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Abstract. Accurate knowledge of the seasonal snow distribu-
tion is vital in several domains including ecology, water re-
sources management, and tourism. Current spaceborne sen-
sors provide a useful but incomplete description of the snow-
pack. Many studies suggest that the assimilation of remotely
sensed products in physically based snowpack models is a
promising path forward to estimate the spatial distribution
of snow water equivalent (SWE). However, to date there is
no standalone, open-source, community-driven project ded-
icated to snow data assimilation, which makes it difficult to
compare existing algorithms and fragments development ef-
forts. Here we introduce a new data assimilation toolbox,
the Multiple Snow Data Assimilation System (MuSA), to
help fill this gap. MuSA was developed to fuse remotely
sensed information that is available at different timescales
with the energy and mass balance Flexible Snow Model
(FSM2). MuSA was designed to be user-friendly and scal-
able. It enables assimilation of different state variables such
as the snow depth, SWE, snow surface temperature, binary or
fractional snow-covered area, and snow albedo and could be
easily upgraded to assimilate other variables such as liquid
water content or snow density in the future. MuSA allows
the joint assimilation of an arbitrary number of these vari-
ables, through the generation of an ensemble of FSM2 simu-
lations. The characteristics of the ensemble (i.e., the number
of particles and their prior covariance) may be controlled by
the user, and it is generated by perturbing the meteorological
forcing of FSM2. The observational variables may be assim-

ilated using different algorithms including particle filters and
smoothers as well as ensemble Kalman filters and smoothers
along with their iterative variants. We demonstrate the wide
capabilities of MuSA through two snow data assimilation
experiments. First, 5 m resolution snow depth maps derived
from drone surveys are assimilated in a distributed fashion in
the Izas catchment (central Pyrenees). Furthermore, we con-
ducted a joint-assimilation experiment, fusing MODIS land
surface temperature and fractional snow-covered area with
FSM2 in a single-cell experiment. In light of these experi-
ments, we discuss the pros and cons of the assimilation algo-
rithms, including their computational cost.

1 Introduction

The snow cover has a profound effect on the water cycle
(García-Ruiz et al., 2011) and ecosystems (Lin and West,
2022) of high-latitude and mountain regions. It represents a
natural reservoir of freshwater resources, sustaining crop ir-
rigation, hydropower generation, and drinking water supply
to a fifth of humanity (Barnett et al., 2005). In addition, the
ski industry is an important economic driver in many moun-
tain areas. As a consequence, good knowledge of the snow
cover properties has a strong scientific, societal, and eco-
nomic value (Sturm et al., 2017).

Due to the harsh environmental conditions that often pre-
vail in snow-dominated areas, in situ monitoring of the snow-
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pack based on automatic devices and weather stations is both
costly and logistically challenging. In addition, due to the
spatiotemporal variability in the snowpack (López-Moreno
et al., 2011), even dense monitoring networks may suffer
from a lack of representativeness (Molotch and Bales, 2006;
Cluzet et al., 2022). Yet, estimating SWE spatial distribu-
tion is important to make accurate predictions of snowmelt
runoff in alpine catchments. Satellite remote sensing pro-
vides spatial information about snow-related variables in-
cluding (i) snow cover spatial extent at various spatiotem-
poral scales (Aalstad et al., 2020; Gascoin et al., 2019; Hall
et al., 2002; Hüsler et al., 2014), (ii) snow depth (Lievens
et al., 2019; Marti et al., 2016), (iii) albedo (Kokhanovsky
et al., 2020), and (iv) land surface temperature (Bhardwaj
et al., 2017). However, the direct estimation of key vari-
ables such as the snow water equivalent (SWE) or density
by means of remote sensing techniques remains challenging
(Dozier et al., 2016). The only remote sensing tools that have
shown some potential to retrieve SWE are passive microwave
sensors. Unfortunately, their coarse resolution and the fact
that they tend to saturate above a certain SWE threshold pre-
vent their usage over mountainous regions or areas with a
thick snowpack (Luojus et al., 2021).

Numerical models can estimate the distribution of SWE
at different spatiotemporal scales using meteorological in-
formation derived from automatic weather stations (Es-
sery, 2015; Liston and Elder, 2006a) or atmospheric mod-
els (Alonso-González et al., 2018; Wrzesien et al., 2018).
Nonetheless, such snowpack models exhibit a number of lim-
itations that may cause strong biases in the SWE simulations
(Wrzesien et al., 2017). Snowpack model uncertainties orig-
inate partly from their simplified representation of physical
processes (Günther et al., 2019; Fayad and Gascoin, 2020)
but most importantly from errors in the meteorological forc-
ing (Raleigh et al., 2015). In this context, the fusion of remote
sensing products with snowpack models using data assimila-
tion is key to improve snowpack simulations (Girotto et al.,
2020; Largeron et al., 2020).

Several remotely sensed products may be used to up-
date snowpack models. The fractional snow-covered area
(FSCA) from optical sensors was the first product to be as-
similated (Clark et al., 2006; Durand et al., 2008; Kolberg
and Gottschalk, 2006). FSCA assimilation remains exten-
sively used in both distributed (Margulis et al., 2016) and
semi-distributed models (Thirel et al., 2013) due to the long
time series of snow-covered area (SCA) observations and the
development of new higher-resolution products (Baba et al.,
2018). It is possible to further improve snowpack simulations
by assimilating snow depths (Deschamps-Berger et al., 2022;
Smyth et al., 2020). The assimilation of remotely sensed
surface reflectances may also be beneficial (Charrois et al.,
2016; Cluzet et al., 2020; Revuelto et al., 2021b), but fur-
ther research is needed on this topic to demonstrate advan-
tages over assimilating derived higher-level products such as
FSCA and albedo.

Whereas snowpack models are increasingly available as
open-source software and remote sensing products as open
data, to our knowledge there is no standalone open-source
application to develop multiple snow data assimilation ex-
periments. This specific issue was highlighted by Fayad et al.
(2017) as a strong limitation to advancing knowledge on
the snow cover in regions which receive less attention from
the mainstream research community. In addition, some data
assimilation frameworks are based on highly specific im-
plementations tied to operational constraints (Cluzet et al.,
2021). This situation prevents the development of repro-
ducible snow data assimilation studies and challenges the
comparison of the performance of different snow data assim-
ilation algorithms.

This is why we have developed a new open-source data
assimilation toolbox, the Multiple Snow Data Assimilation
System (MuSA). MuSA is an ensemble-based snow data as-
similation tool. It enables the fusion of multiple observations
with a physically based snowpack model while taking into
account various sources of forcing and measurement uncer-
tainty. It is an open-source collaborative project entirely writ-
ten in the Python programming language. It should facili-
tate the development of snow data assimilation experiments,
as well as the generation of snowpack reanalyses and near-
real-time snowpack monitoring. It was designed with a mod-
ular structure to foster collaborative development, allowing
advanced users to seamlessly implement new features with
minimal effort. In the following sections, we describe the
features of MuSA and show different examples of its usage,
assimilating remote sensing products of different spatiotem-
poral resolutions.

2 Overview of the data assimilation system

The core of MuSA is an energy and mass balance of the
snowpack model, Flexible Snow Model (FSM2; Essery,
2015). FSM2 has several options for the parameterizations
of key processes related to the energy and mass balance of
the snowpack. The most complex configuration is chosen by
default in MuSA, leading to a more detailed simulation of
the internal snowpack processes. Albedo is computed from
the age of the snow, decreasing its value as snow ages and
increasing it with fresh snowfalls. Thermal conductivity of
the snowpack is computed as a function of the snow density.
Snow density is computed considering overburden and ther-
mal metamorphism. Turbulent energy fluxes are computed as
a function of atmospheric stability. Meltwater percolation in
the snowpack is computed using the gravitational drainage.
Although this is the default configuration, it is possible to
choose any other FSM2 setup, which may result in slight
performance differences in terms of both the computational
cost and the accuracy of the model (Günther et al., 2019). As
envisaged in Westermann et al. (2022), the potential to run
multiple model configurations leaves the door open for pur-
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suing rigorous model comparison using the model evidence
framework (MacKay, 2003) in the cryospheric sciences.

MuSA was designed as a Python program encapsulat-
ing the FSM2 Fortran code (Fig. 1). It handles the forc-
ing and initial files, as well as the FSM2 runs and out-
puts, by internally generating the required ensemble of sim-
ulations from simple configuration (config.py) and con-
stants (constants.py) files that should be filled by the
user to both configure the MuSA environment and define
the priors, respectively. Then, it solves most of the chal-
lenges of ensemble-based snow data assimilation frame-
works for the user, as it internally handles the input/out-
put (I/O) and parallelization while keeping track of the en-
sembles that should flow in different ways depending on
the chosen data assimilation (DA) algorithm. The data as-
similation algorithms are independently implemented on a
grid cell basis, allowing both single-cell and parallel spa-
tially distributed simulations. The outputs of MuSA con-
sist of the posterior mean snow simulation from FSM2
(updated_idx_idy.csv), the posterior standard devi-
ations of the FSM2 ensemble (sd_idx_idy.csv), in-
formation related to the posterior perturbation parameters
and the observations (DA_idx_idy.csv), and the origi-
nal simulation without perturbation (OL_idx_idy.csv).
Additionally, it is possible to store the posterior ensemble of
every cell.

The following data assimilation algorithms are currently
implemented in MuSA:

– particle filter (PF; Gordon et al., 1993; van Leeuwen
et al., 2019);

– ensemble Kalman filter (EnKF; Evensen, 1994; van
Leeuwen, 2020);

– ensemble Kalman filter with multiple data assimilation
(EnKF-MDA; Emerick and Reynolds, 2012);

– particle batch smoother (PBS; Margulis et al., 2015), a
batch smoother variant of the PF;

– ensemble smoother (ES; van Leeuwen and Evensen,
1996), a batch smoother variant of the EnKF;

– ensemble smoother with multiple data assimilation (ES-
MDA; Emerick and Reynolds, 2013).

In its current version, MuSA is able to assimilate the follow-
ing variables:

– SWE [mm]

– snow depth [m]

– land surface temperature [K]

– fractional snow-covered area [–]

– albedo [–]

– sensible heat flux to the atmosphere [W m−2]

– latent heat flux to the atmosphere [W m−2].

We expect to provide support for even more variables in the
future. Note that the ensemble Kalman schemes involving
multiple data assimilation are iterative schemes (Stordal and
Elsheikh, 2015; van Leeuwen et al., 2019). For the PF, sev-
eral standard resampling algorithms (see Li et al., 2015, for a
review) are available in MuSA, namely bootstrapping, resid-
ual resampling, stratified resampling, and systematic resam-
pling. In addition to these standard resampling techniques,
we have also implemented a heuristic approach based on
redrawing from a normal approximation to the posterior,
which is loosely inspired by more advanced particle meth-
ods (Särkkä, 2013; van Leeuwen et al., 2019). This redraw-
ing from the approximate posterior generates new samples
of perturbation parameters at each assimilation step. In the
case of complete degeneracy, where all the weight is on one
particle, this redrawing technique instead uses the prescribed
prior standard deviations for generating perturbation param-
eters, corrected by a scaling factor (to be selected by the user,
fixed to 0.3 by default) to avoid overdispersing the ensemble.

The inputs of MuSA are composed of (i) gridded mete-
orological forcing to generate the ensemble of FSM2 simu-
lations and (ii) gridded observations which are assimilated.
Optionally, it is possible to provide a mask, covering areas
where simulations should not be implemented in order to
save computational resources or restrict the runs to a specific
area inside the provided domain. These inputs must be pro-
vided as files encoded in the Network Common Data Form
(netCDF; Rew and Davis, 1990) format. MuSA is able to
handle different observational products as long as the meteo-
rological forcing and the observations share the same geom-
etry (i.e., the same number of cells in the longitudinal and
latitudinal dimensions). As in many other distributed snow-
pack models, there is currently no communication between
grid cells in MuSA. This makes MuSA easily parallelizable
as each cell is simulated and updated completely indepen-
dently of the others (i.e., embarrassingly parallel). Different
parallelization schemes are already implemented, including
multiprocessing for single-node runs and message passing
interface (MPI) and Portable Batch System job arrays, to
provide support for computing clusters. Due to the embar-
rassingly parallel nature (no communication between tasks)
of the MuSA computational problem, other parallelization
schemes can easily be implemented. All the data processing
is done by default in the temporary file system, but the user
can choose any other location such as a specific temporary
folder in a multi-node cluster or a random access memory
drive in a local workstation to speed up the I/O processes.

2.1 Ensemble generation

The DA algorithms implemented in MuSA all require a prior
ensemble of simulations to represent uncertainty. The num-
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Figure 1. MuSA internal workflow. k, d , `, Na, DAW, idx, and idy refer to the timing of the analysis step, number of observation times,
current assimilation cycle number, total number of assimilation cycles, data assimilation window, longitude cell index, and latitude cell index,
respectively.

ber of ensemble members (or, equivalently, particles; van
Leeuwen, 2009), which we denote byNe, should be specified
by the user, as this drastically affects both the computational
cost of the experiments and the performance of the data as-
similation algorithms. To generate an ensemble of snowpack
state trajectories, MuSA perturbs the meteorological forcing
to run an ensemble of FSM2 simulations. An arbitrary num-
ber of forcing variables can be perturbed. The perturbation
of the forcing is performed by drawing spatially independent
random perturbation parameters from a normal distribution
or lognormal distribution. The prior standard deviation and
mean of these distributions should be specified by the user.
MuSA supports normal or lognormal probability functions
to generate additive or multiplicative perturbations, respec-
tively, depending on the physical bounds of the variable to
be perturbed. Additive perturbations are typically used for air
temperature. Multiplicative perturbations are recommended
for precipitation to avoid negative values as well as for short-
wave radiation to avoid negative values and positive night-
time values.

Once the forcing is perturbed, MuSA partitions the pre-
cipitation between the liquid and solid phase. To estimate the
phase of the precipitation, two different approaches are im-
plemented. The simpler approach is based on a logistic func-
tion of the 2 m air temperature (Kavetski and Kuczera, 2007).
A more complex psychrometric energy balance method is

also implemented in MuSA. This approach uses the relative
humidity and 2 m air temperature to infer the surface tem-
perature of the falling hydrometeors, from which the phase
of the precipitation can be estimated (Harder and Pomeroy,
2013).

2.2 Meteorological forcing

The variables required as forcing to run MuSA include
downwelling (i.e., incoming) shortwave and longwave ra-
diation [Wm−2

], total (sum of liquid and solid) precipita-
tion [kgm−2 s−1

], surface atmospheric pressure [Pa], 2 m
air temperature [K], relative humidity [%], and 10 m wind
speed [m s−1

]. In the current version of MuSA, the forc-
ing must be provided in the netCDF format at an hourly
time step in a grid-based geometry, without any specific re-
quirement regarding the native spatial resolution. The most
likely candidates to be used as meteorological forcing for
MuSA will be the outputs of atmospheric simulations or au-
tomatic weather station data. These include atmospheric re-
analyses, such as ERA5 (Hersbach et al., 2020) or MERRA-
2 (Gelaro et al., 2017), and regional climate model outputs
(Alonso-González et al., 2021) as well as the outputs of dif-
ferent downscaling approaches driven by the aforementioned
datasets (e.g., Fiddes and Gruber, 2014; Gutmann et al.,
2016; Havens et al., 2017; Fiddes et al., 2022; Liston and El-
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der, 2006b). Other sources of information include automatic
weather stations or gridded products derived from the inter-
polation of point-scale meteorological information. The forc-
ing variables should be provided in the International System
of Units, but it is possible to perform simple unit transfor-
mations internally to facilitate the preprocessing of different
forcing data sources, using the following affine transforma-
tion.

ψk = aφk + b , (1)

where φk (for k = 0, . . .,n) is a forcing time series provided
by the user with units8 and ψk with converted units9 is the
transformed forcing time series after scaling by a with units
98−1 and translating by b with units 9.

Each grid cell is solved independently, which includes the
reading of the forcing that occurs along the time dimension.
Otherwise, each process would have to store considerably
more data in memory, leading to more costly I/O operations
that would slow down the run time. Even so, just reading
along the time dimension can come with a considerable com-
putational cost if the time dimension is large. To alleviate
this, the time spent reading the forcing can be reduced by
setting the chunk (a subset of the file to be read or written as
a single I/O operation) of the netCDF forcing files along the
time dimension. To speed up the subsequent relaunching of
the simulations when smoothing and filtering, MuSA gener-
ates an intermediate binary file with the forcing information
needed to run a complete simulation for each grid cell.

2.3 Observations and masked cells

MuSA is able to assimilate an arbitrary number of different
observations that can be irregularly distributed in time and
space. It is also possible to perform joint-assimilation ex-
periments that assimilate more than one variable type at the
same time. A temporally and spatially constant scalar corre-
sponding to the assumed observation error variance must be
provided for each type of observation that is to be assimi-
lated. This assumption implies a diagonal observation error
covariance matrix, R, which is tantamount to assuming that
observation errors are uncorrelated in both time and space.
Note that this formulation allows the user to account for dif-
ferences in observation error that arise in the case when a
variable is observed by multiple sensors with varying accu-
racy. By modifying the likelihood, it would also be possible
to account for non-Gaussian observation errors (Fletcher and
Zupanski, 2006; Fowler and van Leeuwen, 2013), but this is
not yet supported in MuSA. The time step of the observations
does not have to be the same as that of the forcing so that the
observations can be irregularly spaced in time. Also, it is not
necessary that the observations of the different variables oc-
cur at the same time step, allowing the assimilation of prod-
ucts from different satellite platforms with different orbits.
Optionally, a binary mask can be provided in a separate file
to delineate the basin of interest. If provided, MuSA will skip

the cells that are not covered by the mask. Again, the mask
must be provided on the same grid as the forcing and the ob-
servations. Many remotely sensed products exhibit gaps due
to the presence of clouds or failures in the remote sensing
devices. As a general rule we do not recommend filling the
gaps of the observed series. These filled data would exhibit a
different error variance than the direct estimations from the
remote sensors, introducing uncertainties which are not com-
patible with the data assimilation process. MuSA will inter-
nally handle the gaps in the observations, provided that the
netCDF files are generated using the aforementioned conven-
tions, assimilating just the time steps where information is
available.

3 Data assimilation

Data assimilation (DA) is the exercise of fusing uncertain
information from observations and (typically) geoscientific
models (Evensen et al., 2022; Reich and Cotter, 2015). The
DA schemes used in MuSA vary in their approach to state
estimation as well as in the underlying assumptions and al-
gorithms employed. In this section we provide an overview
of these schemes as well as the underlying theory. Readers
well versed in DA could consider skipping this entire section
or at least skipping to Sect. 3.4 and 3.5 where the algorithms
are presented.

3.1 Bayesian inference

In line with most modern approaches to DA (Wikle and
Berliner, 2007; Carrassi et al., 2018; van Leeuwen et al.,
2019), the assimilation schemes used in MuSA are built on
the foundation of Bayesian inference (e.g., Lindley, 2000;
MacKay, 2003; Särkkä, 2013; Nearing et al., 2016). In this
approach, the target quantity is the posterior distribution
p(x|y), the probability of the model state x ∈ Rm given the
observations y ∈ Rd , which can be inferred using Bayes’
rule:

p(x|y)=
p(y|x)p(x)

p(y)
, (2)

in which p(y|x), the probability of the observed data given a
model state, is called the likelihood and p(x), the probabil-
ity of the state before considering the observations, is known
as the prior. According to the likelihood principle, the like-
lihood should be seen as a function of the model state and
not of the fixed observations. So it is implicitly understood
that the state is as a vector of random variables, while the ob-
servation vector is deterministic. In this Bayesian interpreta-
tion, rather than being narrowly synonymous with frequency,
probability is a broad measure of uncertainty. The evidence
(or marginal likelihood) in the denominator of Eq. (2) is
given by

p(y)=

∫
p(x,y)dx =

∫
p(y|x)p(x)dx , (3)
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where the range of integration is understood to be over all
possible values of x, namely the support of the prior. This
evidence is just a function of the observations, so it simply
serves as a normalizing constant in this incarnation of Bayes’
theorem, which we can rewrite as

p(x|y)∝ p(y|x)p(x) , (4)

to emphasize that the posterior is proportional to the product
of the likelihood (what the data tell us) and the prior (what
we believed before considering the data). These are usually
probability density rather than mass functions as we tend to
deal with continuous variables in DA. Since the posterior
must integrate to 1, we can safely ignore the evidence term as
long as we are just dealing with the usual first level of infer-
ence where we fit a specific model. The evidence is nonethe-
less vital in the second level of inference where we compare
models (see MacKay, 2003), but we do not pursue that here.
Thus, we will henceforth use the notation Z = p(y) to em-
phasize that the evidence simply serves as a normalizing con-
stant in this overview.

To get the Bayesian engine to run and infer the posterior,
we need to specify the two input distributions on the right-
hand side of Eq. (2), namely the prior and the likelihood.
To construct the likelihood, we specify an observation (or
equivalently measurement, data-generating, forward) model
of the form

y =H(x?)+ ε , (5)

where x? contains the true values of the state variables, H(·)
is the observation operator which maps from state to obser-
vation space, and ε is the observation error. Often, as is the
case in MuSA, the observation operator picks out predicted
observations, i.e., the state variables that correspond to ob-
servations, from the full state vector. As is commonly done
in DA (Carrassi et al., 2018), we assume that the observation
errors are additive, are unbiased, and follow a Gaussian dis-
tribution; i.e., ε ∼N(0,R), where R is the observation error
covariance matrix. Thereby the likelihood becomes

p(y|x)= Aexp
(
−

1
2
εTR−1ε

)
= Aexp

(
−

1
2

[
y− ŷ

]TR−1 [y− ŷ]) , (6)

where A= det(2πR)−1/2 is a normalizing constant, (·)T de-
notes the transpose, ŷ =H(x) denotes the predicted obser-
vations, and we have used ε = y− ŷ conditional on x be-
ing true. Roughly speaking, the likelihood can be seen as a
model misfit term which quantifies how likely the actual ob-
servations are given a particular model state. The states with
a higher likelihood will correspond to those with predicted
observations closer to the actual observations. The next in-
gredient is the prior distribution over states, p(x), which
can be specified based on initial beliefs, which may include

physical bounds, expert opinion, “objective” defaults (using,
e.g., maximum entropy), or knowledge from earlier analyses
(Lindley, 2000; MacKay, 2003; Banner et al., 2020). For the
latter, consider the case of assimilating two conditionally in-
dependent observations y1 and y2. Then the posterior can be
obtained using either batch or recursive estimation (Särkkä,
2013). The batch approach involves solving directly for

p(x|y1,y2)∝ p(y1,y2|x)p(x)= p(y2|x)p(y1|x)p(x) , (7)

while for the recursive approach we note that

p(x|y1)∝ p(y1|x)p(x) , (8)

so we can split up the batch solution by first conditioning on
y1 to obtain an intermediate posterior; then we use this as a
prior when updating with y2 to obtain the full posterior as
follows:

p(x|y1,y2)∝ p(y2|x)p(x|y1) . (9)

This recursive approach will give the same answer as the
batch approach, but it can often be helpful to split the infer-
ence into smaller chunks, especially for dynamic problems.
We can extend recursive estimation to an arbitrary number of
observations as long as they are conditionally independent.

In theory, evaluating the posterior simply involves tak-
ing the product of two terms. Naïvely, this suggests that we
can estimate the posterior through a simple grid approxima-
tion (MacKay, 2003). Unfortunately, inferring the posterior
is usually akin to looking for a needle in a haystack due
to the curse of dimensionality (Snyder et al., 2008), which
manifests itself when we have a high dimensional state space
and/or highly informative data. As such, we need to adopt ef-
ficient algorithms when performing DA in practice. Roughly
speaking, the most widely used Bayesian DA schemes can
be split into two major computational approaches: varia-
tional techniques and Monte Carlo methods (Carrassi et al.,
2018). Despite success in operational meteorology (Bannis-
ter, 2017), the variational approach has received less atten-
tion in cryospheric applications (Dumont et al., 2012), since
it involves gradient terms that are difficult to implement
and has not yet shown any clear gains in performance over
Monte Carlo. As such, in MuSA we restrict ourselves to
Monte Carlo methods where the naming reflects that these
approaches rely on using (pseudo)random numbers to sam-
ple from probability distributions (MacKay, 2003).

3.2 Prediction, filtering, and smoothing

The subset of Monte Carlo methods used in MuSA can be
split into two classes: those derived from the EnKF (Evensen,
1994) and those derived from the PF (Gordon et al., 1993).
These can be further subdivided into filters and smoothers de-
pending on how time dynamics are handled (Carrassi et al.,
2018). As such, it is instructive to appreciate the differences
between stochastic prediction, filtering, and smoothing (see
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Jazwinski, 1970; Särkkä, 2013) as well as how these are im-
plemented in MuSA. To do so, we introduce the following
notation: we consider discrete points in time tk = t0+ k1t
for k = 0, . . .,n, where t0 is the initial time and 1t is the
model time step and we let xk = x(tk) denote the state at
a given time. We employ analogous notation for the observa-
tions yk , but (without loss of generality) we assume that the
initial time is unobserved. Note that in practice we usually
do not have observations at every model time step; we have
just assumed this here to simplify notation. The extension of
filters and smoothers to the more realistic case with sparse
observations in time is straightforward and merely requires a
slight change in indexing so that filtering and smoothing only
take place using predicted observations at observation times.

In DA, prediction involves estimating the future state given
past observations: p(xk|y1:`), where y1:` =

[
y1, . . .,y`

]
and

` < k. The archetypal example of this is the familiar task
of weather forecasting through ensemble-based numerical
weather prediction (Bauer et al., 2015). In the context of pre-
diction, the concepts of future and past are just relative to
one another and not necessarily representative of real time.
So one can also make predictions of the past, as long as any
observations considered are from the even more distant past.
Since prediction is a step in both filtering and smoothing,
we explain how to implement it probabilistically. Prediction
from k− 1 to k can be formulated as follows:

xk =M(xk−1)+ ηk−1 , (10)

where M(·) is the dynamical model (FSM2 in MuSA) and
η ∼ N(0,Q) is the additive model error term which we as-
sume to be independent in time and follow a zero-mean
Gaussian distribution with covariance matrix Q. These as-
sumptions can be relaxed without loss of generality, but their
convenience and broad justifiability mean that they are of-
ten employed (Carrassi et al., 2018). Crucially, the above
prediction step produces Markovian (memoryless) dynam-
ics where the current state depends only on the previous
state and noise. The Markov property is crucial in mak-
ing the filtering and smoothing problems tractable. It im-
plies p(xk|x0:(k−1))= p(xk|xk−1), which lets us factorize
and simplify distributions such as the full prior as follows:

p(x0:k)= p(xk|x0:(k−1))p(x0:(k−1))

= p(xk|xk−1)p(x0:(k−1)) , (11)

where the transition density is Gaussian of the form
p(xk|xk−1)= N(xk|xk−1,Q). Applying this recursively we
obtain

p(x0:k)= p(xk|xk−1)p(xk−1|xk−2). . .p(x1|x0)p(x0)

= p(x0)

k∏
j=1

p(xj |xj−1) . (12)

Using this kind of factorization together with marginalization
also helps us construct the marginal predictive distribution

p(xk|y1:`), where ` < k as follows:

p(xk|y1:`)=

∫
p(xk,xk−1|y1:`)dxk−1

=

∫
p(xk|xk−1)p(xk−1|y1:`)dxk−1 . (13)

This is the Chapman–Kolmogorov equation (Särkkä, 2013),
which can be applied recursively to obtain the predictive dis-
tribution at the current time step using the transition density
together with previous predictive distributions.

From prediction we move to filtering, which is the estima-
tion of the current state given current and past observations:
p(xk|y1:k). This is the problem solved by sequential DA
where an archetypal example is the initialization of numer-
ical weather predictions as new observations become avail-
able to delay the effects of chaos (Bauer et al., 2015). To
construct the filtering distribution we first re-introduce our
Gaussian observation model into the dynamical context and
make the usual assumption that the current observations are
conditionally independent of both the observation and state
histories (Särkkä, 2013), resulting in the dynamic likelihood

p(yk|x0:k,y1:(k−1))= p(yk|xk)

= Akexp
(
−

1
2

[
yk − ŷk

]TR−1
k

[
yk − ŷk

])
, (14)

where ŷk =H(xk) denotes the predicted observations and
we have added a time index to the normalizing constant (Ak)
and the observation error covariance matrix (Rk) to empha-
size that both the number and types of observations may vary
in time. By combining Markovian state dynamics with a con-
ditionally independent observation model, we end up with
a state-space or hidden Markov model (Cappé et al., 2005)
where the states at each time step are hidden (or latent) be-
cause they are not observable due to measurement error. The
filtering distribution is obtained by combining the predictive
distribution (which serves as the prior) and the dynamic like-
lihood through Bayes’ theorem:

p(xk|y1:k)∝ p(yk|xk)p(xk|y1:(k−1)) . (15)

As such, prediction and filtering can be applied one after the
other in time to sequentially obtain the filtering distributions
of interest for all integration time steps k = 1, . . .,n. That is,
starting from the initial prior p(x0), we run the dynamical
model to k = 1 to obtain the transition density in the prod-
uct p(x1|x0)p(x0) and marginalize to obtain the predictive
distribution p(x1), which we use as the prior when assim-
ilating the observations y1 to estimate the filtering distribu-
tion p(x1|y1). We continue this cycle, running the dynamical
model to k = 2 to obtain p(x2|x1)p(x1|y1) and marginaliz-
ing to obtain p(x2|y1), which we use as the prior when as-
similating y2 to arrive at p(x2|y1:2). This filtering process of
“online” assimilation as observations become available se-
quentially in time is appealing for operational forecasting,
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since it can continue indefinitely with low memory require-
ments while outputting the filtering and prediction distribu-
tions of interest. In practice when using Monte Carlo meth-
ods, we do not operate with the distributions themselves but
rather with an ensemble of samples from these. Typically,
due to the often prohibitively large size of a full spatiotempo-
ral ensemble, one would only store summary statistics such
as the posterior mean and standard deviation of the state for
each point in space and time as the outputs of the analysis.

In addition to filtering, we are also able to solve some
smoothing problems in MuSA. The key difference between
filtering and smoothing is that the latter considers future
observations; i.e., the (marginal) smoothing distribution is
p(xk|y1:`) where ` > k. Several types of smoothing prob-
lems exist (Cosme et al., 2012; Särkkä, 2013), namely fixed-
lag smoothing (`= k+l with l constant), which is equivalent
to filtering but where the state is lagged relative to the obser-
vations; fixed-point smoothing (k is fixed) where the poste-
rior at a fixed point in time (such as an initial condition) is
conditioned on both past and future observations; and fixed-
interval smoothing (` is fixed) where we estimate the poste-
rior for points in a time interval given all observations in that
interval. In MuSA we focus on a form of the fixed-interval
smoothing known as batch smoothing, in which the states
within the time interval, henceforth called the data assimila-
tion window (DAW), are updated in a single batch using all
observations such that `= n.

The batch-smoothing approach has been shown to be es-
pecially well suited for reanalysis-type problems in land and
snow data assimilation, since it allows information from ob-
servations to propagate backward in time (Dunne and En-
tekhabi, 2005; Durand et al., 2008). We will restrict our atten-
tion to strong-constraint batch smoothing with indirect up-
dates (Evensen, 2019; Evensen et al., 2022) where it is as-
sumed that the dynamical model is perfect (i.e., no model er-
ror η) and that all uncertainty stems from parameters that are
constant within the DAW. This approach is adopted for both
simplicity and the fact that it ensures that the updated states
are dynamically consistent with the physics in the model. It
also has the advantage of implicitly ensuring that state vari-
ables such as snow depth or SWE remain within their physi-
cally non-negative bounds. In this approach, an ensemble of
realizations of the model are run forward for an entire DAW
during which all the observations and the corresponding pre-
dicted observations from the model are stored. At the end of
the DAW, these observations are all assimilated simultane-
ously in a batch update to provide samples from the poste-
rior parameter distribution. For seasonal snow the water year
becomes a natural choice for the DAW. With this choice, po-
tentially highly informative observations made during the ab-
lation season are able to inform the preceding accumulation
season (Margulis et al., 2015). This is crucial in peak SWE
reconstruction, which is of great interest to snow hydrologists
(Dozier et al., 2016).

3.3 Consistency

A potential problem in DA is that the stochastic perturbations
and updates that are imposed on the model and the resulting
dynamics may lead to inconsistent model states. We can de-
fine (at least) two different types of inconsistencies: (i) dy-
namical inconsistency and (ii) physical inconsistency where
model states and/or parameters violate their physical bounds.

Dynamical inconsistency with respect to the underlying
deterministic model can enter into the DA exercise either
through stochastic model error terms in prediction steps or
through the assimilation step itself. In the case of weak-
constraint DA, where imperfections in the model are rep-
resented by stochastic model error terms, this kind of weak
inconsistency exists by design and is a feature rather than
a bug. In particular, the dynamical inconsistency created by
the stochastic terms is meant to explicitly account for model
uncertainty arising for example due to unresolved processes
(Palmer, 2019). As such, the open-loop (no DA) stochastic
model dynamics will be inconsistent with a deterministic ver-
sion of the model. Arguably calling such a stochastic model
dynamically inconsistent is somewhat of a misnomer, since
it aspires to be more consistent with reality than a purely de-
terministic version of the same model.

The assimilation step itself can also introduce dynami-
cal inconsistencies, particularly when applying filtering al-
gorithms (Dunne and Entekhabi, 2005). For the EnKF these
manifest as sawtooth-like patterns (jumps) in the dynamics at
each assimilation step due to the fact that the Kalman-based
analysis actually moves the ensemble from being samples of
the prior to being (approximate) samples from the posterior.
For the PF dynamical inconsistency also enters at the assim-
ilation step whenever resampling is performed. The resam-
pling step tends to kill off unpromising low-weight particles
while reproducing more promising higher-weight particles.
Since this evolutionary step is implemented sequentially in
time when filtering, it will also introduce discontinuities into
the dynamics of the model ensemble. In the case of both the
EnKF and the PF, the discontinuity introduced at the assim-
ilation step is an expected result of filtering. If one wishes
to avoid this behavior, one should instead turn to smoothing
algorithms.

Physical inconsistency can also enter through both
stochastic perturbations and the assimilation step itself.
Many snowpack state variables (and potential observables)
have a relatively limited dynamic range and are either lower
bounded, e.g., snow depth and SWE are non-negative, or
double bounded, e.g., snow albedo and FSCA are physically
confined to the range [0,1]. This means that directly applying
assimilation routines which assume unbounded (e.g., Gaus-
sian) distributions on the prior, likelihood, or model error can
lead to physical inconsistencies in snow DA.

A simple but naïve solution is to just explicitly enforce
state variables to lie within their physical bounds using min-
imum and/or maximum functions. Unfortunately, this is the
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same as truncating the underlying probability distributions
and may degrade the performance of the assimilation scheme
due to a strong violation of assumptions. Although this is a
major concern for the EnKF-based schemes, which make ex-
plicit assumptions about Gaussianity, in practice it may also
impact the PF where Gaussian distributions remain a conve-
nient choice. A better way to deal with issues around physical
inconsistency is to apply transformations to bounded random
variables. Typically, these transformations will map such ran-
dom variables from the bounded physical space to an un-
bounded space that can accommodate Gaussian distributions
through Gaussian anamorphosis techniques (Bertino et al.,
2003). This can be carried out using transforms that have
been empirically constructed or using analytic functions. In
MuSA, following Aalstad et al. (2018), we employ analytical
Gaussian anamorphosis where we use a logarithm transform
for variables that are physically lower bounded and a logit
transform for variables that are physically double bounded.
The corresponding inverse functions, i.e., the exponential
and logistic transforms, can be used to map these unbounded
variables back to the bounded physical space. For bounded
variables we will often construct the prior distributions using
these transforms. For example, assigning a lognormal prior
can ensure that a variable never exceeds its lower bounds.
In such a case the assimilation step takes place in the un-
bounded log-transformed space where this variable is nor-
mally (i.e., Gaussian) distributed, while the model integration
takes place in the bounded physical space, which can be re-
covered using the exponential transform, where the variable
is lognormally (i.e., log-Gaussian) distributed.

A key step taken in MuSA to reduce inconsistencies in
snow data assimilation is to split the state vector in two:
x = [u, v], where u ∈ Rmp denotes parameters and v ∈ Rms
denotes internal model states. Only the parameters, which
can include both internal model parameters and forcing per-
turbation parameters, are assumed to be random variables
in MuSA. This approach corresponds to the so-called forc-
ing formulation (as opposed to the model-state formula-
tion) of the DA problem (Evensen et al., 2022). The inter-
nal model states are taken to be deterministic given these
parameters. Such a setup is tantamount to assuming that all
the uncertainty in the model dynamics stems from the forc-
ing data and internal parameters. This assumption is largely
in line with previous findings (Raleigh et al., 2015), par-
ticularly for intermediate-complexity snow models such as
FSM2 (Günther et al., 2019). This is gradually becoming a
relatively standard setup in snow data assimilation experi-
ments (Margulis et al., 2015; Magnusson et al., 2017; Aal-
stad et al., 2018; Alonso-González et al., 2021; Cluzet et al.,
2020, 2022) although it has arguably not been as properly
formalized as elsewhere in the DA literature (Evensen, 2019;
Evensen et al., 2022). Through such a split we ensure that in-
ternal model states remain both dynamically and physically
consistent given the parameters. The parameters, in turn, are
made physically consistent by applying analytical Gaussian

anamorphosis transforms in the DA scheme. As such, we will
let u denote anamorphosed parameters that have undergone
a forward transform to the unbounded space. It is implicitly
assumed that these are inverse-transformed to the physical
space before they are passed to FSM2 to help evolve the in-
ternal states forward in time.

In the filtering algorithms in MuSA, both the stochastic
parameters and the conditionally deterministic internal states
are dynamic. The parameter dynamics evolve according to
simple jitter (Farchi and Bocquet, 2018) of the following
form:

uk = uk−1+ ηk−1 , (16)

where we recall that ηk−1 ∼ N(0,Q) and that the parameters
are defined in the unbounded transformed space. Probabilis-
tically, this corresponds to the Markovian transition density
p(uk|uk−1)= N(uk|uk−1,Q). The internal state variables,
on the other hand, evolve according to the full dynamical
model (FSM2), which also depends on the dynamic param-
eters uk through vk =M(uk,vk−1). These dynamics corre-
spond to the transition density (e.g., Evensen, 2018)

p(vk|uk,vk−1)= δ (vk −M(uk,vk−1)) , (17)

where δ(·) is the Dirac delta function, which emphasizes that
the internal state is not only Markovian but also conditionally
deterministic given the parameters. This just formalizes that
the only uncertainty in the internal state dynamics stems from
the parameters to which we assign an initial prior p(u0).
Without loss of generality and to simplify the presentation
of the theory, we assume that we are dealing with seasonal
snow, so the initial prior for the internal snow states, p(v0), is
known: v0 = ν0. Thus p(v0)= δ(v0− ν0), since the annual
integration period starts at the beginning of the water year
where we assume that a snowpack has not yet formed, so in-
ternal snow state variables are either 0 (snow depth, SWE)
or undefined (e.g., snow surface temperature). Together with
the dynamic likelihood p(yk|uk), these distributions can be
used to construct the target marginal filtering distribution
p(uk|y1:k), which we can estimate with ensemble Kalman or
particle-filtering algorithms. By combining this marginal dis-
tribution with appropriate densities, we can also estimate the
joint filtering distribution p(uk,vk|y1:k) from which we can
compute posterior expectations for the internal states of inter-
est. The derivation of this distribution is relatively analogous
to that for the smoother below but involves more steps and
is thus not included herein. In practice, (approximate) sam-
ples from this joint filtering distribution are obtained from the
posterior ensemble after each observation time and the sub-
sequent assimilation step while running the filtering schemes
in MuSA.

For the smoothing algorithms in MuSA, we instead as-
sume that the dynamical model is perfect, so the components
of u are constant (i.e., time-invariant) but uncertain param-
eters, which can be either internal parameters or related to
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the forcing, while v0:n = [v0, . . .,vk, . . .,vn] still denotes the
dynamic internal state variables with initial state v0 at t0 and
final state vn at tn, which is the end of what is now an annual
DAW. The prediction step with the assumed perfect dynam-
ical model then becomes vk =M(u,vk−1), which implies
the following transition density:

p(vk|vk−1,u)= δ (vk −M(u,vk−1)) . (18)

This is just a formal way of denoting that the only uncertainty
in the dynamics stems from time-invariant but uncertain pa-
rameters to which we assign a prior. As noted by Evensen
(2019), when these perturbation parameters are interpreted
as errors, this can be viewed as a limiting case of perfect
time correlation where the errors become constant biases.
The lack of dynamics in the perturbation parameters is thus
akin to assuming that errors in the forcing are constant in
time within a particular water year. This simplifying assump-
tion imposes a longer memory in the system than with jitter
and facilitates the propagation of information backward in
time using smoothers. Given this transition density, the full
prior for the entire DAW can be factorized as follows:

p(x)= p(u,v0:n)= p(v0:n|u)p(u)

= p(u)p(v0)

n∏
k=1

p(vk|vk−1,u) , (19)

where as before p(v0)= δ(v0−ν0) is the prior for the initial
condition of the state. The full posterior then becomes

p(x|y1:n)= p(u,v0:n|y1:n)∝ p(y1:n|u)p(u,v0:n) , (20)

which can be marginalized to obtain the marginal posterior
for the parameters

p(u|y1:n)∝

∫
p(y1:n|u)p(u,v0:n)dv0:n = p(y1:n|u)p(u) , (21)

where the batch likelihood is

p(y1:n|u)= A1:nexp
(
−

1
2
[y1:n− ŷ1:n]

TR−1
1:n[y1:n− ŷ1:n]

)
, (22)

in which ŷ1:n =
[̂
y1, . . ., ŷk, . . ., ŷn

]
contains the pre-

dicted observations ŷk =H (u,vk) for all observation
time steps and A1:n = det(2πR1:n)

−1/2, where R1:n =

diag(R1, . . .,Rk, . . .,Rn) is the batch observation error co-
variance matrix, which is a block diagonal matrix contain-
ing the observation error covariance matrices for all obser-
vation time steps. Note that since the state v0:n is condi-
tionally deterministic given u, it is not included in the batch
likelihood. By combining the batch likelihood with the prior
for the parameters, we have all that we need to estimate the
posterior for the parameters p(u|y1:n)∝ p(y1:n|u)p(u). The
main difference from the filtering distribution is that all the
data are assimilated in a single batch to update static pa-
rameters. Once we have obtained the posterior for the pa-
rameters, due to the strong constraint, we recall that we can

easily recover the joint posterior for the states and param-
eters p(v0:n,u|y1:n)∝ p(v0:n|u)p(u|y1:n) from which we
can compute posterior expectations for the internal states of
interest. In practice, the steps involved in estimating the pos-
terior and subsequent expectations depend on which batch-
smoothing algorithm is used.

3.4 Particle methods

Particle methods (van Leeuwen, 2009; Särkkä, 2013), also
known as sequential Monte Carlo methods (Cappé et al.,
2005; Chopin and Papaspiliopoulos, 2020), are appealing,
since they impose few assumptions, can be relatively easy
to derive, and are simple to implement in their basic form.
In principle, they can be used to solve any Bayesian in-
ference problem, including the aforementioned filtering and
smoothing problems. The so-called bootstrap filter described
by Gordon et al. (1993) arguably marks the introduction of
particle filters to the wider scientific community. Nonethe-
less, the underlying idea of sequential importance resam-
pling (SIR) was already well known in the statistics literature
from which it emerged (see Smith and Gelfand, 1992, and
references therein). For a more up-to-date perspective, van
Leeuwen et al. (2019) provide a comprehensive review of
particle methods for geoscientific data assimilation, includ-
ing a discussion of the state of the art and promising avenues
for further developments.

Particle methods have rapidly become the most widely
adopted approach to data assimilation within the snow sci-
ence community. The PF, in particular, has become increas-
ingly popular in snow data assimilation studies. This began
with the seminal work of Leisenring and Moradkhani (2011)
and Dechant and Moradkhani (2011) showing how the PF
can outperform the EnKF in snow data assimilation appli-
cations, assimilating SNOTEL SWE and passive microwave
data, at least if relatively simple models and a large ensem-
ble are used. Charrois et al. (2016) subsequently applied the
PF in synthetic (twin) experiments that assimilated MODIS-
like reflectance data into the Crocus snow model for a site in
the French Alps. Magnusson et al. (2017) showed how snow
depth assimilation using the PF improved the estimation of
several variables, including SWE and snowmelt runoff, in an
intermediate-complexity snow model for many sites across
the Alps. The study of Baba et al. (2018) applied the PF
to assimilate novel SCA satellite retrievals from Sentinel-2,
demonstrating marked improvements in snowpack simula-
tions across the sparsely instrumented High Atlas Mountains
of Morocco. Piazzi et al. (2018) investigated the potential of
performing a joint assimilation of several snowpack variables
obtained from ground-based observations at three sites in the
Alps using the PF, noting that degeneracy was more likely
to occur for this setup than in more typical uni-variate snow
data assimilation experiments. Smyth et al. (2019) assimi-
lated monthly snow depth observations into an intermediate-
complexity snow model with the PF at a well-instrumented
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site in the California Sierra Nevada, improving both snow
density and SWE estimates with promising implications for
the assimilation of snapshots of snow depth retrieved from
airborne and spaceborne platforms. These results were con-
firmed by Deschamps-Berger et al. (2022), who showed that
the assimilation of a single snow depth map per season is
sufficient to improve the simulated spatial variability in the
snowpack. Recent efforts (Cantet et al., 2019; Cluzet et al.,
2021, 2022; Odry et al., 2022) have focused on the chal-
lenge of spatially propagating snowpack information from
observed to unobserved locations when assimilating in situ
snow depth and SWE data using the PF.

Another line of studies has adopted particle smoothing
schemes, particularly the particle batch smoother (PBS; Mar-
gulis et al., 2015), for snow reanalysis. Here a batch of re-
motely sensed, typically FSCA, observations are assimilated
simultaneously to weight (assign probability mass to) an en-
semble of model trajectories for the entire water year. Mar-
gulis et al. (2016) used the PBS to perform a 90 m res-
olution snow reanalysis for the California Sierra Nevada
covering the entire Landsat era from 1985 to 2015. Cortés
and Margulis (2017) applied a similar setup to conduct a
snow reanalysis for the extratropical Andes. Aalstad et al.
(2018) compared the performance of the PBS with ensemble-
Kalman-based smoothers when assimilating FSCA data from
Sentinel-2 and MODIS for sites in the high Arctic and found
that the PBS markedly outperformed non-iterative ensemble-
Kalman-based smoothers in line with Margulis et al. (2015).
Baldo and Margulis (2018) developed a multi-resolution
snow reanalysis framework using the PBS and demonstrated,
through tests in a basin in Colorado, that this could match
the performance of the original single-resolution approach at
a fraction of the computational cost. In DA experiments in
the Swiss Alps, Fiddes et al. (2019) showed how clustering
offers an alternative promising avenue for speeding up snow
DA with the PBS, allowing for hyper-resolution reanalyses.
Alonso-González et al. (2021) carried out a snow reanalysis
over the sparsely instrumented Lebanese mountains by forc-
ing FSM2 with quasi-dynamically downscaled meteorolog-
ical reanalysis data and subsequently assimilating MODIS-
based FSCA retrievals with the PBS. Liu et al. (2021) re-
cently performed an 18-year 500 m resolution snow reanaly-
sis for High Mountain Asia by using the PBS to jointly as-
similate MODIS and Landsat FSCA data. Although all of
these studies have focused on using FSCA data for snow re-
analysis, other remotely sensed retrievals could also be con-
sidered. For example, the work of Margulis et al. (2019) has
shown that the PBS can also be used to assimilate infrequent
lidar-based snow depth retrievals with marked improvements
in the estimation of snowpack-related variables.

Importance sampling is key to understanding these parti-
cle methods. Despite what the name may suggest, this is ac-
tually not an approach to directly generate samples from a
target distribution of interest. Instead, it allows us to estimate
expectations of functions with respect to a target distribu-

tion by drawing from another distribution that it is easier to
sample from (MacKay, 2003). In DA, the posterior is the tar-
get distribution of interest, and the expectation of some func-
tion g(x) with respect to the posterior is defined as follows
(Särkkä, 2013):

E
[
g(x)|y

]
=

∫
g(x)p(x|y)dx , (23)

where the expectation E[·] of g(x)= x yields the posterior
mean µ̂ and the expectation of g(x)= (x− µ̂)2 yields the
posterior variance σ̂ 2. If we could generate Ne independent
samples from the posterior, x(i) ∼ p(x|y), we could estimate
the expectation in Eq. (23) numerically using direct Monte
Carlo integration as follows:

E
[
g(x)|y

]
'

1
Ne

Ne∑
i=1

g
(
x(i)

)
, (24)

where the x(i) with i = 1, . . .,Ne denotes Ne independent
samples from the posterior. Thanks to the law of large num-
bers and the central limit theorem, we know that this approx-
imation will converge almost surely to the true expectation as
Ne→∞with a standard error inversely proportional to

√
Ne

(Chopin and Papaspiliopoulos, 2020). Unfortunately, we are
rarely able to generate independent samples directly from the
posterior.

In importance sampling, we instead use a proposal (or
importance) distribution q(x) that we know how to sam-
ple from, which must have at least the same support as the
posterior (i.e., q(x) > 0 wherever p(x|y) > 0 ). Then, by
multiplying the integrand with 1= q(x)/q(x), we can solve
Eq. (23) using importance-sampling-based Monte Carlo in-
tegration:

E
[
g(x)|y

]
=

∫
g(x)

p(x|y)

q(x)
q(x)dx

'
1
Ne

Ne∑
i=1

g(x(i))
p(x(i)|y)

q(x(i))

=
1
Ne

Ne∑
i=1

g(x(i))ŵ(x(i)) , (25)

where x(i) now denotes samples from the proposal and we
have defined the normalized weights ŵ(x)= p(x|y)/q(x).
Following the nomenclature of Chopin and Papaspiliopoulos
(2020), these weights are normalized in the sense that their
expectation with respect to q(x) equals 1. A hurdle remains
in that we only know the posterior up to an unknown nor-
malizing constant (i.e., the evidence Z), so in practice we
can only evaluate the un-normalized posterior. Recalling the
definition of the evidence in Eq. (3), we can nonetheless use
importance sampling to approximate it as follows:

Z =

∫
f (x)dx =

∫
f (x)

q(x)
q(x)dx '

1
Ne

Ne∑
i=1

w̃(x(i)) , (26)
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where f (x)= p(y|x)p(x) is the un-normalized posterior
and we have defined the un-normalized weights w̃(x)=
f (x)/q(x), which no longer have an expectation of 1 with
respect to q(x). Using the samples x(i) ∼ q(x), this evi-
dence approximation, and that p(x|y)= f (x)/Z, we can
now solve Eq. (23) as follows:

E
[
g(x)|y

]
=

1
Z

∫
f (x)

q(x)
q(x)dx '

Ne∑
i=1

g(x(i))w(x(i)) , (27)

where, letting w(i) = w(x(i)) for economy, the auto-

normalized weights are given by w(i) = w̃(i)
(∑Ne

j=1w̃
(j)
)−1

with the property that
∑Ne
i=1w

(i)
= 1. Note that with these

auto-normalized weights, q(x) also only needs to be known
up to a normalizing constant Zq , since any such constants
cancel out in the auto-normalization step. Furthermore, di-
rect Monte Carlo integration can be seen as a special case of
importance sampling where the proposal is the target distri-
bution itself which leads to uniformly equal weights with a
value of 1/Ne.

Mathematically, importance sampling is tantamount to
a particle representation of the posterior through a sum
of weighted Dirac delta functions centered on the sam-
pled states x(i) ∼ q(x) of the form p(x|y)'

∑Ne
i=1w

(i)δ(x−

x(i)) (Särkkä, 2013). We can see this by recalling that the
Dirac delta has the properties that

∫
δ(x− x(i))dx = 1 and∫

g(x)δ(x− x(i))dx = g
(
x(i)

)
, such that by inserting the

particle representation in Eq. (23) we have

E
[
g(x)|y

]
'

∫ Ne∑
i=1

g(x)w(i)δ
(
x− x(i)

)
dx =

Ne∑
i=1

g(x(i))w(i) , (28)

which is equal to the result in Eq. (27). This particle repre-
sentation is helpful, since we can conceptualize distributions
as consisting of a set of particles (or points) in state space
whose probability masses are given by their weights.

The catch with importance sampling is that, unless the pro-
posal is nearly identical to the target distribution, all the prob-
ability mass tends to collapse onto just a few particles as the
dimensions of a problem increase (MacKay, 2003). This is
the so-called degeneracy problem of particle methods, which
is closely tied to the aforementioned curse of dimensional-
ity (Farchi and Bocquet, 2018; Snyder et al., 2008). One way
to partly circumvent degeneracy in a sequential setting is to
employ resampling techniques (see Li et al., 2015) where a
new set of equally weighted particles is drawn based on the
weights (i.e., probability masses) of the existing particles.
Effectively, resampling tends to reproduce particles with a
higher weight while removing particles with a lower weight.
Resampling thus provides obvious links between particle
methods and more heuristic genetic algorithms, since the
weights can be interpreted as a kind of “fitness” (Chopin and
Papaspiliopoulos, 2020). The standard metric (e.g., Särkkä,
2013) for monitoring symptoms of degeneracy is the effec-

tive sample size

Neff =
1∑Ne

i=1
(
w(i)

)2 , (29)

where a healthy ensemble of particles would haveNeff =Ne,
while a completely degenerated ensemble has Neff = 1. This
metric can be used to adaptively determine the need for re-
sampling based on a requirement that the ratio Neff/Ne stays
above some “healthy” threshold. Although resampling en-
sures that weight is more evenly spread among the particles,
the occurrence of several identical particles results in sam-
ple impoverishment, which can in the worst case also lead
to a degenerate representation of the posterior. Particle diver-
sity can nonetheless often be rejuvenated implicitly through
stochastic terms (jitter) in the dynamical model or more ex-
plicitly with a few iterations of Markov chain Monte Carlo
(MCMC; Gilks and Berzuini, 2001).

Having outlined importance sampling and resampling, the
final step is to tie these steps together with the sequential
aspect of particle methods. In the context of both particle fil-
tering and smoothing, importance sampling can be applied
sequentially in time as observations become available to the
state-space model. For the particle filter, this occurs by first
drawing particles from the initial prior x(i)0 ∼ p(x0) and then
for k = 1, . . .,n performing SIR:

1. Propagate the particles forward in time through the dy-
namical model from time k−1 to k where new observa-
tions are available.

2. Calculate the auto-normalized weights w(i)k given the
current observations.

3. Resample the particles, possibly only if the ratio
Neff/Ne is below some threshold.

The recipes for implementing most flavors of particle
smoothers tend to be a little bit more involved (Särkkä,
2013). Fortunately, the particle batch smoother (PBS) in
MuSA is relatively straightforward, since in practice it is
equivalent to standard sequential importance sampling (SIS),
which is just SIR without the resampling step. As such, SIS
is quite prone to degeneracy. Nonetheless, an advantage with
SIS is that, due to the absence of resampling, the dynami-
cal state history of each particle will be completely consis-
tent with the dynamical model. For the PBS we are only
interested in the final (i.e., at time tn) weights w(i)n , which,
when attached to the full state histories, give us an approx-
imation of the full posterior p(x0:n|y1:n) rather than the fil-
tering distribution p(xk|y1:k). This is advantageous in snow
data assimilation, since it allows information from observa-
tions during the ablation season to propagate backward in
time and influence states in the preceding accumulation sea-
son. The final weights can be computed either sequentially
using SIS or in a batch update, since these are equivalent
when the dynamics are Markovian and the observations are
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conditionally independent in time. The batch approach used
in the PBS is appealing, since it can be wrapped around the
model, allowing the dynamics to evolve freely for the whole
data assimilation window from t0 to tn without the need for
I/O interruptions in the time integration and typically result-
ing in marked run time acceleration compared to sequential
approaches.

Now that we have introduced the particle methods, what
remains is to describe their implementation in MuSA and in
particular the choice of proposal distribution. For simplic-
ity, we adopt the standard and simplest approach for parti-
cle methods, which is to use the prior as the proposal (van
Leeuwen and Evensen, 1996). Note that this is analogous
to what was done in the seminal bootstrap filter of Gordon
et al. (1993) and is to our knowledge the only approach con-
sidered so far for snow data assimilation. Thereby, recalling
that f (x)= p(y|x)p(x) and inserting for q(x)= p(x), then
f (x)/q(x)= p(y|x), which gives us the following simple
expression for the auto-normalized weights:

w(i) =
f (x(i))/q(x(i))∑Ne
j=1f (x

(j))/q(x(j))
=

p(y|x(i))∑Ne
j=1p(y|x

(j))
, (30)

which is simply the normalized likelihood of the prior par-
ticles x(i) ∼ p(x). With the usual Gaussian likelihood em-
ployed in MuSA, these weights are given by

w(i) =
exp

(
−

1
2

[
y− ŷ(i)

]TR−1 [y− ŷ(i)])∑Ne
j=1exp

(
−

1
2

[
y− ŷ(j)

]TR−1
[
y− ŷ(j)

]) , (31)

where ŷ(i) =H(x(i)) denotes the predicted observations for
the ith particle. In practice, to ensure numerical stability, we
first compute the natural logarithm of the weights by using
the log-sum-exp trick to avoid potential overflow and mini-
mize the effects of underflow (Murphy, 2022; Chopin and Pa-
paspiliopoulos, 2020). Subsequently, the weights can be di-
agnosed by taking the exponential of these stable logarithms.

In the current version of MuSA we apply resampling at
each observation time step for the PF independently of what
the effective sample size is. Furthermore the state x is split
into parameters u and internal states v. The PF in MuSA is
then implemented as described in the pseudocode in Algo-
rithm 1. For clarity, this pseudocode omits details such as
the log-sum-exp trick (Murphy, 2022) and the way that re-
sampling is performed given that there are several options
available (Li et al., 2015).

Note that the particles will all have a posterior weight
equal to 1/Ne due to the resampling which happens at each
observation time step. Combined with the transition density,
these weights form the prior for the next observation time.
This explains why no weights from the prior enter into the
posterior weight calculation, since these are all equal and so
cancel out in the auto-normalization. For the PF, the DAW
can be understood to be the time interval between two neigh-
boring observation times. The prior mean and variance of the

Algorithm 1 Particle filter.

Require: Ne ensemble members, n time steps
1: Draw Ne prior particles from the prior u(i)0 ∼ p(u0)
2: for k = 1 to n do
3: For all particles (i = 1, . . .,Ne) jitter the parameters u(i)

k
=

u
(i)
k−1+ η

(i)
k−1 where η(i)

k−1 ∼ N(0,Q) and run the dynamical

model forward in time v(i)
k
=M(u

(i)
k
,v
(i)
k−1).

4: If observations yk exist, update the weights w
(i)
k
∝

exp
(
−

1
2 [yk − ŷ

(i)
k
]
TR−1

k
[yk − ŷ

(i)
k
]

)
for each particle us-

ing the current observations yk and predicted observations

ŷ
(i)
k
=H

(
u
(i)
k
,v
(i)
k

)
.

5: If observations yk exist, resample the particles based on their
weights w(i)

k
.

6: end for

Algorithm 2 Particle batch smoother.

Require: Ne ensemble members, n time steps
1: Draw Ne prior particles from the prior u(i) ∼ p(u)
2: for k = 1 to n do
3: For all particles (i = 1, . . .,Ne) run the dynamical model for-

ward in time, v(i)
k
=M(u(i),v

(i)
k−1).

4: If observations yk exist, append these and the predicted ob-
servations ŷ(i)

k
=H(u(i),v(i)

k
) for each particle to the batch

of observations y and predicted observations ŷ(i), respec-
tively.

5: If k = n, calculate the weights for the entire DAW using
the batch of observations and predicted observations w(i) ∝
exp

(
−

1
2 [y− ŷ

(i)
]
TR−1

[y− ŷ(i)]
)

.
6: end for

internal states can be obtained by taking the (unweighted)
ensemble means and variances of the particle trajectories v(i)k
in the DAW before the resampling step. The posterior means
and variances of the internal states can be obtained by taking
the (unweighted) ensemble mean and variance of the particle
trajectories v(i)k in the DAW after the resampling step.

In MuSA, the PBS is even more straightforward to imple-
ment than the PF. Pseudocode for the PBS algorithm as im-
plemented in MuSA is outlined in Algorithm 2. Here too we
have emphasized clarity in the pseudocode and omit details
from the actual code such as the log-sum-exp trick.

For the PBS, the DAW is the entire water year. The prior
mean and variance of the internal states can be obtained by
taking the (unweighted) ensemble means and variances of
the particle trajectories v(i)k in the DAW. The posterior means
and variances of the internal states are obtained by taking the
weighted ensemble mean and variance of the particle trajec-
tories v(i)k in the DAW.
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3.5 Ensemble Kalman methods

The ensemble Kalman filter (EnKF) was originally proposed
by Evensen (1994) as a Monte Carlo version of the original
Kalman filter (KF; see Jazwinski, 1970; Särkkä, 2013). The
original KF assumes that all distributions involved in filtering
are Gaussian and that both the dynamical and the observa-
tion models are linear. These assumptions come on top of the
usual filtering assumptions of Markovian state dynamics and
conditionally independent observations. If all these assump-
tions are met, the exact filtering distribution turns out to be
a Gaussian one of the form p(xk|y1:k)= N(xk|mk,Pk) and
there is a set of closed-form (i.e., analytical) equations for the
mean mk and covariance Pk , which completely defines this
Gaussian filtering distribution, known as the KF equations
(Särkkä, 2013). Geoscientific models are almost never lin-
ear, so these equations can usually not be applied directly in
practice. Even when they can, the need to explicitly store and
update the state covariance matrix Pk with dimensionsm×m
can be computationally prohibitive in high dimensional prob-
lems typical in geoscience (Carrassi et al., 2018).

There exist several modified versions of the KF such as
the extended KF (EKF) based on Taylor series approxima-
tions and the unscented KF (UKF) based on the unscented
transform that can both partly circumvent the linearity as-
sumption (Särkkä, 2013). Since both the EKF and the UKF
also require an explicit covariance matrix update and are con-
siderably more challenging to implement than the KF, they
have only rarely been used for geoscientific DA. Instead,
since its introduction by Evensen (1994), it is the EnKF that
has become one of the methods of choice for DA. The rea-
sons for this are that the EnKF is relatively straightforward
to implement and understand (Katzfuss et al., 2016), it can
handle non-linear models, the state covariance evolves im-
plicitly with the ensemble, and it has proven to work well in
very high dimensional operational applications in both mete-
orology and oceanography (see Carrassi et al., 2018, for a re-
view). Although it makes the same Gaussian linear assump-
tions as the KF, in practice it can often still function well
when these assumptions are strongly violated thanks to tech-
niques such as Gaussian anamorphosis (Bertino et al., 2003)
and iterations (Emerick and Reynolds, 2013). The ensem-
ble Kalman approach can also be applied to solve smooth-
ing problems as first shown by van Leeuwen and Evensen
(1996). These smoothers, particularly the so-called ensemble
smoother (ES), play an important role in solving reanalysis
problems that arise in both land surface and snow data assim-
ilation (Dunne and Entekhabi, 2005; Durand and Margulis,
2006).

The EnKF was one of the first schemes to be used for snow
data assimilation. Slater and Clark (2006) used the EnKF to
assimilate SWE data into a conceptual snow model at sev-
eral sites in Colorado, leading to marked improvements in
SWE estimates compared to both the control model runs and
interpolated observations. Clark et al. (2006) used a snow

depletion curve to assimilate synthetic satellite retrievals of
FSCA into a conceptual snow hydrology model of a catch-
ment in Colorado, leading to minor improvements in sim-
ulated streamflow. Durand and Margulis (2006) jointly as-
similated synthetic satellite retrievals of brightness temper-
ature and albedo into the SSiB3 model using the EnKF at
a site in the California Sierra Nevada to yield marked im-
provements compared to the open loop. Andreadis and Let-
tenmaier (2006) used the EnKF to assimilate MODIS FSCA
into the VIC model for the Snake River basin in the Pacific
Northwest region of the USA, improving model estimates of
both FSCA and SWE.

Following on from these initial studies there have been
several more recent snow DA applications using the EnKF.
In a synthetic experiment in northern Colorado, De Lannoy
et al. (2010) showed how the EnKF can be used to assimi-
late coarse-scale passive microwave SWE observations into
high-resolution runs of the Noah land surface model, leading
to large reductions in error in SWE estimation compared to
the open loop. In a follow-up study, De Lannoy et al. (2012)
jointly assimilated real MODIS FSCA and AMSR-E SWE
retrievals into the Noah model to demonstrate the comple-
mentary nature of these types of satellite observations for
SWE estimation. Magnusson et al. (2014) used the EnKF to
assimilate data from ground-based stations in the Swiss Alps
and showed that assimilating fluxes (snowmelt and snowfall),
rather than directly assimilating SWE data, improved the
SWE estimation. The study of Huang et al. (2017) demon-
strated that the assimilation of in situ SWE data into a hydro-
logical model with the EnKF could improve streamflow sim-
ulations for several basins in the western USA. Stigter et al.
(2017) performed a joint assimilation of in situ snow depth
data and FSCA satellite retrievals with the EnKF to optimize
parameters and subsequently estimate the climate sensitivity
of SWE and snowmelt runoff for a Himalayan catchment.
More recently, Hou et al. (2021) showed how machine learn-
ing techniques can be used to construct empirical observation
operators to assimilate satellite-based FSCA with the EnKF.

The ensemble smoother (ES), the batch smoother version
of the EnKF, has also been used extensively for snow DA,
mainly for reanalysis. Durand et al. (2008) were the first to
demonstrate the value of the ES for snow reanalysis by noting
that it could be used as a new approach to solve the traditional
problem of snow reconstruction. They showed substantial
improvements in SWE estimation for the posterior compared
to the prior after having assimilated synthetic FSCA obser-
vations into SSiB3. A key advantage of the ES over the
EnKF is that it allows information to propagate backward
in time, so observations made in the ablation season can up-
date the preceding accumulation season. Following up this
study with a real experiment assimilating Landsat FSCA re-
trievals into SSiB3 using the ES at a basin in the Califor-
nia Sierra Nevada, Girotto et al. (2014a) demonstrated ex-
plicitly how snow reanalysis using the ES is a more robust
probabilistic generalization of the traditional deterministic
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approach to snow reconstruction. Subsequently, Girotto et al.
(2014b) applied the same ES snow reanalysis framework to
produce a multi-decadal high-resolution snow reanalysis for
the Kern River watershed in the California Sierra Nevada.
Oaida et al. (2019) used the ES to assimilate MODIS FSCA
observations into the VIC model to produce a kilometer-scale
snow reanalysis over the entire western USA. Aalstad et al.
(2018) introduced an iterative version of the ES, the ensem-
ble smoother with multiple data assimilation (ES-MDA; Em-
erick and Reynolds, 2013), for snow reanalysis and showed
how this could outperform both the ES and the PBS when
assimilating FSCA retrievals at sites on the high-Arctic Sval-
bard archipelago. In this iterative scheme the prior ensemble
moves gradually to the posterior ensemble through a tem-
pering procedure (see Stordal and Elsheikh, 2015, and refer-
ences therein). The iterations thus mitigate the impact of the
linearity assumption inherent in ensemble Kalman methods
(Evensen, 2018), typically leading to marked improvements
compared to the ES for non-linear models without the risk of
degeneracy associated with particle methods as the curse of
dimensionality rears its head (Snyder et al., 2008; Pirk et al.,
2022).

A derivation of the KF equations, which the EnKF and
ES are largely based on, is beyond the scope of this work.
Full multivariate Bayesian derivations of these equations can
be found on p. 197 of Jazwinski (1970) and in Sect. 4.3
of Särkkä (2013). The EnKF itself is thoroughly derived in
Evensen (2009) and Evensen et al. (2022). There are actually
several variants of the ensemble Kalman analysis step (see
Carrassi et al., 2018). In MuSA we use the so-called stochas-
tic rather than deterministic (or square-root) implementation.
This stochastic formulation adds perturbations to the pre-
dicted observations to ensure adequate ensemble spread and
consistency with the underlying Bayesian theory (Burgers
et al., 1998; van Leeuwen, 2020).

Here we present the equations for both the stochastic
EnKF (van Leeuwen, 2020) and the ES (van Leeuwen and
Evensen, 1996), as well as their iterative versions based
on the multiple data assimilation (MDA) scheme of Emer-
ick and Reynolds (2012, 2013), in the form that they are
used in MuSA. The iterative versions tend to perform bet-
ter than their non-iterative counterparts for non-linear prob-
lems (Evensen, 2018). Let Na denote the number of assimi-
lation cycles (iterations) performed in a pseudotime (rather
than model) time. For the standard EnKF and ES we set
Na = 1, while with their iterative variants Na > 1, typically
Na = 4 (Emerick and Reynolds, 2013; Aalstad et al., 2018).
The superscript ` is used to index these iterations. Let U(`) =[
u(1)(`), . . .,u(i)(`), . . .,u(Ne)(`)

]
denote the mp ×Ne param-

eter matrix containing the ensemble (i = 1, . . .,Ne) of pa-
rameter vectors u(i)(`) for iteration `. Recall that the sub-
set of these parameters that are physically bounded have
undergone the relevant analytic transformations for Gaus-
sian anamorphosis, and the corresponding inverse transforms
are applied back to physical space when these are passed

Algorithm 3 Ensemble Kalman analysis with multiple data
assimilation.

Require: Ne ensemble members, Na assimilation cycles
1: Draw i = 1, . . .,Ne prior particles from the prior u(i)(`=0)

∼

p(u)

2: for `= 0 to Na do
3: Run the dynamical model forward in time for all ensemble

members i to obtain the internal states v(i)(`) and predicted
observations ŷ(i)(`) corresponding to the ensemble of pa-
rameter vectors u(i)(`).

4: if ` < Na then
5: Generate a d ×Ne matrix of inflated observation errors

E(`)α =
√

α(`)R1/2ε(`) where ε(`) ∼ N(0,I) is an d ×Ne
matrix and α(`) =Na is the observation error inflation co-
efficient.

6: Compute the mp × d ensemble parameter-predicted ob-

servation covariance matrix C(`)
UŶ
=

1
N

U(`)
′

Ŷ(`)
′T where

primes (·)′ denote deviations from the ensemble mean.
7: Compute the d × d ensemble-predicted observation co-

variance matrix C(`)
ŶŶ
=

1
N

Ŷ(`)
′

Ŷ(`)
′T

8: Compute the mp × d ensemble Kalman gain matrix

K(`) = C(`)
UŶ

(
C(`)

ŶŶ
+α(`)R

)−1
. (32)

9: Perform the ensemble Kalman analysis step to update the
parameter ensemble U

U(`+1)
= U(`)+K(`)

[
Y−

(
Ŷ(`)+E(`)α

)]
, (33)

where Y is a d ×Ne matrix containing Ne copies of the
observation vector y.

10: end if
11: end for

through the dynamical model (see Aalstad et al., 2018).
Similarly, let Ŷ(`) =

[̂
y(1)(`), . . ., ŷ(i)(`), . . ., ŷ(Ne)(`)

]
denote

the predicted observation matrix containing the ensemble of
predicted observations ŷ(i)(`) =H

(
u(i)(`),v(i)(`)

)
. Adopting

this notation, the stochastic ensemble Kalman methods in
MuSA are implemented as described in the pseudocode in
Algorithm 3. For clarity, this pseudocode also omits details
such as how the matrix inversion for the ensemble Kalman
gain in Eq. (32) is carried out. For this we follow the pseu-
doinverse and rescaling approach outlined in Appendix A of
Emerick and Reynolds (2012).

Recall that for Na = 1 we recover the non-iterative
stochastic EnKF and ES, while for Na > 1 we are using it-
erative versions of these schemes that involve multiple data
assimilation with inflated observation errors. The term “mul-
tiple data assimilation” refers to the assimilation of the same
data multiple times rather than an assimilation of different
types of data (joint assimilation). We speak of inflated ob-
servation errors, since the role of the coefficients α(`) is to
inflate the observation error covariance R in the Kalman gain
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K` as well as the observation error term E(`)α . This inflation
is tantamount to tempering the likelihood as discussed by
Stordal and Elsheikh (2015) and van Leeuwen et al. (2019),
which explains why these iterative schemes perform better
than their non-iterative counterparts for non-linear models in
that they involve a more gradual transition from the prior
to the posterior. Despite what the name might suggest, this
multiple data assimilation approach does not actually vio-
late the consistency of Bayesian inference by using the data
more than once due to the way the observation error in-
flation is constructed, particularly due to the constraint that∑Na
`=11/α(`) = 1. Simply stated, this constraint ensures con-

sistent results with a linear model, since by construction we
obtain the same result by assimilating the data once with the
original uninflated (α = 1) observation errors as we do as-
similating the same data multiple times with inflated (α > 1)
observation errors. With a non-linear model, practice has
shown that these iterations of the ensemble Kalman analy-
sis ensure that the approximate posterior is closer to the true
posterior than if a more conventional single uninflated itera-
tion is used (Evensen, 2018). It is possible to satisfy the con-
straint on the α(`) with both uniform and non-uniform infla-
tion coefficients (Evensen, 2019). For simplicity, following
Emerick and Reynolds (2013), we currently opt for the for-
mer in MuSA by setting α(`) =Na for all ` values by default
while allowing for non-uniform coefficients as an option.

To keep the notation as simple as possible, we have not
explicitly introduced time indices for these ensemble Kalman
methods. Instead we can simply note that for the iterative
and non-iterative EnKF, the loop above runs inside another
outer loop that runs across all observation times. That is to
say, the ` loop is run several times sequentially for multiple
DAWs where each window is from one observation time to
the next, such that the posterior parameters and internal states
obtained at `=Na for the current DAW that ran up to the
current observation time become the initial prior at `= 0 for
the next DAW that runs from the current observation time up
to the next observation time. Recall that the parameters also
undergo jitter dynamics when filtering.

For the non-iterative and iterative ensemble batch Kalman
smoothers used in MuSA, namely the ES and the ES-MDA,
there is no longer an outer time loop encapsulating the iter-
ations. Instead, the DAW is the entire water year. In these
smoother schemes, the parameters do not undergo any jitter.
As such, the entire prior and posterior ensemble of state tra-
jectories for a given water year will be consistent with the
prior and posterior ensemble of static parameters for the en-
tire water year. Recall that each water year is typically up-
dated independently in MuSA, which currently focuses on
seasonal snow.

4 Data and experimental setup

In the following section, we illustrate the capabilities of
MuSA using a case study and perform a benchmarking of
the implemented data assimilation algorithms. We developed
two data assimilation experiments in the 55 ha Izas exper-
imental catchment (Revuelto et al., 2017) in the Spanish
Pyrenees (see Fig. 2). The first experiment shows the capa-
bilities of MuSA to assimilate hyper-resolution products in
both a single-cell and distributed fashion, whereas the second
demonstrates the capabilities to develop joint-assimilation
experiments. Note that all the variables that we assimilate
in these experiments are state variables in FSM2. We gen-
erated hourly meteorological forcing at 5 m resolution over
the Izas catchment using the MicroMet meteorological dis-
tribution system (Liston and Elder, 2006b) to downscale the
ERA5 atmospheric reanalysis (Hersbach et al., 2020).

4.1 Single-cell and distributed assimilation of
drone-based snow depth retrievals

For the first experiment, we ran MuSA to assimilate snow
depth retrievals obtained from a fixed wing drone (Revuelto
et al., 2021a, b), over two different snow seasons (2018/19
and 2019/20) in the Izas catchment using different data as-
similation algorithms. The drone surveys were not equally
distributed in time along the seasons, and the surveys present
spatial gaps in some of the cells. The whole drone dataset
is composed of 18 temporally distributed snow depth maps
originally generated at 1 m but aggregated to 5 m spatial reso-
lution so as to eliminate representativeness error (Janjić et al.,
2018) by matching the model grid. Due to the high resolution
of the observations, we expect MuSA to be able to implicitly
reproduce the wind redistribution patterns by modifying the
precipitation and temperature at the grid cell scale to com-
pensate for the deposition and removal of wind-blown snow.

The simulation ensemble was composed of Ne = 200 par-
ticles. The generation of the prior ensemble for both the
single-cell and distributed simulation was developed by per-
turbing only the temperature and precipitation fields. The
temperature was perturbed with a constant additive bias pa-
rameter, randomly drawn from a normal distribution defined
by its mean (µ= 0) and standard deviation (σ = 2). Sim-
ilarly, the precipitation was perturbed by a multiplicative
fixed-in-time bias parameter, drawn from a lognormal dis-
tribution defined by the mean (µ= 0) and standard deviation
(σ = 0.63) of the underlying normal distribution. These prior
distributions were defined based on prior predictive testing
(not shown here). As such, these are weakly informative pri-
ors (Banner et al., 2020) in that they produce predictions
that we expect a priori (i.e., without looking at the data) to
be of the right magnitude while obeying physical bounds.
The variances of the observation errors were set to 0.04 m2

and were estimated from comparison with terrestrial-laser-
scanning snow depth maps (Revuelto et al., 2021a, b). In the
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Figure 2. Location of the Izas experimental basin in the Pyrenees (a) and topography (b). The red circle indicates the location of the cell
used for the intercomparison of algorithms described below.

case of the single-cell comparison, we followed two differ-
ent resampling strategies, the bootstrap and redraw from a
normal approximation of the posterior (see Sect. 2). In the it-
erative versions of the ensemble-Kalman-based approaches,
we fixed the number of assimilation cycles to Na = 4 as a
compromise between computational cost and performance.
The former is directly proportional to Na, while the latter
converges to an optimum as Na increases. This choice of Na
is also in line with sensitivity analyses performed elsewhere
(Emerick and Reynolds, 2013; Aalstad et al., 2018; Evensen,
2018).

The single-cell simulations were performed in a cell lo-
cated in a topographic concavity within the catchment and
therefore with exceptional accumulations and snow depth up
to 6 m due to wind redistribution and preferential deposition
(Comola et al., 2019). This is a challenge for the data as-
similation process, as the observations fell very far from the
central prior range of the ensemble of snow depths predicted
by FSM2. The distributed simulation was developed in a su-
percomputing cluster using 20 nodes with 10 cores each. For
this case study, we choose the most computationally efficient
data assimilation algorithm, namely the PBS, to speed up the
calculations. We subsequently compared the spatial distribu-
tion of the snowpack with one of the snow depth maps cor-
responding to a drone survey close to maximum snow ac-
cumulation (3 February 2020) that was not included in the
assimilation.

4.2 Joint assimilation of satellite-based LST and FSCA
retrievals

For the second experiment, we performed a coarser 1 km
resolution experiment over the same area. We developed a
single-cell joint-assimilation experiment, updating the FSM2
simulations with FSCA and land surface temperature (LST)

retrievals from the MODIS sensor on board the Terra satel-
lite, by using version 6 of the products MOD11A1 (Wan
et al., 2015) and MOD10A1 (Hall and Riggs, 2016), respec-
tively. The selected pixel for the MODIS retrievals was the
one whose centroid fell closest to the Izas catchment cen-
troid. While the FSCA retrievals from MODIS have a 500 m
spatial resolution, the LST products have a resolution of
1000 m. To assimilate this information into FSM2 using the
MuSA platform, we aggregated the FSCA products to match
the 1 km LST grid. The forcing was generated by aggregat-
ing the 5 m forcing from the previous distributed data assim-
ilation experiment. The variances of the observation errors
were set to 0.15 and 10 [K2

] for the FSCA and the LST, re-
spectively. The data assimilation experiment was performed
using the ES-MDA scheme. This data assimilation scheme
was chosen because it performed better than the other algo-
rithms (not shown here), which in some cases were not able
to meaningfully update the simulations with the observations
at all.

The number of iterations was again set to Na = 4. The en-
semble was composed of Ne = 300 particles by perturbing
all the forcing variables (temperature, precipitation, short and
longwave radiation, wind speed, relative humidity, and sur-
face air pressure) with normal additive or lognormal mul-
tiplicative random noise depending on whether or not the
forcing variable had negative support so as to not generate
physically impossible values.

4.3 Computational benchmarks

Finally, we developed a single-cell benchmark to measure
the computational cost in terms of wall clock time for each
algorithm. The benchmark was developed in a local machine
with an Intel® Core™ i5-1145G7 processor and 32 GB of
memory running an Ubuntu 20.04 system. The comparison
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was performed using 100, 200, and 300 particles and four it-
erations for the iterative ensemble Kalman approaches in a
single cell, assimilating drone snow depth retrievals at a ran-
dom location in the Izas catchment. The reported values of
the benchmarks are the average of 10 MuSA runs and in-
clude the FSM2 compilation time (' 2 s using the GNU For-
tran compiler 10.3.0 in the aforementioned local machine),
which is negligible compared with the whole run.

5 Results

5.1 Single-cell and distributed assimilation of
drone-based snow depth retrievals

The results show how the performance of the different data
assimilation algorithms differs, even with the same initial
conditions and experimental setup, when the posterior en-
sembles are compared against the assimilated snow depth ob-
servations (Table 1, Figs. 3 and 4). The reference simulation
exhibited a root mean square error (RMSE) compared with
the observations of 3.18 m, higher than the posterior mean of
any of the algorithms implemented in MuSA, except for the
PF with bootstrap resampling, which collapses early in the
simulation. The results are shown in Table 1.

The PF collapsed early in the single-cell simulation where
all the weight is shared by just a few particles and eventually
a single particle (see Fig. 3) due to the large difference be-
tween the observations and the ensemble of predictions at the
first assimilation step. The particle filter with redraw-based
resampling allowed the assimilation process to recover from
the initial collapse through particle rejuvenation, leading to
a more realistic non-degenerate ensemble simulation. Con-
versely, the ensemble-Kalman-based approaches were less
prone to ensemble degeneracy. Here, the EnKF produced un-
satisfactory results when the observations fell very far from
the posterior ensemble in the first season and improved con-
siderably in the second. Note, however, that we did not ob-
serve the same issue with the EnKF-MDA.

Figure 4 shows the results of the experiment using the
smoother-based approaches. In this particular case, the pos-
terior snow depth time series generated by using the PBS are
much closer to the observations than when using particle fil-
ters with the bootstrap resampling (Fig. 3a). In addition, due
to the absence of resampling, the PBS did not generate dis-
continuities in the series that can be observed in the particle
filter posteriors (Fig. 3). The ensemble (Kalman) smoothers
also outperformed their filter counterpart in this particular
case. Moreover, the ES-MDA produced simulations closer
to the observations compared to the other smoothers as con-
firmed in Table 1.

There is an obvious improvement in the snow depth spa-
tial distribution patterns after running MuSA compared with
the reference simulations for the hyper-resolution distributed
simulation as shown in Fig. 5. The updated SWE products

exhibited very consistent spatial patterns compared with the
independent (i.e., non-assimilated) drone-based snow depth
map, while the reference simulations exhibited a much lower
and less realistic spatial variability. Similarly, the updated
FSM2 snow depth simulations were very consistent with the
non-assimilated snow depth maps with a coefficient of deter-
mination ofR2

= 0.96, while the reference simulation exhib-
ited R2

= 0.03.
Figure 6 shows the spatial distribution of the posterior

mean temperature bias and precipitation multiplier over the
Izas catchment after the assimilation of the drone-based snow
depth retrievals. The distribution of the perturbation param-
eters showed spatial patterns consistent with the topography
of Izas in both of the variables, ranging from−4 to 2 K in the
case of the additive temperature bias and from 0.5 to 3 in the
case of the precipitation multiplier.

5.2 Joint assimilation of satellite-based LST and FSCA
retrievals

The result of jointly assimilating LST and FSCA is shown in
Fig. 7. As expected, the difference between the observations
and the updated simulations was reduced, compared with the
reference simulations. The root mean square error (RMSE)
between the observations and the reference LST was 7.2 K
compared to 5.1 K for the updated simulations. Similarly,
the RMSE between the observations and the reference FSCA
was 0.38, compared to 0.14 for the updated simulations. Such
modifications of the FSCA and LST state variables resulted
in a completely different SWE simulation that reached val-
ues of up to 900 mm of peak SWE compared to the 300 mm
reached by the reference simulation.

5.3 Computational benchmarks

In a single-cell benchmark experiment, the different data as-
similation algorithms showed large variations in computa-
tional cost (Fig. 8). In this comparison with Ne = 100 par-
ticles the computational cost measured in wall clock time
ranged from 39 (PBS) to 270 s (EnKF-MDA,Na = 4) per cell
per year. These benchmarks showed that for all the cases the
computational cost increased almost linearly with the num-
ber of particles. As expected, the iterative versions of the en-
semble Kalman approaches are more demanding in terms of
computational cost due to the larger number of FSM2 sim-
ulations required by the data assimilation algorithm. Filter-
ing is also generally more expensive than (batch) smoothing,
since it invokes more frequent calls to I/O operations. This
is especially clear for the costly iterative ensemble Kalman
methods, but note that the relative increase in wall clock time
for filtering relative to smoothing is more or less the same
across all methods and corresponds to a factor of roughly 1.5.
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Table 1. RMSE for the reference run (Ref), particle filter with bootstrap resampling (PF-b), particle filter with redraw resampling (PF-r),
ensemble Kalman filter (EnKF), ensemble Kalman filter with multiple data assimilation (EnKF-MDA), particle batch smoother (PBS), en-
semble smoother (ES), and ensemble smoother with multiple data assimilation (ES-MDA). These errors were computed using the assimilated
drone-based snow depth observations as the truth and using the posterior ensemble mean as the estimate from the respective DA schemes.
All the schemes were run with Ne = 200 particles, and the MDA schemes used Na = 4 iterations.

Scheme

Metric Ref PF-b PF-r EnKF EnKF-MDA PBS ES ES-MDA

RMSE [m] 3.18 4.46 0.34 1.65 0.73 0.63 0.7 0.39

Figure 3. Intercomparison of filter-based data assimilation experiments in the single cell of the Izas catchment highlighted in Fig. 2. The
black line is a deterministic (no perturbations) open-loop simulation for reference, and the red dots are the observations; the dark green line
(shading) shows the posterior mean (±1 standard deviation).

6 Discussion

The results from the intercomparison of different data assimi-
lation experiments exhibited large variability in performance
and computational cost across the schemes. This highlights
the need for thorough testing, as the suitability of the as-
similation algorithms will vary depending on the problem
at hand. Despite the fact that most of the data assimilation
algorithms improved the simulations compared with the ref-
erence simulations, their performance differed markedly. In
fact, these differences tend not to be explored in the liter-
ature, where often the choice of one algorithm over others
is not sufficiently justified empirically. The lack of tools to
compare the performance of different data assimilation al-
gorithms has probably contributed to this problem, since it
requires substantial coding effort to implement all available
options in each data assimilation experiment. As an exam-
ple, a case could be made that ensemble-Kalman-based data
assimilation approaches are often prematurely perceived as
suboptimal for snow science applications due to the Gaus-
sian linear assumption (Helmert et al., 2018; Largeron et al.,

2020). In spite of this, our first experiment showed that the
iterative version of ensemble-based Kalman smoothers out-
performed the other smoother algorithms, as also found by
Aalstad et al. (2018) and Pirk et al. (2022). These findings
are consistent with the broader DA literature, where basic
PFs (based on SIR) tend to suffer more from degeneracy due
to the curse of dimensionality in high dimensional problems
(Snyder et al., 2008). This degeneracy problem tends to be
even worse with the PBS (based on SIS) due to the absence of
resampling (van Leeuwen and Evensen, 1996; van Leeuwen,
2009; Särkkä, 2013; Pirk et al., 2022).

In their review, van Leeuwen et al. (2019) suggest promis-
ing remedies for this problem with more sophisticated par-
ticle methods that invoke innovations such as using better
proposal distributions or iterations. The particle filter using
redraws from a normal approximation of the posterior that
we implemented in MuSA was loosely inspired by the use
of proposal distributions and can overcome the degeneracy
problems in the classic bootstrap particle filter (see Table 1).
The use of iterations was pursued by Stordal and Elsheikh
(2015), who recast the ES-MDA in the framework of itera-
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Figure 4. Intercomparison of smoother-based data assimilation experiments and intercomparison of the posterior mean of all the data assim-
ilation algorithms (letters a–g correspond to the panels in which the individual schemes are shown in Figs. 3 and 4) in the single cell of the
Izas catchment highlighted in Fig. 2. The black line is a deterministic (no perturbations) open-loop simulation for reference, and the red dots
are the observations; the dark green line (shading) shows the posterior mean (±1 standard deviation).

Figure 5. Snow depth estimates for Izas on 3 February 2020: reference simulation (a), PBS posterior mean simulation (b), independent
drone-based retrievals (c), and evaluation of the simulations (black: reference, red: PBS) relative to the drone-based retrievals (d).
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Figure 6. Posterior perturbation parameters for the precipitation [non-dimensional] (multiplicative) and temperature [K] (additive).

Figure 7. Joint LST (a, b) and FSCA (c, d) data assimilation and its influence on the SWE simulations (e).

tive particle methods, leading to improved performance with
subsurface flow problems. This suggests that a hybridization
of ensemble Kalman and particle methods (Papadakis et al.,
2010; Pirk et al., 2022) may also be a promising avenue for
future work. We reiterate that we are not advocating for one
class of DA methods over another; the point we are making
is rather that to do so prematurely would be unwise. Com-

mon wisdom embodied in the “no free lunch” theorems for
optimization (Wolpert and Macready, 1997) warns us not to
expect one particular algorithm to always perform best but
rather to expect that this will depend on the problem at hand.
The power of MuSA is to provide a tool that simplifies the
task of comparing different experimental setups by allowing
the intercomparison of data assimilation algorithms as well
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Figure 8. Benchmarks for the computational cost, expressed in terms of wall clock time, of the different assimilation schemes implemented
in MuSA.

as facilitating the implementation of new ones. In the future,
more data assimilation algorithms could be implemented, in-
cluding iterative versions of the PBS and particle filters as
well as MCMC methods, which are the gold standard for
Bayesian inference (Neal, 1993; Apte et al., 2007) but have
received relatively less attention from the snow community
(Kolberg and Gottschalk, 2006) due to their often prohibitive
computational cost.

The selection of the data assimilation algorithm is not
the only possible source of variability in the updated sim-
ulations. As an example, MuSA has two different precipi-
tation partitioning methods implemented. In addition to the
impact that the selection of the precipitation-phase partition-
ing method would have on the deterministic simulations, the
perturbations in the forcing can also impact the precipitation
phase in different ways depending on the selected partition-
ing method. For example, perturbing the relative humidity
forcing would only impact the precipitation phase for one
of the partitioning methods in FSM2. Different strategies to
generate the prior ensemble of simulations may markedly im-
pact the performance of the data assimilation algorithms, es-
pecially in the case of the PBS and particle filters, which are
prone to degeneracy.

MuSA was also able to assimilate hyper-resolution snow
depth maps in a distributed fashion. The assimilation of snow
depth products has been shown to be a very robust approach
to snow depth estimation. The posterior maps of the perturba-
tion parameters showed intricately detailed spatial patterns,
especially considering the fact that there is not any cell in-
tercommunication in MuSA. The appearance of this spatial
pattern in the perturbation parameters indicates that they are
compensating for a missing processes in the model, which
in this case is most likely to be the wind-driven ablation and
accumulation processes, since most of the spatial variability
in melt energy is provided by the MicroMet shortwave radi-
ation routine (e.g., Baba et al., 2019). Thus, MuSA can be
used to study the importance of missing snow processes in
the FSM2 model. In the particular case of the assimilation
of hyper-resolution snow depth maps, it may help to address

the unresolved problem of wind redistribution in numerical
snowpack modeling (Vionnet et al., 2021) by providing spa-
tiotemporally continuous (i.e., gap-free) and physically con-
sistent reconstructions of the snowpack dynamics that can be
used as a target when designing and calibrating new process
parameterizations in snow model development.

Despite the fact that there are some other examples of as-
similating snow depth products, most of these have been car-
ried out using in situ observations (Cantet et al., 2019; Cluzet
et al., 2022; Odry et al., 2022) or were developed at coarser
spatiotemporal resolutions (Deschamps-Berger et al., 2022).
To our knowledge the assimilation experiment performed in
Sect. 5.1 is the first test of assimilating drone retrievals in
a numerical snow model. This approach should be useful
for the monitoring of hydrological experimental catchments
in snow-dominated areas, providing a cost-effective method
to generate spatially and temporally continuous reconstruc-
tion of the SWE distribution. Using MuSA in combination
with the ever-increasing capabilities of drones, it is possible
to develop joint-assimilation experiments using snow depth
and other variables such as LST or albedo at unprecedented
resolutions. Furthermore, the assimilation of high-resolution
snow depth maps may become a common practice in the
future, even at wider scales, thanks to satellite-based snow
depth retrievals (Marti et al., 2016; Treichler and Kääb, 2017;
Lievens et al., 2019).

The joint assimilation of FSCA and LST retrievals from
MODIS had a large impact in the updated SWE simulations.
The assimilation of LST has the potential to provide addi-
tional information when FSCA saturates at 1, for example
during most of the accumulation season and during the polar
night in the absence of sunlight. This preliminary experiment
suggests that the joint assimilation of LST and FSCA may be
beneficial to improve distributed snow reanalyses at larger
scales. There are several examples of assimilating SCA in
both its binary and its fractional form (e.g., Margulis et al.,
2016). However, the assimilation of LST in numerical snow
models remains largely underexplored (Navari et al., 2016).
This is probably due to the relative lack of accurate LST in-
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formation at the desired scale for snow applications, espe-
cially over complex terrain, as the currently available satellite
sensors that are able to provide LST information exhibit ei-
ther a spatial resolution that can be too coarse or revisit times
that are too infrequent (Largeron et al., 2020). Nonetheless,
given the agenda of several space agencies, LST information
will be readily available in the future at high spatiotempo-
ral resolutions. This includes the Thermal infraRed Imaging
Satellite for High-resolution Natural resource Assessment
(TRISHNA; Lagouarde et al., 2018) and the Land Surface
Temperature Monitoring (LSTM) missions. Another logical
next step to explore in terms of joint assimilation would be to
assimilate FSCA and LST together with the aforementioned
satellite-based snow depth retrievals (Marti et al., 2016; Tre-
ichler and Kääb, 2017; Lievens et al., 2019).

The computational cost of each data assimilation algo-
rithm and implementation depends on several factors. First,
the computational cost of the particle filter and PBS ap-
proaches is different to the Kalman and the iterative Kalman
approaches. This is due to the number of FSM2 runs re-
quired to run each algorithm. In the particle filter and PBS
approaches, the number of FSM2 runs is Nr =Ne, where
Nr denotes the number of runs (per grid cell) and Ne is the
number of particles. On the other hand, the computational
cost in terms of the number of FSM2 runs in the EnKF
and ES will be Nr = 2Ne. For the iterative versions of these
ensemble-Kalman-based approaches, the number of runs will
be Nr = (Na+ 1)Ne, where Na is the number of assimila-
tion cycles, i.e., the number of iterations in the ensemble
Kalman update equations, selected by the user as explained
in Sect. 3.5. In general, the ensemble Kalman techniques re-
quire more runs because they actually move (rather than just
reweight) the parameter ensemble after assimilating the ob-
servations. To obtain the corresponding updated states (and
predicted observations), FSM2 must be rerun with the up-
dated parameters. In the non-iterative case this effectively re-
quires a single rerun of the FSM2 ensemble, while for the
iterative case it requires Na reruns of the FSM2 ensemble.

However, the number of FSM2 runs is not the only source
of computational cost. The current version of MuSA is a
wrapper around the FSM2 model. This simplifies the inclu-
sion of other snow models if required by the user. It also
means that MuSA can easily incorporate FSM2 upgrades.
Nonetheless, this implementation comes with a computa-
tional cost due to the I/O operations and the system calls that
are performed in the background when the MuSA system is
running. The time expended on I/O operations and system
calls will be higher in the parallel runs due to the use of disk
space from different processes at the same time. This sug-
gests that a more direct integration of FSM2 that avoids I/O
operations and system calls could improve the overall perfor-
mance of MuSA.

It is worth noting that MuSA may also be used to imple-
ment simpler and (therefore) faster snowpack models (e.g.,
Aalstad et al., 2018) if numerical efficiency is required. Con-

versely, more sophisticated multilayer models such as Crocus
(Vionnet et al., 2012) and SNOWPACK (Bartelt and Lehn-
ing, 2002) could also be encapsulated in MuSA in the future.
The implementation of more sophisticated models that in-
clude detailed radiative transfer schemes may provide MuSA
with the capability of ingesting new remotely sensed infor-
mation such as shortwave reflectances (Cluzet et al., 2020) or
radar backscatter (Lievens et al., 2019). In addition, as FSM2
has support for different temporal resolutions, the future ver-
sions of MuSA will support different time steps, allowing us
to reduce the computational cost in terms of both run time
and data storage requirements. As such, there is room for re-
ducing the computational cost of MuSA if necessary, which
would open up the possibility of implementing it even at con-
tinental and hemispheric scales.

7 Conclusions

MuSA is a new snow data assimilation system that encap-
sulates the FSM2 snowpack model. There are six different
ensemble-based data assimilation algorithms implemented in
MuSA, as outlined in detail in Sect. 3, with several different
resampling strategies in the case of particle filters. The data
assimilation algorithms and the characteristics of the ensem-
ble generation are provided by the user through simple con-
figuration files. MuSA is able to assimilate different obser-
vational variables either independently or jointly (i.e., in the
same assimilation step), even if these variables do not share
the same time step or if they have gaps. The system is highly
scalable such that it is possible to run it on both local ma-
chines and supercomputing infrastructures.

We used the MuSA system to assimilate snow depth maps
derived from drone retrievals over the Izas experimental
catchment for two different seasons at 5 m spatial resolu-
tion. The behavior of each data assimilation algorithm dif-
fered considerably, demonstrating that case-specific testing
of algorithms rather than just relying on the literature can be
very helpful for designing successful snow data assimilation
experiments. In addition, we developed a single-cell data as-
similation experiment, fusing LST and FSCA retrievals from
MODIS with the FSM2 model. The results indicated a strong
potential in the joint exploitation of these remotely sensed
variables, suggesting that more research is needed in this
regard. Finally, we presented a benchmark of the comput-
ing cost of the data assimilation algorithms. The choice of
data assimilation algorithms had a considerable impact on
the computational expense of the system and should be con-
sidered for high-resolution or large-scale runs.
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Code and data availability. The MuSA code is avail-
able at https://github.com/ealonsogzl/MuSA (last access:
16 December 2022); the version of MuSA used for this
paper (with a subset of input data) can be found at
https://doi.org/10.5281/zenodo.7014570 (Alonso González,
2022), and the complete input data for Izas used in the present
study can be found at https://doi.org/10.5281/zenodo.7248635
(Alonso-González, 2022). The original FSM2 code is found at
github.com/RichardEssery/FSM2 and in the MuSA repository with
slight modifications from the original version. The MODIS data
used herein, namely MOD10A1 (Hall et al., 2002) and MOD11A1
(Wan et al., 2015), are available for download from NSIDC and the
NASA EOSDIS Land Processes DAAC, respectively. ERA5 data
are available for download from the Copernicus Climate Data Store.
MuSA can be launched on Linux/macOS or Windows platforms
(via Windows Subsystem for Linux). MicroMet code is available
upon request to Glen E. Liston (glen.liston@colostate.edu).
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