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ABSTRACT 
Mobile ad-hoc networks (MANETs) provide the 
technical platform for efficient information shar-
ing in emergency and rescue operations. Some 
the data present on the scene is highly confiden-
tial and requires protection. However, one of the 
main threats to a network is insertion of false data 
or alteration of existing ones, which could easily 
lead to network disruption and, ultimately, cause 
loss of human lives. This paper presents a simple 
and efficient key management protocol, called 
SKiMPy. The protocol allows devices carried by 
the rescue personnel to establish a symmetric 
shared key, to be used primarily to perform mes-
sage signatures. The protocol is designed and 
optimized having in mind the high dynamicity 
present in such a scenario. Two different imple-
mentations were made, first as a standalone ap-
plication and later as a plugin for the Optimized 
Link State Routing Protocol (OLSR). We present 
the evaluation results for both implementations 
and, in addition, for the latter one we describe in 
detail the emulation platform developed to test 
and evaluate this and other MANET protocols. 

1. INTRODUCTION 

Efficient collaboration between rescue personnel 
from various organizations is a mission critical 
key element for a successful operation in emer-
gency and rescue situations. There are two cen-

tral requirements for efficient collaboration, the 
incentive to collaborate, which is naturally given 
for rescue personnel, and the ability to efficiently 
communicate and share information. Mobile ad-
hoc networks (MANETs) could provide the tech-
nical platform for efficient information sharing in 
such scenarios, assuming that all rescue person-
nel is carrying and using mobile computing de-
vices with wireless network interfaces. 

Wireless communication is by nature more 
susceptible to eavesdropping, compared to the 
other media. In most cases, the data involved 
should not be available to third parties, such as 
malicious persons, like arsonists, or curious jour-
nalists who might make confidential data public. 
Another requirement is to prevent third parties 
from inducing false data. At the application layer 
this might for example lead to wrong manage-
ment decisions. At the network layer it has been 
shown that a very few percent of misbehaving 
nodes could easily lead to network disruption and 
partitioning [12]. In both cases, efficiency of the 
rescue operation will be drastically reduced and 
might ultimately cause loss of human lives.  In 
order to prevent such a disaster, all data traffic 
should be properly signed, allowing only author-
ized nodes the possibility to perform authentica-
tion and integrity checking. Given that the de-
vices carried by the rescue personnel will mostly 
have scarce resources, asymmetric cryptography 
is too costly to be used the whole time. 



 

 2

This paper describes a simple key manage-
ment protocol, called SKiMPy, used to establish 
a symmetric shared key between the rescue per-
sonnel’s devices. This approach provides the 
means to establish a secure network infrastruc-
ture between authorized nodes, while keeping out 
unauthorized ones. In addition, at the application 
layer it may be decided whether the established 
shared key will be used to encrypt data as well.  
SKiMPy is designed and optimized for highly 
dynamic ad-hoc networks and it is completely 
autonomous, requiring no user interaction at all. 
This is also an important factor, having in mind 
that rescue personnel does not have time to think 
or care about details of lower layers of the net-
work infrastructure. 

To facilitate the development and testing of 
the protocol, we developed an emulation test bed 
which we here describe in detail in this paper. 
Using an emulator instead of a simulator, allows 
us to test and evaluate protocols by means of real 
processes, without the need for rewriting code 
when the applications are transferred to genuine 
wireless devices. 

The main contribution of this paper is a key 
management protocol for emergency and rescue 
operations and all other application domains 
where it is possible for the nodes to authenticate 
each other without need for contacting a central-
ized server. Another contribution is a flexible, 
Linux based emulation environment that can 
emulate mobility traces generated for ns-2.  

The organization of the paper is as follows. In 
Section 2 we present related work, followed by a 
detailed description of our protocol in Section 3. 
Section 4 describes the emulation test bed. In 
Sections 5 and 6 we show two different 
implementations of the protocol and results of 
their evaluations. Finally, conclusion and future 
work are presented in Section 7. 

2. RELATED WORK 

Key management protocols can be roughly di-
vided into three categories [5]. 

The first one relies on a fixed infrastructure 
and servers that are always reachable. Since we 
never know where accidents will happen, and we 
should expect them to happen at worse possible 

places, we cannot rely on the fact that fixed infra-
structure will be present. 

The next category comprises contributory key 
agreement protocols, not suited for our scenario 
for several reasons. Such protocols ([1], [3], [7], 
[23], [24], to name a few) are based on Diffie-
Hellman two-party key exchange [8] where all 
the nodes give their contribution to the final 
shared key, causing rekeying every time a new 
node joins or an existing node leaves the group. 
In an emergency and rescue operation, we can 
expect nodes to pop up and disappear all the 
time, often causing network partitioning and 
merging. Therefore, using contributory protocols 
would cause a lot of computational and band-
width costs which cannot be afforded. Besides, 
most of these protocols rely on some kind of hi-
erarchy (chain, binary tree, etc.) and a group 
manager to deploy and maintain shared keys. In a 
highly dynamic scenario this approach would be 
quite ineffective. Another reason why such pro-
tocols are not suited for us, is that in order for the 
nodes to be able to exchange keys, a fully work-
ing routing infrastructure has to be established 
prior to that. Since the routing protocol is one of 
the main things we need to protect, this is a major 
drawback. 

The last category are protocols based on key 
pre-distribution. The main characteristic of such 
protocols is that a group of nodes can compute a 
shared key out of pre-distributed sets of keys pre-
sent on each node. These sets of keys are either 
given by a trusted entity before the nodes come to 
the scene [2], [17], or chosen and managed by the 
nodes themselves, as it is done in DKPS [5]. Al-
though DKPS seems to be closest to SKiMPy in 
some aspects, there is a major difference. DKPS 
relies on the notion of distributed trust, whereas 
we make use of pre-installed certificates to per-
form authentication of nodes, explained in detail 
in the next section. 

3. BASIC SKiMPy ELEMENTS 

Our protocol was primarily designed for emer-
gency and rescue operations, which we have 
studied in-depth in our project. In such scenarios, 
we must expect a very dynamic and unpredict-
able scenario. New nodes frequently appear and 
others disappear causing frequent network parti-
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tioning and merging. Nodes carried by the rescue 
personnel will be relatively small and as such 
scarce on resources, so the computational and 
bandwidth costs of the key management protocol 
must be as low as possible. There is no point of 
establishing a secure network that afterwards 
cannot provide sufficient resources for the appli-
cations to be useful. 

3.1 Authentication 

An important characteristic of an emergency and 
rescue scenario is that the organizations involved 
(police, fire department, paramedics, etc.) are 
often well structured, public entities. Some of 
them might have sensitive data on the scene, like 
medical or police records, that are highly confi-
dential and should remain such. Before the rescue 
personnel of the different organizations comes to 
the rescue scene, all devices are prepared for their 
tasks. One task in the preparation phase, which 
we call a priori phase, is the installation of valid 
certificates. The certificates are signed by a com-
monly trusted authority, such as the ministry of 
internal affairs, ministry of defense, etc., on the 
top of the trust chain. This gives nodes possibility 
to authenticate each other without need for 
contacting a third party. Therefore, there is no 
need for a fully self-organized public-key man-
agement system that does not rely on trusted au-
thorities, as it is presented by Capkun et al. [4]. 
The advantages are twofold: first, the data in the 
network is more secure. This is a central re-
quirement for our application domain, because 
highly sensitive data might be present in the air. 
Second, establishing trust and agreeing on a 
shared key is much more efficient, i.e., faster and 
less resources are consumed, because we prein-
stall certificates on all devices during the a priori 
phase. 

So far, we have kept the question whether the 
certificates on the nodes will identify devices, or 
actually users handling them (who would then 
present the certificate to the device by means of a 
token, i.e. smartcard), open. The decision for this 
question does not impact the key management in 
SKiMPy, but it impacts the way how lost and 
stolen nodes are handled, i.e., revoking certifi-
cates and blacklisting of such nodes. We explain 
this later in Section 3.5. 

Using asymmetric cryptography is expensive 
in many terms. With regards to the bandwidth, 
certificates could become large messages if sev-
eral levels in the certificate chain are present, and 
as such their presence in the air should be re-
duced to a minimum. The authentication process 
using asymmetric cryptography is also computa-
tionally very expensive, which in our case be-
comes a problem with regards to battery power. 
In order to save resources as much as possible, 
our protocol makes the nodes learn about their 
neighborhood before acting, thus reducing the 
number of performed authentications. This is 
possible due to the fact that all nodes directly 
trust the same certificate authority and, therefore, 
if a node has been successfully authenticated be-
fore and has received the shared secret, we im-
plicitly trust it.  

3.2 Choosing Keys 

During the initialization phase, each node gener-
ates a random key with a random ID number. It is 
the task of SKiMPy to make sure that all the 
nodes agree on a shared key. This shared key is 
always selected from nodes’ initial keys. To 
achieve this, we introduce the notions of “better” 
and “worse” keys, together with the relation “>” 
representing “better than”. There are several pos-
sible schemes for deciding which of the keys is 
better or worse and all schemes can be equally 
valid, as long as they cannot cause key exchange 
loops, are unambiguous and possibly transitive: 
(A > B and B > C) => A > C. The necessary con-
trol information, which depends on the scheme 
chosen, is always sent with the message signa-
ture. 

We will briefly describe two examples and 
their advantages and drawbacks. 

The first scheme is quite straightforward, the 
key having a higher or lower ID number, time-
stamp or a similar parameter, is considered to be 
better. The advantage of this scheme is that it is 
unambiguous, transitive and easy to implement. 
In addition, it can be “tweaked” in a way that 
would prevent a single node to cause rekeying of 
an already established network cell. For example, 
if the scheme defines that the lower ID number 
means a better key, the highest bit of the ID 
number can be always set to “1” when the node is 
turned on, and cleared once two nodes merge. 
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Assuming that nodes in a certain area will in 
most cases pop up independently, this simple and 
yet efficient method might prevent a lot of un-
necessary rekeying traffic. If we use the keys’ 
timestamps instead of the ID numbers, choosing 
a lower timestamp could imply that the key is 
older and that more nodes have it already. This 
assumption might not necessarily be true, espe-
cially if the key creator’s clock was heavily out 
of sync, but it is worth considering. One major 
drawback of this scheme is that a small cell (con-
sisting of, for example, 2 nodes) could easily 
cause rekeying of a much bigger cell (having, for 
example, 100 nodes), which would be a waste of 
resources.  

The second scheme takes care of this problem 
by tracking the number of nodes in each network 
cell. The simple rule for this scheme is to always 
rekey the smaller cell, i.e. the one with the lower 
number of nodes, thus minimizing resource con-
sumption for the necessary rekeying. The ap-
proximate number of nodes can be either re-
trieved from the routing protocol state informa-
tion (if, for example, the OLSR routing protocol 
[6] is used) or maintained at a higher protocol 
layer, as it is done in our project. Even though 
this scheme is tempting, there might be a small 
problem which would make it impractical. If not 
all of the nodes have exactly the same informa-
tion (which is to be expected in a dynamic sce-
nario), and for some obscure reason we have two 
separate merging processes between same two 
cells, happening at the same time, a key exchange 
loop may occur. One approach to this problem is 
to adjust in each node the state information of the 
number of nodes in its cell, always increasing it 
when new nodes join, but never decreasing it 
upon partitioning of the cell.  

An in-depth study of these two schemes and 
their variations is subject to ongoing and future 
work. 

3.3 Key Distribution 

Once a node gets a new key as a result of net-
work merging, the key should be deployed within  
its previous network cell. There are several ways 
to achieve this: 
• Proactively - each node receiving the key 

immediately forwards it to the others. This 

approach would generate a lot of unnecessary 
network traffic and is not recommended. 

• Proactively, using Multipoint Relays (MPRs) 
- MPRs are selected nodes within the  OLSR  
routing protocol used to broadcast messages 
into the whole network cell, so that the num-
ber of redundant retransmissions is reduced.  

• Reactively - when a node receives a key, it 
does nothing. Only after detecting a message 
sent by a neighbor and signed with the old 
key, the node sends the key further. This ap-
proach uses less resources, but it takes more 
time for the whole cell to get a stable key. 

• Combination - the first node getting the new 
key (that is, the node which performed the 
merge) immediately forwards the key to its 
one-hop neighbors, since it knows that no 
other node in its previous cell has it yet. The 
other nodes do not distribute it right away, 
but rather when (if) they notice that a certain 
node was “left behind”. 
 
In any of the given cases, the new key is en-

crypted using the old one before sending, giving 
all the other nodes the possibility to immediately 
start using it. The old key is then saved for a cer-
tain amount of time, for possible latecomers. This 
can be done because in this particular case the 
rekeying was not performed explicitly for the 
purpose of preventing traffic analysis attacks. 

In our implementations, described in Sections 
5 and 6, we use the combination approach. 

3.4 Key Update 

When created, each key has a companion key 
(called update key) used to periodically update it. 
The update key is never used on traffic that goes 
onto the network and therefore it is prone to traf-
fic-analysis attacks. Once the time comes to 
change the key, the new key can be computed 
using one-way hash functions such as SHA-1 [9] 
or MD5 [19], ensuring backward secrecy in the 
case the key gets broken at some stage. 

In addition to the ID of the key used to sign 
it, a message contains also the update-number 
saying how many times the key on the sender-
node has been updated. That way, the receiver 
can easily compute the new key if it notices a 
mismatch, which could happen since we can’t 
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expect all the nodes to perform the update at ex-
actly the same time. 

3.5 Exclusion of Nodes 

Internal attacks, that is, attacks from the insiders, 
are in general much more difficult to cope with 
than the external ones [15]. Once authenticated, a 
node is a fully trusted member of the network. 
This poses the evident problem of how to exclude 
such a node once the device has been lost or, 
even worse, stolen by a malicious person. The 
following measures should be taken in order to 
ensure that such a node stays out of the network. 

First, its certificate should be revoked, pre-
venting the node from re-authenticating later at 
some stage. Since there is no central authority, 
there should be a way to decide which node or 
person can perform the task of revoking certifi-
cates. If the certificates contain also additional 
attributes such as rank or role of the persons (as-
suming that the certificates do in fact represent 
persons, not devices), it can be decided that only 
certain roles/ranks (such as leader) can perform 
revocation and blacklisting. In theory, the lead-
ers’ devices might also be stolen, but in practice 
they should normally be physically well pro-
tected. It is important to ensure that the compro-
mised node itself does not revoke and blacklist 
legitimate ones or, even worse, the whole net-
work. 

Next, the node’s IP address should be put on 
a common blacklist, assuming that IP addresses 
are bound to the certificates (as presented in e.g. 
[18]) and, thus, cannot be changed. Traffic com-
ing from blacklisted nodes must be discarded at 
the lowest possible layer and, in case legally 
signed traffic coming from a blacklisted node is 
detected, the compromised key must be removed 
and re-authentication and rekeying should be 
done immediately. 

3.6 SKiMPy Phases and Messages 

The protocol consists of three phases: 

I. Neighborhood Discovery 

II. Batching 

III. Key Exchange 
 

During phase I, a node listens to all traffic 
sent by its immediate neighbors. If it detects a 
node using a worse key, it will send an Authenti-
cation Request message to it, saying it is willing 
to pass on its key. Upon receiving such a mes-
sage, the other node enters the phase II, waiting 
for possible other authentication requests before 
sending a response. This waiting period is used 
for optimization - a node will only perform au-
thentication with the best of all neighbors. All the 
other keys will, due to the transitiveness property 
of the better than relation, eventually get over-
ruled and therefore there is no point in getting 
them in forehand. After the node has chosen its 
peer, it sends an Authentication Response after 
which its peer initializes the actual authentication 
procedure, that is, exchange of certificates, estab-
lishing a secure tunnel, and finally transfer of the 
key. The reason for having such a handshake 
procedure is to ensure that the nodes can indeed 
communicate, because in some standards, such as 
802.11b [14], traffic like broadcast messages can 
be sent on a lower transmitting rate with larger 
transmission range than data messages. Thus, 
broadcast messages might reach a remote node 
and trigger a key exchange, even though the 
nodes cannot directly exchange data packets.  

The protocol is built on the following mes-
sages: 
• Authentication Request (AUTH_REQ): sent 

by a node after it detects traffic from a node 
having a key that is worse than its own one. 
The message is used to inform the remote 
node that the sending node is willing to trans-
fer its key. 

• Authentication Response (AUTH_RESP): 
sent by a node, as a result of a received 
AUTH_REQ message. The message is used 
to inform the remote party that the sender is 
willing to perform the authentication and re-
ceive the remote and better key. 

 
The authentication procedure prior to the key 

exchange includes establishment of a secure tun-
nel through which the key will be securely trans-
ferred. Furthermore, SKiMPy makes use of the 
existing traffic in the network to trigger key ex-
change. In this example, periodic routing beacons 
(HELLO) are used, as they are sent by proactive 
routing protocols. 
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Figure 1. Message Flow Diagram 

 
Figure 1 shows an example of the key ex-

change between three nodes (A, B and C) and 
indicates the different phases of the key exchange 
for node A. Node A enters phase I when turned 
on. Nodes B and C do not directly hear each 
other’s traffic and are only able to communicate 
through node A, once the shared key is fully de-
ployed. 

The initial states of the three nodes are as fol-
lows: A has the key KA, B has KB and C has KC. 
In this example, KC is the best key, whereas KA is 
the worst key.  

 

Phase I: 
1. Node A is turned on. All nodes send peri-

odic HELLO messages which are part of 
the routing protocol. 

2. A receives a HELLO message from B, 
notices a key mismatch, but ignores it be-
cause KA is worse than KB. 

3. A receives HELLO from C, notices a key 
mismatch, but ignores it because KA is 
worse than KC. 

4. B and C receive HELLO from A, they 
both notice they have a better key than 
KA, and after a random time delay (to 
prevent traffic collisions), send an 
AUTH_REQ message to A. 

Phase II: 
1. A receives AUTH_REQ from B notices 

that B has a better key and schedules au-
thentication with B. The authentication is 
to be performed after a certain waiting 

period, in order to hear if some of the 
neighbors has an even better key. 

2. A receives AUTH_REQ from C as well, 
sees that C has a key better than KB, and 
therefore decides to perform authentica-
tion with C instead. 

Phase III: 
1. A sends an AUTH_RESP message to C, 

telling it is ready for the authentication 
process  

2. C initiates the authentication procedure 
with A, they exchange and verify certifi-
cates; the secure tunnel is established. 

3. C sends its key KC to A through the se-
cure tunnel. 

4. A receives the key and saves it locally; 
the old key KA is saved in the key reposi-
tory for eventual later use; A sends the 
new key further, encrypted with KA. 

 
In the next round, that is, after it hears traffic 

from node B signed with KB, node A will use the 
same procedure to deliver the new key KC to 
node B, hence establishing a common shared key 
in the whole cell. 

There are two important parameters which in-
fluence the performance of the protocol and 
therefore have to be chosen carefully. The delays 
used before sending AUTH_REQ are random, to 
minimize the possibility of collisions in the case 
when more nodes react to the same message. On 
the other hand, the delay from the moment a node 
receives AUTH_REQ to the moment it chooses 
to answer with AUTH_RESP is a fixed interval 
and should be tuned so that it manages to hear as 
many neighbors as possible within a reasonable 
time limit. By this, all nodes that have been heard 
during the waiting period can be efficiently han-
dled in the same batch.  

4. EMULATION ENVIRONMENT 

To facilitate development of this and other proto-
cols, it was important to carefully choose a simu-
lation tool or emulation test bed. Simulators, 
where GloMoSim [25] and ns-2 [20] seem to be 
the best candidates, have long been used in the 
ad-hoc field and make it possible to experience 
very diverse communication situations and a 
large scale of deployment. On the other hand, 
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emulators such as JEmu [10], EMWIN [27] or 
MobiEmu [26] might be a better option, in par-
ticular because they may run protocols in a more 
realistic manner and unveil issues inaccessible to 
simulation. Since in an emulation environment 
real processes are used, this approach facilitates 
porting of code to genuine wireless devices. 
Therefore, we decided to choose the emulation 
approach. 

As the first test bed, we used several PCs 
equipped with Intel IXP network processors with 
multiple Ethernet ports, where each port acted as 
a single wireless node. The ports were connected 
either directly, to emulate one-hop communica-
tion, or using hubs to emulate a wireless cell. Al-
though not entirely realistic, this was a good 
starting point to develop, test and evaluate the 
protocol. With time, this test bed posed limita-
tions which made it impractical for further devel-
opment. Limited number of network cards and 
the fact that cables had to be switched to make 
topology changes made us reflect on another so-
lution. 

 

tap1 (...)

monitoring,
logging

control
channel

feedback
channel

>[] ||

monitoring
channel

tap2 tap3 tap0

Topology
Manager

GUI

Processes

 
Figure 2. Emulation test bed 

 
At the next stage, we developed a simpler and 

more effective emulation test bed (shown on Fig-
ure 2) based on virtual Ethernet network devices 
(TAP) available in the Linux kernel. These de-
vices provide low level support for Ethernet tun-
neling. Every frame received on a TAP interface 
is available to the user-level application main-
taining it, and every frame the application gener-
ates is sent to the interface and further to proc-

esses hooked to it. In our implementation, a proc-
ess, called topology manager, creates a certain 
number of TAP interfaces. The topology manager 
gets all messages sent to its TAP interfaces and 
can decide to forward them to others, according 
to the topology information it has at a certain 
moment. One interface is reserved as the moni-
toring channel, having connection to all other 
TAP interfaces, independent from the topology, 
and thus allowing for analysis of the network 
traffic. The monitoring channel allows us also to 
induce traffic into the network if needed. 

On top of this basic emulated network infra-
structure, processes hook to the TAP interfaces 
using standard sockets with the socket option 
SO_BINDTODEVICE. This option ensures that 
a process will listen and send only to the speci-
fied interface, and thus not interfere with traffic 
addressed to some other process. Since this infra-
structure emulates the link layer of MANETs, we 
first establish an IP infrastructure by means of 
routing daemon processes hooked to the TAP 
interfaces. Afterwards, other processes can hook 
to the same interfaces and use the established IP 
infrastructure. This way, the emulation test bed 
can be also used to implement and test, for ex-
ample, middleware and application layer proto-
cols. 

The graphical user interface of the test bed  is 
based on previously mentioned MobiEmu. It is a 
Tcl/Tk script, independent from the topology 
manager and can even run on a separate machine. 
The GUI shows the current position of nodes, 
their transmission ranges and links between 
nodes that can directly communicate with each 
other. Topology and node movement data are 
acquired from standard ns-2 scenario files, cre-
ated by, for example, ns-2’s setdest program. In-
formation about topology changes is sent to the 
topology manager through the control channel, in 
form of UDP packets. 

In the current implementation of the emula-
tor, we still lack some characteristics typical for 
wireless networks, such as collisions in the air, 
hidden terminals, obstacles, etc. We are looking 
into a way to include those as well, in order to 
give us an even more realistic picture. 
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5. STANDALONE SKiMPy: 
EARLY IMPLEMENTATION 

As the first implementation, the key management 
protocol was a self-standing application generat-
ing dummy routing messages in order to trigger 
key exchange. The signatures were inserted into a 
standard IP Authentication Header [16], which 
made it easy to analyze and debug packets. We 
measured the number of certificates and key 
management messages exchanged, and compared 
these figures to the number of routing messages 
needed from the moment when the nodes were 
turned on, up to the moment when a stable shared 
key was established. 

Different variants of the protocol have been 
designed and applied, varying in the way the au-
thentication and key distribution were done. 

The first variant we designed was simple, 
causing an exchange of certificates and keys as 
soon as a node detected key inconsistency. Al-
though the protocol proved to be working, this 
approach was clearly far from being optimal. 

The next variant was a more intelligent one, 
analyzing the neighborhood before initiating the 
authentication process, as described in Section 
3.6. 

 
 

 
 

Figure 3. First evaluation scenario: 3 cells, connected 
by one node in the middle 

Protocol Evaluation 

To compare the two variants of the protocol, we 
have created a simple scenario (shown on Figure 
3) on our first test bed. There were 16 nodes 
grouped into 3 cells, having one common node in 
the middle that would perform the merge. All the 
nodes were turned on simultaneously and started 
sending HELLO messages every 2 seconds. The 
criterion for choosing the best key was having the 
lowest ID-number. 

We measured the number of certificates and 
key management messages exchanged, and com-
pared these figures to the number of HELLO 
messages needed from the moment when the 
nodes were turned on, up to the moment when a 
stable shared key was established in the whole 
network. 100 independent measurements were 
performed for each protocol, each time starting 
with new random key ID numbers. 
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Figures 4 and 5 show the remarkable im-
provement achieved after introducing neighbor-
hood awareness, approximately halving the total 
number of messages and, proportionally, the time 
needed to reach a stable state (getting to an aver-
age of 6 seconds). Moreover, the number of mes-
sages carrying certificates, whose size is much 
larger than other key management messages, has 
been reduced to approximately 23% of the initial 
number. Since the focus was being put on the key 
management protocol and not on the authentica-
tion itself, the authentication was considered to 
be done after the exchange of certificates. There-
fore, the results shown here are only an approxi-
mation, and might be slightly different when an 
actual authentication algorithm is used. 

6. OLSR-INTEGRATED SKiMPy: 
CURRENT IMPLEMENTATION 

Optimized Link State Routing Protocol (OLSR) 
[6] is a proactive routing protocol for ad-hoc 
networks which is one of the candidates to be 
used in our solution for the emergency and rescue 
operations. The olsr.org OLSR daemon [22] is 
the implementation we decided to test, since it is 
portable and expandable by means of loadable 
plugins. One example of such a plugin, present in 
the main distribution, is the Secure OLSR  plugin 
[11]. The plugin is used to add signature mes-
sages to OLSR traffic, only allowing nodes that 
possess the correct shared (pre-installed) key to 
be part of the OLSR routing domain. One impor-
tant functionality this plugin lacks is a key man-
agement protocol. Although SKiMPy is mainly 
designed to protect all traffic and not only rout-
ing, it is still a good opportunity to test and ana-
lyze it in a realistic environment with a real rout-
ing protocol.  

The key management protocol has been 
coded directly into the security plugin, although 
the plans are to make it as a separate one, if pos-
sible. To facilitate the implementation, X.509 
certificates [13] and OpenSSL [21] are used to 
perform node authentication. 

Protocol Evaluation 

To get a visual understanding on what is going on 
in the network and how keys are distributed, we 

use the monitoring channel of the emulator to 
analyze the keys used by each of the routing dae-
mons. ID numbers of the keys are converted to 
24-bit RGB color codes and sent as feedback to 
the GUI, which then colors the nodes on the 
screen accordingly. That way we got an easy and 
yet effective way to see in real time how the pro-
tocol works. 

 

 
Figure 6. Example of a chain scenario 

 

 
Figure 7. Example of a mesh scenario 

 
 
In order to test performance and scalability 

the protocol, we have made measurements from 
10 to 100 nodes, with two very different kinds of 
scenario - chain and mesh. Figures 6 and 7 show 
example screenshots taken from the GUI, repre-
senting the two different scenarios. 

In a chain scenario, all nodes are lined up in a 
single chain and the distance between all nodes in 
the chain is such that only the direct neighbors 
can communicate in a single hop with each other. 
We consider this to be the worst case scenario. 
Given that all the nodes have to perform authen-
tication with both their neighbors, this leaves no 
place for optimization, i.e. batching during the 
waiting period, as described in Section 3.6.  
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In a mesh scenario, however, nodes have 
multiple, randomly scattered neighbors, as it is 
natural in ad-hoc networks. Having multiple 
neighbors allows the protocol to exploit the 
batching phase, reducing traffic and resource 
consumption.  

Ten independent runs were performed for 
each number of nodes and each scenario. All the 
nodes were started simultaneously (which we 
assume is the worst case for our protocol), with a 
random key and key ID. The scheme for choos-
ing the key was the same, i.e., a key with a lower 
ID is better. The scheme for key distribution was 
a combination of the proactive and reactive 
schemes, described in Section 3.3. 
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Figure 8. Time needed to achieve a stable shared key 

 
One important fact that the results on Figure 

8 immediately show is that the protocol scales 
linearly with linear increase of the number of 
nodes and physical network area accordingly 
(thus giving the same density of nodes). We also 
proved that having multiple neighbors does in 
fact lower the time necessary to reach a stable 
state. This scenario gives less deviation as well, 
which is understandable since in the case of chain 
there is more fluctuation of keys, nicely seen in 
the GUI. 

In an additional test, we tried to see the scal-
ability of the protocol when the size of the physi-
cal area remains constant while the number of 
nodes increases. In this case there is much more 
network traffic involved, as well as computation, 
making the test-machine the bottleneck. There-
fore, we were only able to test up to 50 nodes, 

and the results for these measurements have 
shown minimal differences in the performance, 
compared to the results when the density of the 
nodes was constant. 

7. CONCLUSION 

In this paper, we presented a simple and efficient 
key management protocol, called SKiMPy, de-
veloped and optimized especially for highly dy-
namic ad-hoc networks. The protocol relies on 
the fact that there will be an a priori phase of res-
cue and emergency operations, within which cer-
tificates will be deployed on rescue personnel’s 
devices. Pre-installed certificates are necessary 
due to the fact that highly sensitive data may be 
exchanged between the rescue personnel. The 
certificates make it possible for the nodes to au-
thenticate each other without need for a third 
party present on the scene and, to the best of our 
knowledge, SKiMPy is the only protocol using 
such an authentication scheme.  

We described two different implementations 
of the protocol, together with evaluation results. 
The results show that SKiMPy performs very 
well and it scales linearly with the number of 
nodes. As part of further work we will analyze 
more in-depth different key selection and distri-
bution schemes, authentication protocols, and 
fine tuning of certain protocol parameters (such 
as the delays described in Section 3.6). Open is-
sues like exclusion of compromised nodes, dupli-
cate key ID numbers, denial of service attacks, 
etc. are also subject of further investigation. 

In addition to the protocol itself, we pre-
sented the emulation test bed developed to test 
and evaluate this and other protocols. Emulation 
allows us to run the protocols real time, by real 
processes that can afterwards easily be deployed 
on genuine wireless devices. We will continue to 
make the emulation environment as realistic as 
possible, trying to introduce typical issues present 
in real wireless networks, such as collisions in the 
air, hidden terminals, obstacles, etc. 
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