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Chapter 1

Introduction

1.1 The Dawn of Times: from Bachelier to
Black-Scholes-Merton

In science, there is often a situation when entire areas of research flourish at the
site of the fall of a single “seed” – a scientific article containing some revolutionary
idea, which then goes through many stages of improvements, refinements and
modifications. It is safe to say that mathematical finance is no exception and
the role of such a “seed” is taken by Louis Bachelier’s dissertation “Théorie
de la spéculation” [7] published in 1900. He suggested to model stock price as
some random process S = {S(t), t ∈ [0, T ]} and, analyzing empirical data on
the Paris stock market, came to the conclusion that increments S(t+ ∆) − S(t)
have means that are close to zero and standard deviations of the order

√
∆. Of

course, probability theory was still in its infancy at that time, so the reasoning
in the dissertation lacked some mathematical rigour. However, if one translates
it into modern mathematical language, one obtains that Bachelier’s stock price
had the form

S(t) = S(0) + σW (t) (1.1)

with S(0) being initial price of the stock, σ > 0 and W = {W (t), t ∈ [0, T ]}
being a standard Brownian motion. Now stochastic analysis is one of the main
tools of economic science and we can truly appreciate Bachelier’s revolutionary
idea, but at that time his results went unnoticed. Only more than 50 years after
the publication, statistician Jimmy Savage inexplicably stumbled upon this work
and brought it to the attention of a number of researchers in economics. One of
those researchers, Paul Samuelson, the winner of 1970 Nobel Memorial Prize
in Economic Sciences, described Savage’s finding in the preface to the English
translation of Bachelier’s dissertation [8] as follows:

“...Discovery or rediscovery of Louis Bachelier’s 1900 Sorbonne thesis
[...] initially involved a dozen or so postcards sent out from Yale
by the late Jimmie Savage, a pioneer in bringing back into fashion
statistical use of Bayesian probabilities. In paraphrase, the postcard’s
message said, approximately, ‘Do any of you economist guys know
about a 1914 French book on the theory of speculation by some French
professor named Bachelier?’

Apparently I was the only fish to respond to Savage’s cast. The good
MIT mathematical library did not possess Savage’s 1914 reference.
But it did have something better, namely Bachelier’s original thesis
itself.

1



1. Introduction

I rapidly spread the news of the Bachelier gem among early finance
theorists. And when our MIT PhD Paul Cootner edited his collection
of worthy finance papers, on my suggestion he included an English
version of Bachelier’s 1900 French text...”

It was Samuelson who proposed1 a simple but very important modification
of Bachelier’s approach: he used (1.1) to model price logarithms and not the
prices themselves. That solved the most obvious problem: a Brownian motion is
a Gaussian process and hence can take negative values with positive probability
whereas stock prices are inherently non-negative. After a small adjustment with
a linear trend, Samuelson’s model took the form of a geometric or “relative
economic” (the term used by Samuelson himself) Brownian motion

S(t) = S(0) exp
{(

µ− σ2

2

)
t+ σW (t)

}
, µ ∈ R, S(0), σ > 0, (1.2)

or, in representation as a stochastic differential equation,

dS(t) = µS(t)dt+ σS(t)dW (t). (1.3)

This log-normal process (1.2)–(1.3) subsequently became a mainstream choice
for stock price models for the next couple of decades. Even now, when there are
multiple arguments against the geometric Brownian motion, practitioners still
use it as a benchmark model or a good “first approximation”.

It is interesting to note that, in addition to the market model, Bachelier also
considered the problem of option pricing and eventually derived an expression
that can be called a harbinger of the now famous Black-Scholes formula. Of
course, his reasoning was not based on the no-arbitrage principle and had a
number of shortcomings inherent in any pioneering work. The correction of those
shortcomings became the subject of a number of studies in the 60s, among which
one can mention [17, 107, 110]. Samuelson himself also heavily contributed to
that topic, see e.g. [99] or his paper [100] (in co-authorship with Robert Merton)
where it was suggested to consider a warrant/option payoff as a function of the
price of the underlying asset, and it can be said that these works were only a
few steps away from the real breakthrough made by Black, Scholes and Merton
just a couple of years later.

Here it is worth paying attention to the fact that the option market remained
relatively illiquid until the end of the 60s. The reason for that was the lack of
a consistent pricing methodology, and serious investors considered options as
something from the world of gambling rather than worthy trading instruments. It
is a little bit ironic that even Robert Merton himself – right in his breakthrough
article [86]! – wrote the following:

“Because options are specialized and relatively unimportant financial
securities, the amount of time and space devoted to the development
of a pricing theory might be questioned...”

1Samuelson himself acknowledged that the same idea was independently expressed by an
astronomer M. Osborne in [91].
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The Dawn of Times: from Bachelier to Black-Scholes-Merton

However, in 1968, a demand for that type of contract suddenly arose from
the Chicago Board of Trade. This organization noticed a significant decrease
in commodity futures trading on its exchange and therefore decided to create
additional instruments for investors. They chose options, and, after overcoming
some inevitable legal obstacles, the Chicago Board of Options Exchange began
trading in 1973. Precisely in that year, two revolutionary papers appeared: “The
pricing of options and corporate liabilities” [15] by Fischer Black and Myron
Scholes and “Theory of rational option pricing” [86] by Robert Merton. As a
side note, the publication of the Black and Scholes paper was far from a smooth
process: in 1987 [14], Black recalled that the manuscript was rejected first by
the Journal of Political Economy and then by the Review of Economics and
Statistics. The paper was published only after Eugene Fama and Merton Miller
personally recommended the Journal of Political Economy to reconsider its
decision (in the meanwhile, Robert Merton showed a great deal of academic
integrity by delaying the publication of his own article so that Black and Scholes
would be the first). Interestingly enough, almost all the researchers mentioned
in this paragraph – Scholes, Merton, Miller and Fama – received their Nobel
Prizes in Economics in various years. Of course, Black would also be among
them, but, unfortunately, he died just two years before the prize was awarded to
Scholes and Merton (1997).

The main result of Black, Scholes and Merton can be formulated as follows:
if a stock follows the model (1.2)–(1.3), then, under some assumptions, the
discounted no-arbitrage price of a standard European call option V evolves as
a function of the current time t and current price S and must satisfy a partial
differential equation of the form

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 + rS
∂V

∂S
− rV = 0 (1.4)

with a boundary condition

V (T, S) = max{0, S −K}, (1.5)

where r denotes the instantaneous interest rate that is assumed to be constant,
T is the maturity date of an option and K is its exercise price. Moreover, the
equation (1.4)–(1.5) turns out to have an explicit solution of the form

V (t, S(t)) = S(t)Φ
(
d+(t, S(t))

)
−Ke−r(T−t)Φ

(
d−(t, S(t))

)
, (1.6)

where

d+(t, S(t)) :=
log S(t)

K + (T − t)
(
r + σ2

2

)
σ

√
T − t

,

d−(t, S(t)) :=
log S(t)

K + (T − t)
(
r − σ2

2

)
σ

√
T − t

and Φ(x) := 1√
2π

∫ x
−∞ e− y2

2 dy.

3



1. Introduction

The ideas of Black, Scholes and Merton revolutionized mathematical finance
and enjoyed empirical success: Stephen Ross, for instance, claimed in 1987 [97]
that

“When judged by its ability to explain the empirical data, option
pricing theory is the most successful theory not only in finance, but
in all of economics.”

However, this was only the beginning of a journey full of challenges – and it
is ironic that the storm broke in the very year that these words of Ross were
published: on October 19, 1987, the infamous “Black Monday” market crash
happened.

1.2 Black Monday: before and after

The classical Black–Scholes–Merton model relies on a number of rather abstract
assumptions that are not met on the real life market: specific dynamics for
prices, no transaction costs, ability to buy and sell any amount of assets etc.
However, being unable to reflect the reality perfectly is not always a big deal;
after all, “all models are wrong, but some are useful”2. Black, Scholes and
Merton themselves were very well aware of this: for example, [53] quotes Fisher
Black on this subject:

“Yet that weakness is also its greatest strength. People like the model
because they can easily understand its assumptions. The model is
often good as a first approximation, and if you can see the holes in
the assumptions you can use the model in more sophisticated ways.”

What really mattered was a successful empirical performance of the vanilla
Black–Scholes–Merton model; as it was noted by J. Wiggins, one of pioneers of
continuous-time stochastic volatility modeling, “given the elegance and tractability
of the Black-Scholes formula, profitable application of alternate models requires
that economically significant valuation improvements can be obtained empirically”
[111].

However, after the mentioned 1987 crash, it became crystal clear that
something was very wrong with the log-normal paradigm – and something
had to be done. Jackwerth & Rubinstein [75] described the problem as follows:

“Following the standard paradigm, assume that stock market returns
are lognormally distributed with an annualized volatility of 20% (near
their historical realization). On October 19, 1987, the two month
S&P 500 futures price fell 29%. Under the lognormal hypothesis, this
is a -27 standard deviation event with probability 10−160. Even if
one were to have lived through the entire 20 billion year life of the
universe and experienced this 20 billion times (20 billion big bangs),

2The aphorism is generally attributed to the statistician George Box.

4



Black Monday: before and after

that such a decline could have happened even once in this period is a
virtual impossibility.”

Clearly, “virtually impossible” price falls which left thousands of investors
destitute were already a good argument to reconsider financial modeling
approaches. But, except for that shock (which in principle could be branded as
a single anomaly), Black Monday brought something even more annoying from
the theoretical perspective: the volatility smile.

The volatility σ is the only parameter in the Black-Scholes formula (1.6) that
is not observable. Maturity date T and exercise price K are given in specifications
of the given option contract, the price S(t) can be taken directly from the market
– and σ has to be somehow “guessed” from the market data. In 1986, Latané &
Rendelman [79] proposed an elegant method to do that. Fix some t together
with the corresponding price S(t) and consider the Black-Scholes option price
(1.6) as a function Vt = Vt(τ, κ, σ) of the log-moneyness κ := log K

S(t) , time to
maturity τ := T − t and the volatility σ. Next, take the actual market price Ṽt
of the corresponding option and notice that, since Vt is supposed to coincide
with Ṽt, the volatility σ can be found from the equation

Vt(τ, κ, σ) − Ṽt = 0. (1.7)

The solution σ̂ = σ̂t(τ, κ) to this equation is called the implied volatility and,
if the stock price model (1.2)–(1.3) indeed corresponds to reality well enough,
σ̂t(τ, κ) should be approximately constant for options with the same underlying
asset but differing maturities T and strikes K (and hence τ and κ).

Unfortunately, this is not the case. For instance, σ̂t(τ, κ) turns out to change
with τ for fixed κ. There seems to be an easy fix of (1.2) to account for this
type of variation and, in fact, Merton actually considered such a modification
in his original paper [86]. Namely, if the volatility σ = σ(t) is a deterministic
function of time, one can obtain a version of (1.6) of the form

V (t, S(t)) = S(t)Φ

 log S(t)
K + r(T − t) + 1

2
∫ T
t
σ2(s)ds√∫ T

t
σ2(s)ds


−Ke−r(T−t)Φ

 log S(t)
K + r(T − t) − 1

2
∫ T
t
σ2(s)ds√∫ T

t
σ2(s)ds


=: S(t)Φ

(
−κ+

(
r + 1

2σ
2(t, τ)

)
τ

σ(t, τ)
√
τ

)

−Ke−rτΦ
(

−κ+
(
r − 1

2σ
2(t, τ)

)
τ

σ(t, τ)
√
τ

)
,

where σ2(t, τ) := 1
τ

∫ t+τ
t

σ2(s)ds. Then the counterpart of the equation (1.7)
gets the form

Vt(τ, κ, σ(t, τ)) − Ṽt = 0

5



1. Introduction

and its solution σ̂t(τ, κ) is allowed to vary in τ for fixed κ. One may even argue
that it is reasonable to assume that σ changes with time: as noted in [40, p.
144], “there is nothing inconsistent about expecting high volatility this year and
low volatility next year”.

As for the variation in κ for fixed τ , luckily, the implied volatility remained
relatively flat (at least, the variation was subtle enough to be ignored) – exactly
until the above-mentioned Black Monday crash in 1987. Since that time, investors
started observing notable variability of the implied volatility in κ with very clear
convex patterns (see Fig. 1.1) which were eventually called “volatility smiles”3.

(a) (b)

Figure 1.1: Idealised volatility smiles: (a) represents the general form of volatility
smiles for foreign currency options; (b) depicts a typical implied volatility smile
for equity options (see also [74]).

Such a behaviour was consistent, had a direct negative impact on empirical
performance of the Black-Scholes formula and could not be explained by the price
dynamics (1.2)–(1.3) – a very annoying combination for a theoretical framework.
Moreover, one should not forget about the variability of implied volatility in τ :
ideally, one would like a model that mimics the interplay between τ and κ, i.e.
represents the behaviour of the entire volatility surface (τ, κ) 7→ σ̂t(τ, κ). This
creates many additional effects to reproduce:

• as noted in [26], the smile amplitude decreases very slowly as τ increases
(see e.g. Fig. 1.2);

• the observed at-the-money volatility skew defined as

Ψ(τ) :=
∣∣∣∣ ∂∂κσ̂t(κ, τ)

∣∣∣∣
κ=0

(1.8)

is known to behave as O(τ−β) when τ → 0 (see e.g. Fig. 1.3).

3Clearly, the shape on Fig 1.1(b) is more of a “smirk” rather than a “smile”, but, as noted
in [40, p. 4], “practitioners have persisted in using the word smile to describe the relationship
between implied volatilities and strikes, irrespective of the actual shape”.

6



Black Monday: before and after

Figure 1.2: Shape of the S&P volatility surface as of June 20, 2013 volatility
surface; the plot is taken from [64, Figure 1.1]. Note the gradual leveling of
volatility smile as expiration time increases.

Figure 1.3: At-the-money volatility skew taken from [64, Figure 1.2]. Black dots
represent estimates of the S&P volatility skews; the red curve is the power-law
fit Ψ(τ) = Cτ−0.4.
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1. Introduction

As we will see later, it is not easy to conceive a model that reproduces jointly
these two effects and the search for such a model is a a difficult puzzle for both
theorists and practitioners.

1.3 Fat tails, leverage, clustering and long memory

The smile effect makes a spectacular point against the GBM dynamics (1.2)–
(1.3), but it is definitely not the only argument in place. In fact, objections
to log-normality of prices appeared long before 1987 – perhaps as early as the
log-normal model itself. For instance, the empirical studies of Mandelbrot [82]
(1963) and Fama [52] (1965) pointed out that tails of price distribution are much
fatter than the ones expected from a log-normal random variable (in order to
account for this, Mandelbrot suggested modeling price log-returns with α-stable
distributions).

Another interesting phenomenon not grasped by the GBM is the so-called
leverage effect: negative correlation between variance and returns of an asset.
This empirical artefact, initially noticed by Black [13] and then studied in more
detail by Christie [22], Cheung & Ng [21] and Duffee [48], was explained by
Black himself as follows: a decrease in a stock price results in a drop of firm’s
equity value and hence increases its financial leverage (i.e. the company’s debt
rises relative to its equity). This, according to Black, makes the stock riskier
and hence more volatile. Interestingly, the name “leverage effect” stuck due to
this explanation although subsequent research [1, 54, 69] pointed out that this
correlation may not be connected to the leverage at all. Zumbach in [115, Section
3.9.1] gives a different – and, in our opinion, quite plausible – interpretation of
this negative correlation: downward moves of stock prices are usually considered
as “bad”, trigger many sales and hence increase the volatility. Upward moves, in
turn, do not result in such drastic changes in investors’ portfolios since most of
the market participants have long positions in the first place. Zumbach [116]
also studied another effect of the same nature known now as the Zumbach effect:
pronounced trends in stock price movement, irrespective of sign, increase the
subsequent volatility since large price moves motivate investors to modify their
portfolios (unlike conditions when prices fluctuate in a smaller range).

The next empirical contradiction to the Black-Scholes-Merton framework
is that any basic financial time series analysis reveals clusters of high and low
volatility episodes; as noted by Mandelbrot [82], “large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by small
changes” (see e.g. Fig. 1.4). This clustering effect is often quantified by analyzing
the autocorrelation function of absolute log-returns, i.e.

corr(|R(t)|, |R(t+ τ)|), (1.9)

where the log-return R(t) := log
(
S(t+∆)
S(t)

)
is defined for some given time scale

∆ (which may vary between a fraction of a second for tick data to several days).
According to several empirical studies such as of Ding et. al. [47], Ding &
Granger [46], Bollerslev & Mikkelsen [16], Breidt et. al. [18] or Cont [28, 29, 31],

8



Fat tails, leverage, clustering and long memory

Figure 1.4: BMW daily log-returns on the Frankfurt Stock Exchange, 1992–1998;
large changes in price tend to cluster together. The plot is taken from [29,
Section 2.1].

the autocorrelation function (1.9) is positive and, moreover, shows signs of a
slow decay of the type O(τ−β), τ → ∞, with an exponent β ≤ 0.5.

The latter property should be discussed separately as it has some far-reaching
consequences. Such an autocorrelation decay is known as long range dependence
(see e.g. [11]) and, if proved to be statistically relevant, indicates presence of
memory on the market. It should be emphasized that the long range dependence
is not an easy feature to check: clearly, it manifests itself when τ → ∞ and hence
one may argue that any empirically observed behaviour of autocorrelations is
due to non-stationarity of financial time series over longer time periods (see e.g.
discussion in [87, Section 1.4]). That being said, it must also be mentioned that
there are other arguments in favour of long memory. For instance, Willinger
et. al. [112] apply the so-called rescaled range (R/S) analysis technique to the
CRSP (Center for Research in Security Prices) daily stock time series and find
some weak4 evidence of memory in the data. Lobato & Velasco [81] analyze
volatility in connection to trading volumes and find that both of these financial
characteristics exhibit the same degree of long memory. Another interesting point
comes from the analysis of the implied volatility surface: Comte & Renault [26]
noticed that the decrease of the smile amplitude as time to maturity increased
was much slower than many advanced market models predicted. They argued
that such an effect could be mimicked by having long memory in volatility and
that claim was confirmed by e.g. a simulation study [62].

4As the authors write, “...we find empirical evidence of long-range dependence in stock
price returns, but because the corresponding degree of long-range dependence [...] is typically
very low [...] the evidence is not absolutely conclusive”.
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1. Introduction

Of course, we cannot list all stylized facts about market behaviour
contradicting the GBM dynamics due to the vast amount of material – in
this regard, we refer our readers to [65, Section 2.2], [56, Section 3], well-known
survey articles [27, 28] or book [115]. Two things are clear though: first, the
log-normal model is way too simple and does not reflect a lot of important
qualitative features of the market and, second, the behaviour of financial time
series is incredibly complex and requires fairly ingenious modeling approaches.
At the same time, one would want to keep the core idea of Black-Scholes-Merton
– no-arbitrage pricing – since it is very intuitive and reasonable from the economic
point of view. Luckily, developments in the option pricing theory subsequent to
the seminal Black-Scholes and Merton papers allowed for some decent flexibility
in terms of the choice of price models. Here, we refer to gradual translation of
the Black-Scholes-Merton approach into the language of martingale theory which
evolved in the celebrated Fundamental Theorem of Asset Pricing – the result
which connects non-arbitrage pricing and existence of equivalent local martingale
measures. In this regard, we mention the early research of Ross [96], Harrison
& Kreps [67], Harrison & Pliska [68], Kreps [77] as well as subsequent seminal
works of Delbaen & Schachermayer [36–38] (see also [101] for a detailed historical
overview on the subject). This line of research eventually evolved into a general
theory allowing for quite a broad variety of price models to choose from – hence
giving researchers all the necessary tools to adjust the classical model (1.2) to
account for volatility smiles and all other empirical inconsistencies. Of course,
due the vast amount of different approaches developed by this time, we will not
be able to cover all modeling viewpoints – for this, we refer to the overviews
given in the books by Shiryaev [104] and Mariani & Florescu [84]. Here, instead,
we concentrate on one particular class of models that is directly related to the
framework of the present thesis: stochastic volatility models.

1.4 Classical stochastic volatility models

As noted in the previous sections, the “trickiest” parameter of Black-Scholes
formula is the volatility σ. Empirical observations show that it varies with time,
is correlated with the current price level, has clusters of low and high values and
seems to have a long memory. Another important phenomenon is the so-called
excess volatility [28, 34]: the variability in asset prices cannot be fully explained
only by changes in “fundamental” economic factors. All these stylized facts
together lead to an idea to modify (1.3) as

dS(t) = µS(t)dt+ σ(t)S(t)dW (t)

with the volatility {σ(t), t ≥ 0} being a random process that is only imperfectly
correlated with the Brownian motion W . This approach can be traced back to
discrete-time model of Clark (1973) [24] where asset prices were considered as
subordinated stochastic processes with the time change being used to represent
trading volumes and information arrival. Early contributors to continuous time

10



Classical stochastic volatility models

stochastic volatility modeling include5:

• Hull & White [73] who assume that the squared volatility σ2 = {σ2(t), t ≥
0} is itself a geometric Brownian motion, i.e. price and volatility satisfy
stochastic differential equations of the form

dS(t) = µS(t)dt+ σ(t)S(t)dW (t),
dσ2(t) = θ1σ

2(t)dt+ θ2σ
2(t)dB(t)

respectively, where B and W are two Brownian motions that are allowed
to be correlated to account for the leverage effect;

• Wiggins [111] who suggests a slightly more general dynamics of the form

dS(t) = µS(t)dt+ σ(t)S(t)dW (t),
dσ(t) = f(σ(t))dt+ θσ(t)dB(t);

• Scott [102] and Stein & Stein [108] who consider the volatility to be an
Ornstein-Uhlenbeck process, i.e.

dS(t) = µS(t)dt+ σ(t)S(t)dW (t),
dσ(t) = θ1(θ2 − σ(t))dt+ θ3dB(t);

• Heston [70] who introduces the SDE of the form

dS(t) = µS(t)dt+
√
σ(t)S(t)dW (t),

dσ(t) = θ1(θ2 − σ(t))dt+ θ3
√
σ(t)dB(t),

i.e. the volatility follows the so-called Cox-Ingersoll-Ross or square
root process (see also [33]) which enjoys strict positivity provided that
2θ1θ2 ≥ θ2

3.

Stochastic volatility models turned out to have an additional important
advantage: they have an ability to reproduce, to some extent, “smiley” patterns
of the implied volatility (see e.g. [93] or [55, Section 2.8.2]). However, one must
acknowledge that the models listed above leave a lot of room for improvement
when it comes to accuracy of grasping volatility surfaces (see e.g. [63] for a
detailed overview of empirical performance of the classical stochastic volatility
models). Therefore, there is no surprise that a lot of effort was made to advance
the stochastic volatility framework further to account for all such inconsistencies.

At this point, let us make an important disclaimer. In this thesis, we
concentrate on continuous stochastic volatility and present contributions in this
direction. Hence we do not discuss models with jumps in this introduction and,
given the popularity of the latter, we acknowledge that such a decision can be
seen as a notable shortcoming. However, we still choose to omit this subject

5For a full coverage of stochastic volatility modeling evolution, see [103].
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1. Introduction

since it is way to broad to be covered in sufficient detail within this chapter.
The reader who is interested in models with jumps is referred to the specialized
books by Barndorff-Nielsen & Shepard [9], Rachev et. al. [92] or Tankov & Cont
[109]. With this remark in mind, let us proceed to the next stop of our journey:
stochastic volatility models based on fractional Brownian motion.

1.5 Overview of fractional models

1.5.1 Incorporation of long memory

The most prominent issues of classical stochastic volatility models driven by
standard Brownian motion are the following:

• they cannot give a power-law behaviour of at-the-money volatility skew
(1.8) (see e.g. [80, Remark 11.3.21]);

• as time to maturity increases, the smile generated by the models levels out
way too fast [26].

Comte & Renault in [26] note that one of possible explanations of the second
issue lies in presence of the long memory in the real life prices. To account for
that, they suggest to model the volatility as follows:

σ(t) = θ1 exp
{
θ2

∫ t

0
e−θ3(t−s)dBH(s)

}
,

where BH = {BH(t), t ≥ 0} is either a fractional Brownian motion6 defined for
H ∈ (0, 1) by

BH(t) := 1
Γ
(
H + 1

2
) ∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dB(s)

+ 1
Γ
(
H + 1

2
) ∫ t

0
(t− s)H− 1

2 dB(s)
(1.10)

or its truncated version (also known as Riemann-Liouville fractional Brownian
motion)

BH(t) := 1
Γ
(
H + 1

2
) ∫ t

0
(t− s)H− 1

2 dB(s),

where, in both cases, B is a standard Wiener process. And one must admit
that the idea to use fractional Brownian motion as a driver for the volatility
turned out to be extremely felicitous: the process (1.10) indeed provides the
long memory (given that the so-called Hurst index H ∈

( 1
2 , 1
)
), successfully

mimics the behaviour of the volatility smile amplitude mentioned above (see
6This process was initially considered by Kolmogorov [76] and later reintroduced by

Mandelbrot and van Ness [83].
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Overview of fractional models

e.g. [62]) and additionally enjoys a number of other very pleasant properties. In
particular, it is Gaussian, has stationary increments and is self-similar, i.e.

BH(at) Law= aHBH(t), ∀a ≥ 0. (1.11)

The latter feature turns out to be a very convenient for testing the long memory:
as noted in Section 1.3, long-range dependence is very hard to detect with
statistical significance (as it requires analysis on larger time scales) whereas
assuming (1.11) allows to deduce long time behavior from short time behavior;
see [28] for a detailed discussion on this matter. On the top of that, it has
Hölder continuous trajectories of order up to H which enables usage of pathwise
calculus for stochastic integration (see e.g. [88]). This set of very pleasing
mathematical properties as well as consistency with the long memory setting
made fractional Brownian motion with H > 1

2 a very popular choice for driving
stochastic volatility; in this regard we mention e.g. the models of Rosenbaum
[95], Chronopoulou and Viens [23] and Comte et. al. [25].

1.5.2 Rough revolution

However, when it comes to the power law of the implied volatility skew, the
situation gets far more complicated: as noted in e.g. [5, Section 7.2.1], fractional
Brownian motion with H > 1

2 is not able to reproduce it. Interestingly, [5,
Section 7.2.2] finds out that the required behavior of the skew can be obtained if
one sacrifices long memory and takes fractional Brownian motion with H ∈

(
0, 1

2
)

instead. In 2014, the latter idea obtained an additional foundation: Gatheral,
Jaisson and Rosenbaum published a paper [64] with a catchy title “Volatility is
rough”. Using estimation techniques based on power variations, they came to
a conclusion that the “real life” volatility has a much lower Hölder regularity
than the one of fractional Brownian motion with H > 1

2 . Furthermore, they
claim that fractional Brownian motion with H ≈ 0.1 fits the time series much
better. This quickly evolved into an enormous research area with hundreds of
papers published over the years – here we refer the reader to the rough volatility
literature list [98] that is regularly updated by specialists in the field. Some
notable models are (in all cases, H ∈

(
0, 1

2
)
):

• rough Bergomi model [10] models the price as

dS(t) =
√
σ(t)S(t)dW (t),

σ(t) = ξtt ,

dξut = θξut (u− t)H−1/2dB(t), u ≥ t;

• rough SABR model [59] where the price is given by

dS(t) =
√
σ(t)f(S(t))dW (t),

σ(t) = ξtt ,

dξut = θξut (u− t)H−1/2dB(t), u ≥ t,

13



1. Introduction

where f is a positive continuous function;

• rough Stein-Stein model [66] with the price following the dynamics

dS(t) = θσ(t)S(t)dW (t),

σ(t) = 1
Γ
(
H + 1

2
) ∫ ∞

0
(t− s)H− 1

2 dB(s);

• rough Heston model [50]:

dS(t) =
√
σ(t)S(t)dW (t),

σ(t) = σ(0) +
∫ t

0

(t− s)H− 1
2

Γ
(
H + 1

2
) (θ1(θ2 − σ(s))ds+ θ3

√
σ(s)dB(s)

)
.

Models of this type are very popular nowadays and are quite close to becoming
“the new classics”. That being said, we must admit that rough volatility models
also have some skeletons in the cupboard. Indeed, to the best of our knowledge,
there are three main points in favour of H ∈

(
0, 1

2
)

in the literature:

1) direct statistical studies of high frequency volatility time series (such as
the seminal paper [64] or [60]) indicate roughness of the latter;

2) rough volatility models have potency to reproduce some financial market
phenomenons such as the at-the-money skew mentioned above [5] (see also
[57, 58] or [114, Theorem 1]) or some form of the Zumbach effect [35, 51];

3) rough Heston model turns out to be the limit of a reasonable tick-by-tick
price model based on two-dimensional Hawkes processes [49], i.e. it is
possible to deduce roughness of the volatility directly from the market
microstructure.

And many of these points got a fair amount of criticism. For instance, Rogers
[94] and Cont and Das [30] argue that estimation techniques used in [64] are
unstable and may produce very low Hurst indices even on simulated datasets
driven by standard Wiener noises (although [60] seems to account for that). On
the other hand, Funahashi and Kijima [61] reasonably note that, despite grasping
the term structure of the at-the-money volatility skew, rough volatility models
based on fractional Brownian motion with H < 1/2 do not give the required rate
of decrease in the smile amplitude as expiration increases – and, additionally,
are not consistent in general with the long memory justified by older empirical
studies. In other words, we run into some sort of a “fractional modeling puzzle”
(the term used by [61]): on the one hand, long memory and behaviour of the
volatility smile amplitude demand H ∈

( 1
2 , 1
)
; on the other hand, roughness and

the implied volatility skew require Hurst indices very close to 0.
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1.5.3 Solving the fractional modeling puzzle

Interestingly, the way to solve the fractional puzzle lies in the very reason of that
puzzle: fractional Brownian motion itself. After all, the contradiction between
long memory and roughness appears because of fractional Brownian motion –
in general, these two features do not depend on each other and can very well
co-exist. At the same time, it would be truly wasteful to completely abandon
fractional models, since they indeed manage to explain numerous empirical
phenomena and are relatively simple to be used in practice. Loosely speaking,
one would want a driver that, on the one hand, somehow incorporates (in some
format) both long memory and roughness and, on the other hand, preserves
some “nice” properties of fractional Brownian motion.

The most straightforward approach to that is to use two fractional Brownian
motions with different Hurst indices instead of one. Such an attempt to “include
the best of both worlds” was utilized in e.g. [61] (see also [4, Section 7.7]), where
the following model was considered:

dS(t) = µS(t)dt+ σ(X1(t), X2(t))dW (t),
dXi(t) = (θi1 − θi2X

i(t))dt+ θi3dB
Hi(t), i = 1, 2,

(1.12)

with BH1 , BH2 being two fractional Brownian motions with H1 > 1/2 and
H2 < 1/2. The performance of this model seems to be very promising since it
indeed manages to fit the implied volatility surface with the required at-the-
money skew and slower decay of the smile amplitude.

Another interesting possibility – a multifractional Brownian motion – is
advocated in Corlay et. al. [32]. There, the authors come to a conclusion that
the local roughness of the volatility is heavily variable and has periods of low
(≈ 0.1) and high (≈ 0.8) regularity (see Fig. 1.5). It is also important to note

Figure 1.5: Estimated regularity of the volatility of the S&P 500 minute data
(blue) and its regression (green). Source: [32, Figure 2].

15



1. Introduction

that [64, Section 2.6] also reports some dependence of the volatility roughness on
time, so usage of multifractional Brownian motion may indeed be a good idea.

As a convenient generalization of all approaches to the fractional puzzle
mentioned above, one can also consider usage of Gaussian Volterra processes
Z(t) :=

∫ t
0 K(t, s)dB(s). The drivers on this level of generality were considered

in e.g. [85] or [19] and we anticipate that processes of this type will be actively
used throughout this thesis.

1.6 Technical challenges of stochastic volatility modeling

Up until now, we discussed problems related to compliance of stochastic volatility
models with empirical observations and stylized facts. However, they also pose a
number of challenges that have purely technical nature. For example, a common
issue for stochastic volatility framework is the possibility of moment explosions
in price (see e.g. [6]) – that is, E[Sr(t)] may be infinite for all time points t
after some t∗. Moment explosions can be a notable drawback from the asset
pricing perspective since, as it is noted in [6, Section 8], “several actively traded
fixed-income derivatives require at least L2 solutions to avoid infinite model
prices”.

An additional desirable property for stochastic volatility is positivity of its
paths. The reason for that lies, in particular, in the procedure of measure change:
densities of martingale measures in stochastic volatility models normally contain
expressions of the form

∫ T
0

1
σ(s)dW (s) and

∫ T
0

1
σ2(s)ds (see e.g. [12, Proposition

1.11]). Hence, if the volatility can hit zero, one may end up without a transparent
description of the family of martingale measures. In practice, positivity is often
achieved by modeling log-volatility and then taking exponential – but in this
case one risks to get moment explosions in the price discussed above. In other
cases (such as the rough Heston model), the price is modelled under the risk-
neutral measure from the start which, in some sense, puts the measure change
mechanism out of consideration. It is not necessarily a problem if one uses
the model for option pricing, but it is still better to have a clear and coherent
procedure of transition to the martingale probability if one aims to justify usage
of the approach with statistical analysis of econometric time series (which is, of
course, performed under the physical measure).

An additional challenge of stochastic volatility modeling comes from the
numerical perspective. In many cases, it is not possible to get closed formulas
neither for calibration nor for pricing, hedging and portfolio optimization and
hence one must rely on numerical methods. As a result, there is always an
additional layer of work related to the development of algorithms with reasonable
convergence rates, computational efficiency etc. Presence of effective numerical
approaches turns out to be a viable advantage for practitioners; for example, as
noted in [63, p. 24], the standard Heston model was widely used despite clear
empirical inconsistencies – exactly because availability of algorithms for virtually
all possible applications.
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1.7 Overview of the thesis

With all of the considerations described above, we are now ready to proceed
to the material of this thesis where we make yet another attempt to come up
with a “good” stochastic volatility model. By “good”, we mean that it addresses
the issues listed in previous sections – namely, we want the model to have the
following properties:

• flexibility in the noise: the model should be able to accept various drivers –
from fractional Brownian motions with different Hurst indices to general
Hölder continuous processes – to account for different option pricing
phenomenons;

• control over the moments of the price: we should be able to ensure existence
of moments of necessary orders for the corresponding price process;

• positivity: the volatility process should be strictly positive and preferably
have inverse moments to ensure reasonable behaviour of martingale
densities;

• existence of efficient numerics: the model should be friendly enough to be
approached by numerical algorithms for a wide range of applications such
as pricing or hedging.

In the present thesis, we suggest a volatility model that comprises all the
properties mentioned above. It is described by the SDE of the form

Y (t) = Y (0) +
∫ t

0
b(s, Y (s))ds+ Z(t) (1.13)

where the noise Z can potentially be any λ-Hölder continuous stochastic process
and the drift b = b(t, y) is a real function that has either

(A) an explosive growth of the type (y − φ(t))−γ as y ↓ φ(t)

or

(B) an explosive growth of the type (y − φ(t))−γ as y ↓ φ(t) and an explosive
decrease of the type −(ψ(t) − y)−γ as y ↑ ψ(t),

where φ and ψ are given Hölder continuous functions such that φ(t) < ψ(t),
t ∈ [0, T ]. Note that we allow for an arbitrary order of Hölder regularity λ
provided that

γ >
1
λ

− 1, (1.14)

i.e. our driver can easily be e.g. a fractional Brownian motion (with any Hurst
index H) or a multifractional Brownian motion (with no restrictions on the range
of functional Hurst parameter). We prove that the SDE (1.13) has a unique

17



1. Introduction

strong solution whereas the chosen structure of the drift as well as (1.14) ensure
that either

Y (t) > φ(t) a.s., t ∈ [0, T ], (1.15)

in case (A) or
φ(t) < Y (t) < ψ(t) a.s., t ∈ [0, T ], (1.16)

in case (B). Having the properties (1.15)–(1.16) in mind, we call the solution to
(1.13) a sandwiched process and note that the intuition behind (1.15)–(1.16)
is quite simple. For example, (1.15) can be explained as follows: whenever the
solution Y approaches φ, the value of b(s, Y (s)) becomes very big “repelling” Y
from its lower bound while the condition (1.14) guarantees that the variation of
Z is not too drastic to break this effect.

It is important to emphasize that dynamics of the type (1.13) covers some
known models. As an example, one can mention

Y H(t) = Y (0) + 1
2

∫ t

0

k

Y H(s)ds− b

2

∫ t

0
Y H(s)ds+ σ

2B
H(t) (1.17)

considered in [89] for H > 1/2 (see also [72]) which can be regarded as a square
root of the fractional Cox-Ingersoll-Ross process since X := Y 2 satisfies the SDE

X(t) = X(0) +
∫ t

0
(k − aX(s))ds+ σ

∫ t

0

√
X(s)dBH(s).

The opportunity we have in (1.13) to choose any Hölder continuous noise allows
for both “long memory” and “roughness” and hence gives a potential to reproduce
various option pricing phenomenons discussed in Sections 1.2–1.5. In turn, the
lower bound in (1.15)–(1.16) allows to make the sandwiched process Y strictly
positive and the upper bound in (1.16) guarantees existence of all moments for
the price. Finally, we will also see that there are effective simulation schemes for
(1.13) that preserve properties (1.15)–(1.16) and can be used for a wide range of
applications such as pricing or hedging.

1.7.1 Summary of our contributions

The present thesis is based on five papers written during the PhD programme
that are organized in the form of chapters, one chapter for each paper.

Paper I [90] serves as a forerunner for the main model (1.13). There, we start
from a standard Brownian Cox-Ingersoll-Ross process

X(t) = X(0) +
∫ t

0
(a− bX(s)) ds+ σ

∫ t

0

√
X(s)dW (s)

with a > σ2

4 (i.e. we allow for a < σ2

2 and hence do not exclude zero-hitting
cases) and prove that its square root Y (t) :=

√
X(t) satisfies the SDE of
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the form

Y (t) = Y (0) + 1
2

∫ t

0

k

Y (s)ds− b

2

∫ t

0
Y (s)ds+ σ

2W (t) (1.18)

with k := a− σ2

4 (c.f. (1.17)). We investigate the SDE (1.18) from purely
theoretical perspective and establish a new link to Skorokhod reflections
(see e.g. [105, 106]): when k ↓ 0, the square root process (1.18) converges
to the reflected Ornstein-Uhlenbeck process

Y0(t) = Y (0) − b

2

∫ t

0
Y0(s)ds+ σ

2W (t) + L0(t), (1.19)

where Y0(t) ≥ 0 and L0 is a continuous non-decreasing process, the points
of growth of which occur only when Y0 hits zero7. In the second part of
Paper I, we prove a similar result for the square root (1.17) of the fractional
Cox-Ingersoll-Ross process.

Paper II [44] studies the SDE (1.13) in full generality: we prove existence
and uniqueness of solution for general Hölder continuous noises as well
as properties (1.15) and (1.16). Additionally, we study the moments of
sandwiched processes (1.13) and verify that for all r > 0

E

[
sup
t∈[0,T ]

|Y (t)|r
]
< ∞, E

[
sup
t∈[0,T ]

|Y (t) − φ(t)|−r
]
< ∞ (1.20)

in case (A) and

E

[
sup
t∈[0,T ]

|Y (t) − φ(t)|−r
]
< ∞, E

[
sup
t∈[0,T ]

|ψ(t) − Y (t)|−r
]
< ∞ (1.21)

in case (B) provided that the Hölder constant

Λ := sup
0≤s<t≤T

|Z(t) − Z(s)|
|t− s|λ

(1.22)

of Z satisfies some mild moment assumptions. We regard (1.20)–(1.21)
as one of the most important technical results of the thesis: it allows
to control the behaviour of sandwiched processes near the bounds and
it is a crucial tool for the analysis of e.g. numerical schemes. We also
discuss the connection of (1.13) to Skorokhod reflections and generalize
the results of Paper I. Namely, we prove that reflected processes appear
as limits of sandwiched processes and obtain new representations of the
corresponding regulators. Finally, we suggest two stochastic volatility
models which we regard as generalizations of the Cox-Ingersoll-Ross and
Chan–Karolyi–Longstaff–Sanders (see e.g. [20]) processes. The results are
illustrated with simulations.

7In the literature, such process L0 is called a reflection function or regulator of the
Skorokhod reflection problem (1.19).
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Paper III [42] is devoted to a simulation method for (1.13). We suggest an
algorithm in the spirit of the drift-implicit Euler scheme constructed for
the classical Cox-Ingersoll-Ross process in [2, 3, 39] and extended to the case
of the fractional Brownian motion with H > 1

2 in [71, 78, 113]: according
to this approach, the approximation Ŷ (tk+1) of Y (tk+1) is obtained from
the equation

Ŷ (tk+1) = Ŷ (tk)+ b(tk+1, Ŷ (tk+1))(tk+1 − tk)+(Z(tk+1)−Z(tk)). (1.23)

Under some mild assumptions on the drift and Λ from (1.22), we prove
Lr(Ω;L∞([0, T ]))-convergence of this scheme. Additionally, we show that
for all points tk of the partition

Ŷ (tk) > φ(tk)

in the setting (A) and

φ(tk) < Ŷ (tk) < ψ(tk)

in the case (B). This sandwich-preserving property is a major improvement
in comparison to the scheme used in Paper II as it allows to reproduce
the behaviour of sandwiched processes more accurately. In particular, we
prove that (Ŷ −φ)−1 and (ψ− Ŷ )−1 converge to (Y −φ)−1 and (ψ−Y )−1

correspondingly which is crucial for e.g. approximating martingale densities
in stochastic volatility models.

Paper IV [43] introduces the market model which we call the Sandwiched Volterra
Volatility (SVV) model. Namely, we consider

Si(t) = Si(0) +
∫ t

0
µi(s)Si(s)ds+

∫ t

0
Yi(s)Si(s)dBSi (s), (1.24)

Yi(t) = Yi(0) +
∫ t

0
bi(s, Yi(s))ds+

∫ t

0
Ki(t, s)dBYi (s), (1.25)

i = 1, ..., d, where Si and Yi are price and volatility processes respectively, µi
are deterministic continuous functions, bi are drifts in the setting (B) with
strictly positive lower bounds, BSi , BYi are correlated standard Brownian
motions and Ki are arbitrary square integrable kernels such that each
process Zi(t) :=

∫ t
0 Ki(t, s)dBYi (s) is Hölder continuous up to the order

Hi ∈ (0, 1). We

– prove that the prices Si have moments of all orders,
– obtain an exhaustive description of the set of equivalent local

martingale measures for (1.24)–(1.25),
– show Malliavin differentiability of prices and volatilities and
– use Malliavin calculus to develop an efficient algorithm for numerical

pricing of options with discontinuous payoffs.
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Note that the procedure of measure change is often left out of consideration
in rough volatility models (such as the rough Heston model) and hence
the transparency of the SVV model in this regard turns out to be its
substantial advantage.

Paper V [45] is devoted to Markovian approximations of the SVV model

X(t) = X(0) +
∫ t

0
Y (s)X(s)

(
ρdB1(s) +

√
1 − ρ2dB2(s)

)
,

Y (t) = Y (0) +
∫ t

0
b(s, Y (s))ds+

∫ t

0
K(t, s)dB1(s),

where X represents the discounted price. Our core idea is to approximate
K with a degenerate kernel Km(t, s) =

∑m
i=1 em,i(t)fm,i(s) in such a way

that the noise Zm(t) =
∑m
i=1 em,i(t)

∫ t
0 fm,i(s)dB1(s) has the same Hölder

regularity as Z(t) :=
∫ t

0 K(t, s)dB1(s) and then take the (m+2)-dimensional
Markov process (Xm, Ym, Um,1, ..., Um,m) of the form

Xm(t) = X(0) +
∫ t

0
Ym(s)Xm(s)

(
ρdB1(s) +

√
1 − ρ2dB2(s)

)
,

Ym(t) = Y (0) +
∫ t

0
b(s, Ym(s))ds+

m∑
i=1

em,i(t)Um,i(t),

Um,1(t) =
∫ t

0
fm,1(s)dB1(s),

...

Um,m(t) =
∫ t

0
fm,m(s)dB1(s)

as approximation. We prove convergence of (Xm, Ym) to (X,Y ) and
provide explicit form of such approximations for rough fractional and
general Hölder continuous kernels. In the second part of the Chapter,
we use this technique to develop numerical algorithms for the quadratic
hedging problem. Namely, we take the explicit representation of the
optimal hedge in form of the non-anticipating derivative (see e.g. [41])
and replace the original X and Y with their Markovian approximations.
The described strategy eliminates dependence of X and Y on the past and
allows for numerical approximation of conditional expectations that appear
in the non-anticipating derivative. As a result, we suggest two algorithms
to compute the optimal hedging strategy: Nested Monte Carlo and Least
Squares Monte Carlo.
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Abstract

In this paper, we establish a new connection between Cox-Ingersoll-Ross
(CIR) and reflected Ornstein-Uhlenbeck (ROU) models driven by either a
standard Wiener process or a fractional Brownian motion with H > 1

2 . We
prove that, with probability 1, the square root of the CIR process converges
uniformly on compacts to the ROU process as the mean reversion parameter
tends to either σ2/4 (in the standard case) or to 0 (in the fractional case).
This also allows to obtain a new representation of the reflection function
of the ROU as the limit of integral functionals of the CIR processes. The
results of the paper are illustrated by simulations.
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I. Standard and fractional reflected Ornstein-Uhlenbeck processes as the limits
of square roots of Cox-Ingersoll-Ross processes

I.1 Introduction

Both the reflected Ornstein-Uhlenbeck (ROU) and the Cox-Ingersoll-Ross (CIR)
processes are extremely popular models in a variety of fields. Without attempting
to give a complete overview of possible applications due to the large amount of
literature on the topic, we only mention that the ROU process is widely used
in queueing theory [9, 29–31], in population dynamics modeling [24, 37], in
economics and finance for modeling regulated markets [2, 3, 16, 32], interest
rates [10] and stochastic volatility [26] (see also [8, 19] and references therein
for more details on applications of the ROU in various fields) while the most
notable usages of the CIR process are related to representing the dynamics of
interest rates [4–6] and stochastic volatility in the Heston model [11].

It is well-known [20, 27] that the CIR process has strong links with the
standard OU dynamics; in particular, if B = (B1, ..., Bd) is a d-dimensional
Brownian motion and U = (U1, ..., Ud) is a standard d-dimensional OU process
given by

Ui(t) = Ui(0) − b

2

∫ t

0
Ui(s)ds+ σ

2Bi(t), t ≥ 0, i = 1, ..., d,

then it is easy to see via Itô’s formula that the process
∑d
i=1 U

2
i (t), t ≥ 0, is the

CIR process of the form

X(t) = X(0) +
∫ t

0
(a− bX(s)) ds+ σ

∫ t

0

√
X(s)dW (s), t ≥ 0, (I.1)

with a = dσ2

4 and W (t) :=
∑d
i=1
∫ t

0
Ui(s)√∑d

j=1
U2

j
(s)
dBi(s) (which is a standard

Brownian motion by Levy’s characterization). The value d = 4a
σ2 is sometimes

referred to as a dimension or a number of degrees of freedom of the CIR process
(see e.g. [20] and references therein) and thus, in this terminology, a square of a
standard one-dimensional OU process turns out to be a CIR process with one
degree of freedom w.r.t. another Brownian motion.

In this paper, we investigate a connection between the CIR and the ROU
processes that is in some sense related to the one described above. Namely, in
the first part we prove that the ROU process

Y (t) = Y (0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t) + L(t), t ≥ 0, (I.2)

where W is a standard Brownian motion and L is a continuous non-decreasing
process that can have points of growth only at zeros of Y , coincides with the
square root of the CIR process of the type (I.1) with a = σ2

4 (i.e. with one degree
of freedom) driven by the same Brownian motion W . Moreover, if {εn, n ≥ 1} is
a sequence of positive numbers such that εn ↓ 0 as n → ∞, then, with probability
1, for all T > 0

sup
t∈[0,T ]

∣∣∣∣∣L(t) − 1
2

∫ t

0

εn√
Xεn

(s)
ds

∣∣∣∣∣ → 0, n → ∞, (I.3)
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where Xεn is the CIR process of the form

Xεn
(t) = X(0) +

∫ t

0

(
σ2

4 + εn − bXεn
(s)
)
ds+ σ

∫ t

0

√
Xεn

(s)dW (s).

The second part of the paper discusses the connection between fractional
counterparts of equations (I.1) and (I.2) driven by fractional Brownian motion
{BH(t), t ≥ 0} with Hurst index H > 1

2 . Namely, we consider a fractional
Cox-Ingersoll-Ross process

XH
ε (t) = X(0) +

∫ t

0

(
ε− bXH

ε (s)
)
ds+ σ

∫ t

0

√
XH
ε (s)dBH(s), t ≥ 0,

where the integral
∫ t

0

√
XH(s)dBH(s) is understood as the pathwise limit of

Riemann-Stieltjes integral sums (see [22] or [7, Subsection 4.1]) and prove that
with probability 1 the paths of {

√
XH
ε (t), t ≥ 0} a.s. converge to the reflected

fractional Ornstein-Uhlenbeck (RFOU) process uniformly on each compact [0, T ]
as ε ↓ 0. Moreover, an analogue of the representation (I.3) also takes place: if
LH is a reflection function of the RFOU process, then, with probability 1, for
each T > 0

sup
t∈[0,T ]

∣∣∣∣∣LH(t) − 1
2

∫ t

0

ε√
XH
ε (s)

ds

∣∣∣∣∣ → 0, ε ↓ 0.

The paper is organised as follows. In section I.2, we consider the link between
the CIR and the ROU processes in the standard Wiener case. Section I.3 is
devoted to the fractional setting. Section I.4 contains simulations that illustrate
our results.

I.2 Classical reflected Ornstein-Uhlenbeck and
Cox-Ingersoll-Ross processes

The main goal of this section is to establish a connection between Cox-Ingersoll-
Ross (CIR) and reflected Ornstein-Uhlenbeck (ROU) processes in the standard
Brownian setting. We shall start from the definition of a reflection function
following the one given in the classical work [28].

Definition I.2.1. Let ξ = {ξ(t), t ≥ 0} be some stochastic process. The process
ζ = {ζ(t), t ≥ 0} is called a reflection function for ξ, if ζ is, with probability 1,
a continuous non-decreasing process such that ζ(0) = 0 and the points of growth
of ζ can occur only at zeros of ξ.

Definition I.2.2. Stochastic process Ỹ = {Ỹ (t), t ≥ 0} is called a reflected
Ornstein-Uhlenbeck (ROU) process if it satisfies a stochastic differential equation
of the form

Ỹ (t) = Y (0) − b̃

∫ t

0
Ỹ (s)ds+ σ̃W (t) + L̃(t), t ≥ 0, (I.4)
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where Y (0), b̃ and σ̃ are positive constants, W = {W (t), t ≥ 0} is a standard
Brownian motion, {L̃(t), t ≥ 0} is a reflection function for Ỹ and Ỹ ≥ 0 a.s.

Remark I.2.3. The ROU process is well-known and studied in the literature, see
e.g. [31] and references therein. Note also that, despite (I.4) has two unknown
functions Ỹ and L̃, the solution is still unique. Indeed, let Ỹ and Ŷ be two
stochastic processes satisfying

Ỹ (t) = Y (0) − b̃

∫ t

0
Ỹ (s)ds+ σ̃W (t) + L̃(t)

and

Ŷ (t) = Y (0) − b̃

∫ t

0
Ŷ (s)ds+ σ̃W (t) + L̂(t),

where L̃ and L̂ are the corresponding reflection functions. Assume that on some
ω ∈ Ω such that both Ỹ and Ŷ are continuous

Ỹ (t) − Ŷ (t) > 0 (I.5)

and consider τ(t) := sup{s ∈ [0, t) : Ỹ (t)− Ŷ (t) = 0}. Then Ỹ (u)− Ŷ (u) > 0 for
all u ∈ (τ(t), t]; moreover, Ỹ (u) > 0 for u ∈ (τ(t), t], therefore L̃ is non-increasing
on (τ(t), t]. It means that the difference Ỹ (u) − Ŷ (u) is also non-increasing on
(τ(t), t] since

Ỹ (u) − Ŷ (u) = −b̃
∫ u

τ(t)
(Ỹ (s) − Ŷ (s))ds+

(
L̃(u) − L̂(u)

)
−
(
L̃(τ(t)) − L̂(τ(t))

)
and the right-hand side is non-increasing w.r.t. u. Whence, taking into account
that Ỹ (τ(t)) − Ŷ (τ(t)) = 0 due to the definition of τ(t) and continuity of both Ỹ
and Ŷ , the difference Ỹ (u) − Ŷ (u) cannot be positive for any u ∈ (τ(t), t] which
contradicts (I.5). Interchanging the roles of Ỹ and Ŷ , one can easily verify that
Ỹ (t) − Ŷ (t) cannot be negative either and whence Ŷ = Ỹ , L̂ = L̃.

Now, consider a standard CIR process defined as a continuous modification
of the unique solution to the equation

X(t) = X(0) +
∫ t

0
(a− bX(s)) ds+ σ

∫ t

0

√
X(s)dW (s), t ≥ 0, (I.6)

where X(0), a, b, σ > 0 and W = {W (t), t ≥ 0} is a classical Wiener process. It is
well-known (see e.g. [14, Example 8.2]) that for a > 0 the solution {X(t), t ≥ 0}
is non-negative a.s. for any t ≥ 0; moreover, the solution is strictly positive
a.s. provided that a ≥ σ2

2 , see e.g. [15, Chapter 5]. Therefore, if a > 0, the
square-root process Y = {Y (t), t ∈ [0, T ]} := {

√
X(t), t ∈ [0, T ]} is well-defined.
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For an arbitrary ε > 0, consider a stochastic process {
√
X(t) + ε, t ∈ [0, T ]}.

By Itô’s formula, for any t ≥ 0√
X(t) + ε =

√
X(0) + ε+ 1

2

∫ t

0

(
a√

X(s) + ε
− σ2

4
X(s)

(X(s) + ε) 3
2

)
ds

− 1
2

∫ t

0

bX(s)√
X(s) + ε

ds+ σ

2

∫ t

0

√
X(s)√

X(s) + ε
dW (s)

(I.7)

and, since the left-hand side of (I.7) converges to
√
X(t) = Y (t) a.s. as ε → 0,

moving ε → 0 in the right-hand side would give us the dynamics of Y .
First, it is clear that for any t ≥ 0√

X(0) + ε → Y (0) a.s. (I.8)

and ∫ t

0

X(s)√
X(s) + ε

ds →
∫ t

0
Y (s)ds a.s. (I.9)

as ε → 0. Further, by the monotone convergence,∫ t

0

1√
X(s) + ε

ds →
∫ t

0

1
Y (s)ds ∈ [0,∞) ∪ {∞} a.s.,∫ t

0

X(s)
(X(s) + ε) 3

2
→
∫ t

0

1
Y (s)ds ∈ [0,∞) ∪ {∞} a.s.

(I.10)

as ε → 0. Finally, by Burkholder-Davis-Gundy inequality and dominated
convergence theorem, for any T > 0

E

(
sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

√
X(s)√

X(s) + ε
dW (s) −W (t)

∣∣∣∣∣
)2

≤ 4E
∫ T

0

( √
X(s)√

X(s) + ε
− 1
)2

ds

= 4E
∫ T

0

( √
X(s)√

X(s) + ε
− 1
)2

1{X(s)>0}ds+ 4E
∫ T

0
1{X(s)=0}ds

= 4E
∫ T

0

( √
X(s)√

X(s) + ε
− 1
)2

1{X(s)>0}ds → 0, ε → 0,

where we used continuity of the distribution of X(s) for each s > 0 to state that
4E
∫ T

0 1{X(s)=0}ds = 0 (see e.g. [20] and references therein). This implies that

sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

√
X(s)√

X(s) + ε
dW (s) −W (t)

∣∣∣∣∣ L2(Ω)−−−−→ 0, ε → 0. (I.11)

By (I.11), it is evident that there exists a sequence {εn, n ≥ 1} which depends
on T such that

sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

√
X(s)√

X(s) + εn
dW (s) −W (t)

∣∣∣∣∣ → 0 a.s., n → ∞ (I.12)
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and along this sequence

lim
n→∞

1
2

∫ t

0

(
a√

X(s) + εn
− σ2

4
X(s)

(X(s) + εn) 3
2

)
ds < ∞, t ∈ [0, T ], (I.13)

a.s. because all other limits in (I.7) as εn → 0 are finite a.s. However, the integral∫ t
0

1
Y (s)ds which arises in (I.10) may be infinite and thus the explicit form of the

limit above for now remains obscure. This issue as well as the connection of Y
to the ROU process is addressed in the next theorem.

Theorem I.2.4. Let Y = {Y (t), t ≥ 0} = {
√
X(t), t ≥ 0} be the square root

process, where X is the CIR process defined by (I.6).

τ := inf{t ≥ 0 : X(t) = 0} = inf{t ≥ 0 : Y (t) = 0}.

(a) If a > σ2

4 , then for any t ≥ 0∫ t

0

1
Y (s)ds < ∞ a.s.

Moreover, the square root process Y a.s. satisfies the SDE of the form

Y (t) = Y (0) + 1
2

(
a− σ2

4

)∫ t

0

1
Y (s)ds− b

2

∫ t

0
Y (s)ds+ σ

2W (t), (I.14)

Y (0) =
√
X(0), and the solution to this equation is unique among non-

negative stochastic processes.

(b) If a = σ2

4 , then ∫ τ

0

1
Y (s)ds < ∞ a.s.

while ∫ τ+γ

0

1
Y (s)ds = ∞ a.s.

for any γ > 0. Moreover, the square root process Y satisfies the SDE of
the form

Y (t) = Y (0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t) + L(t), (I.15)

where the process L from (I.15) is a continuous nondecreasing process the
points of growth of which can occur only at zeros of Y , i.e. Y is a reflected
Ornstein-Uhlenbeck process.

Proof. Case (a): a > σ2

4 . Denote p := a− σ2

4 > 0. Our goal is to prove that the
integral ∫ t

0

1√
X(s)

ds =
∫ t

0

1
Y (s)ds
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is finite a.s. Define A(t) :=
{
ω ∈ Ω :

∫ t
0

1√
X(s)

ds = +∞
}

and assume that for

some t > 0: P (A(t)) > 0. Fix T > t, the corresponding sequence {εn, n ≥ 1}
such that convergence (I.12) holds and an arbitrary ω ∈ A(t) ∩ Ω′, where Ω′ ⊂ Ω,
P(Ω′) = 1, is the set where (I.12) takes place (in what follows, ω in brackets will
be omitted). Then

∫ t

0

(
a√

X(s) + εn
− σ2

4
X(s)

(X(s) + εn) 3
2

)
ds

= σ2

4

∫ t

0

(
1√

X(s) + εn
− X(s)

(X(s) + εn) 3
2

)
ds+ p

∫ t

0

1√
X(s) + εn

ds.

Obviously, for all s ∈ [0, t]

1√
X(s) + εn

≥ X(s)
(X(s) + εn) 3

2
a.s.,

so, for ω ∈ A(t) ∩ Ω′

∫ t

0

(
a√

X(s) + εn
− σ2

4
X(s)

(X(s) + εn) 3
2

)
ds → ∞ a.s., n → ∞,

whence, taking into account (I.7)–(I.9), we obtain that

√
X(t) −

√
X(0) + b

2

∫ t

0

√
X(s)ds− σ

2W (t) = ∞,

which is impossible a.s. We get a contradiction, whence P(A(t)) = 0 for all
t ≥ 0 and

∫ t
0

1√
X(s)

ds =
∫ t

0
1

Y (s)ds < ∞ a.s. By going to the limit in (I.7), we
immediately get (I.14).

Concerning the uniqueness of solution to (I.14), let Ỹ (t) be any of its non-
negative solutions. Then, by Itô’s formula,

Ỹ 2(t) = X(0) +
∫ t

0

(
a− bỸ 2(s)

)
ds+ σ

∫ t

0
Ỹ (s)dW (s)

so Ỹ satisfies equation (I.6) and thus coincides with X. Therefore

Ỹ (t) =
√
X(t) = Y (t) a.s., t ≥ 0.

Case (b): a = σ2

4 . Fix T > 0 and take the corresponding sequence
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{εn, n ≥ 1} such that (I.12) holds. By (I.7), for any t ∈ [0, T ]√
X(t) + εn =

√
X(0) + εn + 1

2

∫ t

0

(
a√

X(s) + εn
− σ2

4
X(s)

(X(s) + εn) 3
2

)
ds

− 1
2

∫ t

0

bX(s)√
X(s) + εn

ds+ σ

2

∫ t

0

√
X(s)√

X(s) + εn
dW (s)

=
√
X(0) + εn + σ2

8

∫ t

0

εn

(X(s) + εn) 3
2
ds

− 1
2

∫ t

0

bX(s)√
X(s) + εn

ds+ σ

2

∫ t

0

√
X(s)√

X(s) + εn
dW (s),

and (I.13) implies that there exists Ω′ ⊂ Ω, P(Ω′) = 1, such that for all ω ∈ Ω′

the limit
L(t) := lim

n→∞

σ2

8

∫ t

0

εn

(X(s) + εn)
3
2
ds

is well-defined and finite for all t ∈ [0, T ]. It is evident that L(0) = 0 a.s. due to
continuity of X and the fact that X(0) > 0. Moreover, since a.s.

L(t) =
√
X(t) −

√
X(0) + b

2

∫ t

0

√
X(s)ds− σ

2W (t) t ∈ [0, T ],

L is continuous in t. Furthermore,∫ t1

0

εn

(X(s) + εn)
3
2
ds ≤

∫ t2

0

εn

(X(s) + εn)
3
2
ds

for all t1 < t2, and whence L is non-decreasing in t a.s. Finally, if X(t) = x > 0,
there exists an interval [t1, t2] containing t such that X(s) > x

2 for all s ∈ [t1, t2]
and thus

L(t1) − L(t2) = lim
n→∞

σ2

8

∫ t2

t1

εn

(X(s) + εn)
3
2
ds → 0, n → ∞,

i.e. L can increase only at points of zero hitting of X that coincide with the
ones of Y . Taking into the account all of the above as well as an arbitrary choice
of T , L is the reflection function for Y and the latter is indeed a ROU process.

Now, let us prove that
∫ τ

0
1
Ys
ds < ∞ a.s. Consider a standard Ornstein-

Uhlenbeck process U = {U(t), t ≥ 0} of the form

U(t) =
√
X(0) − b

2

∫ t

0
U(s)ds+ σ

2W (t), (I.16)

with W being the same Brownian motion that drives X. It is evident that Y
coincides with U until τ a.s. and thus it is sufficient to prove that

∫ τ
0

1
U(s)ds < ∞

a.s. For any ε > 0 consider

σ2

4

∫ τ

0

1
U(s)1{ε<U(s)<1}ds =

∫ 1

ε

LU (τ, x)
x

dx,
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where LU denotes the local time of U , and observe that

σ2

4

∫ τ

0

1
U(s)ds ≤ lim

ε↓0

∫ τ

0

1
U(s)1{ε<U(s)<1}ds =

∫ 1

0

LU (τ, x)
x

dx.

Computations similar to the ones in [25, Section IV.44] indicate that the local
time LU (t, x) of U is Hölder continuous in x up to order 1

2 over bounded time
intervals and thus

∫ τ
0

1
U(s)ds =

∫ τ
0

1
Y (s)ds < ∞ a.s.

Finally, assume that for some γ > 0,∫ τ+γ

0

1
Y (s)ds < ∞

with positive probability. On ω ∈ Ω where this property holds, we have that∫ τ+γ

0

ds√
X(s) + ε

−
∫ τ+γ

0

X(s)
(X(s) + ε) 3

2
ds

→
∫ τ+γ

0

1
Y (s)ds−

∫ τ+γ

0

1
Y (s)ds = 0, ε → 0.

Therefore, for such ω, Y satisfies the equation of the form

Y (t) = Y (0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t)

on the interval [0, τ + γ], i.e. such paths of Y coincide with the corresponding
paths of the Ornstein-Uhlenbeck process U defined by (I.16) up until τ +γ. This
implies that U(τ) = 0 and U is nonnegative on the interval [τ, τ + γ] for such
ω, which is impossible due to the non-tangent property of Gaussian processes
stated by [33], see also [23]. ■

Remark I.2.5. Since the integral
∫ t

0
1√
X(s)

ds is finite a.s. for a > σ2

4 ,

√
X(t) + ε−

√
X(0) + ε− 1

2

∫ t

0

(
a√

X(s) + ε
− σ2

4
X(s)

(X(s) + ε) 3
2

)
ds

+1
2

∫ t

0

bX(s)√
X(s) + ε

ds

a.s.−−→
√
X(t) −

√
X(0) − 1

2

(
a− σ2

4

)∫ t

0

1√
X(s)

ds+ b

2

∫ t

0

√
X(s)ds < ∞

as ε → 0. Therefore, taking into account (I.7),∫ t

0

√
X(s)√

X(s) + ε
dW (s) a.s.−−→ W (t), ε → 0.
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As a corollary of Theorem I.2.4, we have a representation of the reflection
function of the ROU process as the limit of integral functionals of the CIR
processes. It is interesting that the reflection function is singular w.r.t. the
Lebesgue measure (see Remark I.2.7) while the processes that converge to it are
absolutely continuous a.s.

Theorem I.2.6. Let {W (t), t ≥ 0}} be a continuous modification of a standard
Brownian motion, Y (0), b, σ > 0 be given constants and {εn, n ≥ 1} be an
arbitrary sequence such that εn ↓ 0, n → ∞. For any εn from this sequence,
consider the CIR process Xεn = {Xεn(t), t ≥ 0} given by

Xεn(t) = X(0) +
∫ t

0

(
σ2

4 + εn − bXεn(s)
)
ds+ σ

∫ t

0

√
Xεn(s)dW (s)

and denote its square root by Yεn(t) :=
√
Xεn(t). Then, with probability 1,

1) the limit limn→∞ Yεn(t) =: Y (t) is well-defined, finite and non-negative for
any t ≥ 0;

2) the limit process Y = {Y (t), t ≥ 0} is a ROU process satisfying the
equation of the form

Y (t) = Y (0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t) + L(t), t ≥ 0,

with Y (0) =
√
X(0) > 0 and L being the reflection function for Y ;

3) for any T > 0

sup
t∈[0,T ]

|Y (t) − Yεn
(t)| → 0, n → ∞, (I.17)

and
sup
t∈[0,T ]

∣∣∣∣L(t) − 1
2

∫ t

0

εn
Yεn

(s)ds
∣∣∣∣ → 0, n → ∞. (I.18)

Proof. Denote by X the CIR process of the form

X(t) = X(0) +
∫ t

0

(
σ2

4 − bX(s)
)
ds+ σ

∫ t

0

√
X(s)dW (s).

By Theorem I.2.4, there exists Ω′ ⊂ Ω, P(Ω′) = 1, such that for all ω ∈ Ω′ X
and each Yεn

, n ≥ 1, are continuous and the latter satisfy equations of the form

Yεn
(t) = Y (0) + 1

2

∫ t

0

εn
Yεn

(s)ds− b

2

∫ t

0
Y (s)ds+ σ

2W (t), t ≥ 0,

with the integral
∫ t

0
1

Yεn (s)ds < ∞. Furthermore, since each Xεn
= Y 2

εn
is a CIR

process that satisfies conditions of the comparison theorem from [13], this Ω′

can be chosen such that for all ω ∈ Ω′

Yεn
(ω, t) ≥ Yεn+1(ω, t) ≥

√
X(t) ≥ 0, t ≥ 0, n ≥ 1. (I.19)
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Fix ω ∈ Ω′ (in what follows, we will omit ω in brackets for notational
simplicity). Since the sequence {Yεn

(t), n ≥ 1} is non-increasing for each t ≥ 0,
there exists a pointwise limit Y (t) := limn→∞ Yεn

(t) ∈ [0,∞). Moreover, it is
evident that limn→∞

∫ t
0 Yεn

(s)ds =
∫ t

0 Y (s)ds and since

Y (t) = lim
n→∞

Yεn
(t)

= Y (0) − lim
n→∞

b

2

∫ t

0
Yεn

(s)ds+ σ

2W (t) + lim
n→∞

1
2

∫ t

0

εn
Yεn

(s)ds

= Y (0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t) + lim
n→∞

1
2

∫ t

0

εn
Yεn(s)ds,

the limit L(t) := limn→∞
1
2
∫ t

0
εn

Yεn (s)ds is well-defined, nonnegative and finite.
In order to obtain the claim of the theorem, it is sufficient to check that the

function L defined above is indeed a reflection function for Y , i.e. is continuous
and nondecreasing process that starts at zero and the points of growth of which
occur only at zeros of Y . Note that continuity of L would also imply the
uniform convergences (I.17) and (I.18) on each compact [0, T ]. Indeed, since
Yεn(t) ≥ Yεn+1(t) for all t ≥ 0, n ≥ 1 and continuity of L would imply continuity
of Y , Dini’s theorem guarantees (I.17). The same argument applies to (I.18):
the right-hand side of

1
2

∫ t

0

εn
Yεn

(s)ds = Yεn(t) − Y (0) + b

2

∫ t

0
Yεn(s)ds− σ

2W (t)

is non-increasing w.r.t. t, therefore for each t ≥ 0 and n ≥ 1

1
2

∫ t

0

εn
Yεn(s)ds ≥ 1

2

∫ t

0

εn+1

Yεn+1(s)ds

and Dini’s theorem implies (I.18) as well.
By (I.19), continuity of X and the fact that X(0) > 0, there exists an interval

[0, t0) such that for all t ∈ [0, t0) and n ≥ 1 Yεn
(t) ≥ Y (0)

2 . Thus for any t ∈ [0, t0)

L(t) = lim
n→∞

1
2

∫ t

0

εn
Yεn(s)ds ≤ lim

n→∞

t0εn
Y (0) = 0,

i.e. L(t) = 0 for all t ∈ [0, t0].
For the reader’s convenience, we will split the further proof into four steps.
Step 1: L in non-decreasing. Monotonicity of L is obvious since for any

fixed n ≥ 1 and t1 < t2 ∫ t1

0

εn
Yεn(s)ds ≤

∫ t2

0

εn
Yεn(s)ds.

Step 2: right-continuity. Let us show that L is continuous from the
right. For any fixed t ≥ 0, denote L(t+) := limδ↓0 L(t+ δ) (the right limit exists
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since L is non-decreasing) and assume that L(t+) − L(t) = α > 0. Due to the
monotonicity of L, this implies that for all δ > 0

L(t+ δ) − L(t) ≥ α > 0. (I.20)

Now, take n0 such that for all n ≥ n0

1
2

∫ t

0

εn
Yεn(s)ds ∈

[
L(t), L(t) + α

4

)
and δ0 > 0 such that

1
2

∫ t+δ0

0

εn0

Yεn0
(s)ds ∈

[
L(t), L(t) + α

2

)
.

As it was noted previously, for each s ≥ 0 the values of 1
2
∫ s

0
εn

Yεn (u)du are
non-increasing when n → ∞. Thus for any n ≥ n0

1
2

∫ t+δ0

0

εn
Yεn(s)ds ≤ 1

2

∫ t+δ0

0

εn0

Yεn0
(s)ds ≤ L(t) + α

2 ,

i.e.
L(t+) ≤ lim

n→∞

1
2

∫ t+δ0

0

εn
Yεn

(s)ds < L(t) + α

2 ,

which contradicts (I.20). Therefore, L(t+) − L(t) = 0, i.e. L is right-continuous.
Step 3: left-continuity. Now, let us show that L is continuous from the

left. Assume that it is not true and there exists t > 0 such that L(t) −L(t−) > 0
(note that L(t−) = limδ↓0 L(t− δ) is well-defined due to the monotonicity of L).
Since L may have only positive jumps, so does Y and, moreover, the points of
jumps of L and Y coincide. This implies that Y (t) − Y (t−) > 0 and we now
consider two cases.

Case 1: Y (t−) = y > 0. Then Y (t) = Y (t+) > y (note that Y is right-
continuous by Step 2) and there exists an interval [t − δ, t + δ] such that
Yεn

(s) ≥ Y (s) > y
2 for all s ∈ [t− δ, t+ δ]. This implies that

L(t+ δ) − L(t− δ) = lim
n→∞

1
2

∫ t+δ

t−δ

εn
Yεn

(s)ds ≤ lim
n→∞

2δεn
y

= 0,

i.e. L cannot have a jump at t. This means that Y cannot have a jump at point
t either and we obtain a contradiction.

Case 2: Y (t−) = 0 and Y (t+) = Y (t) = y > 0. Fix T > t, λ ∈
(
0, 1

2
)

and
let Λ be a random variable such that for all t1, t2 ∈ [0, T ]

|W (t1) −W (t2)| ≤ Λ|t1 − t2|λ.

Take n1 ≥ 1 and δ1 > 0 such that εn1 + δ1 + σΛ
2 δ

λ
1 < y and note that there exists

δ2 < δ1 such that Y (t− δ2) < εn1 . Since Yεn
(t−δ2) ↓ Y (t− δ2) as n → ∞, there
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exists n2 > n1 such that Yεn2
(t− δ2) < εn1 < y. Moreover, Yεn2

(t) ≥ Y (t) = y
thus one can define

τ := sup{s ∈ (t− δ2, t), Yεn2
(s) = εn1}.

Observe that Yεn2
(τ) = εn1 and Yεn2

(s) ≥ εn1 for all s ∈ [τ, t], whence

Yεn2
(t) = Yεn2

(τ) + 1
2

∫ t

τ

εn2

Yεn2
(s)ds− b

2

∫ t

τ

Yεn2
(s)ds+ σ

2 (W (t) −W (τ))

≤ εn1 + εn2

2εn1

(t− τ) + σΛ
2 (t− τ)λ

≤ εn1 + δ1 + σΛ
2 δλ1 < y,

which contradicts the assumption that Yεn2
(t) ≥ y. This contradiction together

with all of the above implies that Y (and thus L) is continuous at each point
t ≥ 0.

Step 4: points of growth. Now, let us prove that the points of growth of
L may occur only at zeros of Y . Indeed, let t > 0 be such that Y (t) = y > 0.
Since Y is continuous, there exists δ3 > 0 such that for any s ∈ (t− δ3, t+ δ3)

Y (s) > y

2 > 0.

This, in turn, implies that for all s ∈ (t− δ3, t+ δ3) and n ≥ 1

Yεn
(s) ≥ Y (s) > y

2 > 0

and thus for any δ ∈ [0, δ3)

L(t+ δ) − L(t− δ) = lim
n→∞

1
2

∫ t+δ

t−δ

εn
Yεn

(s)ds ≤ lim
n→∞

2δ
y
εn = 0.

Therefore L(t+ δ) − L(t− δ) = 0 and L does not grow in some neighbourhood
of t. ■

Remark I.2.7. It is well-known (see e.g. [1, Appendix A] or [35, Subsection 3.3.1])
that the absolute value of OU and ROU processes with non-zero mean reversion
levels do not coincide. In turn, in the “symmetric” case with zero mean reversion
parameter, absolute value of the OU process and ROU process have the same
distribution but do not coincide pathwisely. Theorem I.2.4 allows to clarify this
subtle difference in the following manner.

Let B = {B(t), t ≥ 0} be some standard Brownian motion and

U(t) = U(0) − b

2

∫ t

0
U(s)ds+ σ

2B(t), t ≥ 0,
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be a standard Ornstein-Uhlenbeck process with non-random positive initial value
U(0) > 0. By Itô’s formula,

U2(t) = U2(0) +
∫ t

0

(
σ2

4 − bU2(s)
)
ds+ σ

∫ t

0
U(s)dB(s)

= U2(0) +
∫ t

0

(
σ2

4 − bU2(s)
)
ds+ σ

∫ t

0
|U(s)| sign(U(s))dB(s)

= U2(0) +
∫ t

0

(
σ2

4 − bU2(s)
)
ds+ σ

∫ t

0
|U(s)|dW (s),

where W (t) :=
∫ t

0 sign(U(s))dB(s) is a standard Brownian motion (which can
be easily verified by Levy’s characterization). Thus, the process X(t) := U2(t),
t ≥ 0, is a CIR process w.r.t. W . By Theorem I.2.4, the square root process
Y (t) :=

√
X(t), t ≥ 0, is a reflected Ornstein-Uhlenbeck process with respect to

W satisfying the SDE of the form

Y (t) = U(0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t) + L(t), t ≥ 0, (I.21)

with L being the reflection function for Y . Since Y (t) =
√
X(t) = |U(t)|, by

Tanaka’s formula

Y (t) = U(0) +
∫ t

0
sign(U(s))dU(s) + LU (t)

= U(0) − b

2

∫ t

0
sign(U(s))U(s)ds+ σ

2

∫ t

0
sign(U(s))dB(s) + LU (t)

= U(0) − b

2

∫ t

0
Y (s)ds+ σ

2W (t) + LU (t),

(I.22)

with LU being the local time of U at zero. Comparing (I.21) and (I.22), we
obtain that L(t) = LU (t), i.e. the reflection function of the ROU process Y
coincides with local time at zero of the OU process U .

I.3 Fractional Cox-Ingersoll-Ross and fractional reflected
Ornstein-Uhlenbeck processes

Let now {BH(t), t ≥ 0} be a continuous modification of a fractional Brownian
motion with Hurst index H > 1

2 . Consider a stochastic differential equation of
the form

Y H(t) = Y (0) + 1
2

∫ t

0

(
a

Y H(s) − bY H(s)
)
ds+ σ

2 dB
H(t), t ≥ 0, (I.23)

where Y (0) > 0 is a given constant, a, b, σ > 0. According to [22] (see also [7]),
the SDE (I.23) a.s. has a unique pathwise solution {Y H(t), t ≥ 0} such that
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Y H(t) > 0 for all t ≥ 0, and the subset of Ω where this solution exists does not
depend on Y (0), a, b or σ (in fact, the solution exists for all ω ∈ Ω such that
BH(ω, t) is locally Hölder continuous in t). Moreover, it can be shown (see [22,
Theorem 1] or [7, Subsection 4.1]) that the process XH(t) = (Y H(t))2, t ≥ 0,
satisfies the SDE of the form

XH(t) = X(0) +
∫ t

0
(a− bXH(s))ds+ σ

∫ t

0

√
XH(s)dBH(s), t ≥ 0, (I.24)

where X(0) = Y 2(0) and the integral with respect to the fractional Brownian
motion exists as the pathwise limit of the corresponding Riemann-Stieltjes
integral sums. Taking into account the form of (I.24), the process {XH(t), t ≥ 0}
can be interpreted as a natural fractional generalisation of the Cox-Ingersoll-Ross
process with {Y H(t), t ≥ 0} being its square root.
Remark I.3.1. It is evident that the solution to (I.24) is unique in the class of
non-negative stochastic processes with paths that are Hölder-continuous up to
the order H. Indeed, by the fractional pathwise counterpart of the Itô’s formula
(see e.g. [36, Theorem 4.3.1]) the square root of the solution must satisfy the
equation (I.23) until the first moment of zero hitting. However, as it was noted
above, the solution to (I.23) is unique and strictly positive a.s., i.e. never hits
zero.

Now, let us recall the definition of the reflected fractional Ornstein-Uhlenbeck
(RFOU) process.

Definition I.3.2. Stochastic process Ỹ H = {Ỹ H(t), t ≥ 0} is called a fractional
reflected Ornshein-Uhlenbeck (RFOU) process if it satisfies a stochastic differential
equation of the form

Ỹ H(t) = Y (0) − b̃

∫ t

0
Ỹ H(s)ds+ σ̃BH(t) + L̃H(t), t ≥ 0, (I.25)

where Y (0), b̃ and σ̃ are positive constants, BH = {BH(t), t ≥ 0} is a fractional
Brownian motion, {L̃H(t), t ≥ 0} is a reflection function for Ỹ H in the sense of
Definition I.2.1 and Ỹ H ≥ 0 a.s.

Remark I.3.3. For more details on properties of the RFOU process see e.g. [18]
and references therein. Note that, by the argument similar to the one stated in
Remark I.2.3, the solution (Y H , LH) to the equation (I.25) is unique.

When it comes to the connection between FCIR and RFOU processes, there
is a notable difference from the standard Brownian case discussed in section I.2:
in the standard case the ROU process turned out to coincide with the square
root of the CIR process with a = σ2

4 which is not true for the fractional case.
More precisely, if a > 0, XH is strictly positive a.s. and thus

√
XH cannot

coincide with the RFOU process. Furthermore, for a = 0 [21, Theorem 6] claims
existence and uniqueness of solution to (I.24) when H ∈

( 2
3 , 1
)
, and this solution

turns out to stay in zero after hitting it, i.e. its square root is also different from
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the RFOU process. However, it is still possible to establish a clear connection
between FCIR and RFOU processes highlighted in the next theorem.

Theorem I.3.4. Let {BH(t), t ≥ 0} be a continuous modification of a fractional
Brownian motion with Hurst index H > 1

2 , Y (0), b, σ > 0 be given constants.
For any ε > 0, consider a square root process Y Hε = {Y Hε (t), t ≥ 0} given by

Y Hε (t) = Y (0) + 1
2

∫ t

0

(
ε

Y Hε (s) − bY Hε (s)
)
ds+ σ

2B
H(t), t ≥ 0.

Then, with probability 1,

1) the limit limε↓0 Y
H
ε (t) =: Y H(t) is well-defined, finite and non-negative for

any t ≥ 0;

2) the limit process Y H = {Y H(t), t ≥ 0} is a RFOU process satisfying the
equation of the form

Y H(t) = Y (0) − b

2

∫ t

0
Y H(s)ds+ σ

2B
H(t) + LH(t), t ≥ 0; (I.26)

3) for any T > 0
sup
t∈[0,T ]

|Y H(t) − Y Hε (t)| → 0, ε ↓ 0,

and
sup
t∈[0,T ]

∣∣∣∣LH(t) − 1
2

∫ t

0

ε

Y Hε (s)ds
∣∣∣∣ → 0, ε ↓ 0.

Proof. Let ω ∈ Ω such that BH(ω, t) is locally Hölder continuous in t be fixed
(for notational simplicity, we will omit it in brackets). As it was noted above, for
such ω all Y Hε are well-defined and strictly positive. Moreover, by the comparison
theorem (see e.g. [22, Lemma 1] or [7, Lemma A.1]), for all t ≥ 0 and ε1 > ε2

Y Hε1
(t) > Y Hε2

(t) > 0.

This implies that for any fixed t ≥ 0 the limits limε↓0 Y
H
ε (t) = Y H(t)

and limε↓0
1
2
∫ t

0
ε

Y H
ε (s)ds =: LH(t) are well-defined, non-negative and finite.

Furthermore, by comparison theorem, each Y Hε exceeds the fractional Ornstein-
Uhlenbeck of the form

UH(t) = Y (0) − b

2

∫ t

0
UH(s)ds+ σ

2B
H(t), t ≥ 0,

and hence there exists an interval [0, t0) such that for all t ∈ [0, t0) and ε > 0 it
holds that Y Hε (t) ≥ Y (0)

2 . Thus for any t ∈ [0, t0)

LH(t) = lim
ε↓0

1
2

∫ t

0

ε

Y Hε (s)ds ≤ lim
ε↓0

t0ε

Y (0) = 0,

i.e. LH(t) = 0 for all t ∈ [0, t0).
The remaining part of the proof is identical to the one of Theorem I.2.6. ■
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Remark I.3.5. Theorem I.3.4 and the preceding remark highlight that the FCIR
process (I.24) is not continuous at zero w.r.t. the mean-reversion parameter a.

I.4 Simulations

Let us illustrate the results with simulations. On Fig. I.1, the black paths depict
simulated trajectories of the square root {Y Hε (t), t ≥ 0} of the FCIR process
given by an equation of the form

Y Hε (t) = Y (0) + 1
2

∫ t

0

ε

Y Hε (s)ds− b

2

∫ t

0
Y Hε (s)ds+ σ

2B
H(t)

with Y (0) = 0.25, b = 1, σ = 1, ε = 0.0001 and different Hurst indices H; the
red lines are the corresponding integrals 1

2
∫ t

0
ε

Y H
ε (s)ds. In order to simulate Y Hε ,

the backward Euler approximation technique from [17] was used, see also [12,
34].

Theorem I.3.4 states that the red line approximates the reflection function
LH of the RFOU process and it can be clearly seen that the plot is well agreed
with the theory: the integral 1

2
∫ t

0
ε

Y H
ε (s)ds shows notable growth only when the

corresponding path of Y Hε is very close to zero.
Fig. I.2 illustrates the uniform convergence of paths of Y Hε to the path of

RFOU process as ε ↓ 0. On the picture, H = 0.6, Y (0) = 0.25, b = 1, σ = 1 and
the path of the FROU process Y H was simulated using the Euler-type method:

Y H(0) = Y (0),

Y H(tn+1) =
(
Y H(tn) − b

2Y
H(tn)(tn+1 − tn) + σ

2
(
BH(tn+1) −BH(tn)

))
∨ 0.

When ε = 0.0001, the path of Y Hε (purple) is so close to the corresponding
path of the ROU process (bold black) that they are not distinguishable on the
plot.
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(a) H = 0.6 (b) H = 0.7

(c) H = 0.8 (d) H = 0.9

Figure I.1: Sample paths of Y Hε (t) (black) and 1
2
∫ t

0
ε

Y H
ε (s)ds (red) for ε = 0.0001

and different Hurst indices H.
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Figure I.2: Comparison of the Y Hε with ε = 1 (red), ε = 0.5 (orange), ε = 0.25
(green) ε = 0.1 (blue), ε = 0.0001 (purple) and the RFOU process (bold black).
Note that the purple path (ε = 0.0001) is not visible on the plot since it almost
completely coincides with the bold black trajectory of the RFOU process.
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III

Abstract

In this paper, we analyze the drift-implicit (or backward) Euler numerical
scheme for a class of stochastic differential equations with unbounded drift
driven by an arbitrary λ-Hölder continuous process, λ ∈ (0, 1). We prove
that, under some mild moment assumptions on the Hölder constant of the
noise, the Lr(Ω; L∞([0, T ]))-approximation error converges to 0 as O(∆λ),
∆ → 0. To exemplify, we consider numerical schemes for the generalized
Cox–Ingersoll–Ross and Tsallis–Stariolo–Borland models. The results are
illustrated by simulations.
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III. Drift-implicit Euler scheme for sandwiched processes driven by Hölder
noises

III.1 Introduction

We analyze the drift-implicit (also known as backward) Euler numerical scheme
for stochastic differential equations (SDEs) of the form

Y (t) = Y (0) +
∫ t

0
b(s, Y (s))ds+ Z(t), t ∈ [0, T ], (III.1)

where Z is a general λ-Hölder continuous noise, λ ∈ (0, 1), and the drift b is
unbounded and has one of the following two properties:

(A) b(t, y) has an explosive growth of the type (y − φ(t))−γ as y ↓ φ(t), where
φ is a given Hölder continuous function of the same order λ as Z and
γ > 1

λ − 1;

(B) b(t, y) has an explosive growth of the type (y − φ(t))−γ as y ↓ φ(t) and an
explosive decrease of the type −(ψ(t) − y)−γ as y ↑ ψ(t), where φ and ψ
are given Hölder continuous functions of the same order λ as Z such that
φ(t) < ψ(t), t ∈ [0, T ], and γ > 1

λ − 1.

The SDEs of this type were extensively studied in [15]. It was shown that the
properties (A) or (B), along with some relatively weak additional assumptions,
ensure that the solution to (III.1) is bounded from below (one-sided sandwich
case) by the function φ in the setting (A), i.e.

Y (t) > φ(t), t ∈ [0, T ], (III.2)

or stays between φ and ψ (two-sided sandwich case) in the setting (B), i.e.

φ(t) < Y (t) < ψ(t), t ∈ [0, T ]. (III.3)

We emphasize that the SDE type (III.1) includes and generalizes several
widespread stochastic models. For example, the process given by

Y (t) = Y (0) −
∫ t

0

κY (s)
1 − Y 2(s)ds+ Z(t), t ∈ [0, T ],

where Z is λ-Hölder continuous with λ > 1
2 , fits into the setting (B) and

can be regarded as a natural extension of the Tsallis–Stariolo–Borland (TSB)
model employed in biophysics (for more details on the standard Brownian TSB
model see e.g. [16, Subsection 2.3] or [13, Chapter 3 and Chapter 8]). Another
important example is

Y (t) = Y (0) +
∫ t

0

(
κ1

Y γ(s) − κ2Y (s)
)
ds+ Z(t), t ∈ [0, T ], (III.4)

where Z is λ-Hölder continuous, λ ∈ (0, 1), and γ > 1
λ − 1. It can be shown (see

[15, Subsection 4.2]) that, if λ > 1
2 , stochastic process X(t) := Y 1+γ(t) satisfies

the SDE

X(t) = X(0)+(1+γ)
∫ t

0
(κ1 − κ2X(s)) ds+

∫ t

0
Xα(s)dZ(s), t ∈ [0, T ], (III.5)
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where α := γ
1+γ ∈ (0, 1) and the integral w.r.t. Z exists as a pathwise limit of

Riemann-Stieltjes integral sums. Equations of the type (III.5) are used in finance
in the standard Brownian setting and are called Chan—Karolyi—Longstaff—
Sanders (CKLS) or constant elasticity of variance (CEV) model (see, e.g., [4,
8, 9]). If α = 1

2 , the equation (III.5) is also known as the Cox–Ingersoll–Ross
(CIR) equation, see , e.g., [10–12].

In this work, we develop a numerical approximation (both pathwise and
in Lr(Ω;L∞([0, T ]))) for sandwiched processes (III.1) which is similar to the
drift-implicit (also known as backward) Euler scheme constructed for the classical
Cox-Ingersoll-Ross process in [2, 3, 14] and extended to the case of the fractional
Brownian motion with H > 1

2 in [18, 21, 22]. In this drift-implicit scheme, in
order to generate Ŷ (tk+1), one has to solve the equation of the type

Ŷ (tk+1) = Ŷ (tk) + b(tk+1, Ŷ (tk+1))∆N + (Z(tk+1) − Z(tk)) (III.6)

with respect to Ŷ (tk+1) which is in general a more computationally heavy problem
in comparison to the standard Euler-type techniques (see e.g. [15, Appendix A]).
However, this drift-implicit numerical method also has a substantial advantage:
the approximation Ŷ maintains the property of being sandwiched, i.e., for all
points tk of the partition

Ŷ (tk) > φ(tk)
in the setting (A) and

φ(tk) < Ŷ (tk) < ψ(tk)
in the case (B). Having this in mind, we shall say that the drift-implicit scheme
is sandwich preserving.

We note that a similar approximation scheme was studied in [21] and [18,
22] for processes of the type (III.4) driven by a fractional Brownian motion with
H > 1/2. Our work can be seen as an extension of those. However, we emphasize
that our results have several elements of novelty. In particular, the paper [21]
discusses only pathwise convergence and not convergence in Lr(Ω;L∞([0, T ])).
The approach of [18] and [22] is very noise specific as both use Malliavin calculus
techniques in the spirit of [19, Proposition 3.4] to estimate inverse moments of
the considered process (which turns out to be crucial to control explosive growth
of the drift). As a result, two limitations appear: a restrictive condition involving
the time horizon T (see e.g. [18, Eq. (8) and Remark 3.1]) and sensitivity to
the choice of the noise, i.e. their method cannot be applied directly for drivers
other than fBm with H > 1/2. This lack of flexibility in terms of the choice
of the noise is a crucial disadvantage in e.g. finance where modern empirical
studies justify the use of fBm with extremely low Hurst index (H < 0.1) [7] or
even drivers with time-varying roughness [1]. Our approach makes use of [15,
Theorem 3.2] based on the pathwise calculus and allows us to obtain strong
convergence with no limitations on T for a substantially larger class of noises. In
fact, we require only Hölder continuity of the noise and some moment condition
on the corresponding Hölder coefficient which is often satisfied and shared by
e.g. all Hölder continuous Gaussian processes.
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The paper is organized as follows. Section III.2 describes the setting in detail
and contains some necessary statements on the properties of the sandwiched
processes. In Section III.3, we give the convergence results in the setting (B)
which turns out to be a bit simpler than (A) due to boundedness of the process.
Section III.4 extends the scheme to the setting (A). In Section III.5, we give
some examples and simulations; in particular we show that in some cases (e.g. for
the generalized TSB and CIR models) equations (III.6) can be solved explicitly
which drastically improves the computational efficiency of the algorithm.

III.2 Preliminaries and assumptions

Fix T > 0 and define

Da1 := {(t, y) ∈ [0, T ] × R+, y ∈ (φ(t) + a1,∞)},
Da1,a2 := {(t, y) ∈ [0, T ] × R+, y ∈ (φ(t) + a1, ψ(t) − a2)}

(III.7)

with a1 ≥ 0 and a1, a2 ∈
[
0, 1

2 ∥ψ − φ∥∞
)

respectively and φ, ψ ∈ C([0, T ]) being
such that φ(t) < ψ(t), t ∈ [0, T ].
Throughout the paper, we will be dealing with a stochastic differential equation
of the form

Y (t) = Y (0) +
∫ t

0
b(s, Y (s))ds+ Z(t), t ∈ [0, T ]. (III.8)

The noise Z = {Z(t), t ∈ [0, T ]} is always assumed to satisfy the following
conditions:

(Z1) Z(0) = 0 a.s.;

(Z2) Z has a.s. λ-Hölder continuous paths for some λ ∈ (0, 1), i.e. there exists
a positive random variable Λ such that

|Z(t) − Z(s)| ≤ Λ|t− s|λ, s, t ∈ [0, T ], a.s.

Given the noise Z satisfying (Z1)–(Z2), the initial value Y (0) and the drift
b satisfy one of the two assumptions given below.

Assumption III.2.1. (One-sided sandwich case) There exists a λ-Hölder continu-
ous function φ: [0, T ] → R with λ being the same as in (Z2) such that

(A1) Y (0) is deterministic and Y (0) > φ(0),

(A2) b: D0 → R is continuous and for any ε ∈ (0, 1)

|b(t1, y1) − b(t2, y2)| ≤ c1

εp
(
|y1 − y2| + |t1 − t2|λ

)
, (t1, y1), (t2, y2) ∈ Dε,

where c1 > 0 and p > 1 are some given constants and λ is from (Z2),
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(A3)
b(t, y) ≥ c2

(y − φ(t))γ , (t, y) ∈ D0 \ Dy∗ ,

where y∗, c2 > 0 are some given constants and γ > 1
λ − 1 with λ being

from (Z2),

(A4) the partial derivative ∂b
∂y with respect to the spacial variable exists, is

continuous and bounded from above, i.e.

∂b

∂y
(t, y) < c3, (t, y) ∈ D0,

for some c3 > 0.

Assumption III.2.2. (Two-sided sandwich case) There exist λ-Hölder continuous
functions φ, ψ: [0, T ] → R, φ(t) < ψ(t), t ∈ [0, T ], with λ being the same as in
(Z2) such that

(B1) Y (0) is deterministic and φ(0) < Y (0) < ψ(0),

(B2) b: D0,0 → R is continuous and for any ε ∈
(
0,min

{
1, 1

2 ∥ψ − φ∥∞
})

|b(t1, y1)−b(t2, y2)| ≤ c1

εp
(
|y1 − y2| + |t1 − t2|λ

)
, (t1, y1), (t2, y2) ∈ Dε,ε,

where c1 > 0 and p > 1 are some given constants and λ is from (Z2),

(B3)
b(t, y) ≥ c2

(y − φ(t))γ , (t, y) ∈ D0,0 \ Dy∗,0,

b(t, y) ≤ − c2

(ψ(t) − y)γ , (t, y) ∈ D0,0 \ D0,y∗ ,

where y∗, c2 > 0 are some given constants and γ > 1
λ − 1 with λ being

from (Z2),

(B4) the partial derivative ∂b
∂y with respect to the spacial variable exists, is

continuous and bounded from above, i.e.

∂b

∂y
(t, y) < c3, (t, y) ∈ D0,0,

for some c3 > 0.

Both Assumptions III.2.1 and III.2.2 along with (Z1)–(Z2) ensure that the
SDE (III.8) has a unique solution. In the theorem below, we provide some
relevant results related to sandwiched processes (see [15, Theorems 2.3, 2.5, 2.6,
3.1 and 3.2]).

Theorem III.2.3. Let Z = {Z(t), t ∈ [0, T ]} be a stochastic process satisfying
(Z1)–(Z2).
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1) If the initial value Y (0) and the drift b satisfy assumptions (A1)–(A3),
then the SDE has a unique strong pathwise solution such that for all
t ∈ [0, T ]

Y (t) > φ(t) a.s. (III.9)
Moreover, there exist deterministic constants L1, L2, L3 and L4 > 0
depending only on Y (0), the shape of b and λ, such that for all t ∈ [0, T ]
the estimate (III.9) can be refined as follows:

φ(t) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Y (t) ≤ L3 + L4Λ a.s., (III.10)

where Λ is from (Z2) and γ is from (A3). In particular, if Λ is such that

E
[
Λ

r
γλ+λ−1

]
< ∞ (III.11)

for some r > 0, then

E

[
sup
t∈[0,T ]

1
(Y (t) − φ(t))r

]
< ∞,

and, if
EΛr < ∞ (III.12)

for some r > 0, then

E

[
sup
t∈[0,T ]

|Y (t)|r
]
< ∞.

2) If the initial value Y (0) and the drift b satisfy assumptions (B1)–(B3),
then the SDE has a unique strong pathwise solution such that for all
t ∈ [0, T ]

φ(t) < Y (t) < ψ(t) a.s. (III.13)
Moreover, there exist deterministic constants L1 and L2 > 0 depending
only on Y (0), the shape of b and λ, such that for all t ∈ [0, T ] the estimate
(III.13) can be refined as follows:

φ(t) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Y (t) ≤ ψ(t) − L1

(L2 + Λ)
1

γλ+λ−1
a.s., (III.14)

where Λ is from (Z2) and γ is from (B3). In particular, if Λ can be
chosen in such a way that

E
[
Λ

r
γλ+λ−1

]
< ∞ (III.15)

for some r > 0, then

E

[
sup
t∈[0,T ]

1
(Y (t) − φ(t))r

]
< ∞, E

[
sup
t∈[0,T ]

1
(ψ(t) − Y (t))r

]
< ∞.
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Remark III.2.4. Properties (III.9)–(III.10) and (III.13)–(III.14) hold on each
ω ∈ Ω such that Z(ω; t), t ∈ [0, T ], is Hölder continuous and we always consider
only such ω ∈ Ω in all proofs with pathwise arguments. For notational simplicity,
we will also omit ω in brackets.
Remark III.2.5. Due to the property (III.13), the setting described in Assumption
III.2.2 will be referred to as the two-sided sandwich case since the solution is
“sandwiched” between φ and ψ a.s. Similarly, the property (III.9) justifies the
name one-sided sandwich case for the setting corresponding to Assumption
III.2.1. In both cases III.2.1 and III.2.2, the solution to (III.8) will be referred
to as a sandwiched process.
Remark III.2.6. Note that assumptions (A4) and (B4) are not required for
Theorem III.2.3 to hold and will be used later on.

In what follows, conditions (III.11), (III.12) and (III.15) will play an
important role since the Lr(Ω;L∞([0, T ]))-convergence of the approximation
scheme will directly follow from the integrability of Λ. However it should be
noted that these conditions are not very restricting as indicated in the following
example.

Example III.2.7. (Hölder Gaussian noises) Let Z = {Z(t), t ∈ [0, T ]} be
an arbitrary Hölder continuous Gaussian process satisfying (Z1)–(Z2), e.g.
standard or fractional Brownian motion. In this case, by [6], the random variable
Λ from (Z2) can be chosen to have moments of all orders.

We now complete the Section with some examples of the sandwiched processes.

Example III.2.8. (Generalized CIR and CKLS/CEV models) Let φ ≡ 0, Z satisfy
(Z1)–(Z2) with λ ∈ (0, 1) and Y (0), κ1, κ2 > 0, γ > 1

λ − 1 be given. Then, by
Theorem III.2.3, 1), the SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

Y γ(s) − κ2Y (s)
)
ds+ Z(t), (III.16)

t ∈ [0, T ], has a unique positive solution. Moreover, it can be shown (see [15,
Subsection 4.2]) that, if λ > 1

2 , stochastic process X(t) := Y 1+γ(t), t ∈ [0, T ],
a.s. satisfies the SDE of the form

X(t) = X(0) + (1 + γ)
∫ t

0
(κ1 − κ2X(s)) ds+ (1 + γ)

∫ t

0
Xα(s)dZ(s), (III.17)

t ∈ [0, T ], where α := γ
1+γ ∈ (0, 1) and the integral w.r.t. Z exists a.s. as

a pathwise limit of Riemann-Stieltjes integral sums. As mentioned already,
the (III.17) appears in finance in the standard Brownian setting and is called
Chan–Karolyi–Longstaff–Sanders (CKLS) or constant elasticity of variance (CEV)
model (see e.g. [4, 8, 9]). If α = 1

2 (i.e. when γ = 1), the equation (III.17) is
also known as the Cox-Ingersoll-Ross (CIR) equation [10–12].

Remark III.2.9. (Connection with the classical Brownian CIR/CKLS models)
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1) If γ = 1 in (III.16) (CIR case), Assumption (A3) demands Z to be Hölder
continuous of order λ > 1

2 . That means that Example III.2.8 does not
cover the classical Brownian CIR model since the continuous modification
of a standard Brownian motion has paths that are Hölder continuous only
up to (but not including) the order 1/2. However, it is still possible to
establish a clear connection between our setting and the classical CIR model.
Indeed, let {W (t), t ∈ [0, T ]} be the continuous modification of a standard
Brownian motion. Consider the CIR process X = {X(t), t ∈ [0, T ]}
defined by

dX(t) = a(b−X(t))dt+ σ
√
X(t)dW (t), X0 > 0,

where a, b, σ > 0 and 2ab > σ2. The latter condition ensures that X has
positive paths a.s. and hence one can define Y :=

√
X. By Itô’s formula,

Y satisfies the SDE

dY (t) =
(

κ1

Y (t) − κ2Y (t)
)
dt+ σ

2 dW (t), Y0 =
√
X0 > 0, (III.18)

with κ1 := 4ab−σ2

8 and κ2 := a
2 , which has a type very similar to (III.16).

The SDE (III.18) can then be used to define a drift-implicit Euler scheme
of the form (III.6) which turns out to converge to the original process
(III.18). For more details on the drift-implicit Euler scheme for the classical
Brownian CIR process, see e.g. [14].

2) If γ > 1 in (III.16), Assumptions (Z1)–(Z2) and (A1)–(A4) allow Z to
be a standard Brownian motion. However, in this case one cannot use
pathwise calculus to obtain (III.17) whereas the standard Itô’s formula
shows that X := Y 1+γ does not coincide with the standard CKLS process.
In order to cover the standard CKLS model, we have to modify the drift
in (III.16) to compensate for the second order term in Itô’s formula as
follows:

dY (t) =
(

κ1

Y γ(t) − γσ2

2Y (t) − κ2Y (t)
)
dt+ σdW (t). (III.19)

The SDE (III.19) satisfies Assumption III.2.1 and X := Y 1+γ is the solution
to the SDE

X(t) = X(0)+(1+γ)
∫ t

0
(κ1 − κ2X(s)) ds+(1+γ)σ

∫ t

0
Xα(s)dW (s), ,

with α = γ
1+γ , i.e. X := Y 1+γ is the classical CKLS process.

Example III.2.10. (Generalized TSB model) Let φ ≡ −1, ψ ≡ 1, Y (0) ∈ (−1, 1),
Z satisfy (Z1)–(Z2) with λ > 1

2 and κ > 0. Then, by Theorem III.2.3, 2), the
SDE of the form

Y (t) = Y (0) −
∫ t

0

κY (s)
1 − Y 2(s)ds+ Z(t), (III.20)
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t ∈ [0, T ], has a unique solution such that −1 < Y (t) < 1 for all t ∈ [0, T ] a.s.
In the standard Brownian setting, the SDE of the type (III.20) is known as the
Tsallis–Stariolo–Borland (TSB) model and is used in biophysics (for more details,
see e.g. [16, Subsection 2.3] or [13, Chapter 3 and Chapter 8]).

Example III.2.11. For the given Z satisfying (Z1)–(Z2) with λ ∈ (0, 1), λ-Hölder
continuous functions φ, ψ, φ(t) < ψ(t), t ∈ [0, T ], and Y (0) ∈ (φ(0), ψ(0))
consider the SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

(Y (s) − φ(s))γ − κ2

(ψ(s) − Y (s))γ − κ3Y (s)
)
ds+ Z(t),

t ∈ [0, T ], where κ1, κ2 > 0, κ3 ∈ R and γ > 1
λ − 1. By Theorem III.2.3, 2), this

SDE has a unique solution such that φ(t) < Y (t) < ψ(t) a.s. Note that the TSB
drift from (III.20) also has this shape with φ ≡ −1, ψ ≡ 1, γ = 1, κ1 = κ2 = κ

2
and κ3 = 0 since

− κy

1 − y2 = κ

2

(
1

y + 1 − 1
1 − y

)
.

Notation III.2.12. In what follows, C denotes any positive deterministic constant
that does not depend on the partition and the exact value of which is not relevant.
Note that C may change from line to line (or even within one line).

III.3 The approximation scheme for the two-sided sandwich

We will start by considering the numerical scheme for the two-sided sandwich
case which turns out to be slightly simpler due to boundedness of Y . Let
the noise Z satisfy (Z1)–(Z2), Y (0) and b satisfy Assumption III.2.2 and
Y = {Y (t), t ∈ [0, T ]} be the unique solution of the SDE (III.8). Consider a
uniform partition {0 = t0 < t1 < ... < tN = T} of [0, T ], tk := Tk

N , k = 0, 1, ..., N ,
with the mesh ∆N := T

N such that

c3∆N < 1, (III.21)

where c3 is an upper bound for ∂b
∂y from (B4). Let us define Ŷ (t) as follows:

Ŷ (0) = Y (0),
Ŷ (tk+1) = Ŷ (tk) + b(tk+1, Ŷ (tk+1))∆N + (Z(tk+1) − Z(tk)),

Ŷ (t) = Ŷ (tk), t ∈ [tk, tk+1),

(III.22)

where the second expression is considered as an equation with respect to Ŷ (tk+1).
Remark III.3.1. Equation with respect to Ŷ (tk+1) from (III.22) has a unique
solution such that Ŷ (tk+1) ∈ (φ(tk+1), ψ(tk+1)). Indeed, for any fixed t ∈ [0, T ]
and any z ∈ R, consider the equation

y − b(t, y)∆N = z (III.23)
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w.r.t. y. Assumption (B4) together with condition (III.21) imply that
(y − b(t, y)∆N )′

y > 0 and, by (B3),

y − b(t, y)∆N → −∞, y → φ(t)+,
y − b(t, y)∆N → ∞, y → ψ(t) − .

Thus there exists a unique y ∈ (φ(t), ψ(t)) satisfying (III.23).

Remark III.3.2. The value of Ŷ (t) for t ∈ [0, T ] \ {t0, ..., tN} can also be defined
via linear interpolation for t ∈ [tk, tk+1), k = 0, ..., N − 1, as

Ŷ (t) = 1
∆N

(
(tk+1 − t)Ŷ (tk) + (t− tk)Ŷ (tk+1)

)
.

In such case all results of this section hold with almost no changes in the proofs.
Remark III.3.3. The algorithms of the type (III.22) are sometimes called the
drift-implicit [2, 3, 14] or backward [18] Euler approximation schemes.

Before presenting the main results of this section, we require some auxiliary
lemmas. First of all, we note that the values Ŷ (tn), n = 0, 1, ..., N , of the
discretized process are bounded away from both φ and ψ by random variables
that do not depend on the partition. Namely, we have the following result that
can be regarded as a discrete modification of arguments in [15, Theorem 3.2].

Lemma III.3.4. Let Z satisfy (Z1)–(Z2), Assumption III.2.2 hold and the mesh
of the partition ∆N satisfy (III.21). Then there exist deterministic constants L1
and L2 > 0 depending only on Y (0), the shape of the drift b and λ, such that
with probability 1

φ(tn) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Ŷ (tn) ≤ ψ(tn) − L1

(L2 + Λ)
1

γλ+λ−1
, n = 0, 1, ..., N,

where Λ is from (Z2) and γ is from (B3).

Proof. We will prove that

φ(tn) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Ŷ (tn), n = 0, 1, ..., N, a.s. (III.24)

by using the pathwise argument (see Remark III.2.4). The other inequality can
be derived in a similar manner. Recall that, by Assumption III.2.2, φ and ψ are
λ-Hölder continuous, i.e. there exists K > 0 such that

|φ(t) − φ(s)| + |ψ(t) − ψ(s)| ≤ K|t− s|λ, t, s ∈ [0, T ].

Denote also

β := λ
λ

1−λ − λ
1

1−λ

c
λ

1−λ

2

> 0,
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where c2 is from (B3),

L2 := K + (2β)λ−1
(

(Y (0) − φ(0)) ∧ y∗ ∧ (ψ(0) − Y (0))
2

)1−λ−γλ

> 0,

with the constants y∗ and γ also from (B3), and

ε := 1
(2β)

1−λ
γλ+λ−1 (L2 + Λ)

1
γλ+λ−1

.

Note that, with probability 1,

|φ(t) − φ(s)| + |ψ(t) − ψ(s)| + |Z(t) − Z(s)| ≤ (L2 + Λ)|t− s|λ, t, s ∈ [0, T ],

and, furthermore, it is easy to check that ε < Y (0) − φ(0), ε < ψ(0) − Y (0) and
ε < y∗.

If Ŷ (tn) ≥ φ(tn) + ε for a particular n = 0, 1, ..., N , then, by definition of ε,
the bound of the type (III.24) holds automatically. Suppose that there exists
n = 1, ..., N such that Ŷ (tn) < φ(tn) + ε. Denote by κ(n) the last point of the
partition before tn on which Ŷ stays above ε, i.e.

κ(n) := max{k = 0, ..., n− 1 | Ŷtk ≥ φ(tk) + ε}

(note that such point exists since Ŷ (t0) −φ(0) = Y (0) −φ(0) > ε). Then, for all
k = κ(n) + 1, ..., n we have that Ŷ (tk) < ε < y∗ and therefore, using (B3), we
obtain that, with probability 1,

Ŷ (tn) − φ(tn)

= Ŷ (tκ(n)) − φ(tn) + ∆N

n∑
k=κ(n)+1

b(tk, Ŷ (tk)) + Z(tn) − Z(tκ(n))

≥ ε+ φ(tκ(n)) − φ(tn) + c2

εγ
(tn − tκ(n)) + Z(tn) − Z(tκ(n))

≥ ε+ c2

εγ
(tn − tκ(n)) − (L2 + Λ)(tn − tκ(n))λ.

Consider a function Fε : R+ → R such that

Fε(t) = ε+ c2

εγ
t− (L2 + Λ)tλ.

It is straightforward to verify that Fε attains its minimum at

t∗ :=
(
λ

c2

) 1
1−λ

ε
γ

1−λ (L2 + Λ) 1
1−λ
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and, taking into account the explicit form of ε,

Fε(t∗) = ε+ λ
1

1−λ

c
λ

1−λ

2

ε
γλ

1−λ (L2 + Λ) 1
1−λ − λ

λ
1−λ

c
λ

1−λ

2

ε
γλ

1−λ (L2 + Λ) 1
1−λ

= ε− βε
γλ

1−λ (L2 + Λ) 1
1−λ = 1

2
γλ

γλ+λ−1 β
1−λ

γλ+λ−1 (L2 + Λ)
1

γλ+λ−1

= ε

2 .

Namely, even if Ŷ (tn) < φ(tn) + ε, we still have that, with probability 1,

Ŷ (tn) − φ(tn) ≥ Fε(tn − tκ(n)) ≥ Fε(t∗) = ε

2 ,

and thus, with probability 1, for any n = 0, 1, ..., N

Ŷ (tn) ≥ φ(tn) + ε

2 = φ(tn) + 1
2

γλ
γλ+λ−1 β

1−λ
γλ+λ−1 (L2 + Λ)

1
γλ+λ−1

=: φ(tn) + L1

(L2 + Λ)
1

γλ+λ−1
,

where L1 := 1

2
γλ

γλ+λ−1 β
1−λ

γλ+λ−1
. ■

Remark III.3.5. It is clear that constants L1 and L2 in Lemma III.3.4 can be
chosen jointly for Y and Ŷ , so that the inequalities

φ(t) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Y (t) ≤ ψ(t) − L1

(L2 + Λ)
1

γλ+λ−1
, t ∈ [0, T ],

and

φ(tn) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Ŷ (tn) ≤ ψ(tn) − L1

(L2 + Λ)
1

γλ+λ−1
, n = 0, 1, ..., N,

hold simultaneously with probability 1.
Next, we proceed with a simple property of the sandwiched process Y in

(III.8).

Lemma III.3.6. Let Z satisfy (Z1)–(Z2) and assumptions (B1)–(B3) hold.

1) There exists a positive random variable Υ such that, with probability 1,

|Y (t) − Y (s)| ≤ Υ|t− s|λ, t, s ∈ [0, T ].

2) If, for some r ≥ 1,
E
[
Λ

r max{p,γλ+λ−1}
γλ+λ−1

]
< ∞, (III.25)

where λ and Λ are from (Z2), p is from (B2) and γ is from (B3), then
one can choose Υ such that

E[Υr] < ∞.
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Proof. Denote ϕ(t) := 1
2 (ψ(t) + φ(t)), t ∈ [0, T ]. By (III.14),

φ(t) + L1

(L2 + Λ)
1

γλ+λ−1
≤ Y (t) ≤ ψ(t) − L1

(L2 + Λ)
1

γλ+λ−1
, t ∈ [0, T ], a.s.,

i.e. with probability 1 (t, Y (t)) ∈ D 1
ξ ,

1
ξ
, t ∈ [0, T ], where

ξ := (L2 + Λ)
1

γλ+λ−1

L1
(III.26)

and D 1
ξ ,

1
ξ

is defined by (III.7). It is evident that (t, ϕ(t)) ∈ D 1
ξ ,

1
ξ
, t ∈ [0, T ],

therefore, using (Z2), (B2) and (III.13), we can write that, with probability 1,
for all 0 ≤ s < t ≤ T :

|Y (t) − Y (s)| ≤
∫ t

s

|b(u, Y (u))|du+ |Z(t) − Z(s)|

≤
∫ t

s

|b(u, Y (u)) − b(u, ϕ(u))|du+
∫ t

s

|b(u, ϕ(u))|du+ Λ(t− s)λ

≤ c1ξ
p

∫ t

s

|Y (u) − ϕ(u)|du+ max
u∈[0,T ]

|b(u, ϕ(u))|(t− s) + Λ(t− s)λ

≤
(
c1ξ

p∥ψ − φ∥∞ + max
u∈[0,T ]

|b(u, ϕ(u))|
)

(t− s) + Λ(t− s)λ

≤ C(ξp + Λ + 1)(t− s)λ,
(III.27)

where C is a positive constant. Now one can put

Υ := C(ξp + Λ + 1) (III.28)

and observe that the definition of Υ, (III.25) and (III.26) imply that

E[Υr] < ∞.

■

Next, using Lemma III.3.4 and following the proof of Lemma III.3.6, it is
easy to obtain the following result.

Corollary III.3.7. Let (Z1)–(Z2) and Assumption III.2.2 hold. Then there exists
a random variable Υ independent of the partition such that with probability 1

|Ŷ (tk) − Ŷ (tn)| ≤ Υ|tk − tn|λ, k, n = 0, ..., N. (III.29)

Furthermore, if (III.25) holds for some for r ≥ 1, then

E[Υr] < ∞.

Finally, Υ can be chosen jointly for Y and Ŷ , so that

|Y (t) − Y (s)| ≤ Υ|t− s|λ, t, s ∈ [0, T ],

holds simultaneously with (III.29) with probability 1.
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Lemma III.3.8. Let Z satisfy (Z1)–(Z2), Assumption III.2.2 hold and the mesh
of the partition ∆N satisfy (III.21). Then

1) for any r ≥ 1, there exists a positive random variable C1 that does not
depend on the partition such that

sup
k=0,1,...,N

|Y (tk) − Ŷ (tk)|r ≤ C1∆λr
N a.s.;

2) if, additionally,
E
[
Λ

r(p+max{p,γλ+λ−1})
γλ+λ−1

]
< ∞, (III.30)

where λ and Λ are from (Z2), p is from (B2) and γ is from (B3), then
one can choose C1 such that E[C1] < ∞, i.e. there exists a deterministic
constant C that does not depend on the partition such that

E

[
sup

k=0,1,...,N
|Y (tk) − Ŷ (tk)|r

]
≤ C∆λr

N .

Proof. Fix ω ∈ Ω such that Z(ω, t), t ∈ [0, T ], is Hölder continuous (for simplicity
of notation, we will omit ω in the brackets). Denote en := Y (tn) − Ŷ (tn),
∆Zn := Z(tn) − Z(tn−1). Then

en = Y (tn−1) +
∫ tn

tn−1

b(s, Y (s))ds+ ∆Zn

− Ŷ (tn−1) − b(tn, Ŷ (tn))∆N − ∆Zn
= en−1 +

(
b(tn, Y (tn)) − b(tn, Ŷ (tn))

)
∆N

+
∫ tn

tn−1

(b(s, Y (s)) − b(tn, Y (tn)))ds.

(III.31)

By the mean value theorem,(
b(tn, Y (tn)) − b(tn, Ŷ (tn))

)
∆N = ∂b

∂y
(tn,Θn)∆N (Y (tn) − Ŷ (tn))

= ∂b

∂y
(tn,Θn)∆Nen

with Θn ∈ (Y (tn) ∧ Ŷ (tn), Y (tn) ∨ Ŷ (tn)). Using this, we can rewrite (III.31) as
follows:(

1 − ∂b

∂y
(tn,Θn)∆N

)
en = en−1 +

∫ tn

tn−1

(b(s, Y (s)) − b(tn, Y (tn)))ds,

(III.32)
where

1 − ∂b

∂y
(tn,Θn)∆N > 1 − c3∆N > 0
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by (B4) and (III.21).
Next, denote

ζ0 := 1, ζn :=
n∏
i=1

(
1 − ∂b

∂y
(ti,Θi)∆N

)

and define ẽn := ζnen. By multiplying both sides of (III.32) by ζn−1, we obtain
that

ẽn = ẽn−1 + ζn−1

∫ tn

tn−1

(b(s, Y (s)) − b(tn, Y (tn)))ds (III.33)

and, expanding the terms ẽi−1 in (III.33) one by one, i = n, n − 1, ..., 1, and
taking into account that ẽ0 = 0, we obtain that

ẽn =
n∑
i=1

ζi−1

∫ ti

ti−1

(b(s, Y (s)) − b(ti, Y (ti)))ds.

Therefore

en =
n∑
i=1

ζi−1

ζn

∫ ti

ti−1

(b(s, Y (s)) − b(ti, Y (ti)))ds.

Observe that, by assumption (B4) and (III.21), for any i, n ∈ N, i < n,

ζk
ζn

=
n∏

i=k+1

(
1 − ∂b

∂y
(ti,Θi)∆N

)−1
≤

N∏
i=k+1

(1 − c3∆N )−1

≤ (1 − c3∆N )−N =
(

1 − c3T

N

)−N

→ ec3T , N → ∞,

whence there exists a constant C that does not depend on i, n or N such that

ζk
ζn

≤ C.

Using this, one can deduce that

|en|r ≤ C

∣∣∣∣∣
n∑
i=1

ζi−1

ζn

∫ ti

ti−1

(b(s, Y (s)) − b(ti, Y (ti)))ds
∣∣∣∣∣
r

≤ C

(
n∑
i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti, Y (ti))| ds
)r

.
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Note that (t, Y (t)) ∈ D 1
ξ ,

1
ξ
, where ξ is defined by (III.26) and D 1

ξ ,
1
ξ

is defined
via (III.7), hence, by (B2) as well as Lemma III.3.6, we can deduce that(

n∑
i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti, Y (ti))| ds
)r

≤ Cξpr

(
n∑
i=1

∫ ti

ti−1

|s− ti|λ ds

)r
+ Cξpr

(
n∑
i=1

∫ ti

ti−1

|Y (s) − Y (ti)| ds
)r

≤ Cξpr

(
n∑
i=1

∫ ti

ti−1

|s− ti|λ ds

)r
+ CξprΥr

(
n∑
i=1

∫ ti

ti−1

|s− ti|λ ds

)r

= Cξpr(1 + Υr)
(

n∑
i=1

1
(1 + λ)∆1+λ

N

)r
≤ Cξpr(1 + Υr)∆λr

N .

In other words, there exists a constant C that does not depend on the partition
such that

|en|r = |Y (tn) − Ŷ (tn)|r ≤ Cξpr(1 + Υr)∆λr
N

and, since the right-hand side of the relation above does not depend on n or N ,
we have

sup
n=0,...,N

|Y (tn) − Ŷ (tn)|r ≤ Cξpr(1 + Υr)∆λr
N =: C1∆λr

N . (III.34)

It remains to notice that, by (III.26) and (III.28),

E [ξpr(1 + Υr)] < ∞

whenever (III.30) holds, which finally implies

E
[

sup
n=0,...,N

|Y (tn) − Ŷ (tn)|r
]

≤ E[C1]∆λr
N =: C∆λr

N .

■

Now we are ready to proceed to the main results of this subsection.

Theorem III.3.9. Let Z satisfy (Z1)–(Z2), Assumption III.2.2 hold and the
mesh of the partition ∆N satisfy (III.21). Then

1) for any r ≥ 1, there exists a random variable C2 that does not depend on
the partition such that

sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r ≤ C2∆λr
N a.s.;
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2) if, additionally,
E
[
Λ

r(p+max{p,γλ+λ−1})
γλ+λ−1

]
< ∞,

where λ and Λ are from (Z2), p is from (B2) and γ is from (B3), then
one can choose C2 such that E[C2] < ∞, i.e. there exists a deterministic
constant C that does not depend on the partition such that

E

[
sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r
]

≤ C∆λr
N .

Proof. Fix ω ∈ Ω such that Z(ω, t), t ∈ [0, T ], is Hölder continuous (for simplicity
of notation, we again omit ω in the brackets) and consider an arbitrary t ∈ [0, T ].
Denote

n(t) := max{n = 0, 1, ..., N | t ≥ tn},

i.e. t ∈ [tn(t), tn(t)+1). Then

|Y (t) − Ŷ (t)|r ≤ C
(

|Y (t) − Y (tn(t))|r + |Y (tn(t)) − Ŷ (tn(t))|r
)

≤ CΥr(t− tn(t))λr + C(L2 + Λ)
pr

γλ+λ−1 (1 + Υr)∆λr
N

≤ C
(

Υr + (1 + Υr)(L2 + Λ)
pr

γλ+λ−1

)
∆λr
N ,

where we used Lemma III.3.6 to estimate |Y (t) − Y (tn(t))|r and bound (III.34)
to estimate |Y (tn(t)) − Ŷ (tn(t))|r. Therefore

sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r ≤ C
(

Υr + (1 + Υr)(L2 + Λ)
pr

γλ+λ−1

)
∆λr
N =: C2∆λr

N .

Finally, using the same arguments as in Lemma III.3.6 and Lemma III.3.8, one
can easily show that the condition

E
[
Λ

r(p+max{p,γλ+λ−1})
γλ+λ−1

]
< ∞

implies that
E
[
Υr + (1 + Υr)(L2 + Λ)

pr
γλ+λ−1

]
< ∞,

therefore

E

[
sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r
]

≤ C
(

Υr + (1 + Υr)(L2 + Λ)
pr

γλ+λ−1

)
∆λr
N

for some constant C > 0 that does not depend on the partition. ■

Theorem III.3.10.
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1) Let Z satisfy (Z1)–(Z2), Assumption III.2.2 hold and the mesh of the
partition ∆N satisfy (III.21). Then, for any r ≥ 1, there exists a random
variable C3 that does not depend on the partition such that

sup
n=0,1,...,N

∣∣∣∣∣ 1
Y (tn) − φ(tn) − 1

Ŷ (tn) − φ(tn)

∣∣∣∣∣
r

≤ C3∆λr
N a.s.

and

sup
n=0,1,...,N

∣∣∣∣∣ 1
ψ(tn) − Y (tn) − 1

ψ(tn) − Ŷ (tn)

∣∣∣∣∣
r

≤ C3∆λr
N a.s.

2) If, additionally,

E
[
Λ

r(2+p+max{p,γλ+λ−1})
γλ+λ−1

]
< ∞, (III.35)

where λ and Λ are from (Z2), p is from (B2) and γ is from (B3), then
one can choose C3 such that E[C3] < ∞, i.e. there exists a deterministic
constant C that does not depend on the partition such that

E

[
sup

n=0,1,...,N

∣∣∣∣∣ 1
Y (tn) − φ(tn) − 1

Ŷ (tn) − φ(tn)

∣∣∣∣∣
r]

≤ C∆λr
N

and

E

[
sup

n=0,1,...,N

∣∣∣∣∣ 1
ψ(tn) − Y (tn) − 1

ψ(tn) − Ŷ (tn)

∣∣∣∣∣
r]

≤ C∆λr
N .

Proof. By Remark III.3.5 and estimate (III.34), with probability 1 for any
n = 0, ..., N : ∣∣∣∣∣ 1

Y (tn) − φ(tn) − 1
Ŷ (tn) − φ(tn)

∣∣∣∣∣
r

= |Y (tn) − Ŷ (tn)|r

(Ytn − φ(tn))r(Ŷtn − φ(tn))r

≤ (L2 + Λ)
2r

γλ+λ−1

L2r
1

sup
n=0,1,...,N

|Y (tn) − Ŷ (tn)|r

≤ C(L2 + Λ)
2r

γλ+λ−1 ξpr(1 + Υr)∆λr
N

=: C3∆λr
N .

It remains to notice that, by (III.26) and (III.28), the condition (III.35) implies
that E[C3] < ∞. The second estimate can be obtained in a similar manner. ■
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III.4 One-sided sandwich case

The drift-implicit Euler approximation scheme described in Section III.3 for the
two-sided sandwich can also be adapted for the one-sided setting that corresponds
to Assumption III.2.1 on the SDE (III.1). However, in the two-sided sandwich
case the process Y was bounded (which was utilized, e.g., in Lemma III.3.6)
and, moreover, the behaviour of Y was similar near both φ and ψ so that it
was sufficient to analyze only one of the bounds. In the one-sided case, each
Y (t), for t ∈ [0, T ], is not a bounded random variable, therefore the approach
from Section III.3 has to be adjusted. For this, we will be using the inequalities
(III.10).

Let the noise Z satisfy (Z1)–(Z2), Y (0) and b satisfy Assumption III.2.1
and Y = {Y (t), t ∈ [0, T ]} be the unique solution of the SDE (III.8). In line
with Section III.3, we consider a uniform partition {0 = t0 < t1 < ... < tN = T}
of [0, T ], tk := Tk

N , k = 0, 1, ..., N , with the mesh ∆N := T
N such that

c3∆N < 1, (III.36)

where c3 is an upper bound for ∂b
∂y from assumption (A4). The backward Euler

approximation Ŷ (t) is defined in a manner similar to (III.22), i.e.

Ŷ (0) = Y (0),
Ŷ (tk+1) = Ŷ (tk) + b(tk+1, Ŷ (tk+1))∆N + (Z(tk+1) − Z(tk)),

Ŷ (t) = Ŷ (tk), t ∈ [tk, tk+1),

(III.37)

where the second expression is considered as an equation with respect to Ŷ (tk+1).
Remark III.4.1. Just as in the two-sided sandwich case, each Ŷ (tk), k = 1, ..., N ,
is well defined since the equation

y − b(t, y)∆N = z

has a unique solution w.r.t. y such that y > φ(t) for any fixed t ∈ [0, T ] and any
z ∈ R. To understand this, note that assumption (A4) together with (III.36)
imply that

(y − b(t, y)∆N )′
y > 0. (III.38)

Second, by (A3),

y − b(t, y)∆N → −∞, y → φ(t) + . (III.39)

Next, by (A2), for any (s, y1), (s, y2) ∈ D1 := {(u, y) ∈ [0, T ] × R+, y ∈
[φ(u) + 1,∞)} we have that

|b(s, y1) − b(s, y2)| ≤ c1|y1 − y2|,

i.e.
sup

(s,y)∈D1

∣∣∣∣ ∂b∂y (s, y)
∣∣∣∣ < ∞.
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Using this, (A4) and the mean value theorem, for any positive y ≥ φ(t) + 1

b(t, y) = b(t, φ(t) + 1) + ∂b

∂y
(t, θy)(y − 1 − φ(t))

≤ max
s∈[0,T ]

b(t, φ(t) + 1) + max
s∈[0,T ]

|1 + φ(s)| sup
(s,y)∈D1

∣∣∣∣ ∂b∂y (s, y)
∣∣∣∣+ c3y

=: C + c3y,

whence

y − b(t, y)∆N ≥ −C∆N + (1 − c3∆N )y → ∞, y → ∞. (III.40)

Existence and uniqueness of the solution then follows from (III.38)–(III.40).
Remark III.4.2. Similarly to the two-sided sandwich case, the value of Ŷ (t) for
t ∈ [0, T ]\{t0, ..., tN} can also be defined via linear interpolation with no changes
in formulations of the results and almost no variations in the proofs.

Our strategy for proving the convergence of Ŷ to Y will be similar to what we
have done in section III.3. Therefore we will be omitting the details highlighting
only the points which are different from the two-sided sandwich case. We start
with some useful properties of Ŷ and Y .

Lemma III.4.3. Let Z satisfy (Z1)–(Z2), Assumption III.2.1 hold and the mesh
of the partition ∆N satisfy (III.36). Then there exist deterministic constants L1,
L2 > 0 depending only on Y (0), the shape of the drift b and λ, such that

Ŷ (tn) ≥ φ(tn) + L1

(L2 + Λ)
1

γλ+λ−1
a.s.,

where Λ is from assumption (Z2) and γ is from assumption (A3). Moreover,
there exist constants L3, L4 > 0 that also depend only on Y (0), the shape of the
drift b and λ such that

Ŷ (tn) ≤ L3 + L4Λ, n = 0, 1, ..., N, a.s.

for all partitions with the mesh satisfying c1
(Y (0)−φ(0))p ∆N < 1 with c1 and p

being from (A2).

Proof. The proof of

Ŷ (tn) ≥ φ(tn) + L1

(L2 + Λ)
1

γλ+λ−1

is identical to the corresponding one in Lemma III.3.4 and will be omitted. Let
us prove that

Ŷ (tn) ≤ L3 + L4Λ a.s.

Fix ω ∈ Ω for which Z(ω, t) is Hölder continuous, consider a partition with
the mesh satisfying c1

(Y (0)−φ(0))p ∆N < 1 and fix an arbitrary n = 0, 1, ..., N − 1.
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Assume that Ŷ (tn+1) > φ(tn+1) + (Y (0) − φ(0)) (otherwise the claim of the
lemma holds automatically). Put

κ(n) := max{k = 0, 1, ..., n | Ŷ (tk) ≤ φ(tk) + (Y (0) − φ(0))}

and observe that (tk, Ŷ (tk)) ∈ DY (0)−φ(0) for any k = κ(n) + 1, ..., n+ 1, where
DY (0)−φ(0) is defined via (III.7). Next, by (A2), for any y ∈ DY (0)−φ(0)

|b(t, y)| −
∣∣∣b(t, φ(t) + (Y (0) − φ(0))

)∣∣∣
≤
∣∣∣b(t, y) − b

(
t, φ(t) + (Y (0) − φ(0))

)∣∣∣
≤ c1

(Y (0) − φ(0))p |y − φ(t) − (φ(0) − Y (0))|

≤ c1

(Y (0) − φ(0))p |y| + c1

(Y (0) − φ(0))p |φ(t) + (φ(0) − Y (0))|,

i.e. there exists a constant C > 0 that does not depend on the partition such
that

|b(t, y)| ≤ C + c1

(Y (0) − φ(0))p |y|. (III.41)

Next, observe that, for any k = κ(n) + 1, ..., n+ 1, we have

Ŷ (tk) = Ŷ (tκ(n)) +
k∑

i=κ(n)+1

b(ti, Ŷ (ti))∆N + Z(tk) − Z(tκ(n))

≤ φ(tκ(n)) + (Y (0) − φ(0)) +
k∑

i=κ(n)+1

b(ti, Ŷ (ti))∆N + Λ(tk − tκ(n))λ

≤
∣∣∣∣ max
s∈[0,T ]

φ(s) + (Y (0) − φ(0))
∣∣∣∣+ TλΛ +

k∑
i=κ(n)+1

b(ti, Ŷ (ti))∆N .

Therefore, using (III.41) and

Ŷ (tk) > φ(tk) ≥ min
s∈[0,T ]

φ(s),

one can write

|Ŷ (tk)| ≤
∣∣∣∣ min
s∈[0,T ]

φ(s)
∣∣∣∣+
∣∣∣∣ max
s∈[0,T ]

φ(s) + (Y (0) − φ(0))
∣∣∣∣

+ TλΛ +
k∑

i=κ(n)+1

|b(ti, Ŷ (ti))|∆N

≤
∣∣∣∣ min
s∈[0,T ]

φ(s)
∣∣∣∣+
∣∣∣∣ max
s∈[0,T ]

φ(s) + (Y (0) − φ(0))
∣∣∣∣

+ TλΛ + C

k∑
i=κ(n)+1

∆N + c1

(Y (0) − φ(0))p
k∑

i=κ(n)+1

|Ŷ (ti)|∆N ,
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where C > 0 is some positive constant that does not depend on the partition.
Now we want to apply the discrete version of the Gronwall inequality from

[20, Lemma A.3]. In order to do that, we observe that

|Ŷ (tκ(n)+1)| ≤ C + TλΛ + c1

(Y (0) − φ(0))p∆N |Ŷ (tk)|,

and, for any k = κ(n) + 2, ..., n+ 1,

|Ŷ (tk)| ≤ C + TλΛ + c1

(Y (0) − φ(0))p
k−1∑

i=κ(n)+1

|Ŷ (ti)|∆N

+ c1

(Y (0) − φ(0))p∆N |Ŷ (tk)|.

Now, since c1
(Y (0)−φ(0))p ∆N < 1, we can write that(

1 − c1

(Y (0) − φ(0))p∆N

)
|Ŷ (tκ(n)+1)| ≤ C + TλΛ

and, for all k = κ(n) + 2, ..., n+ 1,(
1 − c1

(Y (0) − φ(0))p∆N

)
|Ŷ (tk)|

≤ C + TλΛ + c1

(Y (0) − φ(0))p
k−1∑

i=κ(n)+1

|Ŷ (ti)|∆N .

Put

N0 := min
{
N ≥ 1 : c1

(Y (0) − φ(0))p∆N < 1
}

=
[

Tc1

(Y (0) − φ(0))p

]
+ 1

with [x] being the greatest integer less than or equal to x and observe that, for
all N ≥ N0,

1 − c1

(Y (0) − φ(0))p∆N ≥ 1 − c1

(Y (0) − φ(0))p∆N0 .

Therefore,

|Ŷ (tκ(n)+1)| ≤ C

1 − c1
(Y (0)−φ(0))p ∆N

+ Tλ

1 − c1
(Y (0)−φ(0))p ∆N

Λ

≤ C

1 − c1
(Y (0)−φ(0))p ∆N0

+ Tλ

1 − c1
(Y (0)−φ(0))p ∆N0

Λ

=: C1 + C2Λ

and, for all k = κ(n) + 2, ..., n+ 1,

|Ŷ (tk)| ≤ C

1 − c1
(Y (0)−φ(0))p ∆N

+ Tλ

1 − c1
(Y (0)−φ(0))p ∆N

Λ
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+ c1

(Y (0) − φ(0))p
k−1∑

i=κ(n)+1

|Ŷ (ti)|
∆N

1 − c1
(Y (0)−φ(0))p ∆N

≤ C

1 − c1
(Y (0)−φ(0))p ∆N0

+ Tλ

1 − c1
(Y (0)−φ(0))p ∆N0

Λ

+ c1

(Y (0) − φ(0))p
k−1∑

i=κ(n)+1

|Ŷ (ti)|
∆N

1 − c1
(Y (0)−φ(0))p ∆N0

=: C1 + C2Λ + C3

k−1∑
i=κ(n)+1

|Ŷ (ti)|∆N .

Using a discrete version of the Gronwall inequality, we now obtain that for all
k = κ(n) + 1, ..., n+ 1

|Ŷ (tk)| ≤ (C1 + C2Λ) exp

C3

k−1∑
i=κ(n)+1

∆N

 ≤ (C1 + C2Λ) exp {TC3}

=: L3 + L4Λ.

which ends the proof. ■

Remark III.4.4. It is clear that constants L1, L2, L3 and L4 can be chosen jointly
for Y and Ŷ , so that the inequalities

φ(t) + L1

(L2 + Λ)α ≤ Y (t) ≤ L3 + L4Λ, t ∈ [0, T ],

and
φ(tn) + L1

(L2 + Λ)α ≤ Ŷ (tn) ≤ L3 + L4Λ, n = 0, 1, ..., N,

hold simultaneously with probability 1.
Next, corresponding to Lemma III.3.6 in the two-sided case, Y enjoys Hölder

continuity with the Hölder constant being integrable provided that Λ has moments
of sufficiently high order. This is summarized in the lemma below.

Lemma III.4.5. Let Z satisfy (Z1)–(Z2) and assumptions (A1)–(A3) hold.

1) There exists a positive random variable Υ such that with probability 1

|Y (t) − Y (s)| ≤ Υ|t− s|λ, t, s ∈ [0, T ].

2) If, for some r ≥ 1,
E
[
Λ

r(p+γλ+λ−1)
γλ+λ−1

]
< ∞, (III.42)

where λ and Λ are from (Z2), p is from (A2) and γ is from (A3), then
one can choose Υ such that

E[Υr] < ∞.
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Proof. By (III.10),

Y (t) ≥ φ(t) + L1

(L2 + Λ)
1

γλ+λ−1
a.s.,

i.e. with probability 1 (t, Y (t)) ∈ D 1
ξ
, t ∈ [0, T ], where

ξ := (L2 + Λ)
1

γλ+λ−1

L1
(III.43)

and D 1
ξ

is defined in (III.7). Denote ϕ(t) := φ(t)+1 and notice that (t, ϕ(t)) ∈ D 1
ξ
,

t ∈ [0, T ], since 1
ξ ≤ Y (0) − φ(0). Thus, using the same arguments as applied in

(III.27), we can write that, with probability 1, for any 0 ≤ s < t ≤ T :

|Y (t) − Y (s)| ≤ c1ξ
p

∫ t

s

|Y (u) − ϕ(u)|du+ max
u∈[0,T ]

|b(u, ϕ(u))|(t− s) + Λ(t− s)λ,

where c1 is from (A2). Now, again by (III.10),

Y (t) ≤ L3 + L4Λ a.s.,

hence with probability 1

|Y (t) − Y (s)| ≤ c1ξ
p

∫ t

s

|Y (u) − ϕ(u)|du+ max
u∈[0,T ]

|b(u, ϕ(u))|(t− s) + Λ(t− s)λ

≤ c1ξ
p(L3 + L4Λ)(t− s) + c1ξ

p max
u∈[0,T ]

|ϕ(u)|(t− s)

+ max
u∈[0,T ]

|b(u, ϕ(u))|(t− s) + Λ(t− s)λ

≤ C(1 + ξpΛ + ξp + Λ)(t− s)λ,

where C is a positive constant. Now one can put

Υ := C(1 + ξpΛ + ξp + Λ) (III.44)

and observe that
E[Υr] < ∞

whenever (III.42) holds. ■

Corollary III.4.6. Using Lemma III.4.3 and following the proof of Lemma III.4.5,
it is easy to obtain that, for any partition with the mesh satisfying

max
{
c3,

c1

(Y (0) − φ(0))p

}
∆N < 1 (III.45)

there is a random variable Υ independent of the partition such that with probability
1

|Ŷ (tk) − Ŷ (tn)| ≤ Υ|tk − tn|λ, k, n = 0, ..., N. (III.46)
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Furthermore, just like in Lemma III.3.6, for r > 0

E[Υr] < ∞

provided that

E
[
Λ

r(p+γλ+λ−1)
γλ+λ−1

]
< ∞.

Finally, such Υ can be chosen jointly for Y and Ŷ , so that

|Y (t) − Y (s)| ≤ Υ|t− s|λ, t, s ∈ [0, T ],

holds simultaneously with (III.46) with probability 1.

Lemma III.4.7. Let Z satisfy (Z1)–(Z2), Assumption III.2.1 hold and the mesh
of the partition ∆N satisfy (III.36).

1) For any r ≥ 1, there exists a positive random variable C4 that does not
depend on the partition such that

sup
k=0,1,...,N

|Y (tk) − Ŷ (tk)|r ≤ C4∆λr
N a.s.

2) If, additionally,

E
[
Λ

r(2p+γλ+λ−1)
γλ+λ−1

]
< ∞, (III.47)

where λ and Λ are from (Z2), p is from (A2) and γ is from (A3), then
one can choose C4 such that E[C4] < ∞, i.e. there exists a deterministic
constant C that does not depend on the partition such that

E

[
sup

k=0,1,...,N
|Y (tk) − Ŷ (tk)|r

]
≤ C∆λr

N .

Proof. Following the proof of Lemma III.3.8, one can easily obtain that for any
n = 0, 1, ..., N

|Y (tn) − Ŷ (tn)| ≤ C

(
n∑
i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti, Y (ti))| ds
)r

.

Next, note that (t, Y (t)) ∈ D 1
ξ
, where ξ is defined by (III.43), so, by (A2) and
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Lemma III.4.5,(
n∑
i=1

∫ ti

ti−1

|b(s, Y (s)) − b(ti, Y (ti))| ds
)r

≤ Cξpr

(
n∑
i=1

∫ ti

ti−1

|s− ti|λ ds

)r
+ Cξpr

(
n∑
i=1

∫ ti

ti−1

|Y (s) − Y (ti)| ds
)r

≤ Cξpr

(
n∑
i=1

∫ ti

ti−1

|s− ti|λ ds

)r
+ CξprΥr

(
n∑
i=1

∫ ti

ti−1

|s− ti|λ ds

)r

= Cξpr(1 + Υr)
(

n∑
i=1

1
(1 + λ)∆1+λ

N

)r
≤ Cξpr(1 + Υr)∆λr

N ,

i.e.
sup

n=0,...,N
|Y (tn) − Ŷ (tn)|r ≤ Cξpr(1 + Υr)∆λr

N . (III.48)

In order to conclude the proof, it remains to notice that (III.43), (III.44) and
(III.47) imply that

E [ξpr(1 + Υr)] < ∞.

■

Now we are ready to formulate the two main results of this section.

Theorem III.4.8. Let Z satisfy (Z1)–(Z2), Assumption III.2.1 hold and the
mesh of the partition ∆N satisfy (III.45).

1) For any r ≥ 1, there exists a random variable C5 that does not depend on
the partition such that

sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r ≤ C5∆λr
N a.s.

2) If, additionally,
E
[
Λ

r(2p+γλ+λ−1)
γλ+λ−1

]
< ∞,

where λ and Λ are from (Z2), p is from (A2) and γ is from (A3), then
one can choose C5 such that E[C5] < ∞, i.e. there exists a deterministic
constant C that does not depend on the partition such that

E

[
sup
t∈[0,T ]

|Y (t) − Ŷ (t)|r
]

≤ C∆λr
N .

Proof. The proof is similar to the one of Theorem III.3.9 but instead of Lemmas
III.3.6, III.3.8 and bound (III.34) one should apply Lemmas III.4.5, III.4.7 and
bound (III.48). ■
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Theorem III.4.9. Let Z satisfy (Z1)–(Z2), Assumption III.2.1 hold and the
mesh of the partition ∆N satisfy (III.45).

1) For any r ≥ 1, there exists a random variable C6 that does not depend on
the partition such that

sup
n=0,1,...,N

∣∣∣∣∣ 1
Y (tn) − φ(tn) − 1

Ŷ (tn) − φ(tn)

∣∣∣∣∣
r

≤ C6∆λr
N a.s.

2) If, additionally,
E
[
Λ

r(2+2p+γλ+λ−1)
γλ+λ−1

]
< ∞, (III.49)

where λ and Λ are from (Z2), p is from (A2) and γ is from (A3), then
one can choose C6 such that E[C6] < ∞, i.e. there exists a deterministic
constant C that does not depend on the partition such that

E

[
sup

n=0,1,...,N

∣∣∣∣∣ 1
Y (tn) − φ(tn) − 1

Ŷ (tn) − φ(tn)

∣∣∣∣∣
r]

≤ C∆λr
N .

Proof. The proof is similar to Theorem III.3.10 and is omitted. ■

III.5 Examples and simulations

The algorithms presented in (III.22) and (III.37) imply that, in order to generate
Ŷ (tn+1), one has to solve an equation that potentially can be challenging from
the computational point of view. However, in some cases that are relevant for
applications this equation has a simple explicit solution.

Regarding the numerical examples that follow, we remark that:

1) all the simulations are performed in the R programming language on the
system with Intel Core i9-9900K CPU and 64 Gb RAM;

2) in order to simulate paths of fractional Brownian motion, R package
somebm is used;

3) in Example III.5.3, discrete samples of the multifractional Brownian motion
(mBm) values are simulated using the Cholesky decomposition of the
corresponding covariance matrix (for covariance structure of the mBm,
see e.g. [5, Proposition 4]) and the R package nleqslv is used for solving
(III.22) numerically.

Example III.5.1. (Generalized CIR processes) Let φ ≡ 0, Z satisfy (Z1)–(Z2)
with λ ∈

( 1
2 , 1
)
, Y (0), κ1, κ2 > 0, γ > 1

λ − 1 be given and {Y (t), t ∈ [0, T ]}
satisfy the SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

Y (s) − κ2Y (s)
)
ds+ Z(t), t ∈ [0, T ]. (III.50)
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This process fits into the framework of Section III.4 and the equation for Ŷ (tk+1)
from (III.37) reads as follows:

Ŷ (tk+1) = Ŷ (tk) +
(

κ1

Ŷ (tk+1)
− κ2Ŷ (tk+1)

)
∆N + Z(tk+1) − Z(tk).

It is easy to see that it has a unique positive solution

Ŷ (tk+1) = Ŷ (tk) + (Z(tk+1) − Z(tk))
2(1 + κ2∆N )

+

√(
Ŷ (tk) + (Z(tk+1) − Z(tk))

)2
+ 4κ1∆N (1 + κ2∆N )

2(1 + κ2∆N ) .

Fig. III.1 contains 10 sample paths of the process (III.50) driven by a
fractional Brownian motion with H = 0.7. In all simulation we take N = 10000,
T = 1 and Y (0) = 1 = κ1 = κ2 = 1. In order to illustrate the convergence,

Figure III.1: Ten sample paths of (III.50) generated using the drift-implicit
Euler approximation scheme; N = 10000, T = 1, Y (0) = κ1 = κ2 = 1, Z is a
fractional Brownian motion with H = 0.7.

we also simulate the drift-implicit approximation Ŷ with a small step size 10−6

(it will serve as the “exact” solution). Then, using the same path of Z, we
generate the drift-implicit Euler approximations with step sizes of the form 1/N ,
where N runs over all divisors of 106. Afterwards, we compute the L∞([0, T ])-
distances between the “exact” solution and its approximations with larger step
sizes. This procedure is performed 10000 times and the mean square error of
each L∞([0, T ])-distance is computed. The resulting values serve as consistent
estimators of the corresponding L2(Ω;L∞([0, T ]))-errors and are depicted on
Figure III.2(a).
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Figure III.2: Convergence analysis of the drift-implicit Euler approximation
scheme for (III.50); T = 1, Y (0) = κ1 = κ2 = 1, Z is a fractional Brownian
motion with H = 0.7. On panel (a), L2(Ω;L∞([0, T ]))-errors are depicted. Panel
(b) contains the values of log

(
∆N |log(∆N )|

1
2H

)
plotted against the logarithms of

the corresponding L2(Ω;L∞([0, T ]))-errors (black) as well as the line fitted with
the least squares method (red). The slope of the red line is 0.7022687 ≈ 0.7 = H.

Note that the drift-implicit Euler scheme for (III.50) driven by the fractional
Brownian motion was the main subject of [18] and [22], but in both cases the
convergence of Ŷ to Y is established only on [0, T ] with T being small (see
e.g. [18, Eq. (8) and Remark 3.1]). Our results fill this gap and prove that
convergence holds on arbitrary [0, T ] for any model parameters. It should be
noted though that the convergence rate in Theorem III.4.8 is not optimal and
can be improved for the fractional Brownian driver. It is well-known that
paths of a fractional Brownian motion are Hölder continuous up to (but not
including) its Hurst index H and whence Theorem III.4.8 indicates that the
exact convergence speed of the drift-implicit Euler scheme is better than O

(
∆λ
N

)
for any λ ∈ (0, H). In turn, [18] uses the results on the modulus of the continuity
of the fractional Brownian motion and establishes that the exact speed of
convergence is O

(
∆H
N

√
| log(∆N )|

)
(provided that T is small enough). On Fig.

III.2(b), we plot the values of log
(

∆N |log(∆N )|
1

2H

)
against the logarithms of

the corresponding L2(Ω;L∞([0, T ]))-errors from Figure III.2(a). The resulting
points (depicted in black) turn out to be located along the line with the slope
0.7022687 ≈ 0.7 = H (depicted in red; least squares method was used to estimate
the slope). This gives an empirical evidence to the conjecture that additional
conditions on T in [18] can be lifted and the speed O

(
∆H
N

√
| log(∆N )|

)
is still

preserved.

Example III.5.2. (Sandwiched process of the TSB type) Consider a sandwiched
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SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

Y (s) − φ(s) − κ2

ψ(s) − Y (s) − κ3Y (s)
)
ds+ Z(t), (III.51)

t ∈ [0, T ], where Z satisfies (Z1)–(Z2) with λ ∈
( 1

2 , 1
)
. This equation fits into

the framework of Section III.4 and the scheme (III.22) leads to N cubic equations
of the form

Ŷ 3(tn+1)+B2,nŶ
2(tn+1)+B1,nŶ (tn+1)+B0,n = 0, n = 0, ..., N −1, (III.52)

where

B0,n :=
−φ(tn+1)ψ(tn+1)

(
Ŷ (tn) + ∆Zn

)
+ ∆N (κ1ψ(tn+1) + κ2φ(tn+1))

1 + ∆Nκ3
,

B1,n := φ(tn+1)ψ(tn+1) + (φ(tn+1) + ψ(tn+1))(Ŷ (tn) + ∆Zn) − ∆N (κ1 + κ2)
1 + ∆Nκ3

,

B2,n := −φ(tn+1) − ψ(tn+1) − Ŷ (tn) + ∆Zn
1 + ∆Nκ3

,

Note this equation can be solved explicitly using, e.g., the celebrated Cardano
method. Namely, define

Q1,n := B1,n −
B2

2,n

3 , Q2,n :=
2B3

2,n

27 − B2,nB1,n

3 +B0,n

and put

Qn :=
(
Q1,n

3

)3
+
(
Q2,n

2

)2
,

αn := 3

√
−Q2,n

2 +
√
Qn, βn := 3

√
−Q2,n

2 −
√
Qn,

where among possible complex values of αn and βn one should take those for
which αnβn = −Q1,n

3 . Then the three roots of the cubic equation (III.52) are

y1,n = αn + βn, y2,n = −αn + βn
2 + i

αn − βn
2

√
3,

y3,n = −αn + βn
2 − i

αn − βn
2

√
3,

and Ŷ (tn+1) is equal to the root which belongs to (φ(tn+1), ψ(tn+1)) (note that
there is exactly one root in that interval).

Fig. III.3 contains 10 sample paths of the process (III.51) driven by a
fractional Brownian motion with H = 0.7. In all simulations, we take φ ≡ −1,
ψ ≡ 1, N = 10000, T = 1 and Y (0) = 0, κ1 = κ2 = 1

2 , κ3 = 0 (this case
corresponds to the TSB equation described in Example III.2.10). Simulation
is performed by direct implementation of the Cardano’s method in R. On

128



Examples and simulations

Figure III.3: Ten sample paths of (III.51) generated using the drift-implicit
Euler approximation scheme; φ ≡ −1, ψ ≡ 1, N = 10000, T = 1, Y (0) = 0,
κ1 = κ2 = 1

2 , κ3 = 0, Z is a fractional Brownian motion with H = 0.7.

Fig. III.4(a), the L2(Ω;L∞([0, T ]))-errors are depicted. Just as in Example
III.5.1, behaviour of the modulus of continuity of the fractional Brownian
motion allows to suggest that the exact convergence speed of the numerical
scheme is O

(
∆H
N

√
| log(∆N )|

)
. Fig. III.4(b) gives an empirical evidence to this

conjecture: the values of log
(

∆N |log(∆N )|
1

2H

)
plotted against the logarithms

of the corresponding L2(Ω;L∞([0, T ]))-errors (black) are located along the line
(red) with the slope 0.7033434 ≈ 0.7 = H (least squares fit was used).

In both Examples III.5.1 and III.5.2, equations for computing Ŷ could be
explicitly solved but the Hölder continuity of the noise could not be less then
1/2. The next example shows that the drift-implicit Euler scheme can be applied
in the rough case as well.

Example III.5.3. (Sandwiched process driven by multifractional Brownian motion)
Consider the sandwiched SDE of the form

Y (t) = Y (0) +
∫ t

0

(
κ1

(Y (s) − φ(s))4 − κ2

(ψ(s) − Y (s))4

)
ds+ Z(t), (III.53)

t ∈ [0, T ]. In this case, Theorem III.2.3 guarantees existence and uniqueness of
the solution for λ-Hölder Z with λ > 1

5 (note that this equation fits the framework
of Example III.2.11 from Section III.2). On Fig. III.5, one can see paths of the
process (III.53) with κ1 = κ2 = 1, φ(t) = sin(10t), ψ(t) = sin(10t) + 2 driven
by multifractional Brownian motion (mBm) with functional Hurst parameter
H(t) = 1

5 sin(2πt) + 1
2 (note that the lowest value of the functional Hurst

parameter is H
( 3

4
)

= 0.3; for more details on mBm, see [5] as well as [17,
Lemma 3.1] for results on Hölder continuity of its paths). Fig III.6 contains
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Figure III.4: Convergence analysis of the drift-implicit Euler approximation
scheme for (III.51); φ ≡ −1, ψ ≡ 1, T = 1, Y (0) = 0, κ1 = κ2 = 1

2 , κ3 = 0, Z is a
fractional Brownian motion with H = 0.7. On panel (a), L2(Ω;L∞([0, T ]))-errors
are depicted. Panel (b) contains the values of log

(
∆N |log(∆N )|

1
2H

)
plotted

against the logarithms of the corresponding L2(Ω;L∞([0, T ]))-errors (black) as
well as the line fitted with the least squares method (red). The slope of the red
line is 0.7033434 ≈ 0.7 = H.

the L2(Ω;L∞([0, T ]))-errors of approximation. Note a much slower rate of
convergence: the multifractional Brownian motion Z under consideration is
Hölder continuous up to the order 0.3, therefore Theorem III.3.9 guarantees
convergence speed of only O(∆λ

N ) with λ ∈ (0, 0.3).

Figure III.5: A sample path of (III.53) generated using the backward Euler
approximation scheme; N = 10000, T = 1, Y (0) = 1, κ1 = κ2 = 1,
φ(t) = sin(10t), ψ(t) = sin(10t) + 2, Z is a multifractional Brownian motion
with functional Hurst parameter H(t) = 1

5 sin(2πt) + 1
2 .
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scheme for (III.53); T = 1, Y (0) = 1, κ1 = κ2 = 1, φ(t) = sin(10t),
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