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SUMMARY
Dendrites are essential determinants of the input-output relationship of single neurons, but their role in
network computations is not well understood. Here, we use a combination of dendritic patch-clamp record-
ings and in silico modeling to determine how dendrites of parvalbumin (PV)-expressing basket cells
contribute to network oscillations in the gamma frequency band. Simultaneous soma-dendrite recordings
fromPV basket cells in the dentate gyrus reveal that the slope, or gain, of the dendritic input-output relation-
ship is exceptionally low, thereby reducing the cell’s sensitivity to changes in its input. By simulating
gamma oscillations in detailed network models, we demonstrate that the low gain is key to increase spike
synchrony in PV basket cell assemblies when cells are driven by spatially and temporally heterogeneous
synaptic inputs. These results highlight the role of inhibitory neuron dendrites in synchronized network os-
cillations.
INTRODUCTION

Network oscillations in the gamma frequency band (40–

110 Hz) are a prominent circuit feature of many brain areas

and likely support a variety of cognitive processes such as

perception (Gray et al., 1989), attentional selection (Fries

et al., 2001), and memory (Lisman and Idiart, 1995; Lundqvist

et al., 2016). The important roles for gamma oscillations have

triggered numerous studies investigating how they are gener-

ated. These show that parvalbumin-expressing inhibitory neu-

rons, which form axonal ‘‘baskets’’ around the soma of target

neurons (hence called parvalbumin [PV] basket cells; Hu et al.,

2014), play a central role in the cortex (Cardin et al., 2009;

Fuchs et al., 2007; Sohal et al., 2009). Although previous

studies have identified a number of synaptic mechanisms in

basket cells that seem optimal to generate gamma oscillations

(Bartos et al., 2001, 2002, 2007; Cornford et al., 2019; Erisir

et al., 1999; Fisahn et al., 1998; Hormuzdi et al., 2001; Kopell

and Ermentrout, 2004; Pike et al., 2000; Str€uber et al., 2015;

Vida et al., 2006; Whittington et al., 1995), the dendritic prop-

erties that allow PV basket cells to transform synaptic inputs

into synchronous output firing remain elusive.

Spike synchrony in an ensemble of inhibitory interneurons is a

keymechanism for generating network oscillations (Bartos et al.,

2007; Buzsáki andWang, 2012). In the simplest of models, when

a sufficiently large number of inhibitory neurons fire within in a

small time window, they generate a pronounced inhibitory

conductance in the network. If the excitatory input drive is homo-

geneous across cells, neurons will escape inhibition together

and fire subsequently at the same time, leading to synchronous

activity (Bartos et al., 2007; Buzsáki and Wang, 2012). However,
This is an open access article und
when the excitatory drive varies from neuron to neuron, cells will

fire at different rates and escape the common rhythm, and syn-

chrony is lost (Wang, 2010; Wang and Buzsáki, 1996). In biolog-

ical networks, a plethora of heterogeneities enhance spike-rate

variability (Softky and Koch, 1993). Each cell, even of the same

type, has a different excitability and morphology, and spatially

distributed cells receive different amounts of excitation (spatial

heterogeneity), which also fluctuates rapidly over time (temporal

heterogeneity) (Calvin and Stevens, 1967; Destexhe et al., 2003).

These different forms of heterogeneity have been a long-stand-

ing challenge of networkmodels studying neural synchrony (Bar-

tos et al., 2001, 2002, 2007; Moca et al., 2012; Neltner et al.,

2000; Tiesinga and José, 2000; Tikidji-Hamburyan et al., 2015;

Tort et al., 2007; Vida et al., 2006; Wang and Buzsáki, 1996;

White et al., 1998).

The biophysical properties of PV basket cells further exacer-

bate this problem. How neurons integrate sustained excitatory

synaptic input and transform it into an output firing rate is

captured by their input-output (I-O) relationship (Silver, 2010).

This is typically measured by injecting current in the soma and

measuring spike frequency. In the case of PV basket cells, the

slope, or gain, of the I-O relationship is about ten times steeper

compared with cortical principal neurons (Goldberg et al.,

2008). A high gain makes neurons more sensitive to changes in

their input. Therefore, in an ensemble of PV basket cells that all

receive different amounts of input, cells will spike at dramatically

different rates, making it challenging to synchronize (illustrated in

Figure 1A).

Previous work on gamma oscillations only performed network

simulations using so-called ‘‘point-neuron’’ models that disre-

gard the dendritic morphology. However, we hypothesized that
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Figure 1. Dendritic input results in a lower I-O gain compared with somatic input

(A) A steeper hypothetical input-output (I-O) relationship maps the same input distribution to a broader output firing-rate distribution.

(B) Example of a dual soma-dendritic patch-clamp recording of a parvalbumin (PV)-expressing basket cell in the dentate gyrus. Cartoon shows the recording

configuration and the input from the lateral and the medial entorhinal cortex (LEC and MEC, respectively). Membrane potential traces show soma and dendrite

responses to current injections in either the soma (left) or the dendrite (right). Inset, example of a reconstructedmorphology of a PV basket cell used for computer

simulations. Scale bars apply to soma and dendrite recordings.

(C) I-O relationships when injecting current steps in the soma. Gray lines, individual experiments (n = 8 cells); blue lines, individual models (n = 5); dashed thick lines,

averages.

(D) I-O relationships when injecting current steps in the dendrite. Average dendritic recording distance is 240 ± 7 mm (n = 8 cells) and 230 mm from the soma (n = 5

models). In 5/8 experiments and 5/5 models, cells fired only a few or no spikes, resulting in near-flat I-O relationships.

(E) Dendritic membrane potential in response to current steps injected in the dendrite (n = 6 cells, n = 5 models). Light blue dashed line is the average dendritic

membrane potential when no voltage-dependent K+ channels are present on the model dendrites.
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PV basket cell dendrites are key for enhancing the robustness of

gamma oscillations in heterogeneous networks.Wemade simul-

taneous whole-cell recordings from the dendrites and soma of

PV basket cells in the dentate gyrus of the rat hippocampus, a

circuit that generates prominent gamma oscillations (Bragin

et al., 1995; Csicsvari et al., 2003; Towers et al., 2002). We found

that, compared with the steep I-O relationship measured from

the soma, the gain of the dendritic I-O relationship is scaled

down. Therefore, PV basket cells are far less sensitive to different

amounts of input than previously thought (Wang and Buzsáki,

1996). Furthermore, PV basket cell dendrites reduce the ampli-

tude of fast-fluctuating synaptic responses, reducing interspike

interval variability. We used anatomically detailed network

models to show that PV basket cell dendrites indeed dramati-

cally increase the robustness of gamma oscillations in a wide

variety of network architectures. Closer examination of the

underlying biophysical mechanisms revealed that the high-

threshold and fast-activating K+ currents in the dendrites (Hu

et al., 2010) act to dampen heterogeneities and thereby enhance

spike synchrony.
2 Cell Reports 39, 110948, June 14, 2022
RESULTS

Dendritic input results in a lower I-O gain comparedwith
somatic input
To compare the I-O relationship of soma-driven and dendrite-

driven output firing in PV basket cells, we made dual whole-

cell recordings from the soma and dendrites using confocal-mi-

croscope-guided patching (Hu et al., 2010). We targeted the

dendrites in the middle and outer third of the molecular layer

where these cells receive inputs from the medial and lateral en-

torhinal cortex, respectively (Amaral et al., 2007) (Figure 1B,

range: 214–262 mm from the soma; 240 ± 7 mm, n = 8 cells). Cur-

rent injections of increasing amplitude in the soma increased the

spike frequency rapidly, leading to a steep I-O relationship

(Figure 1C, gain = 380 ± 24 Hz nA�1). In stark contrast, current

injection in the dendrites triggered no, or low-frequency, spiking,

resulting in a nearly flat average I-O relationship (Figure 1D). In-

spection of the dendritic membrane potential revealed that re-

sponses to local current injection were linear up to ��30 mV

but then became sub-linear, making it increasingly hard to drive
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the cell to fire (Figure 1E, and example in 1B). These data show

that, compared with the soma, the gain of the dendritic I-O rela-

tionship is scaled down.

Previous work has characterized the biophysical properties of

PV basket cells, such as the passive electrical membrane prop-

erties and ion-channel distributions (Hu and Jonas, 2014; Hu

et al., 2010, 2014; Nörenberg et al., 2010). To test whether these

known properties can account for the low I-O gain, we used a

computational approach. We simulated the I-O relationship us-

ing five anatomically detailed PV basket cell models that

included dendrites and the axon (examples in Figures 1B and

S1A; see STAR Methods). The only voltage-dependent conduc-

tance we inserted in the dendrites was a high-threshold and fast-

activating K+ channel that is a hallmark of PV basket cells in the

dentate gyrus (Hu et al., 2010). These models recapitulated the

fast-spiking phenotype, the strong attenuation of backpropagat-

ing action potentials (Hu et al., 2010), and the steep soma I-O

relationship (Figures 1C, S1B, and S1C, gain = 397 ± 40 Hz

nA�1, n = 5models). Consistent with themajority of experiments,

injecting current into the distal dendrites produced a nearly flat

I-O relationship (Figures 1D, S1B, and S1C, distance = 230 mm

from the soma). Furthermore, the models recapitulated the

sub-linear increase of the dendritic membrane potential, which

was dependent on the dendritic K+ channels (Figure 1E).

Whether the dendritic K+ channels can also explain the dendritic

I-O relationship will be addressed below. In summary, the PV

basket cell models capture the essential I-O properties that we

measured experimentally, and collectively, these data show

that the dendrite-driven I-O relationship has a lower gain

compared with soma-driven output firing.

Distributed dendritic input results in a lower I-O gain and
more regular spiking
In vivo, PV basket cells likely receive both clustered and spatially

distributed inputs on the dendritic tree. Dual soma-dendritic

patch-clamp recordings, however, can only mimic clustered

dendritic inputs. Therefore, to examine how distributed inputs

affect the I-O relationship, we used the PV basket cell models.

To perform these simulations, we needed to verify that the

models could reproduce some of the most elementary pro-

perties of dendritic integration such as the kinetics and the

attenuation of excitatory synaptic potentials (EPSPs) along the

dendrites. Using dual soma-dendrite recordings, we analyzed

the forward propagation of miniature EPSPs generated near

the dendritic pipette (Figure 2A). The amplitude of dendritic

EPSPs increased with distance from the soma, while their ampli-

tude at the soma decreased (Figure 2B, n = 5 cells). Fitting the

dendrite-to-soma attenuation with a single exponential-decay

function resulted in an attenuation constant of 84 mm, which is

similar to the value predicted by our models (74 ± 19 mm, n = 5

models, Figure 2C).

Having validated the PV basket cell models, we next simulated

the I-O relationship for distributed synaptic inputs. We randomly

positioned excitatory synapses on the outer two-thirds of the

dendrites (>120 mm from the soma) or within 50 mm from

the soma (Figure 2D). Simulating sustained inputs revealed

that the gain of the I-O relationship for dendritic drive was again

lower than for somatic drive (Figure 2D).
In addition, we observed that the dendrite-driven output firing

was also more regular, as illustrated by a narrower distribution of

interspike intervals (Figure 2E), a property that may help spike

synchronization between PV basket cells. Quantifying the inter-

spike interval variability by the coefficient of variation (CV; the

ratio of the standard deviation to the mean) showed that

dendrite-driven firing was more regular across the entire spike-

frequency range (Figure 2F). We hypothesized that this was

due to the strong EPSP attenuation along the dendrites (Fig-

ure 2B). Because distal dendritic EPSPs are small when arriving

at the soma compared with proximal EPSPs (Figure 2A), the

membrane-potential fluctuations are also smaller, leading to

more regular spiking. To test this, we examined the standard de-

viation of the membrane potential along the dendrites during

dendritic stimulation (Figure 2G). These data show that, indeed,

during sustained dendritic input, the membrane-potential fluctu-

ations are small near the soma.

In summary, these data suggest that PV basket cell dendrites

may enhance gamma synchrony in two ways. First, the low gain

of the dendritic I-O relationship will reduce the sensitivity of the

PV basket cell output to different amounts of input, and second,

the smaller membrane-potential fluctuations at the soma,

evident in the more regular spiking, may facilitate spike synchro-

nization between PV basket cells.

PV basket cell dendrites make gamma synchrony more
robust to heterogeneities
To test whether PV basket cell dendrites enhance gamma syn-

chrony in heterogeneous networks, we performed network sim-

ulations using the reconstructed PV basket cells coupled with

inhibitory synapses based on empirical data (Bartos et al.,

2002) (Figure 3A; see STAR Methods). We included two forms

of heterogeneity: (1) each PV basket cell received a different

amount of synaptic input to create spatial heterogeneity (so-

called ‘‘input heterogeneity’’), and (2) the input consisted of noisy

Poisson trains of synaptic conductances to create temporal het-

erogeneity. Each cell in the network received a mean input rate

taken from a normal distribution with a mean m and standard de-

viation s. We could then increase the spatial heterogeneity in the

network by increasing thewidth of this distribution (that is, the ra-

tio of s/m3 100 [%]). In homogenous networks (0% input hetero-

geneity), spike synchrony in the gamma frequency range

emerged rapidly in both soma- and dendrite-driven networks

(Figure 3B). However, when we increased the input heterogene-

ity, dendrite-driven neurons firedmore synchronously (Figure 3B,

compare raster plots).

The amplitude of the excitatory drive and the strength of

inhibitory connections are critical determinants of the spike

rates, oscillation frequency, and synchrony; therefore, we

examined how they affect the results (Figure 3C). To quantify

network synchrony, we defined the synchrony index, which is

1 for perfect spike synchrony and approaches 0 when the

network is fully desynchronized (see STAR Methods). For

soma-driven networks, increasing the input heterogeneity to

40% reduced the synchrony index for a broad range of excita-

tion and connection strengths (Figure 3C, bottom row). In stark

contrast, the dendrite-driven networks maintained a high syn-

chrony index (Figure 3C). To summarize the relationship
Cell Reports 39, 110948, June 14, 2022 3
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Figure 2. Distributed dendritic inputs result in a lower I-O gain and more regular spiking

(A) Cartoon shows the recording configuration. Membrane-potential traces show miniature EPSPs. We used the fast-rising slope (<0.5 ms) to determine which

EPSPs originate close to the recording pipette.

(B) Mean miniature EPSP amplitude of all cells, plotted as a function of input distance from the soma, for both dendritic (orange) and somatic recordings (green,

n = 5 cells, lines are least-square fits).

(C) Miniature EPSP amplitude attenuation during the propagation from the dendrites to the soma. Gray data points, experiments (n = 5 cells); blue lines, model

predictions (n = 5 models); blue dashed line, average model prediction. Data and average model prediction were fitted with a single exponential decay function

(e�x/l, with attenuation constant l).

(D) I-O relationships of PV basket cell models using perisomatic (green) or distributed dendritic inputs (orange, n = 5 models, mean ± SEM, 10 simulations).

Cartoon shows the synaptic input locations. Perisomatic: 50 synapses % 50 mm from the soma. Dendritic: 100 synapses R 120 mm from the soma. Black ticks

illustrate a Poisson train of synaptic inputs. Synapseswere randomly distributed. Total input rate is the number of synapses3 the rate per synapse. The number of

synapses was fixed, and we varied only the rate per synapse.

(E) Insets, example spike trains from the data in (D). Normalized count histograms show the interspike intervals (ISIs) of the example spike trains.

(F) ISI irregularity quantified by the coefficient of variation (CV) as a function of output spike rate (based on the data in D).

(G) Membrane-potential traces along the dendrites and the soma when the input is dendritic (orange) or perisomatic (green). For dendritic input, membrane-

potential fluctuations attenuate towards the soma, leading to more regular spiking. Right panels show the mean and standard deviation of the membrane po-

tential as a function of distance to soma. The amount of input was adjusted to achieve the same mean depolarization of the soma. Na+ channels were blocked to

prevent action potentials.

4 Cell Reports 39, 110948, June 14, 2022
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Figure 3. PV basket cell dendrites make gamma synchrony more robust to input heterogeneity

(A) Ring network of 200 PV basket cell models with a reconstructed morphology, symbolically arranged along a ring to illustrate a network with local inhibitory

connections. Cells are randomly coupled by inhibitory synapses following a Gaussian connection probability (gray curve). Cartoon shows the synaptic input

locations. 50 synapses % 50 mm from the soma (green); 100 synapses R 120 mm from soma (orange).

(B) PV basket cell activity in networks driven by perisomatic (green) or dendritic (orange) excitation. Input heterogeneity increases from left to right. Top row,

example membrane-potential traces showing spikes from 20 random cells. Bottom row, raster plots of all 200 PV basket cells in the network. Network starts

uncoupled, and inhibitory synapses activate at t = 0 ms.

(C) Network oscillation frequency (top row), mean spike rate (middle row), and synchrony index (bottom row) as a function of total input rate and the strength of

inhibitory conductance (gGABA). The surface colors show the oscillation-frequency range (see color legend in D). White dots on the synchrony index correspond

to the examples in (B).

(D) The maximum synchrony index per frequency band, as a function of input heterogeneity for perisomatic and dendritic input (based on data in C, mean ± SEM,

5 network instantiations).
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between synchrony index and heterogeneity for different

gamma frequency bands, we divided the gamma spectrum

into smaller frequency bands and calculated the maximum syn-

chrony index for each band (Figure 3D). These data show that

regardless of the gamma frequency range, dendrite-driven net-

works are far more tolerant to heterogeneities. Even increasing

the input heterogeneity to 100% caused only a small reduction

in network synchrony (Figure S2A). Furthermore, dendrite-

driven networks synchronized robustly even when the strength

of inhibitory connections was an order of magnitude less

compared with previous influential models (Vida et al., 2006)

(see side-by-side comparison in Figures S2A–S2C). Finally,

we found similar results regardless of which PV basket cell

model we used for building networks, illustrating that the re-
sults do not depend on a specific cell morphology or specific

biophysical properties (Figure S2D).

Notably, we observed that network synchrony in dendrite-

driven networks was also higher in homogeneous networks in

which all cells receive the same input (Figure 3D, 0% input het-

erogeneity case). Therefore, we hypothesized that the dendrites

also reduced temporal heterogeneities by reducing the ampli-

tude of the membrane potential fluctuations at the soma (see

Figure 2G). This could facilitate spike synchrony. To test this,

we substituted the Poisson synaptic inputs with tonic input cur-

rents to produce noiseless excitation (Figure S3). Indeed, syn-

chrony in soma- and dendrite-driven networks was now similar

(Figure 3D, 0% input heterogeneity case). Altogether, these

data show that both spatial and temporal heterogeneities are
Cell Reports 39, 110948, June 14, 2022 5
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Figure 4. Biophysical mechanisms of PV basket cell dendrites that underlie robust gamma oscillations

(A) Top, I-O relationships of a simplified PV basket cell model (cartoon), driven by excitatory input on the soma (green, 50 synapses) or dendrites (orange, 100

synapses R 150 mm from the soma). Bottom, CV of the ISIs as a function of output spike rate. Insets, example spike trains. Mean ± SEM, 10 simulations.

(B) Data from ring networks using 200 simplified PV basket cell models, driven by either soma or dendritic input. Histograms showmaximum synchrony index per

frequency band, as a function of input heterogeneity. Color code indicates the oscillation frequency bands. Mean ± SEM, 5 network instantiations.

(C) As in (A) but using synaptic current sources instead of synaptic conductances (these synapses have the same kinetics but with a fixed driving force). Faint lines

are the data from (A) for comparison.

(D) As in (A) but without dendritic voltage-dependent K+ channels.

(E) As in (A) but using synaptic current sources and without dendritic K+ channels.

(F–H) Themaximum synchrony index per frequency band, as a function of input heterogeneity, based on ring networks built fromPV basket cell models described

in (C)–(E). The three different conditions can be compared with the control histograms in (B).
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important determinants of network synchron, and that dendrite-

driven synchrony is more robust to both for a wide range of

parameters.

So far, we used themost elementary network models that pro-

duce gamma synchrony. To investigate whether our results

depend on specific neuronal or network properties, we per-

formed additional simulations. First, we explored the impact of

adding gap junctions to the model (Hormuzdi et al., 2001)

(Figures S4A–S4F). We positioned these electrical synapses

either near the PV basket cell somata or on the distal dendrites.

Regardless of their position, electrical synapses between PV

basket cells increase the synchrony index for both dendrite-
6 Cell Reports 39, 110948, June 14, 2022
and soma-driven networks. However, including electrical synap-

ses did not change the conclusion that dendrite-driven syn-

chrony is more robust (Figures S4C and S4F). Second, adding

N-methyl-D-aspartate (NMDA) receptors (Koh et al., 1995; Sam-

bandan et al., 2010) enhances the I-O gain for both somatic and

dendritic inputs (Figures S5A–S5C) but also did not change our

conclusion (Figure S5C). Third, because inhibition can be hyper-

polarizing or shunting (Vida et al., 2006), we performed network

simulations while varying the reversal potential of inhibition.

However, this did also not affect the outcome (Figures S5D–

S5F). Fourth, when we changed the network from a one-dimen-

sional (1D) ‘‘ring structure’’ to a 2D network with local
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Figure 5. PV basket cell dendrites enhance the robustness of theta-nested gamma rhythms

(A) Ring network of 200 PV basket cell models with a reconstructed morphology. PV basket cells receive a theta frequency-modulated input current to the soma.

In addition, networks receive rate-coded excitatory input either close to the soma (green, 50 synapses% 50 mm from the soma) or to the dendrites (orange, 100

synapses R120 mm from soma).

(B) PV basket cell activity in a network driven by perisomatic excitation. Input heterogeneity increases from left to right. Top row, example membrane potential

traces showing spikes from 30 random cells. Middle row, meanmembrane potential. Dashed line is the theta phase. Bottom row, raster plots of all 200 PV basket

cells in the network. Black box, phase interval during which the synchrony index was calculated.

(C) As in (B), but networks are driven with dendritic excitation.

(D) The maximum synchrony index per frequency band, as a function of input heterogeneity. Mean ± SEM, 5 network instantiations, averaged over ten theta

cycles.
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connectivity based on recent empirical data (Espinoza et al.,

2018), dendrite-driven gamma synchrony was also more robust

(Figures S6A–S6C). Finally, we constructed composite networks

by using a mixture of all five reconstructed PV basket cell

models. Because themodels have a substantially different excit-

ability (input resistance varies between 57 and 119 MU) and

morphology (Figure S1A), this cell-to-cell variability adds further

spatial heterogeneity and increases the realism of the network.

Nevertheless, dendrite-driven gamma synchrony remained

more robust (Figures S6D–S6F).

In summary, using anatomically and biophysically detailed

network models, we found that input arriving on the dendrites

strengthens the robustness of gamma synchrony in heteroge-

neous networks, and we show that this conclusion holds for a

wide range of neuronal and network parameters.

How do PV basket cell dendrites enhance gamma
oscillations?
This question is difficult to address in anatomically and bio-

physically detailed PV basket models because manipulating

the dendritic properties also affects the fast-spiking phenotype

(Hu et al., 2010). Therefore, we constructed a simpler model to

determine the underlying biophysical mechanisms. We used a

single somatic compartment and five apical dendrites with

similar length and diameter as real PV basket cells (Figure 4A).

For the spikingmechanism, we used awell-knownmodel that re-

capitulates the spiking properties of these cells (Wang-Buzsaki
model [Wang and Buzsáki, 1996]; see STAR Methods), and we

added the high-threshold-activated K+ conductance to the den-

drites (Hu et al., 2010). The model resembled the measured I-O

properties (Figure S7A) and reproduced the synchrony index of

the anatomically detailed models (Figures 4A, 4B, and S7B–

S7E).

We explored two hypotheses to explain the robustness of

dendrite-driven synchrony. First, thin PV basket cell dendrites

have a high impedance and strongly depolarize when excited

by synaptic inputs. Such strong dendritic depolarizations reduce

the magnitude of EPSPs by reducing their driving force, and this

will reduce the I-O gain (Bush and Sejnowski, 1994). Further-

more, a reduced driving force will also reduce the amplitude of

the membrane-potential fluctuations and enhance spike regular-

ity. To test this hypothesis, we converted excitatory synaptic

conductances to currents (which are independent of driving

force). Synaptic currents indeed increased the gain of the I-O

relationship (Figure 4C) but did not significantly affect spike reg-

ularity (quantified by the CV), and the synchrony index was only

slightly reduced (compare Figures 4F and 4B). Therefore, this

mechanism appears to play only a minor role in enhancing

network synchrony, and other mechanisms must exist.

A second hypothesis is that the K+ conductances in the den-

drites reduce the gain of the dendritic I-O relationship by actively

opposing dendritic depolarization (Hu et al., 2010). Deleting the

K+ conductance from the dendrites indeed increased the gain

(Figure 4D), and interspike intervals became more irregular
Cell Reports 39, 110948, June 14, 2022 7
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Figure 6. PV basket cell dendrites enhance synchrony in networks of synaptically coupled excitatory and inhibitory neurons
(A) Simulations using networks of reciprocally coupled PV basket cells and principal cells (PCs; see STARMethods). The PV basket cells are also coupled among

themselves. Both populations of cells are driven by an excitatory drive with varyingmean rate and input heterogeneity (green and red arrows). The external drive to

PV basket cells is located perisomatically (green shaded area). Spike raster diagrams show activity of 200 PV basket cells (black) and 800 PCs (red) for 0%, 20%,

and 40% input heterogeneity.

(B) The synchrony index as a function of inhibitory coupling strength (between PV basket cells) and total input rate to PV basket cells for 0% and 40% input

heterogeneity (top row: PCs; bottom row: PV basket cells). The dots on the synchrony index correspond to the examples in (A).

(C) The maximum synchrony index per frequency band, as a function of input heterogeneity (PCs, top; PV cells, bottom). Mean ± SEM, 5 network instantiations.

(D–F) Same as (A)–(C) but now using dendritic input to PV basket cells (yellow shaded area).
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(Figure 4D). Furthermore, dendrite-driven synchrony became

slightly more sensitive to input heterogeneity (Figure 4G). How-

ever, the difference between soma- and dendrite-driven syn-

chrony was still striking, indicating that the K+ conductance

alone does not explain why dendrite-driven synchrony is more

robust (Figure 4G).

Finally, we considered the following hypothesis: the depolari-

zation caused by deleting the voltage-dependent K+ conduc-

tances—which should steeply increase the gain—may be limited

because it is compensated by a strong reduction in driving force

for synaptic excitation. To test this, we deleted the K+ conduc-

tance from the dendrites and used excitatory synaptic currents

instead of conductances to drive spiking in PV basket cells. In

this condition, the gain of both the soma- and dendrite-driven

I-O relationship sharply increased (Figure 4E). Furthermore, in-

terspike intervals became very irregular (Figure 4E). In agreement

with our hypothesis, dendrite-driven networks were now equally

sensitive to input heterogeneity as the soma-driven networks

(Figure 4H). Altogether, these data show that dendritic K+ cur-

rents, and to a lesser degree, the reduced driving force for

excitation, decrease the I-O gain (enhancing robustness to input

heterogeneity) and reduce membrane-potential fluctuations

(enhancing robustness to temporal heterogeneity).

PV basket cell dendrites enhance the robustness of
theta-nested gamma rhythms
Gamma oscillations often occur superimposed on the slower

theta (5–12 Hz) oscillations (Bragin et al., 1995; Pernı́a-Andrade
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and Jonas, 2014). Such cross-frequency coupling may serve

to couple remote cortical circuits (Colgin, 2015). Therefore, we

tested whether dendrites also enhance gamma synchrony

when modulated by the theta rhythm. We used the anatomically

detailed network models and simulated the theta rhythm by a si-

nusoidal current (Figure 5A; see STAR Methods). We then

compared the robustness of gamma synchrony when driving

the network with somatic or dendritic input.

Similar to observations in the dentate gyrus of exploring rats

(Bragin et al., 1995), the simulated gamma frequency was in

the range of 80–100Hz. For homogeneous networks (0%hetero-

geneity), both soma- and dendrite-driven synchrony emerged

within a single theta cycle (Figures 5B and 5C). Furthermore,

dendrite-driven synchrony was substantially higher compared

with soma-driven synchrony (Figures 5B and 5C). With

increasing input heterogeneity, soma-driven network synchrony

fell rapidly, while dendritic-driven synchrony remained intact for

all frequency bands (Figure 5D). These data show that dendrite-

driven gamma synchrony superimposed on theta oscillations is

also more robust to network heterogeneities.

PVbasket cell dendrites enhance synchrony in networks
of synaptically coupled excitatory and inhibitory
neurons
Models of gamma oscillations in cortical circuits generally fall

into two classes: one that generates oscillations with a single

pool of inhibitory cells, and one that generates oscillations by

the reciprocal connections between pools of inhibitory and
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excitatory principal neurons (Tiesinga and Sejnowski, 2009;

Whittington et al., 2000). While it is generally thought that the

former class captures gamma oscillations in the dentate gyrus

(Diamantaki et al., 2016; Espinoza et al., 2018; Ewell and Jones,

2010; Vida et al., 2006), we wanted to test whether our findings

also generalize to networks of coupled excitatory and inhibitory

neurons.

To test this, we built a model composed of 200 anatomically

detailed PV basket cells and 800 principal neurons that were

synaptically coupled based on empirical data (Figure 6A,

cartoon; see STAR Methods). Both neuronal populations

received Poisson-type synaptic stimulation. We considered

again two cases that depended on whether PV basket cells

were driven by input close to the soma (Figures 6A–6C) or on

the dendrites (Figures 6D–6F). In networks with homogeneous

input across neurons, synchrony among PV basket cells, and,

to a lesser degree, principal neurons emerged rapidly, but as

the input heterogeneity increased, synchrony was only main-

tained when PV basket cells received input on the dendrites

(compare Figures 6C and 6F). Lastly, even in homogeneous net-

works (0% input heterogeneity cases) dendrite-driven networks

showed a higher synchrony. This further illustrates, as discussed

earlier, that PV basket cell dendrites not only buffer spatial input

heterogeneities but also temporal heterogeneities in a variety of

network architectures, leading to high neuronal synchrony.

DISCUSSION

We show that PV basket cell dendrites are critically important for

enhancing synchronous activity at gamma frequencies in hetero-

geneous networks. We found that the dendrites scale down the

gain of the I-O relationship and reduce the cell’s sensitivity to

input fluctuations due to the high levels of dendritic K+ channels.

Anatomically detailed network models reveal that these proper-

ties help to homogenize firing rates so that PV basket cells can

synchronize at a common frequency. Therefore, we propose

that the biophysical properties of PV basket cell dendrites

enhance the robustness of gamma oscillations.

For decades, experiments and theory have tried to explain

how spike synchrony emerges in heterogeneous networks.

Classic work studying gamma oscillations in vitro, by perfusing

brain slices with excitatory receptor agonists (Fisahn et al.,

1998; Whittington et al., 1995), showed that fast-spiking cells

can synchronize when their input varies between �35% and

�53% (Vida et al., 2006). However, this likely underestimates

the conditions in vivo when synaptic input is more cell selective

and noisier (Destexhe et al., 2003), favoring desynchronization.

Early network models tolerated only 3%–5% heterogeneity of

the tonic drive (Wang and Buzsáki, 1996), until reports showed

that inhibitory connections between PV basket cells are faster

and stronger than previously thought (Bartos et al., 2001,

2002). Based on these data, network models could tolerate a

heterogeneous tonic drive up to 10% (Bartos et al., 2002). A

landmark study showed that shunting inhibition further enhances

robustness and increases tolerance to heterogeneous input of

30%–70% (Vida et al., 2006). However, the enhancing effects

of shunting inhibition only work under restrictive conditions as

it is dependent on a low excitatory drive and strong inhibitory
coupling (Vida et al., 2006). Because of the strong compound

shunting inhibition (Figure S2C, bottom panel), the model gener-

ates gamma oscillations in the absence of excitatory input,

driven by the interaction of shunting inhibition and a persistent

Na+ current, and desynchronizes as excitation increases (Fig-

ure S2B). This is unlikely to occur in biological networks; there-

fore, a key mechanism for synchrony in heterogeneous networks

with realistic inhibitory coupling was lacking.

By considering the dendrites, we show that networks can

tolerate high levels of input heterogeneity, well beyond 100%.

This finding is independent of whether inhibition is hyperpolariz-

ing or shunting and relaxes the requirement for strong inhibitory

coupling by an order of magnitude (Figure S2C). We also

increased biological realism to the model network by adding

other forms of heterogeneity. Previous models mainly used tonic

excitation. Instead, we used Poisson trains of synaptic conduc-

tances, adding a significant amount of synaptic noise that

reduces synchrony (Figure S3D). We also used networks

composed of different cell models, each with a unique

morphology and excitability, resembling biological networks

(Figure S6F). Finally, we show that PV basket cells in highly het-

erogeneous networks can synchronize during hippocampal

theta oscillations (Figure 5) and in different network architectures

(Figure 6). In summary, PV basket cell dendrites strongly

enhance spike synchrony in inhibitory networks under a wide

range of conditions, which is necessary to withstand the plethora

of heterogeneities that is typical for biological networks.

What are the biophysical mechanisms that enable PV basket

cell dendrites to enhance spike synchrony?We find that two fac-

tors play a role. First, PV basket cell dendrites lack regenerative

events such as Na+ and Ca2+ spikes (Hu et al., 2010) and have

only low levels of NMDA receptors (Koh et al., 1995). Instead,

they are dominated by high-threshold and fast-activating K+

conductances (Hu et al., 2010). Second, thin PV basket cell den-

drites have a high input impedance and rapidly depolarize when

driven by synaptic inputs. This reduces the driving force for exci-

tation and limits the amount of synaptic current that can be

generated (Bush and Sejnowski, 1994). Consequently, the I-O

relationship of PV basket cells displays a shallow slope and

rapidly saturates in response to dendritic inputs with incremental

intensities (Figure 4). Such an I-O relationship compresses the

dynamic range of PV basket cell output firing and reduces the

sensitivity for detecting changes in input strength. When individ-

ual PV basket cells in the network are targeted by excitatory

inputs of heterogeneous intensities, this dendritic feature con-

tributes to synchrony by helping to homogenize the firing rate

over the basket cell population. Beside the gain, the I-O relation-

ship is also characterized by the rheobase, or theminimal current

necessary to evoke spiking. For distributed synaptic input, the

rheobase for dendritic input is slightly higher compared with so-

matic input (Figures 4A and 4C–4E, top panels), but this factor

does not play a major role in network synchronization. However,

we should note that a higher rheobase and sublinear I-O relation-

ship, typical for dendrite-driven spiking, requires more synaptic

input to reach the same spike frequency, whichmay bemetabol-

ically more costly (Attwell and Laughlin, 2001). Among themech-

anisms that reduce gain, the dendritic K+ conductances play a

more important role (Figure 4). Yet, surprisingly, K+ channels
Cell Reports 39, 110948, June 14, 2022 9
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are not necessary. Without K+ channels, PV basket cell networks

remain robust to heterogeneities because of the enhanced

contribution of a reduction in driving force (Figure 4G). Alto-

gether, these data illustrate that care should be taken when

simplifying inhibitory neurons as point neurons without dendrites

in network models (Poirazi and Papoutsi, 2020; Tzilivaki et al.,

2019).

The low gain of the dendritic I-O relationship in PV basket cells

stands in contrast to pyramidal neuron dendrites that have a

steeper dendritic I-O gain compared with the soma (Larkum

et al., 2004). However, the properties of PV basket cells in the

dentate gyrus may not be exceptional, and there is evidence

that PV basket cells in other circuits have similar dendritic prop-

erties (reviewed in Hu and Vervaeke, 2017). One exception is a

study showing supra-linear dendritic Ca2+ responses in hippo-

campal CA1 PV-expressing neurons (Chiovini et al., 2014).

However, Ca2+ responses are an indirect measure of dendritic

excitability, andCa2+ changes can be supra-linear while synaptic

integration in the dendrites is sub-linear (Tran-Van-Minh et al.,

2016). Therefore, it remains to be determined whether PV basket

cell dendrites in different brain regions have similar properties.

Other rhythm-generating inhibitory neurons in the cerebellar

cortex, such as stellate and Golgi cells, also have thin, high

impedance dendrites lacking regenerative properties, and the

sub-linear integration in these cells is dominated by a reduction

in synaptic driving force (Abrahamsson et al., 2012; Tran-Van-

Minh et al., 2016; Vervaeke et al., 2012). Therefore, we speculate

that some inhibitory interneurons have dendrites that are ideally

suited for rhythm generation.

Neurons integrate input from different origins that is spatially

segregated on their dendrites. A corollary of our results is that

input from the entorhinal cortices on the outer two-thirds of the

apical dendrites is more likely to generate gamma oscillations

compared with the commissural input that targets the proximal

dendrites. Spatial segregation of synaptic inputs on the den-

drites is common in the brain. For example, PV basket cells in

layer 4 of the neocortex receive thalamic inputs close to the

soma, while intra-cortical contacts are rather located on the

distal dendrites (Bagnall et al., 2011; Freund et al., 1985). De-

pending on whether the cortical circuit is dominated by sensory

or intracortical activity, this may promote network desynchroni-

zation and synchronization, respectively. In conclusion, our re-

sults suggest that the biophysical properties of PV basket cell

dendrites promote spike synchrony in the gamma frequency

range and support the many cognitive functions associated

with this rhythm.

Limitations of the study
First, our model does not include all cell types of the dentate gy-

rus such as excitatory mossy cells and inhibitory cells such as

axo-axonic cells, somatostatin-expressing HIPP cells, and

CCK-expressing HICAP cells (Halasy and Somogyi, 1993).

Quantitative data about their intrinsic properties and network

connections are limited, and by focusing on PV basket cells,

the model is more amenable to analyzing the underlying bio-

physical mechanisms. Nevertheless, we cannot exclude that

some of these omitted cell types also play a role in generating

gamma oscillations. Second, PV basket cells in the brain can
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also be classified as type 1 and type 2 neurons depending on

whether they can fire at an arbitrarily low rate (type 1) or they

have a threshold frequency below which they cannot sustain

firing (type 2) (Hodgkin, 1948; Tikidji-Hamburyan and Canavier,

2020). Previous work and the data presented here show that

PV basket cells in the dentate gyrus and area CA1 are type 1

(Ferguson et al., 2013; Tikidji-Hamburyan and Canavier, 2020),

while PV basket cells in the neocortex are type 2 (Tateno et al.,

2004). So, it remains to be tested whether the mechanisms

shown here generalize to multiple types of PV basket cells.
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Buzsáki, G., and Wang, X.-J. (2012). Mechanisms of gamma oscillations.

Annu. Rev. Neurosci. 35, 203–225. https://doi.org/10.1146/annurev-neuro-

062111-150444.

Calvin, W.H., and Stevens, C.F. (1967). Synaptic noise as a source of variability

in the interval between action potentials. Science 155, 842–844. https://doi.

org/10.1126/science.155.3764.842.
Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and

Silver, R.A. (2014). LEMS: a language for expressing complex biological

models in concise and hierarchical form and its use in underpinning

NeuroML 2. Front. Neuroinform. 8, 79. https://doi.org/10.3389/fninf.2014.

00079.

Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K.,

Tsai, L.-H., and Moore, C.I. (2009). Driving fast-spiking cells induces gamma

rhythm and controls sensory responses. Nature 459, 663–667. https://doi.

org/10.1038/nature08002.

Carnevale, N.T., and Hines, M.L. (2006). The NEURON Book (Cambridge Uni-

versity Press). https://doi.org/10.1017/cbo9780511541612.005.

Chiovini, B., Turi, G.F., Katona, G., Kaszás, A., Pálfi, D., Maák, P., Szalay, G.,
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interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–

6665. https://doi.org/10.1523/jneurosci.15-10-06651.1995.

Silver, R.A. (2010). Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489.

https://doi.org/10.1038/nrn2864.

Softky, W., and Koch, C. (1993). The highly irregular firing of cortical cells is

inconsistent with temporal integration of random EPSPs. J. Neurosci. 13,

334–350. https://doi.org/10.1523/jneurosci.13-01-00334.1993.

Sohal, V.S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin neu-

rons and gamma rhythms enhance cortical circuit performance. Nature 459,

698–702. https://doi.org/10.1038/nature07991.

Str€uber, M., Jonas, P., and Bartos, M. (2015). Strength and duration of periso-

matic GABAergic inhibition depend on distance between synaptically con-

nected cells. Proc. Natl. Acad. Sci. U S A 112, 1220–1225. https://doi.org/

10.1073/pnas.1412996112.

Str€uber, M., Sauer, J.-F., Jonas, P., and Bartos, M. (2017). Distance-depen-

dent inhibition facilitates focality of gamma oscillations in the dentate gyrus.

Nat. Commun. 8, 758–815. https://doi.org/10.1038/s41467-017-00936-3.

Tateno, T., Harsch, A., and Robinson, H.P.C. (2004). Threshold firing

frequency–current relationships of neurons in rat somatosensory cortex:

type 1 and type 2 dynamics. J. Neurophysiol. 92, 2283–2294. https://doi.

org/10.1152/jn.00109.2004.

Tiesinga, P., and Sejnowski, T.J. (2009). Cortical enlightenment: are attentional

gamma oscillations driven by ING or PING? Neuron 63, 727–732. https://doi.

org/10.1016/j.neuron.2009.09.009.
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Materials availability
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Data and code availability
d Dendritic patch-clamp data and simulated data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited on GitHub and is publicly available as of publication (DOI available in the Key resources

table).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data include recordings from 17- to 23-day-old male Wistar rats. Rats were housed under a 12 h light cycle (7 am-7 pm) and dark

cycle (7 pm-7 am) and were kept in a litter of 8–10 animals together with the mother in a single cage. All procedures were ethically

approved by the Norwegian Food Safety Authority (projects #FOTS 6590, 7480, 19129, 27620). Experiments were performed in

accordance with the Norwegian Animal Welfare Act.

METHOD DETAILS

Dendritic patch-clamp recordings
Transverse hippocampal slices (thickness 350 mm) were cut in ice-cold, sucrose-containing physiological extracellular solution using

a vibratome (VT1200, Leica Microsystems), incubated in a storage chamber filled with standard physiological extracellular solution

at � 34�C for 30 min, and subsequently stored at room temperature (Hu et al., 2010). Standard extracellular solution contained:

125 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2, and 25 mM D-glucose (equilibrated

with 95% O2 and 5% CO2 gas mixture. Slices were then transferred into a recording chamber and perfused with standard physio-

logical extracellular solution. Current-clamp recordings were performed at near-physiological temperature (� 33�C; range: 31–34�C).
For interneuron dendrite recordings, we used the following strategy. First, a somatic recording was obtained using an internal so-

lution containing Alexa Fluor 488 (50 or 100 mM, Invitrogen). Next, after � 30 min of somatic whole-cell recording, the fluorescently

labeled axon and dendrites were traced from the parvalbumin expressing (PV) basket cell somawith a Nipkow spinning disk confocal

microscope (Volocity, 5.5.1 PerkinElmer, equipped with an Orca camera, Hamamatsu and a solid-state laser with excitation wave-

length of 488 nm). Total exposure time was minimized to avoid photodamage. Finally, fluorescent and infrared differential interfer-

ence contrast (IR-DIC) images were compared, and dendrites were patched under IR-DIC.

Patch pipettes were fabricated from thick-walled borosilicate glass capillaries (outer diameter: 2 mm, inner diameter: 1 mm) with a

horizontal pipette puller (P-97, Sutter Instruments). The intracellular solution for soma-dendritic whole-cell recordings contained

120 mM K-gluconate, 20 mM KCl, 10 mM EGTA, 2 mM MgCl2, 2 mM Na2ATP and 10 mM HEPES, pH adjusted to 7.3 with KOH.

The pipette resistance was 2–10 MU for somatic recordings and 6–40 MU for dendritic recordings. Current-clamp recordings

were performed using a Multiclamp 700B amplifier (Molecular Devices). Series resistance was 12–90 MU. Somatic recordings

with a restingmembrane potential of more positive than�50mVwere discarded. Pipette capacitance and series resistance compen-

sation (bridge balance) were applied throughout the experiments. The input-output relationship was determined by injecting 1-s de-

polarizing current pulses of various amplitudes into the soma at the resting membrane potential (�60.7 ± 0.8 mV).

Signals were sampled at 50 or 100 kHz with a Digidata 1322 converter board (Molecular Devices) and low pass filtered at 10 kHz.

Data acquisition and generation of pulse protocols were performed with pClamp 9 or 10 (Molecular Devices).

PV basket cell identification was based on the non-accommodating, fast-spiking phenotype (steady-state spike

frequency >150 Hz at physiological temperature in response to 1 s, 0.3- to 1-nA somatic current pulses) and the morphological

properties of the axonal arbor, which is largely restricted to the granule cell layer and established basket-like structures around

granule cell somata that were visible in the confocal images. In a previous publication (Hu et al., 2010) a large sample of fast-spiking

interneurons in the dentate gyrus was analyzed in detail by light microscopy. It was concluded that the fast-spiking phenotype was

tightly correlated with the expression of parvalbumin (Hu et al., 2010). Furthermore, 78 of 83 cells were identified as classical basket

cells with tangential axon collaterals and basket-like branches around granule cell somata. In contrast, only 5 out of 83 were axo-

axonic cells with radial axon collaterals (Hu et al., 2010). Based on these results, the recorded cells were termed PV basket cells

throughout this study.
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To determine the propagation of EPSPs from the dendrites to the soma (Figure 2A), miniature EPSPs were evoked by ejecting a

high osmotic external solution close to the dendritic recording site during simultaneous soma–dendrite recordings with a third patch

pipette. 30 mM ZD7288 and 2 mM SR95531 were added to the standard physiological solution in these experiments to block HCN

channels and GABAA receptors. The high osmotic external solution contained 125 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl,

1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2, 25 mM D-glucose, 300 mM sucrose, 50 mM DL-APV, 30 mM ZD7288, 2 mM

SR95531 and 1 mM tetrodotoxin.

Anatomically detailed PV basket cell model
A previous study (Nörenberg et al., 2010) meticulously constrained the passive parameters of the five PV basket cell models based on

experimental data (Figure S1). These models can be downloaded from the ModelDB repository (See Key resources table). We sum-

marize the membrane capacitance Cm, axial resistance Ri, leak reversal potential Eleak and membrane conductances gleak for each

model in Figures S8A and S8B. The leak conductance gleak is spatially inhomogeneous along the dendrites (higher for closer distance

d to the soma, lower more distally), as this fits the passive response properties of dentate gyrus PV cells best (Nörenberg et al., 2010).

This is defined as:

gleakðdÞ =

�
gleak;prox if d < 120 mm
gleak;dist otherwise

(Equation 1)

The voltage-dependent currents INa, IK1 and IK2 are Hodgkin-Huxley-type models based on the Wang-Buzsaki model (Hu et al.,

2010; Wang and Buzsáki, 1996). Here, IK1 has the original parameters with kinetic factor 4 = 2, while the steady-state activation

curve of IK2 is more depolarized to match the inward rectification observed in the distal dendrites (see Figure 1E and see section

"Model fitting").

The sodium current INa has an activation variable m and an inactivation variable h. The dynamics of m is assumed to be fast and

substituted by the steady-state value mN (Wang and Buzsáki, 1996) such that:

INa = gNam
3
NhðV � ENaÞ (Equation 2)
mN =
am

am + bm
with amðVÞ =
� 0:1ðV + 35Þ

expð � 0:1ðV + 35Þ � 1Þ;
and bmðVÞ = 4 exp

�
�V + 60

18

�
;

and
dh

dt
= 4NaðahðVÞð1 � hÞ � bhðVÞhÞ
with ahðVÞ = 0:07 exp

�
�V + 58

20

�

and bhðVÞ =
1

expð � 0:1ðV + 28Þ+ 1Þ:

The potassium current IK1 has only an activation variable n1, such that:

IK1 = gK1n
4
1ðV � EK1Þ (Equation 3)
dn1

dt
= 4K1

�
an1 ðVÞð1 � n1Þ � bn1

ðVÞn1

�
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with an1 ðVÞ =
� 0:01ðV + 34Þ

expð � 0:1ðV + 34Þ � 1Þ;
and bn1
ðVÞ = 0:125 exp

�
�V + 44

80

�
:

The potassium current IK2 has an activation variable n2, such that:

IK2 = gK2n
4
2ðV � EK2Þ (Equation 4)
dn2

dt
= 4K2

�
an2 ðVÞð1 � n2Þ � bn2

ðVÞn2

�

with an2 ðVÞ =
� 0:01ðV + 20Þ

expð � 0:1ðV + 20Þ � 1Þ;
and bn2
ðVÞ = 0:125 exp

�
�V + 30

40

�
:

For INa, IK1 and IK2, the reversal potential E and parameter 4 are shown in Figure S8C, and the maximum conductance g and spatial

distribution of the current density is summarized in Figure S8D. The voltage-dependence of the steady-state activation curves and

time constants of the variables x = fm;h;n1;n2g are plotted in Figure S9.

Model fitting
For all five reconstructed basket cell models, we used the passive properties as measured in (Nörenberg et al., 2010) (see

Figures S8A and S8B). Next, we systematically varied gNa, gK1, gk2 and 4 to find good fits to the average I-O relationship that

was experimentally measured using somatic current injections (Figure 1C). Next, we conducted simulations to test whether the

model matches several other experimental observations, in particular the dendritic I-O relationship (Figure 1D), the steady-state

membrane potential responses to dendritic (Figure 1E) and somatic current injections, the spike attenuation along the apical den-

drites (not shown), and the attenuation of EPSPs along the dendrites (Figures 2A and 2B). If necessary, we slightly adapted gNa

and gK1 to obtain a better fit to the experimental data. The resulting channel densities are listed in Figure S8D. Compared to IK1, we

shifted the steady-state activation curve of IK2 to more depolarized potentials to obtain a better fit to the sublinear membrane po-

tential in response to current injections in the dendrites (Figure 1E). Using only IK1 on the entire dendritic tree had no significant

effects on any of the main results apart from a worse fit to the dendritic V-I relationship. After introduction of the voltage-depen-

dent channels the input resistance of the models remained relatively similar to the experimental observations described in (Nör-

enberg et al., 2010) (Figure S8E).

Ball-and-sticks model
This model comprises one soma compartment (diameter = length = 25 mm) and five equal dendritic compartments (diameter = 1 mm,

length = 300 mm). Passive properties are Cm = 1 mF/cm2, gleak;soma = 0.16 mS/cm2, gleak;dend = 0.08 mS/cm2, Eleak =�75 mV, and Ri =

100Ucm. The soma has IK1 (gK1 = 20mS/cm2, EK1 =�90mV, 4K1 = 5, see Equation 3) and INa (gNa = 80mS/cm2, ENa = 55mV, 4Na = 5,

see Equation 2). The dendrites have only IK1 (gK1 = 20 mS/cm2, EK1 = �90 mV, 4K1 = 5, see Equation 3). For a comparison to exper-

imental data, see Figure S7A.

Principal (granule) cell model
The regular-spiking principal cell model was adapted unmodified from (Str€uber et al., 2017) and can be downloaded from the

ModelDB repository (see Key resources table). In short, it comprises one soma compartment (diameter = length = 5.6 mm) with

passive parameters Cm = 1.01 mF/cm2, gleak = 0.1 mS/cm2, Eleak = �75 mV, and Ri = 194 Ucm. Active properties comprise a

voltage-gated Na+ (gNa = 10 mS/cm2, ENa = 55 mV), and a delayed-rectifier voltage-gated K+-conductance (gK = 15 mS/cm2,

EK = �90 mV).

AMPA- and GABAergic synaptic conductances
We modeled synaptic AMPA and GABA conductances as two-state kinetic scheme synapses (‘‘Exp2Syn’’ model in NEURON) i.e.,
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gsynðtÞ = gsyn

e� t=trisesyn � e� t=tdecaysyn

e� tpeak=trisesyn � e� tpeak=tdecaysyn

Q½t� (Equation 5)
tpeak = log

 
tdecaysyn

trisesyn

!  
trisesyn t

decay
syn

tdecaysyn � trisesyn

!
(Equation 6)

The AMPA receptors kinetics were based on previous work (Geiger et al., 1997; Kleppe and Robinson, 1999) and our own data

shown in Figure 2. The postsynaptic currents are given by EPSCðV ; tÞ = gsyn;AMPAðtÞðV � Esyn;AMPAÞ. Parameters for GABA-type

and AMPA-type synapses are specified in the section "Ring networks of PV basket cells" and summarized in Figure S12A.

Co-localized AMPA/NMDA synapses
TheNMDA-conductance is given by an exponential rise and decay time constant, and is voltage-dependent tomodel theMg2+-block

(Farinella et al., 2014) as (see also Equation 5):

gNMDAðtÞ =
gNMDA

1+ 0:3e� 0:08VðtÞ
e
� t

.
trise
syn;NMDA � e

� t

.
t
decay
syn;NMDA

e
� tpeak

.
trise
syn;NMDA � e

� tpeak

.
t
decay
syn;NMDA

(Equation 7)

The ratio between the maximum NMDA and AMPA conductance (0.22) and the voltage dependence of the Mg2+-block

(Figures S11A and S11B) was based on measurements from fast spiking basket cells in the dentate gyrus (Koh et al., 1995). The pa-

rameters are summarized in Figure S12A.

Current-based synapses
Networks driven by current-based synapses (Figures 4C and 4E) had identical synaptic time constants and amplitudes as their

conductance-based counterparts, but with a membrane-potential fixed to the leak potential Eleak (�75 mV for the anatomically

detailed models, and�65 mV for the Ball-and-sticks model, respectively). Therefore, synapses are independent of the driving force,

that is, EPSCðV ; tÞ = gsyn;AMPAðtÞðEleak � Esyn;AMPAÞ = const x gsyn;AMPAðtÞ.

Electrical synapses
We positioned ten gap junctions (Bartos et al., 2002; Vida et al., 2006) randomly either on the perisomatic area (% 50 mm from soma,

conductance 0.1 nS) or on the outer apical dendrites (R 120 mm from soma, conductance 0.35 nS) and coupled each cell to four out

of eight randomly chosen nearest neighbours (four to the left, four to the right). Therefore, gap junctions were only present between

cells that were at most 200 mm apart (Espinoza et al., 2018) (see also next section "Ring networks of PV basket cells"). We tested the

strength of gap junction coupling bymeasuring the coupling coefficient between electrically coupled cells which was typically around

7–9% for two connected (but otherwise isolated cells) and between 3 and 12% (depending on the distance between cells) in a gap

junction coupled network (Espinoza et al., 2018; Hormuzdi et al., 2001; Venance et al., 2000) (Figures S4A and S4D).

Ring networks of PV basket cells
Ring networks are based on previous models of gamma oscillations (Bartos et al., 2002; Vida et al., 2006) (for an overview of network

connection parameters, see Figures S12A and S12B). We arrangedN = 200 PV basket cells along a ring where the distance between

neighboring cells is 50 mm. The probability that two neurons are coupled by inhibitory synapses follows a Gaussian distribution

pringðdÞ = e�d2=2s2 , with d being the distance between the cell somata, and s = 1200 mm (Bartos et al., 2002; Vida et al., 2006) (Figur-

es 3A and S10A). Synaptic connections are not allowed between cells that are more than 2500 mm apart. According to these rules,

each PV basket cell is connected to approximately 58 other PV basket cells. These rules are constrained by empirical data of the PV

basket cell density and the extent of their axonal tree in hippocampal area CA1 (Sik et al., 1995).

When two cells are synaptically connected, we randomly distributed n synapses in the perisomatic region (% 50 mm from soma).

The number of synapses between two PV basket cells was distance-dependent following the same equation as the coupling prob-

ability, but with a maximum of five synapses. The number of synaptic contacts was rounded down to an integer (Figure S10B).

The synaptic time constants are listed in Figure S12A. We varied the maximum conductance of the GABAergic synapses

gsyn;GABA between 0.5 and 10 nS (z 0.008–0.08 mS/cm2), with a synaptic reversal potential Esyn;GABA =�75 mV for hyperpolarizing

inhibition, and�60 mV for shunting inhibition. For shunting inhibition, we varied gsyn;GABA up to 30 nS, because synchronous states

typically require very strong inhibition (Tikidji-Hamburyan and Canavier, 2020; Vida et al., 2006). Synaptic currents are described

by IPSCðV ; tÞ = gsyn;GABAðtÞðV � Esyn;GABAÞ.
The spike conductance delay t comprised a constant synaptic delay of t0 = 0.5 ms and a distance-dependent delay of ti = 0:2i

ms, where i is the absolute difference between the indices of two neurons on the ring network (Bartos et al., 2002; Vida et al., 2006).

Given that neighboring neurons are separated by 50 mm, this corresponds to a conduction velocity of 0.25 m/s). In a network of 200
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cells, the conduction delays varied between 0.7 ms and 10.5 ms, with an average delay t z 4.1 ms. To avoid onset transients, the

network synapses were only activated after 150 ms into the simulation.

Ring networks of ball-and-stick cells
Ring networks of Ball-and-stick model neurons were the same as those comprising detailed PV basket cell neurons, with the excep-

tion that synapses between Ball-and-stick neurons were confined to the somatic compartment.

Ring networks of PV basket cells and principal cells
Networks of coupled excitatory and inhibitory cells consisted of NI = 200 PV basket cells and NE = 4NI principal cells (PC), respec-

tively, arranged on two rings. The spatial footprint of PV/PC was the same as for PV/PV, i.e., pringðdÞ = c e�d2=2s2 with s =

1200 mm (see Figure S10A). For PV/PV connectivity, c = 1, resulting in � 58 connections per cell, while for PV/PC, c = 0.35, re-

sulting in� 20 connections from PV cells to any PC (Str€uber et al., 2017). The footprint from PC/PV was Gaussian with s = 500 mm

and c = 0.5, resulting in� 50 connections from PCs to any PV cell (Str€uber et al., 2017). Synapses from PV/PVwere the same as for

the PV ring network with varied peak conductance gsyn;PV/PV ˛ f1;2;4;6;8g nS, and peak conductance gsyn;PV/PC = 0.1 mS/cm2,

corresponding to� 0.5 nS for a typical dentate gyrus granule cell of size� 500 mm2 (Claiborne et al., 1990). PC/PV synapses have a

peak conductance gsyn;PC/PV = 2 mS/cm2 (Str€uber et al., 2017) (for a parameter overview, see Figures S12A and S12B). Spike

conductance delays had the same distance dependence for both PV basket cells and principal cells as for networks comprised

only of PV basket cells.

Two-dimensional PV basket cell network
In addition to ring networks, we also created two-dimensional networks based on recent empirical data describing the distance

dependence of the coupling probability between PV basket cells in the dentate gyrus (Espinoza et al., 2018) (for overview of network

connectivity, see Figures S12A and S12B). It is given by the following equation and plotted in Figure S10C:

p2dNðdÞ =
1

1+ exp
�
d� a
b

� (Equation 8)

Here, we used a = 50 and b = 115 to approximately match the connection probability fit in (Espinoza et al., 2018). Notably, the

spatial reach of connectivity is much smaller compared to the ring networks (Figures S10A and S10C), which means that assuming

the same conduction velocity as used in ring networks, i.e., 0.25m/s, the effective delays will bemuch shorter. Therefore, the effect of

synchronized inhibition will be shortened, and oscillations will be faster. To compare synchrony in both network types in terms of

network structure only, we thus assumed a three-times slower conduction velocity (0.0833 m/s) to match compound inhibition

GGABAðtÞ in fully synchronous networks. Neurons were distributed uniform-randomly on a torus to avoid boundary effects.

External drive in anatomically detailed PV cell ring networks, ball-and-stick ring networks and 2D-networks
In most simulations, neurons were driven by Poisson-type excitatory synapses, that were distributed uniformly either perisomatically

(<50 mm from the center of the soma) or on the outer two-thirds of the apical dendrites, i.e., >120 mm (>150 mm for ball-and-stick cells)

from the soma center. The total input rate rstim = nsyn 3 r, where nsyn is the total number of synapses and r is the rate per synapse.We

did not observe any qualitative or quantitative differences when varying nsyn or r while keeping rstim fixed. Therefore, we decided to

use nsyn = 50 for perisomatic, and nsyn = 100 for distal apical drive and varied r between 20 and 200 Hz.

External drive of network of PV basket cells and principal cells (PC)
PV basket cells and PCswere driven by Poisson-type excitatory synapses (’’Exp2Syn’’-synapses, see Figure S12B, where gstim/PC =

0.1mS/cm2 corresponds to� 0.5 nS for a typical dentate gyrus granule cell of size� 500 mm2 (Claiborne et al., 1990). Input rateswere

co-varied, such that input rates to PCs ranged from rstim;PC = 2000–7000/s, and rate per synapse for PV basket cells was rstim;PC/40

(100 synapses for dendritic stimulation, 50 synapses for perisomatic stimulation).

Theta-nested gamma oscillations
To simulate theta-modulated activity (Figure 5) we added a sinusoidally modulated current to the somatic compartment of all cells:

IstimðtÞ = A sin

�
4 +

2pt

T

�
(Equation 9)

with oscillation period f = 5 Hz, and amplitude A = 1 nA. The phases 4were uniform-randomly sampled from ½0;p =2�. Additionally, all
cells received a heterogeneous amount of Poisson-type excitatory synaptic input as described above.

Simulation setup
Single cell simulations typically covered 2000 ms. For neurons driven with noisy or randomly distributed input we repeated the simu-

lation ten times with different initial conditions for each parameter combination. Network simulations typically covered 500 ms. After
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an initial period of 150ms, the GABA-ergic synapses were activated. Some simulations (e.g., theta-nested gamma-oscillations) were

run for 3000 ms to obtain sufficient data. Each network simulation was repeated at least 5 times with different random seeds per

parameter combination to ensure different network structures, initial conditions, synapse locations and input spike trains. Exceptions

are networks with gap junctions (Figure S4) and with shunting inhibition (Figures S5D–S5F where we only simulated one realization

because they require very fine simulation steps to avoid numerical artifacts.

The simulation time step was chosen between dt = 0.005ms (Figures S4 and S5D–S5F) and 0.025ms (all other figures). All neurons

and networks were simulated in NEURON/7.4 (Carnevale and Hines, 2006) via the pyNeuroML-interface (Vella et al., 2014) in Neu-

roML/v2beta4 (Cannon et al., 2014) (see Key resources table). Larger network simulations were run on the Sigma2 high-performance

clusters Abel and Saga (https://www.sigma2.no). Versions of the models and simulation scripts are available online (see Key re-

sources table). Data handling and analysis were done in Python/2.7.15, using the NumPy/1.11.9, SciPy/0.17.0, and Matplotlib/

1.5.1 libraries (see Key resources table).

QUANTIFICATION AND STATISTICAL ANALYSIS

Gain of input-output (I-O) relationships
In Figure 1, we linearly interpolated the experimental I-O curves and determined the respective input current values I10%; I70% at 10%

and 70% of the maximal observed firing rate rmax. We then defined the gain as 0:6 rmax

ðI70% � I10%Þ. This captured the gain without being influ-

enced by the saturating portion close to the maximum firing rate.

Spike rates
For analyzing single neuron simulations, we used the last 1500 ms or 2000 ms of simulated time, while for analyzing network

simulations we used the last 300 ms or 500 ms (see Section "Simulation setup"). The spike detection threshold was 0 mV for the

anatomically detailed- and "ball and sticks" PV basket cell model, and �20 mV for the principal cell (granule cell) model. Individual

spike rates were computed as the number of spikes emitted by a neuron over the considered time interval T. Population spike rates

were individual spike rates averaged across all neurons in a network.

The coefficient of variation of interspike intervals (ISI)
This is defined as the ISI standard deviation over the mean, i.e., CV(ISI) = s(ISI)/m(ISI).

Oscillation frequency
We computed the average membrane potential of all neurons and calculated its power spectrum using the function periodogram()

from the scipy.signal module in the SciPy package. The frequency of the dominant peak then defined the oscillation frequency.

Synchrony Index
We first binned the spikes of all neurons that spiked at least two times in D = 2 ms bins to obtain the spike histogram (Figure S13A).

Next, we calculated the Fano Factor (FF) of the spike histogram, i.e.,

FF =
s2½count�
m½count�
with count = hist

"XN

i = 1
Xi

#

with Xi = hist½ðSiðtÞjDÞ�;
with spike trains SiðtÞ =
X
j

djðt � tjÞ

We then divided FF by the number of spiking neurons in the network. Thus, if all cells spike synchronously, the variance of the bin

size will be maximal and FF/N equal to 1. If all cells spike asynchronously, the variance of the bin size will be minimal, and FF/N will

approach 0. We excluded neurons that spiked less than two times in the considered time interval.

Themaximal Synchrony Index per frequency band (see, e.g., Figure 3D) was determined as follows: first we averaged all parameter

scans (five runs per parameter tuple ðgsyn;GABA; total input rateÞ in Figures 3, 4, and 6) and determined the maximal Synchrony Index

per frequency band. To obtain the error we computed the SEM across runs for the respective ðgsyn;GABA; total input rateÞ-tuple of

maximal Synchrony Index. For Figure 5 we only had one run covering 3000 ms of simulated time per parameter tuple. We chose
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the last twelve theta-peaks of maximal network activity to compute the Synchrony Index, which was then averaged. The maximal

Synchrony Index per frequency band respective SEM across theta-peaks is shown in Figure 5D.

To quantify network synchrony, previous work used the so-called Coherence Measure (Bartos et al., 2002; Vida et al., 2006; Wang

and Buzsáki, 1996). To compare the Synchrony Index with the Coherence Measure, we plotted their relationship (Figure S13B). Note

that both measures give very similar results. However, FF/N had several advantages: First, it does not have the floor effect that we

observed for coherence-based measures (Figure S13B). Second, the Synchrony Index is simpler and infers the population-wide syn-

chronymore directly because it is inherently a population-activity measure, whereas the CoherenceMeasures are based on pairwise

synchrony.

Statistical analyses
Statistical details of experiments and simulations are provided in the figure legends and were performed in Python.
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Figure S1. Morphology and physiological properties of the PV basket cell models. Related to Figure 1. 

(A) Morphologies of five reconstructed parvalbumin (PV)-expressing basket cells in the rat dentate gyrus used 

for simulations (obtained from (Nörenberg et al., 2010)). 

(B) Example of a dual soma-dendritic patch clamp recording. Voltage traces show soma and dendrite responses 

to current injections in either the soma (left) or the dendrite (right). Recording distance was 214 μm from the 

soma. Scale bars apply to soma and dendrite recordings. 

(C) Same recording configuration as in (B). Model responses can be compared with experiments in (B). Model 

example is PV basket cell #2 (see (A), recording distance is 230 μm). Note that the fast transient at the onset of 

dendritic depolarization is a simulation artefact due to the instantaneous nature of the stimulus. 
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Figure S2. Robust dendrite-driven synchrony is maintained for high levels of input heterogeneity and is a 

property of all PV basket cell models tested. Related to Figure 3. 

(A) 3D planes; Synchrony Index as a function of increasing input heterogeneity (0, 40, 60, 100 %). Right, 

histogram of the maximum Synchrony Index per frequency band, as a function of input heterogeneity. Mean ± 

SEM, 5 network instantiations. 
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(B) Synchrony Index of a previously published landmark model using single compartment cells and shunting 

inhibition (Vida et al., 2006). Same levels of heterogeneity as in (A). 

(C) Comparison of the total inhibitory synaptic conductance that is received by a single PV basket cell, using 

either the dendrite-driven model (top) or the shunting inhibition model. The traces correspond to the orange and 

red dots on the 3D planes in (A) and (B). Note that we chose the network parameters with the lowest gGABA that 

still produced synchrony.  

(D) Comparison of network simulations using the five different PV basket cell models. Histograms show the 

maximum Synchrony Index per frequency band, as a function of input heterogeneity. Mean ± SEM, 5 network 

instantiations. 
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Figure S3. Noisy synaptic input is an important determinant of network synchrony. Related to Figure 3. 

(A) Cartoon illustrating a PV basket cell model driven by noiseless direct current (DC) inputs, distributed either 

perisomatically (green, 50 inputs ≤ 50μm from the soma), or on the dendrites (orange, 100 inputs ≥ 120μm from 

the soma). Bottom panel shows I-O relationships using either perisomatic or dendritic DC input. 

(B) PV basket cell activity in ring networks consisting of 200 PV basket cells driven by perisomatic (green) or 

dendritic (orange) excitation. Input heterogeneity increases from left to right. Top row, example membrane 

potential traces showing spikes from 20 random cells. Bottom row, raster plots of all 200 PV basket cells in the 

network. Network starts uncoupled and inhibitory synapses activate at t=0 ms. 

(C) Network oscillation frequency (top row), average spike rate (middle row) and Synchrony Index (bottom row) 

as a function of total input rate and the strength of unitary inhibitory connections (gGABA). Colour legend shows 

the oscillation frequency ranges. The dots on the 3D planes of the Synchrony Index correspond to the examples 

in (B). 

(D) The maximum Synchrony Index per frequency band, as a function of input heterogeneity for perisomatc and 

dendritic input (based on data in (B) and (C)). The Synchrony Index is shown for DC inputs (left panels) and for 

Poisson trains of synaptic conductances (right panels). Mean ± SEM, 5 network instantiations. 
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Figure S4. Enhanced robustness of dendrite-driven synchrony does not depend on electrical synapses. 

Related to Figure 3. 

(A) Network simulations of PV basket cells connected with electrical synapses located in the perisomatic area, in 

addition to chemical inhibitory synapses. Cartoon of the recording configuration to test electrical coupling strength 

between two nearby PV basket cells. Electrical synapses are inserted on the soma and proximal dendrites (≤ 50 

µm, individual conductance gGJ = 0.1 nS) (see Methods). Bottom left; membrane potential responses of PV basket 

cells in a fully coupled network in response to a current pulse (-0.1 nA) in one of the cells (red). Bottom right; 

Electrical coupling strength is defined by the Coupling Coefficient (CC; the ratio of voltage changes in the cell 

pair, V2/V1x100). Coupling coefficient is shown as a function of distance between somata. 

(B) I-O relationships showing the mean spike rate of all PV basket cells in the network. This graph corresponds 

to a slice along the y-axis of the 3D plots as in Fig.3C for gGABA = 4 nS. Left, soma-driven networks. Right, 

dendrite-driven networks. Light to dark grey lines: increasing heterogeneity (0, 10, 20, 30, 40 %) for networks 
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without electrical synapses (control). Light to dark coloured lines, increasing heterogeneity for networks that also 

include electrical synapses. Mean ± SEM, 1 network instantiation. 

(C) The maximum Synchrony Index per frequency band, as a function of input heterogeneity. Left, soma-driven 

networks. Right, dendrite-driven networks. Mean ± SEM, 1 network instantiation. 

(D-F) Same as (A-C) but electrical synapses are located only on the dendrites (>120 µm from the soma, individual 

conductance gGJ = 0.35 nS). 
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Figure S5. Enhanced robustness of dendrite-driven synchrony does not depend on NMDA receptors or 

shunting inhibition. Related to Figure 3. 

(A-C) Simulations of PV basket cell networks with co-localized AMPA and NMDA receptors. 

(A) Top, I-O relationships of a PV basket cell model, driven by excitatory input either close to the soma or on the 

dendrites. Faint curves are I-O relationships with only AMPA receptors. Bottom, kinetics and conductance of 

AMPA and NMDA receptors. The maximum conductance ratio between NMDA (0.42 nS) and AMPA receptors 

(2 nS) is ~0.21 (see (Koh et al., 1995)). Inset, voltage dependence of the NMDA receptors. 

(B) I-O relationships showing the mean spike rate of all PV basket cells in the network. This graph corresponds 

to a slice along the y-axis of the 3D plots as in Figure 3C for gGABA = 4nS. Left, soma-driven networks. Right, 

dendrite-driven networks. Light to dark grey lines: increasing heterogeneity (0, 10, 20, 30, 40%) for networks 
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without NMDA synapses (control). Light to dark coloured lines, increasing heterogeneity for networks that also 

include NMDA synapses. Mean ± SEM, 5 network instantiations. 

(C) The maximum Synchrony Index per frequency band, as a function of input heterogeneity. Left, soma-driven 

networks. Right, dendrite-driven networks. Mean ± SEM, 5 network instantiations. 

(D-F) Network simulations of PV basket cells with shunting inhibition. 

(D) Example voltage traces of PV basket cells in a ring network with shunting inhibitory connections. Grey, 

simulation with hyperpolarizing inhibition. Green, soma-driven networks with shunting inhibition; Orange, 

dendrite-driven networks with shunting inhibition. The resting potential is -73 mV (in the absence of any input), 

reversal potential of hyperpolarizing inhibition is -75 mV and for shunting inhibition -60 mV. 

(E, F) Same as (B,C) but for networks with shunting inhibition. Mean ± SEM, 1 network instantiation. 
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Figure S6. Enhanced robustness of dendrite-driven synchrony is maintained in PV basket cell networks 

with a 2D organization and in mixed PV basket cell networks. Related to Figure 3. 

(A-C) Simulations using PV basket cell networks with a 2D organization. PV basket cells were arranged on a 2D 

torus (see Methods). 
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(A) Connection probability of PV basket cells as a function of distance between their somata. Adapted from 

experimental data on PV basket cells in the dentate gyrus reported in (Espinoza et al., 2018). Bottom, cartoon 

showing a 2D patch of PV basket cells with local spatial connectivity. 

(B) I-O relationships showing the mean spike rate of all PV basket cells in the network (this graph corresponds to 

a slice along the y-axis of the 3D plots as in Figure 3C for gGABA = 4 nS). Left, somatic-driven networks (50 

synapses ≤ 50μm from the soma). Right, dendrite-driven networks (100 synapses ≥ 120μm from the soma). Light 

to dark grey lines: increasing heterogeneity (0, 10, 20, 30, 40%) for ring networks with local connectivity (control). 

Light to dark coloured lines, increasing heterogeneity for networks with random spatial connectivity. Most I-O 

relationships overlap. Mean ± SEM, 3 network instantiations. 

(C) The maximum Synchrony Index per frequency band as a function of input heterogeneity. Left, soma-driven 

networks. Right, dendrite-driven networks. Mean ± SEM, 3 network instantiations. 

(D-F) Simulations using networks consisting of a mix of all five PV basket cell models with a reconstructed 

morphology (see Methods). 

(D) Top, I-O relationships of all five PV basket cell models. Bottom, cartoon illustrating a ring network consisting 

of a mix of five different PV basket cell models. 

(E,F) Same as (B,C) for mixed PV basket cell networks. 
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Figure S7. A simplified PV basket cell model approximates the biophysical and network properties of the 

detailed PV basket cell models. Related to Figure 4. 

(A) Comparison of the biophysical properties of the simplified model (blue) and the experimental data (grey, same 

experimental data as in Figure 1 and 2). Left, I-O relationship when injecting current steps in the soma. Middle, 

V-I relationship when injecting current steps in the dendrite. Dendritic recording distance is 230 µm from the 

soma. Right, attenuation of the EPSP amplitude during propagation from the dendrites to the soma. 

(B) PV basket cell activity in the network driven by perisomatic excitation. Input heterogeneity increases from 

left to right. Top, example membrane potential traces from 20 random PV basket cells. Bottom, raster plots of all 

200 cells in the network. Network starts uncoupled and inhibitory synapses activate at t=0 ms. 

(C) Characterization of soma-driven networks as a function of input heterogeneity. Top, network oscillation 

frequency. Middle, average spike rate. Bottom, Synchrony Index. All are shown as a function of total input rate 
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and inhibitory synaptic conductance. Colour legend indicates the oscillation frequency bands. White dots on the 

Synchrony Index correspond to the data in (B). 

(D) As in (B), but for PV basket cell networks driven with dendritic input (100 synapses ≥ 150 μm from the soma). 

(E) As in (C), but for PV basket cell networks driven with dendritic input. 
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Figure S8. Model parameters. Related to STAR Methods. (A) Passive parameters of the detailed PV basket 

cell models (Adapted from Nörenberg et al. (2010)). (B) Leak conductances of the detailed PV basket cell 

models (Adapted from Hu et al. (2010) and Nörenberg et al. (2010)). (C) Parameters of the voltage-dependent 

ion channels. (D) Fitted parameters of the voltage-dependent ion channels of the detailed PV basket cell models: 

Current density of 𝐼!" and the two potassium channels 𝐼#$ and 𝐼#%. (E) Comparison of input resistance between 

experimental data (Nörenberg et al. (2010)) and cell models. 
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Figure S9. Voltage-dependent steady-state activation and inactivation curves and time constants of 𝐼!" 

and 𝑰𝐊𝟏, 𝑰𝐊𝟐. Related to STAR Methods. Left side: Steady state activation of the (A) activation variable m3 

and inactivation variable h of the sodium channel, and (B) of the activation variables n1, n2 of the potassium 

channels. Right side: respective time constants. 

 
 
 
 
 

 
 
 
Figure S10. Network connectivity. Related to STAR Methods. (A) Connection probability of PV basket cells 

in  the ring networks. (B) Number of synaptic contacts between PV baskets cells as a function of distance between 

cells. (C) Connection probability of PV basket cells in the 2D network (adapted from Espinoza et al. (2018)). 
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Figure S11. NMDA conductance properties. Related to STAR Methods. (A) I-V-relationship of the NMDA 

conductance. (B) Voltage dependence of the NMDA conductance. 

 
 
 
 

 
 
Figure S12. Synaptic and network connectivity parameters. Related to STAR Methods. (A) Parameters of 
"Exp2Syn”-synapses. (B) Specifications of network models. 
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Figure S13. Fano Factor measures population wide synchrony. Related to STAR Methods. (A) Cartoon 

showing how the Synchrony Index is computed. Upper panel: spike raster plot. Lower panel: population spike 

count histogram. (B) Example scatter plot of the relationship between Synchrony Index and Coherence. 
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