
UNIVERSITY OF OSLO
Department of Informatics

Weaving of UML
Sequence
Diagrams using
STAIRS

Research Report 367

Roy Grønmo, Fredrik
Sørensen, Birger
Møller-Pedersen,
Stein Krogdahl

ISBN 82-7368-325-7
ISSN 0806-3036

October 2007

Weaving of UML Sequence Diagrams using

STAIRS

Roy Grønmo,Fredrik Sørensen,
Birger Møller-Pedersen, Stein Krogdahl

October 2007

Abstract

In this report we explore aspect-oriented modeling for UML 2.0 se-
quence diagrams. We ensure that the aspect weaving is semantics-based
by using a formal trace model for sequence diagrams. A major challenge
is to handle unbounded loops which produce infinite traces. We establish
a systematic way to permutate and rewrite the original loop definition
so that the weaving in many typical cases can be performed on a finite
structure. We prove that it is always sufficient to consider a loop with
upper bound relative to the pointcut definition to discover if the loop has
infinitely repeating matches. A running example illustrates the approach
and a prototype weaving tool is being implemented.

1 Introduction

Aspect-orientation for programming has emerged as a promising way to sepa-
rately define cross-cutting parts of programs, in order to achieve separation of
concern. We believe that the same potential is there also for modeling. This
report explores aspect-oriented modeling for UML 2 sequence diagrams [9].

In aspect-oriented programming the base program is the main program
upon which one or more aspects may define some cross-cutting code as ad-
ditions or changes. An aspect is defined by a pair (pointcut and advice), where
the pointcut defines where to affect the base program and the corresponding
advice defines what to do in the places identified by the pointcut. Analogously
we term our main sequence models as the base models, and we define aspect di-
agrams consisting of pointcut and advice diagram both based upon the concrete
syntax of sequence diagrams.

If the models are only used for documentation and illustration of the system
behaviour, then we do not need to actually weave the aspect model and the
base model. However, within model-driven development the models are used
actively to produce the implementation, test programs or to maintain relation-
ships between different models. In such an environment we need to weave the
aspect and the base model. The aspect diagram defines the cross-cutting model

1

Roy Grønmo et al.

elements to influence the base model, so that an aspect weaver can produce a
woven result in the form of a new model.

Many aspect-oriented approaches suffer because they rely on a pure syntactic
pointcut matching and weaving. This forces the aspect developer to think in
terms of how the program or model is organized syntactically. With a semantics-
based approach the aspect developer shall be able to conceptually express when
and how to apply the aspect.

We illustrate the problem of syntactic-based pointcut matching with an ex-
ample (Figure 1). The advice diagram is left out since it is irrelevant for the
matching process. There is a pointcut expressing that the message m1 from L1
to L2 is followed by the message m2 from L1 to L2. The base model has two
consecutive alt operators defined using the combined fragment notation of UML
sequence diagrams. An alt operator defines a choice of different alternatives,
where the alternatives are given as operands separated by a dashed line. If we
apply the poincut on the base model of the figure with pure syntactic-based
matching, then we will not find any matches. However, one possible execution
trace will choose the second operands of the two alt operators which then should
result in an exact match of the specified pointcut.

Optimal figure for paper

L1
m1

poincut

m2

L2 L1

base

L2
alt a

m1

alt b
m2

L1 L2
loop m

Customer

loop

login

ok

tryAgain
newAttempt

Server

basebase

Figure 1: Syntactic-based matching problem

Grosu and Smolka [4] show how an automata-based representation can be
used to formalize UML 2.0 sequence diagrams, so that semantics-based weaving
is possible. However, this is restricted to bounded sequence diagrams. Un-
bounded sequence diagrams occur when there are loops involved and when an
execution run cannot be described by a regular expression. An example of an un-
bounded sequence diagram is shown in Figure 2a (example taken from [4]). The
problem is that this sequence diagram produces traces of the form (!m)n(?m)n

which is not a regular expression. An unbounded sequence diagram must pro-
duce infinite traces meaning that there must be at least one unbounded loop.
It is however not a sufficient criterion to be unbounded that it contains an un-
bounded loop as we see in Figure 2b. The unbounded diagram produces traces
that can be desribed as a regulal expression: (!m1, ?m1, !m2, ?m2)∗

We avoid the limitation of only using bounded sequence diagrams by us-
ing STAIRS [10] traces as our formal model for UML 2 sequence diagrams.
The syntactic sequence definition is by STAIRS translated into a set of traces
that represent the set of possible execution runs. By working on the STAIRS

2

Weaving of UML Sequence Diagrams using STAIRS

traces instead of the syntactic model we achieve a semantics-based matching
and weaving. This will allow the aspect modeller to think in terms of what an
aspect should capture instead of how the model may be syntactically defined.

Unbounded vs. bounded

L1 L2
loop m

base

L1 L2
loop m1

base

m2

a) unbounded b) bounded

a) b)

Figure 2: a)unbounded b) bounded

In the remainder of this report we will use a base model example with a
loop as the control node. The base model example (Figure 3) is adopted from
Klein et al. ([6]) who used a similar example for Message Sequence Charts.
The example has been translated into an equivalent version for UML sequence
diagrams. The model starts with a login attempt from Customer to Server. At
the end the Server will finally answer with an ok message to indicate successfull
login. In between these two events there may be zero or more iterations of a
loop. The loops first message, tryAgain, informs of login failure, while the
second message, newAttempt, is a new customer login attempt.

Optimal figure for paper

L1
m1

poincut

m2

L2 L1

base

L2
alt a

m1

alt b
m2

L1 L2
loop m

Customer

loop

login

ok

tryAgain
newAttempt

Server

basebase

Figure 3: Login example

This report is organized as follows; Section 2 presents the STAIRS formal
model for sequence diagrams; Section 3 proposes aspect diagrams for sequence
diagrams; Section 4 shows how we achieve a semantics-based matching; Section
5 defines how to calculate weave instructions given an aspect diagram as input;
Section 6 defines how to reverse-engineer a set of traces into a sequence diagram,
which is an important part of the weaving process; Section 7 presents the full
weave algorithm; Section 8 shows how to deal with the problematic unbounded
loops that lead to infinite traces; Section 9 illustrates the approach by five
examples; Section 10 shows a tool which implements the approach; Section 11
contains related work; Section 12 discusses the approach; and finally Section 13
concludes the report.

3

Roy Grønmo et al.

2 STAIRS

In order to do a semantics-based pointcut matching and semantics-based weav-
ing, we need to define a semantic model for sequence diagrams. For this purpose
we choose to use the well established STAIRS formal model where the semantics
of a sequence diagram is understood as a set of execution traces. Both the trace
set and individual traces may be finite or infinite. First we define the syntax
for interactions by the EBNF in Figure 4 (adopted and simplified from Runde
et al. [10]).

Syntax of interactions (Runde et
al.)

<Empty> | <Event> | <Weak Seq> |
<Alternatives> | <Loop>
skip
<Kind> <Message>
<Transmission> | <Reception>
!
?
(Signal, <Transmitter>, <Receiver>)
Lifeline
Lifeline
alt [<Interaction list>]
loop Set [<Interaction list>]
seq [<Interaction list>]
<Interaction> | <Interaction list> , <Interaction>

<Interaction>

<Empty>
<Event>
<Kind>
<Transmission>
<Reception>
<Message>
<Transmitter>
<Receiver>
<Alternatives>
<Loop>
<Weak seq>
<Interaction list>

Figure 4: Syntax for sequence diagrams

The syntax model is only a subset of those given by Runde et al. We fo-
cus on the operators seq, alt and loop. The first two operators are chosen
because they are the basic operators from which we also may define several
other operators. The loop is included since it provides some challenges in the
context of semantics-based weaving. In this report we restrict the loop body
to use only the seq operator and not alts or inner loops. Notice that the loop
operator has an optional integer Set to define the possible iterations of the
loop. This can be expressed in many different ways such as UML cardinality
lowerBound..upperBound, explicit enumeration {1, 3, 5} (if omitted it corre-
sponds to 0..∗). lowerBound..upperBound means that the loop will iterate
either lowerBound, or lowerbound + 1,..., or upperBound iterations.

Now we return to the example model to see how it can be represented with
the textual syntax (C = Customer, S = Server):

4

Weaving of UML Sequence Diagrams using STAIRS

seq[!(login, C, S), ?(login, C, S)
loop[!(tryAgain, S,C), ?(tryAgain, S,C),

!(newAttempt, C, S), ?(newAttempt, C, S)],
!(ok, S, C), ?(ok, S, C)]

Each message is represented by two events, a transmission event (!) and
a reception event (?). In some of our examples in this report, we omit the
transmitter and receiver lifelines for readability when this information is unam-
bigously defined by the diagram. We require that an interaction representing a
base diagram as well as the pointcut and advice diagram (defined in the next
section) are well-formed, meaning that both the transmission and reception
event of a message must be included when the corresponding transmitter and
receiever lifelines are present. Furthermore, we require that both lifelines are
present. The syntax model is however recursively defined, so that inner interac-
tions may be defined without well-formedness requirements, e.g. the interaction
seq [!(m,A, B)].

In STAIRS the semantics of a sequence diagram is defined by a function
Ji : InteractionK = (p, n), where p is the set of positive traces and n is the set
of negative traces. Positive traces define valid behaviour and negative traces
define invalid behaviour, while all other traces are defined as inconclusive. The
negative traces does not seem to raise particular issues upon the approach taken
in this report. Thus, we consider only positive traces in this report, and we will
simplify the semantic function as Ji : InteractionK = p.

Figure 5 shows the STAIRS definitions we need in this report. The semantics
of skip is the empty trace, and the semantics of a single event is the single
trace with the event itself. The semantics of the syntactic seq operator is the
semantics of its operand for a single interaction, while it uses the semantic weak
sequencing operator, %, between all trace sets. The % operator will produce
a set of traces that follow the principle that orderings are only given for each
lifeline and its events in isolation.

An event takes place on a lifeline l1 if it is a transmission event !(signal, l1, l2)
or a reception event ?(signal, l2, l1). An intuitive idea behind the semantic
definitions of the weak sequencing is that messages are sent asynchronously and
that they may happen in any order on different lifelines, but sequentially on the
same lifeline.

The semantics of the alt operator is the union of the semantics of each
individual operand. The loop operator is defined as the union of the semantics
of the loop with all possible fixed numbers of iterations. The semantics of
a loop with a fixed number fix iterations is defined recursively so that the
semantics is equal to the loop operand semantics repeated fix times with the
weak sequencing operator (%) between each. If the loop has no upper bound,
then we will have infinitely long traces.

The semantic rules we have defined can be used to calculate the set of traces
for a sequence diagram defined with the textual syntax. The resulting set of
traces of the base model of the running example is:

5

Roy Grønmo et al.

{〈!login, ?login, !ok, ?ok〉,
〈!login, ?login, !tryAgain, ?tryAgain,

!newAttempt, ?newAttempt, !ok, ?ok〉, . . .}

The first trace corresponds to zero iterations in the loop. The next corre-
sponds to one iteration and there will be infinitely many traces since the loop
has no upper bound. The subsequence ?tryAgain, ?tryAgain, !newAttempt,
?newAttempt can be repeated an arbitrary number of times.

To avoid some problems in the matching process described later, we will
extend the STAIRS syntax and semantics models by assigning a unique identifier
(id) to each message in a trace. The same identifier is shared between the
corresponding transmission event (!) and reception event (?) of the message:

〈Message〉 → (Signal, 〈Transmitter〉, 〈Receiver〉, id).

Semantics of interactions:
« d: Diagram ¬

sdef.1 «skip¬ = { <> }
sdef.2 «e: Event¬ = { <e> }
sdef.3 «seq [i: Interaction]¬ = «i¬
sdef.4 «seq [il: InteractionList, i: Interaction]¬ = «seq [il]¬ % «i¬
sdef.5 «alt [i1, ...in: Interaction]¬ = {«i1¬, .. «in¬ }
sdef.6 «loop [i: Interaction]¬ = {<>}]∀ n>0 «loop {n} [i]¬
sdef.7 «loop {n..m} [i: Interaction]¬ =]k∈{n..m} «loop {k} [i]¬
sdef.8 «loop {n} [i: Interaction]¬ = «loop {n-1} [i]¬ % «i¬, n > 0
sdef.9 «loop {0} [i: Interaction]¬ = { <> }

Here, t1: TraceSet % t2: TraceSet is defined as the TraceSet
with one concatenated trace for each combination of one trace
from t1 and one trace from t2 where:
• events on a lifeline l in t1 comes before events on the same

lifeline l in t2
• events on different lifelines may come in any order

Figure 5: Semantics for sequence diagrams

3 Aspect Diagram

The aspect diagram language we propose is inspired by graph transformations
where the left part, the pointcut diagram, defines a pattern for which we are
looking for matches or morphisms in the base model. The right part, the advice
diagram, instructs how to update the base model. Both the poincut and advice
diagram are based upon sequence diagrams so that the modeller can think in
terms of an already familiar notation which also maps directly to the base model.

6

Weaving of UML Sequence Diagrams using STAIRS

Notice that we reuse the syntactic sequence diagrams for defining the point-
cut and advice, instead of defining pointcut and advice using the formal model
of traces. Still, by ensuring that the pointcut matching process is semantics-
based we will avoid the syntactic problem in Figure 1. Although the pointcut
is syntactically specified, all the semantic equivalent base model parts will be
matched as we will explain in the following sections.

We have defined an aspect (Figure 6) that can affect our base model. The as-
pect expresses that whenever the message newAttempt is followed by tryAgain,
then add another message saveAttempt, in between the two messages matched
by the pointcut, to log the failed attempt. A syntactic-based pointcut matching
will fail to find matches within our base model, since the two messages come in a
different order syntactically. However they will occur in an execution involving
two or more iterations. Another challenge for the weaving in this example is
that there is no limit to the number of matches as the number of loop iterations
in this case is unbounded.

Login example: Aspect – optimal
figure

Customer Server

pointcut

tryAgain

newAttempt
Customer Server

advice

tryAgain

newAttempt
saveAttempt

Figure 6: Logging Aspect

In this report we limit the approach to only consider additive aspects,
that is aspects where deletions and replacements are not allowed. With plain
additive aspects all the poincut elements of the pointcut diagram will be re-
peated in the advice diagram. In addition the advice contains new sequence di-
agram elements to be woven into the base model in certain places. These places
are defined by the ordering relative to the pointcut diagram elements. In the
logging example the added message shall occur directly after the newAttempt
message, and directly before the tryAgain message of the base model.

A sequence diagram is connected if there is a path between every two pairs
of lifelines in the diagram (for each lifeline that has at least one event in the same
diagram). A path exists between two lifelines if there is a message between these
two lifelines (the direction of the message is irrelevant in our path definition),
and the path definition is transitive:

Definition 1 The relation path(lifeline, lifeline) and the boolean property
connected(interaction):

∀m : Message = (s, tr, re) ⇒ path(tr, re) ∧ path(re, tr)
path(l1, l2) ∧ path(l2, l3) ⇒ path(l1, l3) (transitive)
connected(sd) ⇔ (∀l1, l2 ∈ lifeLines(sd) ⇒ path(l1, l2))

We require that the pointcut diagram is connected to avoid the problem of
intractable weaving as pointed out by Klein et al. [6]. In a disconnected diagram

7

Roy Grønmo et al.

where the pointcut uses independent lifelines, we may have an arbitrary number
of potential matches relative to the number of loop iterations. In such cases we
cannot express the weaving on a finite structure. The restriction is not crucial
since a single sequence diagram normally is connected.

Figure 7 shows two example pointcut diagrams where the leftmost is con-
nected and the rightmost is not connected. If any of the messages from the
leftmost diagram is removed, then it will not be connected. The rightmost di-
agram is not connected since there is no path between any of the lifelines L1
and L2 to any of the lifelines L3 and L4. By adding a message that has L1
or L2 as transmitter lifeline and L3 or L4 as reception lifeline (or the opposite
direction), the diagram becomes connected.

Connected pointcut

L1 a
b

poincut

L2 L3 L4

c

L1 a
b

illegal poincut

L2 L3 L4c

connected not connected

Figure 7: The pointcut shall be connected

The poincut diagram and the body of unbounded loops are restricted so
that they can use only events and the seq operator. Whenever we would have
liked to use an alt operator in the pointcut it can be replaced by a set of
aspects, one for each operand of the alt operator (tool support could perform
such replacements and allow the alt operator in the pointcut). The elements in
the pointcut that are repeated in the advice diagram cannot be placed inside the
advice diagrams combined fragments such as alt and loop. These restrictions
will make the weaving process much simpler, while many typical aspects still
can be expressed.

The full aspect diagram language for sequence diagrams however, will con-
tain some more advanced constructs (e.g. wild card identifiers for lifelines and
messages, replace/delete of messages). Some more investigation is needed before
these parts are presented. The precise semantics of additive aspects is presented
in the following sections where we cover the weaving process.

We have introduced some restrictions on the sequence diagrams used in
pointcut, advice and base models. Our full approach explained in this report is
only valid when these restrictions are not violated. Figure 8 shows a summary
table of all the restrictions. Although we have only introduced the seq, alt and
loop operators, we explain in section 12 that our results can be generalized to
also apply for a number of other operators, except for the strict operator. The
strict operator is included in the figure to stress this fact.

8

Weaving of UML Sequence Diagrams using STAIRS
Restrictions - ICSE

Pointcut Advice Base

Only seq + events Only seq + events
in unbounded loop
body

Only plain additive aspects

No pointcut preserved elements in combined fragment
operands

Unchanged partial order of pointcut preserved elements

Connected

strict operator not allowed

strict operator
not allowed

Figure 8: Restrictions for poinctut, advice and base models

4 Semantics-based Matching

Both the pointut and the base model are translated to a set of traces by the
J K-operator. Then we look for matching pointcut traces within the base model
traces. This way the pointcut matching becomes semantics-based. Whenever we
find one entire pointcut trace contained within one of the base model traces, then
we have identified a match. Any pointcut trace is by definition of even length
(and at least two events in order to be meaningful) since the transmission and
reception events of each message must be part of the trace. Formally,

Definition 2 A match m must satisfy the following (all mi and ei are events,
id() returns the id of an event, marked() returns true if the event is marked due
to a previously handled match):

m = 〈m1, ..mr〉, r ≥ 2 ∧ r = 2 ∗ n, n ∈ N
∃tp ∈ Trace : tp ∈ JpointcutK ∧ tp = m
∃tb ∈ Trace : tb ∈ JbaseK ∧ tb = 〈e1, . . . , es〉

∧ 〈mapId(ei), . . . ,mapId(ej)〉 = m ∧ 1 ≤ i < j ≤ s
∧ ∀r ∈ [i..j] : marked(er) = false

mapId(k(s, trans, rec, bId)) = k(s, trans, rec, mapId(bId))
∀bId ∈ {id(ei), . . . id(ej)} : mapId(bId) = pId

∧ ∃ep : Event ∈ tp : pId = id(ep)

mapId(Event) : Event is an injective function which takes a base trace
event as input and returns a pointcut trace event. The kind (k), signal (s),
transmitter(trans), receiver (rec) are not changed by the mapping function,
only the message identifier.

We need to iterate through all the pointcut traces and search for matches
within the base traces. When a match is found we produce a morphism table
where the id of a pointcut element gets a corresponding entry for the id of
the base model element. This is important since the same message (signal,
transmitter and receiver) may occur more than once within an execution trace.
This is not necessary in the traditional sequence diagram setting where a partial
trace has no meaning. However, in the setting of pointcut matching we accept
partial traces as a match, which leads to inconsistencies if we did not use the

9

Roy Grønmo et al.

identifiers and the injective mapId function. Consider the incorrect match of
Figure 9, which could occur if we did not require message identifiers. The left
part shows the pointcut and one of its associated traces, and the right part
shows the base model and one its associated traces with a mistaken match.

Incorrect match

L1 a
a

pointcut

L2 L1

base

L2L1
b

advice

L2

a
a
a
a L1

woven alt.1

L2

a
b
a L1

woven alt.2

L2

a
b
a

Figure 9: Incorrect match when not using identifiers

After a match is found a weaving according to the advice is carried out, and
we continue the search for new matches. All the individual base match events
are marked so that we avoid further matches at the same point. Otherwise, our
matching and weaving approach would never terminate. We need to continue
until there are no further unmarked matches in the base model traces.

Let us calculate the pointcut traces for the logging aspect,

JpointcutK = {〈!newAttempt, ?newAttempt, !tryAgain, ?tryAgain〉}

Our example pointcut gives only a single trace, while there in general will
be a set of pointcut traces that we need to iterate over in order to find matches
and perform a weaving. The single pointcut trace has no matches in the first
two base model traces (corresponding to zero and one iterations in the loop).
All the rest of the (infinite) set of traces have matches in the base model. In
the next section we investigate how to update the base model with the advice
for each match.

Figure 10 shows the matching process on an example where we have cross-
ing messages in the base models. The two base models contain the same two
messages, a and b and in the same order as within the pointcut. In addition the
base models have a crossing c message that crosses differently. The first base
model will never result in a match within any of the pointcut traces since the ?c
event always will split the ?a and ?b events of the pointcut, and thus prevents a
match. In the second base model however, the crossing results in matches since
both the !c and ?c events will before and after all the events associated with the
pointcut messages.

The loop operator and especially unbounded loops (as in our login example)
will complicate the weaving process since their presence in the base model re-
sults in infinite traces. Therefore we explain the weaving first without the loop
operator available, and cover the loop operator in detail in section 8 instead.

10

Weaving of UML Sequence Diagrams using STAIRSMatching definition

L1 a
b

poincut

<!c,!a,?a,?c,!b,?b>

L2

L1

base 1

L2

b

ac
?c will always prevent
possible matches

<!c,!a,?a,!b,?b,?c>L1

base 2

L2

b

ac

match

Figure 10: Matching

5 Weave Instructions

We will now describe the semantics of the aspect diagram and preprocess the
aspect diagram into weaving instructions. It is beneficial to represent the advice
diagram in a syntactic form in which the existing parts from the pointcut are
separated from the additive parts:

Definition 3 The advice syntax, s, is weaveSorted if it satisfies the following
conditions (P = Pointcut, all ai and pi are interactions):

s = seq [a0, p1, a1, . . . , pn, an] , n ≥ 1
J seq [p1, . . . , pn]K = JP K
∀i ∈ [1..n] : pi 6= skip ∧ pi ∈ P
∀i ∈ [1..n− 1] : ai 6= skip
∀i ∈ [0..n] : ai 6= skip ⇒ events(ai) ∩ events(P) = ∅

The second line ensures that only additive aspects are defined. It also ensures
that the weak sequence ordering from the pointcut is preserved for the pointcut
parts of the advice. Only a0 and an are allowed to be empty (skip). The final
clause states that none of the events within ai can be part of the pointcut.

For the logging aspect, one possible weaveSorted advice representation is:

seq[skip, a0

seq [!newAttempt, ?newAttempt] , p1

seq [!saveAttempt, ?saveAttempt] , a1

seq [!tryAgain, ?tryAgain] p2

skip] a2

We claim that any valid advice diagram as defined in section 3 can be ex-
pressed in a weaveSorted form. The advice diagram can be represented in many
ways using the textual syntax defined in section 2. The alternatives are defined
by the equivalence relation over J K. Due to definition 3 in Figure 5 we may

11

Roy Grønmo et al.

always add a seq operator as a wrapping around an interaction. This allows for
grouping different parts of the diagram. Remember also that the pointcut can
only use the seq operator and no combined fragment operators (e.g. alt,loop),
and the pointcut elements repeated in the advice cannot be placed inside com-
bined fragments. From these restrictions and definition 3 in Figure 5, it follows
that it is possible to provide a semantically correct weaveSorted advice.

The top part of Figure 11 shows an aspect definition to insert the messages
ad1 and ad2 in between the existing messages m1 and m2. Since none of these
two additional messages are crossing the m1 nor the m2 messages, but may be
ordered completely inside, then they may be grouped as one advice part a1 =
seq [!ad1, ?ad1, !ad2, ?ad2]. It will always be the case for alt or loop operators
in the advice, that they can get a single insert instruction, since they will not
cross with messages or interaction parts defined outside of the operator. In this
case there are four ordering requirements for the two lifelines. With respect to
lifeline L1, a1 must be placed after !m1 and before !m2, while for lifeline L2, a1

must be placed after ?m1 and before ?m2.

Definition 4 The function weaveInstrSet() produces a set of weave instruc-
tions based on a weaveSorted advice as input:

weaveInstrSet(seq [a0, p1, a1, . . . , pn, an]) = {
a0 6= skip ⇒ insert(a0),
insert(a1), . . . , insert(an−1),
an 6= skip ⇒ insert(an)}, where

1. a0 6= skip ⇒ (∀l ∈ lifelines(a0) :
before(firstEvt(seq [p1, . . . , pn] , l)) ∈ insert(a0))

2. ∀i ∈ [1..n− 1] : ∀l ∈ lifelines(ai) :
after(lastEvt(seq [p1, . . . , pi] , l)) ∈ insert(ai) ∧
before(firstEvt(seq [pi+1, . . . , pn] , l)) ∈ insert(ai)

3. an 6= skip ⇒ (∀l ∈ lifelines(an) :
after(lastEvt(seq [p1, . . . , pn] , l)) ∈ insert(an))

The weave instruction set, weaveInstrSet(), will contain one insert element
for each of the advice parts ai (except if skip elements are used for a0 and/or
an). Each insert element will contain another set of elements which are either
before or after elements that defines where in the matching base trace to insert
the respective advice part.

firstEvt/lastEvt(interaction, lifeline) retrieves the first/last event on the
lifeline with respect to the given interaction. These two functions are triv-
ial when the interaction only uses the seq operator and events, as we have
within the pointcut part. If there is no event in the interaction for a specific
lifeline, then firstEvt and lastEvt return the empty sequence 〈〉. before(〈〉)
and after(〈〉) in insert(ai) can be removed since they imply no requirement on
the placement of the ai.

12

Weaving of UML Sequence Diagrams using STAIRS

Weave instructions

base

<!m0,?m0,!m1,?m1,!m2,?m2>

<!m0,?m0,!m1,!m2,?m1,?m2>

Valid insertion point

No valid insertion point

<!m3, ?m3>

No match

L1 m1

poincut

1 2
m2

advice

L2 L1 m1

m2

L2

1 2

L1 L2

m1
m2

alt

m3

m0

ad1
ad2 a1

Traces

weaveInstrSet = {

insert(seq[!ad1,?ad1,!ad2,?ad2]) = {

after(!m1,X),after(?m1,X)} }

a1

Figure 11: Weave instructions

For the logging aspect we get a set with a single weave instruction. The
weave instruction contains four conditions on where to weave the advice part:

{insert(seq [!saveAttempt, ?saveAttempt]) =
{after(!newAttempt), after(?newAttempt),
before(!tryAgain), before(?tryAgain)}}

Notice that we are now combining syntax elements with semantic traces.
An insert instruction has a syntax element that is to be inserted into a position
defined relative to a set of trace events. Only base model traces with matches
are candidates for such insertions, and all the explicit placement requirements
(before and after) have to be fulfilled. In addition we require that the ordering
between the ai elements is maintained as they are inserted into the trace, i.e.
any ai comes before ai+1 (not necessarily immediately before).

We will see all the details on how the base model traces are affected by the
weave instructions in section 7. The syntactic advice parts (ai) are inserted at a
valid insertion point (not necessarily unique location) in a matching base model
trace. This insertion results in an intermediate hybrid trace, which is a sequence
of trace events and syntax elements:

〈h1, . . . , hn〉, ∀i ∈ [1..n] : hi ∈ Event ∨ hi ∈ Interaction

The next section describes how the hybrid trace can be transformed back
into regular traces so that we can continue working on the semantic level in the
further weaving process.

13

Roy Grønmo et al.

6 Woven Sequence Diagrams

The goal of the weaving process is to produce new models where the advice
instructions are woven at the correct places. We assume now that we have
found a matching base model trace and inserted the syntactic advice parts,
resulting in a hybrid trace. Before the matching process continues we need to
calculate the full effect from our insertions upon the set of base model traces.

To achieve this, we propose to reverse-engineer the hybrid trace back to a
sequence diagram that reflects the semantics of the woven hybrid trace. The
woven diagrams can then be used to calculate the woven semantics by using the
J K function from the STAIRS formal model.

The reverse-engineered sequence diagrams we produce are not intended for
human comprehension. Thus, we do not try to make these diagrams close to
the original ones, and we do not intend to make them nicely structured with
optimal usage of combined fragments. That would also be a very complicated
task.

Informally a sequence diagram is produced by making one outermost alt
operator with one operand for each trace. Each trace is wrapped inside a seq
operator that keeps the ordering within the trace. The trace items can be used
directly inside the seq operator since they are either events or woven syntax
elements from the advice.

Definition 5 The function, makeSD(), makes a sequence diagram from a hy-
brid trace set T = {t1, . . . , tn} or from a single trace t = 〈x1, . . . , xn〉:

makeSD(T) = alt [makeSD(t1), . . . ,makeSD(tn)]
makeSD(t) = seq [x1, . . . , xn]

The following lemma shows that the makeSD() definition is appropriate,
since making a sequence diagram from a trace set and then going back to traces
with the JK operator, will produce the original trace set:

Lemma 1 Let T be the trace set for a sequence diagram sd (T = JsdK), where
sd uses only seq, alt and loop and sd is well-formed (sdef. in the proof refers
to Figure 5):

JmakeSD(T)K = T.

Proof: By induction on the number of traces. one trace

JmakeSD({〈e1, . . . , en〉) = alt [seq [〈e1, . . . , en]] (def. 5)

New induction on the length n of the trace. two events

= Jalt [seq [〈!m, ?m]]K = {〈!m, ?m〉}� (sdef.5,4,3, %)

Inner induction step. Holds for length n. trace length n+2

= Jalt [seq [〈e1, . . . , en+2]]K
= Jalt [seq [〈e1, . . . , en]]K % Jen+1K % Jen+2K (sdef.5,4,3,5)
= {〈e1, . . . , en〉} % {〈en+1〉} % {〈en+2〉} (ind.hyp.,sdef.3)

14

Weaving of UML Sequence Diagrams using STAIRS

Since the original diagram sd used only seq, alt or loop which all imply from
sdef.1-9 that the % is used by JK to produce the ordering among all the trace
events. In this step of the induction we have assumed a single trace which
will only result from % if there is at most one ordering imposed by the partial
ordering of the events. Just adding !m, ?m to the end of the trace must be one
possible order, and thus also the only one. Thus the one trace case is proven.
Now, we assume it holds for n traces. n + 1 traces

= JmakeSD({t1, . . . , tn+1})K
= Jalt [makeSD(t1), . . . ,makeSD(tn+1)]K (def. 5)
= {t1, . . . , tn+1} (sdef.5,ind.proof of one trace)�

7 The Weave Algorithm

This section presents the full weaving algorithm (as pseudocode) which takes
a base model sequence diagram and an aspect diagram as input and returns a
woven sequence diagram. First, we explain the matching and weaving process.

There are a set of traces that can be considered equivalent with respect to
the partial order of the events. The weave algorithm takes advantage of this
and weaves only one of these partial order equivalent traces, while it ensures
that the woven result is propagated to all of the partial order equivalent traces.

Definition 6 We say that two traces tA = 〈tA1 , . . . , tAn 〉 and tB = 〈tB1 , . . . , tBn 〉
are partial order equivalent (POE) if and only if:

Jseq
[
tA1 , . . . , tAn

]
K = Jseq

[
tB1 , . . . , tBn

]
K

Let POE : Trace → Traces be a function that calculates all the POE
traces of a single trace. Then it follows from the definition of POE traces and
the definition of makeSD that POE(tA) = JmakeSD(tA)K.

For each pointcut trace we check for matches within each base trace. Each
time a matching pointcut trace is found within a base trace, we will check the
weave instructions set to see if there are valid insertion points for all the weave
instructions.

If there is at least one insert instruction without a valid insertion point, then
no weaving is performed on the base trace. We investigate the base model and
the aspect in Figure 11. From the base model we get three different types of
traces for which we will explain the action to be taken in the weaving process:

1. Trace with match and valid insertion points. In the example there is only
one insert instruction, a1, which has a valid insertion point. Thus, a1

will be inserted at the corresponding valid insertion point within the base
model trace which we now call bTraceV alid. An arbitrary valid position
can be chosen if there is more than one and as long as any ai comes
before ai+1. We will also remove all the POE traces of bTraceV alid
except bTraceV alid where we insert the advice parts. This suffices for
all the POE traces since we next apply JmakeSD(weave(bTraceV alid))K

15

Roy Grønmo et al.

to produce all deleted permutations again except that the woven result
now holds additional constraints on the partial ordering of events.

2. Trace with match and at least one invalid insertion point. In our example
there is no valid insertion point which satisfies both after(?m1, a1) and
before(!m2, a1). No action shall be taken, and in general, none of the
insert instructions will be performed when there is at least one invalid
insertion point.

3. Trace without match. No action shall be taken.

Although we say that no action is taken for the two latter trace cases, they
will be deleted as part of the action within the first trace case if they satisfy the
test for deletion of permutated traces.

The weave() algorithm (7.1) shows pseudocode for the full approach. We
first treat all the loops within the base model by a call to the treatLoops()
algorithm (8.3) (treatment of loops is explained in the next section). Then
we calculate the semantics, that is the trace sets of the pointcut and the base
model. When calculating the base traces, we will ignore the unbounded (and
marked) loops (loops that are treated will be marked and can then be ignored
as we explain in the next section). The trace sets may be a hybrid structure
consisting of some unbounded and marked loops which we know will not be of
interest in the further weaving process. We also calculate the weave instructions
by first preparing the advice to be in the weaveSorted representation. Then we
exclude pointcut traces that does not have valid insertion points for all the insert
instructions. Such pointcut traces will only match base traces of type two and
three for which no action will be taken.

Notice that the advice may contain new, unbounded loops. They should not
be matchRepetitive (to be defined in section 8.2) since this would be an aspect
definition which will never terminate. If it has overlapping events with the point-
cut, then it should be rewritten according to the rewriteNonRep algorithm (to
be defined in section 8.2) before the weaving takes place
(treatLoops(aspect.getAdvice) ensures such action is taken for all the loops).

After the initialization part, we iterate through all the pointcut traces and
immediately enter a while loop which iterates through all the base traces that
have matches for the current pointcut trace. The getMatch method will always
choose the leftmost match within a base model trace. The base trace which
contained the match (bTrace) is used to find all POE traces and delete these
from the set of base traces.

basePart is a subsequence of the base model trace which matches the point-
cut trace. The morphism table of the match holds the correspondance between
the pointcut elements and the base model matched elements. The advice holds
the weaving instructions which is relative to the pointcut identified elements.
We will use the morphism table to replace those IDs with the base model element
IDs, and the weave instructions will be updated with the base model IDs and
stored in the instrID variable. Then we proceed with the weaving instructions

16

Weaving of UML Sequence Diagrams using STAIRS

one at a time by inserting the advice parts into valid insertion points. Finally,
we mark all the elements in the base trace which were part of the current match.

Algorithm 7.1: weave(base, aspect)

pointcut = aspect.getPointcut
base = treatLoops(base, pointcut)
bTraces = JbaseK
advice = treatLoops(aspect.getAdvice)
advice = aspect.getWeaveSortedAdvice
weaveInstrSet = advice.weaveInstrSet
pTraces = JpointcutK
for each pTrace ∈ pTraces
do if ! pTrace.hasV alidIns(weaveInstrSet)
then pTraces = pTraces− pTrace

for each pTrace ∈ pTraces
do while bTraces.existMatch(pTrace)

do



match = bTraces.getMatch(pTrace)
bTrace = match.getBTrace
bTraces.removeAllPOETraces(bTrace)
basePart = match.getbasePartTrace
tbl = match.morphismTable
instrIDSet = weaveInstrSet.replaceIDs(tbl)
for each instr ∈ instrIDSet
do basePart.weave(instr)

bTrace.markAllElems(basePart)
bTraces.replace(bTrace, JmakeSD(bTrace)K)

wovenBase = makeSD(bTraces)
return (wovenBase)

The baseTraces holds the value of the semantically woven traces. After each
time an advice insertion has taken place, we have added syntactic elements
into trace sequence of events. Before we continue the matching process, we
need to we replace the updated base trace with the updated semantics for this
trace(JmakeSD(bTrace)K).

When there are no further matches the weave algorithm finally calls the
makeSD() algorithm to produce the woven sequence diagrams. Notice that
the whole weaving process has been described for a single aspect. If there are
multiple aspects, then the idea would be to repeat the call to algorithm 7.1 for
each aspect. Since one aspect may introduce new matches for other aspects, we
need to recheck for matches in the other aspects each time an aspect has been
applied. Multiple aspects raises a lot of new issues which are outside the scope
of this report.

An overview of the weave algorithm is shown in Figure 12. The figure shows
that the algorithm looks for matches based on the pointcut and base traces.

17

Roy Grønmo et al.

When a match is found, the advice parts are inserted to produce a hybrid trace.
The hybrid trace is reverse-engineered into sequence diagram for which we com-
pute the traces of the woven match base trace. The traces of the woven match
base trace replaces the old unwoven match base trace and all its partial order
equivalent traces. The process continues until there are no further matches. At
the end, the base traces will contain the woven traces.

Base syntax Pointcut syntax

insert(ai) = {before(ei),..after(ei)}

getMatch <e1,..,en>

Advice syntax

makeHybrid <e1,..ei,ai,ej,..,en>
Base trace w/ match

makeSDseq[e1,..ei,ai,ej,..,en]« ¬

The Approach - simplified

ai = seq | alt | loop
« ¬ « ¬ makeWeaveInstr

Base traces Pointcut traces

Woven traces

replace(matchBTrace,
wovenTraces)

Figure 12: Overview of the weave algorithm

8 Weaving Unbounded Loops

This section will describe how we can do the weaving also for the loop operator.
Loops without an upper bound are troublesome because they produce an infi-
nite trace set, and loops with large upper bounds may give the weaving process
a performance problem. We will however show that all unbounded loops may
be restructured and fully woven on a finite structure for a specific aspect. The
algorithm we present exploits that the number of relevant loop iterations are
restricted with respect to the pointcut, when the pointcut is connected (defini-
tion 1).

We say that a loop is matchRepetitive if we can infinitely increase the
number of matches as the number of loop iterations increase. Now we present a
lemma that helps us to determine if a loop is matchRepetitive by investigating
a finite trace structure. Remember that a loop body contains only the seq
operator and events. The lemma proves it is sufficient to consider the loop with
an upper bound equal to the number of messages in the pointcut.

Lemma 2 An unbounded loop lp = loop [body] is matchRepetitive for a point-
cut pd if and only if there exist at least one match in the bounded loop lp ′ =
loop{numMess(pd)} [body] (numMess() returns the number of messages within
a sequence diagram).

Proof:

• if-direction. If there exists a match within lp ′, then we may repeat these
iterations within lp infinitely many times.

18

Weaving of UML Sequence Diagrams using STAIRS

• only if-direction. Let n be the fewest number of iterations for lp which
gives a match. Such a matching trace must involve at least one event
from all iterations, otherwise we could exclude iterations not contributing
to the match and get a match within fewer iterations than n. The pointcut
trace which equals the match involves a number of messages which all have
two events. Since the match need to involve both the transmission and
reception events of a message, we know that each iteration contributes
with at least two events in the matching trace. The length of the pointcut
trace is twice the number of messages, which means that n cannot be
larger than the number of messages within the pointcut. �

We cannot calculate the entire trace of unbounded loops since the result will
be infinitely long traces. Instead we do a preprocessing of all unbounded loops
and then produce hybrid traces consisting of normal trace events intermixed
with unbounded, but preprocessed loops. In the preprocessed loops the nec-
essary weaving is already handled, and will thus be ignored in the rest of the
weaving process.

We only consider unbounded loops with cardinality 0..∗, where ∗ is un-
bounded. Other unbounded loops may easily be translated into finite loops
combined with 0..∗ loops by rewrites from loop{n..∗} [body] to seq[loop{n} [
body], loop [body]], and using the alt operator to split loops of the form
loop{2, 10, 20..∗}. First we cover the simplest case where the loop is unrelated
to the pointcut, the we cover non-matchRepetitive loops, and finally we cover
loops which are matchRepetitive.

When we produce traces to be matched we produce hybrid traces with or-
dinary traces for all bounded loops, while unbounded, marked loops are sim-
ply dumped to the trace so that the trace consists of either events or loop′

items. Ordinary marked events are handled by the J K operator as before, while
we have to adjust this operator to work also for loop′ items. By definition
Jloop′ [. . .]K = {〈loop′ [. . .]〉}. We also extend the definition of % in Figure 5 so
that events are replaced by the new term hybridEvent. A hybridEvent is either
ordinary events or loop′. Furthermore, we say that loop′ is a hybridEvent on a
lifeline l if ∃e ∈ events(loop′) : lifelineAction(e) = l, where a lifelineAction
returns the lifeline on which an event takes place. The % operator will now
ensure that loop′ is placed only in positions which fulfill the partial order of the
lifelines it involves.

The unbounded, marked loops are ignored in the remaining matching process
and finally copied back to the plain syntax tree when the reverse-engineered
sequence diagram is produced. For a hybrid trace 〈e1, . . . , ei, loop

′, ei+1, . . . , en〉
(∀j ∈ [1..n] : ej ∈ Event), the match must either be entirely within the before-
part (e1, . . . , ei), or entirely within the after-part (ei+1, . . . , en).

8.1 Unrelated Loops

The simplest case of unbounded loops are those that are unrelated to the point-
cut. Unrelated means that events(loopBody) ∩ events(Pointcut) = ∅.

19

Roy Grønmo et al.

Definition 7 An unrelated loop, loop [body], can be rewritten by a rewrite rule
(rewriteUnrel):

alt [skip, loop′{1..∗} [body]]

The skip operand corresponds to zero iterations and the other operand cor-
responds to 1+ iterations. The remaining unbounded loop is marked since it will
not be involved in any matches, and we will not produce any traces for this loop
in the matching process. Since skip does not have a graphical notation, we will
use the opt operand to display alt operators with skip operands in diagrams.
The rewrite result above is equivalent to opt [loop′{1..∗} [body]].

8.2 Non-matchRepetitive Loops

In an unbounded, non-matchRepetitive loop, we know that possible matches
will include preceding or succeeding traces (of the loop) or both. This is be-
cause matches only containing loop traces leads to match repetition. Potential
matches in the preceding traces may be completed by loop traces, and potential
matches in the loop traces may be completed by succeeding traces. By looking
at the proof of lemma 2 we deduce that the maximum number of loop iterations
involved in the match, is numMess(pd)− 1.

We translate the syntactic representation of the loop into a semantically
equivalent form where we separate the unbounded loop part which cannot be
part of any matches and the part that may contain matches as loops with upper
bounds. We introduce an alt operator with two operands, one with only an
upper bound on the old loop. The second alt operand contains the unbounded
loop with a prefixed and postfixed loop of an upperbound depending on the
length of the pointcut.

An unbounded, non-matchRepetitive loop, loop [body], has the following
rewrite rule (rewriteNonRep):

alt[loop {0..((numMess(pd)− 1) ∗ 2− 1)} [body] ,
seq[loop{numMess(pd)− 1} [body] ,

loop′ [body] ,
loop{numMess(pd)− 1} [body]]]

The unbounded loop is always preceeded by numMess(pd) - 1 loop itera-
tions, which prevents any completion matches in the unbounded loop. Similarly
the unbounded loop is always followed by numMess(pd) − 1 loop iterations,
which prevents that any potential matches start in the unbounded loop. These
arguments hold since the loop body can only contain the seq operator and since
the pointcut is connected. This implies that all the events that could be part
of matches in the unbounded loop always will be treated in the preceding or
succeeding loop iterations that surrounds it and that have an upper bound.
Notice that the unbounded loop is marked with a prime to indicate that no fur-
ther matching or weaving shall be performed on that loop. The same rewriting
process is shown by using diagrams in Figure 13.

20

Weaving of UML Sequence Diagrams using STAIRS
RewriteNonRep

L1

loop {0..((numMess(pd) - 1)*2 - 1) }

loop {numMess(pd) -1}

alt

L1 L3

loop

...

<body>

L3...

<body>

loop’ <body>

<body>

loop {numMess(pd) -1}
<body>

rewriteNonRep

Figure 13: Rewriting a non-MatchRepetitive Loop

8.3 MatchRepetitive Loops

We will now check if our base model loop example is matchRepetitive(tA =
tryAgain and nA = NewAttempt). As a consequence of lemma 2 it is sufficient
to check the traces of the loop with exactly numMess(pd) iterations:

numMess(pd) = 2
JpointcutK = {〈!nA, ?nA, !tA, ?tA〉}
Jloop{2} []K = {〈!tA, ?tA, !nA, ?nA, !tA, ?tA︸ ︷︷ ︸

match

, !nA, ?nA〉}

This bounded loop has a single trace with a match, meaning that our
base model loop is matchRepetitive. For such loops we will, as with the non-
matchRepetitive loops, treat them in isolation from the rest of the base model.
The treatment is again by translating the unbounded loop into bounded loops
for which all traces are generated and a preprocessed unbounded loop that
is not part of the further trace weaving process. As opposed to the non-
matchRepetitive loops, the preprocessed unbounded loop will have matches for
which we have added the aspect advice.

Algorithm 8.1 shows pseudocode to transform a matchRepetitive loop into
a new syntax expression containing a bounded loop and an unbounded loop
which is not matchRepetitive. This new structure is semantically equivalent
except that a partial weaving is performed. The remaining weaving will continue
working on the reduced structure in which there are no matchRepetitive loops.

21

Roy Grønmo et al.

Algorithm 8.1: rewriteRep(loop [body] , aspect)

pd = aspect.getPointcut
r = numMess(pd)
boundedLoop = loop{0..r − 1} [body]
loopTraces = Jloop{r} [body]K
pTraces = JpointcutK
match = get1stMatch(loopTraces, pTraces)
matchTrace = match.trace
before = matchTrace.beforeMatch(match)
matchPart = matchTrace.matchPart(match)
after = matchTrace.afterMatch(match)

comment: Weaving 3 trace parts

wovenBefore = weave(seq [before] , aspect
wovenMatch = weave(seq [matchPart] , aspect
wovenAfter = weave(seq [after] , aspect

afterBefore = seq [wovenAfter, wovenBefore]
if !matchExist(afterBefore, aspect)

then



comment: No permutation

body = seq[wovenBefore, wovenMatch,wovenAfter]
wovenBody = weave(body, aspect)
wovenLoop = loop [wovenBody]
wovenLoop.treatLoop
return (seq [wovenLoop, boundedLoop])

else



comment: Permutation

body = seq [wovenMatch, afterBefore]
wovenBody = weave(body, aspect)
permLoop = loop [wovenBody]
permLoop.treatLoop
newAfter = seq [wovenMatch,wovenAfter]
retV al = seq[opt[wovenBefore, permLoop, newAfter],

boundedLoop]
return (retV al)

The algorithm prepares the matching process by calculating the traces for the
pointcut and the loop with numMess(pd) iterations. Then we retrieve the first
match (get1stMatch). The loop trace where the first match is found consists
of three parts: an event list in the match part (matchPart), a list of events
preceding the match events (before), and a list of events succeeding the match
events (after). The three parts are woven individually to obtain wovenBefore,
wovenMatch, and wovenAfter.

Since we have only additive aspects, the wovenMatch will contain all the

22

Weaving of UML Sequence Diagrams using STAIRS

match events as marked, and these marked events will separate possible fur-
ther matches to come only prior to or after this marked match. The only way
for further matches to involve more than one iteration is that afterBefore =
seq [wovenAfter, wovenBefore] contains matches.

If there are no matches in afterBefore, then no permutation of the loop is
needed. We rejoin the three previously split parts using their original order, seq
[wovenBefore, wovenMatch, wovenAfter], and the result becomes the new
loop body (body). We weave this body and we call on the treatLoop to handle
this loop by either the rewriteUnrel or rewriteNonRep rewrite rules.

It is important to note that the loop trace we have used to construct the
new loop body comes from numMess(pd) iterations. Thus, the rewrite will only
support n∗numMess(pd) (2,4,6 etc. in our example) iterations from the original
loop. To cope with this, we add the boundedLoop with zero to numMess(pd)−1
(0..1 in our example) iterations at the end. In our example we will then support
also 1,3,5 etc. iterations of the original loop.

If there are no matches in afterBefore, then permutation of the loop is
needed. We shift the loop so that we get the sequence seq [wovenMatch,
afterBefore]. To make the full syntax model identical to the original loop, we
will produce an outer seq operator to ensure the wovenBefore is inserted before
we enter the loop and the seq [wovenMatch,wovenAfter] is inserted after we
exit the loop.

As in the non-permutation case, we need to call on the treatLoop to han-
dle the new loop by either the rewriteUnrel or rewriteNonRep rewrite rules.
There are still parts of the final result that may involve matches. But these
parts can be treated by the normal weaving apparatus for finite traces. From
the pseudocode we see that the rewriteRep algorithm to treat a matchRepet-
itive loop, loop [body], will always terminate, if the weaving of the finite traces
loop{numMess(pd)} [body], terminates. The latter termination criteria depends
on the aspect. For plain additive aspects as we only consider in this report, it
is sufficient that the events in the additive parts are disjoint from the events of
the pointcut.

The algorithm above will translate our original example loop into the dia-
gram shown in Figure 14 (sA = saveAttemtp, marked elements are displayed
with a prime). The loop will be permuted since we get additional matches when
combining the end of the the woven body (!nA, ?nA) with the start of the woven
body (!tA, ?tA). There will be two nested opt operators where the innermost
results from applying the rewriteUnrel rule to the permuted and woven loop
body, and the outermost comes directly from the rewriteRep algorithm.

8.4 Loop Summary

We now define the general loop algorithms which use the algorithms defined
in the previous two subsections. The treatLoop algorithm (8.2) takes a loop
and an aspect as input and returns an Interaction as output. The goal of this
algorithm is to produce a new Interaction structure (if needed) to replace the
loop, where all weaving in unbounded loops are finished.

23

Roy Grønmo et al.

Customer

loop tryAgain
newAttempt

Server Customer

loop’ {1..*}

Server

permuted
and
woven
loop for
numMess(pd)
iterations

tryAgain

newAttempt

wovenBefore

wovenMatch
+ wovenAfter

loop {0..1} tryAgain
newAttempt

boundedLoop

opt

seq[opt[
tA,?tA,
opt[loop’{1..*}[seq[

!nA’,?nA’,!sA,?sA,!tA’,?tA’,
!nA’,?nA’,!sA,?sA,!tA’,?tA’]]],

!nA’,?nA’,!sA,?sA,!tA’,?tA’!nA,?nA],
loop{0..1}[seq[!tA,?tA,!nA,?nA]]]]

textual

graphical

Example: Login

tryAgain’

newAttempt’

saveAttempt

opt
rewriteRep

tryAgain’

newAttempt’

saveAttempt

tryAgain’

newAttempt’

saveAttempt

Figure 14: Rewriting the matchRepetitive loop of the login example

For loops with an upper bound, we generate full traces as with the other
syntactic operators seq and alt. The rewrite rule rewriteUnrel is used if the
loop is unrelated to the pointcut. Otherwise, unbounded loops are rewritten by
following either the non-matchRepetitive (rewriteNonRep) or matchRepetitive
(rewriteRep) loop rewrite expression. Notice that the latter rewrite results
in an interaction where further rewrites may be necessary. The treatLoops()
algorithm (8.3) is called to take care of this.

Algorithm 8.2: treatLoop(loop, aspect)

pd = aspect.pointcut
if loop.hasUpperBound
then return (loop) 〈make all traces〉
else if events(loop) ∩ events(pd) = ∅
then return (loop.rewriteUnrel)

else



max = numMess(pd)
isNonRep = hasMatch(loop{max}, pd)
if isNonRep
then return (loop.rewriteNonRep(pd))
else

return (treatLoops((loop.rewriteRep(pd))))

The goal of our next algorithm is the same as for the previous algorithm, but

24

Weaving of UML Sequence Diagrams using STAIRS

works for general interactions consisting of an arbitrary number of loops. When
the latter algorithm is finished, all the unbounded loops have been marked so
that they will be ignored in the continued matching process.

Algorithm 8.3: treatLoops(diagram, aspect)

for each ld : Loop ∈ diagram
do diagram.replace(ld, T reatLoop(ld, aspect))

return (diagram)

9 Examples

This section provides some examples to illustrate how the weaving works in
practice. We will show the woven result as sequence diagrams for easier com-
prehension. However, we do not propose that the woven sequence diagrams
should be used other than for validation purposes, since the woven diagrams
will typically have a poor layout in our approach. Here is a summary of the
examples:

• Consecutive alt operators. This shows that we do solve the Figure 1
example properly with our semantics-based solution. The example has
a pointcut that should match with the base model which has parts of
the pointcut in one alt operand, and parts of the pointcut in another alt
operand.

• MatchRepetitive loop. This example shows how to treat loops that
are match repetitive. The example illustrates that the weaving of even
a single aspect may produce different woven results and still be correct
in a sense with respect to the aspect definition. This non-deterministic
behaviour may be seen as a limitation of our current approach.

• Crossing messages. We illustrate by this example that our approach
handles crossing messages. Such crossing messages may be used within
any of the three models pointcut, advice or base model (as long as the
pointcut preserved events have the same order in the advice).

• Impossible automata weaving. This is a loop example which is an
unbounded sequence diagram leading to non-regular trace expressions,
which cannot be handled by automata-based approaches. Our approach,
on the other hand, handles this case easily by comparing the loop body
with the pointcut and discovering that the rewriteUnrel rule can be used.
The example is adopted from Klein et al. [6] who have presented an
automata-based solution that fails in this case.

25

Roy Grønmo et al.

• Disconnected pointcut. This example shows why our approach fails to
handle aspects with disconnected pointcuts. This problem is also adopted
from Klein et al. [6] who have presented an automata-based solution that
also fails in this case.

9.1 Example: Consecutive alt operators

We now go back to the Figure 1 example which illustrated the syntactic-based
weaving problem. We have introduced an advice and will now show the full
weaving process starting with calculating base traces, weaveInstrSet and base
traces (Figure 15). Example: two alts

L1
m1

poincut

m2

L2 L1

base

L2
alt a

m1

alt b
m2

<!m1, !m2, ?m1, ?m2>,
<!m1, ?m1, !m2, ?m2> }

<!a, !b, ?a, ?b>,
<!a, ?a, !b, ?b>,
<!a, !m2, ?a, ?m2>,
<!a, ?a, !m2, ?m2>,
<!m1, !b, ?m1, ?b>,
<!m1, ?m1, !b, ?b>,
<!m1, !m2, ?m1, ?m2>,
<!m1, ?m1, !m2, ?m2> }

POE

POE

POE

POE

match w/
invalid
ins. point

L1
m1

advice

m2

L2

alt yes
no

insert(alt[seq[!yes, ?yes],
seq[!no, ?no]])= {

after(!m1), after(?m1),
before(!m2), before(?m2)

}
}

« pointcut ¬ = { BTraces = « base ¬ = {weaveInstrSet = {

match w/ valid ins.point

pointcut trace w/
valid ins.point

pointcut trace w/
invalid ins.point

nonMatch-
BTraces

POE = Partial Order Equivalent
Figure 15: Example: Consecutive alt operators

The weaveInstrSet defines where the advice parts shall be inserted, in this
case the single advice part alt [. . .]. There are two pointcut traces, where only
one has valid insertion points for the weave instruction. The other pointcut trace
are thus excluded from the matching process since there is no valid position to
insert the advice part in matching traces.

There are eight base model traces of which two partial order equivalent
(POE) traces exist for each operand combination. We find only one match of
the remaining pointcut trace within the base model traces.

We will now perform weaving on the identified match. BTraces holds all
the base traces initially and will hold the final woven trace result at the end.
We use the variable nonMatchBTraces to denote the first six traces that are
not related to the pointcut traces. First, we delete the other POE-equivalent
base traces of the matching base trace, in this case one trace, and the result is:

26

Weaving of UML Sequence Diagrams using STAIRS

BTraces = nonMatchBTraces ∪ {〈!m1, ?m1, !m2, ?m2〉}

Then, we insert the advice part in a valid position, which in this case is only
one allowed position, and we also mark all the events in the match to prevent
further matches for the same events. The result is:

BTraces = nonMatchBTraces ∪
{〈!m1′, ?m1′, alt [seq [!yes, ?yes] , seq [!no, ?no]] , !m2′, ?m2′〉}

The resulting hybrid trace is reverse-engineered by the makeSD function.
For single traces this only means that an outer seq is used on the trace event se-
quence. The hybrid trace is replaced by the semantics of the reverse-engineered
hybrid trace:

BTraces = nonMatchBTraces ∪
Jseq [!m1′, ?m1′, alt [seq [!yes, ?yes] , seq [!no, ?no]] , !m2′, ?m2′]K

L1

m1’

woven model

m2’

L2
alt

yes

m1
b

b
m1

...

a
m2

m2
a

a
b

b
a

equal
operands

equal
operands

equal
operands

Example: Consecutive alt operators

m1’

m2’
no

Not
affected
by aspect

Affected
by aspect

Figure 16: Example: Consecutive alt operators - Woven model

27

Roy Grønmo et al.

There are no more matches in the base model after one application of the
aspect, and the weaving will terminate. We may use makeSD to investigate the
result as a sequence diagram to verify that the woven result is correct. We get
the woven sequence diagram shown in Figure 16. Notice that we get duplicate
operands for each set of POE traces. A simple enhancement of the makeSD
function could remove all but one trace from each set of POE traces. We also
see that the original two alt operators are not preserved in the result. In this
example the weaving makes it impossible to preserve the combined fragment
structure. Even for cases where it is possible to preserve the original structure
of operators (such as parts not affected by the aspect), our weave approach will
not preserve such a structure. Such preservation is not a target for our approach
since we only attempt to weave a semantically correct result as represented by
the woven traces.

9.2 Example: MatchRepetitive loop

Figure 17 shows an example with a matchRepetitive loop. The aspect defines
that a b message shall be added after two consecutive a messages. The base
model contains a single a message followed by an unbounded loop with three
consecutive a messages in the body.

Example: MatchRepetitive

L1
a

poincut

a

L2 L1

base

L2

loop a

L1
a

advice

a

L2

b a
a

a

Figure 17: Example: MatchRepetitive Loop

We detect that the loop is matchRepetitive by finding a match within
loop{numMess(pd) = 2}. Assume also that the match we find is the very
first two a messages in the trace of loop{2}. The before part is then empty
and it is trivial that no permutation is needed according to the rewriteRep
algorithm. The woven parts of the match part (two first a’s) and the after part
(last four a’s) are joined together to produce the wovenLoop shown in the left
part of Figure 18.

This loop is sent to the TreatLoop algorithm which detects that this is now
an unrelated loop since all unmarked events (only b events since all a events are
marked) are disjoint with the pointcut events. The result of rewriteUnrel is an
alt with a skip operand. In order to display this graphically (skip has no defined
graphical layout), we use the equivalent opt operator which means that we get
one empty trace and one trace with the operand of the opt. The final part of
the rewriteRep algorithm is to place the boundedLoop after the rewriteUnrel
result, and the combined result is shown in the right part of Figure 18.

28

Weaving of UML Sequence Diagrams using STAIRSExample: MatchRepetitive

L1

wovenLoop

L2a

loop a’
a’
b
a’
a’
b
a’
a’
b

No permutation.
(trivial since
the before part
is empty)

wovenBody
loop {0..1} a

a
a

L1

rewriteRep

L2a

loop’ {1..*} <wovenBody>opt
rewriteUnrel

boundedLoop

Figure 18: Example: MatchRepetitive Loop - Intermediate steps

All the unbounded loops are treated since there are no more unmarked and
unbounded loops present in the partially woven model. We now continue by
a call to the weave algorithm to handle the partially woven model. When we
generate new traces for the partially woven model, we get four traces. These
are the result of all combinations of empty opt/opt operand with zero or one
iterations of the boundedLoop. After these four traces are woven and reverse-
engineered back to a sequence diagram, we get the result shown in Figure 19.Example: MatchRepetitive

L1

woven model

L2
aalt skip + loop {0}

a’
a’
b
a’
a’
b

skip + loop {1}

loop’ {1..*} <wovenBody>

a

loop’ {1..*} <wovenBody>

a

a’
a’
b
a

loop’ + loop {1}

loop’ + loop {0}

Figure 19: Example: MatchRepetitive Loop - Woven model

29

Roy Grønmo et al.

If we simply the traces a bit by only considering the message order and
not events, a(aaa)∗ describes the possible traces before the weaving. After the
weaving we get the following result:

{a, a′a′ba′a′b, a(a′a′ba′a′ba′a′b)+(a′a′ba)?}

This seems to be the correct result in the sense that there will never exist
any sequence of two unmarked s’s without an added b. In addition we see that
by removing all the b’s and the marking of the a’s, then we get the same set of
possible traces that we had before the weaving.

Notice that we get a′a′ba′a′b, while for all other woven traces (with the aspect
applied) there will be three consecutive a’s before the first b occurs. Currently,
this is a limitation of our approach that we cannot ensure that the first two a’s
will be treated, or the last two a’s are treated. Two different execution runs
may also produce different results and still follow the approach explained in this
report. It is possible to strengthen the match condition so that we always choose
the first/last match of all the POE traces, when we perform the weaving. This
should ensure that the result is always the same for every execution run or in
any tool implementing our approach. However, more effort is needed to find a
strategy that works in combination with the unbounded loops. This is because
unbounded loops can then no longer be treated in isolation from the rest of the
trace.

9.3 Example: Crossing messages

The examples in Figure 20 show how crossing messages influence the weaving.
We have a simple aspect of two consecutive messages a and b with the advice
to insert a message adv that crosses the matched a message.Example: Crossing messages

L1

poincut

L2

advice

adv
L1 L2

b
a

b
a

L1

base 1

L2
ba

L1

base 2

L2

b
a

c

base 3

woven 1 woven 2 woven 3

L1 L2

b
a

c

L1 L2

b’
a’

c
L1 L2

ba

no match no match

L1 L2

b
a

c

adv

Figure 20: Crossing messages

First we calculate the pointcut traces and the weave instructions, which are
independent of the base models. There is a single pointcut trace: 〈!a, ?a, !b, ?b〉.

30

Weaving of UML Sequence Diagrams using STAIRS

One possible representation of the weaveSorted advice is:

seq[!adv, a0

seq [!a, ?a] , p1

?adv, a1

seq [!b, ?b] , p2,
skip] a2

The corresponding weaveInstrSet will then be:

{ insert(!adv) = {before(!a)}
insert(?adv) = {after(?a), before(!b)}}

We will investigate three different base models. For base model 1 we have
two crossing messages a and b, and there are two possible traces: 〈!a, !b, ?a, ?b〉
and 〈!a, !b, ?b, ?a〉. However, none of these two traces contain matches for the
single pointcut trace. The weaving terminates with no aspect application.

For base model 2 we have the same two messages a and b in addition to a
message c which crosses over the b message. We easily see without calculating
the traces that there will be no matches for this base model. The reason is that
the !c event will always prevent matches, since it will split the pointcut matched
events from a and b.

For base model 3 we again have the same two messages a and b in addition
to a message c. The c message crosses over both a and b. However, this does
not prevent matches since it does not necessarily split any events from a and
b. Consider the trace: 〈!c, !a, ?a, !b, ?b, ?c〉. In this trace we identify a match
and can insert the advice parts. !adv is defined to be inserted before(!a), which
implicitly also means before any previous events of !a on the same lifeline. Thus
!adv must be placed between !c and !a, while ?adv is defined to be both after(?a)
and before(!b).

Although the figure does not have crossing messages in the pointcut, this
is also valid as long as the partial order of the pointcut preserved elements are
maintained in the advice (which is always a requirement for the aspect).

9.4 Example: Impossible automata weaving

The example shown in Figure 21 is taken from Klein et al. (Figure 12 in [6]).
We have translated from Message Sequence Chart to sequence diagram and also
added an advice diagram not present in their example. In their automata-based
approach the base model leads to a non-regular expression (called unbounded
sequence diagrams), which thus cannot be expressed as an automata, and their
approach fails to handle this case.

The pointcut consists of two consecutive messages m1 and m2. The advice
model contains the same two messages and a new adv message. The base model
contains the same two messages but with an unbounded loop in between. We
will now show that this example works fine in our trace-based solution.

31

Roy Grønmo et al.

One possible representation of the weaveSorted advice is:

seq[skip, a0

seq [!m1, ?m1, !m2, ?m2] , p1

seq [!adv, ?adv]] a1

The corresponding weaveInstrSet will then be:

insert(seq [!adv, ?adv]) = {after(!m1), after(?m2)}

Example : Impossible weaving
(Klein 2006, fig 12)

L1
m1

m2

poincut

L2 L3 L1
m1

m2

base

L2 L3

a b

loop

L1
m1

m2

advice

L2 L3

adv

Figure 21: Impossible automata weaving: aspect and base

The unbounded loop in the base model will be sent to the TreatLoops al-
gorithm which finds out that this is an unrelated loop since it has no events
in common with the pointcut. The TreatLoops algorithm will call on the
rewriteUnrelated algorithm which simply introduces an alt operand with skip
as the first operand and 1+ iterations of the marked loop as the second operand.
The marked loop, loop′, which will not be involved in any possible matches.

L1

m2

woven model

L2 L3

a b
loop’ {1..*}

alt

m1

m1’
m2’ 0 loop iter:

Advice is
inserted

1+ loop iter:
no weaving

adv

Klein fig.12 – unrelated loop

Figure 22: Impossible automata weaving: woven model

Figure 22 shows the final woven result. The marked, unbounded loop will be
present in the final result as it will be part of the hybrid traces and in the reverse-
engineered result from the hybrid traces. We end up with a woven model with

32

Weaving of UML Sequence Diagrams using STAIRS

an outer alt operator. The first alt operand corresponds to zero loop iterations
and will be affected by the advice. The second alt operand corresponds to 1+

iterations of the loop and will not be affected by the advice.

9.5 Example: Disconnected pointcut

We do not allow for disconnected pointcuts. We will explore an example to see
why our approach does not handle disconnected pointcuts properly. Figure 23
shows a pointcut with two messages that are placed on disjoint lifelines with
no path from lifeline L1 to L2. The advice simply adds an adv message after
the matched a and b messages. The base model consists of two consecutive and
unbounded loops, where the first loop generates a messages, and the second
generates b messages.

Example: Impossible finite weaving
for disconnected pointcut

L1

poincut

L2

advice

adv

a
L1 L2

base

loop
L1 L2

b a b a

loop b

Figure 23: Disconnected pointcut is troublesome

The weave algorithm discovers that both these two loops are in the category
non-MatchRepetitive loops, and thus they will be rewritten according to the
rewriteNonRep algorithm. The result of this is shown in Figure 24. The
traces with bounded loops are fairly trivial, so we will concentrate on the most
complex part which is when we combine the two alt operands with unbounded
loops. This part is shown in Figure 25 with two of the possible woven results.
Remember that the marked, unbounded loops resulting from the rewriting will
not be processed any further in the matching and weaving process.

In the first alternative, the advice has been added after the first two oc-
curences of a and b messages, and after the last two occurences of a and b. This
result is not correct since their will be unhandled matches for all loop iterations
where both the loops iterate at least once.

In the second alternative, the advice has been added after the very last
occurence of a and after the very first occurence of b. This woven result prevents
all other possible matches and is thus correct in the sense that there will not be
any unhandled matches in any of the traces generated from this woven result.
This example both reveals that the woven results may be very different since
the matching strategy is non-deterministic. Such a confluence problem may be
dramatic in some cases, and acceptable in other cases. This issue should be
investigated further.

The incorrect result which we may get (woven model 1) is unacceptable
and is the reason why we do not allow for disconnected pointcuts. Even if we

33

Roy Grønmo et al.

L1 L2

alt

Example: Impossible finite weaving
for disconnected pointcut

loop {0..1} a

a

a

loop’ a

alt loop {0..1} b

b

b

loop’ b

rewriteNonRep (base)

Figure 24: Disconnected pointcut: rewritten non-matchRepetitive loops

Example: Impossible finite weaving
for disconnected pointcut

a

a

loop’ a

b

b

loop’ b

”traces”: alternative 1 – woven model extract

a’

a’

loop’ a

b’

b’

loop’ b

adv

adv

alternative 2 – woven model extract

a

a’

loop’ a

b’

b

loop’ b

adv

incorrect!

correct
not confluent, also incorrect
since we may get illegal results.
Thus, this disconnected case is
invalid input.

L1 L2 L1 L2

L1 L2non-deterministic outcome

Figure 25: Disconnected pointcut: woven result may be incorrect

strengthened the approach to ensure that the woven model 2 would be chosen,
this would not be good enough in general. Consider that the inserted advice
in the example had transmitter and reception lifelines that were both different
from L1 and L2, then we would only be able to produce incorrect woven results,

34

Weaving of UML Sequence Diagrams using STAIRS

since the 1+ loop iterations of the two unbounded loops will always produce
unhandled matches.

The messages a and b have the same lifeline as transmission and reception.
However, the weaving problems are the same if L1 was split into L1a and L1b,
and similar for L2.

10 Implementation

We are currently implementing a prototype tool to support the full approach
described in this report. It reuses an Eclipse plugin SeDi sequence diagram
editor v.1 [7] to define base, pointcut and advice diagrams. We build upon pre-
vious support for the STAIRS syntax model representation and the JK operator
to calculate traces. Furthermore, we will be able to run the automated test
programs by Lund and Stlen [8] since they take SeDi v.1 diagrams as input.
Their test program may for instance compare if a diagram is a correct refine-
ment of another diagram. The tool by Lund Stlen is just one example of tools
that will behave similarly for semantically equivalent diagrams regardless of a
poor structure and layout.

11 Related Work

Aspect-oriented behaviour modeling approaches so far have been dominated by
UML sequence diagram attempts. This approach is supported by Clarke and
Walker [1] with their Composition Patterns which are mapped to AspectJ.

Deubler et al. [3] and Solberg et al. [11] are examples of syntax-based ap-
proaches to aspects for sequence diagrams. Apart from being syntax-based, they
also require special syntax for specifying join points, and this is accomplished
by extensions to UML Sequence Diagrams.

J. Whittle and J. Arajo [13] has a little more advanced approach: It is still
syntax based, but patterns of interactions (called Interaction Pattern Specifi-
cations - IPSs) are used in order to define point cuts. Patterns are defined in
terms of specialized UML metamodel elements, and a matching interaction is an
interaction with the same pattern, but whith some of the metamodel elements
(the roles) bound to real model elements.

Klein et al. [6] allow for one outer hierarchical Message Sequence Chart
(HMSC) consisting of arbitrary basic MSC (BMSC). Their approach is restricted
to not use HMSCs inside an HMSC. Inside a BMSC only weak sequencing is
allowed. We allow for arbitrary nesting of alts which is not supported by their
approach. The important restriction of allowing only connected pointcuts is
adopted from their work to avoid some intractable weaving problems. However,
with this assumption our algorithm will always terminate with a successful weav-
ing (with the assumption of connected pointcuts) also in some cases with infinite
loops where the Klein et al. approach fails (Figure 12 in [6]).

Klein et al [5] is a follow up of their work on semantics-based weaving in

35

Roy Grønmo et al.

that they allow for not just one aspect but several aspects. As they do not
want the order of weaving of the aspects to have any significance, they have
to allow events in between the events of a match. They present four different
matching choices of which our matching definition corresponds to the enclosed
part. Stein et al. [12] have developed the Join Point Designation Diagrams
(JPDD) to capture pointcut expressions using mainly UML sequence diagrams
and class diagrams. Their matching approach is expressive enough to allow
events in between the events of a match.

Cottenier et al [2] is a quite different approach as it is based upon state
machines, but the similarity is that pointcut matches are found in the im-
plementation, while pointcuts are specified at the specification level. Many
implementations may fulfill a specification, and as pointcuts are made at the
specification level they become independent of evolving implementations. In
our approach, many (different) base models may produce sets of traces where
pointcut matches may be found.

12 Discussion

In this report we have restricted the base model to use only the seq, alt and
loop operators. However, the results can be generalized to also be valid for
several other sequence diagram operators. The opt (optional) and par (parallel)
operators can be defined using an alt and is thus also supported in our approach.
The xalt operator defines mandatory choice as opposed to the alt which defines
potential choice. This difference is irrelevant to our approach and the xalt
operator can be directly supported by treating it in the same way as with alt.

The strict operator is however, not supported since the reverse-engineering
from traces back to sequence diagrams will fail. The reason is that the reverse-
engineering handles each trace individually and has then no possibility to see the
difference between weak sequencing and strict. We have simply assumed that
weak sequencing has been applied originally. The reverse-engineering routine
would be far more complex if we could not treat each trace isolated. We could
however allow the base models to only use the strict operator and never use the
weak sequencing, and easily adapt our approach to support this.

We have not stressed the performance and efficiency of the approach. The
set of traces tend to increase dramatically with the number of messages in a
sequence diagram. Also the use of the par operator and the loops have an expo-
nential impact on the number of traces and the length of the traces. Although
we have an approach that will always terminate (assuming the advice does not
introduce additional matches) even for unbounded loops or loops with large up-
per bounds, there will be a practical limit on the kind of base models that our
approach will handle within a reasonable time frame. We leave exploration of
this issue to future work.

36

Weaving of UML Sequence Diagrams using STAIRS

13 Conclusions

We have demonstrated that it is possible to do semantics-based aspect weaving
for UML 2.0 sequence diagrams based upon a formal trace model for these.
Semantics-based weaving implies that the pointcut matching is performed at
the trace level (’what’ the sequence diagrams really describe), and not at the
syntactic level (’how’ the sequence diagrams are described), but still with the
convenience for the developer that the pointcut specifications can be done by
means of syntactic elements of sequence diagrams.

Klein et al. [6] present another attempt to do semantics-based weaving of
sequence diagrams which cover the same subset of secuence diagrams as we do,
but while they cannot handle cases of infinite loops which leads to non-regular
trace expressions, our approach also caters for support for general loops that
are not finite. Our loop improvement is based on the observation that matches
have a restricted length with respect to the poincut. We have established a
systematic way to permutate and rewrite the original loop definition so that the
weaving can be performed on a finite structure.

Acknowledgement

The work reported in this report has been funded by The Research Council of
Norway, grant no. 167172/V30 (the SWAT project). We thank Mass Soldal
Lund for valuable discussions and help with the implementation.

References

[1] S. Clarke and R. J. Walker. Composition Patterns: An Approach to Design-
ing Reusable Aspects. In Proceedings of the 23rd International Conference
on Software Engineering (ICSE), Toronto, Ontario, Canada, 2001.

[2] T. Cottenier, A. van den Berg, and T. Elrad. Joinpoint Inference from
Behavioral Specification to Implementation. In ECOOP 2007 - Object-
Oriented Programming, 21st European Conference, Berlin, Germany, 2007.

[3] M. Deubler, M. Meisinger, S. Rittmann, and I. Krüger. Modeling Cross-
cutting Services with UML Sequence Diagrams. In Proceedings of the 8th
International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS 2005), Montego Bay, Jamaica, 2005.

[4] R. Grosu and S. A. Smolka. Safety-Liveness Semantics for UML 2.0 Se-
quence Diagrams. In Fifth International Conference on Application of Con-
currency to System Design (ACSD 2005), St. Malo, France, 2005. IEEE
Computer Society.

[5] J. Klein, F. Fleurey, and J.-M. Jézéquel. Weaving multiple aspects in
sequence diagrams. To appear in Trans. on Aspect Oriented Software De-
velopment, 2007.

37

Roy Grønmo et al.

[6] J. Klein, L. Hélouët, and J.-M. Jézéquel. Semantic-based weaving of scenar-
ios. In Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, Bonn, Germany, 2006.

[7] A. Limyr. Graphical editor for UML 2.0 sequence diagrams. Master’s
thesis, Department of Informatics, University of Oslo, 2005.

[8] M. S. Lund and K. Stølen. Deriving tests from UML 2.0 sequence diagrams
with neg and assert. In Proc. 1st International Workshop on Automation
of Software Test (AST’06), 2006.

[9] O. M. G. (OMG). UML 2.0 Superstructure Specification, OMG Adopted
Specification ptc/03-08-02, August 2003.

[10] R. K. Runde, Ø. Haugen, and K. Stølen. Refining UML interactions with
underspecification and nondeterminism. Nordic Journal of Computing,
2(12), 2005.

[11] A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, and R. B. France. Using
Aspect Oriented Techniques to Support Separation of Concerns in Model
Driven Development. In 29th Annual International Computer Software and
Applications Conference (COMPSAC 2005), Edinburgh, Scotland, 2005.

[12] D. Stein, S. Hanenberg, and R. Unland. Join Point Designation Diagrams:
a Graphical Representation of Join Point Selections. International Journal
of Software Engineering and Knowledge Engineering, 16(3):317–346, 2006.

[13] J. Whittle and J. Araújo. Scenario modelling with aspects. IEE Proceedings
- Software, 151(4):157–172, 2004.

38

