
Technical Report #319, ISBN 82-7368-272-2
Department of Informatics, University of Oslo
February 2005

SKiMPy: A Simple Key Management Protocol for
MANETs in Emergency and Rescue Operations

Matija Pužar1, Jon Andersson2, Thomas Plagemann1, Yves Roudier3

1 Department of Informatics, University of Oslo

{matija, plageman}@ifi.uio.no
2 Thales Communications

jon.andersson@no.thalesgroup.com
3 Institut Eurécom

yves.roudier@eurecom.fr

ABSTRACT
Mobile ad-hoc networks (MANETs) provide the
technical platform for efficient information shar-
ing in emergency and rescue operations. Some
the data present on the scene is highly confiden-
tial and requires protection. However, one of the
main threats to a network is insertion of false data
or alteration of existing ones, which could easily
lead to network disruption and, ultimately, cause
loss of human lives. This paper presents a simple
and efficient key management protocol, called
SKiMPy. The protocol allows devices carried by
the rescue personnel to establish a symmetric
shared key, to be used primarily to perform mes-
sage signatures. The protocol is designed and
optimized having in mind the high dynamicity
present in such a scenario. Two different imple-
mentations were made, first as a standalone ap-
plication and later as a plugin for the Optimized
Link State Routing Protocol (OLSR). We present
the evaluation results for both implementations
and, in addition, for the latter one we describe in
detail the emulation platform developed to test
and evaluate this and other MANET protocols.

1. INTRODUCTION

Efficient collaboration between rescue personnel
from various organizations is a mission critical
key element for a successful operation in emer-
gency and rescue situations. There are two cen-

tral requirements for efficient collaboration, the
incentive to collaborate, which is naturally given
for rescue personnel, and the ability to efficiently
communicate and share information. Mobile ad-
hoc networks (MANETs) could provide the tech-
nical platform for efficient information sharing in
such scenarios, assuming that all rescue person-
nel is carrying and using mobile computing de-
vices with wireless network interfaces.

Wireless communication is by nature more
susceptible to eavesdropping, compared to the
other media. In most cases, the data involved
should not be available to third parties, such as
malicious persons, like arsonists, or curious jour-
nalists who might make confidential data public.
Another requirement is to prevent third parties
from inducing false data. At the application layer
this might for example lead to wrong manage-
ment decisions. At the network layer it has been
shown that a very few percent of misbehaving
nodes could easily lead to network disruption and
partitioning [12]. In both cases, efficiency of the
rescue operation will be drastically reduced and
might ultimately cause loss of human lives. In
order to prevent such a disaster, all data traffic
should be properly signed, allowing only author-
ized nodes the possibility to perform authentica-
tion and integrity checking. Given that the de-
vices carried by the rescue personnel will mostly
have scarce resources, asymmetric cryptography
is too costly to be used the whole time.

 2

This paper describes a simple key manage-
ment protocol, called SKiMPy, used to establish
a symmetric shared key between the rescue per-
sonnel’s devices. This approach provides the
means to establish a secure network infrastruc-
ture between authorized nodes, while keeping out
unauthorized ones. In addition, at the application
layer it may be decided whether the established
shared key will be used to encrypt data as well.
SKiMPy is designed and optimized for highly
dynamic ad-hoc networks and it is completely
autonomous, requiring no user interaction at all.
This is also an important factor, having in mind
that rescue personnel does not have time to think
or care about details of lower layers of the net-
work infrastructure.

To facilitate the development and testing of
the protocol, we developed an emulation test bed
which we here describe in detail in this paper.
Using an emulator instead of a simulator, allows
us to test and evaluate protocols by means of real
processes, without the need for rewriting code
when the applications are transferred to genuine
wireless devices.

The main contribution of this paper is a key
management protocol for emergency and rescue
operations and all other application domains
where it is possible for the nodes to authenticate
each other without need for contacting a central-
ized server. Another contribution is a flexible,
Linux based emulation environment that can
emulate mobility traces generated for ns-2.

The organization of the paper is as follows. In
Section 2 we present related work, followed by a
detailed description of our protocol in Section 3.
Section 4 describes the emulation test bed. In
Sections 5 and 6 we show two different
implementations of the protocol and results of
their evaluations. Finally, conclusion and future
work are presented in Section 7.

2. RELATED WORK

Key management protocols can be roughly di-
vided into three categories [5].

The first one relies on a fixed infrastructure
and servers that are always reachable. Since we
never know where accidents will happen, and we
should expect them to happen at worse possible

places, we cannot rely on the fact that fixed infra-
structure will be present.

The next category comprises contributory key
agreement protocols, not suited for our scenario
for several reasons. Such protocols ([1], [3], [7],
[23], [24], to name a few) are based on Diffie-
Hellman two-party key exchange [8] where all
the nodes give their contribution to the final
shared key, causing rekeying every time a new
node joins or an existing node leaves the group.
In an emergency and rescue operation, we can
expect nodes to pop up and disappear all the
time, often causing network partitioning and
merging. Therefore, using contributory protocols
would cause a lot of computational and band-
width costs which cannot be afforded. Besides,
most of these protocols rely on some kind of hi-
erarchy (chain, binary tree, etc.) and a group
manager to deploy and maintain shared keys. In a
highly dynamic scenario this approach would be
quite ineffective. Another reason why such pro-
tocols are not suited for us, is that in order for the
nodes to be able to exchange keys, a fully work-
ing routing infrastructure has to be established
prior to that. Since the routing protocol is one of
the main things we need to protect, this is a major
drawback.

The last category are protocols based on key
pre-distribution. The main characteristic of such
protocols is that a group of nodes can compute a
shared key out of pre-distributed sets of keys pre-
sent on each node. These sets of keys are either
given by a trusted entity before the nodes come to
the scene [2], [17], or chosen and managed by the
nodes themselves, as it is done in DKPS [5]. Al-
though DKPS seems to be closest to SKiMPy in
some aspects, there is a major difference. DKPS
relies on the notion of distributed trust, whereas
we make use of pre-installed certificates to per-
form authentication of nodes, explained in detail
in the next section.

3. BASIC SKiMPy ELEMENTS

Our protocol was primarily designed for emer-
gency and rescue operations, which we have
studied in-depth in our project. In such scenarios,
we must expect a very dynamic and unpredict-
able scenario. New nodes frequently appear and
others disappear causing frequent network parti-

 3

tioning and merging. Nodes carried by the rescue
personnel will be relatively small and as such
scarce on resources, so the computational and
bandwidth costs of the key management protocol
must be as low as possible. There is no point of
establishing a secure network that afterwards
cannot provide sufficient resources for the appli-
cations to be useful.

3.1 Authentication

An important characteristic of an emergency and
rescue scenario is that the organizations involved
(police, fire department, paramedics, etc.) are
often well structured, public entities. Some of
them might have sensitive data on the scene, like
medical or police records, that are highly confi-
dential and should remain such. Before the rescue
personnel of the different organizations comes to
the rescue scene, all devices are prepared for their
tasks. One task in the preparation phase, which
we call a priori phase, is the installation of valid
certificates. The certificates are signed by a com-
monly trusted authority, such as the ministry of
internal affairs, ministry of defense, etc., on the
top of the trust chain. This gives nodes possibility
to authenticate each other without need for
contacting a third party. Therefore, there is no
need for a fully self-organized public-key man-
agement system that does not rely on trusted au-
thorities, as it is presented by Capkun et al. [4].
The advantages are twofold: first, the data in the
network is more secure. This is a central re-
quirement for our application domain, because
highly sensitive data might be present in the air.
Second, establishing trust and agreeing on a
shared key is much more efficient, i.e., faster and
less resources are consumed, because we prein-
stall certificates on all devices during the a priori
phase.

So far, we have kept the question whether the
certificates on the nodes will identify devices, or
actually users handling them (who would then
present the certificate to the device by means of a
token, i.e. smartcard), open. The decision for this
question does not impact the key management in
SKiMPy, but it impacts the way how lost and
stolen nodes are handled, i.e., revoking certifi-
cates and blacklisting of such nodes. We explain
this later in Section 3.5.

Using asymmetric cryptography is expensive
in many terms. With regards to the bandwidth,
certificates could become large messages if sev-
eral levels in the certificate chain are present, and
as such their presence in the air should be re-
duced to a minimum. The authentication process
using asymmetric cryptography is also computa-
tionally very expensive, which in our case be-
comes a problem with regards to battery power.
In order to save resources as much as possible,
our protocol makes the nodes learn about their
neighborhood before acting, thus reducing the
number of performed authentications. This is
possible due to the fact that all nodes directly
trust the same certificate authority and, therefore,
if a node has been successfully authenticated be-
fore and has received the shared secret, we im-
plicitly trust it.

3.2 Choosing Keys

During the initialization phase, each node gener-
ates a random key with a random ID number. It is
the task of SKiMPy to make sure that all the
nodes agree on a shared key. This shared key is
always selected from nodes’ initial keys. To
achieve this, we introduce the notions of “better”
and “worse” keys, together with the relation “>”
representing “better than”. There are several pos-
sible schemes for deciding which of the keys is
better or worse and all schemes can be equally
valid, as long as they cannot cause key exchange
loops, are unambiguous and possibly transitive:
(A > B and B > C) => A > C. The necessary con-
trol information, which depends on the scheme
chosen, is always sent with the message signa-
ture.

We will briefly describe two examples and
their advantages and drawbacks.

The first scheme is quite straightforward, the
key having a higher or lower ID number, time-
stamp or a similar parameter, is considered to be
better. The advantage of this scheme is that it is
unambiguous, transitive and easy to implement.
In addition, it can be “tweaked” in a way that
would prevent a single node to cause rekeying of
an already established network cell. For example,
if the scheme defines that the lower ID number
means a better key, the highest bit of the ID
number can be always set to “1” when the node is
turned on, and cleared once two nodes merge.

 4

Assuming that nodes in a certain area will in
most cases pop up independently, this simple and
yet efficient method might prevent a lot of un-
necessary rekeying traffic. If we use the keys’
timestamps instead of the ID numbers, choosing
a lower timestamp could imply that the key is
older and that more nodes have it already. This
assumption might not necessarily be true, espe-
cially if the key creator’s clock was heavily out
of sync, but it is worth considering. One major
drawback of this scheme is that a small cell (con-
sisting of, for example, 2 nodes) could easily
cause rekeying of a much bigger cell (having, for
example, 100 nodes), which would be a waste of
resources.

The second scheme takes care of this problem
by tracking the number of nodes in each network
cell. The simple rule for this scheme is to always
rekey the smaller cell, i.e. the one with the lower
number of nodes, thus minimizing resource con-
sumption for the necessary rekeying. The ap-
proximate number of nodes can be either re-
trieved from the routing protocol state informa-
tion (if, for example, the OLSR routing protocol
[6] is used) or maintained at a higher protocol
layer, as it is done in our project. Even though
this scheme is tempting, there might be a small
problem which would make it impractical. If not
all of the nodes have exactly the same informa-
tion (which is to be expected in a dynamic sce-
nario), and for some obscure reason we have two
separate merging processes between same two
cells, happening at the same time, a key exchange
loop may occur. One approach to this problem is
to adjust in each node the state information of the
number of nodes in its cell, always increasing it
when new nodes join, but never decreasing it
upon partitioning of the cell.

An in-depth study of these two schemes and
their variations is subject to ongoing and future
work.

3.3 Key Distribution

Once a node gets a new key as a result of net-
work merging, the key should be deployed within
its previous network cell. There are several ways
to achieve this:
• Proactively - each node receiving the key

immediately forwards it to the others. This

approach would generate a lot of unnecessary
network traffic and is not recommended.

• Proactively, using Multipoint Relays (MPRs)
- MPRs are selected nodes within the OLSR
routing protocol used to broadcast messages
into the whole network cell, so that the num-
ber of redundant retransmissions is reduced.

• Reactively - when a node receives a key, it
does nothing. Only after detecting a message
sent by a neighbor and signed with the old
key, the node sends the key further. This ap-
proach uses less resources, but it takes more
time for the whole cell to get a stable key.

• Combination - the first node getting the new
key (that is, the node which performed the
merge) immediately forwards the key to its
one-hop neighbors, since it knows that no
other node in its previous cell has it yet. The
other nodes do not distribute it right away,
but rather when (if) they notice that a certain
node was “left behind”.

In any of the given cases, the new key is en-

crypted using the old one before sending, giving
all the other nodes the possibility to immediately
start using it. The old key is then saved for a cer-
tain amount of time, for possible latecomers. This
can be done because in this particular case the
rekeying was not performed explicitly for the
purpose of preventing traffic analysis attacks.

In our implementations, described in Sections
5 and 6, we use the combination approach.

3.4 Key Update

When created, each key has a companion key
(called update key) used to periodically update it.
The update key is never used on traffic that goes
onto the network and therefore it is prone to traf-
fic-analysis attacks. Once the time comes to
change the key, the new key can be computed
using one-way hash functions such as SHA-1 [9]
or MD5 [19], ensuring backward secrecy in the
case the key gets broken at some stage.

In addition to the ID of the key used to sign
it, a message contains also the update-number
saying how many times the key on the sender-
node has been updated. That way, the receiver
can easily compute the new key if it notices a
mismatch, which could happen since we can’t

 5

expect all the nodes to perform the update at ex-
actly the same time.

3.5 Exclusion of Nodes

Internal attacks, that is, attacks from the insiders,
are in general much more difficult to cope with
than the external ones [15]. Once authenticated, a
node is a fully trusted member of the network.
This poses the evident problem of how to exclude
such a node once the device has been lost or,
even worse, stolen by a malicious person. The
following measures should be taken in order to
ensure that such a node stays out of the network.

First, its certificate should be revoked, pre-
venting the node from re-authenticating later at
some stage. Since there is no central authority,
there should be a way to decide which node or
person can perform the task of revoking certifi-
cates. If the certificates contain also additional
attributes such as rank or role of the persons (as-
suming that the certificates do in fact represent
persons, not devices), it can be decided that only
certain roles/ranks (such as leader) can perform
revocation and blacklisting. In theory, the lead-
ers’ devices might also be stolen, but in practice
they should normally be physically well pro-
tected. It is important to ensure that the compro-
mised node itself does not revoke and blacklist
legitimate ones or, even worse, the whole net-
work.

Next, the node’s IP address should be put on
a common blacklist, assuming that IP addresses
are bound to the certificates (as presented in e.g.
[18]) and, thus, cannot be changed. Traffic com-
ing from blacklisted nodes must be discarded at
the lowest possible layer and, in case legally
signed traffic coming from a blacklisted node is
detected, the compromised key must be removed
and re-authentication and rekeying should be
done immediately.

3.6 SKiMPy Phases and Messages

The protocol consists of three phases:

I. Neighborhood Discovery

II. Batching

III. Key Exchange

During phase I, a node listens to all traffic
sent by its immediate neighbors. If it detects a
node using a worse key, it will send an Authenti-
cation Request message to it, saying it is willing
to pass on its key. Upon receiving such a mes-
sage, the other node enters the phase II, waiting
for possible other authentication requests before
sending a response. This waiting period is used
for optimization - a node will only perform au-
thentication with the best of all neighbors. All the
other keys will, due to the transitiveness property
of the better than relation, eventually get over-
ruled and therefore there is no point in getting
them in forehand. After the node has chosen its
peer, it sends an Authentication Response after
which its peer initializes the actual authentication
procedure, that is, exchange of certificates, estab-
lishing a secure tunnel, and finally transfer of the
key. The reason for having such a handshake
procedure is to ensure that the nodes can indeed
communicate, because in some standards, such as
802.11b [14], traffic like broadcast messages can
be sent on a lower transmitting rate with larger
transmission range than data messages. Thus,
broadcast messages might reach a remote node
and trigger a key exchange, even though the
nodes cannot directly exchange data packets.

The protocol is built on the following mes-
sages:
• Authentication Request (AUTH_REQ): sent

by a node after it detects traffic from a node
having a key that is worse than its own one.
The message is used to inform the remote
node that the sending node is willing to trans-
fer its key.

• Authentication Response (AUTH_RESP):
sent by a node, as a result of a received
AUTH_REQ message. The message is used
to inform the remote party that the sender is
willing to perform the authentication and re-
ceive the remote and better key.

The authentication procedure prior to the key

exchange includes establishment of a secure tun-
nel through which the key will be securely trans-
ferred. Furthermore, SKiMPy makes use of the
existing traffic in the network to trigger key ex-
change. In this example, periodic routing beacons
(HELLO) are used, as they are sent by proactive
routing protocols.

 6

secure tunnel
establishment

2

3

4

1

2

2

3

4

AB C

AUTH_REQ

AUTH_RESP

KC
save(KC)

KB KA KC

KC>KB

KB>KA
AUTH_REQ

HELLO

HELLO HELLO

HELLO

Phase I

Phase II

Phase III

1

1

KC>KA
KB>KA

Figure 1. Message Flow Diagram

Figure 1 shows an example of the key ex-

change between three nodes (A, B and C) and
indicates the different phases of the key exchange
for node A. Node A enters phase I when turned
on. Nodes B and C do not directly hear each
other’s traffic and are only able to communicate
through node A, once the shared key is fully de-
ployed.

The initial states of the three nodes are as fol-
lows: A has the key KA, B has KB and C has KC.
In this example, KC is the best key, whereas KA is
the worst key.

Phase I:
1. Node A is turned on. All nodes send peri-

odic HELLO messages which are part of
the routing protocol.

2. A receives a HELLO message from B,
notices a key mismatch, but ignores it be-
cause KA is worse than KB.

3. A receives HELLO from C, notices a key
mismatch, but ignores it because KA is
worse than KC.

4. B and C receive HELLO from A, they
both notice they have a better key than
KA, and after a random time delay (to
prevent traffic collisions), send an
AUTH_REQ message to A.

Phase II:
1. A receives AUTH_REQ from B notices

that B has a better key and schedules au-
thentication with B. The authentication is
to be performed after a certain waiting

period, in order to hear if some of the
neighbors has an even better key.

2. A receives AUTH_REQ from C as well,
sees that C has a key better than KB, and
therefore decides to perform authentica-
tion with C instead.

Phase III:
1. A sends an AUTH_RESP message to C,

telling it is ready for the authentication
process

2. C initiates the authentication procedure
with A, they exchange and verify certifi-
cates; the secure tunnel is established.

3. C sends its key KC to A through the se-
cure tunnel.

4. A receives the key and saves it locally;
the old key KA is saved in the key reposi-
tory for eventual later use; A sends the
new key further, encrypted with KA.

In the next round, that is, after it hears traffic

from node B signed with KB, node A will use the
same procedure to deliver the new key KC to
node B, hence establishing a common shared key
in the whole cell.

There are two important parameters which in-
fluence the performance of the protocol and
therefore have to be chosen carefully. The delays
used before sending AUTH_REQ are random, to
minimize the possibility of collisions in the case
when more nodes react to the same message. On
the other hand, the delay from the moment a node
receives AUTH_REQ to the moment it chooses
to answer with AUTH_RESP is a fixed interval
and should be tuned so that it manages to hear as
many neighbors as possible within a reasonable
time limit. By this, all nodes that have been heard
during the waiting period can be efficiently han-
dled in the same batch.

4. EMULATION ENVIRONMENT

To facilitate development of this and other proto-
cols, it was important to carefully choose a simu-
lation tool or emulation test bed. Simulators,
where GloMoSim [25] and ns-2 [20] seem to be
the best candidates, have long been used in the
ad-hoc field and make it possible to experience
very diverse communication situations and a
large scale of deployment. On the other hand,

 7

emulators such as JEmu [10], EMWIN [27] or
MobiEmu [26] might be a better option, in par-
ticular because they may run protocols in a more
realistic manner and unveil issues inaccessible to
simulation. Since in an emulation environment
real processes are used, this approach facilitates
porting of code to genuine wireless devices.
Therefore, we decided to choose the emulation
approach.

As the first test bed, we used several PCs
equipped with Intel IXP network processors with
multiple Ethernet ports, where each port acted as
a single wireless node. The ports were connected
either directly, to emulate one-hop communica-
tion, or using hubs to emulate a wireless cell. Al-
though not entirely realistic, this was a good
starting point to develop, test and evaluate the
protocol. With time, this test bed posed limita-
tions which made it impractical for further devel-
opment. Limited number of network cards and
the fact that cables had to be switched to make
topology changes made us reflect on another so-
lution.

tap1 (...)

monitoring,
logging

control
channel

feedback
channel

>[] ||

monitoring
channel

tap2 tap3 tap0

Topology
Manager

GUI

Processes

Figure 2. Emulation test bed

At the next stage, we developed a simpler and

more effective emulation test bed (shown on Fig-
ure 2) based on virtual Ethernet network devices
(TAP) available in the Linux kernel. These de-
vices provide low level support for Ethernet tun-
neling. Every frame received on a TAP interface
is available to the user-level application main-
taining it, and every frame the application gener-
ates is sent to the interface and further to proc-

esses hooked to it. In our implementation, a proc-
ess, called topology manager, creates a certain
number of TAP interfaces. The topology manager
gets all messages sent to its TAP interfaces and
can decide to forward them to others, according
to the topology information it has at a certain
moment. One interface is reserved as the moni-
toring channel, having connection to all other
TAP interfaces, independent from the topology,
and thus allowing for analysis of the network
traffic. The monitoring channel allows us also to
induce traffic into the network if needed.

On top of this basic emulated network infra-
structure, processes hook to the TAP interfaces
using standard sockets with the socket option
SO_BINDTODEVICE. This option ensures that
a process will listen and send only to the speci-
fied interface, and thus not interfere with traffic
addressed to some other process. Since this infra-
structure emulates the link layer of MANETs, we
first establish an IP infrastructure by means of
routing daemon processes hooked to the TAP
interfaces. Afterwards, other processes can hook
to the same interfaces and use the established IP
infrastructure. This way, the emulation test bed
can be also used to implement and test, for ex-
ample, middleware and application layer proto-
cols.

The graphical user interface of the test bed is
based on previously mentioned MobiEmu. It is a
Tcl/Tk script, independent from the topology
manager and can even run on a separate machine.
The GUI shows the current position of nodes,
their transmission ranges and links between
nodes that can directly communicate with each
other. Topology and node movement data are
acquired from standard ns-2 scenario files, cre-
ated by, for example, ns-2’s setdest program. In-
formation about topology changes is sent to the
topology manager through the control channel, in
form of UDP packets.

In the current implementation of the emula-
tor, we still lack some characteristics typical for
wireless networks, such as collisions in the air,
hidden terminals, obstacles, etc. We are looking
into a way to include those as well, in order to
give us an even more realistic picture.

 8

5. STANDALONE SKiMPy:
EARLY IMPLEMENTATION

As the first implementation, the key management
protocol was a self-standing application generat-
ing dummy routing messages in order to trigger
key exchange. The signatures were inserted into a
standard IP Authentication Header [16], which
made it easy to analyze and debug packets. We
measured the number of certificates and key
management messages exchanged, and compared
these figures to the number of routing messages
needed from the moment when the nodes were
turned on, up to the moment when a stable shared
key was established.

Different variants of the protocol have been
designed and applied, varying in the way the au-
thentication and key distribution were done.

The first variant we designed was simple,
causing an exchange of certificates and keys as
soon as a node detected key inconsistency. Al-
though the protocol proved to be working, this
approach was clearly far from being optimal.

The next variant was a more intelligent one,
analyzing the neighborhood before initiating the
authentication process, as described in Section
3.6.

Figure 3. First evaluation scenario: 3 cells, connected
by one node in the middle

Protocol Evaluation

To compare the two variants of the protocol, we
have created a simple scenario (shown on Figure
3) on our first test bed. There were 16 nodes
grouped into 3 cells, having one common node in
the middle that would perform the merge. All the
nodes were turned on simultaneously and started
sending HELLO messages every 2 seconds. The
criterion for choosing the best key was having the
lowest ID-number.

We measured the number of certificates and
key management messages exchanged, and com-
pared these figures to the number of HELLO
messages needed from the moment when the
nodes were turned on, up to the moment when a
stable shared key was established in the whole
network. 100 independent measurements were
performed for each protocol, each time starting
with new random key ID numbers.

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
ge

s

Routing
Key mgmt
Certificates

Figure 4. Traffic analysis of the first protocol imple-
mentation

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
ge

s

Routing
Key mgmt
Certificates

Figure 5. Results for the same scenario, after intro-
ducing neighborhood awareness

 9

Figures 4 and 5 show the remarkable im-
provement achieved after introducing neighbor-
hood awareness, approximately halving the total
number of messages and, proportionally, the time
needed to reach a stable state (getting to an aver-
age of 6 seconds). Moreover, the number of mes-
sages carrying certificates, whose size is much
larger than other key management messages, has
been reduced to approximately 23% of the initial
number. Since the focus was being put on the key
management protocol and not on the authentica-
tion itself, the authentication was considered to
be done after the exchange of certificates. There-
fore, the results shown here are only an approxi-
mation, and might be slightly different when an
actual authentication algorithm is used.

6. OLSR-INTEGRATED SKiMPy:
CURRENT IMPLEMENTATION

Optimized Link State Routing Protocol (OLSR)
[6] is a proactive routing protocol for ad-hoc
networks which is one of the candidates to be
used in our solution for the emergency and rescue
operations. The olsr.org OLSR daemon [22] is
the implementation we decided to test, since it is
portable and expandable by means of loadable
plugins. One example of such a plugin, present in
the main distribution, is the Secure OLSR plugin
[11]. The plugin is used to add signature mes-
sages to OLSR traffic, only allowing nodes that
possess the correct shared (pre-installed) key to
be part of the OLSR routing domain. One impor-
tant functionality this plugin lacks is a key man-
agement protocol. Although SKiMPy is mainly
designed to protect all traffic and not only rout-
ing, it is still a good opportunity to test and ana-
lyze it in a realistic environment with a real rout-
ing protocol.

The key management protocol has been
coded directly into the security plugin, although
the plans are to make it as a separate one, if pos-
sible. To facilitate the implementation, X.509
certificates [13] and OpenSSL [21] are used to
perform node authentication.

Protocol Evaluation

To get a visual understanding on what is going on
in the network and how keys are distributed, we

use the monitoring channel of the emulator to
analyze the keys used by each of the routing dae-
mons. ID numbers of the keys are converted to
24-bit RGB color codes and sent as feedback to
the GUI, which then colors the nodes on the
screen accordingly. That way we got an easy and
yet effective way to see in real time how the pro-
tocol works.

Figure 6. Example of a chain scenario

Figure 7. Example of a mesh scenario

In order to test performance and scalability

the protocol, we have made measurements from
10 to 100 nodes, with two very different kinds of
scenario - chain and mesh. Figures 6 and 7 show
example screenshots taken from the GUI, repre-
senting the two different scenarios.

In a chain scenario, all nodes are lined up in a
single chain and the distance between all nodes in
the chain is such that only the direct neighbors
can communicate in a single hop with each other.
We consider this to be the worst case scenario.
Given that all the nodes have to perform authen-
tication with both their neighbors, this leaves no
place for optimization, i.e. batching during the
waiting period, as described in Section 3.6.

 10

In a mesh scenario, however, nodes have
multiple, randomly scattered neighbors, as it is
natural in ad-hoc networks. Having multiple
neighbors allows the protocol to exploit the
batching phase, reducing traffic and resource
consumption.

Ten independent runs were performed for
each number of nodes and each scenario. All the
nodes were started simultaneously (which we
assume is the worst case for our protocol), with a
random key and key ID. The scheme for choos-
ing the key was the same, i.e., a key with a lower
ID is better. The scheme for key distribution was
a combination of the proactive and reactive
schemes, described in Section 3.3.

0
5

10

15
20

25

30

35
40

45

50

10 20 30 40 50 60 70 80 90 100
Number of nodes in the wireless cell

Se
co

nd
s

Mesh
Chain

Figure 8. Time needed to achieve a stable shared key

One important fact that the results on Figure

8 immediately show is that the protocol scales
linearly with linear increase of the number of
nodes and physical network area accordingly
(thus giving the same density of nodes). We also
proved that having multiple neighbors does in
fact lower the time necessary to reach a stable
state. This scenario gives less deviation as well,
which is understandable since in the case of chain
there is more fluctuation of keys, nicely seen in
the GUI.

In an additional test, we tried to see the scal-
ability of the protocol when the size of the physi-
cal area remains constant while the number of
nodes increases. In this case there is much more
network traffic involved, as well as computation,
making the test-machine the bottleneck. There-
fore, we were only able to test up to 50 nodes,

and the results for these measurements have
shown minimal differences in the performance,
compared to the results when the density of the
nodes was constant.

7. CONCLUSION

In this paper, we presented a simple and efficient
key management protocol, called SKiMPy, de-
veloped and optimized especially for highly dy-
namic ad-hoc networks. The protocol relies on
the fact that there will be an a priori phase of res-
cue and emergency operations, within which cer-
tificates will be deployed on rescue personnel’s
devices. Pre-installed certificates are necessary
due to the fact that highly sensitive data may be
exchanged between the rescue personnel. The
certificates make it possible for the nodes to au-
thenticate each other without need for a third
party present on the scene and, to the best of our
knowledge, SKiMPy is the only protocol using
such an authentication scheme.

We described two different implementations
of the protocol, together with evaluation results.
The results show that SKiMPy performs very
well and it scales linearly with the number of
nodes. As part of further work we will analyze
more in-depth different key selection and distri-
bution schemes, authentication protocols, and
fine tuning of certain protocol parameters (such
as the delays described in Section 3.6). Open is-
sues like exclusion of compromised nodes, dupli-
cate key ID numbers, denial of service attacks,
etc. are also subject of further investigation.

In addition to the protocol itself, we pre-
sented the emulation test bed developed to test
and evaluate this and other protocols. Emulation
allows us to run the protocols real time, by real
processes that can afterwards easily be deployed
on genuine wireless devices. We will continue to
make the emulation environment as realistic as
possible, trying to introduce typical issues present
in real wireless networks, such as collisions in the
air, hidden terminals, obstacles, etc.

 11

8. REFERENCES
[1] Alves-Foss, J., “An Efficient Secure Authenti-

cated Group Key Exchange Algorithm for Large
And Dynamic Groups”, Proceedings of the 23rd
National Information Systems Security Confer-
ence, pages 254-266, October 2000

[2] Blom, R., “An Optimal Class of Symmetric Key
Generation System”, Advances in Cryptology -
Eurocrypt’84, LNCS vol. 209, p. 335-338, 1985.

[3] Bresson, E., Chevassut, O., Pointcheval, D.,
“Provably Authenticated Group Diffie-Hellman
Key Exchange - The Dynamic Case (Extended
Abstract)”, Advances in Cryptology - Proceed-
ings of AsiaCrypt 2001, pages 290-309. LNCS,
Vol. 2248, 2001

[4] Capkun, S., Buttyán, L., Hubaux, J.-P., “Self-
Organized Public-Key Management for Mobile
Ad Hoc Networks”, IEEE Transactions on Mo-
bile Computing, Vol. 2, No. 1, Jan-Mar 2003

[5] Chan, Aldar C-F., “Distributed Symmetric Key
Management for Mobile Ad hoc Networks”,
IEEE Infocom 2004, Hong Kong, March 2004

[6] Clausen T., Jacquet P., “Optimized Link State
Routing Protocol (OLSR)”, RFC 3626, October
2003

[7] Di Pietro, R., Mancini, L., Jajodia, S., “Efficient
and Secure Keys Management for Wireless Mo-
bile Communications”, Proceedings of the sec-
ond ACM international workshop on Principles
of mobile computing, pages 66-73, ACM Press,
2002

[8] Diffie, W., Hellman, M., “New directions in
cryptography”, IEEE Transactions on Informa-
tion Theory, 22(6):644-652, Nov. 1976

[9] Federal Information Processing Standard, Publi-
cation 180-1. Secure Hash Standard (SHA-1),
April 1995

[10] Flynn, J., Tewari, H., O'Mahony, D. “A Wireless
Network Emulator for Mobile Ad Hoc Net-
works”, Proceedings of the Communication
Networks and Distributed Systems Modeling
and Simulation Conference 2002, San Antonio,
Texas, 2002.

[11] Hafslund A., Tønnesen A., Rotvik J. B., Anders-
son J., Kure Ø., “Secure Extension to the OLSR
protocol”, OLSR Interop Workshop, San Diego,
August 2004

[12] Hollick, M., Schmitt, J., Seipl, C., Steinmetz, R.,
“On the Effect of Node Misbehavior in Ad Hoc
Networks”, Proceedings of IEEE International
Conference on Communications, ICC'04, Paris,
France, volume 6, pages 3759-3763. IEEE, June
2004.

[13] Housley, R., Ford, W., Polk, W. and D. Solo,
“Internet X.509 Public Key Infrastructure”, RFC
2459, January 1999.

[14] IEEE, “IEEE Std. 802.11b-1999 (R2003)”,
http://standards.ieee.org/getieee802/download/8
02.11b-1999.pdf

[15] Kärpijoki, V., “Security in Ad Hoc Networks”,
Tik-110.501, Seminar on Network Security,
HUT TML 2000

[16] Kent, S., Atkinson, R., “IP Authentication
Header”, RFC 2402, November 1998

[17] Matsumoto, T., Imai, H., “On the key predis-
tribution systems: A practical solution to the key
distribution problem”, Advances in Cryptology -
Crypto’87, LNCS vol. 293, p. 185-193, 1988.

[18] Montenegro, G., Castelluccia, C., “Statistically
Unique and Cryptographically Verifiable
(SUCV) Identifiers and Addresses”, NDSS'02,
February 2002

[19] Rivest, R., "The MD5 Message-Digest Algo-
rithm", RFC 1321, April 1992.

[20] The Network Simulator - ns-2,
http://www.isi.edu/nsnam/ns/

[21] The OpenSSL project, http://www.openssl.org/
[22] Tønnesen A., “Implementing and extending the

Optimized Link State Routing protocol”,
http://www.olsr.org/, August 2004

[23] Wallner, D., Harder, E., Agee, R., “Key man-
agement for Multicast: issues and architecture”,
RFC 2627, June 1999

[24] Wong, C., Gouda, M. and S. Lam, “Secure
Group Communications Using Key Graphs”,
Technical Report TR 97-23, Department of
Computer Sciences, The University of Texas at
Austin, November 1998

[25] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim:
a Library for the Parallel Network Simulation
Environment”, Proceedings of the 12th Work-
shop on Parallel and Distributed Systems, 1998

[26] Zhang, Y., Li, W., “An Integrated Environment
for Testing Mobile Ad-Hoc Networks”, Proceed-
ings of the 3rd ACM International Symposium
on Mobile Ad Hoc Networking and Computing
(MobiHoc 2002), Lausanne, Switzerland, June
2002.

[27] Zheng P., Ni, L. M., “EMWIN: emulating a mo-
bile wireless network using a wired network”,
Proceedings of the 5th ACM international work-
shop on Wireless mobile multimedia. ACM
Press, 2002, pp. 64–71

	INTRODUCTION
	RELATED WORK
	BASIC SKiMPy ELEMENTS
	Authentication
	Choosing Keys
	Key Distribution
	Key Update
	Exclusion of Nodes
	SKiMPy Phases and Messages

	EMULATION ENVIRONMENT
	STANDALONE SKiMPy:�EARLY IMPLEMENTATION
	Protocol Evaluation

	OLSR-INTEGRATED SKiMPy: CURRENT IMPLEMENTATION
	Protocol Evaluation

	CONCLUSION
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

