
University of Oslo
Department of Informatics

What is
Model Driven
Architecture?

Ragnhild Kobro
Runde and
Ketil Stølen

Research Report 304
ISBN 82-7368-256-0
ISSN 0806-3036

March 2003





What is Model Driven Architecture?

Ragnhild Kobro Runde Ketil Stølen

Abstract

OMG promotes Model Driven Architecture (MDA) as the new direction
for system development, especially supporting integration, interoperabil-
ity and portability. But what is MDA really about, and what is model
driven architecture? These are fundamental questions, to which precise
answers are surprisingly hard to find. Not even the term “model driven”
is clearly defined.

This article views MDA as a framework for constructing methodologies
for model driven development of system architectures. The exact meaning
of this position is presented in detail, and a definition of the term “model
driven” is proposed. The main concepts in MDA are explained, with an
emphasis on giving specific guidelines as to which interpretation should be
chosen in cases where the official documentation is ambiguous or unclear.
In particular, the important notions of refinement and transformation are
examined, and it is explained how these similar, but different, concepts
are related. The conclusion gives a short survey describing to which extent
current methodologies fulfil the visions of MDA, and points at important
areas with a particular need for more research.

1 Introduction

Model Driven Architecture (MDA) is OMG’s vision for system development,
with an emphasis on integration, portability and reuse. Stating in a few sen-
tences exactly what MDA is, is a difficult task. Different OMG documents
highlight different aspects of MDA, but what they all have in common is the
focus on separating the specification of the functionality of a system from the
specification of the implementation of that functionality on a specific technolo-
gical platform.

Surprisingly, there is to our knowledge no definition that precisely explains the
contents of MDA. The closest one gets to a definition is a thirty page document
from OMG ([MDA01]), but a detailed study of this document poses more ques-
tions than it answers. OMG is currently working on an MDA guide ([MDA02]).
As will be demonstrated, this guide helps clarify certain details of MDA, while
in other areas it does nothing but add to the confusion.

1



In our opinion, MDA is best viewed as a framework, a framework for defining
system architecture development methodologies by giving directions for making
architectures, serving as a tool-box for system developers and system architects,
and facilitating integration and interoperability between systems.

Most of the MDA documentation so far has concentrated on terminology, but
the exact meaning of the main concepts are still not clearly understood. In this
article we focus on explaining these concepts more precisely. In particular, we
look at cases where the documentation from OMG is ambiguous or unclear, and
give the interpretation that we find most feasible.

Section 2 is devoted to the two fundamental concepts architecture and archi-
tecture definition framework, describing more precisely what kind of framework
we view MDA as. In section 3 we give an overview of what parts such a frame-
work should consist of, while sections 4–8 explain the main concepts of MDA.
Based on this discussion, in section 9 we present our definition of the term model
driven. In section 10 we conclude with a short survey relating state-of-the-art
methodologies to MDA, giving directions for further MDA-related research.

2 What is architecture?

If you decide to build a new home for yourself and your family, you typically
present your ideas and visions to an architect. During some period of time, and
based on interaction with you, the architect will come up with a detailed plan
for its construction. This plan describes the architecture of your new home.

An architecture is always the architecture of something, but this something does
not have to be a building; for example, it may be a vehicle, a bridge, or a non-
physical thing, like an enterprise. An architecture is the fundamental structure
of an entity and the interrelationships among its parts. The architecture of an
entity captures its essential features and principal properties, it also captures its
main components, how they are structured, how they interact, and the principles
guiding their design and evolution. [IEEE1471]

The architect working out the architecture of your new home is required to stick
to a number of rules and conventions. These rules and conventions constitute
a basic framework for formalizing and documenting the architecture of homes.
This framework is to a large extent standardized and functions as a medium for
communication between architects, between architects and building contract-
ors, between building contractors and building workers, between you and the
architects, etc. It also provides a solid foundation for applications to building
authorities and for formalizing contracts. Such a standardized framework for
the specification of architectures is what we mean by an architecture definition
framework.

2



Architecture hierarchy: System development Building analogy:
example:

MDA framework
(for defining architectures
for system architecture de-
velopment)

(MDA framework)

Building laws and regula-
tions

Methodology (architecture)
for developing system archi-
tecture

KobrA [ABB+02]
Rules and conventions for
developing the architec-
ture of homes

System architectural de-
scription

The Library Systems
Product Line [BMG01]

Architectural description
of new home

Documented system
An implementation of the
Library System, together
with documentation

+

New home with docu-
mentation

Figure 1: The hierarchy of architectural levels

An architecture definition framework describes which architectural aspects should
be described and how these aspects should be represented. There are many dif-
ferent architecture definition frameworks. Each architecture definition frame-
work addresses a particular kind of architecture. There are architecture defini-
tion frameworks for defining the architecture of buildings, aircrafts, IT systems,
etc. Similarly, MDA is an architecture definition framework for system archi-
tecture development methodologies.

Figure 1 gives an overview of the different levels in the world of architectures.
For each level, we may have several instances at the level below. At the bottom,
we have the final system (≈ your new home). This system has an architecture,
matching the architectural description at the level above.

As motivated above, an architectural description is developed according to an
architecture definition framework. In the setting of IT systems, such a frame-
work is often referred to as a methodology for system architecture development.
An example of a methodology at this level is KobrA [ABB+02], while the Lib-
rary System specification defined in [BMG01] is an example of a concrete system
architectural description according to this methodology.

A methodology for system architecture development describes what kind of
artifacts will constitute a concrete architecture, how these artifacts are related,
and of course guidelines for how these artifacts should be constructed. This

3



IEEE 1471-2000

Specialization of IEEE 1471

MDA framework

Terminology Library of reusable elements Methodology

Pervasive services Domain specifications

Transparencies Qualities of service

Compliance

Conformance

Artifact description

Figure 2: The MDA framework

is exactly the definition of an architecture, meaning that a methodology for
system architecture development is in fact a system architecture development
architecture.

Again, a system architecture development architecture may be developed ac-
cording to an architecture definition framework — for instance MDA. Accord-
ingly, MDA is a framework for defining methodologies for system architecture
development. This framework defines central aspects of system architecture de-
velopment that should be described by a concrete methodology, and how this
should be done.

Note that at each of these levels, we may have several specializations. As an
example, different companies will typically develop adapted variations of the
methodologies. Similarly, if MDA had existed at the time RM-ODP [RM-ODP]
was developed, RM-ODP could have been defined as a variant of the MDA
framework, specialized towards distributed systems.

3 The MDA framework

In the previous section, we described our view of MDA as a framework for de-
fining system architecture development methodologies. As Figure 2 illustrates,
such a framework can be decomposed into three main parts:

• Part I: Terminology
• Part II: Methodology
• Part III: Library of reusable elements

As explained in the introduction, this article focuses on the terminology part
of the framework. The terminology in [MDA01] uses [IEEE1471] as a starting
point, but also refines some of its contents. It is therefore natural to say that
MDA includes a specialization of the IEEE standard.

4



Following our discussion in section 2, the terminology in the MDA framework
describes central artifacts to be described by a concrete MDA methodology.
Furthermore, the methodology part of the framework is supposed to define
how the concrete methodology should describe these artifacts.

It is also natural to include methodology for checking compliance (that a con-
crete methodology corresponds with the MDA framework) and conformance
(how implementations correspond with this specification).1 In particular, there
is a need for guidelines describing how to instantiate library elements.

The methodology part of [MDA01] and [MDA02] is however very weak, even
though a few guidelines are necessarily intertwined with the description of the
terminology. Consequently, this should be an area for further research.

The third and last part of the MDA framework is a library of reusable elements,
mainly in the form of models. Defining such standard elements to be reused
across many different applications is an important part of OMG’s work on MDA,
but so far few elements have been defined. As examples of reusable elements,
[MDA01] describes the following categories:

Pervasive services: essential services needed by most applications, for in-
stance services for event handling, persistence, transactions and security.

Domain specifications: standardization of services and facilities in specific
markets, such as finance, telecom and healthcare.

Transparencies and qualities of service: models of environments with spe-
cific hardware and software attributes, such as scalability, real-time oper-
ation and fault-tolerance.

For more information on these categories and how the particular elements will be
described, see [MDA01], pages 21–23. In addition to the framework library, each
particular methodology will typically have its own library of reusable elements.

4 Models

A model is “a representation of a part of the function, structure and/or beha-
viour of a system” ([MDA01], p. 30). In MDA, a model is typically expressed in
UML, but there are lots of other possibilities. The only requirement in [MDA01],
is that the model should be formal, meaning — among other things — that it
should be based on a language with well-defined syntax and semantics (p. 3–4).
This implies that also source code counts as a model. In comparison, [MDA02]
gives no requirements for models, explicitly allowing them to be expressed as
descriptions in natural language (p. 3).

1For more information about compliance and conformance, see for instance [Put01].

5



4.1 Platform independent and platform specific models

The perhaps most fundamental MDA issue is the distinction between specifica-
tion of functionality and specification of how this functionality is implemented
using a particular technology. This distinction is achieved by separating plat-
form independent and platform specific models.

On the one hand, [MDA01] is very clear on the fact that “models of different
systems are structured explicitly into PIMs and PSMs” (p. 6), on the other hand
[MDA02] states that “what counts as a PIM depends on the class of platform
that the MDA user has in mind” (p. 21).

A platform is defined as “a software infrastructure implemented with a specific
technology [. . . ] on specified hardware technology” ([MDA01], p. 30). More
informally, it “is used to refer to technological and engineering details that are
irrelevant to the fundamental functionality of a software component” ([MDA01],
p. 5). As typical examples of platforms, [MDA01] uses CORBA, J2EE, .NET
and XML.

It is important to note that also platforms have models. A platform model
describes “the different kinds of parts that make up a platform and the services
provided by that platform”. In particular, it provides concepts to be used when
specifying platform specific models.2 ([MDA02], p. 5)

Consequently, a platform specific model (PSM) is characterized by the fact that
it “is expressed in terms of the specification model of the target platform”
([MDA01], p. 30). According to [MDA02], a PSM may also specify a system
with parts on several different platforms (p. 21).

A platform independent model (PIM) is defined as providing “formal specifica-
tions of the structure and function of the system that abstracts away technical
details” ([MDA01], p. 30).

4.2 Discussion

Models in natural language cannot be considered formal. Allowing informal
models, as in [MDA02], means not using MDA to its full potential. For in-
stance is automatic transformation of models (see section 7) impossible if their
semantics is not clear. Hence, in the following we assume that we work with
formal models only.

2At present, a platform model is usually “in the form of software and hardware manuals
or is even in the architect’s head”. However, in the future “MDA will be based on detailed
platform models, for example, models expressed in UML, OCL, and a UML action language”.
([MDA02], p. 7)

6



Model

PlatformPIM PSM

is independent of

* 1..* target platform

1..* *platform model

11

Figure 3: Models in MDA

Note that a “model” is a semantic concept, meaning that different syntactical
constructions may be used to express the same model.

Figure 3 gives an overview of the main terminology concerning models and
platforms in MDA. It is fair to say that a platform model is a PIM, since it
specifies the platform concepts, and not its concrete implementation.3

What we consider to be “irrelevant technological and engineering details” may
vary, meaning that there will exist platforms at different levels of abstraction.
As a consequence, depending on what we take as the platform, a given model
may be seen as platform independent in one situation, and platform specific in
another.

As the definitions from [MDA01] demonstrate, the notion of platform independ-
ence is more complicated than that of platform specificity. A PSM is always
platform specific with respect to one or more particular platforms. It is more
difficult to characterize precisely what constitutes a PIM, since this includes
being not platform specific in some sense.

Since we may have different levels of platforms, it is nearly impossible to claim
that a model is platform independent in general. However, given a concrete
platform, we may say that a model is independent of that platform if it does
not use the concepts from the corresponding platform model. Similarly, we may
state that a PIM is independent of a (non-empty) set of platforms. Typically,
there will be a need for referring to different platform categories. For instance
will component technologies like CORBA, EJB and COM+ constitute a common
category.

3To avoid too much confusion, [MDA01] has chosen to use the term implementation lan-
guage environment independent for platform independent platform models (p. 6).

7



View Viewpoint

Model

Abstraction criterion

participates in

consists of

1..*

1..*

defines rules for

* 1

1..*

conforms to

establishes methods for

is based on
*

1..*

defines

defined by

*

1..*

Figure 4: Models, views and viewpoints

5 Viewpoints

Another aspect of MDA, is the existence of models using various viewpoints.
The definitions of view and viewpoint are taken directly from [IEEE1471], and
are as follows:

View: “A representation of the whole system from the perspective of a related
set of concerns.”4

Viewpoint: “A specification of the conventions for constructing and using a
view. A pattern or template from which to develop individual views by
establishing the purposes and audience for a view and the techniques for
its creation and analysis.”

In addition, [MDA01] states that “views are not necessarily orthogonal, but each
view contains specific information. In MDA, a view is a collection of models that
represent one aspect of an entire system. A view applies to only one system,
not to generalizations across many systems.” (p. 31)

Related to these concepts, is the notion of abstraction, defined as “a description
of something that omits some details that are not relevant to the purpose of the
abstraction” ([MDA01], p. 30).

It follows that models may be characterized “in terms of the abstraction criteria
used to determine what is included in the model. A model that is based on
specific abstraction criteria is often referred to as a model from the viewpoint
defined by those criteria, or in short a view of the system.” ([MDA01], p. 4)

Figure 4 illustrates the relationships between the different concepts in this sec-
tion, partially based on a similar diagram in [IEEE1471].

4For a formal definition of concerns, see [IEEE1471]. We have not included the definition
here, since it does not seem to be a central concept in MDA.

8



Refinement relation

Zooming

Model

*

realization
*

abstraction
*

Refinement

is described by

1 1

Figure 5: Refinement in MDA

6 Refinement

Two main categories of model relations are described in [MDA01]:

Refinement relations between pairs of models describing the same system
but at different level of abstraction. (p. 4)

Viewpoint correspondences between pairs of models from different view-
points and unrelated by refinement. (p. 17)

This section explains the notion of refinement in more detail.

Refinement is the converse of abstraction (see section 5), and is defined as “a
more detailed description that conforms to another (its abstraction). Everything
said about the abstraction still holds, perhaps in a somewhat different form, in
the refinement.” ([MDA01], p. 30) A “refinement relation is itself described
using a model, defining abstraction observations in terms of realization observa-
tions while maintaining certain guarantees of the abstraction” ([MDA01], p. 4).

Furthermore, [MDA01] defines zooming as a special case of refinement (p. 5).
Zooming out is performed in order to get a more simplified model of objects
and/or interactions, while zooming in reveals those details.

6.1 Discussion

Following the definitions given above, a concrete refinement instance is a re-
lation between a refinement relation and two models, the abstraction and the
realization. This can be described by the class diagram in Figure 5.5

5For a ternary association, the multiplicity on an association end represents the potential
number of values at the end, when the values at the other two ends are fixed. For more
information, see n-ary associations in [RJB99].

9



Mapping
information

Input
model

DocumentationOutput
model

Additional

Transformation

Figure 6: Transformation in MDA

Refinement is in general a many-to-many relation, meaning that a refinement
relation may be used to relate many realizations with the same abstract model,
and vice versa. We may also have situations in which a given pair of models
can be related by more than one refinement relation.

7 Transformation

A central aspect of MDA is the concept of model transformation, in which one
model is converted into another model of the same system ([MDA02], p. 6). A
mapping is a set of rules and techniques used for this modification ([MDA01],
p. 30).

A description of a mapping may be “in natural language, an algorithm in an
action language, or in a model mapping language” ([MDA02], p. 9). In general,
a mapping tells us how elements of a certain type should be transformed into
elements of another type ([MDA02], p. 8).

In MDA, the most typical case is transformation from PIM to PSM, using
standard mappings like XMI (XML Metadata Interchange, [XMI02]) or JMI
(Java Metadata Interface, [JMI02]). However, transformations may be used
between PIMs, between PSMs, from PSM to PIM, as well as from PIM to PSM
([MDA02], p. 21 and [MDA01], p. 13). The output model of a transformation
may also be simply code ([MDA02], p. 10).

Figure 6 illustrates the basic idea of transformation. Besides the model to be
transformed and the mapping to be used, the transformation process may be
given some additional information as input ([MDA02], p. 16). Examples of
such information are UML profiles, general mark models (see section 7.2) and
architectural styles. “Often the additional information will draw on the practical
knowledge of the designer”, both of the application domain and the platform
([MDA02], p. 16).

10



“Transformations can use different mixtures of manual and automatic trans-
formation” ([MDA02], p. 19). Full automation is feasible in certain constrained
environments, or with parameterized transformations where “a human has a
pre-defined set of options to select from, to determine how the transformation
is performed” ([MDA01], p. 15).

The guide in [MDA02] prescribes that the result of the transformation process
should be a transformed model, together with some documentation of the trans-
formation (p. 10). This transformation record must include a map between the
elements in the original and the new model, and a description of how the general
mapping was used in this particular case ([MDA02], p. 10).

7.1 Extended and combined mappings

New mappings may be created from existing mappings in several ways, including
combination and extension ([MDA02], p. 22).

A combined mapping “uses two or more mappings to create a new mapping”
([MDA02], p. 23). Two frequent instances are sequential and concurrent com-
bination. A concurrent combination is typically used when the mappings are
concerned with different aspects of a system (for instance one mapping for per-
sistence and one for security issues) ([MDA02], p. 23).

As an example of a sequential combination6, consider a mapping from platform
independent models to models using general component mechanisms, and a
mapping from general components to the CORBA component model. These
two mappings may be combined in order to transform a PIM into a PSM using
CORBA.

An extension is a new, derived mapping created by “incremental modifications
[that] may add or alter the properties of the base mapping” ([MDA02], p. 22).
This means that mappings may be arranged in an inheritance hierarchy. In
general, mapping inheritance may be multiple. ([MDA02], p. 22)

7.2 Marks

To guide the transformation process, marks may be applied to elements in the
original model. The marks may give an interpretation to individual elements of
the model, or provide more general requirements on the target model ([MDA02],
p. 8).

The marks are not considered to be a part of the original model itself, but
rather as extra information “being applied to a transparent layer placed over
the model” ([MDA02], p. 8).

6The example is taken from [MDA02], page 23.

11



MAPPING

Transformation rule

Transformation technique

Model

TRANSFORMATION

Documentation

Extension Combination

Concurrent Sequential

Mark assignment *

*
input *

output
*

creates

1..* 2..*

*

*

1

1

Figure 7: Transformations and mappings

Often, the marks will be supplied by the mapping, but it is also possible to define
more general mark models that can be used with several mappings. A UML
profile may also supply marks, together with different mappings. ([MDA02],
p. 8)

7.3 Discussion

Basically, we have that a transformation is a relation between an input model,
an output model and a mapping. This is illustrated by the association class
“transformation” in Figure 7.7

As explained in section 7.2, marks may applied to model elements, indicating
how the elements are to be transformed. This implies that in the case of trans-
forming a PIM into a PSM, the PIM is first transformed into a marked PIM.
Intuitively, we would like to view this transformation as nothing but a typical
refinement step which is performed before the main transformation. However,
this is not possible in MDA.

7For readability, the main concepts “mapping” and “transformation” are written in upper
case. It should not be given any interpretation apart from this.

12



In MDA, every model is categorized as either a PIM or a PSM in a given context.
A marked PIM is neither a PIM, since the marks typically may be platform
specific, nor is it a PSM since it does not describe how the given functionality
is implemented on this platform. The marked model is therefore viewed as a
part of the transformation, and not an independent model in its own rights.

Thus, in Figure 7 the “transformation” association includes a mark assignment,
describing how marks are being applied to the input model in question. To-
gether, the mark assignment and input model represent the marked model as
described above. If we have a transformation process that does not use any
markings, this may be represented by an empty mark assignment.

The arguments for the multiplicities on the transformation association ends in
Figure 7 are as follows:

• The transformation process is in general non-deterministic. Consequently,
given a marked model and a mapping, several legal output models may
result.

• The mapping rules may transform two distinct elements into two equal
elements, such that we may have several input models for a given (mark
assignment, mapping, output model)-triple.

• Two different transformation techniques may give the same result in a
particular situation. Hence, for a given pair of models, there might exist
more than one mapping to relate them.

• It is also possible to imagine situations where an input model may be
marked in different ways, but where the mapping transforms the marked
models into the same output model. Therefore, also the multiplicity for
“mark assignment” should be many.

According to [MDA02] a transformation may be given more than one mapping
as input (p. 9). This may be understood as using a single, combined mapping.

Relating to our discussion in section 4, note that the use of sequential combina-
tion implies that the same model can be both a PIM and a PSM, depending on
what we take as the platform. In the example given in section 7.1, the general
component model resulting from using the first mapping will be a PSM in that
context, but a PIM in the context of the second transformation.

8 Refinement 6=
transformation

From the discussions in sections 6 and 7, it is clear that refinement and trans-
formation are very similar notions. In this section we explore this relationship
in more detail, and argue that refinement and transformation are two distinct
notions, even though they are closely related.

13



In relation to refinement, [MDA01] states that “we would like to permit that
more detailed descriptions are built in a systematic way from abstract ones”
(p. 30). It is natural to believe that what is meant by systematic construction of
more detailed models in this case is nothing but a special case of transformation.

In [MDA01], it is also stated that PIM to PIM mappings are generally related
to model refinement, and similarly with PSM to PSM mappings (p. 13). The
situation is no different for PIM to PSM mappings, since “the semantics of
the platform independent original model are carried through into the platform
specific model” (p. 21), which is nothing but the typical criteria for refinement.

This is also illustrated by the description of the different ways to transform a
PIM into a corresponding PSM. The possibilities here range from manual trans-
formation with manual construction of the one-of refinement mapping between
the two models, to automatic creation of a complete PSM from a complete
PIM, where this automatic process also makes a record of the refinement re-
lation. Between these two possibilities, we find variants of using refinement
patterns to simplify the process. ([MDA01], p. 14)

The notion refinement pattern is not further defined, but it is natural to be-
lieve that this is a special case of mapping, namely that it defines rules and
techniques to be used in a model transformation. In addition, a refinement pat-
tern should always be in accordance with a general refinement relation which
describes criteria for when a model is a realization of another model.8

To sum up:

Refinement relation gives criteria for when a model is a realization of another
model.

Transformation is the process of constructing one model from another model.

Mapping describes rules and techniques to be used in a transformation process.

Refinement pattern is a special case of mapping, defined in accordance with
a refinement relation.

The remaining question is whether two models can be related by refinement
without there being a possible transformation between them, and vice versa.
We argue that both of these are possible, based on the following argument:

• Since the only restriction on transformations is that the input and output
model should describe the same system, model transformation may also
be applied to convert models from one viewpoint to another. Models from
different viewpoints are not necessarily related by refinement, meaning
that there exist transformations that are not refinements instances.

• Also, we have refinement instances that are not transformations, since a
transformation is a process of construction while refinement is not neces-
sarily mechanical.

8Actually, it is possible to think of a situation where a refinement pattern will be in
accordance with more than one refinement relation.

14



Figure 8 illustrates the relation between refinement and transformation.

Transformation

Mapping

Model

Refinement relation

Refinement

*

realization

*
abstraction

*

Refinement pattern

Mark assignment

*

*

input

*

output

*

is described by
1

1

is in accordance with

*

1..*

Figure 8: Relating refinement and transformation

9 What is model driven?

Strangely enough, OMG has not precisely defined the term model driven, and
[MDA01] contains no description of what is meant by the term. The draft
version of the MDA guide tries to give a definition, however, stating that:

“MDA is an approach to system development, which increases the
power of models in that work. It is model-driven because it provides
a means for using models to direct the course of understanding,
design, construction, deployment, operation, maintenance and modi-
fication.” ([MDA02], p. 3)

This definition does not explicitly define model driven architecture, but rather
indicates its role in system development. It gives a high-level definition of what
is meant by model driven. In an attempt to capture the main contents of
MDA more concretely, we propose the following refined definition, based on the
discussion in chapters 4–8:

A system development process is model driven if:

• the development is mainly carried out using conceptual models (section 4)
at different levels of abstraction and using various viewpoints (section 5)

• it distinguishes clearly between platform independent and platform spe-
cific models (section 4.1)

15



• models play a fundamental role, not only in the initial development phases,
but also in maintenance, reuse and further development

• models document the relations between various models, thereby providing
a precise foundation for refinement as well as transformation (sections 6–8)

10 Conclusions

We have described OMG’s MDA as a framework for constructing methodologies
for model driven development of system architectures. The framework consists
of three main parts: terminology, methodology, and a library of reusable ele-
ments.

As explained in section 3, library elements of several kinds are in the progress
of being defined by OMG. Currently, the weakest part of MDA is the method-
ology, meaning guidelines for developing concrete MDA methodologies and for
instantiating/reusing the various library elements.

For the time being, the main focus of OMG’s MDA documentation is the ter-
minology, which has also been the focus of this article. But to which extent
does state-of-the-art methodologies support the fundamental concepts of MDA
as described?

The importance of using models as a primary means for developing system archi-
tectures, is gaining more and more acceptance. Still, there is little tool support
for important aspects of the development process. Existing tools concentrate
mainly on modelling and code generation, while there are few tools for doing
verification and validation of models.

There is good methodological support for describing models at different levels of
abstraction and using various viewpoints. For instance, abstraction is one of the
primary concerns in KobrA ([ABB+02]), while methodologies adhering to the
RM-ODP standard ([RM-ODP]) use its five viewpoints (enterprise, information,
computational, engineering, and technology) or specializations thereof.

Mappings from UML models to technology platforms like CORBA and EJB are
or are in the process of being defined, and also supported by tools (for a recent
overview, see [Fra03]). However, these mappings are all aimed at transformation
from PIM to PSM, with a fairly limited class of platforms. What is still missing,
is more general mappings (including refinement patterns) between all kinds of
models.

In current methodologies, there is also a lack of definitions of refinement relations
and viewpoint correspondences. In fact, a study of published specifications
(from [ABB+02], [BMG01], and [Put01]) demonstrates that the relationships
between even small toy models are not precisely defined or clearly understood
(for more details, see [RS]).

16



References

[ABB+02] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties,
Oliver Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paech,
Jürgen Wüst, and Jörg Zettel. Component-based Product Line En-
gineering with UML. Component Software Series. Addison-Wesley,
2002.

[BMG01] Joachim Bayer, Dirk Muthig, and Brigitte Göpfert. The Library Sys-
tems Product Line. A KobrA Case Study. IESE-Report 024.01/E,
Fraunhofer Institut Experimentelles Software Engineering, Novem-
ber 2001.

[Fra03] David Frankel. Model Driven Architecture: Applying MDA to En-
terprise Computing. Wiley, 2003.

[IEEE1471] IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE Std 1471-2000, September 2000.

[JMI02] Java Metadata Interface (JMI) Specification, JSR 040. Java Com-
munity Process. Version 1.0, June 2002.

[MDA01] Model Driven Architecture (MDA). OMG document ormsc/01-07-
01, July 2001.

[MDA02] Text for an MDA guide. OMG document ormsc/02-10-01, October
2002.

[RM-ODP] ISO/IEC, Reference Model of Open Distributed Processing, parts
1–4, ISO/IEC 10746.

[Put01] Janis R. Putman. Architecting with RM-ODP. Prentice-Hall, 2001.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley, 1999.

[RS] Ragnhild Kobro Runde and Ketil Stølen. Model Relations in Pub-
lished Specifications (in progress). Research report, Department of
Informatics, University of Oslo.

[XMI02] XML Metadata Interchange Specification (XMI). Version 1.2, OMG
document formal/02-01-01, January 2002.

17


