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Abstract

In this thesis we study the phase behaviour of crystalline polymorphs of
SiO2 modeled by the Vashishta three-body interaction potential in classical
molecular dynamics simulations. First the crystal free energies are computed
using the Einstein crystal method, of which three variations was tested: (i)
thermodynamic integration, (ii) Non-equilibrium thermodynamic integration
and (iii) Free energy perturbation followed by thermodynamic integration.
We found that out of these three methods, only the former two was able to
accurately calculate the free energy of Vashishta SiO2. Subsequently an efficient
and automated computational workflow was developed and we searched for
coexistence points the thermodynamically stable phases of SiO2 in the (P, T )
plane for three separate parameterizations of the Vashishta potential. We located
the α-quartz/coesite coexistence points in all three parameterizations along the
isotherm T = 300 K at pressures 4.5, 48.6, 112.6 kbar. Additionally we located
the α-quartz/β-tridymite coexistence point in two of the parameterizations
along the isobar 1 bar at temperatures 543.1, 818.9 K.

We then use the Gibbs-Duhem integration method to draw out the remainder
of the coexistence lines for the two parameterizations in which we obtained
two coexistence points. Finding the qualitative reproduction of the α-quartz/β-
tridymite line in both cases, barring the apparent phase-transition from α-quartz
to β-quartz along the line. The α-quartz/coesite line is however not qualitatively
reproduced in either case, as its gradient in P (T ) is opposite to that of the
experimental phase diagram.
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CHAPTER 1

Introduction

Silicon dioxide, or Silica, is a naturally occurring chemical of great geological
[1] as well as industrial [2] importance. Quartz, a crystal structure of silica, is
of particular importance which by virtue of being stable in standard conditions
is estimated to make up 12% of the earths crust by volume [3]. In addition to
quartz, crystalline silica exists in many different polymorphic structures such
as tridymite, cristobalite, coesite and stishovite. Each of which may be further
subdivided into groups of closely related structures [4, 5] separated by displacive
phase transitions [1].

The mechanisms driving geological processes is an inherently multi-scale
problem, and thus understanding of the nanoscale behaviour is a crucial
component in explaining and understanding the driving mechanisms [6]. Ideally
we would study these processes at the nanoscale by so-called ab initio, quantum
mechanical, methods where the electronic structure is determined by solving
the many-body Schrodinger equation

iℏ
∂

∂t
Ψ(R, t) = ĤΨ(R, t). (1.1)

Unfortunately even approximate methods in this regime, like density functional
theory, is limited both in spatial and temporal resolution, even on large super
computers [7, 8]. Classical molecular dynamics (MD) offers a good approxim-
ation, even down to the nanoscale, whilst being much more computationally
efficient allowing the study of systems resolved in much greater detail, by several
orders of magnitude both temporally and spatially. There exists a wide variety
of classical interaction potentials aimed at modeling different phenomena, and
developing an interaction potential that accurately depicts the behaviour of
Silica has been a long-standing issue [1, 9, 10]. A few notable examples include
the BKS potential [11], Tsuneyuki potential [12], and ReaxFF [13].

The three-body interaction potential by Vashishta et al. [14] is an appealing
candidate in the study of Silica, and has been shown to accurately reproduce
many of the properties of its crystal structures [14, 15]. A particularly appealing
feature of the Vashishta potential is that its bonded interactions are implicit,
rather than explicitly defined in the molecular geometry as if often the case for
interaction potentials, the latter of which is more computationally demanding.
This makes the potential particularly suited for the study of friction and fracture
[16, 17], during which bonds are continuously broken and formed.

When subject to external load, silica may undergo phase transitions. For
example, the transition between α and β-quartz, which may be a driving
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1.1. Goals

factor in the formation of cracks in the continental crust [18]. For this reason,
knowledge of the phase diagram is an important component in studying these
phenomenon.

The Vashishta potential has been fit to reproduce many of the physical
properties of silica [14, 15, 19]. Yet, this gives no indication that its phase
behaviour should be accurately reproduced [20], and as of now, no comprehensive
study of the Vashishta silica phase diagram has been done. We will therefore
tackle three different parameterizations of Vashishta silica and evaluate their
phase behaviour using free energy methods. In particular, we will utilize the
Einstein crystal method by Frenkel and Ladd [21] to compute the free energy
of Vashishta silica at different temperatures and pressures in order to locate
coexistence points between the different polymorphs. Following this, we draw
out the coexistence lines using the Gibbs-Duhem integration method by Kofke
[22], producing the phase diagram.

(a) Coesite (b) α-Tridymite (c) β-Cristobalite

(d) α-Quartz (e) β-Quartz

Figure 1.1: Various Silica polymorphs

1.1 Goals

The overarching goal in this thesis is to gain an increased understanding of the
phase behaviour of crystalline polymorphs of silica modelled by the Vashishta
potential. To that end, we have set the following goals:

1. Implement the Einstein crystal method in the LAMMPS molecular
dynamics software to compute free energies of crystalline systems.

2. Develop a computational workflow that enables efficient preparation and
handling of a large number of molecular dynamics simulations, as well as
the subsequent analysis.

2



1.2. My contributions

3. Locate points of coexistence in (P, T ) between crystalline polymorphs of
SiO2.

4. Compute the phase diagram of Vashishta SiO2 using Gibbs-Duhem
integration.

1.2 My contributions

• A Python package which enables SiO2 free energy calculations as well
as the subsequent analysis en masse with the Vashishta potential in
LAMMPS.

• A Python package which performs Gibbs-Duhem Integration with
LAMMPS.

• An increased understanding of how to properly impose center of mass
constraints in the Einstein crystal methods, and its effects on the computed
free energies.

• A fork of LAMMPS which introduces a "scale" parameter in the
implementation of the Vashishta potential in the MANYBODY package
which enables the user to scale the strength of the potential with the
adapt command, a crucial component of thermodynamic integration
computations in the Einstein crystal method.

• Knowledge of the silica phase diagram for the Vashishta et al. [14],
Broughton et al. [15] and Wang et al. [19] parameterisations of the
Vashishta potential.

1.3 Outline of this thesis

This thesis is structured in three main parts. In the first part, theory and
background, we will give a brief reminder of some of the most central elements
of statistical mechanics and thermodynamics that are of particular relevance
to the work presented in this thesis. We then move on to introduce molecular
dynamics in some detail, assuming little existing familiarity with the method.
Lastly, we give an introduction to the central free energy methods that make
up the so-called Einstein crystal method, as well as the Einstein crystal method
itself.

We then move on to the second, and most central part of the thesis. Here
we start by giving detailed descriptions in both the implementation and other
practical details concerning the Einstein crystal method. In particular, we
explain in detail how the method may be implemented in LAMMPS, with
emphasis on the considerations that had to be made when applying the
method to Vashishta SiO2. The method is implemented in 3 variations,
which are all tested and compared against each other. We also outline an
efficient computational workflow to perform the Einstein crystal en masse,
with statistically robust estimates of the standard error. Following this, we
move on to the next chapter in which the Einstein crystal method is used to
compute the free energy of several SiO2 polymorphs in (P, T ) to determine
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1.3. Outline of this thesis

their region of stability, and to locate points of coexistence between phases, this
done concurrently for the 1990, [14] 1997 [15] and Wang [19] parameterizations
of the Vashishta potential. We then move on to discuss the implementation
of the Gibbs-Duhem integration method in LAMMPS, and use the method to
draw out the remainder of the coexistence lines in the 1997 [15] and Wang [19]
parameterizations of the Vashishta potential, producing their phase diagrams.

Finally, we conclude with a summary where we reflect on what has been done,
as well discussing some future prospects on how this work may be extended
further.
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PART I

Theory & Background
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CHAPTER 2

Statistical Mechanics &
Thermodynamics

In this chapter we provide a brief reminder of some elements in statistical
mechanics and thermodynamics that are of particular relevance to the
work presented in this thesis. This summary is not intended to provide a
complete background, and a general understanding of statistical mechanics
and thermodynamics is assumed throughout this thesis. For a more complete
overview of the subject we refer the reader to the textbook by Swendsen [23] or
a similar texts.

2.1 The Canonical Ensemble

The canonical ensemble describes a system in which the number of particles
(N), volume (V ) and temperature (T ) are conserved quantities. The ensemble
may also interchangeably be referred to as the NVT ensemble. Physically, the
ensemble can be thought to describe a fixed-size box with volume V containing
N particles submerged in a much larger heat bath at temperature T , with which
the box is at thermal equilibrium. In statistical mechanics each micro-state of
the system is assigned a probability density

P(pN , rN ) = 1
Z

e−βH(pN ,rN ) (2.1)

with Hamiltonian H, and the notation

pN = {p1, p2, . . . , pN }
rN = {r1, r2, . . . , rN }

(2.2)

which will be used frequently throughout the text. We further have the
normalization factor

Z(N, V, T ) =
∫

dpN drN

h3N
e−βH(pN ,rN ), (2.3)

the canonical partition function, comprised of a 6N dimensional integral over all
possible configurations of (pN , rN ) spanning the accessible region of phase-space
for the system. This is visualized in Fig. 2.1, in which each point denotes one
configuration. Whilst Z essentially acts as a normalization, it can be shown
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2.2. Isothermal–isobaric ensemble

pN

rN

Figure 2.1: Two distinct configurations of a system mapping to different points
in the accessible region of phase space.

that is is in fact related to Helmholtz free energy by the relation

F (N, V, T ) = − 1
β

ln Z(N, V, T ), (2.4)

the thermodynamic equation of state in the canonical ensemble. Hence, may
in principle compute the free energy by solving the integral in Eqn. 2.3.
Unfortunately this is only possible to do analytically for a few select systems.

2.2 Isothermal–isobaric ensemble

Closely related to the canonical ensemble we have the so-called iso-
thermal–isobaric ensemble that describes a system in which N , P and T are
conserved quantities, hence, we may interchangeably refer to it as the NPT
ensemble. Physically, the NPT ensemble can be thought to represent the
conditions of an open container in a lab. That is, one that is under pressure as
well as tempered by the atmosphere around it. The probability density function
in the NPT ensemble is

P(pN , rN , V ) = 1
Z(N, P, T )e−βH(pN ,rN )+P V (2.5)

with the corresponding partition function

Z(N, P, T ) =
∫

dV Z(N, V, T )e−βP V . (2.6)

In a similar fashion to the canonical ensemble, Z(N, P, T ) may be related to its
corresponding thermodynamic equation of state, the Gibbs free energy, by

G(N, P, T ) = − 1
β

ln Z(N, P, T ). (2.7)
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2.3. The Ideal Einstein Crystal

2.3 The Ideal Einstein Crystal

The Einstein crystal1 is a system composed of N independently oscillating
harmonic oscillators which may be described by the Hamiltonian

H =
N∑
i

[
p2

i

2mi
+ 1

2ki(∆ri)2
]

(2.8)

where ∆ri = ri − ri,0 denotes the atoms displacement from its rest position and
ki the spring constant of the i-th oscillator. The canonical partition function
for this system may be written as

ZE(N, V, T ) =
∫

dpN drN

h3N
e−βHE (2.9)

where h denotes Plancks constant. This integral is solved analytically
by considering the momenta (PE) and configurational (QE) contributions
individually, both of which are standard gaussian integrals with solutions

PE(N, V, T ) =
∫

dpN
N∏

i=1
exp

[
−β

p2
i

2mi

]
=

N∏
i=1

(
2πmi

β

)3/2
(2.10)

and

QE(N, V, T ) =
∫

drN
N∏

i=1
exp

[
−β

1
2ki(ri − ri,0)2

]
=

N∏
i=1

(
2π

βki

)3/2
(2.11)

which combined yields the full partition function

ZE(N, V, T ) = PEQE

h3N
. (2.12)

With this, one may compute an analytic expression for the free energy

FE =
N∑

i=1
ln
(

βkiΛ2
i

2π

)3/2

(2.13)

where Λi =
(
βh2/2πmi

)1/2 is the thermal de Broglie wavelength.

2.4 Phase Coexistence

In general, the thermodynamically stable phase of a system corresponding to
a given macroscopic state, (P, T ), is the one which minimizes the free energy.
This is the phase preferred by nature, and given time a system will tend towards
this phase. However, there may also exist additional, so called meta-stable
phases, that whilst not minimizing the global free energy, a corresponds to a
local minima in the free energy landscape.

For some (P, T ), there may be two phases that have the same free energy.
These are said to be in phase coexistence with one another, and the macroscopic

1Alternatively referred to as an Einstein solid
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2.4. Phase Coexistence

state at which this occurs, the so-called coexistence point. A coexistence point,
is part of a coexistence line, along which the two phases always has the same free
energy, and the gradient of this line is given by the so-called Clauseus-Clapeyron
equation

dP

dT
= ∆h

T∆v
(2.14)

where ∆h is the difference in enthalphy per particle between the two phases,
and ∆v the difference in volume per particle.

9



CHAPTER 3

Molecular Dynamics

Molecular Dynamics (MD) is a computational method in which the dynamics
of atomistic and molecular systems are simulated in the classical regime. The
simulations are performed by solving Newtons equations of motion

fi = −∇iU(r1, . . . , rN ) (3.1)

numerically, where fi denotes the net force acting on the i − th atom and U the
interaction potential. The method allows one to observe the dynamics of atoms
at full resolution and to make direct measurements based on their trajectories.
By solving these equations directly, one naturally samples the microcanonical
ensemble where the number of particles (N), volume (V ) and total energy
(E) are conserved. One may also sample from different ensembles by the use
of so-called thermostats and barostats which constrains the temperature and
pressure of the system respectively.

MD commonly employs periodic boundary conditions, wherein particles
are allowed to interact across the boundaries and pair-wise interactions will
always prefer the minimal distance between pairs of atoms. This is done to
minimize surface effects due to a finite system size and to better mimic the bulk
properties of a system.

3.1 Verlet Integration

When integrating the equations of motion in molecular dynamics, it is of
particular importance to use an integration scheme that preserves the energy
of the system over time. For example, if one was to perform MD simulations
using the Forward Euler method to integrate the equations of motion, one
would expect the energy to drift over time. This is especially problematic if one
wishes to sample from the NV E ensemble, in which the energy is an explicitly
conserved quantity.

A popular, and commonly used integrator in MD simulations is the Velocity
Verlet method, which integrates the equations of motion according to

r(t + ∆t) = r(t) + v(t)∆t + 1
2a(t)∆t2

v(t + ∆t) = v(t) + 1
2(a(t) + a(t + ∆t))∆t.

(3.2)

10



3.2. Interaction Potentials

Velocity Verlet is shown to be good in preserving the energy of MD systems
over time, even with relatively long timesteps [24]. For this reason, it is a is a
standard method in MD simulations.

3.2 Interaction Potentials

3.2.1 The Leonard Jones Potential

Perhaps the most widely studied interaction potential is that of Jones and
Chapman [25], the so-called Leonard-Jones potential. The potential is simple
in its form and models the pairwise interaction between atoms according to

U(rij) = 4ε

[(
σ

rij

)12
−
(

σ

rij

)6
]

. (3.3)

where rij = |ri − rj | and ε, σ are free parameters to tune the depth of the
potential well and zero of the potential respectively, see Fig. 3.1. The 1/r6 term
in Leonard-Jones aims to model the Van der Waals interaction, and the 1/r12

term steric repulsion. It should be noted that the 12 in the exponent is chosen
for efficiency reasons as a direct multiple of 6, whilst steric repulsion should
reality go as an exponential, as is the case in the closely related Buckingham
potential [26].

Note in Fig. 3.1 that U → 0 as r → 3σ, meaning that particles separated
by distances greater that 3σ will hardly interact at all. Summing over all the
pairwise interactions in the system goes like O(N3), hence in situations like
these it is common to set an explicit cut-off distance. In combination with
so-called neighbour lists, that tracks the particles that are within the cut-off
distance of each other, one may significantly reduce the number of pairs for
which one has to evaluate the pairwise interaction at the cost of some memory.

For mono-atomic substances, Leonard-Jones is capable of modeling gas,
liquid and solid states, being stable in both FCC and HCP crystal lattices. For
systems composed of different atomic types there exists several so-called mixing
rules, for example the Goode-Hope rules

εA,B = √
εAεB

σA,B = √
σAσB

(3.4)

which yields the parameters for the interaction between atom types A and B.
Chemical bonds may also be added as either holonomic constrains enforced
efficiently in with the SHAKE [27] algorithm or related methods, or simply as
an harmonic interaction between pairs of atoms. In either case, the bonds need
be explicitly defined and kept track of during simulation at some computational
cost.

3.2.2 The Vashishta Potential

We then have the potential developed by Vashishta et al. [14], a three-body
potential with the functional form

U =
∑

i

∑
j>i

U
(2)
ij (rij) +

∑
i

∑
j ̸=i

∑
k>j
k ̸=i

U
(3)
ijk(rij , rik, θijk). (3.5)

11



3.2. Interaction Potentials

1.0 1.5 2.0 2.5 3.0

r [σ]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

U
[ε

]

(σ/r)12

−(σ/r)6

Figure 3.1: Functional form of the Leonard-Jones potential

The two body term of the potential which models pair-wise interactions between
atoms has the form

U
(2)
ij (r) = Hij

rηij
+ ZiZj

r
e−r/r1s − Dij

r4 e−r/r4sj − Wij

r6 . (3.6)

where the term Hij/rηij models steric repulsion. The second term, ZiZj/r,
models the coulomb interaction with a screening factor exp(−r/r1s). The third
term, Dij/r4, models charge-dipole interactions, again with a screening factor.
Lastly, we have the term Wij/r6, which models the Van der Waals interaction.
Then we also have the three-body interaction

U
(3)
ijk(rij , rik, θijk) = Bijk

(cos θijk − cos θ0)2

1 + Cijk(cos θijk − cos θ0)2 e
ξ

rij −r0 e
ξ

rik−r0 , (3.7)

where the Bijk denotes the strength of the interaction, cosines model the effects
of bond bending and the exponential bond stretching and r0 the cut-off. To
illustrate, the geometry of a three-body system is illustrated in Fig. 3.2. Note in
particular that the bonds in the Vashishta potential are not explicitly defined,
but will dynamically break and form based on the cut-off distance r0. In a
computational perspective, this means this makes the potential highly efficient
as you forego much of the much of the computational work associated with
maintaining the bond topology of the system.

rij rikθijk

j k

i

Figure 3.2: Sketch depicting the bond angles and distances between atoms
labeled i, j, k in a three-body interaction
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3.3. Thermostats

0 2 4 6 8 10 12
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V
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Si-Si
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Figure 3.3: The Two-body interactions, U (2), in the 1990 parameterization of
the Vashishta potential
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4
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θijk

0.0

0.5

1.0

1.5

Θ
(θ
ij
k
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Figure 3.4: The Three-body interactions in the 1990 parameterization of
the Vashishta potential for Si-O-O decomposed to its radial and angular
contributions to U (3)(rij , rik, θijk) = BijkR(rij , rik)Θ(θijk)

3.3 Thermostats

The thermostat by Berendsen et al. [28] was one of the earliest, and perhaps
simplest examples of a thermostat in MD. The Berendsen thermostat works by
imposing that the temperature of the system should evolve according to the
differential equation

dT

dt
= T0 − T (t)

τ
(3.8)

where T0 is the temperature of the heat bath, T (t) the temperature of the
system at time t and τ a parameter indicating the strength of the coupling.
This is them explicitly enforced by re-scaling the velocities of each atom in the
system after each time-step according to

vi(t) → λvi(t) (3.9)

where the scaling parameter λ is given by

λ =

√
1 + ∆t

τ

(
T0

T
− 1
)

. (3.10)

13



3.3. Thermostats

Unfortunately, the dynamics of a system that under the Berendsen thermostat
does not sample from the canonical ensemble. Furthermore, the thermostat
actively dampens internal degrees of freedom in systems favouring instead
translational degrees of freedom, known as the "Flying ice-cube" effect [29].
These problems are remedied in the closely related thermostat by Bussi, Donadio
and Parrinello [30], which in essence may be thought of us Berendsen with
added random noise.

In addition to these, there exists a wide range of different thermostats fit
for different scenarios. However, the one which we will use in this thesis is the
so-called Langevin thermostat.

The Langevin thermostat takes an entirely different approach, where instead
of re-scaling the velocities, the equations of motion of each atom is changed by
introducing a new set of forces. These forces are aimed to model the presence
of a solvent that exchanges heat with the system. This is done by introducing
adding the two forces

fi = −∇iU(r1, . . . , rN ) + ff + fr (3.11)

where the term, ff , models frictional drag between the atoms and the solvent
and fr the force due to the atoms bumping into the solvent.

14



CHAPTER 4

Free Energy Methods

The Free energy of a system is linked to the partition function via the relation

F (N, V, T ) = − 1
β

ln Z(N, V, T ) (4.1)

and thus you could in principle determine the free energy by computing the
partition function. Recall however that Z is composed of an integral over the
6N dimensional phase-space. Hence, it is only analytically solvable for a select
few simple systems. Numerical integration is also unfeasible given the curse
of dimensionality, whereby the required computational time scales far beyond
what is practical even on the largest of supercomputers. The usual solution to
this problem is to employ monte-carlo methods, or alternatively for molecular
systems, molecular dynamics. In the case of computing free energies, this is
however not sufficient. The probability that we sample a configuration in both
MC and MD is

P(pN , rN ) ∝ e−βH(pN ,rN ) (4.2)

with β = 1/kBT . Hence the probability of sampling configurations with energies
greater than the thermal energy kBT is exponentially unlikely. This is the
fundamental problem that free energy methods aims to solve, and there exists
a plethora of methods aimed study the free energy of a wide range of different
systems Chipot and Pohorille [31] and Lelievre, Stoltz and Rousset [32].

In this chapter we start by giving a brief overview of the Free energy methods
that have been employed in this thesis from a general perspective, where Chipot
and Pohorille [31] has been used extensively as a reference in addition to the
textbooks Frenkel and Smit [33], Allen and Tildesley [24]. Following this, we
move on to look at the Einstein crystal method introduced by Frenkel and Ladd
[21], as a method for computing the Free energy of solids for which Frenkel and
Smit [33] and Vega et al. [34] provide the main reference.

4.1 Free Energy Perturbation

Consider a Hamiltonian in the form

H1
(
pN , qN

)
= H0

(
pN , rN

)
+ ∆H

(
pN , rN

)
(4.3)
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4.1. Free Energy Perturbation

where ∆H may interpreted as a perturbation to H0. The Helmholtz free energy
is related to the canonical partition function by

F (N, V, T ) = − 1
β

ln Z(N, V, T ) (4.4)

thus the difference in free energies between the perturbed and unperturbed
systems may be written as

∆F = F 1 − F 0 = − 1
β

ln Z1

Z0
= − 1

β

∫
dpN drN e−βH1(pN ,rN)∫
dpN drN e−βH0(pN ,rN ) (4.5)

where the integrals are to be understood as 6N dimensional integrals over phase-
space, with N denoting the number of particles in the system. Substituting in
the RHS of Eqn. 4.3 to the integral in the numerator we get

∆F = − 1
β

ln
[∫

dpN drN e−β∆H(pN ,rN)e−βH0(pN ,rN)∫
dpN drN e−βH0(pN ,rN )

]
(4.6)

and because the Boltzmann factors e−βH0(pN ,rN) constitutes a probability
density function, the integral in the above expression can be interpreted as
taking the ensemble average of the observable e−β∆H(pN ,rN) measured in the
unperturbed system, which dynamics is governed solely by H0. We may thus
compute the difference in free energies between the perturbed and unperturbed
systems as

∆F = − 1
β

ln
〈

e−β∆H(pN ,rN)
〉

0
(4.7)

where ⟨. . .⟩0 indicates an ensemble average in the H0-system. That is, ∆H is
measured in a system governed by the dynamics of H0. Eqn. 4.7 defines the
technique of free energy perturbation [35], a powerful and broadly applicable
technique that allows the computation of changes in free energies. If both
systems are governed by conservative force fields and the mass of the constituent
particles are kept constant, the momenta contribution to the partition functions
in Eqn. 4.6 will be equal and thus cancel out, reducing Eqn. 4.7 to just

∆F = − 1
β

ln
〈

e−β∆U(rN)
〉

0
(4.8)

furthermore, by absorbing the factor −1 in Eqn. 4.6 into the logarithm we may
flip the fraction reformulating the expression to

∆F = 1
β

ln Z0

Z1
= 1

β
ln
[∫

dpN drN e−βH0(pN ,rN)∫
dpN drN e−βH1(pN ,rN )

]
(4.9)

then by adding and subtracting a factor β∆H to the exponent of the partition
function in the numerator we get

∆F = 1
β

ln Z0

Z1
= 1

β
ln
[∫

dpN drN eβ∆H(pN ,rN )e−βH1(pN ,rN)∫
dpN drN e−βH1(pN ,rN )

]
(4.10)

which leaves us with
∆F = 1

β
ln
〈

eβ∆H(pN ,rN)
〉

1
(4.11)
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4.2. Thermodynamic Integration

as an alternative and equivalent way of computing the change of free energy
when going from system 0 to 1. If we again follow the same assumptions as
before we may reduce this expression to

∆F = 1
β

ln
〈

eβ∆U(rN)
〉

1
. (4.12)

4.2 Thermodynamic Integration

Consider a Hamiltonian in the form

H
(
pN , rN , λ

)
=

N∑
i

p2

2mi
+ λU(rN ) (4.13)

where λ is a tuning parameter, usually chosen to be in the interval [0, 1], which
meaning will be made clear later in this section. In to simplify the notation
(pN , rN ) will be dropped from the Hamiltonian and related quantities when in
the context of thermodynamic integration in this and subsequent sections.

In order to derive the expression used for thermodynamic integration we
may start by taking the derivative of Helmholtz free energy with respect to the
hyper-parameter λ as

∂F (λ)
∂λ

= − 1
β

∂

∂λ
ln Z(λ) = − 1

βZ(λ)

∫
dpN drN ∂

∂λ

(
e−βU(λ)

)
. (4.14)

The partial derivative inside of the integral pulls out a factor −βU(λ) from the
exponential and leaves us with

1
Z(λ)

∫
dpN drN ∂U(λ)

∂λ
e−βU(λ) =

〈
∂U(λ)

∂λ

〉
λ

(4.15)

where the λ suffix indicates that the average is taken for a given λ. We are then
left with the differential equation

∂F (λ)
∂λ

=
〈

∂U(λ)
∂λ

〉
λ

(4.16)

which we integrate on both sides with respect to λ over its domain. The LHS
then gives us ∫ 1

0
dλ

∂F (λ)
∂λ

= F (λ = 1) − F (λ = 0) = ∆F (4.17)

which leaves us with the final expression

∆F =
∫ 1

0
dλ

〈
∂U(λ)

∂λ

〉
λ

(4.18)

as a tool for finding the Free energy difference between the states corresponding
to λ = 1 and λ = 0. This technique is often used in conjunction with a potential
in the from

U(λ) = λUB + (1 − λ)UA (4.19)
a so-called linear homotopy. This potential continuously transforms your system
from A to B, and Eqn.4.18 will yield the change in free energy provided there
occurs no phase transitions during the transformation.
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4.3. Non-Equilibrium Thermodynamic Integration

4.3 Non-Equilibrium Thermodynamic Integration

We know from thermodynamics that the work done, W , during some process is
related to the free energy by the relation

∆F ≤ W. (4.20)

The equality is in this case only obtained for quasi-static processes, which is
indeed the case during the thermodynamic integration method discussed in
the previous section in which the system must be allowed to reach equilibrium
between each step. We will in this section introduce a non-equilibrium variant
of thermodynamic integration that allows us to perform the computation in a
more efficient manner [36], as we forego the need for equilibration between each
step.

In order to compute the change in free energy during a non-equilibrium
process we start by considering the reversible work done during a quasi-static
process from state A to B. By virtue of the process being reversible, it follows
that

∆F = W rev
A→B = 1

2[W rev
A→B − W rev

B→A] (4.21)

where W rev
A→B denotes the reversible work from A to B. In several realizations

of a finite time, non-equilibrium process, we may decompose the work into two
parts: The amount of reversible work and the dissipated energy [36]. This leads
to the relationship

W rev
A→B =

〈
W irr

A→B

〉
−
〈
Ediss

A→B

〉
. (4.22)

In addition, it may be shown that for if the non-equilibrium process is sufficiently
close to the quasi-static one [36], we have that〈

Ediss
A→B

〉
=
〈
Ediss

B→A

〉
. (4.23)

By inserting Eqn. 4.22 and Eqn. 4.23 into Eqn. 4.24 we get

∆F = 1
2
[〈

W irr
A→B

〉
+
〈
W irr

B→A

〉]
(4.24)

as an expression for the change in free energy as a function of the average
amount of irreversible work done during a forward and backward non-equilibrium
process.

As in equilibrium thermodynamic integration, the transformation between
systems A and B is done along a linear homotopy Eqn. 4.19, where in this case
λ is varied in a time dependent switching function that goes from 0 to 1 as
t → ts. We may for example employ a switching function in the simple form,

λ(t) = t. (4.25)

It has however been shown [37] that a switching function in the form

λ(t) = t5(70t4 − 315t3 + 540t2 − 420t + 126
)

(4.26)

is particularly suitable for non-equilibrium thermodynamic integration. Both
switching functions are shown in Fig. 4.1 for illustration.
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Figure 4.1: The switching functions defined in Eqn. 4.25 and Eqn. 4.26

The irreversible work done is then computed by the integral

W irr =
∫ ts

0
dt

∂U(λt)
∂λt

∂λt

∂t
, (4.27)

which related to Eqn. 4.18, but with a change in variables from λ to t. Eqn. 4.27
is thus repeated several times in both directions, that is A → B and B → A,
the work done is averaged and inserted in Eqn. 4.24, producing the change in
free energy, equivalent to that which is computed in equilibrium thermodynamic
integration.

4.4 The Einstein Crystal Method

The Einstein Crystal method proposed by Frenkel and Ladd [21] introduced
a method for computing the free energy of crystalline solids by defining a
thermodynamic pathway between an ideal Einstein crystal,

UE(rN ) =
N∑
i

1
2ki(ri − ri,0)2

, (4.28)

and solid governed by an interaction potential UC(rN ). The idea is that the
free energy of the solid may be decomposed into two parts

F C(N, V, T ) = F E + ∆F (4.29)

where F E denotes the Helmholtz free energy of the Einstein crystal, determined
analytically, and the difference in free energy between the two systems, ∆F ,
which may be computed by the use of free energy methods. In their original
paper Frenkel and Ladd [21] suggested a pathway in which the harmonic
potential governing the ideal Einstein crystal is gradually turned off whilst
the interaction potential of the target system is simultaneously turned on. In
the formalism of thermodynamic integration this is performed by defining a
potential

U(λ) = λUC(rN ) + (1 − λ)UE (4.30)
and computing the free energy difference either by thermodynamic integration,
or non-equilibrium thermodynamic integration. However, there is no strict
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4.4. The Einstein Crystal Method

requirement that this is the thermodynamic pathway that must be taken,
and different pathways between the two systems may be used provided they
are free of any phase-transitions. One such alternate pathway is the one
described in Vega et al. [34]. Here, the authors instead compute the free energy
difference between the ideal Einstein crystal and a system that is governed
by both the harmonic potential and the interaction potential with free energy
perturbation. Following this, the harmonic potential is gradually removed
during thermodynamic integration along the linear homotopy

U(λ) = (1 − λ)UE + UC (4.31)

and the free energy of the crystal is given by

F C(N, V, T ) = F E +
〈
e−βpeC

〉
E

+
∫ 1

0
dλ

〈
∂U(λ)

∂λ

〉
λ

. (4.32)

Ideal Einstein Crystal
UE =

∑
i

1
2 ki(ri − ri,0)2

Interacting Einstein Crystal
UE,C = UE + UC

Crystalline Solid
UC

∆F 1 (FEP)

∆F 2 (TI)

(a) The Vega et. al Path

Ideal Einstein Crystal
UE =

∑
i

1
2 ki(ri − ri,0)2

Crystalline Solid
UC

∆F (TI)

(b) The Frenkel and Ladd Path

Figure 4.2: Qualitative overview of the difference in the thermodynamic
pathways between the ideal Einstein crystal and a solid (i.e Vashishta SiO2)
taken in the Vega et. al as well as the Frenkel and Ladd path.

The two pathways are summarized in Fig. 4.2, which highlights the difference
between the two pathways.

4.4.1 Constraining the center of mass & finite-size corrections

In order to prevent a sharp peak in the integrand during thermodynamic
integration as λ → 1 and the harmonic potential goes to 0 it is recommended
to fix the center of mass during Einstein crystal computations. This introduces
two extra terms to the free energies,

FC = FE +
(
F CM

E − FE

)
+ ∆F CM +

(
FC − F CM

C

)
, (4.33)

associated with introducing and removing the center-of-mass constraint, where
F CM

E , F CM
C denotes the free energies of the Einstein crystal and solid with a

fixed center mass. The additional term introduced to the free energy for a
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4.4. The Einstein Crystal Method

single, for systems with a single spring constant k, was originally derived by
Polson et al. [38]

δF = − 1
β

ln

( βk

2π
∑N

i=1 µ2
i

)3/2(
V

N

) (4.34)

the reduced mass µi = mi/
∑

i mi. More recently, Khanna et al. [39] generalized
this result to the case in which the spring constants are no longer equal,

δF = − 1
β

ln


 βk

2π
∑N

i=1
µ2

i

ki

3/2(
V

N

). (4.35)

In addition to the finite-size correction contained in Eqn. 4.35, it was shown by
Vega and Noya [40] that the Einstein crystal method has intrinsic finite-size
effects, and proposed the finite-size scaling relation

f(N) = f(∞) + 1
N

d (4.36)

where f(∞) is the free energy per particle in the thermodynamic limit and d is
the (arbitrary) gradient of the line.
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CHAPTER 5

Computing the Free Energy of
Vashishta SiO2 in LAMMPS

In this chapter we will look into how several variants of the Einstein crystal
method may be implemented in the LAMMPS molecular dynamics package.
Whilst the method, as well as its implementation in LAMMPS has been
discussed in the literature on multiple occasions [34, 36, 39, 41, 42], yet many
important details in the implementation is scattered making the barrier of entry
to effectively utilizing the method somewhat high.

Given the end-goal of computing phase-diagrams, particular emphasis is
put on efficient and automated processing and analysis of a large number of
simulations. A crucial component in finding coexistence points, lest we spend
significant time analyzing potentially thousands of simulations by hand.

We begin by giving a brief overview of the computational pipeline that has
been developed, followed by detailed descriptions of the implementation and
analysis of each step. LAMMPS scripts are provided in appendices C.1, C.2,
C.3, and the python package that implements the workflow described in this
chapter has been made available publicly on github1.

Finally we study and compare the different implemented variants of the
Einstein crystal method method by computing the Helmholtz free energy of
α-quartz.

5.1 Computational Pipeline

A major challenge in this thesis has been the development of an efficient and
automated computational pipeline that enables us to perform a large number
of free energy calculations across isotherms or isobars in (P, T ), as to locate
points of coexistence between two phases. Furthermore, given the intrinsic
finite-size effects of the Einstein crystal method [34], we should for each (P, T )
perform simulations for several N employing the finite-size scaling relation by
Vega and Noya [40] and extrapolating to an infinitely large crystal. Beyond just
submitting and organizing a large number of molecular-dynamics simulations,
we also wish to ensure that our insight is sound and that our results are robust.
Hence, a complete and automated statistical analysis is performed for each free
energy calculation providing robust estimates of the standard error.

1https://github.com/nicholaskarlsen/eincrystal
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5.2. Crystal Initialization

The first step in the pipeline is the so-called initialization step. This step
takes an initial structure sourced from crystallographic data and runs molecular-
dynamics to reach equilibrium in the NPT ensemble. Both the shape of the
system and the positions of each individual atom is averaged in time, and a
reference state for use in the subsequent NV T simulations is generated.

Following this, we have the second step of the pipeline where we compute
the free energy using one of the several variations of the Einstein crystal method.
Namely; direct equilibrium or non-equilibrium thermodynamic integration, or
by free energy perturbation followed by thermodynamic integration. The
three aforementioned methods are in principle equivalent, and should be
interchangeable. However, they may differ in their applicability for different
systems, as is found to be the case for Vashishta silica.

Note also that these steps are independent across different N, P, T and
crystal structures, and may therefore be run parallel if one has access to a
compute cluster, which is strongly advised if one wishes to apply the methods
in this thesis to produce a phase diagram.

To summarize, we refer to the Fig. 5.1 which gives a graphical depiction of
the pipeline.

Prepare Systems
{Crystal, N , T , P}

Equilibrate System
Crystali Ni, Ti, Pi

. . . . . .

Free Energy Computation
∆Fi

. . . . . .

Process simulation data

Figure 5.1: Outline of the general pipeline employed when computing free
energies for a large number of different systems in parallel.

5.2 Crystal Initialization

The starting point for the free energy calculations is a set atomic positions,
sourced from experimental crystallographic data or computational methods.
These may be found in articles, or more readily in an online database of which
there are several. Once a set of atomic positions have been obtained, the crystal
must be equilibrated to the equilibrium NPT state according to the interaction
potential, as this will general not correspond exactly to the crystal from sourced
data. Either due to a difference in the interaction, the conditions at which the
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5.2. Crystal Initialization

data was captured, or both. Given that the quality this equilibration process
sets the stage for all further calculations, it is rather important that it is done
correctly.

5.2.1 Equilibrating the simulation box

The first step in the equilibration procedure is to obtain the correct shape of
the simulation box, which in short is done by sampling the box shape in an
NPT simulation and re-scaling to the average shape. A LAMMPS script that
does this for Vashishta SiO2 is provided in appendix C.1.

The process begins by initializing the velocities of each atom by sampling
from the normal distribution N

(
0,

√
βm
)

individually for each component
vx, vy, vz, leading to a Maxwell-Boltzmann distribution of the particles speeds.
To avoid roto-translation of the lattice, the net translational and rotational
velocities are subsequently subtracted. Before starting the NPT simulation
it is a good idea to run the system for a few steps in NV T . This is because
the initial geometry may have an excess of potential energy when evaluated
in the MD potential, which in an NPT simulation may lead to a rapid initial
expansion of the crystal, bringing it far away from equilibrium and in the worst
case cause a change in the crystal structure. A simple strategy for dealing with
this is to run the system in NV T , where the box shape is fixed, for long enough
to allow the potential energy to dissipate. An alternative approach utilized by
Menon et al. [43] is to run NPT with an initial temperature T/4, gradually
increasing to T/2 prior to the regular NPT simulation. Some limited testing
of this approach yielded comparable results to the former, however I suspect
this method may also suffer problems for high temperature, or particularly
energetic initial configurations. Hence the former approach of running in NV T
was preferred. To thermostat the system we utilized the Langevin thermostat,
but in principle any thermostat that properly samples the canonical ensemble
may be used for equilibration. In order to prevent the crystal from drifting, it
is important to ensure that the thermostat does not act on the center of mass.
For the Langevin thermostat, this is done by setting the net force acting on the
system to zero. We also ensure that the temperature used in the thermostat
excludes the center of mass. In LAMMPS, this is accomplished in the following
way

1 compute Tcm all temp/com
2 fix 2 all langevin ${temp} ${temp} $(1000*dt) ${SEED} zero yes
3 fix_modify 2 temp Tcm

At this point we turn on the barostat. The barostat should be explicitly set
to expand/contract centered on the center of mass, as this is not the case by
default in LAMMPS. Furthermore, anisotropic pressure should be imposed by
the barostat to ensure that the solid is under hydrostatic pressure and prevent
the build up of stress in the crystals [34]. This is done by calling

1 compute COM all com
2 variable xcm equal c_COM[1]
3 variable ycm equal c_COM[2]
4 variable zcm equal c_COM[3]
5 fix 1 all nph aniso ${press} ${press} $(1000*dt) fixedpoint ${xcm} ${ycm} ${zcm}
6 fix_modify 1 temp Tcm
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5.3. Thermodynamic Integration

where we note the use of the nph fix style, which is used because we thermostat
the system using the langevin fix. It is worth to note that this may also be
accomplished in a similar way with the npt fix, which combines the Nose-Hoover
thermostat [44, 45] with the Parinello-Rahman barostat [46] in a method by
Shinoda, Shiga and Mikami [47].

The system should then be ran in NPT until equilibrium. Following this
additional steps should be performed in the NPT -ensemble whilst sampling
the shape of the simulation box, quantified by the length of each side. Once a
sufficient number of samples have been obtained, the simulation box along with
the atomic positions should be re-scaled to the average box shape.

5.2.2 Equilibrating the atomic positions

After the simulation box has been re-scaled, the system will then be in some
random configuration which most likely differs a bit from an ideal crystal. It is
not crucial that we obtain a fully ideal crystal as a reference state in Einstein
crystal computations [34], however it is beneficial to get as close as possible. In
Vega et al. [34] it is suggested to perform an energy minimization with gradient
descent to relax the system into an ideal crystal. However, for many of the
systems considered in this thesis this is problematic. The reason for this, which
was observed when testing the methodology, is that gradient descent essentially
relaxes the system into a state corresponding to a temperature of 0K, which may
significantly change the structure of systems stable at higher temperatures. An
example of this is β-quartz, which was observed to change into a non-periodic
system after such an energy minimization. Hence we instead opt to run an
additional NV T simulation whilst sampling the positions of each atom in the
system individually and setting them to their average position. in LAMMPS,
the position of each atom may be averaged by calling

1 compute xu all property/atom xu
2 fix avex all ave/atom 1 ${nsteps_pos_ave} ${nsteps_pos_ave} c_xu

and similarly for the y and z dimensions. One the sampling has ended, the
positions of each atom may then be set to their average by

1 variable avex atom f_avex
2 set atom * x v_avex y v_avey z v_avez

This works for crystals under the assumption that all the atoms in the system
approximately oscillate periodically about a point, and is free of any defects.
Hence this methodology will only work for atomic solids and alterations must
be made for molecular-solids, yet the main idea is likely still applicable.

5.3 Thermodynamic Integration

In this section, we will look into how to perform thermodynamic integration
along the Frenkel & Ladd path [21] in LAMMPS. As a brief reminder, this
involves computing the integral

∆F =
∫ 1

0
dλ

〈
∂U(λ)

∂λ

〉
λ

(5.1)
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5.3. Thermodynamic Integration

with the the linear homotopy

U(λ) = λUC + (1 − λ)UE (5.2)

where UC denotes the interaction potential, in this case Vashishta, and UE a
harmonic spring potential. The derivative of this potential is simply

∂U(λ)
∂λ

= UC − UE . (5.3)

Following Khanna et al. [39] we opt to compute Eqn. 5.1 numerically using a
Gauss-Legendre quadrature method as

∆F ≈
n∑

i=0
wi

〈
∂U(λ)

∂λ

〉
λi

(5.4)

where wi are the weights of the n quadrature points on the interval [0, 1].
The integrand is evaluated by performing n separate MD simulations driven
by the U(λ) potential. A LAMMPS script performing these simulations is
listed in appendix C.2. The primary components of which is the fix spring

command, which applies harmonic springs to each atom tethering them to their
initial positions, and the fix adapt command. This command allows us to scale
the magnitude of UC , but may unfortunately be somewhat difficult to utilize,
especially for many-body potentials like Vashishta. This is discussed in depth
in section 5.3.4.

5.3.1 Determining the Spring Constants of the Harmonic Potential

There exists several approaches [39] for setting the spring constants of the
harmonic potential in the Einstein crystal reference state, but here we have
opted to use mean-squared displacement (MSD) based springs [33] such that
the MSD of the Einstein crystal reference state is equal to that of the Vashishta
crystal. This is done by measuring the MSD,

〈
(∆rrr)2〉, of the Vashishta crystal

in an NVT simulation, and setting the spring constants in the Einstein crystal
to

ki = 3kBT

⟨(∆ri)2⟩
. (5.5)

We also employ the results from Khanna et al. [39] which generalizes the finite-
size corrections of Polson et al. [38] to the case of multiple, different spring
constants. We therefore measure the MSD of Si and O atoms individually, and
assign them each different spring constants. For practical reasons this is done
during the crystal initialization step, and thus the LAMMPS measurements are
found towards the end in the script listed in appendix C.1.

5.3.2 Constraining the Center of Mass

In performing these simulations it is also important to keep the center of mass
constrained in order to supress a weak divergence of the integrand Eqn. 5.1 at
λ = 0 [34]. In the literature, it is suggested that this may be accomplished by
ensuring that the thermostat excludes the center of mass and that the net force
is zeroed [36, 39] which in LAMMPS translates to
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1 fix fID group-ID langevin Tstart Tstop damp seed zero yes
2 compute cID all temp/com
3 fix_modify fID temp cID

and utilizing the recenter command2 at each step [36, 39, 48].
1 fix fID all recenter INIT INIT INIT

However, it was found during the work on this thesis that these two constraints
alone are not sufficient as they allow for drift in the momentum of the center of
mass. For this reason, one should additionally impose an explicit constraint to
the momentum of the center of mass by calling

1 fix fID all momentum 1 linear 1 1 1 rescale

This is studied in detail in section 5.4.1, when considering non-equilibrium
thermodynamic integration. Yet we expect that the findings should also be
applicable to thermodynamic integration.

5.3.3 Choice of Thermostat

In Einstein crystal computations, or indeed any computations driven by a
harmonic potential, use of the Nose-Hoover thermostat [44, 45] is ill advised.
Hoover [45] made a remark that it is not entirely clear if it is the canonical
or microcanonical ensemble that is being sampled for harmonic systems
being driven particularly small or large spring constants, k. Given that k
is made progressively smaller during thermodynamic integration, we would
thus enter into this questionable territory and should instead opt to use a
different thermostat. Aragones, Valeriani and Vega [42] tested the use of the
Langevin [49] and the Bussi-Donadio-Parrinello [30] thermostats in Einstein
crystal calculations and found them to yield equivalent results. While both
thermostats are available in LAMMPS, only the Langevin thermostat is available
in a standard distribution of LAMMPS with the Bussi-Donadio-Parrinello
thermostat being part of the EXTRA-FIX extension. For this reason, the
Langevin thermostat was preferred.

5.3.4 Scaling the Vashishta potential in LAMMPS

In order to perform thermodynamic integration along the Frenkel and Ladd [21]
pathway one needs to scale the strength of the interaction potentials of both
the target and reference systems when performing thermodynamic integration.
As a reminder, the potential used in this process is in the form

U(λ) = (1 − λ)UE + λUC (5.6)

where λ ∈ [0, 1]. This may be done using the fix adapt command3 in LAMMPS
which lets the user scale the value of certain parameters throughout a simulation.
However, in order for an interaction potential to be scaled with this fix, an

2As a practical note, the recenter fix should be applied after all other fixes in the
LAMMPS script. Else, the transform may be applied prior to the integration of the equations
of motion rather than after.

3See https://docs.lammps.org/fix_adapt.html

28

https://docs.lammps.org/fix_adapt.html


5.3. Thermodynamic Integration

extract method needs to be implemented for that potential in the .cpp file that
defines it, usually named in the form pair_<potential>.cpp. To understand this,
let us consider the LAMMPS implementation of the Leonard-Jones potential

ULJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]
, (5.7)

contained in pair_lj_cut.cpp in the LAMMPS source code4. The following is an
excerpt from this file, where the extract method is defined.

1 void *PairLJCut::extract(const char *str, int &dim)
2 {
3 dim = 2;
4 if (strcmp(str, "epsilon") == 0) return (void *) epsilon;
5 if (strcmp(str, "sigma") == 0) return (void *) sigma;
6 return nullptr;
7 }

Since scaling ULJ by a factor λ is equivalent to scaling the parameter ε by
λ, which enables us to scale the Leonard-Jones potential with the following
command in LAMMPS

1 fix f_ID all adapt 0 pair lj/cut epsilon * * v_lambda

An extract method is relatively simple to implement for most potentials, and
a list of the potentials for which it is already implemented is found in the
LAMMPS documentation5. Unfortunately this is not the case for many-body
potentials. Potentials in the MANYBODY package differ from regular two-body
potentials in how their parameters are stored, and at the present time no extract
method has been implemented for the Vashishta potential in LAMMPS.

In order to scale the Vashishta potential we have thus taken two separate
approaches which are tested against each ofther for self-consistency. In the first
approach we introduced a scale parameter in the PairVashishta class in a fork
6 of the LAMMPS source code. The scale parameter acts on the force acting
on each atom, scaling it linearly. The scale parameter is also passed to the
extract method, making it accessible by the fix adapt command in LAMMPS
such that we may scale the Vashishta potential in the same way as described
for Leonard-Jones, replacing epsilon with scale.

The second approach was to circumvent LAMMPS altogether and instead
scaling the Vashishta potentials parameters directly in the parameter file. When
we scale the Vashishta potential by a constant factor λ, the potential takes the
form

λ · U
(
rN
)

=
∑

i

∑
j>i

λ
Hij

rηij
+ λ

ZiZj

r
e−r/r1s − λ

Dij

r4 e−r/r4s − λ
Wij

r6

+
∑

i

∑
j ̸=i

∑
k>j
k ̸=i

λ
Bijk(cos θijk − cos θ0)2

1 + Cijk(cos θijk − cos θ0)2 e
ξ

rij −r0,ij e
ξ

rik−r0,ik

(5.8)

4https://github.com/lammps/lammps/blob/develop/src/pair_lj_cut.h
5https://docs.lammps.org/fix_adapt.html
6https://github.com/nicholaskarlsen/lammps-scale-vashishta/blob/master/src/MANYBODY/

pair_vashishta.cpp
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Thus, we may scale the potential by making the following modifications to the
parameters

Hij → H ′
ij = λHij

Dij → D′
ij = λDij

Zi → Z ′
i =

√
λZi

Zj → Z ′
j =

√
λZj

Wij → W ′
ij = λWij

Bijk → B′
ijk = λBijk

(5.9)

to do this in an effective manner, we extend the genpot7 python package adding
a "scale" functionality which implements this transformation and writes the
resulting parameters out in a parameter file that is then read by LAMMPS.

If the scaling has been implemented correctly, we should at least expect
the two methods to be self consistent. A simple quantitative test of the
implementations is then to measure the mean-squared displacement for various
scale-factors in [0, 1] in both methods. We expect the mean-squared displacement
to grow to an increasingly larger plateau with a decreasing scalefactor, eventually
changing to a linear function when we get diffusion according to Fick’s law as
the interactions due to the Vashishta potential vanish and the particles behave
solely according to the Langevin thermostat resulting in what is essentially
Brownian motion.
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Figure 5.2: Mean-squared displacement of α-quartz scaled manually (coloured
lines) and using fix adapt in LAMMPS (red dashed lines)

This is shown in Fig. 5.2, where we observe that both implementations
overlap exceptionally well, as expected given all the MD simulations were ran
with a fixed seed. The slight deviations observed after 4 ps in some of the

7https://github.com/evenmn/generate-parameter-files
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lines may be attributed to slight numeric differences in the implementations,
resulting in slightly different trajectories. As the scale-factor goes to zero we
also observed a straight line indicating linear diffusion as expected. Hence the
methods are deemed self-consistent, and for practical reasons the LAMMPS
implementation chosen as one used in the subsequent TI calculations.

5.3.5 Detecting Equilibration

In computing Eqn. 5.4 an important aspect is to ensure that the trajectory we
are averaging over is indeed an ensemble of equilibrium states. Furthermore, it
is also desirable that we obtain statistically robust estimates of the standard
error. We will in this subsection and the next tackle both of these topics, which
together forms a method of fully automatic the analysis of our MD trajectories.

First, we consider the problem of detecting equilibration. Each step in the
integrand of Eqn. 5.4 are evaluated from individual MD simulations, starting
from an ideal reference state with velocities sampled from a Maxwell-Boltzmann
distribution. This incurs a period of equilibration, during which we are not
sampling from the canonical ensemble, and the trajectories from this period
of equilibration should not be included in the calculation of any ensemble
averages. As is often observed in MD, the equilibration time should also be
expected to differ for differing conditions and system sizes. With the goal of
automating as much of the statistical analysis as possible, we have considered
several approaches. First there is the reverse cumulative averaging method
by Yang, Bitetti-Putzer and Karplus [50], which looks for convergence in the
function

f(i, n) = X̄RCA
i = 1

i

n−1+1∑
j=n

Xj (5.10)

to determine equilibration with respect to the normally distributed observable
{X}. For correlated data-sets, such as MD trajectories, this requires corse-
graining to de-correlate the dataset such that the central-limit theorem applies.
However, the proposed method to accomplish this did not yield comparable
results according to what was presented by the authors for our system and the
method was therefore abandoned in favour of an alternative. We look to the
method by Chodera [51], which was inspired by [50], but as noted by the author
does not rely on the underlying distribution being Gaussian, as opposed to
reverse cumulative averaging. In this method, we consider the effective number
of uncorrelated points in a sub-sample of the trajectory t = [t′, τ ]

Neff(t′) ≡ τ − t′ + 1
gt

(5.11)

where τ is the total simulation time, and gt ≡ 1 + 2τc the statistical inefficiency,
derived from the correlation time τc. The method then works by setting t′ = τ ,
and gradually decreasing it with the expectation that Neff should become larger
as we include a larger portion of the trajectory. That is, until atypical data
is eventually encountered as t′ approaches 0 and the non-equilibrated portion
of the trajectory enters into the calculation, at which stage we expect Neff to
sharply decrease. Therefore, the equilibration time, t0, is defined simply as the
t′ for which Neff is maximal. The approach was tested in multiple trajectories,
one of which are shown in the top half of Fig. 5.3, where the non-equilibrated
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Figure 5.3: First few fs of a TI step with λ = 0 (pure Einstein crystal) along
with the block-averaged estimate of the standard deviation of the mean where
teff = ∆t · Ns/Neff

region has been shaded in grey. The method was observed to perform well
throughout the trajectories it was tested on, and the algorithm was implemented
as part of the automated analysis.

5.3.6 Estimating the Standard Error

The error of the quadrature Eqn. 5.4 may be estimated by [39]

σ⟨∆f⟩ =

√√√√ n∑
i=1

w2
i σ⟨∂u/∂λ⟩i

(5.12)

where the standard deviation of the mean value of ∂u/∂λi is computed as

σ⟨∂u/∂λ⟩i
=

σ∂u/∂λi√
Ns

(5.13)

for Ns independent samples. It is however usually the case that molecular-
dynamics trajectories are correlated with a non-zero correlation time τc. From
this it follows that the central-limit theorem is no longer valid, and by extension
Eqn. 5.13 is not directly applicable and will yield an under-estimate of the true
standard deviation if employed on the entirety of the measured trajectory [52,
53]. The review article by Grossfield et al. [54] summarizes many of the best-
practice methods for obtaining error estimates in MD as well as MC, but as they
remark, there is no universal solution to this problem. In their textbook, Allen
and Tildesley [24] also suggests several methods, one of which is the blocking
method by Flyvbjerg and Petersen [55]. The blocking method is composed of
what is essentially a series of renormalization group transformations,

x′
i = 1

2(x2i−1 + x2i). (5.14)
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The authors showed that the mean is invariant under this transformation, and
that the standard deviation should converge to an estimate of its true value.
The method is particularly appealing given is requires no additional parameters,
and should in theory work for any equilibrated MD trajectory. The method
was tested on some TI calculations for α-quartz at T = 300 K, P = 1 bar, but
no clear convergence was observed for the trajectories it was tested on.

Another suggested approach is the so-called block-averaging method. In
this method, we split our trajectory into a set of M non-overlapping blocks of
size NB. Each block b = 1, . . . , M then contains indices (b − 1)M < i ≤ bM .
The mean of each block is then computed individually for each block b as

⟨O⟩b = 1
NB

∑
i∈b

O(ti). (5.15)

For sufficiently large blocks the block-averages are uncorrelated, and thus their
standard deviation

σ2(⟨O⟩b) = 1
M − 1

m∑
b=1

(⟨O⟩b − ⟨O⟩)2 (5.16)

provides a good estimate of the true standard deviation of the mean. A
notable challenge in using block-averaging with the intent of a fully automated
statistical analysis is the determination of a suitable block-size, NB. Allen
and Tildesley [24] offers some helpful pointers, but in general some manual
observation is advised. In Khanna et al. [39], they based their block-size on two
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Figure 5.4: Auto-correlation function of ∂u/∂λ, C(τ), for α-quartz consisting
of N = 1350 atoms at T = 293 K with a lattice equilibrated at P = 1 bar

different estimates of the correlation time. One of which was by integrating
the auto-correlation function, C(τ), with respect to time. This was tested for
some several systems, for example Fig. 5.4, but had a tendency to yield low
correlation times. Furthermore, C(τ) did not always converge causing τC to
fluctuate and was thus abandoned. However, if we recall from the previous
subsection the method of Chodera [51] gives us Neff, the number of effective
independent samples out of the Ns samples contained in the trajectory. With
this, we may efficiently determine a suitable block-size as Ns/Neff. This was
tested for different trajectories, one of which is depicted in Fig. 5.3 with the

33



5.4. Non-Equilibrium Thermodynamic Integration

automatically deduced block-time teff marked in red. Throughout testing this
approach seemed well behaved for the systems being studied, and was thus
implemented as the second part of the automated analysis.

So in summary, the automated analysis scheme for TI trajectories is
composed of two stages. first, the un-equilibrated region is filtered out by
the method of Chodera [51], then the standard error is approximated by block-
averaging, with a block-size of NB = Ns/Neff.

5.4 Non-Equilibrium Thermodynamic Integration

Having thoroughly discussed the implementation of thermodynamic integration
in LAMMPS, we now move on to the non-equilibrium variant. As a reminder
non-equilibrium thermodynamic integration in the Einstein crystal method is
done by computing the work done

W =
∫ ts

0
dt

∂H(λt)
∂λt

∂λt

∂t
(5.17)

in going from an ideal Einstein crystal to a Vashishta crystal in both directions,
in a single dynamic process governed by the time-dependent potential

U(t) = λ(t)UE + (1 − λ(t))UC (5.18)

with switching function λ(t). The change in free energy between the two systems
is then given by

∆F = 1
2(⟨WE→C⟩ + ⟨WC→E⟩). (5.19)

averaged over multiple realizations of the process. In LAMMPS, this is made
relatively easy by the spring/ti fix by Freitas, Asta and Koning [36]. This fix
runs the process by transforming from a Vashishta crystal to an Einstein crystal,
and back again with several possible switching functions λ(t). Notably, this is
done without requiring a scale parameter as discussed in section 5.3.4, making
the approach more accessible by comparison.

Many of the same practical considerations apply to both the regular and
non-equilibrium TI, namely the choice of thermostat still matters (cf. section
5.3.3) and the center of mass must be constrained (cf. section 5.3.2). The latter
of which we revisit in this section and perform a thorough study of the effects
of different constraints. In regards to the switching function during the used
during the switching process between the two systems, we follow the literature
[56] and employ Eqn. 4.26.

5.4.1 The Effects of Different Center of Mass Constraints

How to constrain the center of mass in Einstein crystal computations
implemented in LAMMPS has been has been discussed several times in the
literature [36, 39, 42]. However, in following these instructions a drift in the
momentum of the center of mass (COM) was observed in our simulations of
Vashishta SiO2. We have therefore performed a comprehensive study of the
effects of the different possible constraints to the COM in order to determine
the optimal one. The results are summarized in Fig. 5.5, where we observe 30
realizations of the forward and backward switching indicated by blue and red
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[Å
]

0 250

t [ps]

10−13

10−8

10−3

v
C
M

[Å
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[Å
]

0 250

t [ps]

10−17

10−16

v
C
M

[Å
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Figure 5.5: Non-Equilibrium thermodynamic integration from an Einstein
crystal to Vashishta SiO2 performed with different constraints.
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respectively. The un-coloured, white regions in the rCM and vCM plots indicate
the equilibration period between each switching process.

We start by considering the unconstrained process in 5.5a. In these
simulations, we apply no explicit constraints on the center of mass yet still
ensure that the thermostat does not act on the center of mass with the zero yes

argument to the Langevin thermostat as described in section 5.3.2. We observe
that once the switching process begins, the COM gains significant speed yet the
COM is kept reasonably in place. This makes sense given the harmonic springs
of the Einstein potential fixing the atoms about their initial positions. Then
once the backward process begins, and the harmonic springs begin to relax we
observe that the center of mass begins to shift quite dramatically. We will not
spend much trying to find out why exactly this occurs, but a likely explanation
may lie in the time dependent nature of the switching potential U(λt). Say
for example that at some point during the forward switching that the system
is in a region of configuration space that is accessible to a Vashishta crystal,
but not to an Einstein crystal, essentially that one of the springs are stretched
a bit further than what it normally would. The system would then gain an
unnatural jolt of energy. Say this occurs multiple time during the process, and
thus the COM may gain some energy. It is worth to note that this is purely a
speculation based on physical intuition on my part, and no in-depth analysis
has been done.

With this in mind, we then move on to Fig. 5.5b, where recenter fix has
been added to impose an explicit constraint on the COM. Whilst the center of
mass is kept seemingly in place, we observe the exact same behaviour of vCM

as in the unconstrained case. This may be explained by the way the recenter

works, which is essentially just performing a change of coordinates by setting
rcm equal to its initial value at each step8, hence it is not sufficient for Einstein
crystal calculations. What is instead advised is to use the momentum fix, with
the re-scale argument which preserves the momentum net momentum in the
system and thus enabling the thermostat to work as intended. As we observe in
Fig. 5.5c, this has remedied the problem of the COM gaining speed, and does a
reasonably good job at keeping the system centered. Lastly we see in Fig. 5.5d,
where both recenter and momentum are applied and the small drift of rCM is
zeroed out.

Table 5.1: Change in free energy computed with different constraints

∆f 2σ⟨∆f⟩
Abs. diff. in ∆f
from both fixes

no constraint 3.399124342 8.9 · 10−5 3 · 10−4

fix recenter 3.398827734 7.6 · 10−5 1 · 10−6

fix momentum 3.398826365 7.2 · 10−5 1 · 10−8

both fixes 3.398826355 7.2 · 10−5 −

To see the effects the different constraints has on the resulting change in
free energy, we look to table 5.1. Taking the case of applying both fixes as the

8cf. this discussion on the LAMMPS mailing list https://matsci.org/t/center-of-mass-drift-in-
long-npt-simulation/24197/9
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5.5. Testing thermodynamic integration and non-equilibrium thermodynamic
integration

ground truth, we observe that the difference falls within 2σ with 30 samples for
3 constraint method, with only the unconstrained method deviating. However,
if one needs a higher level of precision and were to increase the number of
samples by roughly an order of magnitude, the effects of the constraints would
begin to matter as σ ∝ 1/

√
N and the error in bias from solely using fix recenter

may exceed that due to variance.

5.5 Testing thermodynamic integration and non-equilibrium
thermodynamic integration

In order to evaluate the two methods described so far, namely equilibrium
and non-equilibrium variants of thermodynamic integration, we will apply
the two methods by computing the free energy of α-quartz. In particular,
we look at α-quartz equilibrated to T = 300 K, P = 1 bar for system sizes
N = 720, 1350, 2268, 3969, 5760, 8019, 10800, each of the initial states being
constructed using the molecular-builder package [57]. The crystals were first
allowed to relax in NVT for 5 ps followed by an equilibration period of 100 ps
in NPT. The simulation box dimensions were then sampled for an additional
100 ps, and subsequently scaled to its average shape. The per-atom positions are
then sampled for 50 ps, and set to the average position. This state is then stored,
and to be used as the reference states for the subsequent TI calculations. The
mean-squared displacement relative to the reference state, for Si and O atoms
individually, is then measured for 100 ps, and the average is used to compute
the spring constants of the Einstein crystal reference states by Eqn. 5.5.
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Figure 5.6: Finite-size scaling of the free energy in α-quartz at T = 300 K
with a lattice equilibrated at P = 1 bar and the free energy calculated using
the Einstein crystal method with thermodynamic integration as well as non-
equilibrium thermodynamic integration. Weighted least-squares regression with
inverse-variance weighting is employed, and twice the standard error is used as
the uncertainty estimate in f(∞) in both cases.

In the equilibrium method, thermodynamic integration is performed along
a 25 point Gauss-Legendre quadrature, sampling for 100 ps at each step. For
the non-equilibrium variant we employ a switching time ts = 100 ps with 50 ps
of equilibration prior to both the forward and backward switching processes.
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Non-equilibrium thermodynamic is repeated 10 times, with the mean taken as
the change in free energy.

The resulting free energies are shown in Fig. 5.6, where we have extrapolated
to the thermodynamic limit, f(∞), according to the finite-size scaling relation
Eqn. 4.36. We note the heteroskedastic9 noise in f(N), and weighted least-
squares regression with inverse-variance scaled weights is employed in favour of
ordinary least-squares as the best unbiased linear estimator [58].

We observe that both methods are consistent to the fourth decimal, with
the non-equilibrium variant having errors in 10−6, an order of magnitude lower
than in the equilibrium variant. Note that for each N , a total 2.5 ns and 3 ns
of simulation data went in to the equilibrium and non-equilibrium variants
respectively. Hence, this extra order of magnitude in precision was obtained
by only 20% additional simulation data, and by extension, computation time.
Furthermore, we may arbitrarily add precision to the non-equilibrium result
by running additional simulations. Where we should expect an extra order of
magnitude of precision as we increase the number of simulations by a power of 10.
In contrast, we may not as trivially increase the precision of the equilibrium TI
integral. Whilst be may sample additional data at each point in the integrand,
we may not arbitrarily add new points to the already computed Gauss-Legendre
quadrature points. Hence, to increase the precision of the integral, it would
have to be redone in its entirety for an entirely new set of quadrature points.

5.6 Free Energy Perturbation Followed By Thermodynamic
Integration

Lastly we consider the variation of the Einstein crystal method as it is described
in [34, 40, 41, 42], which we refer to as the Vega path, consisting of a free
energy perturbation from an Einstein crystal to an interacting Einstein crystal
followed by thermodynamic integration to the Vashishta crystal. Whilst the
last to be presented, this was the first approach that was attempted by virtue
of not requiring us to scale the Vashishta potential, meaning that it is accessible
in LAMMPS without modification. As usual LAMMPS scripts implementing
both steps are included in appendices C.4 and C.5, which should give sufficient
details on how to implement this method.

As a reminder, the change in free energy is in this method computed in
two steps. First the difference in free energy between the ideal Einstein crystal
and a so-called interacting Einstein crystal, that is a crystal governed by the
combined potential

U(rrrN ) = UE(rrrN ) + UC(rrrN ), (5.20)
by free energy perturbation (FEP). Following this, thermodynamic integration
is performed to compute the difference in free energy between the interacting
Einstein crystal and the Vashishta crystal along the linear homotopy

5.6.1 Free Energy Perturbation in LAMMPS

In free energy perturbation (FEP) we aim to compute

∆F1 = ln
〈
e−βUC

〉
E

(5.21)
9i.e the noise is not constant in 1/N
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which entails measuring the Vashista potential in a system governed solely
by the Einstein crystals harmonic potential. In LAMMPS this may be done
by first running a simulation consisting of an ideal Einstein crystal using the
fix spring command, then re-running the resulting trajectory (dumpfile) and
measuring the potential energy with the Vashishta potential (cf. appendix C.4).
We again constrain the center of mass as described in section 5.3.2 and utilize
the Langevin thermostat following the same rationale as in section 5.3.3. In
regards to the choice of spring constants we deviate from the choices made for
the previous two cases. Previously we opted for MSD based springs following
the recently published results in [39], where the Einstein crystal method was
generalized to the case of different spring constants. This was not yet available
at the time [34, 42] was published, and thus we instead opted to follow their
strong recommendation of artificially setting the mass of the atoms in the
system to be the same. Vega et al. [34] states, without citation or argument,
that this does not change the coexistence properties. We thus briefly explore
this idea in appendix A.

The exponential exp{−βUC} has a tendency to grow large, leading to
numeric overflow [34, 41] and it is advised to rewrite the expression by adding
and subtracting the potential energy of the ideal reference state, UL, in the
exponential yielding

∆F1 = UL − 1
β

ln
〈

e−β(UC−UL)
〉

E
. (5.22)

In regards to the spring constant, k, it is recommended [34] to set it such that

ln ⟨exp{−β(UC − UL)}⟩E ≈ 0.02 NkBT. (5.23)

Since we do not know a priori which k satisfies this recommendation one must
perform a search, either manually or by the use of some algorithm like for
example a midpoint method.

5.6.2 Thermodynamic Integration in LAMMPS (The Vega Path)

In the Vega path we perform thermodynamic integration from the interacting
Einstein crystal to the Vashishta crystal along the linear homotopy

U(λ) = (1 − λ)(UE + UC) + λUC (5.24)

which has the derivative
∂U(λ)

∂λ
= −UE . (5.25)

To further suppress the effects of the expected weak divergence in ⟨UE⟩, it is
recommended [34, 41] to rewrite the TI integral to the form

∆F2 = −
∫ ln(k+c)

ln(c)
d(ln (λk + c)) ⟨UE⟩λ (λk + c) (5.26)

which again is integrated numerically with a Gauss-Legendre quadrature method.
Otherwise, all the usual concerns of constraining the center of mass (section
5.3.2) and thermostats (section 5.3.3) still apply.
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Figure 5.7: Part of the ∆F1 term in the Vega variation of the Einstein crystal
method for α-quartz equilibrated at P = 1 bar, T = 300 K, where the shaded
region in (a) corresponds to the recommendation by [34]

5.6.3 Testing the Vega Pathway

In order to test the method, look at α-quartz equilibrated to P = 1 bar,
T = 300 K according to the methodology in section 5.2. Following [34], we
artificially set the mass of both Si and O to 20 g/mol, approximately the average
mass in SiO2. We performed FEP for a selection of k ∈ [1, 600] and several
system sizes. We look at the behaviour of the left hand term in Eqn. 5.23
in Fig. 5.7 where in 5.7a we have shaded the interval [0.02, 0.04]. The first
thing to note is the exclusion points greater than ∼ 700 in Fig. 5.7b. These
points were not willingly excluded, but rather due to numerical overflow in
ln ⟨exp{−β∆UC}⟩. Hence subtracting UL on its own is not is not sufficient for
Vashishta SiO2, and the exponents still grow too large for numerical evaluation.
Looking at Fig. 5.8 we observe how this may be a problem. Setting k to
200 − 300 as required to avoid the numerical divergence means that the atoms
are essentially locked in place to their rest positions, and we will in turn have
to perform thermodynamic integration over an exceedingly long interval where
very little happens. The first attempt to salvage this problem and numerically
evaluate the exponential at lower k, was to expand in a series of cumulants

ln
〈

e−β∆UC)
〉

E
=

∞∑
n=1

κn
(−β)n

n! (5.27)

where κn denotes the n-th cumulant of ∆UC . This trick worked quite well for
k > 5, but produced some rather large numbers upwards of 1036 for k < 2. As
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Figure 5.8: Mean-squared displacement of an interacting Einstein crystal with
respect to the spring constant, k

a second attempt, we instead further re-write the expression

ln
〈
e−β∆U

〉
= ln

(
1

M

M∑
i=1

e−β∆Ui

)

= ln
(

M∑
i=1

e−β∆Ui·X/X

)
− ln M

= ln
(

M∑
i=1

eXe−β∆Ui/X

)
− ln M

= ln
(

M∑
i=1

e−β∆Ui/X

)
+ X − ln M

(5.28)

where we may set X as a large number, for example the maximum value in
∆Ui. This lets us evaluate Eqn.5.21 with minimal risk of numerical overflow
even for small k. This leaves the question of how we should choose k. We note
that the recommendation of setting k such that Eqn. 5.23 is satisfied does not
seem viable for Vashishta SiO2 which as we see in Fig. 5.7 this corresponds to
setting k such that the atoms are essentially tethered to their rest positions as
observed in Fig. 5.8.

We therefore opted to redo the simulations with mean-squared displacement
based springs for Si and O individually, using the more recently published
finite-size correction for Einstein crystals with different spring constants [39].
We also utilize Eqn. 5.28 to avoid numerical overflow in the exponential when
computing ∆f1.The resulting free energies are plotted in Fig. 5.9, where we
according to the finite-size scaling relation [40] expect f(N) to be linear in 1/N .
As we see in Fig. 5.9 this is not the case, even though the free energies are
quite close to what we expect numerically based on our previous TI calculations.
Given that we already have two working methods, we will not spend the time
to perform an in depth analysis of why the method fails. The error may likely
be attributed to the degree at which the phase-space of Vashishta SiO2 and the
Einstein crystal fails to overlap. When this is the case, there is a large bias
contribution to the mean-squared error in FEP, cf. Chipot and Pohorille [31].
There also exists methods to systematically determine the magnitude of this
effect [59].
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Figure 5.9: Free energy of α-quartz at P = 1 bar, T = 300 K computed with the
the Einstein crystal method using FEP followed by TI (The vega path)

5.7 Summary

We have in this section given an outline of an efficient workflow that aims
to enable the computation of free energies using the Einstein crystal method
for a large number of systems across N , P and T . We have further given
detailed descriptions on how to implement three different variations of the
Einstein crystal in LAMMPS, namely by TI and non-equilibrium TI along
the Frenkel & Ladd path, as well as by FEP followed by TI in the Vega path.
Upon evaluation of the three methods, we discovered self-consistency in the
free energies computed by TI and non-equilibrium TI, with the latter offering
some practical benefits whilst also yielding higher precision for a comparable
simulation time. We also discovered that the Einstein crystal method along
the Vega path did not yield results according to our expectations for α-quartz
simulated in the Vashishta potential.

Hence, for the reasons above we opt to employ non-equilibrium thermody-
namic for all further free energy calculation as we search for coexistence points
in silica polymorphs.
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CHAPTER 6

Finding points of coexistence
between Silica polymorphs

In this chapter we aim to find points of coexistence between different phases of
crystalline Silica. Silica has exceptionally complex phase behaviour [1] with a
large number of metastable states [4, 5], and we will thus limit ourselves to only
the ones which are known to be thermodynamically stable, namely α-quartz,
β-quartz, β-tridymite1, coesite and stishovite. The latter of which, stishovite,
is also dropped as it is not held stable by the Vashishta potential.

Figure 6.1: Experimentally determined phase diagram of Silica [60]

Our approach in finding the coexistence points follows that in Vega et al. [34].
We compute Gibbs free energy along isotherms and isobars looking for points in
which it is equal for two different polymorphs. As a guide, we look at an existing
experimental phase diagram, depicted in Fig. 6.1, which should give us a rough
idea where to look. It should however be noted that whilst qualitative features
may be captured, the phase diagram is not necessarily accurately reproduced
by classical interaction potentials [61]. Hence, our search space along isotherms

1Sometimes referred to as HP-tridymite
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6.1. Coexistence points along an isobar

and isobars should thus be sufficiently broad and somewhat lacking in bias
towards existing phase diagrams.

We will replicate our analysis for three different parameterizations of the
potential. First there is the the original 1990 parameterization by Vashishta
et al. [14], then there is the 1997 parameterization by Broughton et al. [15]
which was tuned to study quartz oscillators. Lastly, we study the unpublished
parameterization by Wang et al. [19] which was fit to experimental values of
the bulk modulus, equilibrium volume and melting temperature of silica. There
exist an additional widely available parameterization by Nakano, Kalia and
Vashishta [62] which was excluded from this study as it was a modified version
of the 97 parameters aimed primarily at modeling amorphous silica, and is
therefore not particularly relevant to our study of crystalline silica.

6.1 Coexistence points along an isobar

Based on the experimentally determined silica phase diagram [4] we expect four
phase transitions to occur along an isobar at P = 1 bar. At low temperatures,
α-quartz will is the thermodynamically stable polymorph until it undergoes a
displacive transition to β-quartz due to a slight shift in its structure characterized
by the mean Si-O-Si bond angles increasing from 143.61◦ at room temperature
to 150.9◦ at 846 K [1, 4]. At 1140 K β-tridymite becomes the thermodynamically
stable phase, yet upon heating β-quartz will bypass this transition and remain
meta-stable until it undergoes a reconstructive phase transition to cristobalite
at ∼ 1323 K [4, 63]. β-cristobalite then becomes the thermodynamically stable
phase at 1743 K until the melting point at 1978 K.

6.1.1 Procedure

We look for these phase transitions by computing free energies of each structure
along an isobar P = 1 bar. In order to generate reference states for the Einstein
crystal calculations, we follow the procedure described in section 5.2, using
experimental data for α-quartz, β-tridymite [64] and β-cristobalite [65] as initial
structures. Each structure allowed to equilibrate in NPT for 100 ps followed by
an additional 100 ps of sampling the simulation box, which is then re-scaled to
its average shape. We then run 50 ps in NV T whilst sampling the positions of
each atom and set them to their average value. This configuration is then stored
to be used as the reference state in the Einstein crystal calculations. We then
measure the mean-squared displacement of Si and O atoms individually 50 ps
use this to compute the spring constants used in the Einstein crystal reference
state. We then perform non-equilibrium thermodynamic integration from the
Einstein crystal to the Vashishta crystal with a switching time ts = 100 ps
and 25 ps of equilibration prior to both the forward and backward switching.
The non-equilibrium thermodynamic integration is repeated 10 times for each
NPT , and the mean is produced as the change in free energy. The resulting
Helmholtz free energy is then used to compute the Gibbs free energy by the
relation G = F − PV , where P is taken as the pressure at which the Vashishta
crystal is equilibrated to during the initialization procedure. For each phase,
pressure and temperature this procedure is repeated for a selection of 5 crystal
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6.1. Coexistence points along an isobar

sizes with N ∈ [1 · 103, 2 · 104], and the finite-size scaling relation [40]

g(N) = g(∞) + d

N
(6.1)

is used to estimate the free energy per particle of an infinitely large system
by inverse-variance scaling least-squares regression, taking the intercept as
limN→∞ g(N).
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Figure 6.2: Density profile of the equilibrated reference states generated during
the initialization procedure for all simulations along an isobar at P = 1 bar

Wang 90 97

500 1000 1500

T [K]

0.1

0.2

0.3

〈(
∆
r S
i
)2
〉[

Å
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Figure 6.3: Mean-squared displacement of Si and O atoms in Vashishta SiO2
along an isobar at P = 1 bar
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6.1. Coexistence points along an isobar

Using the experimental phase diagram as a guide, we perform a broad search
in T to infer about the behaviour of the different parameterizations, setting the
upper bound in T to when we observe melting as indicated by a large drop in
the density ρ.

6.1.2 Structure along the isobar

To understand how the crystals behave along the isobar, and perhaps more
importantly that our desired structure is obtained during equilibration, we
begin our analysis by looking at the structure of the crystals. While there exists
many sets of order parameters to quantify the structure of molecular systems,
notably the Steinhardt order parameters [66], there is to my knowledge none
that quantify the structural changes in Silica polymorphs. Hence to gain an
overview of the different structures produced in our simulations we rely on 4
measures. The density of the equilibrated reference states, ρ, which we expect
to be a continuous function in P and T for equilibrium states. The mean-
squared displacement,

〈
(∆r)2〉 of Vashishta SiO2, quantifies the movement in

our system. As well as the average Si-O-Si bond angles and Si-O bond distances
in both the equilibrated reference states and averaged over several independent
configurations of Vashishta SiO2 in MD simulations, frequently used measures
when inferring about the structure of SiO2 [1, 4]. The measurements are
shown in Figs. 6.2, 6.3 and 6.4 for quartz, tridymite and cristobalite and all 3
parameterizations of the Vashishta potential considered.

Cristobalite

We begin our analysis by looking at the densities Fig. 6.2 and the mean-
squared displacement of the Si atoms 6.3. Looking first at β-cristobalite,
we note the rather apparent discontinuity in both the density and mean-
squared displacement in the Wang and 97 parameterizations. Looking at
a selection of reference structures at both ends of the discontinuity, two of
which are depicted in Fig. 6.5, we see quite clearly that the crystal structure
of cristobalite is only present at temperatures following the drop in density,
where the structure at T = 500 K is unstructured, lacking periodicity and
thus more than likely not cristobalite. We then look to the bond angles and
distances in Figs. 6.4e, 6.4f, which may require some explanation to be fully
understood. First, we note that the "Reference" measurements are made in the
single, static configuration that is generated using the initialization step (section
C.1). The "Trajectory" measurements on the other hand are made by sampling
the bonds in 20 independent configurations along a dynamic trajectory governed
by the Vashishta potential. So while related, the discrepancy between the two
is not surprising as they measure fundamentally different things. As we recall
from section C.1, the per-atom positions in the reference states were set by
averaging their x, y and z positions individually in time, which runs the risk of
slightly shifting them away from their true trajectory for any atoms that are not
oscillating freely, and uniformly in each direction of x, y, z. For β-cristobalite,
this process yields a structure that is similar to the ideal structure proposed
by Wyckoff [65] with 180◦ Si-O-Si bond angles. However, it was argued by
Nieuwenkamp [67] that β-cristobalite exhibits a disordered structure in which
oxygen atoms move freely in a about a circular plane normal to vectors between
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Figure 6.4: Arithmetic mean of Si-O-Si bond angles and Si-O bond lengths in
Quartz, Tridymite and Cristobalite reference states and trajectories along an
isobar at P = 1 bar for the Wang [19], 90 [14] and 97 [15] parameterizations of
the Vashishta potential

pairs of silicon atoms, rather than being fixed to their midpoint as sketched in
Fig. 6.6. With this in mind, the discrepancy between the Si-O-Si bond angles
in the trajectory and reference state is unsurprising, as the way in which we
average the atomic positions during when constructing the reference states will
naturally produce a structure akin to that proposed by Wyckoff [65] with bond
angles of 180, yet in motion the true structure is expected to have Si-O-Si bond
angles of ∼ 148◦ [4], which is in line with what we observe. It should however
be noted that we will never measure the exact "ideal" bond angle in a trajectory,
as the atomic positions will always deviate somewhat from the ideal structure,
and the measured bond angle is in essence a function of the mean-squared
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6.1. Coexistence points along an isobar

(a) T = 500 K (Wang) (b) T = 1000 K (Wang) (c) T = 1000 K (90)

(d) T = 500 K
(Wang)

(e) T = 1000 K
(Wang)

(f) T = 1000 K
(90)

Figure 6.5: Cristobalite reference states generated at P = 1 bar with
temperatures (a,d) T = 500 K and (b,e) T = 1000 K using the Wang
parameterization of the Vashishta potential, and (c,f) T = 1000 K using the 90
parameterization. Each structure is viewed from two different perspectives.

Figure 6.6: Visual depiction of how Oxygen (red) moves in relation to pairs of
Silicon atoms (grey) in β-cristobalite

displacement of the atoms in each time-step. Yet it nonetheless serves as a
useful insight. Similar observations is made for the 97 parameterization, but
at lower temperatures. For the 90 parameterization we may by observing the
noise in ρ(T ) seen in Fig. 6.2 and angles in Fig. 6.4e question if β-cristobalite
is held stable. By observing a selection of the atomic structures it was indeed
concluded that is not, as the generated reference states did not correspond to
cristobalite. See for example Fig.6.5c

Quartz

For quartz we do not, in contrast to cristobalite, observe discontinuities in the
densities and mean-squared displacement (Figs. 6.2,6.3) but rather distinctive
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6.1. Coexistence points along an isobar

(a) α-Quartz,T = 300 K (b) α-Quartz,T = 300 K

(c) β-Quartz,T = 1000 K (d) β-Quartz,T = 1000 K

Figure 6.7: α-quarts (a,b) and β-quartz reference structures of the Wang
parameterization of Vashishta SiO2, each viewed from two different perspectives

shifts in the gradients, in the Wang and 97 parameterizations. Furthermore, in
both these parameterizations, the Si-O-Si bond angles exhibit behaviour that
is distinctive to the displacive phase transition between α/β-quartz. That is,
we expect the bond angles in α-quartz to gradually increase until the β-quartz
structure essentially locks in place [1, 4, 68, 69]. By observing the reference
states, Fig. 6.7, one may with a trained eye indeed confirm that the α/β
transition has occurred. Note in particular the additional horizontal symmetry
of the oxygen atoms (red) present in Fig. 6.7d compared to Fig. 6.7b. The
same may also be observed in Figs. 6.7a, 6.7c, but is a bit harder to spot2.
This behaviour is notably observed regardless of whether we use α or β quartz
as the initial structure during the initialization procedure (section 5.2), and
bond angles measured at the same (P, T ) in both cases overlapped completely,
indicating that the phase transition occurs during the initialization procedure.
This means that will not be able to find the free energy difference between
the two phases using the Einstein crystal method and by extension, not locate
the coexistence points. However, given this lack of meta-stability we may yet
obtain estimates of the coexistence line simply by locating the temperatures at
which the Si-O-Si bond angles flattens out, and by repeating this along several
isobars we may get a reasonable estimate of the coexistence line. We do this
for wide range of isobars for both the Wang and 97 parameterizations, with the
former shown in Fig. 6.8.

In regards to the 90 parameterization, no such behaviour is observed and the
crystal retains the structure of α-quartz all throughout the isobar exhibiting no
signs of a phase transition or structural changes of any kind in Figs.6.2, 6.3, 6.4.
This was also reaffirmed by looking at the structures by eye, and not observing

2Unless you happen to have spent the better part of a year starting at silica polymorphs
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Figure 6.8: Mean Si-O-Si bond angles in reference structures for the Wang
parameterizations along several isobars, where the red dots indicates the
estimated location of the α/β-quartz transition

(a) T = 300 K (Wang) (b) T = 800 K (Wang) (c) T = 800 K (90)

(d) T = 300 K (Wang) (e) T = 800 K (Wang) (f) T = 800 K (90)

Figure 6.9: β-tridymite reference states generated by the Wang parameterization
of the Vashishta potential at (a,d) P = 1 bar and (b,e) T = 300 K, 800 K,
additionally (c,f) the 90 parameterization at T = 800 K. The structures are
viewed from two perspectives, highlighting the stacking hexagonal structure of
β-tridymite.

a symmetry similar to the one seen in Fig. 6.7.

Tridymite

In tridymite we again observe discontinuities in mean-squared displacement in
Figs. 6.2, 6.3 in the 97 and Wang parameterizations, indicative of a structural
change. The 90 parameterization being noisy throughout, hinting that the
structure may not be held stable. The bond angles in Fig. 6.4 tells the same
story. Much the same as in β-cristobalite, the ideal structure of β-tridymite was
originally proposed to have 180◦ Si-O-Si bond angles [4], yet the oxygen atoms
were later shown to be slightly displaced from their ideal positions resulting
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6.1. Coexistence points along an isobar

in Si-O-Si bond angles of 149.2◦ [4]. As was the case for β-cristobalite, the
discrepancy between the reference and trajectory bond angles in Fig. 6.4 are
consistent with these observations. As an additional check, we again look at a
selection of the structures, a few of which are shown in Fig. 6.9. As expected,
the structures at temperatures before the structural change in the Wang and 97
parameterizations are not stable in contrast to the ones at higher temperatures.
Further, we observe that the 90 parameterization is unable to keep tridymite in
a stable form.
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Figure 6.10: Gibbs free energy for T along an isobar at P = 1 bar

6.1.3 Coexistence points along the isobar

Now that we have an understanding of how the structures of the different
polymorphs evolve along the isobar, we turn to Fig. 6.10 which shows the
computed free energies of all 3 systems, including the regions in T where they
were determined not to correspond to silica polymorphs. In isolation these
are seemingly well behaved throughout the entire range in T satisfying the
condition for thermodynamic stability(

∂2G

∂T 2

)
P

≤ 0. (6.2)

Hence, additional analysis of the structures similar to what we did in the
previous subsection is paramount when attempting to locate coexistence points
using the Einstein crystal method such that one does not draw false conclusions.

Given our structural analysis, and coincidentally also Fig. 6.14c we may
conclude that the 90 parameterization of of the Vashishta potential does not
undergo any phase-transitions along P = 1 bar, and we thus reduce further
analysis to just the Wang and 97 parameters. Turning our attention to
Fig. 6.11 we have the difference in free energy between all 3 polymorphs along
the P = 1 bar isobar for the Wang and 97 parameterizations. Consistent
in both of these, we observe a phase transition between α-quartz and β-
tridymite at Tc = 818.9 K, 543.1 K for the Wang and 97 parameterizations
respectively. Notably prior to the expected α/β-quartz transition in both cases.
No coexistence is observed between β-tridymite and β-cristobalite prior to
melting, yet coexistence between the meta-stable β-quartz and β-cristobalite
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6.2. Coexistence points along an isotherm

is observed in both parameterizations in the region where β-tridymite is the
thermodynamically stable state, that is, the polymorph with the lowest free
energy.

Looking at Fig. 6.11a we note the signs of noise in ∆g. The computed
uncertainties in the Einstein crystal free energy calculations were for the free
energies making up this plot all in an order of 10−10 to 10−11, thus the accounted
for errors are vanishingly small, and does not explain the observed variation
in Fig. 6.11a, or indeed any of these plots. We may question whether we have
accounted for all of the statistical noise, i.e variance, in our analysis. As of
now we account for the variance in non-equilibrium thermodynamic integration
over the 10 trials that go in to these computations, as well as the uncertainty
in the f(∞) estimator in the linear fit during finite-size scaling. However
it should be noted that we also impose an implicit bias in our calculation
by our choice of reference state. That is, the one that is produced by the
initialization scheme. One of the assumptions in the Einstein crystal method is
that our reference states are "close enough", with no strict requirements that
they correspond exactly to the target structure [34]. It is however a requirement
that there are no phase-transitions when integrating the linear homotopy in
thermodynamic integration. Can we really be so sure that this is the case? As
we have observed for β-cristobalite in particular, it is quite difficult to determine
the structures we actually obtain during the initialization scheme. Furthermore,
as seen in quartz, transitions between the α/β structures will readily during
initialization. Nevertheless, these effects are likely rather small as suggested by
the predictable, systematic nature in Fig. 6.11. Furthermore, since we lack a
set of order parameters that quantify the exceptionally rich phase behaviour of
Silica polymorphs, it is rather difficult to be certain if this is indeed a source of
the observed noise.

6.2 Coexistence points along an isotherm

In addition to the coexistence points we have already located, we also expect a
transition between α-quartz and coesite. In contrast to the coexistence lines
we have previously looked at, the α-quartz/coesite transition intersects with P
axis at T = 0, as opposed to intersecting with T at P = 0. Hence, the most
effective strategy in locating a coexistence point in this case is to compute free
energies along as isotherm. Given that we know α-quartz is stable at 300 K,
we choose this as our isotherm and compute free energies along a wide span in
P . We repeat the same procedure as for the isobars, described in section 6.1.1
and obtain the free energies depicted in Fig. 6.14. Here we observe that the
stability criterion for Gibbs free energy(

∂2G

∂P 2

)
T

≤ 0 (6.3)

is satisfied. We also observe the continuity of ρ(P ) in Fig. 6.13, again being
indicative that there are no significant structural changes along the therm. As
opposed to the other polymorphs we have considered, coesite is not classified by
the average Si-O-Si bond angle, but in stead 4 separate Si-O-Si bond angles [5].
Hence in the interest of brevity, we simply our analysis somewhat and look at
the a selection of the reference structures, some of which are shown in Fig. 6.15.
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Figure 6.11: Difference in Gibbs free energy along isobars at P = 1 bar for quartz,
tridymite and cristobalite modeled by the Wang and 97 parameterizations of
the Vashishta potential, with coexistence temperature (Tc) and pressure (Pc)
indicated in the figures.

The observed structures were according to expectation for all of the computed
pressures, including the both ends of the isotherms in all 3 potentials. Hence,
we are quite satisfied that what we are looking at is indeed coesite, and that it
is well behaved. For quartz, a similar analysis as for the isobar was performed
and we observed clear indications that quartz remained as α-quartz throughout.
This is also reaffirmed by the Si-O-Si bond angles in Fig. 6.12.

We see the difference in Gibbs free energy along the isotherms in Fig. 6.16.
Here we observe the α-quartz/coesite transition in all 3 parameterizations
at Pc = 112.6, 48.6 and 4.5 kbar for the Wang, 97 and 90 parameterizations
respectively.
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Figure 6.12: Arithmetic mean of Si-O-Si bond angles and Si-O bond lengths in
α-quartz reference states and trajectories along an isotherm at T = 1 K for the
Wang, 90 and 97 parameterizations of the Vashishta potential
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Figure 6.13: Density, ρ, for an isotherm along T = 300K for α-quartz and
coesite for the Wang, 90 an 97 parameterizations of the Vashishta potential.
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Figure 6.14: Gibbs free energy per particle, g, for an isotherm along T = 300 K
for the Wang, 90 and 97 parameterizations of the Vashishta potential.
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(a) P = 20 kbar (Wang) (b) P = 20 kbar (97) (c) P = 20 kbar (90)

(d) P = 60 kbar (Wang) (e) P = 60 kbar (97) (f) P = 60 kbar (90)

Figure 6.15: Coesite reference states at T = 300 K and P = 20 kbar, 60 kbar
generated by the (a,b) Wang, (b,e) 97 and (c,f) 90 parameterizations of the
Vashishta potential.
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Figure 6.16: Free energy difference between α-quartz and coesite along an
isotherm at T = 300 K
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CHAPTER 7

Computing the phase diagram of
Silica

Having obtained a set of coexistence points, we may now employ the
Gibbs-Duhem integration method by Kofke [22] to numerically solve the
Clausius–Clapeyron equation, a first-order differential equation

dP

dT
= ∆h

T∆v
(7.1)

where ∆h, ∆v denotes the difference enthalphy and volume per particle between
the two coexisting phases. We will in this chapter begin to describe how
the method may be implemented in LAMMPS. Following this, we present
the phase diagram of SiO2 modelled by the Wang [19] as well as the 97 [15]
parameterizations of the Vashishta potential.

7.1 Gibbs-Duhem Integration in LAMMPS

In the context of molecularm dynamics simulations, Eqn. 7.1 takes the form

dP

dT
= ⟨h⟩II − ⟨h⟩I

T (⟨v⟩II − ⟨v⟩I)
(7.2)

where ⟨·⟩I , ⟨·⟩II denotes ensemble averages in systems I and II respectively.
In solving Eqn. 7.2 evaluations of the source term is not simply a function
call, but rather a the result of MD simulations of phases I and II separately
at the same (P, T ). Hence, evaluations of Eqn. 7.2 relatively expensive and
usage of a standard solver such the fourth order Runge-Kutta method is both
time and compute intensive. However, given that the coexistence line is a
smooth [22], usually monotone [23] function it is advised [22, 24, 33] to employ
predictor-corrector (PECE) methods [70]. In cases where the coexistence line
is particularly steep in P (T ), it may be useful to instead take the inverse of
Eqn. 7.1 and solve for dT/dP [34].

The MD simulations required to integrate Eqn. 7.2 are themselves quite
straight forward, consisting of standard NPT simulations whilst sampling the
volume and enthalpy. The challenge in implementing Gibbs-Duhem integration
instead lies in combining these NPT simulations with a differential equation
solver which requires a lot of scripting, and at present no publicly available
tools exist to aid this purpose. Hence i have developed a flexible python
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7.1. Gibbs-Duhem Integration in LAMMPS

package that should work for a wide range of different systems, including
Vashishta SiO2, and made it openly available on Github [71]. The package
currently supports Forward-Euler, Runge-Kutta 4 and a PECE method for
solving Eqn. 7.2. Additionally, the equilibration detection method by [51] is
utilized to ensure that the averages in h, v are indeed sampled from equilibrium
states.

7.1.1 Predictor-Corrector Method

In the interest of minimizing the number of simulations required to produce
the coexistence line we employ the following predictor-corrector scheme [24].
Let y denote the dependent variable, P or T , and f the source term in the
corresponding Clauseus-Clapeyron equation For the first step we employ the
trapezoid PECE method

ỹ1 = y0 + hf0

y1 = y0 + h

2 (f̃1 + f0)
(7.3)

obtaining y0, y1, requiring two function evaluations. To obtain the next two
points i = 2, 3 we then employ the midpoint PECE method to obtain

ỹi+1 = yi−1 + 2hfi

yi+1 = yi−1 + h

3
(
f̃i+1 + 4fi + fi−1

) (7.4)

requiring two new function evaluations at each step. Having obtained the 4
points, i = 0, 1, 2, 3. We may continue with Adams predictor corrector

ỹi+1 = yi + h

24(55fi − 59fi−1 + 37fi−2 − 9fi−3)

yi+1 = yi + h

24
(
9f̃i+1 + 19fi − 5fi−1 + fi−2

) (7.5)

for the remainder of the steps. The benefit of this methodology being that
we only need a two set of MD simulations per integration step for 4-th order
accuracy [70] compared to a 4-th order Runge-Kutta method which would
require four sets of MD simulations run in sequence for each step.
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Figure 7.1: Phase diagrams for the solid phases in the Wang [19] and 97
[15] parameterizations of Vashishta SiO2, where the red dots are coexistence
points found in free energy calculations. In (a) Gibbs-Duhem integration
was performed from Pc = 112.6 kbar, Tc = 300 K for the quartz/coesite line
and Pc = 1 bar, Tc = 820 K (solid), Pc = 5 kbar, Tc = 1270 K (dashed) for
the quartz/tridymite line. In (b) we started from Pc = 1 bar, Tc = 541 K for
quartz/tridymite and Pc = 48.6 kbar, Tc = 300 K. In both cases, the α/β-quartz
line is estimated by looking at change in Si-O-Si bond angles along isobars,
where the uncertainty is taken as the resolution in ∆T .
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7.2 Phase diagram of Vashishta Silica

We perform Gibbs-Duhem integration solving Eqn. 7.2 for P (T ) with a step
size ∆T = 1 K using the PECE method described in section 7.1.1. This was
done for coexistence points between quartz/tridymite and quartz/coesite in
both the 97 and Wang parameterizations of the Vashishta potential. Prior to
each Gibbs-Duhem integration we copied the closest available reference state in
(P, T ) obtained during the free energy calculations in chapter 6. The systems
were equilibrated for 200 ps and the resulting configuration was stored as the
initial state for the Gibbs-Duehm integration. For each evaluation of the source
term in Eqn. 7.2, 100 ps of MD was performed and averages were computed from
the equilibrated parts of the trajectories, selected automatically according to
the algorithm by Chodera [51] (cf. section 5.3.5). The resulting phase diagrams
are shown in Fig. 7.1

For the α-quartz/coesite transition in the Wang parameterization we
integrate starting from the coexistence point at Pc = 112.6 kbar, Tc = 300 K.
The systems used were composed of N = 2269, 2880 atoms for α-quartz and
coesite respectively. We also located an additional coexistence point from
free energy calculations following the procedure as described in chapter 6.
This additional coexistence point is located at Pc = 124.5 kbar, Tc = 100 K,
and is used to verify the correctness of the coexistence line computed by
Gibbs-Duhem integration. In regards to the quartz/tridymite transition,
we expect a phase transition from α-quartz to β-quartz somewhere along
the quartz/tridymite coexistence line based on what we observed in section
6.1.2. Hence, we integrate from the α-quartz/β-tridymite coexistence point at
Pc = 1 bar, Tc820 K as well as a β-quartz/β-tridymite coexistence point that
was located at Pc = 5 kbar, Tc = 1270 K. In both cases systems composed of
N = 2269, 2016 atoms were used for α/β-quartz and β-tridymite respectively.
We also located an additional point at Pc = 1 kbar, Tc = 897 K with free energy
calculations, again, to verify the method.

For the 97 parameterization we have been a bit more sparse in our
usage of computational resources, and integrate starting from the coexistence
point Pc = 48 kbar, Tc = 300 K for the α-quartz/coesite transition, and at
Pc = 1 bar, Tc = 541 K for the α-quartz/β-tridymite transition. The same
system sizes have been utilized as in the Wang calculations.

In addition to the coexistence lines by Gibbs-Duhem integration, we have
also included the line at which the α/β quartz transition is estimated to occur
as inferred by the Si-O-Si bond angles in the reference systems. cf. Fig. 6.8 and
the discussion section 6.1.2.

7.2.1 Discussion and comparison with existing phase diagrams

The first, and perhaps most interesting thing to note about the phase diagrams
in Fig. 7.1 is that they are both qualitatively very similar, differing in scale by
roughly a factor 2. Both potentials produce a quartz/tridymite line that is of
the correct qualitative shape, even though in contrast to the experimental phase
diagram (Fig. 6.1) the α/β-quartz transition intersects with the line. To confirm
that the α/β-quartz transition happens during Gibbs-Duhem integration, we
measure Si-O-Si bond angles as well as the densities in the trajectories as seen
in Fig. 7.2 for the Wang parameterization. This is in line with what we observed
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Figure 7.2: Mean Si-O-Si bond angles and density in quartz during Gibbs-
Duhem integration along the quartz/tridymite (a-b) and the quartz/coesite
(c-d) coexistence lines in the Wang parameterization of the Vashishta potential.

in our structural analysis in section 6.1.2. Note also that the overlap in bond
angles and densities in the coexistence lines that were found in Pc = 1 bar
and Pc = 5 bar, showing that the α/β-quartz transition will readily occur
in a simulation trajectory. Note that the trajectories in used Gibbs-Duhem
integration are continuous in the sense that the full configuration (rN , vN ) are
carried over between each step. Similar behaviour was also observed in the 97
parameterization. This means that in both parameterizations, there is a triple-
point between α-quartz, β-quartz and β-tridymite along the quartz/tridymite
coexistence line. Next we move on to look at the melting line marked in Fig. 7.1a.
As remarked by Frenkel and Smit [33], Gibbs-Duhem integration has no built-in
diagnostics, and additional checks should always be made. This is one such case,
wherein the coexistence line may not in isolation look problematic. However, as
we observe in Fig. 7.3 tridymite melts at T ≈ 1700 K, thus any results above
this melting line should be disregarded. It should further be noted that this is
not necessarily the point at which molten silica becomes thermodynamically
stable as this may occur at a lower temperature, but likely serves as a reasonable
upper bound estimate.

We then look to the α-quartz/coesite transition. In both cases the transition
occurs at rather high pressures compared to what is expected experimentally,
within the region where we would expect a coesite/stishovite transition. We
also note that the coexistence line is tilted in the opposite direction to that of
the experimental phase diagram, as well as the β-quartz/coesite coexistence line
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Figure 7.3: Density of quartz and tridymite along the coexistence line integrated
from Pc = 1 bar, Tc = 820 K in the Wang parameterization of the Vashishta
potential.

was determined for the BKS interaction potential by Saika-Voivod et al. [61].
In a recently published article, the α-quartz/coesite coexistence line estimated
by Erhard et al. [72] using a quasi-harmonic approximation method [73] for
several silica models. Among these was the 97 parameterization of the Vashishta
potential. Their coexistence line intersect with T = 0 at P ≈ 50 kbar, where
as our coexistence line intersects at P = 63.7 kbar. Hence there is roughly a
10 kbar discrepancy between the two methods. Similar to our coexistence line,
theirs also curve in the same direction. It should be noted that their methods
are to my understanding approximate, though they do not go into much detail as
to how much so. However, they did not locate the α-quartz/coesite coexistence
line in the 90 parameterization of the Vashishta potential, which they also
tested, listing coesite as sole stable state. Whilst we did not prioritise drawing
this coexistence line with Gibbs-Duhem integration, we were able to capture
its existence at Pc = 4.5 kbar, Tc = 300 K, which might be indicative that their
method of drawing coexistence lines is not as accurate when compared with the
free energy methods we have used.
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PART III

Conclusion
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CHAPTER 8

Summary and Outlook

8.1 Summary

The aim for this thesis has been to evaluate the phase behaviour of crystal
polymorphs Silica modeled by the Vashishta potential, and to that end, we
have been successful. To compute free energies of the crystal structures we
implemented three variations of the Einstein crystal method, evaluating and
comparing their performance in detail. We found that the thermodynamic
pathway proposed in Vega et al. [34], consisting of free energy perturbation
followed by thermodynamic integration was not suitable for Vashishta SiO2 and
instead utilized the Frenkel and Ladd [21] path, in particular the non-equilibrium
variant which was observed to be the most computationally efficient. During our
analysis, we also uncovered a subtle issue in how the center of mass is usually
[36, 39, 48] constrained in Einstein crystal calculations done in LAMMPS, and
found a way to remedy this by imposing and additional, explicit constraint on
the momenta.

To aid our hunt for coexistence points, we developed an efficient and
automated computational workflow for determining free energies with the
Einstein crystal method. This enabled us to concurrently and efficiently study
three separate parameterizations of the Vashishta potential, namely the 90 [14],
97 [15] and Wang [19] parameterisations. The computational workflow has been
documented in detail, and may in principle be applied to study other crystalline
beyond Vashishta SiO2.

We located the coexistence point between α-quartz and β-tridymite for
the 1997 and Wang parameterizations of the Vashishta potential, as well as
indications of the α/β-quartz transition. The latter of which could not be
determined by the Einstein crystal method, as the transition occurs quite
readily during the initialization of the crystal reference states. In regards to the
90 parameterizations, we found that in the isobar at 1 bar, only α-quartz was
stable, and did not observe any signs of the α/β-quartz transition. Additionally,
we were also able to locate the coexistence point between α-quartz and coesite
in all three parameterizations of the Vashishta potential.

Moving on, we then implemented a general python package to aid with Gibbs-
Duhem integration in LAMMPS. The package was then used to draw out the
phase diagrams of the 97 and Wang parameterizations of the Vashishta potential.
We observed reasonable qualitative correspondence with the experimental phase
diagram in both cases for the quartz/β-tridymite. We did however see signs
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of signs of a α-quartz/β-quartz/β-tridymite triple point, that is not present
in the true phase diagram. In contrast, the α-quartz/coesite coexistence lines
did not exhibit the expected qualitative behaviour in that their gradient in
P (T ) is opposite of that which is expected in the experimental phase diagram
(Fig. 6.1). However, for the 97 parameterization the observed line is reasonably
close to the α-quartz/coesite line shown in [72], also computed with the 97
parameterization of the Vashishta potential, but not by the use of free energy
methods.

8.1.1 Outlook

As is usually the case in science, there is much yet to be done. Silica
exhibits exceptionally rich phase behaviour [1, 4, 5], and evaluation of the
thermodynamically stable polymorphs is only scratching the surface. Evaluation
of the many metastable states of Vashishta Silica poses an interesting, and
likely complicated journey. Furthermore, we have not concerned ourselves with
the melting line of Silica, which may evaluated by similar methods to what has
been done here. Namely, by computing free energy differences from a suitable
reference state and performing Gibbs-Duhem integration with respect to the
solid Silica polymorphs.

Here we outline a few additional ways in which this work may be extended:

• We were unable to experiment with the non-equilibrium variant of Gibbs-
Duhem integration, so-called dynamic Clauseus-Clapeyron integration
[74]. The method draws the entirety of a coexistence line in a single,
dynamic, forward and backward sweep. Reminiscent of the way non-
equilibrium thermodynamic works. The method was recently implemented
in LAMMPS by Cajahuaringa and Antonelli [75] via a LAMMPS extension,
however attempts to compile the code were unsuccessful. I suspect this
is simply because the LAMMPS developers have made minor changes to
the source code since the extension was written, something a also suffered
from in my own modification of LAMMPS. Successfully applying this
method has the potential speeding up the process of drawing the phase
diagrams significantly.

• The free parameters in the Vashishta potential has shown to have a
significant effect on the phase-diagram. The workflow defined in this thesis
presents good opportunity to apply the genetic optimization algorithm by
Chan et al. [76]. Furthermore, one may compute the explicit dependence
in the coexistence line of the parameters in the interaction potential by
generalized Gibbs-Duhem integration. cf. [34].

• Classifying silica structures was the most manually laborious part of the
work presented in this thesis. We performed some experimentation with
using SOAP descriptors [77] to quantify the local geometry of Silica,
and generate a machine-learning model to classify Silica polymorphs.
The model was trained on Einstein crystals with rest positions based of
experimental silica structures, and whilst the resulting SOAP descriptors
showed good separation in when looking at their principal components in
2D in a PCA analysis, the early performance of the model was poor when
tested on Vashishta silica structures, and the venture was not pursued
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further. A similar approach was taken in the recently published article by
Chung et al. [78], but with different parameters used in the classification
model.
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APPENDIX A

Mass independence of coexistence
points

In Vega et al. [34] it is stated without further elaboration that the coexistence
properties of a system is independent of the mass of its constituents, instead
varying only as a function of the parameters of the interaction potential. In a
similar manner, it is stated in [41] that the coexistence properties are independent
of the thermal wavelength, and as such may be arbitrarily set to a convenient
value. In this section i will briefly explore this idea.

Consider a system governed by the Hamiltonian

H =
N∑
i

p2
i

2mi
+ U(r1, . . . , rN ) (A.1)

where U is the potential energy due to a conservative force field, depending
only on the positions of the particles, {r}. In the canonical ensemble, we may
then write the partition function as

Z(N, V, T ) =
∫

dpN drN

h3N
e−βH = 1∏N

i=0 Λ3
i

∫
drN e−βU (A.2)

where Λi denotes the thermal de Broglie wavelength, due to the integral over
the momenta which may be expressed as

Λi = h√
2πmikBT

(A.3)

With this, we may write the Helmholtz Free Energy, F , as a function of the
partition function as

− βF = ln Z = ln
∫

drN e−βU −
N∑

i=0
ln Λ3

i (A.4)

In this form, we can see quite clearly that the explicit mass dependence of the
free energy is contained in the second term, which is a constant factor along
any given isotherm. Hence, changing the masses of one, or multiple particles
would only shift the free energy by some constant term. Thus, the location
of a coexistence point does not depend on the mass, or indeed the thermal
wavelength as a whole provided it is held constant along the isotherm.
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APPENDIX B

Vashishta parameters

Here we provide the 1990 [14], 1997 [15] and the Wang [19] parameterizations
of the Vashishta potential for SiO2.

Table B.1: 1990 Parameterization of the Vashishta potential [14]

Si O
Zi [eV] 1.6 −0.8
r1s = 999 r4s = 4.43 rc = 10.0

Two-Body Interaction
Si-Si Si-O O-O

ηij 11 9 7
Hij [eV Åη] 0.82023 163.859 743.848
Dij [eV Å4] 0.0 44.2357 22.1179
Wij [eV Å6] 0.0 0.0 0.0

Three-Body Interaction
Bijk [eV] cos(θ0) Cijk ξ [Å] r0 [Å]

O-Si-O 5.0365 -0.333333 0.0 1.0 2.6

O-Si-O 20.146 -0.777146 0.0 1.0 2.6
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Table B.2: 1997 Parameterization of the Vashishta potential [15]

Si O
Zi [eV] 0.7872 −0.3936
r1s = 4.43 r4s = 2.5 rc = 5.5

Two-Body Interaction
Si-Si Si-O O-O

ηij 11 9 7
Hij [eV Åη] 0.155 30.923 140.38
Dij [eV Å4] 0.0 10.701 5.3504
Wij [eV Å6] 0.0 0.0 0.0

Three-Body Interaction
Bijk [eV] cos(θ0) Cijk ξ [Å] r0 [Å]

O-Si-O 4.993 -0.333333 0.0 1.0 2.6

O-Si-O 19.972 -0.805930 0.0 1.0 2.6

Table B.3: Wang Parameterization of the Vashishta potential [19]

Si O
Zi [eV] 1.2 −0.6
r1s = 4.43 r4s = 2.5 rc = 5.5

Two-Body Interaction
Si-Si Si-O O-O

ηij 11 9 7
Hij [eV Åη] 0.39246 78.3143 355.5263
Dij [eV Å4] 0.0 24.882782 12.441391
Wij [eV Å6] 0.0 0.0 0.0

Three-Body Interaction
Bijk [eV] cos(θ0) Cijk ξ [Å] r0 [Å]

O-Si-O 4.993 -0.333313 0.0 1.0 2.6
O-Si-O 19.972 -0.777146 0.0 1.0 2.6
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APPENDIX C

LAMMPS Scripts

In this appendix you will find all the LAMMPS scripts necessary to perform
the free energy calculations in this thesis. The same files are also hosted on
github at https://github.com/nicholaskarlsen/eincrystal/ along with many useful
python scripts to aid with Einstein crystal calculations en masse.

C.1 Crystal Initialization

Listing C.1: in.initbox

1 # Author: Nicholas Karlsen
2 #
3 # Command line variables:
4 # temperature
5 # nsteps_thermostat_relax - Number of steps to let the crystal initially relax in NVT
6 # nsteps_npt_eq - Number of steps to equilibriate in NPT
7 # nsteps_npt_sample - Number of steps to sample box shape in NPT
8 # nsteps_pos_ave - Number of steps to sample atomic positions in NVT
9 # nsteps_msd - Number of steps to sample MSD in NVT

10
11 # Prepare the system
12 boundary p p p
13 units metal
14 atom_style atomic
15 pair_style vashishta
16 read_data init.data
17 mass 1 15.999400 # O
18 mass 2 28.085501 # Si
19 pair_coeff * * SiO.vashishta O Si
20
21 group O type 1
22 group Si type 2
23
24 velocity all create ${temperature} ${SEED}
25 velocity all zero linear
26 velocity all zero angular
27
28 # Keep track of the COM to ensure that its kept constant.
29 compute COM all com
30 variable xcm equal c_COM[1]
31 variable ycm equal c_COM[2]
32 variable zcm equal c_COM[3]
33 compute Tcm all temp/com
34
35 # ----------------------------------------------------------------------------------- #
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C.1. Crystal Initialization

36 # NVT: Relax the thermostat
37 #
38 # Begin the simulation in NVT in order to let the thermostat relax and avoid an initial
39 # rapid expansion of the lattice that would otherwise occur in NPT.
40 # ----------------------------------------------------------------------------------- #
41 fix 1 all nve
42 fix 2 all langevin ${temperature} ${temperature} $(1000*dt) ${SEED} zero yes
43 fix_modify 2 temp Tcm
44
45 thermo_style custom step time pe ke press temp density vol v_xcm v_ycm v_zcm lx ly lz
46 log log_initbox.lammps
47 thermo 10
48 run ${nsteps_thermostat_relax}
49
50 # ----------------------------------------------------------------------------------- #
51 # NPT: Find the equilibrium shape of the simulation box
52 #
53 # NOTE: Unfix and refix recenter because it needs to be applied AFTER the fix which
54 # contains the integrator such that the recentering is done AFTER the timestep
55 # ----------------------------------------------------------------------------------- #
56 unfix 1
57 fix 1 all nph aniso ${pressure} ${pressure} $(1000*dt) fixedpoint ${xcm} ${ycm} ${zcm}
58 fix_modify 1 temp Tcm
59
60 # Let the system equilibrate
61 run ${nsteps_npt_eq}
62
63 # Reset the timestep to avoid funny behaviour with fix ave/time
64 reset_timestep 0
65 dump df all custom 10000 dump.lammpstrj id type xs ys zs
66
67 # System is now equilibriated; start measuring the box sizes to find the equilibrium shape
68 # Average the simulation box shape to find the equilibrium shape for the given pressure
69 variable lx equal lx
70 variable ly equal ly
71 variable lz equal lz
72 fix avelx all ave/time 1 ${nsteps_npt_sample} ${nsteps_npt_sample} v_lx
73 fix avely all ave/time 1 ${nsteps_npt_sample} ${nsteps_npt_sample} v_ly
74 fix avelz all ave/time 1 ${nsteps_npt_sample} ${nsteps_npt_sample} v_lz
75
76 run ${nsteps_npt_sample}
77
78 # Change the size of the box to its equilibrium shape
79 change_box all x final 0 $(f_avelx) y final 0 $(f_avely) z final 0 $(f_avelz) remap
80
81 unfix avelx
82 unfix avely
83 unfix avelz
84
85 # ----------------------------------------------------------------------------------- #
86 # NVT: Average the positions of the atoms
87 # ----------------------------------------------------------------------------------- #
88 unfix 1
89 fix 1 all nve
90 undump df
91 reset_timestep 0
92
93 # Record the average position of each atom
94 compute xu all property/atom xu
95 compute yu all property/atom yu
96 compute zu all property/atom zu
97
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C.2. Thermodynamic Integration

98 fix avex all ave/atom 1 ${nsteps_pos_ave} ${nsteps_pos_ave} c_xu
99 fix avey all ave/atom 1 ${nsteps_pos_ave} ${nsteps_pos_ave} c_yu

100 fix avez all ave/atom 1 ${nsteps_pos_ave} ${nsteps_pos_ave} c_zu
101
102 run ${nsteps_pos_ave}
103
104 # Set the position of each atom to the average position (equilibrium position)
105 variable avex atom f_avex
106 variable avey atom f_avey
107 variable avez atom f_avez
108 set atom * x v_avex y v_avey z v_avez
109
110 write_data optim_config.data
111
112 unfix avex
113 unfix avey
114 unfix avez
115
116 # ----------------------------------------------------------------------------------- #
117 # NVT: Sample the mean-squared displacement
118 #
119 # Used to compute the spring constant for an ideal Einstein crystal that replicates
120 # the same MSD, given by: k = 3 k_B T / (2 * <dr^2>)
121 # ----------------------------------------------------------------------------------- #
122
123 compute MSD_O O msd
124 compute MSD_Si Si msd
125
126 thermo_style custom step time c_MSD_O[4] c_MSD_Si[4]
127 log log_msd.lammps
128 run ${nsteps_msd}

C.2 Thermodynamic Integration

Listing C.2: in.ti

1 # Author: Nicholas Karlsen
2 #
3 # Performs Thermodynamic integration from an Einstein crystal to Vashishta SiO2
4 #
5 # IMPORTANT: This file requires a modified version of LAMMPS that has a "scale" parameter
6 # in the Vashishta pair-style such that fix_adapt may be used.
7 # see the changes made in the fork: https://github.com/nicholaskarlsen/lammps-scale-vashishta
8 #
9 # Command line variables:

10 # T Temperature
11 # N_STEPS Number of timesteps
12 # lambda Integration variable/scaling parameter
13 # index Index corresponding to the integration step (ie I = \sum_i^N w_i * f(x_i))
14
15 variable lambda equal ${lamb}
16 variable k_O equal ((1-v_lambda)*${spring_const_O})
17 variable k_Si equal ((1-v_lambda)*${spring_const_Si})
18
19 # Prepare the system
20 dimension 3
21 boundary p p p
22 units metal
23 atom_style atomic
24 pair_style vashishta
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C.3. Non-Equilibrium Thermodynamic Integration

25
26 read_data optim_config.data
27
28 mass 1 15.999400 # O
29 mass 2 28.085501 # Si
30
31 group 1 type 1
32 group 2 type 2
33
34 pair_coeff * * SiO.vashishta O Si
35
36 velocity all create ${temperature} ${seed}
37 velocity all zero linear
38 velocity all zero angular
39
40 # Set NVT conditions
41 fix fix_nve all nve
42 fix fix_langevin all langevin ${temperature} ${temperature} $(100*dt) ${seed} zero yes
43 fix fix_adapt all adapt 0 pair vashishta scale 1 1 v_lambda
44 if "${k_O} != 0" then &
45 "fix fix_spring_O 1 spring/self ${k_O}" &
46 "fix fix_spring_Si 2 spring/self ${k_Si}"
47 # Recenter COM after every step
48 fix fix_momentum all momentum 1 linear 1 1 1 rescale
49 fix fix_recenter all recenter INIT INIT INIT
50
51 variable UE_O equal (f_fix_spring_O)
52 variable UE_Si equal (f_fix_spring_Si)
53
54 compute MSD_O 1 msd
55 compute MSD_Si 2 msd
56
57 #dump df all custom 1000 dump_${index}.lammpstrj id type element x y z
58 #dump_modify df element O Si
59 thermo 10
60 # Note: pe corresponds to U_C
61 thermo_style custom step time ke pe v_UE_O v_UE_Si c_MSD_O[4] c_MSD_Si[4]
62 log log_ti_${index}.lammps
63 run ${nsteps}

C.3 Non-Equilibrium Thermodynamic Integration

Listing C.3: in.neq_ti

1 # Author: Nicholas Karlsen
2 #
3 # Performs Non-Equilibrium Thermodynamic integration from an Einstein crystal to
4 # Vashishta SiO2 along the homotopy:
5 #
6 # U(lambda) = (1 - lambda) * U_Vashishta + lambda * U_Einstein
7 #
8 # Thus the simulation is follows the pathway:
9 # -> Equilibriate pure Vashishta crystal

10 # -> Integrate from Vashishta to Einstein
11 # -> Equilibriate pure Einstein crystal
12 # -> Integrate from Einstein to Vashishta
13 #
14 # Command line variables:
15 # seed Seed used in the random number generator
16 # nsteps_eq Number of steps to equilibriate during the before the fw and bw processes
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C.4. Free Energy Perturbation (Vega Path)

17 # nsteps_ti Number of steps to perform the backward and forward processes
18 # spring_const_O Spring constant of the Oxygen atoms in the ideal einstein crystal
19 # spring_const_Si Spring constant of the Silicon atoms in the ideal einstein crystal
20 # temp Temperature imposed by the Langevin thermostat
21
22 log neq_ti_${seed}.lammps
23
24 # Prepare the system
25 dimension 3
26 boundary p p p
27 units metal
28 atom_style atomic
29 pair_style vashishta
30 read_data optim_config.data
31 mass 1 15.999400 # O
32 mass 2 28.085501 # Si
33 group O type 1
34 group Si type 2
35 pair_coeff * * SiO.vashishta O Si
36 velocity all create ${temp} ${seed} mom yes rot yes dist gaussian
37
38 fix NVE all nve
39 fix ti_O O ti/spring ${spring_const_O} ${nsteps_ti} ${nsteps_eq} function 2
40 fix ti_Si Si ti/spring ${spring_const_Si} ${nsteps_ti} ${nsteps_eq} function 2
41 fix thermostat all langevin ${temp} ${temp} $(100*dt) ${seed} zero yes
42
43 compute Tcm all temp/com
44 fix_modify thermostat temp Tcm
45
46 # Energies
47 variable U_O equal f_ti_O
48 variable U_Si equal f_ti_Si
49 variable dU equal (pe-v_U_O-v_U_Si)
50
51 # Integration variable
52 variable lambda_O equal f_ti_O[1]
53 variable lambda_Si equal f_ti_Si[1]
54 variable dlambda equal f_ti_O[2]
55
56 # Fix the center of mass by manually removing any drift of the COM after integration
57 fix fmomentum all momentum 1 linear 1 1 1 rescale
58 fix frecenter all recenter INIT INIT INIT
59
60 dump df all custom 5000 dump_neq_ti_${seed}.lammpstrj id type x y z
61 thermo_style custom step time pe ke v_dU v_U_O v_U_Si v_dlambda v_lambda_O v_lambda_Si
62 thermo 10
63
64 run ${nsteps_eq} # Equilibriate Vashishta
65 run ${nsteps_ti} # Vashishta -> Einstein
66 run ${nsteps_eq} # Equilibriate Einstein
67 run ${nsteps_ti} # Einstein -> Vashishta

C.4 Free Energy Perturbation (Vega Path)

1 # Run simulation with atoms governed by harmonic potential centered on the initial positions
2 dimension 3
3 boundary p p p
4 units metal
5 atom_style atomic
6 pair_style none
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C.5. Thermodynamic Integration (Vega Path)

7
8 read_data optim_config.data
9

10 mass 1 20 # O
11 mass 2 20 # Si
12
13 velocity all create ${temp} ${seed}
14 velocity all zero linear
15 velocity all zero angular
16
17 # Set NVT conditions
18 fix fix_langevin all langevin ${temp} ${temp} $(100*dt) ${seed}
19 fix fix_nve all nve
20
21 # Harmonic potential located at init positions of each atom
22 fix fix_spring all spring/self ${k}
23
24 # Adds spring potential to the PotEng computation
25 fix_modify fix_spring energy yes
26
27 # Fix the center of mass
28 fix fix_recenter all recenter INIT INIT INIT
29
30 dump dumpfile all custom 10 dump_id_${index}.lammpstrj id type x y z
31 run ${N_STEPS}
32
33 clear
34
35 # rerun the dump file to sample the PE in the Vashishta potential
36 dimension 3
37 units metal
38 atom_style atomic
39 pair_style vashishta
40
41 read_data optim_config.data
42
43 pair_coeff * * SiO.vashishta O Si
44
45 thermo 1
46 thermo_style custom step time pe
47 log log_real_${index}.lammps
48 rerun dump_id_${index}.lammpstrj dump x y z

C.5 Thermodynamic Integration (Vega Path)

1 # Author: Nicholas Karlsen
2 #
3 # Performs Thermodynamic integration from an an interacting Einstein crystal
4 # to a crystal by integrating along the homotopy:
5 #
6 # U(lambda) = (1 - lambda) * (U_Vashishta + U_Einstein) + lambda * U_Vashishta
7 #
8 # -> Integrate from interacting Einstein crystal to Vashishta crystal
9 #

10 # Command line variables:
11 # seed Seed used in the random number generator
12 # temperature Temperature imposed by the Langevin thermostat
13 # nsteps Number of simulation timesteps
14 # k spring constant
15 # idx Index of the computation (useful in post processing)
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C.5. Thermodynamic Integration (Vega Path)

16
17 dimension 3
18 boundary p p p
19 units metal
20 atom_style atomic
21 pair_style vashishta
22
23 read_data optim_config.data
24 mass 1 20 # O
25 mass 2 20 # S
26
27 pair_coeff * * SiO.vashishta O Si
28 velocity all create ${temp} ${seed}
29
30 fix fix_langevin all langevin ${temp} ${temp} $(100*dt) ${seed} zero yes
31 fix fix_nve all nve
32
33 if "${k} != 0" then &
34 "fix fix_spring all spring/self ${k}" &
35 "fix_modify fix_spring energy yes"
36
37 fix fix_recenter all recenter INIT INIT INIT
38
39 compute MSD all msd
40
41 dump dumpfile all custom 100 dump_${idx}.lammpstrj id type x y z
42 thermo 1
43 thermo_style custom step time ke pe atoms c_MSD[4]
44 log log_${idx}.lammps
45 run ${nsteps}
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