

as circles for each jz. Of particular interest is the fact that the radius of the
sphere, ~

√
j(j + 1), is greater than the maximum jz value. This saves us

from the situation where the entire angular momentum vector is contained in
the z component, which cannot possibly be, because then jx = jy = 0 and we
would know all the components to perfect precision which is in direct conflict
with the uncertainty principle. Since jz ≤ j <

√
j(j + 1), we see that the

entire length of the angular momentum vector will never be contained in jz,
leaving some possibility of uncertainty for jx and jy.

Let us now look at an example on how j, l, and s couple. Assume
a particle of total angular momentum j1, orbital angular momentum l1,
and spin s1. Its total angular momentum is a combination of its orbital
angular momentum and spin, but how do they combine? Remember that
angular momentum can be treated as a vector quantity. The orbital angular
momentum points in some direction and the spin points in some direction,
meaning that they might be parallel (j1 = l1+s1), antiparallel (j1 = l1−s1),
or something in between. The very essence of quantum physics is that many
fundamental properties come in discrete values, and the coupling of angular
momentum and spin is no exception. The total angular momentum can be
any of the values in the range

j1 = l1 + s1, l1 + s1 − 1, ..., |l1 − s1| (2.18)

of integer steps, and if we assume spin 1/2 particles we see that

j1 = l1 + 1/2, |l1 − 1/2|. (2.19)
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Angular momentum coupling does not only apply to orbital angular
momentum and spin, but also the total angular momenta of several particles.
Assume now a second particle of total angular momentum j2. We can
combine the angular momenta of particles 1 and 2 to create a total angular
momentum of the system of particles by

j = j1 + j2, j1 + j2 − 1, ..., |j1 − j2|. (2.20)

2.2.4 Parity

To explain parity, it is fruitful to start with understanding what a parity
transformation is. A parity transformation is a space reflection about the
origin of the coordinate system. It is represented by a hermitian and unitary
operator π̂ which is defined by its action

π̂ψ(r) = ψ(−r), (2.21)

an action which flips the sign of all the spatial coordinates of ψ. The
hermiticity and unitarity of π̂ implies that it’s eigenvalues are λ = ±1 [6].
The parity of a quantum mechanical system is the eigenvalue of the parity
operator when operating on the wave function of said system. The parity
can thus either be positive (+1) or negative (−1).

One apparent problem is that ψ is not necessarily an eigenfunction of
the parity operator, in which case the parity is not a well defined quantum
number. For us to use parity as a tool we therefore need to consider
operators which share eigenfunctions with the parity operator. We know
that commuting observable operators share complete sets of eigenfunctions,
and in particular

π̂Lπ̂† = π̂xπ̂† × π̂pπ̂† = −x×−p = L, (2.22)

which tells us that π̂ and L commute and consequently that we can find wave
functions which are eigenfunctions of both angular momentum and parity.

2.3 Electromagnetic transitions

In nuclear physics there are three main types of radiation: alpha and
beta radiation are two types of particle radiation while gamma radiation
is electromagnetic radiation. Gamma radiation is at the heart of nuclear
physics because each and every isotope have a unique electromagnetic
signature which reveals the identity and the underlying structure of the
nucleus. Gamma radiation is mediated by the photon which is the
electromagnetic force carrier. The photon has a spin of 1 and a parity
of −1, which makes gamma radiation subject to certain rules. To make
sense of these rules, we classify gamma radiation by a multipolarity, which
is defined by the angular momentum of the emitted photon and the parity
of the radiation. In this section we will have a closer look at what exactly
multipolarity means and the selection rules that emerge.
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Figure 2.2: Left: An arbitrary charge distribution. dτ ′ is an infinitesimal
volume element whose position is r′, r is the position of a point P outside
of the charge distribution, ρ is the charge density, r = |r − r′| and α is
the angle between r and r′. Right: A current loop of current I. dl′ is an
infinitesimal line element of the current loop.

2.3.1 Multipole expansion

From electromagnetic theory we know that a distribution of charges and
currents may exert electric and magnetic fields which we categorise by their
multipolarities. Now, what does multipolarity mean? Let us start the
investigation by looking at the potential of the electric field produced by
an arbitrary static charge distribution, which is given by [7]

E = −∇V (2.23)

V (r) =
1

4πε0

∫
1

r ρ(r′)dτ ′,

where ε0 is the vacuum permittivity. See fig. 2.2 for a description of the
variables. The distance r can be re-written using the law of cosines

r 2 = r2 + r′2 − 2rr′ cosα

= r2

(
1 +

(
r′

r

)2

− 2

(
r′

r

)
cosα

)
(2.24)

= r2
(

1 +

(
r′

r

)(
r′

r
− 2 cosα

))
def
= r2 (1 + ε) .

Since lim
r→∞

ε = 0 we can choose points P outside of the charge distribution
so that ε < 1 which enables us to expand 1/r as a binomial series, giving

1

r =
1

r
(1 + ε)−1/2 (2.25)

=
1

r

(
1− 1

2
ε+

3

8
ε2 − 5

16
ε3 + ...

)
.
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If we now substitute ε with its original definition and factor and collect equal
powers of r′/r we get

1

r =
1

r

(
1 +

(
r′

r

)
cosα+

(
r′

r

)2(3 cos2 α− 1

2

)

+

(
r′

r

)3(5 cos3 α− 3 cosα

2
+ ...

))
(2.26)

=
1

r

∞∑
n=0

(
r′

r

)n
Pn(cosα).

Notice that the coefficients in eq. (2.26) are the Legendre polynomials!
Substituting eq. (2.26) into eq. (2.23) gives the final result:

V (r) =
1

4πε0

∞∑
n=0

1

rn+1

∫
(r′)nPn(cosα)ρ(r′)dτ ′. (2.27)

Equation (2.27) is the multipole expansion of the electric potential V . The
multipole expansion gives us important information on the components that
build up V , much like what the Fourier Series provides in harmonic analysis.
The first few terms (n ∈ {0, 1, 2, 3} respectively) of the multipole expansion
are

Vmono(r) =
1

4πε0
r−1

∫
ρ(r′)dτ ′

Vdi(r) =
1

4πε0
r−2

∫
r′ cosαρ(r′)dτ ′ (2.28)

Vquad(r) =
1

4πε0
r−3

∫
(r′)2

1

2
(3 cos2 α− 1)ρ(r′)dτ ′

Voctu(r) =
1

4πε0
r−4

∫
(r′)3

1

2
(5 cos3 α− 3 cosα)ρ(r′)dτ ′,

which are named monopole, dipole, quadrupole, and octupole respectively.
The different terms in the expansion are in particular characterised by
their dependence on r where we see that Vn=i(r) ∝ r−(i+1) which means
that, as a function of the distance to the charge distribution, the higher
order terms vanish faster than the lower order terms. The implication of
this is that only the first few terms in the expansion are important when
describing the potential at large r. The second important characterisation
is the integral’s dependence on the Legendre polynomials, and in turn the
potential’s dependence on the angle α. In fig. 2.3 we see a plot of the first
four Legendre polynomials, which illustrates that the different multipolarities
have different angular dependencies.

We now give the same treatment for the magnetic case. The magnetic
field B can be expressed in terms of a magnetic vector potential A, namely

B = ∇×A. (2.29)
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Figure 2.3: Legendre polynomials for n ∈ {0, 1, 2, 3} as a function of the
cosine of α. See fig. 2.2 for a description of α.

The magnetic vector potential for a current loop is given by

A(r) =
µ0I

4π

∮
1

r dl′ (2.30)

and can be expanded as a power series in the same manner as V to produce
the Legendre polynomials as the coefficients [7]

A(r) =
µ0I

4π

∞∑
n=0

1

rn+1

∮
(r′)nPn(cosα)dl′. (2.31)

µ0 is the vacuum permeability and the rest of the variables are visualised in
fig. 2.2. The first four terms in the expansion are

Amono(r) = 0

Adi(r) =
µ0I

4π
r−2

∮
r′ cosαdl′ (2.32)

Aquad(r) =
µ0I

4π
r−3

∮
(r′)2

1

2
(3 cos2 α− 1)dl′

Aoctu(r) =
µ0I

4π
r−4

∮
(r′)3

1

2
(5 cos3 α− 3 cosα)dl′

where we see the same r dependence as with V , as well as the same
dependence of the Legendre polynomials, except for the magnetic monopole
term which is zero6. As with the multipole expansion of V , the multipolarity
refers to a specific term in the expansion of eq. (2.31).

6This comes from one of the base assumptions of electromagnetism that ∇ · B = 0.
This is Gauss’ law for magnetism, one of Maxwell’s equations.
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To summarise, when we talk about monopole, dipole, etc. of
electromagnetic radiation we refer to specific terms in the multipole
expansion of the electric scalar potential V and the magnetic vector potential
A. The terms in the expansion are characterised by their dependence on the
distance to the source and by their angular dependence which is given by
the Legendre polynomials. In addition to the multipolarity of radiation,
we assign it an electric (E) or magnetic (M) label. This simply means
that radiation labelled, for example, E1 (electric dipole) is identical to
radiation from an electric dipole antenna. Radiation labelledM2 is identical
to the radiation from a magnetic quadrupole antenna, etc. Note that the
expansions shown in this section take basis in static electric and magnetic
fields. Using static fields in the derivations do not tell the complete story
since electromagnetic radiation inherently is dynamic. However, the maths
is greatly simplified by using static fields, and the point of this section is to
explain what we mean by multipolarity which I believe has now been clearly
explained. Any reader keen on exploring multipole expansion of dynamic
fields may take a look at for example Ring and Schuck Appendix B [8].

2.3.2 Selection rules

When an excited nucleus decays from an initial state ψi to a final state ψf a
photon is emitted7. The initial and final total angular momenta and parities
ji, πi, jf , πf decide the characteristics of the emitted photon. For instance,
the photon will carry a total angular momentum jγ defined by its spin of
sγ = 1, along with ji, jf , and the rules of angular momentum coupling.
The "leftover" angular momentum from the transition between the initial
and final state is carried away as spin and orbital angular momentum of the
emitted photon. The emitted photon will have a total angular momentum
of

jγ = ji + jf , ji + jf − 1, ..., |ji − jf |, (2.33)

with a minimum of jγ = 1 due to sγ = 1. This means that E0 gamma
radiation is impossible which in particular makes 0± → 0± transitions
impossible by gamma radiation, though possible by internal conversion.
M0 transitions are of course not possible due to the absence of magnetic
monopoles.

In addition to conservation of angular momentum, parity must also be
conserved in an electromagnetic transition. A photon of multipolarity Ejγ
and a photon of multipolarity Mjγ have parities of

πγ,E = (−1)jγ , (2.34)

πγ,M = (−1)(jγ+1),

respectively. Remember that parity is a conserved multiplicative quantity;
the parity of a system before a transition must be equal to the parity of the

7Except for the case of 0+ → 0+E0 transitions where an atomic electron is ejected by
the process of internal conversion.
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system after the transition, and the individual parities of the particles in the
system are multiplied to give the total parity. In other words, if we start
with an initial state of parity πi and end in a state of πf , then

πi = πfπγ . (2.35)

We see from eq. (2.35) that

πi 6= πf , πγ = −1 (2.36)
πi = πf , πγ = +1

and subsequently from eq. (2.34) that if there is a change in parity in a
transition (πi 6= πf ), the multipolarity must be even numbered magnetic

M2,M4,M6, ...

or odd numbered electric

E1, E3, E5, ...

Conversely, transitions which do not change parity (πi = πf ) must be odd
numbered magnetic or even numbered electric.

2.4 Nuclear properties

2.4.1 Nuclear level density

The nuclear level density (NLD) is a property of the atomic nucleus which
describes how many nuclear energy levels are found within an excitation
energy bin ∆E. When a nucleus absorbs energy, for example in the form of
electromagnetic radiation, we say that the nucleus is in an excited state8. The
nucleus can only absorb energy in certain quanta, of which the magnitude is
different for different nuclei, and these energy quanta are the nuclear energy
levels. The NLD is defined as

ρ(Ex) =
∆N

∆E
(2.37)

where ∆N is the number of levels within the excitation energy bin ∆E at
excitation energy Ex. Each level is characterised not only by Ex, but also
by its total angular momentum and parity, commonly denoted jπ. A useful
tool is the partial level density which takes into account the density as a
function of Ex, j, and π. It relates to the total level density by

ρ(Ex) =
∑
j,π

ρ(Ex, j, π). (2.38)

8The word state, as in condition, is used a bit casually here. Strictly speaking, the
terms level and state have different meanings. A quantum state is a precise choice of
quantum numbers (eg. s, l, j, π), while several distinct quantum states may have the same
energy level. We then call the energy level degenerate.
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Figure 2.4: The experimental nuclear level density of 56Fe in solid lines
compared with the constant temperature model (CTM) in dashed lines. A
bin size of ∆Ex = 0.2 MeV has been used. Experimental data from [10].

Due to experimental limitations, measuring the number of levels is a
difficult task, particularly at excitation energies above a few MeVs. This is
because the number of levels quickly increases as a function of excitation
energy and at a few MeVs there can be hundreds of levels within an energy
interval. We might therefore use models to extrapolate beyond what is
possible to measure. A commonly used model is the constant temperature
model (CTM) [9]. An important detail is that we expect the NLD to rise
exponentially like we see from the definition of the CTM

ρCTM(Ex) =
1

T
exp

(
Ex − E0

T

)
, (2.39)

where T is the constant nuclear temperature and E0 is the energy shift
parameter, both free parameters which are decided by fits to experimental
data. In fig. 2.4 we see the experimental NLD of 56Fe compared to the CTM.
The experimental data rises exponentially up to approximately 6 MeV from
where it starts to fall. The decrease beyond 6 MeV is due to experimental
limitations and in reality we expect the NLD to keep increasing exponentially
like we see from the CTM.

The lifetime τ is another defining characteristic of nuclear energy levels.
An excited nucleus wants to get rid of as much energy as possible, meaning
that it will not stay excited indefinitely. Even if we had no experimental
limitations on the time resolution, repeated measurements of how long an
excited nucleus of a given energy level stays at that level will not yield exactly
the same result every time. The measurements would yield a distribution
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Figure 2.5: An arbitrary level scheme in order of increased excitation energy.
Levels are depicted by blue lines, and the thickness of the lines illustrate the
decay width Γ of the levels. Note that the thicknesses are exaggerated for
illustrative purposes. The ground state is infinitely thin since τgs = ∞ is
assumed for the arbitrary level scheme in this figure, but unstable nuclei like
44Sc, 50V, and 64Zn will have a finite ground state width. Figure modified
and reprinted with permission from [11].

of times, and we define the lifetime of a level as the average of many such
measurements.

Recall the time-energy uncertainty relation

∆E∆τ ≥ ~
2

(2.40)

which states that we cannot measure both the lifetime and the energy of a
level to an arbitrary good precision at the same time. Naturally, this means
that if we perform an experiment where we measure the energy of a level with
great precision, then we are forced to have a loss of precision in a lifetime
measurement of the same level. However, a rather interesting consequence of
the time-energy uncertainty is that a level with a very short lifetime has to
have a large uncertainty to its energy. This point is besides the precision of
our measurements; the short lifetime forces a certain amount of uncertainty
in the energy measurements regardless of the precision of our instruments.
This inherent energy uncertainty, which we cannot get rid of, is used in the
definition of the decay width Γ. It is defined by

Γ = 2∆E =
~
τ

(2.41)

and is measured in units of energy. Every nuclear energy level has an
associated decay width, and this width is a defining characteristic of the
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three nuclear energy level regions. Note that an excited level might have
several different decay channels, which means that the excited level might
decay to one of several lower lying levels. We then assign a partial decay
width Γi to the ith decay channel, and if we sum all of the partial decay
widths we get the total decay width of the excited level, namely

Γ =
∑
i

Γi. (2.42)

In fig. 2.5 we see a scheme of levels (blue lines) arranged according to
increasing excitation energy. The thickness of the lines illustrate the decay
width of the levels. In the discrete region the energy separation of the levels is
much greater than the width of the levels. However, in the quasi continuum
region, the energy separation of the levels starts to approach the width of
the levels. In the continuum region the levels completely overlap.

Recall from the definition of the NLD in eq. (2.37) that the NLD is
calculated in an energy interval. A typical value of the energy interval is
∆E = 0.2 MeV, and note that such an energy interval might not contain any
levels in the discrete region. We actually see this experimentally in fig. 2.4,
that the NLD is zero at several bins below 3 MeV. This fact has implications
on the gamma strength function and the generalised Brink-Axel hypothesis
which will be presented in the next sections.

2.4.2 The gamma strength function

The gamma strength function9 (GSF) is an essential tool for studying decay
properties of the atomic nucleus and it is the main focus of this thesis.
The GSF describes average electromagnetic transition probabilities in excited
nuclei; it is a measure of the probability that an excited nucleus will decay
with a gamma of energy Eγ which has a total angular momentum of jγ , from
some initial energy level Ei of total angular momentum and parity ji and πi
respectively. The GSF is given by [12]

fXjγ (Eγ , Ei, ji, πi) =
〈ΓXjγ 〉(Eγ , Ei, ji, πi)

E
2jγ+1
γ

ρ(Ei, ji, πi), (2.43)

=
16π

9~3c3
〈B(Xjγ)〉(Eγ , Ei, ji, πi)ρ(Ei, ji, πi),

where Xjγ is the multipolarity of the gamma radiation, as described in
section 2.3, ΓXjγ is the partial decay width of a level at Ei, ji, πi which
decays by a gamma of Eγ with a multipolarity of Xjγ , 〈ΓXjγ 〉 is the average
partial decay width, B is the reduced transition probability, and ρ is the
partial level density. The average is taken in an interval around excitation
energy Ei for gamma energies in an interval around Eγ . The interval, also
called bin or energy bin, typically has a value of 0.2 MeV.

9Also called the radiative strength function, the photon strength function, or just the
strength function.
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2.4.3 The generalised Brink-Axel hypothesis

By averaging the GSF over initial energies, total angular momenta, and
both parities, we can look at the GSF solely as a function of Eγ making it
an excellent tool to probe the preferred gamma energy decay channels of a
nucleus. But is it correct to perform these averages? By doing so, we are
effectively stating that

f(Eγ) ≈ f(Eγ , Ei, ji, πi), (2.44)

which is to say that the GSF calculated at some choice of Ei, ji, πi should be
approximately equal to the GSF calculated at some other choice of Ei, ji, πi.
In his doctoral thesis, David M. Brink proposed – in the context of E1
excitations of even-even nuclei – that the cross-section to excite the nucleus is
independent of whether the excitation happens from the ground state or from
an excited state [13]. Over the years, Brink’s hypothesis has been expanded
to include independence of electromagnetic character, multipolarity, angular
momentum, and parity, to become the generalised Brink-Axel hypothesis
(gBA) [14, 15, 16]. However, it is important to note that the gBA hypothesis
does not hold for all nuclei under all circumstances. For example, Bracco
et. al. found that the widths of the Giant Dipole Resonance (GDR) of
109,110Sn increased by 2 MeV in the angular momentum interval j = [40, 55]~
[17]; however, the GDR exists at rather higher energies than what will be
considered in this work, and the changes in the GDR width were seen at
much higher angular momenta than what will be used in this work. An
example more relevant to this thesis is that the gBA hypothesis is not valid
in the discrete level region, as shown by this example: In the gBA hypothesis
one assumption is that

f(Eγ , ji = j1) ≈ f(Eγ , ji = j2), (2.45)

but there is no guarantee that levels of both j1 and j2 exist in all excitation
energy bins in the discrete region, in this case making eq. (2.45) invalid.
In fact, look at the level scheme for any nucleus and you will see that an
excitation energy bin of size around 200 keV will only contain a few (if any!)
levels if applied to the discrete region and will consequently only contain a
few different ji values. The same logic goes for πi. This problem is mitigated
by excluding discrete levels by setting a lower limit to Ei.

For this thesis I have performed a simplified check to test the validity of
gBA on my calculations and I have added a proposal in appendix C on how to
extend this check more thoroughly. The extension has not been implemented
in this work due to time limitations. In the simplified check I test the GSF’s
approximate independence of ji by calculating the GSF separately for all
available values ji with

f(Eγ , ji) =
1

NEiNπi

∑
NEi ,Nπi

f(Eγ , Ei, ji, πi), (2.46)

for then to compare them to each other and to f(Eγ). Due to the statistical
nature of lifetimes, and hence Γ and B, I expect that eq. (2.46) will not
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be identical for different choices of ji. In other words, I expect that the
differences in the GSFs for different choices of ji will be affected by the
number of B values used in the calculations. Since the GSF describes
average transition probabilities I expect from the law of large numbers that
the sample mean will approach the true expectation value of the underlying
distribution as the number of samples increase [18].

Following the work of J. Midtbø (see sec. 3.2 in [12]) we can turn
eq. (2.43) around to get

〈B(Xjγ)〉(Eγ , Ei, ji, πi) =
9~3c3

16π

fXjγ (Eγ , Ei, ji, πi)

ρ(Ei, ji, πi)
, (2.47)

from where we see that f can be interpreted as providing the mean value of
the probability distribution of reduced transition probabilities B. Every B
value will have a relative difference to the mean B value given by

y =
B

〈B〉
, (2.48)

and this variation is often assumed to be given by the χ2 distribution with
one degree of freedom,

y ∼ χ2
1, (2.49)

a distribution which is also called the Porter-Thomas distribution [19].
Fluctuations in B values within the expected fluctuations from a Porter-
Thomas distributed random variable are referred to as Porter-Thomas
fluctuations. Hence, differences in eq. (2.46) between different ji should be
within the expected Porter-Thomas fluctuations. If they are not, something
else is causing the difference and we can not assume the gBA hypothesis.

2.4.4 The low energy enhancement

The low energy enhancement (LEE) is a feature of the low energy part of the
GSF. If the GSF of a nucleus increases as Eγ approaches zero, then the GSF is
said to have a low energy enhancement. The LEE has several different names
including soft pole [20], upbend [21], and low energy magnetic radiation [22],
names which are useful to know for anyone who wishes to research the LEE.

The LEE was first seen in 56,57Fe by Emel Tavukcu in her 2002 PhD
dissertation [23]. Tavukcu found that the GSFs of the two nuclei had a
distinct increase at the lowest gamma ray energies, something which was
most unexpected at the time because it didn’t fit with any of the current
models. Tavukcu’s discoveries are shown in fig. 2.6 where we see GSFs for
both iron isotopes. Note the enhancements of the GSFs as Eγ approaches
zero, and note that the models included in the figure (KMF, GMDR, GEDR)
do not reproduce the LEE. Due to the uncertainty about the LEE, two
years went by before a Letter by Voinov et. al. was published with the
56,57Fe findings [24]. In the subsequent years, several publications claimed to
support and to oppose the existence of the LEE, but after an independent
experiment by Wiedeking et. al., where the LEE was seen in 95Mo, the
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Figure 2.6: The GSFs of 56Fe (left) and 57Fe (right) from 57Fe(3He,
3He′γ) and 57Fe(3He, αγ) reactions at the Oslo Cyclotron Laboratory,
calculated with the Oslo method. Low energy enhancements are seen as Eγ
approaches zero. Kadmenskii-Markushev-Furman (KMF), Giant Magnetic
Dipole Resonance (GMDR), and Giant Electric Dipole Resonance (GEDR)
are different models of the GSF. Figures by E. Tavukcu [23].

wider community started to accept that the LEE is indeed a real physical
phenomenon [25].

The origin of the LEE is still an unsolved mystery 20 years after its
discovery. Angular distribution measurements of the gamma rays from a
(p, p′γ)56Fe experiment by Larsen et. al. show that the LEE is dominated
by dipole transitions [26]. Measuring the electromagnetic character (E or
M) of the gamma radiation has proved to be difficult experimentally with
no clear conclusion today, however, an experiment by Jones et. al. shows a
small bias towards magnetic character in the region of the enhancement [27].

While experimental findings are inconclusive, several studies using
shell model calculations show that the LEE is caused by M1 transitions.
Schwengner et. al. found that the LEEs in 90Zr, 94,95,96Mo are reproduced
by their M1 shell model GSF, however, only M1 transitions were calculated
with the shell model while the E1 GSF was estimated with the GLO
expression [28]. In a study by K. Sieja, the E1 and M1 GSFs of 44Sc were
calculated with the shell model where Sieja found that the experimental
LEE of 44Sc was reproduced by M1 shell model calculations, and that E1
transitions had a very small contribution to the LEE [29]. In another study
by Liddick et. al. both E1 andM1 transitions were calculated with KSHELL
to study the LEE of 51Ti [30].

To this day, few shell model calculations have been performed where
E1 and M1 transitions are calculated in the same framework. If shell
model calculations are to conclude that the LEE is indeed only caused
by M1 transitions, then the calculations need to explicitly show that the
E1 transitions are not contributing. Performing such calculations are
computationally extremely heavy, and many such calculations were not
possible just a few years ago but are feasible today. This is one of the main
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motivations of this work, where I have performed very large calculations to
study both E1 and M1 contributions of the LEE.

2.5 The nuclear shell model

2.5.1 Shells and orbitals

The nuclear shell model is a model of the atomic nucleus which inherits many
key concepts from the successful atomic shell model (see for example sec. 2.5
in [12] and chap. 5.1 in [31]). The atomic shell model has been remarkable in
explaining the behaviour and structure of the atom, thus tempting nuclear
physicists to use a similar framework to explain how the nucleus works. In the
nuclear shell model, protons and neutrons (collectively nucleons) are confined
to a shell structure of orbitals which define the nucleons’ angular momenta,
their energies, and their parities. The orbitals are labelled nlj where l
denotes the orbital angular momentum of a nucleon in the given orbital and
j denotes the total angular momentum of the same nucleon. In contrast to
the atomic shell model, n is not the principal quantum number but simply
a counter, counting the number of orbitals with a given l value. In the
case of orbital splitting caused by spin-orbit coupling, n counts the number
of orbitals with a given l and j value combination. We use spectroscopic
notation to label the orbital angular momentum: s, p, d, f, g, h, ... labels
l = 0, 1, 2, 3, 4, 5, ... respectively. In fig. 2.7 we see a diagram of the nuclear
shell model structure for the lower laying orbitals. Note that the separations
between the orbitals are only approximate and are for illustrative purposes.
The ordering of the orbitals follows a Woods-Saxon potential [32], and the
structure of the nucleus is assumed to be spherical. Note the cumulative
occupation numbers at the large gaps between orbitals: 2, 8, 20, 28, 50 (and
82, 126). These numbers are the so called magic numbers and they indicate
configurations of nucleons where the next free orbital is across a particularly
large energy gap which is called a major shell gap. A nucleus with a magic
proton or neutron number is referred to as a magic nucleus or simply just
magic, while a nucleus with magic proton and neutron numbers are called
doubly magic. Magic and doubly magic nuclei are often more stable than
neighbouring nuclei. For example, 38Ar is stable while 37Ar and 39Ar have
half-lives of 35 days and 269 years, respectively. 51V is stable while 52V has
a half-life of 3.7 minutes. On the contrary, 14C has a half-life of 5700 years
while 13C and 12C are stable. Magicity is a good rule of thumb, but it is not
a hard rule10. A collection of orbitals between two major shell gaps is called
a major shell and a particle excitation across one of these gaps is called an
~ω excitation. For example, the orbitals 1d5/2, 2s1/2, 1d3/2 constitute the
sd major shell, while the orbitals 1f7/2, 2p3/2, 1f5/2, 2p1/2 constitute the pf
major shell. Excitation of a nucleon from one of the sd orbitals to one of the
pf orbitals is an ~ω excitation.

The ordering and the separations of the orbitals in fig. 2.7 is not the
same for all nuclei. Deformation of the nucleus changes the ordering of the

10One should always consult the sacred texts at nndc.bnl.gov/nudat3/
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orbitals and introduces new orbital splittings, akin to the splitting introduced
by the spin-orbit coupling which we see in the figure. In this thesis I
assume no intrinsic deformation, thus assuming the shell structure of fig. 2.7.
These assumptions certainly put constraints on which nuclei we are able to
accurately perform shell model calculations on since most atomic nuclei are
not perfectly spherical.

The shell structure itself emerges from the fact that both protons and
neutrons are fermions; they must obey the Pauli exclusion principle, meaning
that no two protons and no two neutrons are allowed to occupy the same
quantum state. For example, a proton might be located in the 1s1/2 orbital.
The proton has an orbital angular momentum of l = 0, a spin of s = 1/2,
and these two angular momentum vectors can couple to produce a total
angular momentum of j = 1/2. In this special case of l = 0 the spin
and orbital angular momentum cannot "negatively couple" to j = −1/2
because the magnitude of any of the angular momentum vectors (or vectors
in general) cannot be negative11. This is a special case only for the 1s
orbital. Now comes along another proton which wants to conform to the
same shell structure. Both protons are allowed to stay in the 1s1/2 orbital
because they can have different jz values and hence not occupy the same
quantum state. Remember that jz = j, j − 1, ...,−j meaning that the two
protons may have jz = ±1/2. A third proton however, is not allowed to
stay in 1s1/2 because there are no more distinct quantum states. The third
proton will have to take residence in 1p3/2 which has room for a total of
four protons. The maximum amount of allowed protons (or neutrons) in
an orbital is called the maximum occupation number or the degeneracy of
the orbital. The 1p3/2 orbital has a degeneracy of four since there are four
distinct states, identified by their jz values, which correspond to the same
energy level. In fig. 2.7 we see that spin-orbit coupling lifts the j degeneracy
of the orbitals, as indicated by the transition from the left to the right column
of lines. There are other situations where degeneracy is lifted further, as with
deformed nuclei described by the Nilsson model and rotating nuclei described
by the Cranking model [33]. As mentioned, in this work I assume a spherical
nucleus.

Subsequent protons will occupy higher and higher laying orbitals as
the maximum occupancy of each orbital is reached, and neutrons occupy
an identical but separate shell structure following the same rules. Of
particular interest is which jz values the nucleons prefer to take. It is
shown experimentally that in the ground state, two protons (or neutrons)
prefer to pair together with opposite jz values, meaning that a pair will
have jz = ±1/2,±3/2,±5/2, ... depending on what orbital the pair occupies
and the number of protons already present in that orbital. A profound
consequence of this pairing is that the ground state of any nucleus with
an even number of protons and an even number of neutrons – an even-even
nucleus – is always jπ = 0+. Every pair of nucleons will zero out each other’s
angular momentum and since they are pairwise located in the same orbital,

11Or more correctly, the total angular momentum descending ladder operator operating
on |j = 1/2〉 gives the zero state: â−|j = 1/2〉 = |0〉.
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mi m

5/2 3/2 1/2 -1/2 -3/2 -5/2
• • 4
• • 3
• • 2
• • 1
• • 0

• • 2
• • 1
• • 0
• • -1

• • 0
• • -1
• • -2

• • -2
• • -3

• • -4
j 4 2 0

Table 2.1: m-scheme of two identical nucleons occupying a j = 5/2 orbital.
m = m1 +m2 is the sum of the z components of ji, i = 1, 2. The black dots
indicate which mi states are occupied by a nucleon, and the last column
indicates the sum of each pair of occupied states. The bottom row tells us
which total angular momentum j the different values m might belong to.

the parity will always be positive since 12 = (−1)2 = 1. Another equally
important result of the pairing effect is the fact that the ground state of
a nucleus where all nucleons are paired save for one, has its jπ decided by
the unpaired nucleon alone. Take 51

23V28 as an example. It has 28 neutrons
meaning that all of the neutrons are paired up, filling up to and including
the 1f7/2 orbital and contributes to the total by 0+. There are however 23
protons, filling all orbitals up to and including 1d3/2, with one pair and one
non-paired proton in 1f7/2. We would therefore expect that the ground state
of 51V is jπ = 7/2− and that is indeed the case [34]. Conversely, the case for
odd-odd nuclei is not as straight forward. Odd-odd nuclei have a non-paired
proton and a non-paired neutron whose angular momenta do not couple in
such a predictable manner. Consider the case of 50V whose two non-paired
nucleons are one proton and one neutron which both reside in the 1f7/2
orbital. If these nucleons were both protons or both neutrons they would
couple to jπ = 0+, but the ground state of 50V is experimentally verified to
be jπ = 6+ [35].

2.5.2 The m-scheme

In table 2.1 we see all the possible total angular momentum couplings for two
identical nucleons occupying a j = 5/2 orbital (for example 1d5/2). Here mi

is the z component of j for the ith particle, while m = m1+m2 is the sum of
the z components of j for both nucleons. Since the two nucleons are identical
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fermions, they are prohibited by Pauli’s exclusion principle to havem1 = m2.
This can be seen from the requirement that the wave function describing a
system of fermions must be anti-symmetric with respect to exchange of two of
the fermions in the system. This means that if the space and spin coordinates
of two identical fermions are switched, the total wave function changes its
sign, namely that

ψ(x1,x2) = −ψ(x2,x1), (2.50)

which implies that

ψ(x,x) = 0. (2.51)

Here, xi contains the space and angular momentum coordinates for the ith
nucleon. We can more specifically say that two identical nucleons with
total angular momentum j1 and j2, as well as total angular momentum z
components of m1 and m2 respectively, couple to total angular momentum
j and z component m by

ψ(j1,j2, j,m) = (2.52)∑
m1m2

〈j1m1 j2m2|j m〉 (φj1m1(x1)φj2m2(x2)− φj1m1(x2)φj2m2(x1)).

Here, φjnmn represents a fermion particle state of total angular momentum
jn and projection mn. We see that the wave function vanishes if j1 = j2
and m1 = m2, or if x1 = x2. We also see that interchanging x1 and x2
produces the same wave function, but with the sign swapped. This means
that swapping the position and spin coordinates does not produce a new
distinct entry in table 2.1, since a swapped sign in front of the wave function
will disappear when calculating any expectation value, namely that

〈ψ|Ô|ψ〉 = 〈−ψ|Ô| − ψ〉 (2.53)

where Ô represents the operator of any observable. Take now m = 0 as
an example. According to table 2.1 there are three different combinations
which produce m = 0. We then say that the m-scheme dimensionality for
m = 0 is 3. The m-scheme dimensionality is a measure of two important
qualities of numerical shell model calculations; it reveals what results are
possible to extract from the calculations and the computational requirements
of the calculations. Both of these qualities will be explored in the subsequent
sections.

2.5.3 Shell model calculations in the m-scheme basis

In shell model calculations using the m-scheme basis, a wave function is
represented as a linear combination of m-scheme basis states, namely

|ψ〉 =

Dm∑
i=1

vi|mi〉, (2.54)
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where Dm – the m-scheme dimension – is the number of m-scheme basis
states |mi〉. The m-scheme basis states are themselves Slater determinants,
each representing a certain configuration of nucleons. The basis states are
denoted in second quantisation formalism as

|mi〉 =

 A∏
j=1

c†ai,j

 |0〉. (2.55)

The creation operator c†ai,j creates a single particle state ai,j for the jth
nucleon of the ith m-scheme basis state. There are A nucleons in each basis
state which together constitute some configuration of orbital occupation.
The m in |mi〉 indicates that the basis states have some total angular
momentum z component mi. For even-mass nuclei, the subspace of m = 0
basis states is sufficient to describe wave functions of any j while for odd-
mass nuclei the subspace of m = 1/2 is sufficient [1].

2.5.4 Interactions and model spaces

In shell model calculations there are potentially an enormous amount of
different configurations which all have the same m value making Dm very
large and thus making eq. (2.54) computationally heavy. The size of Dm

boils down to a combinatorics problem defined by the number of nucleons
and the number of orbitals in which the nucleons may reside. By reducing
the number of possible configurations, we can reduce the number of basis
states thus making the calculations of the shell model wave functions easier.
Such a reduction can be done either by reducing the number of nucleons or
reducing the number of orbitals.

In eq. (2.55) we see A creation operators operating on the vacuum state
|0〉. When an excitation occurs, all A nucleons can theoretically partake in
the excitation, but in reality most of the "work" is performed by the outer
laying nucleons due to the fact that they are closer to the Fermi surface than
the inner nucleons. We can exploit this fact to reduce the computational
complexity of the model by using an inert core of nucleons instead of the
vacuum state. Instead of letting the nucleons all be free to roam, we lock
some of them in place and model them by a stationary mean field potential.
The inert core behaves to the outer valence nucleons as the entire nucleus
behaves to the electrons in atomic physics. The size ofDm is reduced because
we do not need to separately treat each of the nucleons in the inert core, thus
reducing the number of possible configurations.

In fig. 2.7 we see a few of the lower laying orbitals of the shell model,
while in reality there are many more. In shell model calculations we reduce
the size of Dm by restricting the number of orbitals available for the valence
nucleons. We might for example only allow valence nucleons to use the sd
major shell, removing all higher laying orbitals. We then refer to sd as the
model space of the shell model calculation.

A choice of inert core and model space are two of the ingredients in an
interaction. On the left side of fig. 2.7 we see all the interactions used in
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this work12. The coloured lines indicate which orbitals are included in the
different interactions, while on the right side next to the magic numbers we
see the inert cores used for the different interactions. USD, SDPF-MU, and
SDPF-SDG use 16O as an inert core, GXPF uses 40Ca, while JUN45 uses 56Ni.
Using a doubly magic nucleus is the obvious choice for an inert core because
they are particularly stable and thus less likely to have to be included in an
excitation.

One important aspect of choosing a suitable interaction is the parity of
the levels. As an example, we might model 50V in the GXPF interaction
which is a suitable choice when considering the computational cost, since
GXPF has a relatively small model space compared to, for example, SDPF-
MU. Since the pf major shell only has negative parity orbitals and 50V has
10 valence nucleons in pf , we can only get positive parity levels from this
model. This in turn means that we will not be able to extract odd numbered
E transitions from the model (E1 might be of great interest!). Conversely,
if we use the SDPF-MU interaction we have both pf and sd major shells,
which are of both negative and positive parities. We will thus be able to
extract all possible transitions from the model!

In table A.1 we see an overview over the interactions used in this work.
The table includes the range of possible isotopes within the model space,
which model space is used, the inert core, and the recommended g spin
factors. Note that an interaction may not be well suited for every isotope
within its range. For example, calculating 17O with the USDA interaction
will not yield good results because there is only one free valence neutron. In
other words, the m-scheme dimensionality is too low to accurately represent
the different nucleon configurations of 17O. As for 39Ca with the USDA
interaction, there is only one free hole which greatly restricts the possible
excitations and in turn yields a very small m-scheme dimensionality. Note
that gs8 and GCLSTsdpfsdgix5pn use the same model space and have the
same gs value. The two-body matrix elements in the two interactions are
identical, but the single-particle energies in gs8 are tuned to better reproduce
experimental data around 58Ni [36]. I will therefore use GCLSTsdpfsdgix5pn
for the scandium calculations and gs8 for the zinc calculations. GXPF denotes
the three interactions GXPF1, GXPF1A, and GXPF1B. GXPF1A is the revised
version of GXPF1 by Honma et al. [37] and is the one of the two that I use in
this work. USD denotes three interactions, namely USD, USDA and USDB.
These three interactions will not be used in this work, but is included in the
overview because they are among the most widely used interactions. SDPF-
MU is a combination of USD and GXPF1B [38] which means that it spans
two major shells. SDPF-MU can therefore deliver levels of both positive and
negative parities for odd and even nuclei, which in turn means that we can
get both E1 and M1 transitions from any nucleus in its model space.

12SDPF-SDG is not really an interaction but a model space. The interactions gs8 and
GCLSTsdpfsdgix5pn are the two interactions in SDPF-SDG used in this work.
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2.5.5 Truncation

The size of Dm is greatly reduced by lowering the number of valence nucleons
and restricting the number of orbitals. Still, the size of Dm might be too
large to be handled by even the most powerful computers today. To reduce
the size of Dm even further we might perform particle-hole truncations and
~ω truncations. In particle-hole truncations we restrict the maximum and
minimum number of nucleons allowed in any of the orbitals of the model
space, thus reducing the number of possible configurations. For interactions
whose model spaces span two or more major shells, like SDPF-MU and SDPF-
SDG, we might limit the number of nucleons which are allowed to be excited
across a major shell gap. Such a limitation is called an ~ω truncation and it
often has a large impact on Dm.

Take 64Zn in the SDPF-SDG model space as an example in which 16O is
the core and there are 22 and 26 valence protons and neutrons respectively.
Them = 0 m-scheme dimension is so large that a regular computer isn’t even
able to count the number of configurations13; we have to truncate the model
to be able to use it! By setting a 1~ω truncation, the dimension reduces to
Dm ≈ 4.81 × 1010 which is at the very upper limit of what is possible with
today’s computers14. We can reduce Dm further by performing a particle-
hole truncation. If we set the minimum number of nucleons (protons and
neutrons combined) in the f7/2 orbitals to 14, the dimensionality is reduced
toDm ≈ 1.59×108 which is well within the reach of a modern supercomputer.
Which orbitals to truncate depends entirely on the physics of the problem;
some orbitals have a larger impact on the results than other orbitals and
identifying which ones to truncate is a game of (educated) trial and error.

13Using the dimensionality calculator which comes with KSHELL.
14The Dm listed here is the m-scheme dimension of the negative parity states, while for

the positive parity states Dm ≈ 5.01× 108.
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Figure 2.7: The shell structure of the nuclear shell model. The splitting of
the orbitals due to spin-orbit coupling is shown in the right column of lines,
connected to their un-split counterparts with dashed lines. The occupation
number for each orbital is indicated to the right of each orbital, with the
cumulative occupation number at the magic number gaps next to it. The
model space of a selection of interactions are indicated on the left side, while
the corresponding (inert) cores are indicated to the far right. A legend of the
spectroscopic notation with the corresponding orbital angular momenta and
parities is located at the top of the figure. Note that the separation between
the orbitals is only approximate.
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Chapter 3

Experimental

3.1 KSHELL

KSHELL is a numerical nuclear shell model solver developed by Shimizu
et. al. [1]. It is a massively parallelisable program which uses the thick-
restart block Lanczos method to extract energy eigenvalues of shell model
hamiltonians. KSHELL supports extremely large m-scheme dimensions (see
section 2.5.2) of up to tens of billions, given that the computer has enough
processing power and enough memory. KSHELL can be run in j-projection
mode which enables the user to request a desired amount of levels per jπ.
m-projection mode is also available where the user can simply request N
levels, and KSHELL will deliver the N lowest lying levels.

While KSHELL is coded in Fortran, a user interface kshell_ui
programmed in Python is used to generate the correct input files for the
Fortran code. kshell_ui is authored by Noritaka Shimizu and quite heavily
modified by me to suit the needs of my masters thesis. Following are the
most notable changes I have made.

The program is updated to Python 3.81 from 2.7, and I have added
extensive type hinting and documentation strings to more or less all functions
and variables. I did this mainly to get a better understanding on how
KSHELL thinks, since kshell_ui produces the "food" for KSHELL. While
some people prefer dense maths to understand a concept, and others well
worded descriptions, I prefer looking at computer code to understand how
something works. Of other notable changes to kshell_ui, I have added
functionality for requesting ranges of jπ levels instead of having to manually
input the number of levels for each jπ. I have added a check which tests if
the model space can deliver the user requested amount of levels, alerts the
user if too many levels have been requested and if so, adjusts the number of
requested levels to the highest number of levels supported by that interaction.
I have also changed the user interface to prompt the user for estimated time
usage, number of MPI processes, number of OpenMP threads, and an option
to force simultaneous multithreading which KSHELL benefits from. All of
these parameters are commands to the supercomputer queue system (Slurm
in the case of Betzy) and are added to the start of the KSHELL run script.

1Compatible with 3.9, 3.10 and probably many future releases.
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Another quite important feature I have implemented is the possibility
to split up the calculations into separate shell executables. By default,
kshell_ui generates a single executable file with all the commands needed to
generate the user requested data. While this is good for smaller calculations,
it is impractical for large calculations which may take hours or days on large
supercomputers. My implemented feature puts the calculation for each jπ

in a separate executable with the correct supercomputer queue commands
in each file. Transition calculations are also put in separate executables,
one for each jπii → j

πf
f . Now each file may be queued separately which

greatly reduces the problem of estimating computation time. Simply run
one of the executables with a generous time estimate2, see how long that
takes and then extrapolate the time usage to the other executables. While
the time is much easier to estimate, another problem has emerged. When
splitting the calculations into separate executables, quite a few executables
have been generated, probably a few tens or up to a hundred. Queuing all
of these executables can be a hassle, and in addition, you might want to
change the number of nodes or the estimated time usage for each of the
executables. I have solved this problem too, and that code is a part of the
kshell-utilities package I have developed which I will speak more about
in section 3.2.

I have done some minor changes to how the Fortran code writes data to
file. The reduced transition probabilities are written with greater decimal
precision because some very weak transitions were not registered at all; the
transitions were simply rounded to 0. Also, the structure of how data is
written to file has been greatly improved to make the process of reading the
files much easier.

The KSHELL code along with the user interface is available at github.
com/GaffaSnobb/kshell.

3.2 kshell-utilities

For this masters thesis I have developed a Python package called
kshell-utilities which contains many useful tools for handling data gen-
erated by KSHELL. Some of the tools are built upon code developed by
Jørgen Midtbø [39] and Noritaka Shimizu [1] while most of the code is de-
veloped from scratch by me. kshell-utilities is built with Python, is open
source, and is available to anyone with an internet connection. The package
may be installed by pip install kshell-utilities for the latest stable
version, or directly from the source code for the latest version [40]. Follow-
ing are the main features of kshell-utilities. Note that the software is
still in development, so please see the GitHub repositories for the very latest
instructions. All code is available at github.com/GaffaSnobb/kshell-utilities.

2A generous time estimate is now much more approachable since the run time for each
individual executable is much lower than the total time for all the executables.
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3.2.1 Handling KSHELL executables

When splitting a calculation in several executables with kshell_ui you are
stuck with several tens of executables. edit_and_queue_executables is a
function which lets you edit the number of nodes, the time estimate, and the
job name of all the executables without having to open each file separately
in an editor. The script also has an option for queueing the executables on
the fly after they have been edited3. Open an interactive Python session
in the directory where all the executables are located and run the function.
Choose the parameters you want to edit:

1 >>> import kshell_utilities as ksutil
2 >>> ksutil.edit_and_queue_executables ()
3 Please choose parameters you want to alter (y/n) (default n):
4 nodes: y
5 seconds: y
6 minutes: y
7 hours: y
8 days: y
9 job_name: y

10 queue: y
11

The script will then loop over all executables in the directory and prompt
you for new parameter values. After the values have been entered, the script
will queue the executable:

1 Edit 000_1p.sh? (y/n) (default y):
2 Loading 000_1p.sh
3 Job name: 1p
4 Number of nodes: 8
5 Number of seconds: 0
6 Number of minutes: 10
7 Number of hours: 0
8 Number of days: 0
9 Submitted batch job

10

11 Edit 001_3p.sh? (y/n) (default y):
12 ...
13

The script will continue to prompt for all the executables in the directory.
This process is much less time consuming than having to individually open
each executable, edit it, and then put it in the queue.

3.2.2 Reading data from KSHELL

KSHELL typically produces a summary text file containing all level and
transit information. This summary file can easily be read by the loadtxt
function:

1 >>> import kshell_utilities as ksutil
2 >>> res = ksutil.loadtxt("<path -to -summary -file >")[0]
3

3Currently hard-coded for Slurm, the queue system on Betzy.
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res is now an object containing a magnitude of useful data, most notably
level information (columns of E, 2j, π,N):

1 >>> res.levels
2 array ([[ -40.467 , 0. , 1. , 1. ],
3 [-38.771, 4. , 1. , 1. ],
4 [-33.919, 0. , 1. , 2. ],
5 ...,
6 [-22.904, 0. , 1. , 8. ],
7 [-22.468, 0. , 1. , 9. ],
8 [-21.905, 0. , 1. , 10. ]])
9

and transition information (columns of 2ji, πi, Ni, Ei, 2jf , πf , Nf , Ef , Eγ , B(..., i→
f), B(..., f → i)):

1 >>> res.transitions_BM1
2 array ([[4, 1, 2, ..., 5.889, 1.4183e-04, 1.4183e-04],
3 [4, 1, 3, ..., 8.281 , 4.8164604e-01, 4.8164604e-01],
4 [4, 1, 3, ..., 2.392 , 1.1044075e+00, 1.1044075e+00],
5 ...,
6 [0, 1, 10, ..., 3.037 , 1.427484e-02, 4.75828e-03],
7 [0, 1, 10, ..., 2.531 , 9.08819e-03, 3.0294e-03],
8 [0, 1, 10, ..., 1.355 , 7.174e-04, 2.3913e -04]])
9

The desired data can easily be sliced to the users needs.
When a summary file is loaded with loadtxt, all the data is saved to

.npy files and stored in tmp/ located in the same directory as the script you
are calling loadtxt from. Loading NumPy files is very fast, almost instant,
regardless of the size of the file while loading data from the summary text
file might take up to a couple of minutes for very large summary files. A
SHA hash generated from the accompanying KSHELL executables is used for
the filenames of the temporary NumPy files so that tmp files from different
KSHELL calculations aren’t mixed. Please be sure to keep the KSHELL
executable(s) in the same directory as the summary file for this functionality
to work properly.

When splitting the KSHELL calculations into separate executables, as
explained in section 3.1 and section 3.2.1, the summary file is not generated
automatically. Use collect_logs to gather information from all of the
separate KSHELL log files and compile them into a summary file:

1 >>> ksutil.collect_logs ("<path -to -dir -with -logs >")
2 Loading energy log files ...
3 Reading file 1 of 9
4 Reading file 2 of 9
5 ...
6

7 Loading transit log files ...
8 Reading file 1 of 23, multipole: E1
9 Reading file 2 of 23, multipole: E1

10 ...
11

After completion, a summary file will be located in the same directory as
the log files. Read the summary with the aforementioned loadtxt.
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3.2.3 Visualising data from KSHELL

Two notable pieces of nuclear properties are the level density (NLD) and the
gamma strength function (GSF). Code for calculating these properties are
embedded in res as methods. You can easily generate the NLD and GSF by

1 res.nld()
2 res.gsf()
3

which produces the following plots using default values

The GSF calculation supports a myriad of parameters, most notably
1 def gsf(self ,
2 bin_width ,
3 Ex_min ,
4 Ex_max ,
5 multipole_type ,
6 partial_or_total ,
7 include_n_states ,
8 filter_spins ,
9 filter_parities ,

10 return_n_transitions
11 ):
12

bin_width is the width of the energy bins for the GSF, with the default value
of 200 keV. Ex_min and Ex_max are the lower and upper limits for which
initial energy levels to include in the calculations. The min value is typically
2 to 3 MeV to make sure that the GSF calculations are taken above the
discrete region, while the max value is typically set to the neutron separation
energy of the nucleus in question. multipole_type sets the multipolarity of
the transitions so that the correct data set is chosen with the correct pre-
factor to the GSF (see eq. (2.43)). Allowed values are E1, M1, E2. With
partial_or_total you can choose whether to use the partial or total level
density when calculating the GSF. Note that using the total level density
is wrong and is included only for comparison with using the partial level
density. filter_spins lets you choose a subset of the available j values in
the data set, while filter_parities lets you choose what parity you want.
Finally, return_n_transitions = True makes the GSF function return an
additional array containing the number of transitions used to calculate the
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GSF for each Eγ . This is used to study the Porter-Thomas fluctuation of
the GSF.

level_plot is a useful function for visualising level spacing. It supports
selection of a subset of levels and angular momenta:

1 >>> res.level_plot ()
2 >>> res.level_plot(include_n_levels =10, filter_spins =[0, 2, 8])
3

produces:

Analysing the distribution of B values is available, based on selections
of both angular momentum and excitation energy. Such analyses are easily
performed by the following code:

1 >>> res.porter_thomas_Ei_plot(
2 Ei_range_min = 5,
3 Ei_range_max = 9,
4 Ei_values = np.linspace(5, 9, 3),
5 Ei_bin_width = 0.2,
6 BXL_bin_width = 0.1,
7 multipole_type = "M1",
8 )
9 >>> res.porter_thomas_j_plot(

10 Ex_min = 5,
11 Ex_max = 9,
12 j_lists = [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
13 BXL_bin_width = 0.1,
14 multipole_type = "M1",
15 include_relative_difference = True ,
16 )
17

which produces the following figures:

36



The listed function arguments are the default values, so no user input
is actually needed to produce these figures. The Ei analysis plots the
distributions of B values from three selections of excitation energies (within
the specified Ei bin size) in addition to three larger ranges of excitation
energies. All distributions are scaled to match the height of the Porter-
Thomas distribution which is plotted along with the B distributions. The
ji analysis plots the distribution of B values from three selections of
angular momentum, also scaled to match the height of the Porter-Thomas
distribution. Relative differences between theB distributions and the Porter-
Thomas distribution are also displayed to better discern the details.

The B distribution plots are supplemental tools for studying the validity
of the generalised Brink-Axel hypothesis. kshell-utilities has built-in
tools for studying the angular momentum dependence / independence of the
GSF for the given KSHELL calculations. The commands

1 >>> res.brink_axel_j(
2 bin_width = 0.2,
3 Ex_min = 5,
4 Ex_max = 10,
5 multipole_type = "M1",
6 j_list = range (8+1)
7 )
8 >>> res.brink_axel_j(
9 bin_width = 0.2,

10 Ex_min = 5,
11 Ex_max = 10,
12 multipole_type = "M1",
13 j_list = [2]
14 )
15

produce figures where the GSF is calculated individually for every angular
momentum in j_list (grey) and compared to the "total" GSF averaged
over all angular momenta (black). If no j_list is given, then every available
angular momentum will be used. Note that the total GSF is calculated using
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all available angular momenta regardless of the choice of j_list, meaning
that the single angular momentum GSF will not be equal to the total GSF if
only a single angular momentum is chosen. This is illustrated in the figures
below which are produced by the aforementioned commands:

When studying the individual angular momentum GSFs, it is fruitful
to consider the NLD as a function of both excitation energy and angular
momentum. The commands

1 >>> res.angular_momentum_distribution_plot(
2 bin_width = 0.4,
3 E_min = 5,
4 E_max = 10,
5 j_list = range (8+1) ,
6 filter_parity = "+",
7 )
8

produce the following heatmap of level densities for all the angular momenta
in j_list:

All available angular momenta are used if no j_list is given. If no parity
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is given, both will be used.
A final note for the functionality demonstrated in this section. All

functions have default values, so the user does not actually have to specify
any function arguments. It is therefore very easy and quick to generate a
rough sketch for the user’s needs!

3.3 Betzy

Betzy is a supercomputer located at NTNU in Trondheim and hosted
by Sigma2/NRIS, named after Elizabeth Stephansen, the first Norwegian
woman to be awarded a doctorate degree4. Betzy is the most powerful
supercomputer in Norway and consists of 1344 compute nodes, each equipped
with two 64 core AMD Epyc 7742 CPUs giving 128 cores per node and a
total of 172032 cores. The high core count makes Betzy particularly suitable
for KSHELL with KSHELL being a massively parallel program. Most of the
calculations in this work would not be possible with a supercomputer with
a lower core count.

While Betzy does have 1344 compute nodes in total, it is not realistic
to be able to use all of them at once. Betzy has many users and there are
always some nodes in use. In addition, using more nodes (more CPU cores)
does not always benefit KSHELL calculations. In particular, the m-scheme
dimension sets an upper limit to how may CPU cores can be used. If the
m-scheme dimension is too small compared to the amount of CPU cores,
then the data will not be effectively distributed in parallel to the cores. In
this work I have mostly used 64 nodes due to shorter queue times, but I also
tested 128 and 256 nodes with good results.

With my implementation of the splitting of executables, as explained
in section 3.1, up to 64 nodes per job has been sufficient for even the
largest calculations. On Betzy, simultaneous multithreading (SMT)5 is
deactivated by default since most scientific applications do not benefit from
it. I performed a few benchmarks to see if this is true for KSHELL, and
it turns out that KSHELL does benefit from SMT. In fig. 3.1 we see the
time usage of a KSHELL calculation on Betzy. The calculation was run for
both 128 physical cores and 256 virtual cores (SMT) per node. We can see
from the figure that using SMT yields a bit more than a 20% reduction in
time when using a single node, and a bit less than 20% when using 4 nodes.
It seems that KSHELL does benefit from using SMT, and I have therefore
implemented an option in kshell_ui.py for activating SMT by inserting the
correct parameters to Slurm – the queue system on Betzy – to bypass the
SMT limitations on Betzy.

Even though each job might not be suitable for a very large number
of nodes, each job can be run in parallel to each other. The maximum
computational resources used at the same time for this work was 38 jobs
each using 16 nodes, totalling 608 nodes or 77824 CPU cores (155648 virtual
cores since SMT was used). That is almost half of all the nodes on Betzy –

4en.wikipedia.org/wiki/Elizabeth_Stephansen
5en.wikipedia.org/wiki/Simultaneous_multithreading
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Figure 3.1: Time usage of a KSHELL calculation on Betzy when using 128
physical cores and 256 virtual cores (simultaneous multithreading). Left: 1
node. Right: 4 nodes.

the most powerful computer in Norway – used at the same time to perform
calculations for this work! Marvellous!
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Chapter 4

Results and discussion

4.1 Brink-Axel hypothesis and Porter-Thomas fluc-
tuations

The central theme of this thesis is using the gamma strength function (GSF)
as a tool to measure how certain scandium and vanadium isotopes prefer
to gamma decay. Since the GSF is in principle a function of four variables,
Eγ , Ei, ji, πi, it is tempting to simplify the interpretation and visualisation of
the data by averaging over all parameters except Eγ , leaving the GSF solely
as a function of gamma energy. By performing said average I assume that
the generalised Brink-Axel (gBA) hypothesis holds, or in other words that

f(Eγ) ≈ f(Eγ , Ei, ji, πi). (4.1)

The gBA hypothesis does not hold for all nuclei under all circumstances (see
section 2.4.3 for examples) which is why I start my analysis by testing that
gBA hypothesis indeed holds for the calculations I have performed.

In fig. 4.1 we see theM1 (top) and E1 (bottom) GSFs of 44Sc where f(Eγ)
is shown in black and f(Eγ , ji) for ji = 0, 1, ..., 8 is shown in grey. All the
individual ji GSFs fluctuate neatly around their average in the gamma energy
range Eγ = [0, 6] MeV and they are, as expected, not perfectly identical1.
At gamma energies above 6 MeV, larger fluctuations start to appear for both
M1 and E1 transitions.

1Because lifetimes – and hence B values – are inherently statistical of nature, see
section 2.4.3.
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Figure 4.1: The GSF of 44Sc using the GCLSTsdpfsdgix5pn interaction with
a 3~ω truncation and 200 levels for each angular momentum ji = 0, 1, ..., 8
for both parities. The GSF for each individual ji is shown in grey and their
average is shown in black. Top: the M1 GSFs. Bottom: the E1 GSFs.
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While not a rigorous mathematical proof, the GSFs in fig. 4.1 all follow
the same trend, pointing to that the gBA hypothesis is indeed applicable.
Even the large fluctuations above Eγ = 6 MeV does not necessarily disprove
gBA, because fluctuations of that size may be statistically expected if a low
number of B values was used to generate the GSFs in that Eγ region. This
is indeed true, and is explored thoroughly in section 4.2.

Recall that we expect the B values to have a statistical distribution,
namely that

B(Xjγ)

〈B(Xjγ)〉
∼ χ2

1, (4.2)

a distribution which is also called the Porter-Thomas distribution. In the
two top plots of fig. 4.2 we see for 44Sc the distribution of B(E1) values on
the left and B(M1) on the right. All B values corresponding to Ei < 5
MeV have been removed to exclude levels in the discrete region and all B
values corresponding to Ei > 9.7 MeV have been removed because they are
above the neutron separation energy. Three selections of B values have been
made which are ji = {0, 1, 2}, ji = {3, 4, 5} and ji = {6, 7, 8}, and the
Porter-Thomas distribution is shown in green. Note that the B values are
normalised to the average B value from each of their respective levels, not
to the total average of all B values. Each distribution have been normalised
to fit the height of the Porter-Thomas distribution.

There is little doubt that all three distributions for both B(E1) and
B(M1) values closely match the Porter-Thomas distribution. In the bottom
two plots of fig. 4.2 we see the relative difference to the Porter-Thomas
distribution for all of the selected distributions. The B(E1) values have
relative differences which oscillate around 1 at approximately B/〈B〉 = [0, 4]
before the relative error starts to increase and keeps doing so for the rest
of the range. The B(M1) values have lower relative errors than the B(E1)
values for the entirety of the range. Going from lowest to highest ji interval,
the number of B(E1) values included in the distributions are 12857, 33135
and 11300 respectively, and the number of B(M1) values are 23631, 90936
and 33854 respectively. This seems to coincide well with the fact that
the middle ji interval generally shows the smallest relative error for both
multipolarities because of the larger number of B values. The fact that
there are fewer B(E1) values than B(M1) values also matches well with the
larger relative errors we see for the distribution of B(E1) values.

Consider now B(E1)/〈B(E1)〉 > 4 in the bottom left plot. As mentioned
earlier, fluctuations are statistically expected and the fluctuations should
grow in size when the number of B values gets smaller. However, what we
see here seems to be a systematic overshoot of the B(E1) values relative
to the Porter-Thomas distribution. Systematic errors are per definition not
random errors, and if this overshoot is indeed systematic, then its source
might be rooted in a number of places in the codes which generated these
calculations.

The calculations shown in fig. 4.2 strongly point to that the B values
are indeed Porter-Thomas distributed. This is a good supplement to the
calculations in fig. 4.1 because the good match to the Porter-Thomas
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distribution substantiate the possibility that the fluctuations between the
GSFs are Porter-Thomas fluctuations and not a breaking of the gBA
hypothesis.

Figure 4.2: Distributions of B values of 44Sc with the GCLSTsdpfsdgix5pn
interaction using a 3~ω truncation and 200 levels for each angular momentum
ji = 0, 1, ..., 8 for both parities. The top two plots show the distributions
of selections of B values selected from different ji. The Porter-Thomas
distribution is shown in green. The bottom two plots show the relative
errors these distributions have from the Porter-Thomas distribution.
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Figure 4.3: Distributions of B values of 44Sc with the GCLSTsdpfsdgix5pn
interaction using a 3~ω truncation and 200 levels for each angular momentum
ji = 0, 1, ..., 8 for both parities. The top two plots show the distributions of
selections of B values selected from three different Ei values. The middle
plots show distributions of B values selected from three different ranges of
Ei values. The Porter-Thomas distribution is shown in green. The bottom
two plots show the relative errors which the middle distributions have from
the Porter-Thomas distribution. These plots are heavily inspired by fig. 3.3
in [12].
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In fig. 4.3 we see a similar analysis but for selections of excitation energies
instead of angular momenta. Again, B(E1) values on the left and B(M1) on
the right. The top two plots show B distributions selected from excitation
energies Ei = 5, 7.35, 9.7 MeV within a bin of size 0.2 MeV. For both E1
and M1 the Ei = 5 MeV distributions show the largest deviations from
the Porter-Thomas distribution, while with increasing Ei the difference gets
smaller. Again, this is because the number of B values in the distributions
are – in order of increasing Ei – 374, 3089, 15610 for the E1 distributions and
674, 7766, 44072 for the M1 distributions. A larger number of B values will
even out fluctuations. Despite the fluctuations, all distributions in the top
two plots closely match the shape of the Porter-Thomas distribution which
supports the fact that the B values are Porter-Thomas distributed however
the B values are selected.

In the middle plots of fig. 4.3 the B values have been selected from ranges
of Ei values. The number of B values included in the selections are – in order
of increasing Ei range values – 4013, 13561, 39718 for the E1 distributions
and 7026, 30838, 110557 for the M1 distributions. The increased number of
B values is clearly manifested by the decrease in fluctuations as compared to
the distributions in the top plots. The relative errors of these distributions
to the Porter-Thomas distribution are shown in the bottom plots. We see
that the errors are smallest in the lowest B/〈B〉 range, and that the errors
gradually increase as B/〈B〉 increase. This behaviour is not surprising since
we see from the middle plots that the amount of small B/〈B〉 values is greater
than the amount of large B/〈B〉 values, which is somewhat of a redundant
statement since that is literally what the shape of the distributions tells us.

As with the ji analysis, there seems to be a systematic overshoot as
B/〈B〉 increases. The overshoot is seen clearly for the E1 for B/〈B〉 > 4.
The origin of this systematic error is unknown, and might be rooted in
KSHELL or in the data analysis. The overshoot is seen less clearly for the
M1 values, though it does seem to be present there as well.

In fig. 4.4 we see for 50V the B(E1) and B(M1) distributions for some
angular momentum selections. Note in particular that there is something
wrong with the B(E1) distributions, shown in the left plots in the figure.
kshell-utilities has not been able to scale the B(E1) distributions to
the Porter-Thomas distribution. See appendix B for details on how the
scaling is performed. It turns out that the 50V KSHELL calculations have
very few non-zero B(E1) values. There are simply too few E1 transitions
of non-zero transition probabilities in the data set to produce a meaningful
distribution. There is luckily no problem for the M1 transitions, whose B
distributions we see in the right plots in fig. 4.4. From every selection of ji
the distributions have been successfully scaled and follow the shape of the
Porter-Thomas distribution quite well. The accompanying relative errors in
the bottom right plot reveals what might look like an oscillation around 1,
where the relative errors start above 1, dips below 1, and seems to move
above 1 towards the end of the B(M1)/〈B(M1)〉 range.

In fig. 4.5 we see B distributions from selections of excitation energies.
Not surprisingly, we see the same behaviour in the B(E1) distributions here
as with the ji selections; there are not enough non-zero B(E1) values to

46



produce (good) distributions that can be compared to the Porter-Thomas
distribution. The B(M1) distributions show a good match to the Porter-
Thomas distribution.

The reason for the lack of E1 transitions is likely because of how KSHELL
writes data to file. Some time ago, I found that KSHELL writes B values
with 4 decimals of precision which I changed to 8 decimals because many
values were rounded to zero with only 4 decimals of precision2. I performed
all calculations except for 50V after these changes were made, and this has
resulted in bad E1 data for 50V. This is supported by the B(E1) distributions
of 51V – seen in fig. 4.6 – which follow the Porter-Thomas distribution much
better than 50V, however with some interesting relative errors which I will
come back to.

The low number of non-zero E1 transitions of the 50V might indeed
affect the resulting E1 GSF. Note that zero values are not included in the
calculations of the GSF3 so they will not pull the average down, but a lack
of transitions in the GSF calculations will give less correct results.

Luckily, the 51V B distributions do not suffer from the same problem.
The B distributions from selections of excitation energies in fig. 4.7 behave
quite nicely for both E1 and M1 transitions. However, the distributions
from selections of angular momenta in fig. 4.6 show some strange behaviour
in the relative error of B(E1). It seems that the scaling to the Porter-Thomas
distribution has missed a bit, particularly seen just below B(E1)/〈B(E1)〉 =
2. Improving the scaling might reduce the overall relative error, but the
clearly visible "banana" shape of the relative error is probably rooted
somewhere else than the scaling. The scaling is simply multiplication of all
the distribution bins with the same scaling factor, and changing the scaling
factor will not change the overall shape of the distribution.

B distributions of 64Zn from selections of angular momenta are displayed
in fig. 4.8. Curiously, we see a "banana shape" in the relative errors of the
B(E1) distributions which looks similar to the "banana" we see for the
same distributions of 51V. Note also that the GSFs of 51V (fig. 4.18) and of
64Zn (fig. 4.19) look strikingly similar. The calculations for the two nuclei
use different interactions and model spaces, and still we see such similar
results. The M1 distributions more closely resembles the Porter-Thomas
distribution. The same can be said for the B(M1) distributions in fig. 4.9,
where the selections are from various excitation energies. Here too, the E1
values are different from the Porter-Thomas distribution, and we can see a
"banana shape" in the relative errors.

2The specific changes can be found here: https://github.com/GaffaSnobb/kshell/
commit/b3083296c6e84f948011c987870c73c2ef148436.

3This specific part of the calculation can be seen here: https://github.com/GaffaSnobb/
kshell-utilities/blob/2c4b9de7974e21fbc2975ff116ce5ebbe1fad57a/kshell_utilities/general_
utilities.py#L573.
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Figure 4.4: In blue, B distributions of 50V from selections of angular
momenta. The Porter-Thomas distribution is shown in green. Calculated
with the SDPF-MU interaction with a 1~ω truncation. 200 levels were
calculated for ji = 0, 1, ..., 8 for both parities.
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Figure 4.5: In blue, B distributions of 50V from selections of excitation
energies. The Porter-Thomas distribution is shown in green. Calculated with
the SDPF-MU interaction with a 1~ω truncation. 200 levels were calculated
for ji = 0, 1, ..., 8 for both parities.
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Figure 4.6: In blue, B distributions of 51V from selections of angular
momenta. The Porter-Thomas distribution is shown in green. Calculated
with the SDPF-MU interaction with a 1~ω truncation. 200 levels were
calculated for ji = 1/2, 3/2, ..., 17/2 for both parities.
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Figure 4.7: In blue, B distributions of 51V from selections of excitation
energies. The Porter-Thomas distribution is shown in green. Calculated with
the SDPF-MU interaction with a 1~ω truncation. 200 levels were calculated
for ji = 1/2, 3/2, ..., 17/2 for both parities.
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Figure 4.8: In blue, B distributions of 64Zn from selections of angular
momenta. The Porter-Thomas distribution is shown in green. Calculated
with the gs8 interaction with a 1~ω truncation including a minimum
occupation of 14 nucleons in the 1f7/2 orbitals (protons and neutrons
combined). 200 levels were calculated for ji = 0, 1, ..., 8 for both parities.
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Figure 4.9: In blue, B distributions of 64Zn from selections of excitation
energies. The Porter-Thomas distribution is shown in green. Calculated with
the gs8 interaction with a 1~ω truncation including a minimum occupation
of 14 nucleons in the 1f7/2 orbitals (protons and neutrons combined). 200
levels were calculated for ji = 0, 1, ..., 8 for both parities.
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The point of the B distribution plots is to try to use the statistical nature
of the B values to account for fluctuations we might find in the GSF. These
fluctuations are shown for 50V in fig. 4.10 where we see in grey the GSF
calculated individually for all angular momenta (eq. (2.46)) while the GSF
averaged over all ji is shown in black (eq. (2.43)). We see that both the E1
andM1 GSFs tightly follow their average. We do see large fluctuations at the
very highest gamma energies for both E1 and M1, but this is probably due
to a reduced number of B values included in the calculations as the gamma
energy increases. This is explained in section 4.2. We also see that the E1
GSFs have a larger spread than theM1 GSFs, which might be due to the low
number of non-zero B(E1) values as discussed earlier in this section. Recall
that the GSF describes average electromagnetic transition probabilities, and
that this average will better reflect reality if we have a large number of B
values to use in the average. All in all, the spread of the GSFs is not very
large which supports the idea that the GSF is approximately independent
of angular momentum. If we take fig. 4.4 and fig. 4.5 into consideration as
well, where we see that the B(M1) values closely follow the Porter-Thomas
distribution, the small fluctuations we see in the GSFs might be within the
statistical expectations.

The story for 51V in fig. 4.11 is similar to 50V, however, with somewhat
larger fluctuations in theM1 GSFs and smaller fluctuations in the E1 GSFs.
The latter is likely due to more non-zero B(E1) values for 51V. The M1
calculations should be "of the same quality" for both 50V and 51V since the
two calculations are identical, save for one extra neutron in 51V. Still, we
see larger fluctuations in the M1 GSFs for 51V than for 50V which might
be related to the complete filling of the 1f7/2 neutron orbital for 51V (see
fig. 2.7). The spread of the GSFs is not very large, and the calculations
point to an independence of angular momentum in the GSF of 51V. However,
the "banana behaviour" of the relative difference in fig. 4.6 warrants further
investigation in the distribution of these B values before any safe conclusions
may be made.

The same analysis for 64Zn is shown in fig. 4.12. We see a rather
interesting behaviour in the E1 GSF where several of the individual ji
GSFs starts to rapidly decrease at 6 to 7 MeV, something which happens
to the other nuclei at above 8 MeV. The explanation is possibly due to
computational limitations. In general, heavier nuclei have larger NLDs than
lighter nuclei when compared at the same excitation energy. Since 64Zn is
significantly heavier than 50,51V, the former should have a larger NLD than
the two latter. Recall that calculations for all nuclei in this work include
200 levels per jπii which means that the 200th level for one of the vanadium
isotopes will have a higher excitation energy than the 200th level of the zinc
isotope. Thus, the shell model calculations of the lighter vanadium nuclei
go faster into a higher energy regime compared to the heavier zinc nucleus.
This is backed up by fig. 4.13 where we see the NLD as a function of both
energy and angular momentum for 51V and 64Zn. The figures show that
51V in general has more levels at higher energies than 64Zn despite the fact
that the shell model calculations gave 200 levels for each jπii for both of the
isotopes. We might therefore need even bigger shell model calculations for
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64Zn to get the same quality as for 50,51V above 6 MeV.
We see a similar behaviour for theM1 GSF where some of the individual

GSFs start to fall at just over 6 MeV. Since the GSFs of both E1 and M1
transitions have a low spread at energies below 4 MeV, I find it likely that
the deviations above 4 MeV (6 MeV for M1) are due to the aforementioned
computational limitations.
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Figure 4.10: The GSF of 50V using the SDPF-MU interaction with a 1~ω
truncation and 200 levels for each angular momentum ji = 0, 1, ..., 8 for
both parities. The GSF for each individual ji is shown in grey and their
average is shown in black. Top: the E1 GSFs. Bottom: the M1 GSFs.
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Figure 4.11: The GSF of 51V using the SDPF-MU interaction with a 1~ω
truncation and 200 levels for each angular momentum ji = 1/2, 3/2, ..., 17/2
for both parities. The GSF for each individual ji is shown in grey and their
average is shown in black. Top: the E1 GSFs. Bottom: the M1 GSFs.
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Figure 4.12: The GSF of 64Zn using the gs8 interaction with a 1~ω
truncation, including a minimum occupation of 14 nucleons in the 1f7/2
orbitals (protons and neutrons combined). 200 levels for each angular
momentum ji = 0, 1, ..., 8 for both parities were used. The GSF for each
individual ji is shown in grey and their average is shown in black. Top: the
E1 GSFs. Bottom: the M1 GSFs.
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Figure 4.13: NLD as a function of energy (abscissa) and angular momentum
(ordinate). A bin size of 0.6 MeV has been used. Note that each energy bin
is labelled with its lowest energy, meaning that the 5 MeV bin spans [5, 5.6)
MeV. Top: 51V. Bottom: 64Zn.
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4.2 The GSF’s dependence on the number of levels

In fig. 4.14 we see the E1 GSF and NLD of 44Sc in the GCLSTsdpfsdgix5pn
interaction with a 3~ω truncation. I have used 60, 100, and 200 energy
levels for each total angular momentum and each parity to highlight the
implications of changing the number of levels. Note in particular the GSF
for 60 levels which shows large fluctuations at approximately Eγ = 7 MeV
and higher. The GSF for 100 levels starts to show large fluctuations at about
8 MeV, and with 200 levels at about 9 MeV. These points of interest, 7 MeV,
8 MeV, and 9 MeV, also show up in the accompanying NLD where they
indicate where the NLD stops rising exponentially.

The correspondence between the GSF and NLD for these points of
interest is no coincidence. Remember that we expect the NLD to increase
approximately exponentially as a function of energy, as seen from for example
the constant temperature model, eq. (2.39). Since KSHELL calculates levels
in order of increasing energy and since I have requested a finite number
of levels N , an excitation energy will be reached where N levels is not
sufficient to fill up the exponential curve. Those are the critical points (of
interest) which we see clearly in the NLD in fig. 4.14 where the three graphs
starts to deviate from the exponential trend. At these points the shell model
calculations start to lack levels, which comes to light in the GSF as large
fluctuations. The fluctuations are caused by the GSFs dependence on the
partial width averaged in an excitation energy interval 〈Γ〉, and the NLD
ρ, which we see in eq. (2.43). Recall that the partial width depends on the
reduced transition probability B by Γ ∝ B, or rather, the average of many
B values. With too few levels there are too few transitions in the average
of B, which in turn might give an artificial over or under representation of
strong or weak transition probabilities. We therefore see large fluctuations
due to the lack of transitions to smooth out the GSF.

Note also that the NLD does not go to zero instantly when the number
of requested levels has been reached. If I request 200 levels for each jπ pair,
then KSHELL might be done with calculating all 200 0+ levels while there
are still 1+ levels left to calculate; some or all of the remaining 1+ levels
might be of higher energy than the 201st, 202nd, etc 0+ levels which were
not calculated. This gives a tail in the NLD which takes some time to go
to zero. In other words, there is no guarantee that the 3200 lowest lying
levels are exactly divided as 200 levels per jπ pair. In fact, it is probable
that there are more low than high angular momentum levels in the low level
regime since high (low) angular momentum in general corresponds to high
(low) excitation energy. The consequence of evenly dividing the levels by
total angular momentum is that the NLD does not instantly fall to zero
towards higher excitation energies, but rather leaves a tail from where the
exponential trend cannot be kept, thus causing the GSF to largely fluctuate
at high transition energies. In a sense, all levels located in the NLD tail
might be considered wasted since the computational resources would be
better served calculating lower energy levels, giving a stable GSF across
the entire gamma energy range. A way to achieve this is to have an uneven
distribution of levels over angular momenta.
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The reason why we see large fluctuations only in the high energy part of
the GSF is that only high energy levels can be responsible for high energy
gamma decays. For example, a gamma decay of Eγ = 8 MeV must come
from a level of 8 MeV or higher. When the NLD starts to deviate from the
exponential trend, it is due to a lack of levels in the upper energy regime of
the shell model calculation. Low energy gamma decays are thus not affected
in the same way, since low energy levels also account for low energy gamma
decays. However, since high energy levels also decay by low energy gammas,
we do expect to see the entire GSF being affected by changing the number of
levels included in the shell model calculation. This is exactly what we see in
fig. 4.14. The entire GSF is generally lower for 60 and 100 levels as compared
to 200 levels. We can think of this intuitively by imagining that with zero
levels there would be no transitions and hence no GSF. If I then increase the
number of levels there will be an increase in number of transitions and an
increase in the GSF. However, there seems to be a limit to how much the
GSF will increase just by including more levels. The difference between the
GSF for 100 and 200 levels is generally smaller than the difference between
the GSF for 60 and 100 levels. The increase in the GSF seems to be smaller
when increasing an already (relatively) large number of levels. There seems
to be an asymptotic behaviour towards what I can only hope to be the true
GSF. I have included a figure in the appendix, fig. A.1, which shows the
same GSF but without the logarithmic y axis. There it is easier to see that
the difference between 100 and 200 levels is indeed generally smaller than
the difference between 60 and 100 levels.

This analysis shows the importance of using a large enough number of
levels when calculating the GSF. The number of levels affects the GSF over
the entire energy range though in particular the high energy part. The
accompanying NLD should be studied to see where it starts to deviate from
the expected exponential growth. The GSF data at energies higher than this
deviation will exhibit fluctuations and cannot entirely be trusted. Consider
again fig. 4.13, and take 51V in the upper heat map as an example. Recall
that 200 levels were calculated per jπ pair making each row in the plot
contain 400 levels (both parities are summed). We see that the peak of each
row is not located at the same excitation energy, for example that the peak
of jπ = 7/2± is in the 9.2 MeV bin while the peak of jπ = 17/2± is in the
11 MeV bin. It might therefore be better to increase the numbers of levels
calculated for jπ = 7/2± and decrease the number of levels calculated for
jπ = 17/2±.
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Figure 4.14: Top: The E1 GSF of 44Sc in the GCLSTsdpfsdgix5pn interaction
with 3~ω truncation for 60, 100, and 200 levels per jπ. Total angular
momenta ji = 0, 1, ..., 8 are used for both parities. Bottom: The nuclear
level density for the same calculations. Both figures depict the consequences
of changing the number of levels per jπ for the NLD and GSF.
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4.3 Partial level density versus total level density

In earlier work, K. Sieja [29] compared shell model calculations with
experimental Oslo method GSF and NLD data of 44Sc from A. C. Larsen
et al [2]. Sieja’s data seems to coincide well with the experimental data.
However, we have a strong reason to believe that both Sieja’s data and the
experimental data is incorrect. Experiments on 50,51V by A. C. Larsen et al
[3] show that the GSFs of 50,51V (bottom two plots in fig. 4.18) are almost
an order of magnitude lower than that of 44Sc. In addition, we have greater
confidence in the 51V GSF because it is normalised to relatively good neutron
resonance data. According to the Thomas-Reiche-Kuhn (TRK) sum rule [8],

σtotal =
2π2e2~
mc

NZ

A
≈ 0.06

NZ

A
MeV · b, (4.3)

the integrated dipole cross section of the three isotopes are

σtotal(
44Sc) = 0.66MeV · b,

σtotal(
50V) = 0.75MeV · b, (4.4)

σtotal(
51V) = 0.76MeV · b.

From the values in eq. (4.4) it seems implausible that the GSF of 44Sc
should be almost an order of magnitude larger than the GSFs of 50,51V.
The experimental GSF of 44Sc in [2] was extracted using the Oslo method
[41]. The Oslo method is dependent on normalisation factors external to the
method itself to scale the GSF correctly. To scale the 44Sc GSF they used
data of two resonances from the reaction 45Sc(n, γ) and the observation of 13
E1 and 9M1 transitions at average energy 7.0 and 7.2 MeV respectively. The
GSF at these two energies were calculated from the average of the 13 E1 and
9M1 transitions, and was used as a normalisation factor for the Oslo method
GSF. An apparent problem with this normalisation procedure is that very
few transitions were used to calculate the normalisation factor, which means
that large or small transition probabilities could easily be over or under
represented. We have seen in fig. 4.14 that few levels – and subsequently few
transitions – leads to large fluctuations in the GSF. An over representation
of strong transitions in the normalisation factors is a plausible explanation
to why the experimental GSF of 44Sc is so large compared to its neighbours
50,51V. For comparison, in fig. 4.14 I used 3369 and 8515 E1 transitions
in the 200 levels shell model calculations of the GSF at 7.0 and 7.2 MeV
respectively.

By using the total level density,

ρtotal(Ei) =
∑
ji,πi

ρ(Ei, ji, πi), (4.5)

we introduce an artificial scaling which depends on how many ji, πi
combinations, and consequently how many levels, were included in the
calculations. By including more or fewer levels, the total level density will
increase or decrease and thus in turn increase or decrease the GSF. This
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Figure 4.15: The GSF of 44Sc with the GCLSTsdpfsdgix5pn interaction and a
3~ω truncation with 200 levels per ji for both parities. The black lines show
the GSF calculated with the partial level density, while the grey lines show
the GSF using the total level density. Solid lines indicate that ji = 0, 1, ..., 8
have been used in the calculations, while dashed lines indicate that only
ji = 0, 1, 2 have been used.

artificial scaling is not of any physical meaning, and we must use the partial
level density to get the correct answer. Figure 4.15 shows the effect of
the artificial scaling. Not only do we see that using the total level density
(grey) gives an overall scaling as compared to using the partial level density
(black), we also see that by including fewer (dashed) or more (solid) levels
in the calculation, the partial level density GSF has little to no change while
the total level density GSF shows a noticeable scaling. I have aimed at
reproducing the shell model calculations from the work of K. Sieja [29] with
as similar input parameters as possible. Sieja used the coupled scheme code
NATHAN [42] and calculated 44Sc in the sd, pf, sdg model space with a gs
quenching factor of 0.75 and a truncation of 1~ω. Sieja calculated up to 60
levels of each parity in the angular momentum range j = 0, 1, ..., 12, and
included only levels below 10 MeV due to the neutron separation energy of
44Sc being 9.7 MeV. This amounts to a total of 1078 levels for both parities.

The interaction used by Sieja is not available for KSHELL, so I have
chosen to use the GCLSTsdpfsdgix5pn interaction since it also uses the
sd, pf, sdg model space. I have applied a quenching factor of 0.754, used 1~ω
truncation, and calculated 60 levels for each parity in the angular momentum
range j = 0, 1, ..., 12, except for jπ = 9+, 10+, 11+, 12+ which have 51, 21,

40.75 is also the recommended quenching factor for GCLSTsdpfsdgix5pn, see table A.1
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7, and 1 level respectively. The reason for the reduced amount of levels is
because the GCLSTsdpfsdgix5pn interaction with a 1~ω truncation supports
a maximum of 51, 21, 7, and 1 level for the mentioned angular momentum-
parity pairs. After slicing away initial excitation energies above 10 MeV and
below 5 MeV, 949 levels remained for the NLD calculation, while 43446 and
62211 transitions remained for the E1 andM1 GSF calculation, respectively.

The results of the GSF calculations with parameters matching K. Sieja’s
work are displayed in fig. 4.16. The top figure shows experimental data
in black dots compared with shell model calculations using the total level
density in the GSF calculation, while the bottom figure shows the same
comparison but with the partial level density. The partial level density is the
correct choice, as we see from the definition of the GSF in eq. (2.43). It seems
that the reason why the shell model calculations matches the incorrectly
normalised experimental data is because the total level density gives an
artificial scaling based on how many levels are included in the shell model
calculation. The scaling so happens to match the experimental data well.
I have demonstrated this effect in fig. 4.15, where we see that including
more levels gives an increase in the entire GSF. Note that Sieja’s shell
model calculations matches the experimental data even better than what
I have achieved here, as can be seen in fig. 6 in her paper. The differences
between my reproduction and Sieja’s calculations are probably due to us
using different codes and different interactions.

In the bottom figure of fig. 4.16 I have used the partial level density.
The E1 + M1 shell model GSF is shown in grey and is approximately
an order of magnitude below the experimental data. A preliminary re-
normalisation of the experimental data is included as grey dots. The re-
normalised data matches the partial level density SM GSF very well, which
is in good agreement with my earlier suspicion that the original experimental
data is incorrectly normalised to about a factor of 10.
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Figure 4.16: The GSF for 44Sc in the GCLSTsdpfsdgix5pn interaction with
1~ω truncation. The input parameters are chosen specifically to match the
44Sc calculations from K. Sieja [29]. The experimental data in black dots
are from A. C. Larsen et al [2], while the (preliminary) experimental data in
grey dots are re-normalised data from the same experiment. Top: The total
level density is used for the shell model calculations. Bottom: The partial
level density is used.
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Figure 4.17: The GSF for 44Sc in the GCLSTsdpfsdgix5pn interaction with a
3~ω truncation and 200 levels for each angular momentum ji = 0, 1, ..., 8 for
both parities. The experimental data in black dots are from A. C. Larsen et al
[2], while the (preliminary) experimental data in grey dots are re-normalised
data from the same experiment.

4.4 44Sc

In fig. 4.17 we see the GSF of 44Sc calculated with a 3~ω truncation and
200 levels for each angular momentum ji = 0, 1, ..., 8 for both parities. Less
truncation and more levels have been used here than in the 44Sc analysis in
section 4.3, making the calculations considerably larger. Comparing fig. 4.17
and fig. 4.16, we see that there is a noticeable difference in the E1 GSF at
approximately Eγ > 6 MeV. In the larger calculation, the E1 GSF steadily
increases across the entire gamma energy range and it seems to surpass the
M1 GSF at approximately 8 MeV, while for the smaller calculation, the E1
GSF decreases from Eγ = 6 MeV and above.

Recall the different truncations of the two calculations which are 1~ω
and 3~ω for the smallest and the largest calculation respectively. Recall also
that the E1 GSF is caused by transitions where πi 6= πf . Parity changing
transitions are caused by ~ω excitations (also called major shell excitations),
and increasing the number of nucleons which are allowed to be excited across
a major shell from 1 to 3 thus has an impact on the E1 GSF. This is exactly
what we see in the two figures. The larger calculation allows for 79227
E1 and 199890 M1 transitions, compared to the smaller calculation with
43446 E1 and 62221 M1 transitions. Note that many levels (and hence
transitions) are excluded from the GSF calculations because levels in the
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discrete region and levels above the neutron separation energy are removed.
The aforementioned numbers of transitions are however the actual number
of transitions included in the calculations, and we see that the significant
increase in the number of E1 transitions has a large impact on the calculated
E1 GSF. Curiously, the M1 GSF is not largely impacted except for a slight
decrease in its fluctuations for the larger calculation; the overall shape and
amplitude is unchanged despite there being over three times as many M1
transitions in the larger calculation.

The LEE of 44Sc is unaffected by the increase in transitions since the only
noticeable change happens at gamma energies much greater than the LEE.
However, the larger calculations are still valuable to our understanding of
the LEE because we see that the E1 GSF is affected by the increased number
of transitions but the LEE is not a part of the affected area. This is a good
indication that it is indeed only the M1 transitions which cause the LEE.

4.5 50,51V

It is important to choose an interaction which is suitable to the problem at
hand. The nucleus 50V has 3 protons and 7 neutrons filling the 1f7/2 orbitals.
We see from fig. 2.7 that the GXPF1A interaction might be a suitable choice,
locking all the orbitals below 1f7/2 in a 40Ca core. The SDPF-MU interaction
is also a suitable choice with its much larger sdpf model space with an 16O
core.

We see in table 4.1 that both interactions have a very manageable m = 0
scheme dimension of 7.02 × 106 for the positive parity levels, which is well
within the capability of a supercomputer like Betzy. SDPF-MU has to be
heavily truncated to be manageable, and I have given it a 1~ω truncation
which means that only a single nucleon is allowed to be excited across the
major shell gap. Due to the parity of the pf orbitals, a single nucleon excited
from sd to pf will only contribute to the negative parity levels and hence
GXPF1A and SDPF-MU has the exact same positive parity dimensionality. If
I were to perform a 2~ω truncation instead, two nucleons would be allowed
to cross the major shell gap and would contribute to the positive parity
levels. The positive parity m = 0 scheme dimensionality would then be
1.26 × 1010 which is at the very limit of what is possible with today’s
supercomputers5. From table 4.1 we see that the number of levels per j
(the j scheme dimension) is in the order of 105 for j = 0, 1, ..., 8 which
means that these interactions are able to supply much more than the few
hundreds of levels which is required to calculate the GSF for transition
energies Eγ < 10 MeV. GXPF1A has a large disadvantage in that it cannot
provide E1 transitions6. SDPF-MU on the other hand spans two major shells
making E1 transitions possible within its model space.

5See for example [43] where 32Mg was calculated in the sdpf model space with an 8~ω
truncation, yielding an m-scheme dimension of ≈ 1011.

6The p and f orbitals are both of negative parity which means that GXPF1A can only
supply either positive or negative parity levels for even and odd nuclei respectively, which
in turn means that no E1 transitions will be possible within GXPF1A.
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m or j m dim j dim
8 1.99× 106 5.87× 105

7 2.69× 106 7.04× 105

6 3.49× 106 7.95× 105

5 4.33× 106 8.42× 105

4 5.16× 106 8.29× 105

3 5.91× 106 7.47× 105

2 6.50× 106 5.95× 105

1 6.89× 106 3.84× 105

0 7.02× 106 1.33× 105

Table 4.1: The few lowest m and j scheme dimensions of 50V in the GXPF1A
and SDPF-MU interactions. Note that this is the positive dimensionality of
SDPF-MU and that it has a 1~ω truncation. GXPF1A is not truncated.

Let us now see how GXPF1A fares against SDPF-MU. In the top left
plot of fig. 4.18 we see the M1 GSF of 50V with both interactions. Both
interactions are used to calculate 200 levels for each jπ = 0+, 1+, ..., 8+.
GXPF1A has no truncation while SDPF-MU has a truncation of 1~ω. The
GSF of both interactions clearly follow the same trend; there is a downward
slope at Eγ = [0, 3] MeV, a minimum spanning Eγ = [3, 7] MeV, and an
increase beyond 7 MeV. While both interactions perform similarly to each
other, they follow the trend of the experimental data only for the low and
high energy regimes. The experimental data reaches a minimum at Eγ ≈ 4
MeV and quickly starts to increase, while the shell model calculations of both
interactions stay low for several MeVs before they display an increase.

The same analysis for 51V is displayed in the top right plot. Both
interactions follow each other closely, starting with a downward slope, a
minimum spanning the middle energy range, a small dip just before 8 MeV,
and ending with an increase in the high energy range. The M1 GSF seems
to follow the trend of the experimental data a bit better for 51V than for
50V, though the distance between the experimental and shell model GSF
is greater for 51V. In particular, the small dip in the experimental data at
just under 8 MeV does register in the shell model GSF for both interactions.
With only the experimental data to judge I would be very careful to attribute
this small dip any physical meaning of the GSF, but rather to a statistical
variation in the data. However, since we see the dip clearly in the shell model
calculations as well, the small dip might actually have physical significance.

Note that each row of plots in fig. 4.18 share y axis for easy comparison.
The experimental GSFs of 50V and 51V, though somewhat differing in shape,
are of very similar magnitude. Note also that the shell model GSFs are
strikingly similar, save for the small drop just below 8 MeV for 51V.

In the middle plots of fig. 4.18 we see the relative difference in the
GSF between the two interactions for both 50V and 51V. The difference
is relatively stable for both isotopes, hovering around 10% for most of the
energy range. It is of no surprise that GXPF1A and SDPF-MU when matched
to the same positive parity dimensionality performs similarly, since SDPF-MU
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was created by a combination of USD and GXPF1B. GXPF1B is a tuning of
GXPF1A where five two-body matrix elements and the single particle energies
of 2p1/2 are changed. These differences should lead to no notable changes in
the results [38], and we indeed see from fig. 4.18 that the difference between
the two interactions is small for both isotopes.
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Figure 4.18: Top: The M1 GSF calculated with GXPF1A and SDPF-MU.
GXPF1A is not truncated. Middle: The absolute difference between the M1
GSFs of GXPF1A and SDPF-MU normalised to the SDPF-MU GSF. Bottom:
The dipole GSF calculated with the SDPF-MU interaction truncated to 1~ω,
for both 50V and 51V. Note that each row of plots share y axis for easy
comparison. Calculations for both interactions include 200 levels (of both
parities for SDPF-MU) for angular momenta j = 0, 1, ..., 8. Experimental
data from A. C. Larsen et al. [3].
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Let us now consider the total dipole GSF for 50V which is shown in the
lower left plot in fig. 4.18. The E1 GSF is included (blue) to create the total
dipole GSF (grey). The inclusion of E1 transitions has a negligible impact
on the total GSF at approximately Eγ = [0, 2] MeV, where we see that the
E1 GSF is more than two orders of magnitude lower than its M1 partner.
The E1 GSF rises exponentially across the entire gamma energy range and
for Eγ > 2 MeV its contribution to the total GSF is noticeable. At Eγ > 6.5
MeV the E1 GSF starts to dominate the M1 GSF and keeps doing so for
the rest of the energy range. This domination might be changing at the end
of the energy range, but we recall that the shell model GSF at the highest
energies is prone to large fluctuations due to a lack of levels, as discussed in
section 4.2. We must therefore be careful when interpreting the GSF at the
highest energies. It is of particular interest that the E1 transitions have a
negligible contribution to the low energy enhancement which consequently
is only caused by the M1 transitions.

The inclusion of E1 transitions helps bridging the gap to the experimental
data. We see that Eγ ≈ 4 MeV is a turning point in the experimental GSF
which the shell model M1 GSF is not able to reproduce. While still not
perfect, the E1 GSF does contribute to the total GSF to reproduce this
behaviour. The inclusion of E1 does however make the total shell model
GSF overshoot the experimental values beyond Eγ = 6.2 MeV, but note
that the data normalisation of the experimental data in the Oslo method
has a large uncertainty.

The total dipole GSF of 51V is displayed in the lower right plot of fig. 4.18.
The E1 GSF starts at a bit less than two orders of magnitude below the M1
and like for 50V has a negligible impact on the total GSF at approximately
Eγ = [0, 2] MeV. The E1 GSF seems to grow "doubly exponential"
(exponential growth in a log plot) and has a noticeable contribution to the
total beyond 2 MeV. From 6 MeV and above, E1 grows larger than M1 and
stays so for the rest of the energy range. As for 50V, we see here that E1
might start to dip belowM1 at energies beyond 10 MeV, but again, the shell
model GSF at the highest energies must be taken with a grain of salt. The
E1 transitions help reproduce the experimental data but do overshoot at the
highest energies. Also for 51V we see that the low energy enhancement is
almost entirely caused by the M1 transitions.

Note that the E1 GSF of 51V starts at a factor of 5 to 6 higher than
the E1 GSF of 50V. This discrepancy might not be of a physical nature, but
rather because of too few E1 values in the 50V calculations as mentioned in
section 4.1. I am currently running new 50V calculations to investigate this
issue.

4.6 64Zn

In fig. 4.19 we see the GSF of 64Zn in the gs8 interaction with a 1~ω
truncation, which is one of the heaviest nuclei to ever be calculated with the
shell model. 200 levels have been used for both parities for each j = 0, 1, ..., 8.
The total dipole GSF (grey) starts with a low energy enhancement in the
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interval Eγ = [0, 2] MeV. From 2 MeV there is a slight rise in the GSF
up to 4.5 MeV where there is a sharp increase which gradually flattens out
up to 10 MeV. The low energy enhancement is dominated by the M1 GSF
(red) with a negligible contribution by its E1 partner (blue). At 4.5 MeV,
where the total dipole GSF starts to rapidly increase, we see that the E1
contribution starts to dominate M1. E1 stays higher than M1 for the rest
of the energy range, except for a few points at the highest energies, though
this is likely caused by too few transitions to smooth out the GSF in the
high energy range and not actually that E1 dips below M1. This behaviour
is discussed in section 4.2. However, we do see that the slope of the E1 GSF
decreases and almost flattens out at 10 MeV, while M1 is increasing in the
same interval. If these trends continue, E1 and M1 will intersect above 10
MeV.

Figure 4.19: The GSF of 64Zn calculated with the gs8 interaction with 1~ω
truncation and a minimum occupation of 14 nucleons in the 1f7/2 orbitals
(protons and neutrons combined). 200 levels for both parities for each
j = 0, 1, ..., 8 have been used.

73



Chapter 5

Conclusions and outlook

5.1 Conclusions and outlook

In this thesis, large-scale shell model calculations were performed to calculate
the gamma strength function (GSF) of 44Sc, 50,51V, and 64Zn. Because of
the supercomputer Betzy, and because of the highly parallelisable nuclear
shell model solver KSHELL, these nuclei have been calculated with larger
model spaces and larger numbers of energy levels and transitions probabilities
than ever before. The large number of transition probabilities is several
hundred thousands for each of the nuclei and it has opened the possibility for
statistical analyses of the calculations. The shell model calculations of this
work have proven to be a valuable supplement to existing experimental GSF
data for 44Sc, 50,51V, particularly in helping us understand the low energy
enhancement (LEE) which has been seen experimentally in all three nuclei.
In addition, E1 andM1 GSFs for 64Zn are calculated for the fist time within
the shell model framework. These are to be compared to experimental data
from the Oslo Cyclotron Laboratory which are currently being analysed. In
all cases, the shell model calculations of this work show that the LEE is is
due to M1 transitions, not E1 transitions, which confirms K. Sieja’s results
[29].

The large number of (reduced) transition probabilities (B values) from
the shell model calculations of this work has made it possible to study
the applicability of the generalised Brink-Axel hypothesis (gBA). There
have been enough B values to calculate GSFs and B value distributions
for individual angular momenta (ji) and excitation energy (Ei) selections.
From these calculations we have seen that the individual ji GSFs generally
show relatively small fluctuations for all nuclei, except at the highest gamma
energies. The small fluctuations support the GSF’s independence on angular
momentum, since we can clearly see that all the individual ji GSFs closely
follow the same trend. The cause of the large fluctuations at high gamma
energies can be traced to where the calculated nuclear level density (NLD)
stops rising exponentially and starts to decrease; this consequently leads to a
decrease in the number of high gamma energy transition probabilities which
are needed for the averaging in the GSF calculations, thus making the GSF
fluctuate more and more as the number of B values decrease. However,
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these large fluctuations do not necessarily disprove the validity of the gBA
hypothesis, because large fluctuations might be statistically expected with a
low number of B values.

Most of the B distributions clearly resemble the Porter-Thomas
distribution, particularly from the selections of Ei values. However, there
are some curious deviations from the Porter-Thomas distribution most
prominent in the ji selections and clearest for the B(E1) values. When
looking at the relative difference between the B distributions and the Porter-
Thomas distribution, there are distinct banana shapes visible for the B(E1)
values for most of the isotopes. It looks like a systematic error which might
originate from the data analysis and / or the KSHELL software, or it might
be of physical nature. Since the banana shapes are most prominent in the
B(E1) values, there is reason to believe that the choice of ~ω truncation
might be a key factor, since ~ω excitations produce the E1 transitions.
Comparing calculations of different ~ω truncations might reveal the origin
of the banana shapes, however, changing the ~ω truncation generally has
a huge impact on the dimensionality of the calculations and might demand
more computer resources than what is available today, or be too low to
yield good results. Changing the truncation of the vanadium calculations
from 1~ω to 2~ω produces an m scheme dimensionality of over 1010 which
might be impossible with the current computational power. Particle-hole
truncations must be applied to make 2~ω calculations feasible. Another
option is to perform 2~ω calculations on 44Sc which I know is possible since
the calculations of this work uses 3~ω for the 44Sc calculations. Yet another
option is to perform shell model calculations of an intermediate nucleus, for
example 48Ti, and look at different ~ω truncations. An intermediate nucleus
might be in a sweet spot with a good m scheme dimension for several choices
of ~ω truncation.

As for the other B distributions, the ones from the Ei selections show
very good matches to the Porter-Thomas distribution. This substantiates
the claim that the fluctuations in the GSFs are so-called Porter-Thomas
fluctuations i.e. fluctuations statistically expected from Porter-Thomas
distributed values. If this is so, then the gBA is indeed applicable to the
shell model calculations of this work.

The GSFs of this work have been compared to experimental Oslo method
GSFs for the nuclei 44Sc, 50,51V. Extra attention was given to 44Sc because
of a suspected error in the normalisation of the Oslo method data which
made the experimental GSF of 44Sc much larger than the experimental GSFs
of 50,51V. The calculations of this work gave a 44Sc GSF of 5 to 10 times
lower amplitude than the experimental GSF, supporting the suspicion that
the experimental GSF was incorrectly normalised. In addition, shell model
calculations performed by K. Sieja show a good fit to the experimental GSF
of 44Sc [29]; by replicating Sieja’s shell model parameters, this work showed
it is likely that Sieja used the total NLD instead of the partial NLD in her
GSF calculations which gives an artificial scaling of the GSF.

The calculated GSFs of 50,51V show good fits to experimental data. In
particular, the calculations reproduced the LEE which was seen in both
nuclei experimentally [3], and the calculations show without a doubt that
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the LEE is caused by M1 transitions. The E or M nature of the LEE has
no clear experimental conclusion, though an experiment by Jones et. al. has
a small bias towards M1 transitions [27]. Uncovering the origin of the LEE
is of relevance to astrophysical applications, since the LEE tells us that some
nuclei have an enhanced probability of decaying by low energy gamma rays
which indeed might affect astrophysical reaction rates. To our knowledge,
the shell model calculations of this work are to date the largest calculations
ever performed on 50,51V.

This work has shown that choosing a large number of levels per jπii in
the shell model calculations is important for the resulting GSF, particularly
at the highest gamma energies. A correspondence between fluctuations in
the GSF and where the accompanying NLD stops rising exponentially and
starts to decrease is clearly seen. It might be a good idea to non-evenly
distribute the number of levels calculated across angular momenta instead
of calculating 200 levels per jπii to get rid of the "wasted" levels.

If there is one certain conclusion from this work, it is the fact that further
investigation is needed to make a thorough statistical analysis of the GSF.
A more thorough statistical analysis will be of great help in the study of the
gBA hypothesis, something which is of great interest to anyone who uses the
GSF, and in particular to those who use the Oslo method. I have added
some additional thoughts and proposal for future work on gBA testing in
appendix C.
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Appendix A

Additional tables and figures
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Interaction Range Model space Core gs,p, gs,n gs quench
USDA [17O, 39Ca] sd 16O (5.585, -3.826) 1 [44]

GXPF1A [41Ca, 79Zr] pf 40Ca (5.027, -3.443) 0.9 [37]
JUN45 [57Ni, 99Sn] 2p3/2, 1f5/2, 2p1/2, 1g9/2

56Ni (3.909, -2.678) 0.7 [45]
SDPF-MU [17O, 79Zr] sd, pf 16O (5.027, -3.443) 0.9 [38]

gs8 [17O, 139Yb] sd, pf, sdg 16O (4.189, -2.869) 0.75 [36]
GCLSTsdpfsdgix5pn [17O, 139Yb] sd, pf, sdg 16O (4.189, -2.869) 0.75

Table A.1: The interactions used in this work. The range column denotes
the smallest and largest possible nucleus which the model space can support.
Note that the interaction may not be suited for a nucleus even though the
nucleus is within the range. gs,p, gs,n are the recommended spin g factors
for protons and neutrons respectively. gs quench is the factor multiplied by
gs,free = (5.585,−3.826) to get the recommended values.

Figure A.1: Same as fig. 4.14 but without logarithmic y axis to better
highlight the asymptotic behaviour of the GSF when more levels are included
in the shell model calculation.
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Appendix B

How kshell-utilities scales B
distributions to the
Porter-Thomas distribution

Let b0 be the value of the first non-normalised bin in a B distribution, and
let p0 be the value of the Porter-Thomas distribution at the same bin value.
I want to scale b0 so that it is equal to p0, namely that

b0x = p0, (B.1)

where x is the scaling factor. I then want to scale all the B distribution values
with the same scaling factor x. However, due to statistical fluctuations, I
expect that the B distribution values do not perfectly match the Porter-
Thomas distribution, and if that is indeed true then using just a single value
b0 from the B distribution might scale the distribution incorrectly. By trial
and error I found that using an average scaling factor

x =
1

20

20∑
i=1

pi
bi

(B.2)

produces a usable scaling factor across all KSHELL calculations in this work.
Note that i starts at 1 and that the 0th value is excluded. This is because the
Porter-Thomas distribution goes to infinity as B/〈B〉 → 0+ resulting in an
unpredictable scaling factor for the first bin value. I chose 20 values because
all KSHELL calculations in this work yield B distributions with non-zero val-
ues for at least the 21 first bins. This ad hoc way of scaling the distributions
might result in systematic errors, and it might be fruitful to rethink how this
scaling is performed. Maybe draw N random values from the distribution
which is then used in the average scaling factor x? Further study is needed
to draw any conclusions. The specific line of code where the scaling hap-
pens can be found here: https://github.com/GaffaSnobb/kshell-utilities/blob/
2c4b9de7974e21fbc2975ff116ce5ebbe1fad57a/kshell_utilities/general_utilities.py#
L1105.
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Appendix C

Additional thoughts on testing
the gBA hypothesis

When expressing the GSF solely as a function of gamma energy, we assume
that

f(Eγ) ≈ f(Eγ , Ei, ji, πi) (C.1)

which is to say that the GSF is approximately independent on our choice
of initial excitation energy, total angular momentum, and parity. This
assumption is called the generalised Brink-Axel hypothesis (gBA) and does
not hold for all nuclei under all circumstances (see section 2.4.3 for details).
I propose an extension to this thesis where the goal is to create a tool in the
kshell-utilities Python package which checks the validity of the gBA
for any data generated by KSHELL. I have started the work already, but
the task proved to demand more time than what I have for my masters
thesis which is why I present the unfinished work here in the appendix, with
suggestions on how to continue the work:

The decay widths in eq. (2.43) give information about the lifetime of the
excited levels and consequently information about the probability that the
excited levels will decay, through the relation

Γ ∝ B. (C.2)

Due to the statistical nature of lifetimes and decay we are motivated to study
the distribution of the decay widths, from which we might get important
insight to the characteristics of the decays. In their 1956 paper, Porter
and Thomas found strong evidence that certain neutron reduced widths
normalised to their average follow a χ2 distribution of one degree of freedom
[19]. We see from the relation in eq. (C.2) that B will follow the same
distribution as Γ since the proportionality factor will be divided to 1 in the
normalisation. Thus, if Porter and Thomas’ theory is true, then

y =
B(Xjγ)

〈B(Xjγ)〉
∼ χ2

1. (C.3)

The χ2 distribution with ν degrees of freedom (denoted χ2
ν) is the distribution

of a sum of the squares of ν independent standard normal random variables
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Z1, ..., Zν , namely

Q =

ν∑
i=1

Z2
i , (C.4)

Q ∼ χ2
ν .

The χ2 distribution with one degree of freedom is also called the Porter-
Thomas distribution. For eq. (C.3) to be true, √y must be a standard normal
random variable and all values √y must be independent of each other, which
is to say that all values B must be independent of each other. The former
might be hard to show if we start with B values since all negative signs
are lost in the squaring, but I have included an attempt at recreating the
standard normal distribution of √y from B values in appendix D.

I have already implemented checks of the distribution of B values
in kshell-utilities – a result of this check for 44Sc is seen in
fig. C.1 – which can easily be generated for any KSHELL data set by
res.porter_thomas_Ei_plot() (see section 3.2 for details). The top plot
shows the distribution of calculated B values at certain initial excitation
energies (within a bin), while the middle plot shows the distribution of
calculated B values within the indicated initial excitation energy intervals.
In both plots the χ2

1 distribution is shown in green and we see that all the
calculated distributions follow the theoretical χ2

1 distribution very well. In
the bottom plot of fig. C.1 we see relative differences from the distributions
in the middle plot to the theoretical χ2

1 distribution.
If we assume that eq. (C.3) is true, then we can also assume that √y

is standard normal distributed. This consequently means that if we add n
values of y together, the sum will have a χ2 distribution of ν = n,

Y =

n∑
i=1

yi, (C.5)

Y ∼ χ2
n.

I believe that the next step is to explore the fact that the GSF, from its
definition in eq. (2.43), is a sum of B values, values whose square roots
are standard normal distributed. From this I might be able to derive the
underlying distribution of the GSF.

Lets for simplicity assume that calculating the GSF for some choice
of Eγ , Ei, ji, πi involves only one B value. Will then the distribution of
f(Eγ) follow the χ2

1 distribution? We might have messed up the required
randomness if we choose initial energy, angular momentum and parity first.
We do however know that calculating f(Eγ) involves more than a single B
value since the GSF is evaluated in an initial excitation energy bin. This fact
leads to yet another problem which is that a given bin size of ∆E certainly
does not contain the same number of B values when evaluated at different
excitation energies. From the definition of the χ2 distribution we have that ν
degrees of freedom means that ν squared standard normal random variables
are added together. Is it possible to make any meaningful statistical analysis
if ν varies slightly? What if ν varies wildly? One solution might be to select
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only m B values where m is the number of B values in the initial excitation
energy bin with fewest B values.

The point of the aforementioned statistical analysis is to assess whether
the gBA holds or not. Several papers have already used Porter-Thomas
to evaluate the validity of the gBA hypothesis, see for example [46, 47,
48], but it is not entirely clear to me why their calculations are valid and
what approach they used to get their results. One equation used in the
aforementioned papers – which has cost me many late evenings of thinking
and pondering – is

r =
√

2/ν, (C.6)

which is a measurement of fluctuations of the χ2
ν distribution. This

expression is presented in Porter and Thomas’ 1956 paper eq. (13b) [19]
and was in fact derived by Subrahmanyan Chandrasekhar, see appendix IV
in [49]. I have yet to figure out exactly how eq. (C.6) is applicable to the
GSF and the aforementioned sources have not been able to convince me.

And now to the use case of the Porter-Thomas analysis which brings us
to Brink and Axel. By averaging the GSF over initial energies, total angular
momenta, and parities, we can look at the GSF as a function of only Eγ
which makes the GSF much easier to visualise and to interpret. But is it
correct to perform these averages? By doing so, we are effectively stating
that

f(Eγ) ≈ f(Eγ , Ei, ji, πi), (C.7)

which is to say that the GSF calculated at some choice of Ei, ji, πi should be
approximately equal to the GSF calculated at some other choice of Ei, ji, πi.
This is exactly what the generalised Brink-Axel hypothesis states. See
section 2.4.3 for references and examples.

The gBA hypothesis is not applicable to all nuclei under all circum-
stances. All calculations should therefore be tested before the assumptions
of gBA are made. There are several ways to approach the problem of testing
the gBA hypothesis, with the general idea of calculating the GSF for differ-
ent values of Ei, ji, πi, for then to see how much they differ from each other.
One approach is to average over Ei and πi and calculate one GSF for each
different angular momentum

f(Eγ , ji) =
1

NEiNπi

∑
Ei,πi

f(Eγ , Ei, ji, πi). (C.8)

This is the approach I use for the calculations in this work. We then need a
good way of comparing the different GSFs and we need a way to decide what
is considered an acceptable amount of difference between them. In fig. 4.1
we see in grey eq. (C.8) for j = 0, 1, ..., 8. In black we see the GSF as only a
function of Eγ which is the average over all the grey graphs. There is little
doubt that the GSF for each individual ji all hover around their average,
but I want to do better than by-eye measurements. What is considered
an acceptable amount of difference between the GSFs for different ji? If I
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figure out the underlying distribution of the GSF, then I can extract the
statistically expected fluctuations and decide whether the grey graphs in
fig. 4.1 fluctuate as expected or not. If they are expected, great! If not,
something else is causing differences in the GSFs which consequently means
that the gBA hypothesis is not applicable.

To make a thorough testing of the gBA hypothesis, I should also compare
GSFs of different Ei and πi, not just ji. I have started the work of making
the Ei analysis corresponding to the ji analysis in figures 4.1 and 4.2, but it
is not yet complete. So far I have fig. C.1 where we see distributions from
different selections of initial excitation energy values for 44Sc. Note that
this figure is purposefully made to be as equal as possible to fig. 3.3 in J.
Midtbø’s PhD thesis [12]. In the top plot the selections are from specific
Ei values, or more precisely, from bins around specific Ei values because the
number of B values at an exact Ei is usually zero which will yield very boring
distributions. The distribution for all Ei values seems to closely follow the
χ2
1 distribution (in green), though Ei = 9.7 ± 0.1 MeV seems to match χ2

1

best of the three. The number of B values included in the distributions of
Ei = 5, 7.35, 9.7 MeV are 674, 7766 and 44072 respectively which is a likely
explanation for why the Ei = 9.7 MeV distribution most closely follows
the χ2

1 distribution. The number of B values is expected to increase with
increasing Ei since level density increases with increasing Ei. More levels
means more possible transitions and consequently more B values. In the
middle plot of fig. C.1 the selections are from ranges of Ei values, with the
accompanying bottom plot which shows the relative difference between the
distributions and the theoretical χ2

1 distribution. The number of B values
included in the distributions are 7026, 30838 and 110557 from the lowest to
highest energy interval respectively. Here we also see that the distributions
closely follows the χ2

1 distribution and that a larger number of B values
yields a closer match. The Ei analysis tells a story almost identical to the ji
analysis.

Given that I figure out an expression for the expected fluctuation in
the GSF, I can easily implement the expression in the kshell-utilities
package making it very simple for anyone who uses KSHELL to test their
calculations. For all subsequent uses of KSHELL one will only need to
execute a few lines of code to check the validity of the gBA hypothesis,
and I believe this can be a very useful tool.
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Figure C.1: The distribution of calculated B(M1) values of 44Sc in the
GCLSTsdpfsdgix5pn interaction, both parities are included. The top plot
shows the distribution of a selection of B values for specific initial excitation
energies (within a bin), normalised to match the χ2

1 distribution. The middle
plot shows the distribution of a selection of B values for the indicated initial
excitation ranges, also normalised to match the χ2

1 distribution. The bottom
plot shows the deviation of distributions from the middle plot from the χ2

1

distribution. The procedure and visualisation is reverse engineered from fig.
3.3 in [12].
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Appendix D

From χ21 to N (0, 1)

In 1956, following the work of Hughes and Harvey [50], Porter and Thomas
found strong evidence that the neutron reduced widths (and hence the
reduced transition probabilities, see section 2.4.2 for details) of 20 different
nuclides [51] normalised to their average, follow a χ2 distribution of one
degree of freedom [19]. Since the χ2 distribution of ν degrees of freedom
is the distribution of ν independent standard normal random variables, and
ν = 1 in this case, one could be tempted to check that

y =
B(Xjγ)

〈B(Xjγ)〉
(D.1)

√
y ∼ N (0, 1)

is indeed true. The keen-eyed of you may have noticed a problem with the
square root, that all negative signs are lost when squaring √y. Just for
the sake of having a bit of fun, one could draw half of the values in y at
random and flip their signs at an attempt to replicate the standard normal
distribution.

In the code below I use kshell-utilities[40] to read the B(M1) values
of 44Sc from a summary file generated by KSHELL[1]. I divide them by their
mean and take the square root. I then draw half of the values at random
and change their sign. And would you know, I get a standard deviation and
mean value of

σ = 0.9999986963963795, (D.2)
µ = −0.001614684347519719,

which are pretty close to 1 and 0, and a histogram of the values in fig. D.1
which looks very normal!

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import kshell_utilities as ksutil
4 np.random.seed (1337)
5

6 res = ksutil.loadtxt(
7 path = "Sc44/sdpf -sdg /200 _levels /3hw/

summary_Sc44_GCLSTsdpfsdgix5pn.txt",

85



Figure D.1: A histogram of the root of the reduced transition probabilities
normalised to their mean value, eq. (D.1), with half of the values drawn
at random have had their sign flipped. B(M1) values of 44Sc in the
GCLSTsdpfsdgix5pn interaction with a 1~ω truncation and 200 levels for
both parities of each j = 0, 1, ..., 8.

8 )[0]
9

10 BM1 = res.transitions_BM1 [:, 9]
11 y = BM1/np.mean(BM1)
12 y_root = np.sqrt(y)
13

14 n_transitions = len(BM1)
15 random_indices = np.random.choice(
16 a = n_transitions ,
17 size = int(n_transitions /2),
18 replace = False ,
19 )
20 y_root[random_indices] = -1*y_root[random_indices]
21

22 print(f"{np.std(y_root) = }")
23 print(f"{np.mean(y_root) = }")
24

25 plt.hist(y_root , bins =200, color =" black")
26 plt.xlabel(r"$\sqrt{y}$")
27 plt.xlim([-10, 10])
28 plt.show()
29
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