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Abstract

UML sequence diagrams is a specification language that has proved
itself to be of great value in system development. When put to applica-
tions such as simulation, testing and other kinds of automated analysis
there is a need for formal semantics. Such methods of automated analysis
are by nature operational, and this motivates formalizing an operational
semantics. In this report we present an operational semantics for UML
2.0 sequence diagrams that we believe gives a solid starting point for de-
veloping methods for automated analysis.

The operational semantics has been proved to be sound and complete
with respect to a denotational semantics for the same language. It handles
negative behavior as well as potential and mandatory choice. We are not
aware of any other operational semantics for sequence diagrams of this
strength.
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1 Introduction

Unified Modeling Language (UML) sequence diagrams [44] and their prede-
cessor Message Sequence Charts (MSC) [27] are specification languages that
have proved themselves to be of great practical value in system development.
When sequence diagrams are used to get a better understanding of the sys-
tem through modeling, as system documentation or as means of communication
between stakeholders of the system, it is important that the precise meaning
of the diagrams is understood; in other words, there is need for a well-defined
semantics. Sequence diagrams may also be put to further applications, such
as simulation, testing and other kinds of automated analysis. This further in-
crease the need for a formalized semantics; not only must the people who make
and read diagrams have a common understanding of their meaning, but also
the makers of methods and tools for analyzing the diagrams must share this
understanding.

Methods of analysis like simulation and testing are in their nature oper-
ational; they are used for investigating what will happen when a system is
executing. When developing techniques for such analysis, not only do we need
to understand the precise meaning of a specification, we also need to under-
stand precisely the executions that are specified. This motivates formalization
of semantics in an operational style. In this report we present an operational se-
mantics for UML sequence diagrams that we believe gives a solid starting point
for developing such methods of analysis.

Obviously, choices must be made where the UML standard is ambiguous,
but as far as possible the semantics is faithful to the standard. The semantics
is easy to extend and modify. This allows us to give a “default” or “standard”
interpretation, but also to experiment with the semantics and make variations
on points unspecified by the standard. Specifically it has a formalized meta-
level which allows definition of different execution strategies. It is not based on
transformations to other formalisms, which makes it easy to work with.

In [19–21] a denotational semantics for sequence diagrams with potential
and mandatory choice, called STAIRS, is presented. The operational semantics
presented in this report has been proved to be sound and complete with respect
to this denotational semantics.

The structure of this report is the following: In section 2 we present the
background of the operational semantics, and in section 3 the syntax over which
the semantics is defined. Section 4 presents the operational semantics itself, and
in section 5 we present our soundness and completeness results. In section 6 we
present related work and, finally, in section 7 conclusions are provided. A short
presentation of the denotational semantics of STAIRS is provided in appendix
A. Appendix B provides detailed proofs.
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Figure 1: Sequence diagram

2 Background

2.1 Sequence diagrams

Sequence diagrams is a graphical specification language defined in the UML 2.0
standard [44].1 The standard defines the graphical notation, but also an abstract
syntax for the diagrams. Hence the language has a well-defined syntax.

Figure 1 shows a sequence diagram d in the graphical notation. A sequence
diagram consists of a frame, representing the environment of the specified sys-
tem, and one or more lifelines2, representing components of the system. Arrows
represent messages sent between lifelines or between a lifeline and the environ-
ment, and if the beginning or end of an arrow is at a lifeline this represents an
event. Combined fragments are operators, like the choice operator alt, and each
combined fragment has one or more operands.

2.2 Basic semantic model

The UML standard provides semantics of sequence diagrams. This semantics,
however, is informal and defined by the means of natural language. Most no-
tably, this is a trace based semantics:

The semantics of an Interaction is given as a pair of sets of traces. The two
trace sets represent valid traces and invalid traces. The union of these two
sets need not necessarily cover the whole universe of traces. The traces
that are not included are not described by this Interaction at all, and we
cannot know whether they are valid or invalid. [. . . ]

Basic trace model: The semantics of an Interaction is given by a pair
[P, I ] where P is the set of valid traces and I is the set of invalid traces.
P ∪ I need not be the whole universe of traces.

A trace is a sequence of event occurrences denoted 〈e1, e2, ..., en〉. [. . . ]

Two Interactions are equivalent if their pair of trace-sets are equal. [44,
p. 468]

1In the UML standard, Interaction is used as the common name for diagrams specifying
interaction by sending and receiving of messages. Sequence diagrams are then one kind of
Interaction.

2In “MSC-terminology”, lifelines are called instances or instance lines. When these ex-
pressions occur in this report they should be understood as synonyms to “lifeline”.
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In [19–21] a denotational semantics for sequence diagrams is formalized. We will
refer to this as the STAIRS semantics. The STAIRS semantics is trace based and
uses an extended version of the basic semantic model from the UML standard.
Instead of a single pair (p, n) of positive (valid) and negative (invalid) traces, the
semantic model of STAIRS is a set of pairs {(p1, n1), (p2, n2), . . . , (pm, nm)}. A
pair (pi, ni) is referred to as an interaction obligation. The word “obligation” is
used in order to emphasize that an implementation of a specification is required
to fulfill every interaction obligation of the specification. This semantic model
makes it possible to distinguish between potential and mandatory choice (see
section 2.3.5).

A trace is a (finite or infinite) sequence of events 〈e1, e2, . . . , ei, . . .〉. We let
t1

�t2 denote concatenation of the traces t1 and t2 and 〈〉 denote the empty
trace. Let H be the trace universe. For each interaction obligation (pi, ni)
we have that pi ∪ ni ⊆ H. All interaction obligations are independent of each
other, and an interaction obligation is allowed to be inconsistent (i.e., we allow
pi ∩ ni �= ∅).

In the following we assume the semantic model of STAIRS, and regard the
STAIRS semantics as a correct formalization of sequence diagrams. This means
that the correctness of our operational semantics is evaluated with respect to the
denotational semantics of STAIRS. A presentation of the denotational semantics
is found in appendix A.

2.3 Challenges

There is a number of challenges connected with making semantics for sequence
diagrams. The reminder of this section is dedicated to looking into these chal-
lenges in more detail.

2.3.1 Partial vs. complete specification

An old discussion related to sequence diagrams and MSCs is whether a specifi-
cation consisting of a set of diagrams represents the full behavior of the specified
system or just examples of the behavior. In the former case we say that the set
of sequence diagrams is a complete specification, and in the latter case a partial
specification.

The UML standard states clearly that sequence diagrams are partial spec-
ifications since “[the union of valid and invalid traces] need not be the whole
universe of traces.” [44, p. 468]

This makes defining an operational semantics somewhat more complicated
than in the case of complete specifications. It rules out solutions such as just
viewing sequence diagrams as, or translating them to, other formalisms for
making complete specifications, such as transition systems. In effect, the trace
universe becomes a quantity that must be considered in the definition of the
semantics. This excludes a solution where the invalid traces are considered just
the complement of the valid traces.

2.3.2 Global vs. local view

In a certain sense, a sequence diagram has a global and a local view at the same
time. The lifelines of a sequence diagram do not synchronize and represent
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processes that execute independently. This is the local view of the sequence
diagram. At the same time, the syntax allows operators that cover several
lifelines, and hence provide a global view. The best example is the alternative
operator alt without guards, i.e. a non-deterministic choice. Since the lifelines
are independent and do not synchronize, one of the lifelines may start executing
the arguments of the operator before the others. The choice, however, is global
in the sense that all lifelines must choose the same argument when resolving the
choice. The semantics must reflect this duality by providing both the local and
the global view of the specifications. In [29, p. 369], Jonsson and Padilla make
the same observation:

The transition system will [. . . ] maintain a local state for each instance
[. . . ] The execution [. . . ] may follow either of two paths, depending on
which alternative is chosen in the [alt]. The crucial point here is that all
three instances must choose the same alternative even if they do not arrive
simultaneously to the [alt] in their execution. [. . . ] Thus, [one instance’s]
entry into the first alternative has global consequences in that it “forces”
the other instances to also choose the first alternative.

The result of this is that the semantics must reflect this duality; the seman-
tics must provide both the local and the global view of the specifications. A
discussion of this problem is also found in [31].

2.3.3 Weak sequencing

The weak sequencing operator seq is the implicit operator for composing se-
quence diagrams. The operator defines a partial order of the events in a dia-
gram, such that the order along each lifeline and the causal relationship between
the transmission and the reception of messages are preserved while any other
ordering of events is arbitrary. Further there is no implicit synchronization
between the lifelines in a sequence diagram.

An operational semantics must characterize the step by step execution spec-
ified by the diagram. For each step, all enabled events must be selectable. This
poses a challenge, since due to the weak sequencing, there may be enabled events
at arbitrary depth in the syntactical term representing the diagram.

2.3.4 Negative behavior

UML 2.0 allows negative3 behavior to be specified by the neg operator in se-
quence diagrams. In the semantic model, these behaviors end up in the set of
invalid traces (see section 2.2). In denotational semantics like STAIRS or the
trace semantics of Harald Störrle [49,50] this is easily handled by manipulation
of the traces and trace sets (even though these two formalizations do not agree
on the interpretation of neg).

It is however not clear what negative behavior means in an operational se-
mantics. If an operational semantics should describe a step by step the execution
of a sequence diagram it is not clear how we should distinguish a valid execution
from an invalid execution. Immediate abortion, which is the naive solution, is
not satisfactory for two reasons: 1) We may be interested in complete invalid

3We will use the terms negative and invalid. Further, positive and valid should be under-
stood to be synonyms when we talk about behaviors.
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executions, and 2) we need to know that the execution was stopped because
it reached a state in which it became invalid. The alternative is some way of
waving a flag. With this solution a meta-level at which the flag is seen and the
behavior interpreted as invalid is needed in order to assign meaning to negative
behavior.

We cannot know at the execution level that we are in an invalid execution,
and it seems obvious that the only way of assigning meaning to negative behavior
is by adding a meta-level on which we may interpret behavior as valid or invalid.

Even though he does not need it for his denotational semantics, Störrle
mentions the option:

One might also consider [the] negate-operators as being meta-logical in
the sense that they express properties of traces rather that defining or
modifying traces. [50]

The solution for Live Sequence Charts (LSC) (for more on LSC see section 6)
is described in [17, p. 88]:

A hot condition [. . . ] must always be true. If an execution reaches a hot
condition that evaluates to false this is a violation of the requirements,
and the system should abort. For example, if we form an LSC from a
prechart Ch and a main chart consisting of a single false hot condition,
the semantics is that Ch can never occur. In other words, it is forbidden,
an anti-scenario.

Even though they choose to abort an invalid execution, this is guided by a meta
variable Violating in their operational semantics [16].

Cengarle and Knapp offers two ways of interpreting negative behavior. The
first [7], is based on satisfies relations. Two such relations are provided: posi-
tively satisfies, t |=p S, meaning that t is a valid trace of the diagram S, and
negatively satisfies, t |=n S, meaning that t is an invalid trace of S. The sec-
ond [8] is an operational semantics. Two transition relations S

e−→p S′ and
S

e−→n S′ are provided, where the former means that specification S may pro-
duce event e in a positive execution and the latter that S may produce e in a
negative execution. Their exact interpretation of negative behavior is not rele-
vant in this discussion, but we notice that also their solutions resort to use of a
meta-level to distinguish between valid and invalid traces.

Whether it is obtained by waving a flag, like in the LSC semantics, or by
defining an extra structure, like in the approach of Cengarle and Knapp, an
extra meta-level is needed for giving an interpretation to neg.

2.3.5 Potential vs. mandatory choice

A final question is the ambiguity of the alternative operator alt, whether the
non-determinism introduced by the alternative operator represents underspeci-
fication or real choices in the specified system.

It can be argued that the alternative operator is useful for underspecification,
i.e. that it represents a design decision to be made later, but practitioners often
interpret it as a choice between two alternatives that both should be present
in the implementation. Both interpretations have some problems attached to
them.
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The first interpretation fits well with the observation that sequence diagrams
are used for high level specification and that several steps of refinement are
needed on the way to implementation. From this viewpoint it makes sense to
interpret an alternative as underspecification. A problem with this is that if
a sequence diagram is interpreted as a partial specification, the specification
become very weak; in effect every behavior is allowed if no negative behavior
is specified. Another drawback is that it is not clear how to represent non-
deterministic choices that should be preserved in the implementation. Such
choices are essential in, e.g., specification of security properties [28].

It may be argued that the second interpretation is more intuitive because
the choice operator is used for representing choices in the system and not design
choices. The drawback is of course that the possibility of underspecification is
then restricted.

In [20, 21] this ambiguity is resolved by interpreting alt in the first sense,
as underspecification, and by introducing xalt (explicit alternative) as a choice
operator in the second sense; a choice that represents a choice in the system.

It is however not possible to distinguish these two kinds of choices at the
execution level; for a single execution it is irrelevant whether a choice is spec-
ified by an alt or an xalt. But the distinction is relevant with respect to, e.g.,
refinement and implementation, which is to say at the meta-level. As with the
operator neg, an extra meta-level is needed for giving an interpretation of xalt
and to distinguish between the two kinds of choice.

3 Syntax

The graphical notation of sequence diagrams is not suited as a basis for defining
semantics, and the abstract syntax of the UML standard contains more infor-
mation than we need for the task. Our operational semantics is defined over a
simpler abstract syntax defined in [19, 21]. This is an event-centric syntax in
which the weak sequential operator seq is employed as the basic construct for
combining diagram fragments.

The atom of a sequence diagram is the event. An event consists of a message
and a kind where the kind decides whether it is the transmit or the receive
event of the message. A message is a signal, which represents the contents of
the message, together with the addresses of the transmitter and the receiver.
Formally a signal is a label, and we let S denote the set of all signals. The
transmitters and receivers are lifelines. Let L denote the set of all lifelines. A
message m is defined as a triple

(s, t, r) ∈ S × L × L

with signal s, transmitter t and receiver r. M denotes the set of all messages.
On messages we define a transmitter function tr. ∈ M → L and a receiver
function re. ∈ M → L:

tr.(s, t, r) def= t re.(s, t, r) def= r

We let K = {!, ?} be the set of kinds, where ! represents transmit and ? represents
receive. An event e is then a pair of a kind and a message:

(k, m) ∈ K ×M
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E denotes the set of all events. On events we define a kind function k. ∈ E → K
and a message function m. ∈ E → M:

k.(k, m) def= k m.(k, m) def= m

We let the transmitter and receiver functions also range over events, tr. , re. ∈
E → L, and define a lifeline function l. ∈ E → L that returns the lifeline of an
event:

tr.(k, m) def= tr.m re.(k, m) def= re.m l.e
def=

{
tr.e if k.e = !
re.e if k.e = ?

A sequence diagram is built out of events, the binary operators seq, par, alt and
xalt, and the unary operators neg and loop. Related to the graphical syntax, the
operators represent combined fragments and their arguments the operands. In
addition we let skip represent the empty sequence diagram. Let D be the set of
all syntactically correct sequence diagrams. D is defined recursively as follows:4

skip ∈ D
e ∈ E ⇒ e ∈ D
d1, d2 ∈ D ⇒ d1 seq d2 ∈ D ∧ d1 par d2 ∈ D ∧

d1 alt d2 ∈ D ∧ d1 xalt d2 ∈ D
d ∈ D ⇒ neg d ∈ D
d ∈ D ∧ I ⊆ (N ∪ {0,∞}) ⇒ loop I d ∈ D
d ∈ D ∧ n ∈ (N ∪ {0,∞}) ⇒ loop〈n〉 d ∈ D

In the definitions of the two loops we have that N is the set of non-zero natural
numbers and ∞ is a number greater than all other numbers and has the property
∞−1 = ∞. The intention behind loop I d is that d should be looped any number
n ∈ I times. The UML standard describes two loops loop(n) and loop(n, m),
where n is the minimum number and m the maximum number of iterations. We
may define these as:

loop(n) d
def= loop [n..∞] d

loop(n, m) d
def= loop [n..m] d

As can be expected, we have associativity of seq, par, alt and xalt. We also
have commutativity of par, alt and xalt. Proofs with respect to the denotational
semantics can be found in [19]. Furthermore the empty sequence diagram skip
is the identity element of seq and par. The combination of skip and loop is
discussed in section 4.2.1.

In this abstract syntax the diagram of figure 1 is expressed as:5

d = (?, (a, env, i)) seq ((!, (b, i, j)) seq (?, (b, i, j)) alt (!, (c, i, j)) seq (?, (c, i, j)))

We define a function ll. ∈ D → P(L) that returns the set of lifelines present

4The set D is somewhat restricted by some additional syntactically constraints, see sec-
tion A.1 in appendix A for details.

5Here we let env denote the environment of the diagram. Formally this is a gate, but gates
are outside the scope of this report. Also note that seq binds stronger than alt.

11



in a diagram. For e ∈ E and d, d1, d2 ∈ D the function is defined recursively:

ll.skip
def= ∅ ll.(d1 seq d2)

def= ll.d1 ∪ ll.d2

ll.e
def= {l.e} ll.(d1 par d2)

def= ll.d1 ∪ ll.d2

ll.(neg d) def= ll.d ll.(d1 alt d2)
def= ll.d1 ∪ ll.d2

ll.(loop I d) def= ll.d ll.(d1 xalt d2)
def= ll.d1 ∪ ll.d2

ll.(loop〈n〉 d) def= ll.d

4 Operational semantics

We argue that there is a need for an operational semantics of sequence diagrams
in addition to denotational semantics like the STAIRS semantics. Before pro-
ceeding with the task of defining an operational semantics, let us shed some
light on the distinction between operational and denotational semantics. David
A. Schmidt [47, p. 3] suggests the following:

The operational semantics method uses an interpreter to define a lan-
guage. The meaning of a program in the language is the evaluation his-
tory that the interpreter produces when it interprets the program. The
evaluation history is a sequence of internal configurations [. . . ]

The denotational semantics method maps a program directly to its mean-
ing, called its denotation. The denotation is usually a mathematical value,
such as a number or function. No interpreters are used; a valuation func-
tion maps a program directly to its meaning.

As a methodology for language development he suggests that “a denotational
semantics is defined to give the meaning of the language” and that “the deno-
tational definition is implemented using an operational definition” [47, p. 4].
Hoare and He [23, p. 258] describe more explicitly the notion of an operational
semantics:

An operational semantics of a programming language is one that defines
not the observable overall effect of a program but rather suggests a com-
plete set of possible individual steps which may be taken in its execution.
The observable effect can then be obtained by embedding the steps into
an iterative loop [. . . ]

Taken together these two descriptions suggest that formalizing an operational
semantics of a language is to define an interpreter for the language. The for-
mal definition of the interpreter describes every step that can be made in the
execution of the language in such a way that the executions are in conformance
with the meaning of the language as defined by a denotational semantics. In
our case the input to the interpreter is a sequence diagram represented in the
abstract syntax defined above. The output of the interpreter is a trace of events
representing an execution.

Our solution to the challenges identified in section 2.3 is the combination
of two transition systems, which we refer to as the execution system and the
projection system. The execution system is a transition system over

[ , ] ∈ B ×D (1)
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where B represents the set of all states of the communication medium and D
the set of all syntactically correct sequence diagrams. We let EX def= B×D, and
refer to the elements of EX as execution states.

The projection system is a transition system over

Π( , , ) ∈ P(L) × B ×D (2)

where P(L) is the powerset of the set of all lifelines. The projection system is
used for finding enabled events at each stage of the execution and is defined
recursively. This system handles the challenges related to weak sequencing and
related to the global vs. the local view in sequence diagrams.

These two systems work together in such a way that for each step in the
execution, the execution system updates the projection system by passing on
the current state of the communication medium, and the projection system
updates the execution system by selecting the event to execute and returning
the state of the diagram after the execution of the event.

We also formalize a meta-level that encloses the execution system. At this
meta-level we may define several meta-strategies that guide the execution and
are used for handling the challenges related to negative behavior, and potential
and mandatory choice.

4.1 The execution system

The execution system has two rules. The first rule represents the execution of a
single event and uses the projection system to find an enabled event to execute.
It is defined as:

[β, d] e−→ [update(β, e), d′] if Π(ll.d, β, d) e−→ Π(ll.d, β, d′) ∧ e ∈ E (3)

In general we assume the structure of the communication medium, i.e. the
means of communication, to be underspecified. The only requirement is that
the following functions are defined:

• add ∈ B ×M → B: Adds a message.

• rm ∈ B ×M → B: Removes a message.

• ready ∈ B ×M → B: Returns true if the communication medium is in a
state where it can deliver the message and false otherwise.

The function update ∈ B × E → B is defined as:

update(β, e) def=
{

add(β, m.e) if k.e = !
rm(β, m.e) if k.e = ? (4)

Since transmitter and receiver information is embedded into the messages, these
functions are sufficient. In this report we assume the most general communi-
cation model, i.e. no ordering on the messages. This means that, e.g., message
overtaking is possible. Formally then, B may be defined as the set of all multi-
sets over M, add as multiset union, rm as multiset minus and ready as multiset
containment.

The second rule of the execution system executes silent events. The rules
of the projection system handle the sequence diagram operators alt, xalt, neg
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and loop. Resolving these operators, such as choosing the branch of an alt, are
considered silent events. We define the set of silent events to be

T = {τalt, τxalt, τneg, τpos, τloop} (5)

with T ∩ E = ∅. The reason for introducing all these different silent events is
that they give high flexibility in defining execution strategies by making the
silent events and their kinds available at the meta-level. The rule is simple:

[β, d] τ−→ [β, d′] if Π(ll.d, β, d) τ−→ Π(ll.d, β, d′) ∧ τ ∈ T (6)

The empty diagram skip cannot be rewritten, but we assert that it produces the
empty trace, i.e.:

[β, skip]
〈〉−→ [β, skip] (7)

This also means that execution terminates when skip is reached.

4.2 The projection system

In the following sub-sections we present the rules of the projection system for
each of the syntactic constructs.

4.2.1 The empty diagram

It is not possible to rewrite Π(L, β, skip). skip is the identity element of seq and
par, and we therefore have that skip seq d, d seq skip, skip par d and d par skip
are treated as identical to d. We can also note that skip alt skip = skip and
skip xalt skip = skip. We do not allow the construction neg skip.

loop〈∞〉 skip is more problematic (see section 4.2.7 for the definition of
loop〈∞〉). Seen as a program, this construct is similar to the java fragment
while(true) { }, i.e., a program that produces nothing and never termi-
nates. When related to the denotational semantics, however, the semantics
of loop〈∞〉 skip should be the empty trace 〈〉, since the denotational semantics
characterize observation after infinite time. A simple solution would be to syn-
tactically disallow the construct all together. Because we do not want to make
too many syntactic constraints, and because we want to stay close to the de-
notational semantics we choose to let loop〈∞〉 skip reduce to skip, even though
this may be seen as counter-intuitive from an operational point of view.

4.2.2 Event

The simplest case is the diagram consisting of only one event e. In this case the
system delivers the event if the event is enabled given the set L of lifelines and
the state of the communication medium. This means first that the event must
belong to one of the lifelines in the set L, and secondly that the event either
must be a transmit event or its message must be available in the communication
medium. The need for L will be evident in the definition of rules for seq below.

Π(L, β, e) e−→ Π(L, β, skip)
if l.e ∈ L ∧ (k.e = ! ∨ ready(β, m.e))

(8)
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4.2.3 Weak sequencing

The weak sequencing operator seq defines a partial order on the events in a
diagram; the ordering of events on each lifeline and between the transmit and
receive of a message is preserved, but all other ordering of events is arbitrary.
Because of this, there may be enabled events in both the left and the right
argument of a seq if there are lifelines present in the right argument of the
operator that are not present in the left argument. This leads to two rules for
the seq operator.

If there is an overlap between the given set of lifelines and the lifelines of the
left hand side of the seq, this means that the lifelines in this intersection may
have enabled events on the left hand side only. Hence, with respect to these
lifelines, the system must look for enabled events in the left operand.

Π(L, β, d1 seq d2)
e−→ Π(L, β, d′1 seq d2)

if ll.d1 ∩ L �= ∅ ∧ Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′1)

(9)

If the lifelines of the left hand side do not exhaust the given set of lifelines, this
means there are lifelines that are only present on the right hand side, and that
there may be enabled events on the right hand side of the operator. This means
the system may look for enabled events at the right hand side of the seq, but
only with respect to the lifelines not represented on the left hand side.

Π(L, β, d1 seq d2)
e−→ Π(L, β, d1 seq d′2)

if L \ ll.d1 �= ∅ ∧ Π(L \ ll.d1, β, d2)
e−→ Π(L \ ll.d1, β, d′2)

(10)

Note that the two conditions ll.d1 ∩ L �= ∅ and ll.d1 \ L �= ∅ are not mutually
exclusive. If both these condition are true at the same time there may be enabled
events at both sides of the seq operator. In such a case the rules may be applied
in arbitrary order.

The transitions of the system are used as conditions in the recursion of these
rules. Therefore the rules will not be applied unless an enabled event is found
deeper in the recursion. Because of this the system will always be able to return
an enabled event if enabled events exist.

4.2.4 Interleaving

The parallel operator par specifies interleaving of the events from each of its
arguments; in other words parallel merge of the executions of each of the ar-
guments. The rules of par are similar to the rules of seq, but simpler since
we do not have to preserve any order between the two operands. One of the
operands is chosen arbitrarily. As with the seq rules, the use of transitions as
the conditions of the rules ensures that an enabled event is found if enabled
events exist.

Π(L, β, d1 par d2)
e−→ Π(L, β, d′1 par d2)

if Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′1)

(11)

Π(L, β, d1 par d2)
e−→ Π(L, β, d1 par d′2)

if Π(ll.d2 ∩ L, β, d2)
e−→ Π(ll.d2 ∩ L, β, d′2)

(12)
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4.2.5 Choice

The rules for choices end the recursion; the choice is resolved and a silent event
is produced. By resolving the choice instead of looking for events deeper down,
we ensure that the same choice is made for all the lifelines covered by a choice
operator.

Π(L, β, d1 alt d2)
τalt−→ Π(L, β, dk) if L∩ ll.(d1 alt d2) �= ∅, for k ∈ {1, 2} (13)

Π(L, β, d1 xalt d2)
τxalt−→ Π(L, β, dk) if L∩ll.(d1 xalt d2) �= ∅, for k ∈ {1, 2} (14)

The rules for alt and xalt are identical except for the kind of silent event they
produce. This reflects the fact that the operators are indistinguishable at the
execution level. Since they produce different events, the kind of the choice is
available at the meta-level and this is used in the definition of meta-strategies.
As with rule (8), there is a condition that makes sure the rules are only applied
if the event produced is relevant to the set L of lifelines.

4.2.6 Negative

The operator neg is treated as a choice with one negative branch and one empty
branch. Silent events are used to flag which branch is chosen, and hence the
choice is made available at the meta-level.

Π(L, β, neg d)
τpos−→ Π(L, β, skip) if ll.(neg d) ∩ L �= ∅ (15)

Π(L, β, neg d)
τneg−→ Π(L, β, d) if ll.(neg d) ∩ L �= ∅ (16)

Similar to the choice rules, we have the condition that ll.(neg d) ∩ L �= ∅ to
ensure that the produced event is relevant to the set of lifelines L.

4.2.7 Iteration

Informally, in loop I d there is a non-deterministic choice between the numbers
of I. If n ∈ I is picked, d should be iterated n times. This is formalized by a
rule that chooses which number to use:

Π(L, β, loop I d) τalt−→ Π(L, β, loop〈n〉 d) if n ∈ I ∧ ll.(loop I d) ∩ L �= ∅ (17)

loop〈n〉 d is a loop with a counter. In the rule the counter is decreased by one
for each iteration. We also produce a silent event to represent the iteration
of a loop. Even though iteration of a loop in itself is not the most relevant
information at the meta-level, it may be useful for defining execution strategies,
for example if we want to give iteration of the loop low priority.

Π(L, β, loop〈n〉 d)
τloop−→ Π(L, β, d seq loop〈n−1〉 d) if ll.(loop〈n〉 d)∩L �= ∅ (18)

Also here we have the condition that ll.(loop〈n〉 d)∩L = ll.d∩L �= ∅. Since we
have that ∞ − 1 = ∞, loop〈∞〉 d specifies an infinite loop. Further we assert
that loop〈0〉 d is equal to skip, i.e., loop〈0〉 d

def= skip, so we do not need a special
rule for this situation.
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4.3 Fairness

With respect to diagrams that contain infinite loops, we must assume weak
fairness between diagram parts for the operational semantics to be complete.
This means that an arbitrary diagram part may not be enabled infinitely many
consecutive execution steps without being executed. With this assumption we
avoid situations where some part of a diagram is enabled and starved infinitely
long at the same time. Below we formalize this notion of weak fairness.

4.3.1 Diagram projection part

We define diagram projection parts to be the parts (or fragments) of a diagram
that may be reached by the recursion of the projection system. This means that
any argument of seq or par are projection parts, while arguments of the high-
level operators are not. In addition skip is a projection part of any diagram.
For example in the diagram

d = d1 seq ((d2 alt d3) par d4)

we have that skip, d1, d2 alt d3 and d4 are projection parts, while d2 and d3 are
not.

The reason why the arguments of high-level operators are not projection
parts is that events inside an argument of a high-level operator in a given state
will not be reached by the projection system and therefore will not be executed.
Hence, for characterizing what is executable in the state the events inside the
arguments of high-level operators are irrelevant since it is the operator itself that
will be executed. Because skip is the identity element of seq and par, skip will
by definition be a projection part of any diagram, but we nevertheless formalize
this explicitly in the definition.

We define a relation � ∈ D × D → B such that d � d′ is read as “d is a
projection part of d′.” We let a relation �1 ∈ D ×D → B be defined as

d �1 d′ def= d = skip ∨
∃d′′ : d′ = d seq d′′ ∨

d′ = d′′ seq d ∨
d′ = d par d′′ ∨
d′ = d′′ par d

(19)

and let the relation � be the reflexive, transitive closure of �1.

4.3.2 Enabled and executed projection parts

A diagram projection part d is executed in a execution step [β, d′] x−→ [β′, d′′],
x ∈ E ∪ T , if d is changed in the execution of the step (i.e. what is executed
is d itself or a part of d). We formalize this by means of a relation executed ∈
D × EX × (E ∪ T ) × EX → B:

executed(d, [β, d′], x, [β′, d′′]) def=
d � d′ ∧
[β, d′] x−→ [β′, d′′] ∧
∃d′′′ : (Π(ll.d, β, d) x−→ Π(ll.d, β, d′′′) ∧ d′′′ � d′′)

(20)
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Obviously a diagram part d is enabled in [β, d′] if there exists an execution step
starting in [β, d′] in which d is executable. This is formalized by the relation
enabled ∈ D × EX → B:

enabled(d, [β, d′]) def= ∃x, β′, d′′ : executed(d, [β, d′], x, [β′, d′′]) (21)

4.3.3 Weak fairness

We are now able to formalize the notion of weak fairness described above. An
execution is a sequence of execution steps:

[β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · ·

We define

Ξ def= {[β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ∈ (EX × (E ∪ T ))∞ |

∀i ∈ N : executed(di, [βi, di], xi, [βi+1, di+1])}

to be the set of all infinite executions. We say that an execution is weakly fair if
no diagram projection part that eventually becomes enabled, stays enabled for-
ever, without being executed infinitely often.6 This is formalized in the relation
wfe ∈ Ξ → B:

wfe([β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ) def=

∀d ∈ D, i ∈ N : (∀j ∈ N ∪ {0} : enabled(d, [βi+j , di+j ]) ⇒
∃k ∈ N ∪ {0} : executed(d, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))

(22)

An equivalent expression for wfe, that perhaps is closer to the above formulation
of a weakly fair execution, is the following:

wfe([β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ) =

¬∃d ∈ D, i ∈ N : (∀j ∈ N ∪ {0} : enabled(d, [βi+j , di+j ]) ∧
¬∃k ∈ N ∪ {0} : executed(d, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))

(23)

To ensure weak fairness of the operational semantics we place the following
condition on executions:

∀σ ∈ Ξ : wfe(σ) (24)

By using the definition of weak fair executions we may express that a trace
is weakly fair. Let tr ∈ Ξ → (E ∪T )∞ be a function that picks out all the events
of an execution and returns a trace:

tr([β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ) def= 〈x1, x2, x3, . . .〉

The relation wft ∈ (E ∪ T ) × D → B formalize that a trace is weakly fair with
respect to a diagram:

wft(t, d) def= ∃σ ∈ Ξ : π2(head(σ)) = d ∧ tr(σ) = t ∧ wfe(σ) (25)

The function head returns the first element of σ, which is an execution state, and
π2 returns the second element of an execution state, which is a diagram. The
composition π2(head(σ)) then gives the first diagram in execution σ. Hence,
wft(t, d) expresses that the trace t represents a weakly fair execution starting
with the diagram d.

6An intuitive discussion of weak fairness can be found in [35].
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4.4 Meta-strategies

There are several strategies we may choose when executing a sequence diagram
and generating the histories of its possible executions. Examples of this may be
generating one or a specific number of random traces, all traces, all prefixes of
a certain length, etc. We wish to have the possibility of varying the execution
strategy without changing the operational semantics of the sequence diagrams.
The way to do this is to define different meta-strategies for executing the di-
agrams with the operational semantics. An example is given below where we
show how we can produce a trace while capturing the high-level properties of
the trace, e.g. the trace representing negative behavior.

We define a meta-system over

{| , |} ∈ H × EX ×MO (26)

where H is the set of all traces, EX denotes the set of states of the execution
system and MO is a set of modes. The first place of this tuple is a “container”
for a trace, the second place holds the current state of the execution system and
the third place represents the mode of the execution. Let the set of modes be
defined as:

MO def= {postive, negative}
The strategy may be defined by the means of two rules, one rule for normal

events and one rule for silent events:

{|t, V, mo|} −→ {|t�〈e〉, V ′, mo|} if V
e−→ V ′ ∧ e ∈ E (27)

{|t, V, mo|} −→ {|t, V ′, mode(τ, mo)|} if V
τ−→ V ′ ∧ τ ∈ T (28)

The function mode in the silent event rule is defined as:

mode(τ, mo) def=
{

postitive if mo = positive ∧ τ �= τrefuse
negative if mo = negative ∨ τ = τrefuse

If we use these definitions, and we have positive as the initial mode an execution,
the mode will represent the property of the produced trace of being positive or
negative behavior. This means the initial state for execution of a sequence
diagram d is:

{|〈〉, [∅, d], positive|} (29)

5 Soundness and completeness

The operational semantics is sound and complete with respect to the denota-
tional semantics presented in [19–21]. Informally, the soundness property means
that if the operational semantics produces a trace from a given diagram, this
trace should be included in the denotational semantics of that diagram. By com-
pleteness we mean that all traces in the denotational semantics of a diagram
should be producible applying the operational semantics on that diagram.

Let O be the set of all interaction obligations. [[ d ]] ∈ P(O) is the denota-
tion of d (the formal definition is found in appendix A). We write t ∈ [[ d ]] for
t ∈

⋃
(p,n)∈[[ d ]](p ∪ n). E S©t denotes the trace t with all events not in E filtered

away. env!
M.d is the multiset of messages m such that the receive event but not
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the transmit event of m is present in d.

Theorem (Termination) Given a diagram d ∈ D without infinite loops. Then
execution of [env!

M.d, d] will terminate.

The proof is found as proof of theorem 3 on page 64 in appendix B.3.

Theorem (Soundness) Given a diagram d ∈ D. For all t ∈ (E ∪ T )∗, if there
exists β ∈ B such that [env!

M.d, d] t−→ [β, skip] then E S©t ∈ [[ d ]].

The soundness theorem is a combination of theorem 1 on page 50 in appendix
B.2, that proves soundness of diagram with simple operators, theorem 4 on
page 50 in appendix B.3, that proves soundness of diagrams with high-level op-
erators, and theorem 6 on page 80 in appendix B.4, which proves soundness of
diagrams with infinite loop.

Theorem (Completeness) Given a diagram d ∈ D. For all t ∈ E∗, if t ∈ [[ d ]]

then there exist trace t′ ∈ (E ∪ T )∗ and β ∈ B such that [env!
M.d, d] t′−→

[β, skip] and E S©t′ = t.

This theorem a combination of theorem 2 on page 61 in appendix B.2, which
proves completeness of diagrams with simple operators, theorem 5 on page 75 in
appendix B.3, that proves completeness of diagrams with high-level operators
and theorem 7 on page 86 in appendix B.4, where completeness of diagrams
with infinite loop is proved.

6 Related work

In this section we present related work, which means other approaches to defin-
ing operational semantics to sequence diagrams. This presentation cannot, how-
ever, be seen independently of the history of sequence diagrams. Sequence dia-
grams as defined in the UML 2.0 standard is the last of a sequence of languages
that have evolved over the last 15 to 20 years. The various approaches of defin-
ing semantics to sequence diagrams have emerged at different points in this
history, and will clearly be influenced by the state of the language(s) at the
time of their emergence.

An early version called Time Sequence Diagrams was standardized in the
1980s, see [11,24]. Better known are Message Sequence Charts (MSCs) that were
first standardized by ITU in 1993 (see e.g. [4]). This standard is usually referred
to as MSC-92, and describes what is now called basic MSCs. This means that
MSC-92 did not have high-level constructs such as choice but merely consisted
of lifelines and messages. MSC-92 had a lifeline-centric textual syntax,7 and
was given a semantics formalized in process algebra.

In 1996, a new MSC standard was defined, called MSC-96 [25]. In this
standard, high-level constructs and high level MSCs were introduced, a kind of

7A lifeline-centric syntax means that each lifeline is characterized by itself and a diagram
as collection of lifelines.
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diagrams that show how control flows between basic MSCs. Further a event-
centric textual syntax8 and a new semantics were defined [26]. This semantics
is also a kind of process algebra but, as will be explained, holds substantial
differences from the MSC-92 semantics. Finally, the MSC-96 standard was
revised in 1999 and became MSC-2000 [27], but kept the MSC-96 semantics.

The first versions of the Unified Modeling Language (UML 1.x) [43] included
a version of sequence diagrams similar to MSC-92, i.e., consisting of only lifelines
and messages and no higher level constructs. An important difference, however,
was that the sequence diagrams of UML 1.x did not have the frame around the
diagram, which in MSC-92 allowed messages to and from the environment of
the specified system.

Sequence diagrams in UML 2.0 [44] may be seen as a successor of MSC-
2000, since a lot of MSC language constructs have been incorporated in the
UML 2.0 variant of sequence diagrams. This means that even though this
report is concerned about UML sequence diagrams, much of the related work
concerns MSCs. UML 2.0 sequence diagrams are, however, neither a subset nor
a superset of MSC-2000; there are both similarities and differences between the
languages [18]. Most notably (in our context) do MSCs not have any notion of
negative behavior.

In addition to the STAIRS semantics there exist some other approaches to
defining denotational semantics of UML 2.0 sequence diagrams [7, 33, 49, 50].
As explained in the introduction of section 4, denotational and operational
semantics are complementary and serve different purposes. For this reason we
do not go into detail on these approaches in this discussion, nor on existing
approaches to denotational semantics of MSC like [30].

Several approaches to defining operational semantics to UML 2.0 sequence
diagrams and MSCs exist. We do, however, find that none of these semantic
definitions are satisfactory for our purposes.

The approach of Cengarle and Knapp [8] is similar to ours in that the op-
erational semantics is defined as rules that produce events as a syntactic repre-
sentation of the diagram is reduced. Contrary to ours, however, their semantics
treats sequence diagrams as complete specifications (with no inconclusive be-
havior), something that does not conform to the UML standard (see section
2.2). The rules are defined such that a given diagram produces a set of valid
and invalid traces that together exhaust the trace universe. The neg operator
is replaced by an operator not. This operator is defined such that the sets of
valid and invalid are swapped. This is unfortunate since specifying some behav-
ior as invalid means also specifying the complement of this behavior as valid.
We claim that this is not what you intuitively expect when specifying invalid
behavior.

There are also some problems on the technical level. The semantics is based
on a notion of composition of basic interactions where basic interactions are
defined as partially ordered multisets (pomsets), but it is not clear how the
pomsets are obtained; in other words it is not clear what the atoms of the
compositions are. If the atoms are taken to be single events the reduction
rules defining the seq operator do not preserve the message invariant (causality

8In an event-centric syntax events, as opposed to lifelines, are the basic building blocks of a
diagram. The event-centric syntax of MSCs is more general than the lifeline centric-syntax in
that all diagrams expressed in the lifeline-centric syntax can be expressed in the event-centric
syntax, but not the other way around.
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between transmission and reception of a message).
Cavarra and Klüster-Filipe [6] present an operational semantics of UML 2.0

sequence diagrams inspired by Live Sequence Charts (LSC) (see below). The
semantics is formalized in pseudo-code that work on diagrams represented as
locations in the diagram, but no translation from diagrams to this representation
is provided. A more serious problem is the treatment of the choice operator alt.
The operands of alts have guards and there is nothing to prevent the guards of
more operands in an alt to evaluate to true. In this case the uppermost operand
will be chosen, which means that the alts essentially are treated as nested if-
then-else statements and may not be used for underspecification. Further, each
lifeline is executed separately which means that synchronization at the entry of
alt-fragments is necessary to ensure that all lifelines choose the same operand.
They also make the same assumption about negative behavior as in LSCs, that
if negative (neg) fragment is executed, then execution aborts (see section 2.3.4).

Harel and Maoz [15] use LSC semantics (see below) to define neg and assert.
The operators are defined using already existing constructs of LSCs, and hence
no changes or additions to the LSC semantics are needed in their approach.
Because of this they also inherit the problems connected to LSCs.

In [13], Grosu and Smolka provide a semantics for UML 2.0 sequence di-
agrams based on translating the diagrams to Büchi automata. The approach
is based on composing simple sequence diagrams (no high-level operators) in
high-level sequence diagrams (interaction overview diagrams), where a simple
diagram may be a positive or negative fragment of the high-level diagram it
belongs to. Positive behavior is interpreted as liveness properties and nega-
tive behavior as safety properties. Hence, for a high-level diagram two Büchi
automata is derived; a liveness automaton characterizing the positive behavior
of the diagram and a safety automaton characterizing the negative behaviors.
Compared to our operational semantics the approach is based on a large amount
of transformation. Further the diagrams are composed by strict sequencing
rather than weak sequencing, and hence has implicit synchronization of lifelines
when entering or leaving a simple diagram.

In 1995 a formal algebraic semantics for MSC-92 was standardized by ITU
[38,39]. MSC-92 has a lifeline-centric syntax and its semantics is based on char-
acterizing each lifeline as a sequence (total order) of events. These sequences are
composed in parallel and a set of algebraic rules transform the parallel composi-
tion into a structure of (strict) sequential composition and choice. The message
invariant is obtained by a special function that removes from the structure all
paths that violate the invariant. The main drawbacks of this semantics is that it
is not a proper operational semantics since a diagram first has to be transformed
into the event structure before runs can be obtained, and that this transforma-
tion replaces parallel composition with choice and hence creates an explosion
in the size of the representation of the diagram. Further, the lifeline-centric
syntax is not suitable for defining nested high-level constructs. In [45] a similar
semantics for UML 1.x sequence diagram is given.

MSC-96 got a standardized process algebra semantics in 1998 [26, 40, 41].
This semantics is event-centric and has semantic operators for all the syntactic
operators in MSC-96. Further these operators are “generalized” to preserve the
message invariant by coding information about messages into the operators in
the translation from syntactical diagrams to semantic expressions. Runs are
characterized by inference rules over the semantic operators. Compared to our
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work, the most notable thing about this semantic is that is has no notion of
negative behavior, and therefore also makes no distinction between negative
behavior and inconclusive behavior (behavior that is neither positive nor nega-
tive). This is no surprise since MSC does not have the neg operator, but it is
still a shortcoming with respect to UML sequence diagrams. The only available
meta-level is a flat transition graph, and this does not give sufficient strength
to extend the semantics with negative behavior. Neither is it possible to dis-
tinguish between potential and mandatory choice. Another shortcoming is the
lack of an explicit communication medium; the communication model is “hard-
coded” in the semantics by the “generalized operators” and does not allow for
variation.

Another process algebra semantics of MSC is presented in [36]. This seman-
tics may in some respects be seen as more general than the above semantics. A
simple “core semantics” for MSCs is defined and this semantics is then inserted
into an environment definition. Varying the definition of the environment al-
lows for some of the same semantic variability and extendibility that we aim
for in our semantics, e.g., with respect to the communication model. However,
the semantics is heavily based on synchronization of lifelines on the entry of
referenced diagrams and combined fragments, and diverges in this respect from
the intended semantics of MSCs and UML sequence diagrams. Further, the
same strategy as for the MSC-92 semantics is applied; interleaving is defined by
means of choice, and the message invariant is obtained by removing deadlocks.
In our opinion, this results in an unnecessary amount of computation, especially
in the cases where we do not want to produce all traces but rather a selection
of the traces that a diagram defines.

In [34] a semantics for MSC-92 is presented which is based on translating
MSCs to finite automata with global states. This approach has no high-level
operators, but conditions may be used for specifying choices between or itera-
tions of diagrams. However, the insistence on translating the diagrams to finite
automata makes it impossible to represent all reachable states because the com-
bination of weak sequencing and loops may produce infinitely many states.

Realizability of MSCs is the focus of both [1,2] and [51]. They define synthe-
sis of MSC to concurrent automata and parallel composition of labeled transition
systems (LTS), respectively. (Each lifeline is represented as an automaton or
LTS, which are then composed in parallel.) Further they define high-level MSCs
as graphs where the nodes are basic MSCs. In addition, [51] defines both syn-
tax and semantics for negative behavior. In both approaches the translation of
high-level MSCs to concurrent automata/LTSs removes the semi-global nature
of choices in a specification, and the high-level MSC-graphs are non-hierarchical,
disallowing nesting of high level operators. Further, in [51] communication is
synchronous.

Various attempts at defining Petri net semantics for MSCs have been made
[12, 14, 22, 48]. In [12, 48] only basic MSCs are considered, and hence are of
limited interest. In [14], high-level MSCs are defined as graphs where each node
is a basic MSC. As with the above mentioned semantics it is then possible to
express choices and loops, but the approach does not allow for nesting of high-
level operators. In [22] a Petri net translation of the alternative operator alt is
sketched, but no loop defined. In [3] a Petri-net semantics for UML 1.x sequence
diagrams is presented, but as with the Petri-net semantics of basic MSCs it has
big limitations and are of little interest.
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Kosiuczenko and Wirsing [32] make a formalization of MSC-96 in Timed
Maude, a variant of the term rewriting language Maude. Their semantics is
problematic for two reasons: Every lifeline in a diagram is translated into an
object specified in Maude, and the behavior of these objects are specified by
the means of states and transition rules. We find this problematic because in
general the states of a lifeline are implicit while this formalism assumes explicit
states. Further, this way of reducing diagrams to sets of communicating objects
has the effect that all choices are made locally in the objects and the choice
operator alt looses its semi-global nature. Hence, this formalization does not
capture the intended understanding of the alt operator.

An interesting approach is that of Jonsson and Padilla [29]. They present
a semantics of MSC which is based on syntactical expansion and projection of
diagram fragments during execution. Each lifeline is represented by a thread
of labels where the labels refer to events or diagram fragments. The threads
are executed in parallel and when a label referring to a fragment is reached the
fragment is projected and expanded into the threads. Among the approaches
referred to in this section, this is probably the approach that most resembles
our operational semantics since their execution/expansion scheme resembles our
execution/projection scheme. Because expansion produces silent events, the se-
mantics can with small changes be extended with neg and xalt. Expansions
may happen at arbitrary points since there are no rules in the semantics itself
for when to expand. This creates a need for execution strategies, and the ap-
proach may be seen as having an informal meta-level where ad hoc strategies
are described. However, if completeness is to be ensured, or if the semantics is
to be extended with negative and potential/mandatory behavior this meta-level
must be formalized. A problem with this semantics is that it requires explicit
naming of all diagram fragments and this yields an unnecessary complicated
syntax. Another shortcoming is the lack of a explicit communication medium;
the communication model is “hard-coded” into the semantics and does not allow
for variation.

Live Sequence Charts (LSC) [10,16,17] is a variant of MSC that does define
a meta-level. Diagrams may be tagged as universal or existential and parts of
diagrams as hot or cold, and this is evaluated at the meta-level. This yields
something similar to the potential/mandatory distinction, and allows for speci-
fying negative behavior. There is however a difference; LSCs specify what must
or may happen given that some conditions are fulfilled, while our semantics
distinguish between choices that must or may be present in an implementation.
Further the semantics complies with neither the MSC nor the UML standard.
Most importantly it requires synchronization between lifelines at every entry
point of diagram fragments, e.g. when resolving a choice.

As we see, none of these approaches to defining operational semantics for
UML sequence diagrams and MSCs fulfill the intentions and criteria we have
set for our semantics. The shortcomings that dominate are:

• Non-conformance with the intended semantics of UML.

• No notion of explicit negative behavior and no distinction between nega-
tive behavior and inconclusive behavior (behavior that is neither positive
nor negative).

• No distinction between potential and mandatory choice. (This is no sur-
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prise as the alt/xalt distinction is an invention of STAIRS.)

• Lack of a proper meta-level that may be used for assigning meaning to
negative and potential/mandatory behavior.

• Lack of possibility and freedom in defining and formalizing a meta-level.

• Lack of modifiability and extensibility, e.g., with respect to the communi-
cation model.

• Requiring transformations from the textual syntax into the formalism of
the approach.

Our aim has been to stay close to the UML standard in both syntax and se-
mantics. Further we have aimed to facilitate ease of extension and modification
when adapting the semantics to different interpretations and applications of
sequence diagrams.

7 Conclusions

In this report we have presented an operational semantics for UML 2.0 sequence
diagrams. We are not aware of any other operational semantics for UML 2.0
sequence diagrams or MSCs with the same strength and generality as ours.
Several other approaches have been made, but all with significant shortcomings.

Our operational semantics for UML 2.0 sequence diagrams is simple and is
defined with extensibility and variation in mind. It does not involve any trans-
lation or transformation of the diagrams into other formalisms, which makes
it easy to use and understand. It is sound and complete with respect to a
reasonable denotational formalization of the UML standard.

We have shown how the operational semantics can be given a formalized
meta-level for defining execution strategies. The meta-level given in this report
is used for distinguishing valid from invalid traces, but also other meta-levels
with other purposes can be defined. Most notably we can define a meta-level
for distinguishing between traces of different interaction obligations. It is also
possible to define meta-levels that take a black box view of diagrams. Further
a meta-level may be used for defining different meta-strategies that guide the
execution, such as generating a specific number of traces or prefixes of a specific
length.

The semantics is implemented in the term rewriting language Maude [9],
and forms the basis of a tool for analysis of sequence diagrams. The operational
semantics has also been used to define test generation from sequence diagrams;
see [37] for more details.
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A Denotational semantics

In this section we give the denotational semantics of STAIRS as presented in
[19–21], but reduced to an untimed two event version.

A.1 Assumptions

On diagrams we have the constraints that a given message should syntactically
occur only once, and if both the transmitter and the receiver lifelines of the
message are present in the diagram, then both the transmit event and receive
event of that message must be in the diagram. Further if both the transmit
event and receive event of a message are present in a diagram, they have to be
inside the same argument of the same high-level operator (alt, xalt, neg or loop).
A way of phrasing the latter is that in the graphical notation, messages are not
allowed to cross the frame of a high-level operator or the dividing line between
the arguments of a high-level operator.

STAIRS is a trace-based semantics. A trace is a sequence of events, used
to represent a system run. In each trace, an transmit event should always be
ordered before the corresponding receive event. We let H denote the set of
all traces that complies with this requirement. Formally this is handled by a
constraint on traces.

We use | and # to denote, respectively, truncation and length of traces. For
concatenation of traces, filtering of traces, and filtering of pairs of traces, we
have the functions �, S©, and T©, respectively. Concatenating two traces implies
gluing them together. Hence, t1

�t2 denotes a trace that equals t1 if t1 is infinite.
Otherwise, t1

�t2 denotes the trace directly followed by t1 and suffixed by t2.
The filtering function S© is used to filter away elements. By A S©t we denote the
trace obtained from the trace t by removing all elements in t that are not in the
set of elements A. For example, we have that

{1, 3} S©〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

The function T© filters pairs of traces with respect to pairs of elements in the
same way as S© filters traces with respect to elements. For any set of pairs of
elements P and pair of traces u, by P T©u we denote the pair of traces obtained
from u by 1) truncating the longest trace in u at the length of the shortest traces
in u if the two sequences are of unequal length; 2) for each j ∈ [1 . . . k], where
k is the length of the shortest trace in u, selecting or deleting the two elements
at index j in the two trace, depending on whether the pair of these elements is
in the set P . For example, we have that

{(1, f), (1, g)} T©(〈1, 1, 2, 1, 2〉, 〈f, f, f, g, g〉) = (〈1, 1, 1〉, 〈f, f, g〉)

The semantic constraint on traces may now be formalized. It asserts that
for all traces h ∈ H, if at a point in a trace we have an receive event of a
message, then up to that point we must have has at least as many transmits of
that message as receives.

∀i ∈ [1..#h] : k.h[i] = ! ⇒ #({(!, m.h[i])} S©h|i) > #({(?, m.h[i])} S©h|i) (30)
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A.2 Semantics

As explained in section 2.2, the semantic model of STAIRS is a set of interaction
obligations, where an interaction obligation is a pair (p, n) of sets of traces where
the first set is interpreted as the set of positive traces and the second set is the
set of negative traces. In the following we let O be the set of all interaction
obligations. The semantics of sequence diagrams is defined by a function

[[ ]] ∈ D → P(O) (31)

that for any sequence diagram d yields a set [[ d ]] of interaction obligations.
The semantics of the empty sequence diagram skip is defined as only the

empty positive trace
[[ skip ]] def= {({〈〉}, ∅)} (32)

For a sequence diagram consisting of a single event e, its semantics is given by:

[[ e ]] def= {({〈e〉}, ∅)} (33)

A.2.1 Weak sequencing

Weak sequencing is the implicit composition mechanism combining constructs
of a sequence diagram. First, we define weak sequencing of trace sets

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : e.l S©h = e.l S©h1

�e.l S©h2} (34)

where e.l denotes the set of events that may take place on the lifeline l:

e.l
def= {e ∈ E | l.e = l}

The seq construct itself is defined as:

[[ d1 seq d2 ]] def= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (35)

where weak sequencing of interaction obligations is defined as:

(p1, n1) � (p2, n2)
def= (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2)) (36)

A.2.2 Interleaving

The par construct represents a parallel merge or a permutation of traces such
that the operands remain subsequences of the resulting traces. In order to define
par, we first define parallel execution on trace sets:

s1 ‖ s2
def= {h ∈ H | ∃p ∈ {1, 2}∞ :

π2(({1} × E) T©(p, h)) ∈ s1 ∧
π2(({2} × E) T©(p, h)) ∈ s2}

(37)

In this definition, we make use of an oracle, the infinite sequence p, to resolve
the non-determinism in the interleaving. It determines the order in which events
from traces in s1 and s2 are sequenced. π2 is a projection operator returning
the second element of a pair. Formally:

πi(s1, s2)
def= si, i ∈ {1, 2}
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The par construct itself is defined as

[[ d1 par d2 ]] def= {o1 ‖ o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]} (38)

where parallel execution of interaction obligations is defined as:

(p1, n1) ‖ (p2, n2)
def= (p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2)) (39)

A.2.3 Choice

The alt construct defines potential traces. The semantics is the inner union of
the interaction obligations:

[[ d1 alt d2 ]] def= {(p1 ∪ p2, n1 ∪ n2) | (p1, n1) ∈ [[ d1 ]] ∧ (p2, n2) ∈ [[ d2 ]]} (40)

The xalt construct defines mandatory choices. All implementations must be
able to handle every interaction obligation.

[[ d1 xalt d2 ]] def= [[ d1 ]] ∪ [[ d2 ]] (41)

A.2.4 Negative

The neg construct defines negative traces:

[[ neg d ]] def= {({〈〉}, p ∪ n) | (p, n) ∈ [[ d ]]} (42)

A.2.5 Iteration

The semantics of loop is defined by a semantic loop construct μn, where n is
the number of times the loop should be iterated. Let

⊎
be a generalization of

potential choice (inner union of interaction obligations) such that

⊎
i∈I

Oi
def= {

(⋃
i∈I

pi,
⋃
i∈I

ni

)
| ∀i ∈ I : (pi, ni) ∈ Oi} (43)

where Oi are sets of interaction obligations. loop is then defined as:

[[ loop I d ]] def=
⊎
i∈I

μi [[ d ]] (44)

For n ∈ N (finite loop), μn is defined as:

μ0 O
def= {({〈〉}, ∅)}

μ1 O
def= O

μn O
def= O � μn−1 O if n > 1

(45)

In order to define infinite loop we need some auxiliary definitions. We define
the chains of interaction obligation as:

chains(O) def= {ō ∈ O∞ | ō[1] ∈ O ∧
∀j ∈ N : ∃o ∈ O : ō[j + 1] = ō[j] � o}

(46)
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From a chain of interaction obligations we define its chains of positive and
negative traces:

pos(ō) def= {t̄ ∈ H∞ | ∀j ∈ N : t̄[j] ∈ π1(ō[j]) ∧
∃t ∈ H : t̄[j + 1] ∈ {t̄[j]} � {t}}

(47)

negs(ō) def= {t̄ ∈ H∞ | ∃i ∈ N : ∀j ∈ N : t̄[j] ∈ π2(ō[j + i − 1]) ∧
∃t ∈ H : t̄[j + 1] ∈ {t̄[j]} � {t}}

(48)

For every chain of traces t̄ we have that for all l ∈ L, the sequence

e.l S©t̄[1], e.l S©t̄[2], e.l S©t̄[3], . . .

is a chain ordered by �. We let �l t̄ denote the least upper bound of this chain
and define the approximations of t̄ as:

�t̄
def= {h ∈ H | ∀l ∈ L : e.l S©h = �l t̄ } (49)

For a chain of interaction obligations we define:

�ō
def=

( ⋃
t̄∈pos(ō)

�t̄,
⋃

t̄∈negs(ō)

�t̄

)
(50)

and let infinite loop be defined as:

μ∞ O
def= {�ō | ō ∈ chains(O)} (51)
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B Proofs of soundness, completeness and termi-

nation of the operational semantics

In this appendix we provide proofs of the soundness and completeness of the
operational semantics with respect to the denotational semantics presented in
[20, 21]. We also prove termination of execution of diagrams without infinite
loops.

Informally, the soundness property means that if the operational semantics
produces a trace from a given diagram, this trace should be included in the
denotational semantics of that diagram. By completeness we mean that all
traces in the denotational semantics of a diagram should be producible applying
the operational semantics on that diagram.

The proofs are based on interpreting the rules of the operational semantics
as a rewrite theory. For a formal treatment of rewrite theories, see [5, 42].

In section B.1 we provide some basic definitions that will be applied in the
following proofs. In section B.2 we prove soundness and completeness of simple
diagrams (theorem 1 on page 50 and theorem 2 on page 61). In section B.3 we
prove termination (theorem 3 on page 64), soundness (theorem 4 on page 73)
and completeness (theorem 5 on page 75) of diagrams with high-level operators
but without infinite loops. In section B.4 we prove soundness (theorem 6 on
page 80) and completeness (theorem 7 on 86) of diagrams with infinite loops.

B.1 Definitions

Definition 1 We define a function msg. ∈ D → P(M) that returns the mes-
sages of a diagram:

msg.skip
def= ∅ msg.(d1 seq d2)

def= msg.d1 ∪ msg.d2

msg.e
def= {m.e} msg.(d1 par d2)

def= msg.d1 ∪ msg.d2

msg.(neg d) def= msg.d msg.(d1 alt d2)
def= msg.d1 ∪ msg.d2

msg.(loop I d) def= msg.d msg.(d1 xalt d2)
def= msg.d1 ∪ msg.d2

Definition 2 We define a function ev. ∈ D → P(E) that returns the events of
a diagram:

ev.skip
def= ∅ ev.(d1 seq d2)

def= ev.d1 ∪ ev.d2

ev.e
def= {e} ev.(d1 par d2)

def= ev.d1 ∪ ev.d2

ev.(neg d) def= ev.d ev.(d1 alt d2)
def= ev.d1 ∪ ev.d2

ev.(loop I d) def= ev.d ev.(d1 xalt d2)
def= ev.d1 ∪ ev.d2

Definition 3 (Communication medium) In the following we use the pow-
erset over the set of messages as the set of all states of the communication
medium:

B def= P(M)

Further we define the operators on the medium states:

• add(β, m) def= β ∪ {m}

• rm(β, m) def= β \ {m}

34



• ready(β, m) def= m ∈ β

Definition 4 We use the following shorthand notation:

• If there exists a sequence of rewrites

[β, d] e1−→ [β1, d1]
e2−→ · · · en−→ [βn, dn]

we will write

[β, d]
〈e1,e2,...,en〉 �� [βn, dn]

• We say that an event e is enabled in execution state [β, d] iff there exists
a rewrite

[β, d] e−→ [β′, d′]

for some β′, d′.

• We write
[β, d] e−→

for
∃β′, d′ : [β, d] e−→ [β′, d′]

• If an event e is not enabled in [β, d] we write

[β, d] e
�

• If for all events e we have that e is not enabled in [β, d] (i.e. no events
are enabled in [β, d]) we write

[β, d] �

sd d

i

m

d = (?, (m, j, i))

[[ d ]] = {〈(?, (m, j, i))〉}

Figure 2: Diagram with single input

The denotational semantics has an implicit notion of environment, which allows
for, e.g., the diagram in figure 2 which consist of only one input event as long
as the lifeline of the corresponding output event does not occur in the diagram.
In the operational semantics, the state of the communication medium β in an
execution state [β, d] may be seen as an explicit notion of environment. Given
the diagram d in figure 2, the operational semantics produces the trace of [[ d ]]
only if the message m is available in the state of the communication medium,
i.e.:

(m, j, i) ∈ β ⇒ [β, d]
(?,(m,j,i)) �� [β \ {(m, j, i)}, skip]
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(m, j, i) �∈ β ⇒ [β, d] �

In order to align the two semantics we must make explicit the environment of
the denotational semantics.

Definition 5 (Environment) The function env. ∈ D → P(E) returns the
environment of a diagram d

env.d
def= {(k, m)|k ∈ {!, ?} ∧ m ∈ msg.d ∧ (k, m) �∈ ev.d}

Further we define

envM.d
def= {m.e|e ∈ env.d}

envk.d
def= {(k, m)|(k, m) ∈ env.d}

envk
M.d

def= {m|(k, m) ∈ env.d}

B.2 Simple sequence diagrams

In this section we prove soundness and completeness of what we refer to as simple
diagrams ; diagram without high-level constructs such as loop and choice. The
general case is addressed in section B.3. In section B.3 we also prove termination.

Definition 6 (Simple diagram) A diagram is called simple iff it only con-
tains

• events

• skip

• the operators seq and par

In this section we are only concerned with simple diagrams. We also restrict
ourselves to diagrams where no event occurs more than once:

d = d1 seq d2 ⇒ ev.d1 ∩ ev.d2 = ∅
d = d1 par d2 ⇒ ev.d1 ∩ ev.d2 = ∅

It follows from this condition that no message occur in more than one transmit
and one receive event.

Lemma 1 If d is a simple diagram, then

[[ d ]] = {(T, ∅)} with T ⊆ H

Proof of lemma 1
Assume: d simple
Prove: [[ d ]] = {(T, ∅)} ∧ T ⊆ H
Proof: by induction on the structure of d
〈1〉1. Case: d = skip (induction step)
〈2〉1. [[ d ]] = {({〈〉}, ∅)}

Proof: Def. 32.
〈2〉2. {〈〉} ⊆ H

Proof: Def. of H and (30)
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〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2

〈1〉2. Case: d = e (induction step)
〈2〉1. [[ e ]] = {({〈e〉}, ∅)}

Proof: Def. 33.
〈2〉2. {〈e〉} ⊆ H

Proof: Def. of H and (30).
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. d = d1 seq d2 (induction step)

Assume: 1. [[ d1 ]] = {(T1, ∅)} (induction hypothesis)
2. [[ d2 ]] = {(T2, ∅)} (induction hypothesis)
3. T1, T2 ⊆ H (induction hypothesis)

Prove: [[ d1 seq d2 ]] = {(T, ∅)} ∧ T ⊆ H
〈2〉1. [[ d1 seq d2 ]] = {o1 � o2|o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

Proof: Def. (35).
〈2〉2. [[ d1 seq d2 ]] = {(T1, ∅) � (T2, ∅)}

Proof: 〈2〉1 and induction hypothesis.
〈2〉3. [[ d1 seq d2 ]] = {(T1 � T2, (∅ � T2) ∪ (∅ � ∅) ∪ (T1 � ∅))}

Proof: 〈2〉2 and def. (36).
〈2〉4. [[ d1 seq d2 ]] = {(T, ∅)}, with T = T1 � T2 ⊆ H
〈3〉1. T1 � T2 is a set, and T1 � T2 ⊆ H

Proof: Def. (34).
〈3〉2. (∅ � T2) ∪ (∅ � ∅) ∪ (T1 � ∅) = ∅

Proof: Def. (34).
〈3〉3. Q.E.D.

Proof: 〈2〉3, 〈3〉1 and 〈3〉2.
〈2〉5. Q.E.D.

Proof: 〈2〉4
〈1〉4. d = d1 par d2 (induction step)

Assume: 1. [[ d1 ]] = {(T1, ∅)} (induction hypothesis)
2. [[ d2 ]] = {(T2, ∅)} (induction hypothesis)
3. T1, T2 ⊆ H (induction hypothesis)

Prove: [[ d1 par d2 ]] = {(T, ∅)} ∧ T ⊆ H
〈2〉1. [[ d1 par d2 ]] = {o1 ‖ o2|o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

Proof: Def. (38).
〈2〉2. [[ d1 par d2 ]] = {(T1, ∅) ‖ (T2, ∅)}

Proof: 〈2〉1 and induction hypothesis.
〈2〉3. [[ d1 par d2 ]] = {(T1 ‖ T2, (∅ ‖ T2) ∪ (∅ ‖ ∅) ∪ (T1 ‖ ∅))}

Proof: 〈2〉2 and def. (39).
〈2〉4. [[ d1 par d2 ]] = {(T, ∅)}, with T = T1 ‖ T2 ⊆ H
〈3〉1. T1 ‖ T2 is a set, and T1 ‖ T2 ⊆ H

Proof: Def. (37).
〈3〉2. (∅ ‖ T2) ∪ (∅ ‖ ∅) ∪ (T1 ‖ ∅) = ∅

Proof: Def. (37).
〈3〉3. Q.E.D.

Proof: 〈2〉3, 〈3〉1 and 〈3〉2.
〈2〉5. Q.E.D.

Proof: 〈2〉4
〈1〉5. Q.E.D.

37



Proof: 〈1〉1, 〈1〉2, 〈1〉3 and 〈1〉4.

�
Given lemma 1 we will in the following associate [[ d ]] with T , and write t ∈ [[ d ]]
when t ∈ T as shorthand notation.

Lemma 2 Given two simple diagrams d1, d2 ∈ D, then

env.(d1 seq d2) = env.(d1 par d2) = (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1)

Proof of lemma 2
〈1〉1. env.(d1 seq d2)

= {(k, m) | k ∈ {!, ?} ∧ m ∈ msg.(d1 seq d2)
∧ (k, m) �∈ ev.(d1 seq d2)} (Def. 5 of env. )

= {(k, m) | k ∈ {!, ?} ∧ m ∈ (msg.d1 ∪ msg.d2) (Defs. of ev.
∧ (k, m) �∈ (ev.d1 ∪ ev.d2)} and msg. )

〈1〉2. env.(d1 par d2)
= {(k, m) | k ∈ {!, ?} ∧ m ∈ msg.(d1 par d2)

∧ (k, m) �∈ ev.(d1 par d2)} (Def. 5 of env. )
= {(k, m) | k ∈ {!, ?} ∧ m ∈ (msg.d1 ∪ msg.d2) (Defs. of ev.

∧ (k, m) �∈ (ev.d1 ∪ ev.d2)} and msg. )
〈1〉3. {(k, m) | k ∈ {!, ?} ∧ m ∈ (msg.d1 ∪ msg.d2) ∧ (k, m) �∈ (ev.d1 ∪ ev.d2)}

= {(k, m) | k ∈ {!, ?} ∧ (m ∈ msg.d1 ∨ m ∈ msg.d2)
∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2}

= {(k, m) | (k ∈ {!, ?} ∧ m ∈ msg.d1 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2)
∨ (k ∈ {!, ?} ∧ m ∈ msg.d2 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2)

= {(k, m) | k ∈ {!, ?} ∧ m ∈ msg.d1 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2}
∪{(k, m) | k ∈ {!, ?} ∧ m ∈ msg.d2 ∧ (k, m) �∈ ev.d1 ∧ (k, m) �∈ ev.d2}

= ({(k, m) | k ∈ {!, ?} ∧ m ∈ msg.d1 ∧ (k, m) �∈ ev.d1} ∩
{(k, m) | (k, m) �∈ ev.d2}) ∪

({(k, m) | k ∈ {!, ?} ∧ m ∈ msg.d2 ∧ (k, m) �∈ ev.d2} ∩
{(k, m) | (k, m) �∈ ev.d1})

= ({(k, m) | k ∈ {!, ?} ∧ m ∈ msg.d1 ∧ (k, m) �∈ ev.d1} \
{(k, m) | (k, m) �∈ ev.d2}) ∪

({(k, m) | k ∈ {!, ?} ∧ m ∈ msg.d2 ∧ (k, m) �∈ ev.d2} \
{(k, m) | (k, m) �∈ ev.d1})

= (env.d1 \ {(k, m) | (k, m) ∈ ev.d2})
∪ (env.d2 \ {(k, m) | (k, m) ∈ ev.d1})

= (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1)
Proof: Def. of env. , and set theory.

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

�
Definition 7 The function ev. ∈ E∗ → P(E) returns the events of a trace t.
The function is defined recursively:

ev.〈〉 def= ∅
ev.(〈e〉�t) def= {e} ∪ ev.t

Lemma 3 Given t1, t2 ∈ E∗, then ev.(t1�t2) = ev.t1 ∪ ev.t2
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Proof of lemma 3
Assume: t1, t2 ∈ E∗

Prove: ev.(t1�t2) = ev.t1 ∪ ev.t2
Proof: by induction on t1.
〈1〉1. Induction start. t1 = 〈〉
〈2〉1. ev.(t1�t2) = ev.(〈〉�t2) = ev.t2

Proof: 〈1〉1 and identity of � .
〈2〉2. ev.t1 ∪ ev.t2 = ev.〈〉 ∪ ev.t2 = ∅ ∪ ev.t2 = ev.t2

Proof: 〈1〉1 and def. of ev. .
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉2. Induction step

Assume: ev.(t1�t2) = ev.t1 ∪ ev.t2 (induction hypothesis)
Prove: ev.((〈e〉�t1)�t2) = ev.(〈e〉�t1) ∪ ev.t2

〈2〉1. ev.((〈e〉�t1)�t2) = ev.(〈e〉�(t1�t2)) = {e} ∪ ev.(t1�t2)
= {e} ∪ ev.t1 ∪ ev.t2

Proof: Associativity of � , def. of ev. and induction hypothesis.
〈2〉2. ev.(〈e〉�t1) ∪ ev.t2 = {e} ∪ ev.t1 ∪ ev.t2

Proof: Def. of ev. .
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Q.E.D.
〈1〉1 and 〈1〉2.

�

Lemma 4 Given simple diagrams d, d′ ∈ D without repetition of events. Then,
for all traces t, if there exist β, β′ ∈ B such that

[β, d] t−→ [β′, d′]

then
ev.t = ev.d \ ev.d′

Proof of lemma 4
Assume: [β, d] t−→ [β′, d′]
Prove: e ∈ ev.t ⇐⇒ e ∈ (ev.d \ ev.d′)
〈1〉1. e ∈ (ev.d \ ev.d′) ⇐⇒ (e ∈ ev.d ∧ e �∈ ev.d′)

Proof: Set theory.
〈1〉2. e ∈ ev.t ⇒ e ∈ ev.d ∧ e �∈ ev.d′

Proof: Assume e ∈ ev.t. Then there must exist t1, t2 such that t = t1
�〈e〉�t2

and β1, β2, d1, d2 such that
[β, d] t1−→ [β1, d1]

e−→ [β2, d2]
t2−→ [β′, d′]

By the assumption that d, and therefore also d1 and d2, are simple and have
no repetition of events, and by rules (3)-(12) we must have that e ∈ ev.d1 and
e �∈ ev.d2. Because events cannot reappear during rewrite of a diagram, this
also means that e ∈ ev.d and e �∈ ev.d′

〈1〉3. e ∈ ev.d ∧ e �∈ ev.d′ ⇒ e ∈ ev.t
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Proof: Assume e ∈ ev.d and e �∈ ev.d′. Because application of rules (3)-(12)
is the only way of removing an event there must exist a sequence of rewrites
such that

[β, d]
t1

�〈e〉�t2 �� [β′, d′]

which means there must exist t1 and t2 such that t = t1
�〈e〉�t2. By the

definition of ev.t we then have that e ∈ ev.t.
〈1〉4. Q.E.D.

Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

�

Lemma 5 Given simple diagram d ∈ D. For all traces t, if there exist β, β′ ∈ B
such that

[β, d] t−→ [β′, skip]

then
ev.t = ev.d

Proof of lemma 5 Assume [β, d] t−→ [β′, skip]. By lemma 4 and the definition
of ev.skip, we have

ev.t = ev.d \ ev.skip = ev.d \ ∅ = ev.d

�

Definition 8 We formally define the filtering operator S© for finite sequences
over A:

V S©〈〉 def= 〈〉
v ∈ V ⇒ V S©(〈v〉�t) def= 〈v〉�(V S©t)
v �∈ V ⇒ V S©(〈v〉�t) def= V S©t

(with V ⊆ A and t ∈ A∗).

Lemma 6 Given simple diagram d ∈ D. For all t ∈ E∗, if there exists β such
that

[env!
M.d, d] t−→ [β, skip]

then
t ∈ H

Proof of lemma 6
Assume: [env!

M.d, d] t−→ [β, skip]
Prove: t ∈ H
〈1〉1. t ∈ H ⇐⇒

∀i ∈ [1..#t] : k.t[i] = ! ⇒ #({(!, m.t[i])} S©t|i) > #({(?, m.t[i])} S©t|i)
Proof: Semantic constraint on traces (30).

〈1〉2. ∀i ∈ [1..#t] : k.t[i] = ! ⇒ #({(!, m.t[i])} S©t|i) > #({(?, m.t[i])} S©t|i)
Let: j be arbitrary j ∈ [1..#t]
Prove: k.t[j] = ! ⇒ #({(!, m.t[j])} S©t|j) > #({(?, m.t[j])} S©t|j)
〈2〉1. Case: t[j] transmit event
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Let: t[j] = (!, m). Then k.t[j] = ! and m.t[j] = m
Prove: #({(!, m)} S©t|j) > #({(?, m)} S©t|j)
〈3〉1. #({(!, m)} S©t|j) = 1

Proof: The assumptions that d is simple and has no repetition of events,
and lemma 5.

〈3〉2. #({(?, m)} S©t|j) = 0
Proof: by contradiction
Assume: #({(?, m)} S©t|j) > 0
〈4〉1. There exist s, s′ such that

t|j = s�〈(?, m)〉�s′

Proof: Defs. of # and S© .
〈4〉2. There exist β′, β′′, β′′ ∈ B, d′, d′′, d′′ ∈ D such that

[env!
M.d, d] s−→ [β′, d′]

(?,m)−→ [β′′, d′′] s′
−→ [β′′′, d′′′]

Proof: Assumption and 〈4〉1.
〈4〉3. m ∈ β′

Proof: 〈4〉2 and rules (3)-(12).
〈4〉4. m �∈ env!

M.d
Proof: (!, m) ∈ ev.t = ev.d (by assumption, and lemma 5) and def. 5
of env!

M. .
〈4〉5. (!, m) ∈ ev.s

Proof: 〈4〉3, 〈4〉4 and rules (3)-(12).
〈4〉6. #({(!, m)} S©t|j−1) = 0

Proof: 〈3〉1 and defs. of # and S© and assumption that t[j] = (!, m).
〈4〉7. (!, m) �∈ ev.t|j−1

Proof: 〈4〉6 and def. of S© .
〈4〉8. (!, m) �∈ ev.s

Proof: 〈4〉7, 〈4〉1 and def. of ev. .
〈4〉9. Q.E.D.

Proof: 〈4〉5 and 〈4〉8 yield a contradiction, so we must have that
#({(?, m)} S©t|j) = 0

〈3〉3. Q.E.D.
Proof: 〈3〉1 and 〈3〉2

〈2〉2. Case: t[j] receive event
Let: t[j] = (?, m)
〈3〉1. Q.E.D.

Proof: Trivial since k.t[j] = ? and therefore (k.t[j] = !) = false.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Q.E.D.

Proof:〈1〉1 and 〈1〉2.

�

Lemma 7 Given simple diagrams d1, d2 ∈ D. For all traces t, if there exists
β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
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then there exist traces t1, t2 and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[end!

M.d2, d2]
t2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2

Proof of lemma 7
Assume: There exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
Prove: There exist traces t1, t2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2

〈1〉1. There exist trace t1, t2, and β1, β2 ∈ B such that
[env!

M.d1, d1]
t1−→ [β1, skip] ∧

[env!
M.d2, d2]

t2−→ [β2, skip]
〈2〉1. Let: t = 〈e〉�t′

〈2〉2. There exist β′
1, β

′
2 ∈ B, d′1, d′2 ∈ D such that

[env!
M.d1, d1]

e−→ [β′
1, d

′
1] �

[env!
M.d2, d2]

e−→ [β′
2, d

′
2]

(where � denotes exclusive or)
〈3〉1. There exist β′ ∈ B, d′ ∈ D such that

[env!
M.(d1 seq d2), d1 seq d2]

e−→ [β′, d′] t′−→ [β, skip]
Proof: Assumption and 〈2〉1

〈3〉2. [env!
M.(d1 seq d2), d1 seq d2]

e−→ [β′, d′1 seq d2] �
[env!

M.(d1 seq d2), d1 seq d2]
e−→ [β′, d1 seq d′2]

Proof: 〈3〉1, rules (3), (9) and (10), the assumption ev.d1 ∩ ev.d2 = ∅
and lemma 4.

〈3〉3. Case: [env!
M.(d1 seq d2), d1 seq d2]

e−→ [β′, d′1 seq d2]
Prove: [env!

M.d1, d1]
e−→ [β′

1, d
′
1] ∧ [env!

M.d2, d2]
e

�

〈4〉1. [env!
M.d1, d1]

e−→ [β′
1, d

′
1]

〈5〉1. Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d′1 seq d2)
Proof: By rule (3) this is a necessary condition for 〈3〉3 to be sat-
isfied.

〈5〉2. Π(ll.d1 ∩ ll.(d1 seq d2), env!
M.(d1 seq d2), d1)

e−→
Π(ll.d1 ∩ ll.(d1 seq d2), env!

M.(d1 seq d2), d′1)
Proof: By rule (9) this is a necessary condition for 〈5〉1 to be sat-
isfied.

〈5〉3. Π(ll.d1, env!
M.d1, d1)

e−→ Π(ll.d1, env!
M.d1, d

′
1)

〈6〉1. ll.d1 ∩ ll.(d1 seq d2) = ll.d1 ∩ (ll.d1 ∪ ll.d2) = ll.d1

Proof: Def. of ll.
〈6〉2. Case: e = (!, m)

It follows from the rules that the state of the communication
medium is irrelevant.

〈6〉3. Case: e = (?, m)
In this case it must be shown that m ∈ env!

M.d1.
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〈7〉1. m ∈ msg.d1

Proof: Defs. of ev. and msg. , rules (8)-(12), 〈6〉3 and 〈5〉2.
〈7〉2. m ∈ env!

M.(d1 seq d2)
Proof: It follows from the recursive use of rules (3)-(12), and
def. of ready that this is a necessary condition for 〈3〉3 to be
satisfied.

〈7〉3. m ∈ env!
M.(d1 seq d2) ⇐⇒ m ∈ env!

M.d1 ∧ (!, m) �∈ ev.d2

Proof: m ∈ env!
M.(d1 seq d2)

⇔ (!, m) ∈ env.(d1 seq d2) (Def. 5)
⇔ (!, m) ∈ (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1) (Lemma 2)
⇔ ((!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2) ∨

((!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1)
⇔ ((!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2) ∨

((!, m) ∈ env.d2 ∧ (!, m) ∈ env.d1) (〈7〉1)
⇔ (!, m) ∈ env.d1 ∧

((!, m) �∈ ev.d2 ∨ (!, m) ∈ env.d2)
⇔ (!, m) ∈ env.d1 ∧ ((!, m) �∈ ev.d2 ∨

((!, m) �∈ ev.d2 ∧ m ∈ msg.d2)) (Def. 5)
⇔ (!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2

⇔ m ∈ env!
M.d1 ∧ (!, m) �∈ ev.d2 (Def. 5)

〈7〉4. Q.E.D.
Proof: 〈7〉2 and 〈7〉3.

〈6〉4. Q.E.D.
Proof: 〈5〉2, 〈6〉1, 〈6〉2 and 〈6〉3.

〈5〉4. Q.E.D.
Proof: 〈5〉3 and rule (3)

〈4〉2. [env!
M.d2, d2]

e
�

〈5〉1. e �∈ ev.d2

Proof: 〈3〉3 and application of rules imply e ∈ ev.d1, and by as-
sumption, ev.d1 ∩ ev.d2 = ∅.

〈5〉2. e �∈ ev.d2 \ ev.d′2
Proof: 〈5〉1.

〈5〉3. ¬([env!
M.d2, d2]

e−→ [β′
2, d

′
2])

Proof: 〈5〉2 and lemma 4.
〈5〉4. Q.E.D.

Proof: 〈5〉3
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2
〈3〉4. Case: [env!

M.(d1 seq d2), d1 seq d2]
e−→ [β′, d1 seq d′2]

Prove: [env!
M.d2, d2]

e−→ [β′
2, d

′
2] ∧ [env!

M.d1, d1]
e

�

〈4〉1. [env!
M.d2, d2]

e−→ [β′
2, d

′
2]

〈5〉1. Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d1 seq d′2)
Proof: By rule (3) this is a necessary condition for 〈3〉4 to be sat-
isfied.

〈5〉2. Π(ll.(d1 seq d2) \ ll.d1, env!
M.(d1 seq d2), d2)

e−→
Π(ll.(d1 seq d2) \ ll.d2, env!

M.(d1 seq d2), d′2)
Proof: By rule (10) this is a necessary condition for 〈5〉1 to be
satisfied.
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〈5〉3. Π(ll.d2, env!
M.d2, d2)

e−→ Π(ll.d2, env!
M.d2, d

′
2)

〈6〉1. l.e ∈ ll.d2

〈7〉1. l.e ∈ ll.(d1 seq d2) \ ll.d1

Proof: This follows from 〈5〉2 and the rules.
〈7〉2. l.e ∈ ll.(d1 seq d2)\ ll.d1 ⇒ l.e ∈ (ll.d1∪ ll.d2)∧ l.e �∈ ll.d1 ⇒

(l.e ∈ ll.d1 ∨ l.e ∈ ll.d2) ∧ l.e �∈ ll.d1 ⇒ l.e ∈ ll.d2

Proof: Def. of ll. and 〈7〉1.
〈7〉3. Q.E.D.

Proof: 〈7〉2.
〈6〉2. Case: e = (!, m)

It follows from the rules that the state of the communication
medium is irrelevant.

〈6〉3. Case: e = (?, m)
In this case it must be shown that m ∈ env!

M.d2.
〈7〉1. m ∈ msg.d2

Proof: Defs. of ev. and msg. , rules (8)-(12), 〈6〉3 and 〈5〉2.
〈7〉2. m ∈ env!

M.(d1 seq d2)
Proof: It follows from the recursive use of rules (3)-(12), and
def. of ready that this is a necessary condition for 〈3〉4 to be
satisfied.

〈7〉3. m ∈ env!
M.(d1 seq d2) ⇐⇒ m ∈ env!

M.d2 ∧ (!, m) �∈ ev.d1

Proof: m ∈ env!
M.(d2 seq d1)

⇔ (!, m) ∈ env.(d1 seq d2) (Def. 5)
⇔ (!, m) ∈ (env.d1 \ ev.d2) ∪ (env.d2 \ ev.d1) (Lemma 2)
⇔ ((!, m) ∈ env.d1 ∧ (!, m) �∈ ev.d2) ∨

((!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1)
⇔ ((!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1) ∨

((!, m) ∈ env.d1 ∧ (!, m) ∈ env.d2) (〈7〉1)
⇔ (!, m) ∈ env.d2 ∧

((!, m) �∈ ev.d1 ∨ (!, m) ∈ env.d1)
⇔ (!, m) ∈ env.d2 ∧ ((!, m) �∈ ev.d1 ∨

((!, m) �∈ ev.d1 ∧ m ∈ msg.d1)) (Def. 5)
⇔ (!, m) ∈ env.d2 ∧ (!, m) �∈ ev.d1

⇔ m ∈ env!
M.d2 ∧ (!, m) �∈ ev.d1 (Def. 5)

〈7〉4. Q.E.D.
Proof: 〈7〉2 and 〈7〉3.

〈6〉4. Q.E.D.
Proof: 〈5〉2, 〈6〉1, 〈6〉2 and 〈6〉3.

〈5〉4. Q.E.D.
Proof: 〈5〉3 and rule (3)

〈4〉2. [env!
M.d1, d1]

e
�

〈5〉1. e �∈ ev.d1

Proof: 〈3〉4 and application of rules imply e ∈ ev.d1, and by as-
sumption, ev.d1 ∩ ev.d2 = ∅.

〈5〉2. e �∈ ev.d1 \ ev.d′1
Proof: 〈5〉1.

〈5〉3. ¬([env!
M.d1, d1]

e−→ [β′
1, d

′
1])

Proof: 〈5〉2 and lemma 4.
〈5〉4. Q.E.D.
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Proof: 〈5〉3
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2
〈3〉5. Q.E.D.

Proof: 〈3〉2, 〈3〉3 and 〈3〉4.
〈2〉3. Q.E.D.

Proof: We now have that [β′, d′] t′−→ [β, skip] where d′ = d′1 seq d2 or d′ =

d1 seq d′2. By substituting [env!
M.d′, d′] t′−→ [β, skip] for the assumption we

may repeat the argument until t′ = 〈〉, and we get 〈1〉1. The justification
of the substitution is that if e = (?, m) then β′ = env!

M.d \ {m}, but we
know that e �∈ ev.d′. If e = (!, m), then β′ = env!

M.d∪{m}, and env!
M.d′ =

env!
M.d ∪ {m} ⇔ (?, m) ∈ ev.d′ and env!

M.d′ = env!
M.d ⇔ (?, m) �∈ ev.d.

〈1〉2. ∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2

Proof: by contradiction
Assume: 1. The traces t1 and t2 from 〈1〉1

2. l arbitrary chosen lifeline in L
3. e.l S©t �= e.l S©t1

�e.l S©t2
〈2〉1. #t = #t1 + #t2

Proof: This follows from ev.t = ev.d = ev.d1∪ev.d2 = ev.t1∪ev.t2 (lemma
5) and the assumption that there is no repetition of events in d.

〈2〉2. There exist e1, e2 ∈ e.l such that {e1, e2} S©t �= {e1, e2} S©t1
�{e1, e2} S©t2

Proof: By assumption 3, 〈2〉1 and the assumption that there is no repeti-
tion of events, such events must exist.

〈2〉3. Case: e1, e2 �∈ ev.d1 ∪ ev.d2

〈3〉1. {e1, e2} S©t = 〈〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈〉�〈〉 = 〈〉

Proof: Lemma 5
〈2〉4. Case: e1 �∈ ev.d1 ∪ ev.d2 ∧ e2 ∈ ev.d1

〈3〉1. {e1, e2} S©t = 〈e2〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈e2〉�〈〉 = 〈e2〉

Proof: Lemma 5
〈2〉5. Case: e1 �∈ ev.d1 ∪ ev.d2 ∧ e2 ∈ ev.d2

〈3〉1. {e1, e2} S©t = 〈e2〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈〉�〈e2〉 = 〈e2〉

Proof: Lemma 5
〈2〉6. Case: e1 ∈ ev.d1 ∧ e2 �∈ ev.d1 ∪ ev.d2

〈3〉1. {e1, e2} S©t = 〈e1〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈e1〉�〈〉 = 〈e1〉

Proof: Lemma 5
〈2〉7. Case: e1 ∈ ev.d2 ∧ e2 �∈ ev.d1 ∪ ev.d2

〈3〉1. {e1, e2} S©t = 〈e1〉
Proof: Lemma 5

〈3〉2. {e1, e2} S©t1
�{e1, e2} S©t2 = 〈〉�〈e1〉 = 〈e1〉

Proof: Lemma 5
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〈2〉8. Case: e1, e2 ∈ ev.d1

〈3〉1. e1, e2 �∈ ev.d2

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1

�{e1, e2} S©t2

= {e1, e2} S©(ev.d1 S©t)�{e1, e2} S©(ev.d2 S©t)
= ({e1, e2} ∩ ev.d1) S©t�({e1, e2} ∩ ev.d2) S©t

= {e1, e2} S©t�∅ S©t

= {e1, e2} S©t�〈〉
= {e1, e2} S©t

Proof: 〈3〉2, {e1, e2} ⊆ ev.d1 (〈2〉8) and {e1, e2} ∩ ev.d2 = ∅ (〈3〉1).
〈2〉9. Case: e1, e2 ∈ ev.d2

〈3〉1. e1, e2 �∈ ev.d1

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1

�{e1, e2} S©t2

= {e1, e2} S©(ev.d1 S©t)�{e1, e2} S©(ev.d2 S©t)
= {e1, e2} ∩ ev.d1 S©t�{e1, e2} ∩ ev.d2 S©t

= ∅ S©t�{e1, e2} S©t

= 〈〉�{e1, e2} S©t
= {e1, e2} S©t

Proof: 〈3〉2, {e1, e2} ⊆ ev.d2 (〈2〉9) and {e1, e2} ∩ ev.d1 = ∅ (〈3〉1).
〈2〉10. Case: e1 ∈ ev.d1 ∧ e2 ∈ ev.d2

〈3〉1. e1 �∈ ev.d2 ∧ e2 �∈ ev.d1

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1 = {e1, e2} S©(ev.d1 S©t) = {e1, e2} ∩ ev.d1 S©t = {e1} S©t =

〈e1〉
Proof: Lemma 4, 〈2〉10, 〈3〉1 and 〈3〉2.

〈3〉4. {e1, e2} S©t2 = {e1, e2} S©(ev.d2 S©t) = {e1, e2} ∩ ev.d2 S©t = {e2} S©t =
〈e2〉

Proof: Lemma 4, 〈2〉10, 〈3〉1 and 〈3〉2.
〈3〉5. {e1, e2} S©t = 〈e2, e1〉

Proof: By assumption 3, 〈3〉3 and 〈3〉4 we have that {e1, e2} S©t �=
〈e1, e2〉. By 〈2〉10 and lemma 5 we have that {e,e2} ⊆ ev.t.

〈3〉6. There exist traces s1, s2, s3 such that t = s1
�〈e2〉�s2

�〈e1〉�s3

Proof: 〈3〉5.
〈3〉7. There exist β, β′ ∈ B, d′1, d

′
2, d

′′
2 ∈ D such that

[env!
M.(d1 seq d2), d1 seq d2]

s1−→ [β, d′1 seq d′2]
e2−→ [β′, d′1 seq d′′2 ]

Proof: e2 ∈ ev.d2 and 〈3〉6.
〈3〉8. l.e1 = l.e2 = l

Proof: 〈2〉2, defs. of e. and l. .
〈3〉9. l �∈ ll.d′1
〈4〉1. l ∈ ll.(d′1 seq d′2) \ ll.d′1
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Proof: By 〈3〉7 and application of the rules this is a necessary condi-
tion for 〈3〉8.

〈4〉2. l ∈ ll.(d′1 seq d′2) ∧ l �∈ ll.d′1
Proof: 〈4〉1.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉10. l ∈ ll.d′1
〈4〉1. e1 ∈ ev.d′1

Proof: 〈2〉10, e1 �∈ ev.s1 and lemma 4.
〈4〉2. Q.E.D.

Proof: 〈3〉8 and def. of ll. .
〈2〉11. Case: e1 ∈ ev.d2 ∧ e2 ∈ ev.d1

〈3〉1. e1 �∈ ev.d1 ∧ e2 �∈ ev.d2

Proof: Assumption ev.d1 ∩ ev.d2 = ∅.
〈3〉2. t1 = ev.d1 S©t ∧ t2 = ev.d2 S©t

Proof: Lemma 4 and assumption ev.d1 ∩ ev.d2 = ∅
〈3〉3. {e1, e2} S©t1 = {e1, e2} S©(ev.d1 S©t) = {e1, e2} ∩ ev.d1 S©t = {e2} S©t =

〈e2〉
Proof: Lemma 4, 〈2〉11, 〈3〉1 and 〈3〉2.

〈3〉4. {e1, e2} S©t2 = {e1, e2} S©(ev.d2 S©t) = {e1, e2} ∩ ev.d2 S©t = {e1} S©t =
〈e1〉

Proof: Lemma 4, 〈2〉11, 〈3〉1 and 〈3〉2.
〈3〉5. {e1, e2} S©t = 〈e1, e2〉

Proof: By assumption 3, 〈3〉3 and 〈3〉4 we have that {e1, e2} S©t �=
〈e2, e1〉. By 〈2〉10 and lemma 5 we have that {e,e2} ⊆ ev.t.

〈3〉6. There exist traces s1, s2, s3 such that t = s1
�〈e1〉�s2

�〈e2〉�s3

Proof: 〈3〉5.
〈3〉7. There exist β, β′ ∈ B, d′1, d

′
2, d

′′
2 ∈ D such that

[env!
M.(d1, d2), d1 seq d2]

s1−→ [β, d′1 seq d′2]
e1−→ [β′, d′1 seq d′′2 ]

Proof: e1 ∈ ev.d2 and 〈3〉6.
〈3〉8. l.e1 = l.e2 = l

Proof: 〈2〉2, defs. of e. and l. .
〈3〉9. l �∈ ll.d′1
〈4〉1. l ∈ ll.(d′1 seq d′2) \ ll.d′1

Proof: By 〈3〉7 and application of the rules this is a necessary condi-
tion for 〈3〉8.

〈4〉2. l ∈ ll.(d′1 seq d′2) ∧ l �∈ ll.d′1
Proof: 〈4〉1.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉10. l ∈ ll.d′1
〈4〉1. e2 ∈ ev.d′1

Proof: 〈2〉11, e2 �∈ ev.s1 and lemma 4.
〈4〉2. Q.E.D.

Proof: 〈3〉8 and def. of ll. .
〈2〉12. Q.E.D.

Proof: All possible cases yield a contradiction, so we must have that
e.l S©t = e.l S©t1

�e.l S©t2. Since l was arbitrary chosen, this must be true
for all lifelines in L.
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〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Definition 9 We define a function Ω ∈ P(E) × P(E) × E∗ → {1, 2}∗ in the
following way

Ω(E1, E2, 〈〉)
def= 〈〉

Ω(E1, E2, 〈e〉�t) def=

⎧⎪⎨
⎪⎩
〈1〉�Ω(E1, E2, t) if e ∈ E1

〈2〉�Ω(E1, E2, t) if e ∈ E2

Ω(E1, E2, t) otherwise

where we assume E1 ∩ E2 = ∅.

Definition 10 We generalize the concatenation operator � to range over
pairs of traces:

(t1, t2)�(s1, s2)
def= (t1�s1, t2

�s2)

Lemma 8 πi(t1�s1, t2
�s2) = πi(t1, t2)�πi(s1, s2), i ∈ {1, 2}

Proof of lemma 8
〈1〉1. πi(t1�s1, t2

�s2) = ti
�si

Proof: Def. of πi.
〈1〉2. πi(t1, t2)�πi(s1, s2) = ti

�si

Proof: Def. of πi.
〈1〉3. Q.E.D.

Proof: 〈1〉1 and 〈1〉2.

�

Definition 11 We formally define the pair filtering operator T© (for finite
sequences):

P T©(t1, t2)
def= P T©(t1|min(#t1,#t2), t2|min(#t1,#t2))

P T©(〈〉, 〈〉) def= (〈〉, 〈〉)
(v1, v2) ∈ P ⇒ P T©(〈v1〉�t1, 〈v2〉�t2)

def= (〈v1〉, 〈v2〉)�P T©(t1, t2)
(v1, v2) �∈ P ⇒ P T©(〈v1〉�t1, 〈v2〉�t2)

def= P T©(t1, t2)

where P is a set of pairs (P ⊆ A × B, t1 ∈ A∗, t2 ∈ B∗).

Lemma 9 Given simple diagrams d1, d2 ∈ D. For all traces t, if there exists
β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]

then there exist traces t1, t2 and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧ π2(({1} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t1 ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧ π2(({2} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t2
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Proof of lemma 9
Assume: There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
Prove: There exist traces t1, t2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

π2(({1} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t1 ∧
π2(({2} × E) T©(Ω(ev.d1, ev.d2, t), t)) = t2 ∧

〈1〉1. Let: t = 〈e〉�t′

〈1〉2. There exist β′
1, β

′
2 ∈ B, d′1, d

′
2 ∈ D such that

([env!
M.d1, d1]

e−→ [β′
1, d

′
1] ∧

π2(({1} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′)) =
〈e〉�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t

′), t′))) �
([env!

M.d2, d2]
e−→ [β′

2, d
′
2] ∧

π2(({2} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′)) =
〈e〉�π2(({2} × E) T©(Ω(ev.d1, ev.d2, t

′), t′)))
〈2〉1. There exist β′ ∈ B, d′ ∈ D such that

[env!
M.(d1 par d2), d1 par d2]

e−→ [β′, d′] t′−→ [β, skip]
Proof: Assumption and 〈1〉1

〈2〉2. [env!
M.(d1 par d2), d1 par d2]

e−→ [β′, d′1 par d2] �
[env!

M.(d1 par d2), d1 par d2]
e−→ [β′, d1 par d′2]

Proof: 〈2〉1, rules (3), (11), (12), assumption that ev.d1 ∩ ev.d2 = ∅, and
lemma 4.

〈2〉3. Case: [env!
M.(d1 par d2), d1 par d2]

e−→ [β′, d′1 par d2]
〈3〉1. There exists β′

1 ∈ B such that
[env!

M.d1, d1]
e−→ [β′

1, d
′
1]

Proof: Identical to proof of lemma 7.
〈3〉2. [env!

M.d2, d2]
e

�

Proof: Identical to proof of lemma 7.
〈3〉3. π2(({1} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′))

= 〈e〉�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′))

〈4〉1. e ∈ ev.d1

Proof: 〈3〉1 and lemma 4.
〈4〉2. Ω(ev.d1, ev.d2, 〈e〉�t′) = 〈1〉�Ω(ev.d1, ev.d2, t

′)
Proof: 〈4〉1, def. 9 of Ω and the assumption that ev.d1 ∩ ev.d2 = ∅.

〈4〉3. π2(({1} × E) T©(Ω(ev.d1, ev.d2, 〈e〉�t′), 〈e〉�t′))
= π2(({1} × E)

T©(〈1〉�Ω(ev.d1, ev.d2, t
′), 〈e〉�t′)) (〈4〉2)

= π2((〈1〉, 〈e〉)
�(({1} × E) T©(Ω(ev.d1, ev.d2, t

′), t′))) (Def. 11 of T©)
= π2((〈1〉, 〈e〉))

�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′)) (Lemma 8)

= 〈e〉�π2(({1} × E) T©(Ω(ev.d1, ev.d2, t
′), t′)) (Def. of π2)

〈4〉4. Q.E.D.
Proof: 〈4〉2 and 〈4〉3.
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〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉4. Case: [env!
M.(d1 par d2), d1 par d2]

e−→ [β′′, d1 par d′2]
Proof: Identical to proof of 〈2〉3.

〈2〉5. Q.E.D.
Proof: 〈2〉2, 〈2〉3 and 〈2〉4.

〈1〉3. Q.E.D.

Proof: We now have that [β′, d′] t′−→ [β, skip] where d′ = d′1 par d2 or d′ =

d1 par d′2. By substituting [env!
M.d′, d′] t′−→ [β, skip] for the assumption we

may repeat the argument until t′ = 〈〉, and we get what we wanted to prove.
The justification of the substitution is that if e = (?, m) then β′ = env!

M.d \
{m}, but we know that e �∈ ev.d′. If e = (!, m), then β′ = env!

M.d ∪ {m},
and env!

M.d′ = env!
M.d ∪ {m} ⇔ (?, m) ∈ ev.d′ and env!

M.d′ = env!
M.d ⇔

(?, m) �∈ ev.d.

�

Theorem 1 (Soundness) Given a simple diagram d ∈ D. Then, for all traces
t, if there exists β ∈ B such that

[env!
M.d, d] t−→ [β, skip]

then
t ∈ [[ d ]]

Proof of theorem 1
Assume: There exists β ∈ B such that

[env!
M.d, d] t−→ [β, skip]

Prove: t ∈ [[ d ]]
Proof: by induction on the structure of d
〈1〉1. Case: d = skip (induction start: empty diagram)

Assume: There exists β ∈ B such that
[env!

M.skip, skip] t−→ [β, skip]
Prove: t ∈ [[ skip ]]
〈2〉1. t = 〈〉

Proof: Rule (7)
〈2〉2. 〈〉 ∈ [[ skip ]]
〈3〉1. [[ skip ]] = {〈〉}

Proof: Definition (32).
〈3〉2. Q.E.D.

Proof: 〈〉 ∈ {〈〉}
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉2. Case: d = (!, m) (induction start: single transmit event)

Assume: There exists β ∈ B such that
[env!

M.(!, m), (!, m)] t−→ [β, skip]
Prove: t ∈ [[ (!, m) ]]
〈2〉1. t = 〈(!, m)〉
〈3〉1. [env!

M.(!, m), (!, m)]
(!,m)−→ [update(env!

M.(!, m), m.(!, m)), skip]
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〈4〉1. Π(ll.(!, m), env!
M.(!, m), (!, m))

(!,m)−→ Π(ll.(!, m), env!
M.(!, m), skip)

〈5〉1. ll.(!, m) = {l.(!, m)}
Proof: Def. of ll.

〈5〉2. l.(!, m) ∈ ll.(!, m)
Proof: 〈5〉1

〈5〉3. k.(!, m) =!
Proof: Def. of k.

〈5〉4. Q.E.D.
Proof: 〈5〉2, 〈5〉3 and rule (8)

〈4〉2. Q.E.D.
Proof: 〈4〉1 and rule (3)

〈3〉2. Q.E.D.
Proof: 〈3〉1 and lemma 5

〈2〉2. 〈(!, m)〉 ∈ [[ (!, m) ]]
〈3〉1. [[ (!, m) ]] = {〈(!, m)〉}

Proof: Def. (33).
〈3〉2. Q.E.D.

Proof: 〈(!, m)〉 ∈ {〈(!, m)〉}.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Case: d = (?, m) (induction start: single receive event)

Assume: There exists β ∈ B such that
[env!

M.(?, m), (?, m)] t−→ [β, skip]
Prove: t ∈ [[ (?, m) ]]
〈2〉1. t = 〈(?, m)〉
〈3〉1. env!

M.(?, m) = {m}
〈4〉1. env.(?, m) = {(!, m)}

Proof: Def. 5
〈4〉2. Q.E.D.

Proof: 〈4〉1 and def. 5

〈3〉2. [{m}, (?, m)]
(?,m)−→ [update({m}, m.(?, m)), skip]

〈4〉1. Π(ll.(?, m), {m}, (?, m))
(?,m)−→ Π(ll.(?, m), {m}, skip)

〈5〉1. ll.(?, m) = {l.(?, m)}
Proof: Def. of ll.

〈5〉2. l.(?, m) ∈ ll.(?, m)
Proof: 〈5〉1

〈5〉3. ready({m}, m.(?, m))
Proof: ready({m}, m.(?, m)) = m ∈ {m} = true (def. 3 and
def. of m. )

〈5〉4. Q.E.D.
Proof: 〈5〉2, 〈5〉3 and rule (8)

〈4〉2. Q.E.D.
Proof: 〈4〉1 and rule (3)

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and lemma 5

〈2〉2. 〈(?, m)〉 ∈ [[ (?, m) ]]
〈3〉1. [[ (?, m) ]] = {〈(?, m)〉}

51



Proof: Def. (33).
〈3〉2. Q.E.D.

Proof: 〈(?, m)〉 ∈ {〈(?, m)〉}.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉4. Case: d = d1 seq d2 (induction step)

Assume: 1. There exists β ∈ B such that
[env!

M.(d1 seq d2), d1 seq d2]
t−→ [β, skip]

2. For all traces t1, if there exists β1 ∈ B such that
[env!

M.d1, d1]
t1−→ [β1, skip],

then t1 ∈ [[ d1 ]] (induction hypothesis)
3. For all traces t2, if there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip],
then t2 ∈ [[ d2 ]] (induction hypothesis)

Prove: t ∈ [[ d1 seq d2 ]]
〈2〉1. [[ d1 seq d2 ]] = {h ∈ H|∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] :

∀l ∈ L : e.l S©h = e.l S©h1
�e.l S©h2}

Proof: Assumption that d is simple, and defs. (34), (35) and (36).
〈2〉2. t ∈ H

Proof: Assumption 1 and lemma 6.
〈2〉3. ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : ∀l ∈ L : e.l S©t = e.l S©h1

�e.l S©h2

〈3〉1. There exist traces s1, s2, and β1, β2 ∈ B such that
[env!

M.d1, d1]
s1−→ [β1, skip] ∧

[env!
M.d2, d2]

s2−→ [β2, skip] ∧
∀l ∈ L : e.l S©t = e.l S©s1

�e.l S©s2

Proof: Assumption 1 and lemma 7.
〈3〉2. s1 ∈ [[ d1 ]], s2 ∈ [[ d2 ]]

Proof: 〈3〉1and assumptions 2 and 3 (induction hypothesis).
〈3〉3. Q.E.D.

Proof: 〈3〉1 and 〈3〉2
〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and 〈2〉3.
〈1〉5. Case: d = d1 par d2 (induction step)

Assume: 1. There exists β ∈ B such that
[env!

M.(d1 par d2), d1 par d2]
t−→ [β, skip]

2. For all traces t1, if there exists β1 ∈ B such that
[env!

M.d1, d1]
t1−→ [β1, skip],

then t1 ∈ [[ d1 ]] (induction hypothesis)
3. For all traces t2, if there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip],
then t2 ∈ [[ d2 ]] (induction hypothesis)

Prove: t ∈ [[ d1 par d2 ]]
〈2〉1. [[ d1 par d2 ]] = {h ∈ H|∃p ∈ {1, 2}∞ :

π2(({1} × E) T©(p, h)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, h)) ∈ [[ d2 ]] }

Proof: Assumption that d is simple, and defs. (37), (38) and (39).
〈2〉2. t ∈ H

Proof: Assumption 1 and lemma 6.
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〈2〉3. ∃p ∈ {1, 2}∞ : π2(({1} × E) T©(p, t)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, t)) ∈ [[ d2 ]]

〈3〉1. There exist traces s1, s2, and β1, β2 ∈ B such that
[env!

M.d1, d1]
s1−→ [β1, skip] ∧

[env!
M.d2, d2]

s2−→ [β2, skip] ∧
π2(({1} × E) T©(Ω(ev.d1, ev.d2, t), t)) = s1 ∧
π2(({2} × E) T©(Ω(ev.d1, ev.d2, t), t)) = s2

Proof: Assumption 1 and lemma 9.
〈3〉2. s1 ∈ [[ d1 ]], s2 ∈ [[ d2 ]]

Proof: 〈3〉1 and assumptions 2 and 3 (induction hypothesis).
〈3〉3. Let: p = Ω(ev.d1, ev.d2, t)�{1}∞
〈3〉4. Q.E.D.

Proof: 〈3〉1, 〈3〉2, 〈3〉3 and def. of T© .
〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and 〈2〉3.
〈1〉6. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4 and 〈1〉5

�

Lemma 10 Given t ∈ E∗. Then ev.t =
⋃

l∈L ev.(e.l S©t).

Proof of lemma 10
Assume: t ∈ E∗

Prove: ev.t =
⋃

l∈L ev.(e.l S©t)
Proof: by induction on t
〈1〉1. Induction start: t = 〈〉
〈2〉1. ev.t = ev.〈〉 = ∅

Proof: 〈1〉1 and def. of ev. .
〈2〉2.

⋃
l∈L ev.(e.l S©t)

=
⋃

l∈L ev.(e.l S©〈〉) (〈1〉1)
=

⋃
l∈L ev.〈〉 (def. of S© )

=
⋃

l∈L ∅ (def. of ev. )
= ∅

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉2. Induction step
Assume: ev.t =

⋃
l∈L ev.(e.l S©t) (induction hypothesis)

Prove: ev.(〈e〉�t) =
⋃

l∈L ev.(e.l S©(〈e〉�t))
〈2〉1. Assume: 1. L = {l1, l2, . . . , li, . . . , lk, . . .}

2. l.e = li
〈2〉2. e ∈ e.li

Proof: Assumption 2 and defs. of l. and e. .
〈2〉3. i �= j ⇒ e �∈ e.lj

Proof: Assumption 2 and defs. of l. and e. .
〈2〉4. ev.(〈e〉�t) = {e} ∪ ev.t

Proof: Def. of ev. .
〈2〉5.

⋃
l∈L ev.(e.l S©(〈e〉�t))
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= ev.(e.l1 S©(〈e〉�t)) ∪ ev.(e.l2 S©(〈e〉�t)) ∪ · · ·
∪ ev.(e.li S©(〈e〉�t)) ∪ · · ·
∪ ev.(e.lk S©(〈e〉�t)) ∪ · · · (Assumption 1)

= ev.(e.l1 S©t) ∪ ev.(e.l2 S©t) ∪ · · · (〈2〉2, 〈2〉3 and
∪ ev.(〈e〉�e.li S©t) ∪ · · · ∪ ev.(e.lk S©t) ∪ · · · def. of S© )

= ev.(e.l1 S©t) ∪ ev.(e.l2 S©t) ∪ · · ·
∪ {e} ∪ ev.(e.li S©t) ∪ · · · ∪ ev.(e.lk S©t) ∪ · · · (Def. of ev. )

= {e} ∪ ev.(e.l1 S©t) ∪ ev.(e.l2 S©t) ∪ · · ·
∪ ev.(e.li S©t) ∪ · · · ∪ ev.(e.lk S©t) ∪ · · · (Prop. of ∪)

= {e} ∪
⋃

l∈L ev.(e.l S©t) (Assumption 1)
= {e} ∪ ev.t (Ind. hyp.)

〈2〉6. Q.E.D.
Proof: 〈2〉4 and 〈2〉5.

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Lemma 11 Given diagram d ∈ D. If there exist β, β′ ∈ B, d′ ∈ D, e1, e2 ∈ E
such that

[β, d]
〈e1,e2〉−→ [β′, d′]

and
l.e1 �= l.e2, m.e1 �= m.e2

then
[β, d]

〈e2,e1〉−→ [β′, d′]

Proof of lemma 11
Assume: There exist d′ ∈ D, β, β′ ∈ B, e1, e2 ∈ E such that

1. [β, d]
〈e1,e2〉−→ [β′, d′]

2. l.e1 �= l.e2

3. m.e1 �= m.e2

Prove: [β, d]
〈e2,e1〉−→ [β′, d′]

Proof: by contradiction

〈1〉1. Assume not [β, d]
〈e2,e1〉−→ [β′, d′]. Then there must exist β′′ ∈ B, d′′ ∈ D

such that [β, d] e1−→ [β′′, d′′] e2−→ [β′, d′] and something in [β, d], that is not
present in [β′′, d′′], prevents e2 from being enabled (i.e. [β, d] e2

�). There
are two ways in which this can be the case.

〈2〉1. Case: There exist d1, d
′
1, d2 ∈ D such that d = d1 seq d2, d′′ = d′1 seq d2,

e2 ∈ ev.d2, l.e2 ∈ ll.d1 and l.e2 �∈ ll.d′1.
This implies that e1 ∈ ev.d1 and l.e1 = l.e2 (because only e has been re-
moved from the diagram), which is impossible because of assumption 2.

〈2〉2. Case: k.e2 = ?, ready(β, m.e2) = false and ready(β′′, m.e2) = true.
This implies that β′′ = add(β, m.e2) which again implies that k.e1 = !
and m.e1 = m.e2. But this is impossible because of assumption 3

〈1〉2. Q.E.D.
Proof: Because the assumption of 〈1〉1 leads to contradiction we must have

that [β, d]
〈e2,e1〉−→ [β′, d′] is possible.

54



�

Lemma 12 For all traces t, if there exit traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D
such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©t1
�e.l S©t2 ∧

t ∈ H
then there exists β ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]

Proof of lemma 12
Assume: t is given and there exit traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D such

that
1. [env!

M.d1, d1]
t1−→ [β1, skip]

2. [env!
M.d2, d2]

t2−→ [β2, skip]
3. ∀l ∈ L : e.l S©t = e.l S©t1

�e.l S©t2
4. t ∈ H

Prove: There exists β ∈ B such that
[env!

M.(d1 seq d2), d1 seq d2]
t−→ [β, skip]

〈1〉1. ev.t = ev.t1 ∪ ev.t2
Proof: ev.t =

⋃
l∈L ev.(e.l S©t) (Lemma 10)

=
⋃

l∈L ev.(e.l S©t1
�e.l S©t2) (Assumption 3)

=
⋃

l∈L(ev.(e.l S©t1) ∪ ev.(e.l S©t2)) (Lemma 3)
=

⋃
l∈L ev.(e.l S©t1) ∪

⋃
l∈L ev.(e.l S©t2) (Properties of ∪)

= ev.t1 ∪ ev.t2 (Lemma 10)
〈1〉2. t1 = ev.d1 S©t
〈2〉1. ev.t = ev.d1 ∪ ev.d2, ev.d1 = ev.t1

Proof: 〈1〉1, assumptions 1 and 2, and lemma 5.
〈2〉2. Let: ev.d1 S©t = t′1

Assume: t1 �= t′1
〈2〉3. ev.d1 = ev.t1 = ev.t′1

Proof: 〈2〉1 and 〈2〉2.
〈2〉4. There exist e1, e2 ∈ ev.d1, and traces s1, s2, s

′
2, s3, s

′
3 such that

t1 = s1
�〈e1〉�s2

�〈e2〉�s3

t′1 = s1
�s′2

�〈e2, e1〉�s′3
Proof: By 〈2〉2, t1 and t′1 are unequal. By 〈2〉3 and the assumption that
d has no repetition of events, we do not have the case that t1 is a proper
prefix of t′1 or that t′1 is a proper prefix of t1. Let s1 be the longest trace
such that s1 � t1 and s1 � t′1 and let e1 be the first element of t1 after
s1 (e1 = t1[#s1 + 1]). Then we must have that e1 �= t′1[#s1 + 1], and, by
〈2〉3, that e1 = t′1[j] for some j > #s1 + 1. Let e2 = t′1[j − 1]. By 〈2〉3, the
assumption that there are no repetition of events and the fact that t1 and
t′1 is equal up to s1, we must have that e2 = t1[k] for some k > #s1 + 1.

〈2〉5. There exist e1, e2 ∈ ev.d1 such that
{e1, e2} S©t1 = 〈e1, e2〉 and
{e1, e2} S©t′1 = 〈e2, e1〉.
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Proof: 〈2〉4.
〈2〉6. {e1, e2} S©t = 〈e2, e1〉

Proof: 〈2〉2 and 〈2〉5.
〈2〉7. l.e1 �= l.e2

Proof: If there exists l such that l.e1 = l.e2 = l, then e1, e2 ∈ e.l which,
by 〈2〉5 and 〈2〉6, imply that ({e1, e2} ∩ e.l) S©t �= ({e1, e2} ∩ e.l) S©t1. But
this contradicts assumption 3.

〈2〉8. m.e1 �= m.e2

Proof: If we assume that m.e1 = m.e2, we must have, by the assumption
that there are no repetition of events, that there exists m such that e1 =
(!, m) and e2 = (?, m) or e1 = (?, m) and e2 = (!, m). The first case
contradicts, by 〈2〉6, the assumption that t ∈ H (assumption 4), and the
second case contradicts, by 〈2〉5, the fact that t1 ∈ H (assumption 1 and
lemma 6).

〈2〉9. Q.E.D.
Proof: If we assume that t1 �= ev.d1 S©t (〈2〉2) we get the result that l.e1 �=
l.e2 (〈2〉7) and m.e1 �= m.e2 (〈2〉8) for any pair of events e1, e2 ∈ ev.d1 =
ev.t1 such that {e1, e2} S©t1 �= ({e1, e2}∩ev.d1) S©t. By lemma 11, this means
that the order of e1 and e2 in t′1 is arbitrary and we may swap their position
without this affecting assumption 1. We may repeat this argument until
t′1[#s1 +1] = e1. We may then substitute s1

�〈e1〉 for s1 in 〈2〉4 and repeat
the argument until t1 = t′1 = s1. For this reason we can assume 〈1〉2
without this affecting the rest of the proof.

〈1〉3. t2 = ev.d2 S©t
Proof: Identical to proof of 〈1〉2

〈1〉4. We may now describe a sequence of transitions such that
[env!

M.(d1 seq d2), d1 seq d2]
t−→ [β, skip]

〈2〉1. Let: t = 〈e〉�t′

〈2〉2. We have that either
there exists t′1 such that t1 = 〈e〉�t′1 and e �∈ ev.t2, or
there exists t′2 such that t2 = 〈e〉�t′2 and e �∈ ev.t1.

Proof: 〈1〉1, 〈1〉2, 〈1〉3, the overall assumption that ev.d1 ∩ ev.d2 = ∅, and
the facts that ev.d1 = ev.t1 and ev.d2 = ev.t2 (assumptions 1 and 2, and
lemma 5.

〈2〉3. Case: t1 = 〈e〉�t′1 and e �∈ ev.t2
Prove: There exists d′1 ∈ D and β′ ∈ B such that

[env!
M.(d1 seq d2), d1 seq d2]

e−→ [β′, d′1 seq d2]
〈3〉1. There exists d′1 ∈ D such that

Π(ll.d1, env!
M.d1, d1)

e−→ Π(ll.d1, env!
M.d1, d

′
1)

Proof: Case assumption 〈2〉3, assumption 1 and rule (3).
〈3〉2. There exists d′1 ∈ D such that

Π(ll.d1 ∩ ll.(d1 seq d2), env!
M.(d1 seq d2), d1)

e−→
Π(ll.d1 ∩ ll.(d1 seq d2), env!

M.(d1 seq d2), d′1)
〈4〉1. ll.d1 ∩ ll.(d1 seq d2) = ll.d1 ∩ (ll.d1 ∪ ll.d2) = ll.d1

Proof: Def. of ll. .
〈4〉2. k.e = ! implies that the state of the communication medium is

irrelevant. k.e = ? implies that m.e ∈ env!
M.(d1 seq d2)

56



Proof: Rule (8). k.e = ? implies that m.e ∈ env!
M.d1 and also that

(!, m.e) �∈ ev.t′ because t ∈ H (assumption 4), which means (!, m.e) �∈
ev.d′1∪ev.d2 (〈1〉1 and lemma 5). This implies m.e ∈ env!

M.(d1 seq d2)
because m.e ∈ env!

M.(d1 seq d2) ⇔ m.e ∈ env!
M.d1 ∧ (!, m.e) �∈ ev.d2

(see proof of lemma 7).
〈4〉3. Q.E.D.

Proof: 〈3〉1, 〈4〉1, 〈4〉2.
〈3〉3. There exists d′1 ∈ D such that

Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d′1 seq d2)
〈4〉1. ll.d1 ∩ ll.(d1 seq d2) �= ∅

Proof: e ∈ ev.d1 and def. of ll. .
〈4〉2. Q.E.D.

Proof: 〈3〉2, 〈4〉1 and rule (9)
〈3〉4. Q.E.D.

Proof: 〈3〉3 and rule (3).
〈2〉4. Case: t2 = 〈e〉�t′2 and e �∈ ev.t1

Prove: There exists d′2 ∈ D and β′ ∈ B such that
[env!

M.(d1 seq d2), d1 seq d2]
e−→ [β′, d1 seq d′2]

〈3〉1. There exists d′2 ∈ D such that
Π(ll.d2, env!

M.d2, d2)
e−→ Π(ll.d2, env!

M.d2, d
′
2)

Proof: Case assumption 〈2〉4, assumption 2 and rule (3).
〈3〉2. There exists d′2 ∈ D such that

Π(ll.(d1 seq d2) \ ll.d1, env!
M.(d1 seq d2), d2)

e−→
Π(ll.(d1 seq d2) \ ll.d1, env!

M.(d1 seq d2), d′2)
〈4〉1. l.e ∈ ll.(d1 seq d2) \ ll.d1

〈5〉1. l.e ∈ ll.(d1 seq d2) \ ll.d1

⇔ (l.e ∈ ll.e1 ∨ l.e ∈ ll.d2) ∧ l.e �∈ ll.d1

⇔ l.e ∈ ll.d2 ∧ l.e �∈ ll.d1

Proof: Def. of ll. and basic set theory.
〈5〉2. l.e ∈ ll.d2

Proof: Assumption 2, case assumption, lemma 5 and def. of ll. .
〈5〉3. l.e �∈ ll.d1

Proof: From assumption 3, 〈2〉1 and the case assumption we know
that e.(l.e) S©t1 = 〈〉. This implies that e.(l.e) ∩ ev.t1 = e.(l.e) ∩
ev.d2 = ∅, which again imply that l.e �∈ ll.d1 (lemma 5, defs. of e. ,
l. , ev. and ll. ).

〈5〉4. Q.E.D.
Proof: 〈5〉1, 〈5〉2 and 〈5〉3.

〈4〉2. k.e = ! implies that the state of the communication medium is
irrelevant. k.e = ? implies that m.e ∈ env!

M.(d1 seq d2)
Proof: Rule (8). k.e = ? implies that m.e ∈ env!

M.d1 and also that
(!, m.e) �∈ ev.t′ because t ∈ H (assumption 4), which means (!, m.e) �∈
ev.d′1∪ev.d2 (〈1〉1 and lemma 5). This implies m.e ∈ env!

M.(d1 seq d2)
because m.e ∈ env!

M.(d1 seq d2) ⇔ m.e ∈ env!
M.d1 ∧ (!, m.e) �∈ ev.d2

(see proof of lemma 7).
〈4〉3. Q.E.D.

Proof: 〈3〉2, 〈4〉1, 〈4〉2.
〈3〉3. There exists d′2 ∈ D such that
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Π(ll.(d1 seq d2), env!
M.(d1 seq d2), d1 seq d2)

e−→
Π(ll.(d1 seq d2), env!

M.(d1 seq d2), d1 seq d′2)
〈4〉1. ll.(d1 seq d2) \ ll.d1 �= ∅

Proof: l.e ∈ ll.(d1 seq d2) \ ll.d1 (see 〈3〉2).
〈4〉2. Q.E.D.

Proof: 〈3〉2, 〈4〉1 and rule (10)
〈3〉4. Q.E.D.

Proof: 〈3〉3 and rule (3).
〈2〉5. We may now substitute t for t′ and repeat the argument until t = 〈〉.

(For justification of this see proof of lemma 7.)
〈2〉6. Q.E.D.

Proof: 〈2〉1-〈2〉4
〈1〉5. Q.E.D.

Proof: 〈1〉1-〈1〉4

�

Lemma 13 Given traces t, t1, t2 and oracle p ∈ {1, 2}∞. If

π2(({1} × E) T©(p, t)) = t1 ∧
π2(({2} × E) T©(p, t)) = t2

then
ev.t = ev.t1 ∪ ev.t2

Proof of lemma 13
Assume: t, t1, t2 and p ∈ {1, 2}∞ given, and

1. π2(({1} × E) T©(p, t)) = t1

2. π2(({2} × E) T©(p, t)) = t2

Prove: ev.t = ev.t1 ∪ ev.t2
Proof: by induction on t

〈1〉1. Induction start: t = 〈〉
Prove: ev.t = ev.t1 ∪ ev.t2

〈2〉1. ev.t = ev.〈〉 = ∅
Proof: 〈1〉1 and def. of ev. .

〈2〉2. ev.t1 ∪ ev.t2
= ev.π2(({1} × E) T©(p, 〈〉))

∪ ev.π2(({2} × E) T©(p, 〈〉)) (Assumptions 1 and 2, and 〈1〉1)
= ev.π2(({1} × E) T©(〈〉, 〈〉))

∪ ev.π2(({2} × E) T©(〈〉, 〈〉)) (Def. 11 of T© )
= ev.π2(〈〉, 〈〉) ∪ ev.π2(〈〉, 〈〉) (Def. 11 of T© )
= ev.〈〉 ∪ ev.〈〉 (Def. of π2)
= ∅ ∪ ∅ (Def. of. ev. )
= ∅

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉2. Induction step
Assume: ev.t = ev.t1 ∪ ev.t2 (induction hypothesis)
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Prove: ev.(t�〈e〉) = ev.π2(({1} × E) T©(p, t�〈e〉))
∪ ev.π2(({2} × E) T©(p, t�〈e〉))

〈2〉1. ev.(t�〈e〉)
= ev.t ∪ ev.〈e〉 (lemma 3)
= ev.t ∪ {e} (def. of ev. )

〈2〉2. Let: k ∈ {1, 2}
〈2〉3. ev.π2(({k} × E) T©(p, t�〈e〉))

= ev.π2(({k} × E) T©(p|#t+1, t
�〈e〉)) (Def. 11 of T© )

= ev.π2(({k} × E) T©(p|#t
�〈j〉, t�〈e〉)) (j ∈ {1, 2})

= ev.π2((({k} × E) T©(p|#t, t))
�(({k} × E) T©(〈j〉, 〈e〉))) (Defs. of � and T© )

= ev.(π2(({k} × E) T©(p|#t, t))
�π2(({k} × E) T©(〈j〉, 〈e〉))) (Lemma 8)

= ev.π2(({k} × E) T©(p|#t, t))
∪ ev.π2(({k} × E) T©(〈j〉, 〈e〉)) (Lemma 3)

= ev.π2(({k} × E) T©(p, t))
∪ ev.π2(({k} × E) T©(〈j〉, 〈e〉)) (Def. 11 of T© )

= tk ∪ ev.π2(({k} × E) T©(〈j〉, 〈e〉)) (Assumptions 1 and 2)

〈2〉4. ev.π2(({1} × E) T©(p, t�〈e〉))
∪ ev.π2(({2} × E) T©(p, t�〈e〉))
= t1 ∪ ev.π2(({1} × E) T©(〈j〉, 〈e〉))

∪ t2 ∪ ev.π2(({2} × E) T©(〈j〉, 〈e〉)) (〈2〉3, j ∈ {1, 2})
= t ∪ ev.π2(({1} × E) T©(〈j〉, 〈e〉))

∪ ev.π2(({2} × E) T©(〈j〉, 〈e〉)) (induction hypothesis)
〈2〉5. Case: j = 1

t ∪ ev.π2(({1} × E) T©(〈1〉, 〈e〉))
∪ ev.π2(({2} × E) T©(〈1〉, 〈e〉))
= t ∪ ev.π2(〈1〉, 〈e〉) ∪ ev.π2(〈〉, 〈〉) (Def. 11 of T© )
= ev.t ∪ ev.〈e〉 ∪ ev.〈〉 (Def. of π2)
= ev.t ∪ {e} ∪ ∅ (Def. of ev. )
= ev.t ∪ {e}

〈2〉6. Case: j = 2
t ∪ ev.π2(({1} × E) T©(〈2〉, 〈e〉))
∪ ev.π2(({2} × E) T©(〈2〉, 〈e〉))
= t ∪ ev.π2(〈〉, 〈〉) ∪ ev.π2(〈2〉, 〈e〉) (Def. 11 of T© )
= ev.t ∪ ev.〈〉 ∪ ev.〈e〉 (Def. of π2)
= ev.t ∪ ∅ ∪ {e} (Def. of ev. )
= ev.t ∪ {e}

〈2〉7. Q.E.D.
Proof: 〈2〉1-〈2〉6

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2

�

Lemma 14 For all t, if there exist traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D, and
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p ∈ {1, 2}∞ such that

[env!
M.d1, d1]

t1−→ [β1, skip] ∧
[env!

M.d2, d2]
t2−→ [β2, skip] ∧

π2(({1} × E) T©(p, t)) = t1 ∧
π2(({2} × E) T©(p, t)) = t2 ∧
t ∈ H

then there exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]

Proof of lemma 14
Assume: t is given and there exist traces t1, t2, and β1, β2 ∈ B, d1, d2 ∈ D, and

p ∈ {1, 2}∞ such that
1. [env!

M.d1, d1]
t1−→ [β1, skip]

2. [env!
M.d2, d2]

t2−→ [β2, skip]
3. π2(({1} × E) T©(p, t)) = t1
4. π2(({2} × E) T©(p, t)) = t2
5. t ∈ H

Prove: There exists β ∈ B such that
[env!

M.(d1 par d2), d1 par d2]
t−→ [β, skip]

〈1〉1. ev.t = ev.t1 ∪ ev.t2
Proof: Assumptions 3 and 4, and lemma 13.

〈1〉2. We describe a sequence of transitions such that
[env!

M.(d1 par d2), d1 par d2]
t−→ [β, skip]

We do this with guidance of the oracle p

〈2〉1. Let: t = 〈e〉�t′

〈2〉2. Case: p = 〈1〉�p′

Prove: There exists d′1 ∈ D and β′ ∈ B such that
[env!

M.(d1 par d2), d1 par d2]
e−→ [β′, d′1 par d2]

〈3〉1. t1 = 〈e〉�π2(({1} × E) T©(p′, t′))
Proof: t1 = π2(({1} × E) T©(p, t)) (Assumption 3)

= π2(({1} × E) T©(〈1〉�p′, 〈e〉�t′)) (〈2〉1 and 〈2〉2)
= π2((〈1〉, 〈e〉)�(({1} × E) T©(p′, t′))) (Def. 11 of T© )
= π2(〈1〉, 〈e〉)�π2(({1} × E) T©(p′, t′)) (Lemma 8)
= 〈e〉�π2(({1} × E) T©(p′, t′)) (Def. of π2)

〈3〉2. There exists d′1 ∈ D such that
Π(ll.d1, env!

M.d1, d1)
e−→ Π(ll.d1, env!

M.d1, d
′
1)

Proof: 〈3〉1, assumption 1 and rule (3).
〈3〉3. There exists d′1 ∈ D such that

Π(ll.d1 ∩ ll.(d1 par d2), env!
M.(d1 par d2), d1)

e−→
Π(ll.d1 ∩ ll.(d1 par d2), env!

M.(d1 par d2), d′1)
〈4〉1. ll.d1 ∩ ll.(d1 par d2) = ll.d1 ∩ (ll.d1 ∪ ll.d2) = ll.d1

Proof: Def. of ll. .
〈4〉2. k.e = ! implies that the state of the communication medium is

irrelevant. k.e = ? implies that m.e ∈ env!
M.(d1 par d2)
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Proof: Rule (8). k.e = ? implies that m.e ∈ env!
M.d1 and also that

(!, m.e) �∈ ev.t′ because t ∈ H (assumption 5), which means (!, m.e) �∈
ev.d′1∪ev.d2 (〈1〉1 and lemma 5). This implies m.e ∈ env!

M.(d1 par d2)
because m.e ∈ env!

M.(d1 par d2) ⇔ m.e ∈ env!
M.d1 ∧ (!, m.e) �∈ ev.d2

(see proof of lemma 7).
〈4〉3. Q.E.D.

Proof: 〈3〉2, 〈4〉1, 〈4〉2.
〈3〉4. There exists d′1 ∈ D such that

Π(ll.(d1 par d2), env!
M.(d1 par d2), d1 par d2)

e−→
Π(ll.(d1 par d2), env!

M.(d1 par d2), d′1 par d2)
Proof: 〈3〉3, and rule (11)

〈3〉5. Q.E.D.
Proof: 〈3〉4 and rule (3).

〈2〉3. Case: p = 〈2〉�p′

Prove: There exists d′2 ∈ D and β′ ∈ B such that
[env!

M.(d1 par d2), d1 par d2]
e−→ [β′, d1 par d′2]

Proof: Identical to proof of 〈2〉2 with t2 and rule (12) substituted for t1
and rule (11).

〈2〉4. We may now substitute t for t′ and repeat the argument until t = 〈〉.
(For justification of this see proof of lemma 9.)

〈2〉5. Q.E.D.
Proof: 〈2〉1-〈2〉3

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2

�

Theorem 2 (Completeness) Given a simple diagram d. Then, for all traces
t, if

t ∈ [[ d ]]

then there exists β ∈ B such that

[env!
M.d, d] t−→ [β, skip]

Proof of theorem 2
Assume: t ∈ [[ d ]]
Prove: There exists β ∈ B such that

[env!
M.d, d] t−→ [β, skip]

Proof: by induction on the structure of d.
〈1〉1. Case: d = skip (induction start: empty diagram)

Assume: t ∈ [[ skip ]]
Prove: There exists β ∈ B such that

[env!
M.skip, skip] t−→ [β, skip]

〈2〉1. t = 〈〉
〈3〉1. [[ skip ]] = {〈〉}

Proof: Assumption that d is simple, and definition (32).
〈3〉2. Q.E.D.

Proof: 〈3〉1.

〈2〉2. [env!
M.skip, skip]

〈〉−→ [∅, skip]
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Proof: Rule (7) and def. of env!
M.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉2. Case: d = (!, m) (induction start: single output)
Assume: t ∈ [[ (!, m) ]]
Prove: There exists β ∈ B such that

[env!
M.(!, m), (!, m)] t−→ [β, skip]

〈2〉1. t = 〈(!, m)〉
〈3〉1. [[ (!, m) ]] = {〈(!, m)〉}

Proof: Assumption that d is simple and def. (33).
〈3〉2. Q.E.D.

Proof: 〈3〉1
〈2〉2. [env!

M.(!, m), (!, m)]
(!,m)−→ [{m}, skip]

〈3〉1. Π(ll.(!, m), env!
M.(!, m), (!, m))

(!,m)−→ Π(ll.(!, m), env!
M.(!, m), skip)

Proof: l.(!, m) ∈ ll.(!, m) = {l.(!, m)} (def. of ll. ), k.(!, m) = !
(def. of k. ), and rule (8).

〈3〉2. Q.E.D.
Proof: 〈3〉1, rule (3) and def. of env!

M.
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉3. Case: d = (?, m) (induction start: single input)

Assume: t ∈ [[ (?, m) ]]
Prove: There exists β ∈ B such that

[env!
M.(?, m), (?, m)] t−→ [β, skip]

〈2〉1. t = 〈(?, m)〉
〈3〉1. [[ (?, m) ]] = {〈(?, m)〉}

Proof: Assumption that d is simple and def. (33).
〈3〉2. Q.E.D.

Proof: 〈3〉1
〈2〉2. [env!

M.(?, m), (?, m)]
(?,m)−→ [∅, skip]

〈3〉1. Π(ll.(?, m), env!
M.(?, m), (?, m))

(?,m)−→ Π(ll.(?, m), env!
M.(?, m), skip)

Proof: l.(?, m) ∈ ll.(?, m) = {l.(?, m)} (def. of ll. ),
ready(env!

M.(?, m)), m.(?, m) = ready({m}, m) = m ∈ {m} (defs.
of ready, env!

M. and m. ), and rule (8).
〈3〉2. Q.E.D.

Proof: 〈3〉1, rule (3) and def. of env!
M.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉4. Case: d = d1 seq d2 (induction step)
Assume: 1. t ∈ [[ d1 seq d2 ]]

2. For all t1, if t1 ∈ [[ d1 ]], then there exists β1 ∈ B such that
[env!

M.d1, d1]
t1−→ [β1, skip] (induction hypothesis)

3. For all t2, if t2 ∈ [[ d2 ]], then there exists β2 ∈ B such that
[env!

M.d2, d2]
t2−→ [β2, skip] (induction hypothesis)

Prove: There exists β ∈ B such that
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[env!
M.(d1 seq d2), d1 seq d2]

t−→ [β, skip]
〈2〉1. t ∈ {h ∈ H | ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] :

∀l ∈ L : e.l S©h = e.l S©h1
�e.l S©h2}

Proof: Assumption d is simple, assumption 1, and defs. (34), (35)
and (36).

〈2〉2. t ∈ H ∧ ∃h1 ∈ [[ d1 ]], h2 ∈ [[ d2 ]] : ∀l ∈ L : e.l S©t = e.l S©h1
�e.l S©h2

Proof: 〈2〉1
〈2〉3. There exist traces h1, h2, and β1, β2 ∈ B such that

[env!
M.d1, d1]

h1−→ [β1, skip] ∧
[env!

M.d2, d2]
h2−→ [β2, skip] ∧

∀l ∈ L : e.l S©t = e.l S©h1
�e.l S©h2 ∧

t ∈ H
Proof: Assumptions 2 and 3 (induction hypothesis), and 〈2〉2.

〈2〉4. There exist β ∈ B such that
[env!

M.(d1 seq d2), d1 seq d2]
t−→ [β, skip]

Proof: 〈2〉3 and lemma 12.
〈2〉5. Q.E.D.

Proof: 〈2〉4.
〈1〉5. Case: d = d1 par d2 (induction step)

Assume: 1. t ∈ [[ d1 par d2 ]]
2. For all t1, if t1 ∈ [[ d1 ]], then there exists β1 ∈ B such that

[env!
M.d1, d1]

t1−→ [β1, skip] (induction hypothesis)
3. For all t2, if t2 ∈ [[ d2 ]], then there exists β2 ∈ B such that

[env!
M.d2, d2]

t2−→ [β2, skip] (induction hypothesis)
Prove: There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
〈2〉1. t ∈ {h ∈ H | ∃p ∈ {1, 2}∞ :

π2(({1} × E) T©(p, h)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, h)) ∈ [[ d2 ]]

Proof: Assumption d is simple, assumption 1, and defs. (37), (38)
and (39).

〈2〉2. t ∈ H ∧ ∃p ∈ {1, 2}∞ :
π2(({1} × E) T©(p, t)) ∈ [[ d1 ]] ∧
π2(({2} × E) T©(p, t)) ∈ [[ d2 ]]

Proof: 〈2〉1
〈2〉3. There exist β1, β2 ∈ B, p ∈ {1, 2}∞ such that

[env!
M.d1, d1]

π2(({1}×E) T©(p,t)) �� [β1, skip] ∧

[env!
M.d2, d2]

π2(({2}×E) T©(p,t)) �� [β2, skip]
Proof: 〈2〉2 and assumptions 2 and 3 (induction hypothesis).

〈2〉4. There exist traces t1, t2, and β1, β2 ∈ B, p ∈ {1, 2}∞ such that
[env!

M.d1, d1]
t1−→ [β1, skip] ∧

[env!
M.d2, d2]

t2−→ [β2, skip] ∧
π2(({1} × E) T©(p, t)) = t1 ∧
π2(({2} × E) T©(p, t)) = t2 ∧
t ∈ H
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Proof: 〈2〉3
〈2〉5. There exists β ∈ B such that

[env!
M.(d1 par d2), d1 par d2]

t−→ [β, skip]
Proof: 〈2〉4 and lemma 14.

〈2〉6. Q.E.D.
Proof: 〈2〉5.

〈1〉6. Q.E.D.
Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4 and 〈1〉5

�

B.3 Sequence diagrams with high-level operators with fi-
nite behavior

In this section we prove termination, soundness and completeness of diagrams
with high-level operators with finite behavior. This means the operators neg,
alt, xalt, loop〈n〉 with n �= ∞ and loop I with ∞ �∈ I. Diagrams with infinite
loops are addressed in section B.4.

In the above section we assumed [[ d ]] = {(T, ∅)} for any diagram d. In this
section we assume the general semantics model [[ d ]] = {(p1, n1), (p2, n2), . . . ,
(pm, pm)}, but will write t ∈ [[ d ]] as a shorthand for t ∈

⋃
i=1,...,m(pi ∪ni) when

we find this suitable.
By termination we mean a state [β, d] where no further execution steps are

possible. Usually this means that d = skip, but it is possible to make other
diagrams where no execution is possible, e.g. the diagram d = (?, (m, l, l)) seq
(!, (m, l, l)) which specify that lifeline l receives message m from itself before it
sends it.

Theorem 3 (Termination) Given a diagram d ∈ D without infinite loops. If
we assume progression of execution, then execution of [env!

M.d, d] will terminate.

Proof of theorem 3
Assume: Diagram d ∈ D without infinite loop
Prove: Execution of [env!

M.d1, d1] terminates
〈1〉1. Let: w ∈ D → N ∪ {0} be a weight function defined as

w(skip) def= 0
w(e) def= 1 (for e ∈ E)

w(d1 seq d2)
def= w(d1 par d2)

def= w(d1) + w(d2) + 1
w(d1 alt d2)

def= w(d1 xalt d2)
def= max(w(d1), w(d2)) + 1

w(neg d1)
def= w(d1) + 1

w(loop〈n〉 d1)
def= n · (w(d1) + 2)

w(loop I d1)
def= max(I) · (w(d1) + 2) + 1

〈1〉2. w(d) ≥ 0
Proof: by induction on the structure of d.
Induction start:
〈2〉1. Case: d = skip
〈3〉1. w(d) = 0

Proof: Def. of w.
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〈3〉2. Q.E.D.
Proof: 〈3〉1.

〈2〉2. Case: d = e (single event)
〈3〉1. w(d) = 1

Proof: Def. of w.
〈3〉2. Q.E.D.

Proof: 〈3〉1.
Induction step:
Assume: w(d1) ≥ 0 ∧ w(d2) ≥ 0 (Induction hypothesis)
〈2〉3. Case: d = d1 seq d2 or d = d1 par d2

〈3〉1. w(d) = w(d1) + w(d2) + 1 > 0
Proof: Def. of w and induction hypothesis.

〈3〉2. Q.E.D.
Proof: 〈3〉1

〈2〉4. Case: d = d1 alt d2 or d = d1 xalt d2

〈3〉1. w(d) = max(w(d1), w(d2)) + 1 > 0
Proof: Def. of w and max(w(d1), w(d2)) ≥ 0 (induction hypothesis and
properties of max).

〈3〉2. Q.E.D.
Proof: 〈3〉1

〈2〉5. Case: d = neg d1

〈3〉1. w(d) = w(d1) + 1 > 0
Proof: Def. of w and induction hypothesis.

〈3〉2. Q.E.D.
Proof: 〈3〉1.

〈2〉6. Case: d = loop〈n〉 d1

〈3〉1. w(d) = n · (w(d1) + 2)
Proof: Def. of w.

〈3〉2. w(d1) + 2 > 0
Proof: Induction hypothesis.

〈3〉3. n ≥ 0
Proof: Def. of D.

〈3〉4. w(d) ≥ 0
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈3〉5. Q.E.D.
Proof: 〈3〉4.

〈2〉7. Case: d = loop I d1

〈3〉1. w(d) = max(I) · (w(d1) + 2) + 1
Proof: Def. of w.

〈3〉2. w(d1) + 2 > 0
Proof: Induction hypothesis.

〈3〉3. max(I) ≥ 0
Proof: Def. of D.

〈3〉4. w(d) > 0
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈3〉5. Q.E.D.
Proof: 〈3〉4.

〈2〉8. Q.E.D.
Proof: 〈2〉1-〈2〉7.
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〈1〉3. [β, d] e−→ [β′, d′] ∧ e ∈ E ∪ T ⇒ w(d) > w(d′)
Assume: [β, d] e−→ [β′, d′] ∧ e ∈ E ∪ T
Prove: w(d) > w(d′)
Proof: by induction on the structure of d
Induction start:
〈2〉1. Case: d = e (single event)
〈3〉1. d′ = skip

Proof: Rules (3) and (8).
〈3〉2. w(d) = 1 < 0 = w(d′)

Proof: 〈2〉1, 〈3〉1 and def. of w.
〈3〉3. Q.E.D.

Proof: 〈3〉2.
Induction step:
Assume: [βk, dk] e−→ [βk, d′k] ∧ e ∈ E ∪ T ⇒ w(dk) > w(d′k), k ∈ {1, 2}

(induction hypothesis)
〈2〉2. Case: d = d1 alt d2 or d = d1 xalt d2

〈3〉1. (d′ = d1 ∨ d′ = d2) ∧ e ∈ T
Proof: Rules (6), (13) and (14).

〈3〉2. Case: d′ = d1

〈4〉1. w(d) = max(w(d1), w(d2)) + 1 > w(d1) = w(d′)
Proof: Def. of w and max(w(d1), w(d2)) ≥ w(d1).

〈4〉2. Q.E.D.
Proof: 〈4〉1.

〈3〉3. Case: d′ = d2

〈4〉1. w(d) = max(w(d1), w(d2)) + 1 > w(d2) = w(d′)
Proof: Def. of w and max(w(d1), w(d2)) ≥ w(d2).

〈4〉2. Q.E.D.
Proof: 〈4〉1.

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉3. Case: d = neg d1

〈3〉1. (d′ = skip ∨ d′ = d1) ∧ e ∈ T
Proof: Rules (6), (15), (16).

〈3〉2. Case: d′ = skip
〈4〉1. w(d) = w(d1) + 1 > 0 = w(skip) = w(d′)

Proof: Def. w, 〈1〉2.
〈4〉2. Q.E.D.

Proof: 〈4〉1.
〈3〉3. Case: d′ = d1

〈4〉1. w(d) = w(d1) + 1 > w(d1) = w(d′)
Proof: Def. of w.

〈4〉2. Q.E.D.
Proof: 〈4〉1.

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉4. Case: d = loop〈n〉 d1

〈3〉1. n > 0
Proof: Assumption and n = 0 ⇒ d = skip (see section 4.2.7).

〈3〉2. d = d1 seq loop〈n − 1〉 d1 ∧ e ∈ T
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Proof: 〈3〉1 and rules (6) and (18).
〈3〉3. w(d) = n · (w(d1) + 2) = n · w(d1) + 2 · n

Proof: Def. of w.
〈3〉4. w(d′) = w(d1) + (n − 1) · (w(d1) + 2) + 1

= w(d1) + n · w(d1) + 2 · n − w(d1) − 2 + 1 = n · w(d1) + 2 · n − 1
Proof: 〈3〉2 and def. of w.

〈3〉5. w(d) = n · w(d1) + 2 · n > n · w(d1) + 2 · n − 1 = w(d′)
Proof: 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
Proof: 〈3〉5

〈2〉5. Case: d = loop I d1

〈3〉1. d′ = loop〈n〉 ∧ e ∈ T for some n ∈ I
Proof: (6) and (17).

〈3〉2. w(d) = max(I) · (w(d1) + 2) + 1
Proof: Def. of w.

〈3〉3. w(d′) = n · (w(d1) + 2) for some n ∈ I
Proof: 〈3〉1 and def. of w.

〈3〉4. w(d) > w(d′)
Proof: 〈3〉2, 〈3〉3 and ∀n ∈ I : max(I) ≥ n.

〈3〉5. Q.E.D.
Proof: 〈3〉4.

〈2〉6. Case: d = d1 seq d2

〈3〉1. ((d′ = d′1 seq d2 ∧ [β1, d1]
e−→ [β′

1, d
′
1])

∨(d′ = d1 seq d′2 ∧ [β2, d2]
e−→ [β′

2, d
′
2]))

∧ e ∈ E ∪ T
Proof: By rules (3), (9) and (10) either d1 or d2 is executed (see also
proof of lemma 7).

〈3〉2. Case: d′ = d′1 seq d2 ∧ [β1, d1]
e−→ [β′

1, d
′
1] ∧ e ∈ E ∪ T

〈4〉1. w(d1) > w(d′1)
Proof: Case assumption 〈3〉2 and induction hypothesis.

〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d′1) + w(d2) + 1 = w(d′)
Proof: Case assumption 〈2〉6, case assumption 〈3〉2, 〈4〉1 and def. of
w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉3. Case: d′ = d1 seq d′2 ∧ [β2, d2]
e−→ [β′

2, d
′
2] ∧ e ∈ E ∪ T

〈4〉1. w(d2) > w(d′2)
Proof: Case assumption 〈3〉3 and induction hypothesis.

〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d1) + w(d′2) + 1 = w(d′)
Proof: Case assumption 〈2〉6, case assumption 〈3〉3, 〈4〉1 and def. of
w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉7. Case: d = d1 par d2

〈3〉1. ((d′ = d′1 par d2 ∧ [β1, d1]
e−→ [β′

1, d
′
1])

∨(d′ = d1 par d′2 ∧ [β2, d2]
e−→ [β′

2, d
′
2]))

∧ e ∈ E ∪ T
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Proof: By rules (3), (11) and (12) either d1 or d2 is executed (see also
proof of lemma 9).

〈3〉2. Case: d′ = d′1 par d2 ∧ [β1, d1]
e−→ [β′

1, d
′
1] ∧ e ∈ E ∪ T

〈4〉1. w(d1) > w(d′1)
Proof: Case assumption 〈3〉2 and induction hypothesis.

〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d′1) + w(d2) + 1 = w(d′)
Proof: Case assumption 〈2〉7, case assumption 〈3〉2, 〈4〉1 and def. of
w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉3. Case: d′ = d1 par d′2 ∧ [β2, d2]
e−→ [β′

2, d
′
2] ∧ e ∈ E ∪ T

〈4〉1. w(d2) > w(d′2)
Proof: Case assumption 〈3〉3 and induction hypothesis.

〈4〉2. w(d) = w(d1) + w(d2) + 1 > w(d1) + w(d′2) + 1 = w(d′)
Proof: Case assumption 〈2〉7, case assumption 〈3〉3, 〈4〉1 and def. of
w.

〈4〉3. Q.E.D.
Proof: 〈4〉2

〈3〉4. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and 〈3〉3.

〈2〉8. Q.E.D.
Proof: 〈2〉1-〈2〉7.

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2 and 〈1〉3.

�

Definition 12 Following [46] we define an operator refuse:

d ∈ D ⇒ refuse d ∈ D

The denotational semantics of refuse is:

[[ refuse d ]] def= {(∅, p ∪ n) | (p, n) ∈ [[ d ]] } (52)

For the operator define the following Π-rule:

Π(L, β, refuse d)
τrefuse−−−−−→ Π(L, β, d) (53)

with τrefuse ∈ T .

Lemma 15 Given diagram d ∈ D.

1. [[ neg d ]] = [[ skip alt refuse d ]]

2. [β, neg d]
τpos−→ [β, skip] ⇐⇒ [β, skip alt refuse d] τalt−→ [β, skip]

3. [β, neg d]
〈τneg〉�t−−−−−−→ [β′, skip] ⇐⇒

[β, skip alt refuse d]
〈τalt,τrefuse〉�t−−−−−−−−−−→ [β′, skip]
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Proof of lemma 15
〈1〉1. Proof: of 1

Assume: [[ d ]] = {(p1, n1), (p2, n2), . . . , (pm, nm)}
〈2〉1. [[ neg d ]] = {({〈〉}, p1 ∪ n1), ({〈〉}, p2 ∪ n2), . . . ({〈〉}, pm ∪ nm)}

Proof: Assumption and def. (42).
〈2〉2. [[ skip alt refuse d ]] = [[ skip ]] � [[ refuse d ]] =

{({〈〉}, ∅)} � {(∅, p1 ∪ n1), (∅, p2 ∪ n2), . . . , (∅, pm ∪ nm)} =
{({〈〉}, p1 ∪ n1), ({〈〉}, p2 ∪ n2), . . . ({〈〉}, pm ∪ nm)}

Proof: Assumption and defs. (40), (43) and (52).
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉2. Proof: of 2
〈2〉1. [β, neg d]

τpos−→ [β, skip]
Proof: Rules (6) and (15).

〈2〉2. [β, skip alt refuse d] τalt−→ [β, skip]
Proof: Rules (6) and (13).

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉3. Proof: of 3
Assume: [β, d] t−→ [β′, skip]
〈2〉1. [β, neg d]

τneg−→ [β, d]
Proof: Rules (16) and (6).

〈2〉2. [β, skip alt refuse d] τalt−→ [β, refuse d]
τrefuse−−−−−→ [β, d]

Proof: Rules (6), (13) and (53).
〈2〉3. Q.E.D.

Proof: Assumption and 〈2〉1 and 〈2〉2
〈1〉4. Q.E.D.

Proof: 〈1〉1-〈1〉3.

�

Definition 13 We define neg d as

neg d
def= skip alt refuse d

Definition 14 We define the denotation of loop〈n〉 d as

[[ loop〈n〉 d ]] def= μn [[ d ]] (54)

Lemma 16 Given diagram d ∈ D.

1. [[ loop I d ]] = [[ alti∈I loop〈i〉 d ]]

2. [β, loop I d] t−→ [β′, skip] ⇐⇒ [β, alti∈I loop〈i〉 d] t−→ [β′, skip]

where alti∈I is a generalized alt.

Proof of lemma 16
〈1〉1. Proof: of 1
〈2〉1. [[ loop I d ]] =

⊎
i∈I μi[[ d ]]
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Proof: Def. (44).
〈2〉2. [[ alti∈I loop〈i〉 d ]] =

⊎
i∈I [[ loop〈i〉 d ]] =

⊎
i∈I μi[[ d ]]

Proof: Defs. (40), (43) (54).
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉2. Proof: of 2

Assume: [βj , loop〈j〉 d]
tj−→ [β′

j , skip] for j ∈ I

〈2〉1. [β, loop I d] τalt−→ [β, loop〈n〉 d] for n ∈ I
Proof: Rules (6) and (17).

〈2〉2. [β, alti∈I loop〈i〉 d] τalt−→ [β, loop〈n〉 d] for n ∈ I.
Proof: Rules (6) and (13), and associativity and commutativity of alt.

〈2〉3. Q.E.D.
Proof: Assumption and 〈2〉1 and 〈2〉2 (by setting n = j, β = βj , β′ = β′

j

and t = 〈τalt〉�tj).
〈1〉3. Q.E.D.

Proof: 〈1〉1 and 〈1〉2.

�

Definition 15 We define loop I d as

loop I d
def= alti∈I loop〈i〉 d

To simplify the proofs of soundness and completeness we now apply defini-
tions 13 and 15 as the definitions of neg and loop I. By lemmas 15 and 16 we
may do this without any change in the semantics of neg and loop I. (It would
also be possible to define loop〈n〉 by means of n − 1 seqs. Because this would
remove the silent events τloop we choose not to do this.) This means that in the
following we will only be concerned with diagrams built from the operators seq,
par, refuse, alt, xalt and loop〈n〉.

In the previous section we assumed that diagrams do not have repetition of
events. We make the same assumption for diagrams with high-level operators.
For the operators refuse, alt and xalt this is straight forward by assuming that
for a diagram d:

d = d1 alt d2 ∨ d = d1 xalt d2 ⇒ ev.d1 ∩ ev.d2 = ∅

and extending the definition of msg. and ev. with

msg.refuse d
def= msg.d

ev.refuse d
def= ev.d

However, the loop is a bit more problematic. Given a diagram d, assume
that we rename every signal s in d and give it the new name sk where k ∈ N.
Let dk denote the resulting diagram. We now assume, both in the denotational
and the operational semantics, that we have an implicit counter and a way of
doing this renaming every time the body of a loop is “copied” out of the loop.
A way to do this could be to redefine the Π-rule as

Π(L, β, loopc〈n〉 d)
τloop−→ Π(L, β, dc seq loopc+1〈n − 1〉 d) (55)
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and the definition of semantic loop to

μc
n [[ d ]] def= [[ dc ]] � μc+1

n−1 [[ d ]] (56)

where c ∈ N is a counter. Further we could need to redefine ev. and msg. as
follows

msg.loopc〈n〉 d
def= msg.dc ∪ msg.loopc+1〈n − 1〉 d

ev.loopc〈n〉 d
def= ev.dc ∪ ev.loopc+1〈n − 1〉 d

In the following we assume these new definitions, also when not writing it out
explicitly.

Lemma 17 Given a diagram d. For all traces t such that (there exists β such
that)

[env!
M.d, d] t−→ [β, skip]

we may find a simple diagram d′ (and β′) such that

[env!
M.d′, d′] E S©t−→ [β′, skip]

Proof of lemma 17
Assume: ∃β : [env!

M.d, d] t−→ [β, skip]
Prove: ∃d′, β′ : [env!

M.d′, d′] E S©t−→ [β′, skip], d′ simple
Proof: by induction on d.
〈1〉1. Induction start: d simple

Proof: Trivial by letting d = d′ and β = β′. By lemma 5, E S©t = t.
Induction step:
Assume: ∀dk, tk : ∃βk : [env!

M.dk, dk] tk−→ [βk, skip] ⇒
∃d′k, β′

k : [env!
M.d′k, d′k] E S©tk−−−→ [β′

k, skip], d′k simple (induction hypoth-
esis)

〈1〉2. Case: d = d1 seq d2 (d = d1 par d2)
Proof: By rules (3), (9) and (10) ((3), (11) and (12)), t is obtained by
alternately executing d1 and d2 in some suitable fashion. This means there
must exist traces t1 and t2 (and β1 and β2) such that [env!

M.dk, dk] tk−→
[βk, skip] for k ∈ {1, 2} and t is (some kind of) merge of t1 and t2. By
the induction hypothesis we may find d′k such that it produces E S©tk (for
k ∈ {1, 2}). Let d′ = d′1 seq d′2 (d′ = d′1 par d′2). Then clearly d′ is simple.
Further, by applying the same execution scheme (i.e., alternation between the
left and right hand side of the operator), except for the silent events in t, d′

produces E S©t.
〈1〉3. Case: d = refuse d1

Proof: By assumption and rules (6) and (53), t = 〈τrefuse〉�t1 such that
[env!

M.refuse d1, d1]
t1−→ [β, skip]. By env!

M.refuse d1 = env!
M.d1 and the

induction hypothesis, we may find simple d′1 such that [env!
M.d′1, d

′
1]

E S©t1−−−→
[β′

1, skip]. Let d′ = d′1. Clearly d′ is simple. Further, we have that [env!
M.d′, d′]

E S©t−−−→ [β′
1, skip] since E S©〈τrefuse〉�t1 = E S©t1 (by def. of S© and τrefuse �∈ E).

〈1〉4. Case: d = d1 alt d2
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Proof: By assumption and rules (6) and (13), t = 〈τalt〉�tk such that
[env!

M.d, dk] tk−→ [β, skip], for k = 1 or k = 2. Because env!
M.d = env!

M.d1 ∪
env!

M.d2, env!
M.d1 ∩ env!

M.d2 = ∅ and by the induction hypothesis we may

find simple d′k such that [env!
M.d′k, d′k] E S©tk−−−→ [β′

k, skip] for the appropriate
choice of k. Let d′ = d′k (for this choice of k). Clearly d′ is simple. Further,

we have that [env!
M.d′, d′] E S©t−−−→ [β′

k, skip] since E S©t = E S©〈τalt〉�tk = E S©tk
(by def. of S© and τalt �∈ E).

〈1〉5. Case: d = d1 xalt d2

Proof: By assumption and rules (6) and (14), t = 〈τxalt〉�tk such that
[env!

M.d, dk] tk−→ [β, skip], for k = 1 or k = 2. Because env!
M.d = env!

M.d1 ∪
env!

M.d2, env!
M.d1 ∩ env!

M.d2 = ∅ and by the induction hypothesis we may

find simple d′k such that [env!
M.d′k, d′k] E S©tk−−−→ [β′

k, skip] for the appropriate
choice of k. Let d′ = d′k (for this choice of k). Clearly d′ is simple. Further,

we have that [env!
M.d′, d′] E S©t−−−→ [β′

k, skip] since E S©t = E S©〈τxalt〉�tk = E S©tk
(by def. of S© and τxalt �∈ E).

〈1〉6. Case: d = loop〈n〉 d1

Proof: by induction on n.
〈2〉1. Induction start: n = 1

Proof: By assumption and rules (6) and (18), t = 〈τloop〉�t1 such that
[env!

M.loop〈1〉 d1, loop〈1〉 d1]
τloop−→ [env!

M.loop〈1〉 d1, d1 seq loop〈0〉 d1] =
[env!

M.d1 ∪ env!
M.skip, d1 seq skip] = [env!

M.d1, d1]. By the induction hy-

pothesis we may find simple d′1 such that [env!
M.d′1, d

′
1]

E S©t1−−−→ [β′
1, skip].

Let d′ = d′1. Clearly d′ is simple. Further, we have that [env!
M.d′, d′] E S©t−−−→

since E S©t = E S©〈τloop〉�t1 = E S©t1 (by def. of S© and τloop �∈ E).
〈2〉2. Induction step: n = k + 1

Assume: For all t and d1, if these exists β such that
[env!

M.loop〈k〉 d1, loop〈k〉 d1]
t−→ [β, skip] then we may find sim-

ple d′ (and β′) such that [env!
M.d′, d′] E S©t−−−→ [β′, skip] (induction

hypothesis 2)
Proof: By assumption and rules (6) and (18), t = 〈τloop〉�t′ such that
[env!

M.loop〈k + 1〉 d1, loop〈k + 1〉 d1]
τloop−−−→ [env!

M.loop〈k + 1〉 d1, d1 seq

loop〈k〉 d1]
t′−→ [β, skip]. We have that env!

M.loop〈k + 1〉 d1 = env!
M.d1 ∪

env!
M.loop〈k〉 d1 = env!

M.d1 seq loop〈k〉 d1. By this, the induction hypothe-

ses and 〈1〉2 we may find simple d′′ such that [env!
M.d′′, d′′] E S©t′−−−→ [β′, skip].

Let d′ = d′′. Clearly d′ is simple. Further, we have that [env!
M.d′, d′] E S©t−−−→

since E S©t = E S©〈τloop〉�t′ = E S©t′ (by def. of S© and τloop �∈ E).
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉7. Q.E.D.

Proof: 〈1〉1-〈1〉6.

�

Lemma 18 Given a diagram d. For all traces t such that

t ∈ [[ d ]]
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we may find a simple diagram d′ such that

t ∈ [[ d′ ]]

Proof of lemma 18
Assume: t ∈ [[ d ]]
Prove: ∃d′ : t ∈ [[ d′ ]], d′ simple.
Proof: by induction on d.
〈1〉1. Induction start: d simple

Proof: Trivial: Let d = d′.
Induction step:
Assume: If tk ∈ [[ dk ]] then there exists simple d′k such that tk ∈ [[ d′k ]] (induction

hypothesis)
〈1〉2. d = d1 seq d2 (d = d1 par d2)

Proof: By definitions (34)-(36) ((37)-(39)) there exist traces t1 and t2 such
that t is obtained from t1 and t2. By the induction hypothesis we may find
simple d′1 and d′2 such that t1 ∈ [[ d′1 ]] and t2 ∈ [[ d′2 ]]. Let d′ = d′1 seq d′2
(d′ = d′1 par d′2). Clearly d′ is simple and t ∈ [[ d′ ]].

〈1〉3. d = refuse d1

Proof: By def. [[ d1 ]] = {(p1, n1), . . . , (pm, nm)} iff [[ d ]] = {(∅, p1 ∪ n1), . . . ,
(∅, pm ∪ nm)}, so t ∈ [[ d ]] iff t ∈ pi or t ∈ ni (for some i ∈ {1, . . . , m}) iff
t ∈ [[ d1 ]]. By induction hypothesis there exists simple d′1 such that t ∈ [[ d′1 ]].
Let d′ = d′1. Clearly d′ is simple and t ∈ [[ d′ ]].

〈1〉4. d = d1 alt d2 (d = d1 xalt d2)
Proof: By def. t ∈ [[ d1 alt d2 ]] (t ∈ [[ d1 xalt d2 ]]) iff t ∈ [[ d1 ]] � [[ d2 ]]
(t ∈ [[ d1 ]] ∪ [[ d2 ]]) iff t ∈ [[ d1 ]] or t ∈ [[ d2 ]]. Chose the appropriate k ∈ {1, 2}.
By induction hypothesis there exist simple d′k such that t ∈ [[ d′k ]]. Let d′ = d′k.
Clearly d′ is simple and t ∈ [[ d′ ]].

〈1〉5. d = loop〈n〉 d1

Proof: By def. [[ d ]] = [[ loop〈n〉 d1 ]] = μn [[ d1 ]] = [[ d1
1 ]] � [[ d2

1 ]] � · · · � [[ dn
1 ]].

By this and defs. (34)-(36) we have that [[ d ]] = [[ d1
1 seq d2

1 seq · · · seq dn
1 ]].

By the induction hypothesis and 〈1〉2 we may find simple d1
1
′
, d2

2
′
, . . . , dn

2
′ such

that t ∈ [[ d1
1
′
seq d2

1
′
seq · · · seq dn

1
′ ]]. Let d′ = d1

1
′
seq d2

1
′
seq · · · seq dn

1
′.

Clearly d′ is simple and t ∈ [[ d′ ]].
〈1〉6. Q.E.D.

Proof: 〈1〉1-〈1〉5.

�

Theorem 4 (Soundness) Given diagram d ∈ D without infinite loop. For all
traces t ∈ (E ∪ T )∗, if there exists β ∈ B such that

[env!
M.d, d] t−→ [β, skip]

then
E S©t ∈ [[ d ]]

Proof of theorem 4
Assume: ∃β : [env!

M.d, d] t−→ [β, skip]
Prove: E S©t ∈ [[ d ]]
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Proof: by induction on d.
〈1〉1. Induction start: d = skip, d = (!, m), d = (?, m)

Proof: This carries over from theorem 1.
Induction step:
Assume: ∃βk : [env!

M.dk, dk] tk−→ [βk, skip] ⇒ E S©tk ∈ [[ d ]]
〈1〉2. Case: d = d1 seq d2, d = d1 par d2

Proof: By lemmas 17 and 18 this follows from theorem 1
〈1〉3. Case: d = refuse d1

〈2〉1. t = 〈τrefuse〉�t1 such that [env!
M.d, d]

τrefuse−−−−−→ [env!
M.d, d1]

t1−→ [β, skip]
Proof: Assumptions and rules (6) and (53).

〈2〉2. E S©t = E S©〈τrefuse〉�t1 = E S©t1
Proof: 〈2〉1, def. of S© and τrefuse �∈ E .

〈2〉3. E S©t ∈ [[ d1 ]]
Proof: 〈2〉2 and induction hypothesis (by env!

M.refuse d1 = env!
M.d1).

〈2〉4. E S©t ∈ [[ refuse d1 ]]
Proof: Def. 12 of the denotation of refuse.

〈2〉5. Q.E.D.
Proof: 〈2〉4.

〈1〉4. Case: d = d1 alt d2

〈2〉1. t = 〈τalt〉�tk such that [env!
M.d, d] τalt−→ [env!

M.d, dk] tk−→ [β, skip] for
k = 1 or k = 2

Proof: Assumptions and rules (6) and (13).
〈2〉2. E S©t = E S©〈τalt〉�tk = E S©tk

Proof: 〈2〉1, def. of S© and τalt �∈ E .
〈2〉3. E S©t ∈ [[ dk ]] for k = 1 or k = 2

Proof: 〈2〉2 and induction hypothesis (by env!
M.d = env!

M.d1 ∪ env!
M.d2,

env!
M.d1 ∩ env!

M.d2 = ∅).
〈2〉4. E S©t ∈ [[ d1 alt d2 ]]

Proof: 〈2〉3 and def. (40).
〈2〉5. Q.E.D.

Proof: 〈2〉4.
〈1〉5. Case: d = d1 xalt d2

〈2〉1. t = 〈τxalt〉�tk such that [env!
M.d, d] τxalt−→ [env!

M.d, dk] tk−→ [β, skip] for
k = 1 or k = 2

Proof: Assumptions and rules (6) and (14).
〈2〉2. E S©t = E S©〈τxalt〉�tk = E S©tk

Proof: 〈2〉1, def. of S© and τxalt �∈ E .
〈2〉3. E S©t ∈ [[ dk ]] for k = 1 or k = 2

Proof: 〈2〉2 and induction hypothesis (by env!
M.d = env!

M.d1 ∪ env!
M.d2,

env!
M.d1 ∩ env!

M.d2 = ∅).
〈2〉4. E S©t ∈ [[ d1 xalt d2 ]]

Proof: 〈2〉3 and def. (41).
〈2〉5. Q.E.D.

Proof: 〈2〉4.
〈1〉6. Case: d = loop〈n〉 d1

Proof: Induction on n
〈2〉1. Induction start: n = 1
〈3〉1. t = 〈τloop〉�t1 such that [env!

M.loop〈1〉 d1, loop〈1〉 d1]
τloop−→
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[env!
M.loop〈1〉 d1, d1 seq loop〈0〉 d1]

t1−→ [β, skip]
Proof: Assumptions and rules (6) and (18).

〈3〉2. E S©t1 ∈ [[ d1 ]]
Proof: 〈3〉1 and induction hypothesis (by d1 seq loop〈0〉 d1 = d1 seq
skip = d1 and env!

M.loop〈1〉 d1 = env!
M.d1 ∪ env!

M.skip = env!
M.d1).

〈3〉3. E S©t = E S©〈τloop〉�t1 = E S©t1
Proof: 〈3〉1, def. of S© and τloop �∈ E .

〈3〉4. [[ loop〈1〉 d1 ]] = μ1[[ d1 ]] = [[ d1 ]]
Proof: Defs. (45), (54).

〈3〉5. E S©t = E S©t1 ∈ [[ d1 ]] = [[ loop〈1〉 d1 ]] = [[ d ]]
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
Proof: 〈3〉5

〈2〉2. Induction step: n = k + 1
Assume: ∀d1, s : ∃β : [env!

M.loop〈k〉 d1, loop〈k〉 d1]
s−→ [β, skip] ⇒ E S©s ∈

[[ loop〈k〉 ]] (induction hypothesis 2)
〈3〉1. t = 〈τloop〉�t′ such that [env!

M.loop〈k + 1〉 d1, loop〈k + 1〉 d1]
τloop−→

[env!
M.loop〈k + 1〉 , d1 seq loop〈k〉 d1]

t′−→ [β, skip]
Proof: Assumptions and rules (6) and (18).

〈3〉2. E S©t′ ∈ [[ d1 seq loop〈k〉 d1 ]]
Proof: 〈3〉1, induction hypotheses (by env!

M.loop〈k+1〉 d1 = env!
M.d1∪

env!
M.loop〈k〉 d1 = env!

M.d1 seq loop〈k〉 d1) and 〈1〉2.
〈3〉3. E S©t = E S©〈τloop〉�t′ = E S©t′

Proof: 〈3〉1, def. of S© and τloop �∈ E .
〈3〉4. [[ loop〈k + 1〉 d1 ]] = μk+1[[ d1 ]] = [[ d1 ]] � μk[[ d1 ]]

= [[ d1 ]] � [[ loop〈k〉 d1 ]] = [[ d1 seq loop〈k〉 d1 ]]
Proof: Defs. (34), (35), (36), (45), (54).

〈3〉5. E S©t = E S©t′ ∈ [[ d1 seq loop〈k〉 d1 ]] = [[ loop〈k + 1〉 d1 ]] = [[ d ]]
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
Proof: 〈3〉5.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉7. Q.E.D.
Proof: 〈1〉1-〈1〉6.

�

Theorem 5 (Completeness) Given a diagram d ∈ D without infinite loop.
For all traces t ∈ E∗, if

t ∈ [[ d ]]

then there exist trace t′ ∈ (E ∪ T )∗ and β ∈ B such that

[env!
M.d, d] t′−→ [β, skip] and E S©t′ = t

Proof of theorem 5
Assume: t ∈ [[ d ]]

Prove: ∃t′, β : [env!
M.d, d] t′−→ [β, skip] ∧ E S©t′ = t
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Proof: by induction on d.
〈1〉1. Induction start: d = skip, d = (!, m), d = (?, m)

Proof: This carries over from theorem 2.
Induction step:

Assume: tk ∈ [[ dk ]] ⇒ ∃t′k, βk : [env!
M.dk, dk]

t′k−→ [βk, skip]∧E S©t′k = tk (induc-
tion hypothesis)

〈1〉2. Case: d = d1 seq d2, d = d1 par d2

Proof: By lemmas 17 and 18 this follows from theorem 2.
〈1〉3. d = refuse d1

〈2〉1. t ∈ [[ d1 ]]
Proof: Assumption and def. (52).

〈2〉2. ∃t′1, β1 : [env!
M.d1, d1]

t′1−→ [β1, skip] ∧ E S©t′1 = t
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. Let: t′ = 〈τrefuse〉�t′1
〈2〉4. [env!

M.d, d]
τrefuse−−−−−→ [env!

M.d, d1]
t′1−→ [β1, skip]

Proof: 〈2〉2, 〈2〉3, rules (6) and (53) and env!
M.d = env!

M.refuse d1 =
env!

M.d1.
〈2〉5. E S©t′ = E S©〈τrefuse〉�t′1 = E S©t′1 = t

Proof: 〈2〉2, 〈2〉3, def. of S© and τrefuse �∈ E .
〈2〉6. Q.E.D.

Proof: 〈2〉3, 〈2〉4 and 〈2〉5.
〈1〉4. d = d1 alt d2

〈2〉1. t ∈ [[ d1 ]] ∨ t ∈ [[ d2 ]]
Proof: 〈1〉4 and def. (40).

〈2〉2. ∃t′k, βk : [env!
M.dk, dk]

t′k−→ [βk, skip] ∧ E S©t′k = t for k = 1 or k = 2
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. [env!
M.d, d] τalt−→ [env!

M.d, dk]
t′k−→ [βk, skip] for k = 1 or k = 2

Proof: 〈2〉2, rules (6) and (13), and env!
M.d = env!

M.d1 ∪ env!
M.d2,

env!
M.d1 ∩ env!

M.d2 = ∅.
〈2〉4. Let: t′ = 〈τalt〉�t′k for the appropriate choice of k ∈ {1, 2}
〈2〉5. E S©t′ = E S©〈τalt〉�t′k = E S©t′k = t

Proof: 〈2〉2, 〈2〉4, def. of S© and τalt �∈ E .
〈2〉6. Q.E.D.

Proof: 〈2〉3, 〈2〉4 and 〈2〉5.
〈1〉5. d = d1 xalt d2

〈2〉1. t ∈ [[ d1 ]] ∨ t ∈ [[ d2 ]]
Proof: 〈1〉5 and def. (41).

〈2〉2. ∃t′k, βk : [env!
M.dk, dk]

t′k−→ [βk, skip] ∧ E S©t′k = t for k = 1 or k = 2
Proof: 〈2〉1 and induction hypothesis.

〈2〉3. [env!
M.d, d] τxalt−→ [env!

M.d, dk]
t′k−→ [βk, skip] for k = 1 or k = 2

Proof: 〈2〉2, rules (6) and (14), and env!
M.d = env!

M.d1 ∪ env!
M.d2,

env!
M.d1 ∩ env!

M.d2 = ∅.
〈2〉4. Let: t′ = 〈τxalt〉�t′k for the appropriate choice of k ∈ {1, 2}
〈2〉5. E S©t′ = E S©〈τxalt〉�t′k = E S©t′k = t

Proof: 〈2〉2, 〈2〉4, def. of S© and τxalt �∈ E .
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〈2〉6. Q.E.D.
Proof: 〈2〉3, 〈2〉4 and 〈2〉5.

〈1〉6. d = loop〈n〉 d1

Proof: by induction on n
〈2〉1. Induction start: n = 1
〈3〉1. t ∈ [[ loop〈1〉 d1 ]] = μ1[[ d1 ]] = [[ d1 ]]

Proof: 〈1〉6, 〈2〉1 and defs. (45), (54).

〈3〉2. ∃t′1, β1 : [env!
M.d1, d1]

t′1−→ [β1, skip] ∧ E S©t′1 = t
Proof: 〈3〉1 and induction hypothesis.

〈3〉3. [env!
M.loop〈1〉 d1, loop〈1〉 d1]

τloop−→
[env!

M.loop〈1〉 d1, d1 seq loop〈0〉 d1]
t′1−→ [β1, skip]

Proof: 〈3〉2 and d1 seq loop〈0〉 d1 = d1 seq skip = d1, env!
M.loop〈1〉 d1 =

env!
M.d1 ∪ env!

M.skip = env!
M.d1.

〈3〉4. Let: t′ = 〈τloop〉�t′1
〈3〉5. E S©t′ = E S©〈τloop〉�t′1 = E S©t′1 = t

Proof: 〈3〉2, 〈3〉4, def. of S© and τloop �∈ E .
〈3〉6. Q.E.D.

Proof: 〈3〉3, 〈3〉4 and 〈3〉5.
〈2〉2. Induction step: n = k + 1

Assume: s ∈ [[ loop〈k〉 d1 ]] ⇒ ∃s′, β′ : [env!
M.loop〈k〉 d1, loop〈k〉 d1]

s′
−→

[β′, skip] ∧ E S©s′ = s (induction hypothesis 2)
〈3〉1. t ∈ [[ loop〈k + 1〉 d1 ]] = μk+1[[ d1 ]] = [[ d1 ]] � μk[[ d1 ]]

= [[ d1 ]] � [[ loop〈k〉 d1 ]] = [[ d1 seq loop〈k〉 d1 ]]
Proof: Assumption, 〈2〉2 and definitions (54), (45), (34), (35) and (36).

〈3〉2. ∃t′′, β′ : [env!
M.(d1 seq loop〈k〉 d1), d1 seq loop〈k〉 d1]

t′′−→ [β′, skip] ∧
t = E S©t′′

Proof: 〈1〉2, 〈3〉1 and induction hypotheses.
〈3〉3. [env!

M.loop〈k + 1〉 d1, loop〈k + 1〉 d1]
τloop−→

[env!
M.loop〈k + 1〉 d1, d1 seq loop〈k〉 d1]

t′′−→ [β′, skip]
Proof: 〈3〉2, rules (6) and (18), and env!

M.(d1 seq loop〈k〉 d1) =
env!

M.d1 ∪ env!
M.loop〈k〉 d1 = env!

M.loop〈k + 1〉 d1.
〈3〉4. Let: t′ = 〈τloop〉�t′′

〈3〉5. E S©t′ = E S©〈τloop〉�t′′ = E S©t′′ = t
Proof: 〈3〉2, 〈3〉4, def. of S© and τloop �∈ E .

〈3〉6. Q.E.D.
Proof: 〈3〉3, 〈3〉4 and 〈3〉5.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2.

〈1〉7. Q.E.D.
Proof: 〈1〉1-〈1〉6.

�

B.4 Sequence diagrams with infinite loops

In this section we prove soundness and completeness of diagrams that also
contain the infinite loop, loop〈∞〉 d. As in the previous sections we treat
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the denotation [[ d ]] of a diagram d as a flat set, i.e. we write t ∈ [[ d ]] for
t ∈

⋃
(p,n)∈[[d ]](p ∪ n). This means we disregard negative behavior and interac-

tion obligations. For simplicity we assume that env.d = ∅.
We let dk for k ∈ N denote the diagram d with every signal s renamed to sk

and apply the loop with implicit counter loopc〈n〉 d as described by rule (55)
and definition (56). Further we define:

[[ d ]]≤1 def= [[ d1 ]]
[[ d ]]≤n+1 def= [[ d ]]≤n � [[ dn+1 ]] for n ≥ 1

(57)

Let U = P(H) be the powerset of H. We have that [[ d ]] ∈ U and define the
chains of trace sets of [[ d ]] as

chains([[ d ]]) def= {ū ∈ U∞ | ū[1] = [[ d1 ]] ∧ ∀j ∈ N : ū[j + 1] = ū[j] � [[ dj+1 ]]}

Because we treat [[ d ]] as a flat set, we see that chains([[ d ]]) is a singleton set
{ū} where

ū = [[ d ]]≤1, [[ d ]]≤2, [[ d ]]≤3, . . .

which means we have that ū[j] = [[ d ]]≤j for all j ∈ N. The function pos may
then be simplified to

pos(ū) def= {t̄ ∈ H∞ | ∀j ∈ N : t̄[j] ∈ ū[j] ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}}

The approximation �ū becomes

�ū
def=

⋃
t̄∈pos(ū)

�t̄

where �t̄ is defined as in appendix A. Because chains([[ d ]]) is a singleton set
we can let

μ∞[[ d ]] = �ū for chains([[ d ]]) = {ū}
which means:

μ∞[[ d ]] =
⋃

t̄∈pos(ū)

�t̄ for chains([[ d ]]) = {ū}

In fact, if we define

tra([[ d ]]) def=
{t̄ ∈ H∞ | ∀j ∈ N : t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}}

(58)

we get that
μ∞[[ d ]] def=

⋃
t̄∈tra([[d ]])

�t̄ (59)

In the following we use this definition of μ∞[[ d ]].
We start by assuming that the body d of an infinite loop loop〈∞〉 d only

characterizes finite behavior, i.e., we have no nesting of infinite loops. Further we
assume that loop〈∞〉 is the outermost operator of a diagram. When soundness
and completeness of this case are established we consider combinations of infinite
loop with other operators.

Lemma 19 t ∈ [[ loop〈∞〉 d ]] ⇐⇒ t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧
∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t = �lt̄)
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Proof of lemma 19
Prove: t ∈ [[ loop〈∞〉 d ]] ⇐⇒ t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧

∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t = �l t̄)
〈1〉1. t ∈ [[ loop〈∞〉 d ]] = μ∞[[ d ]] =

⋃
t̄∈tra([[d ]]) �t̄

Proof: Defs. (54) and (59).
〈1〉2. t ∈ �t̄ for some t̄ ∈ tra([[ d ]])

Proof: 〈1〉1.
〈1〉3. t ∈ H ∧ ∀l ∈ L : e.l S©t = �l t̄ for some t̄ such that t̄ ∈ H∞ ∧ ∀j ∈ N : t̄[j] ∈

[[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}
Proof: 〈1〉2 and defs. (49) and (58).

〈1〉4. Q.E.D.
Proof: 〈1〉3.

�

Lemma 20 Given diagram d ∈ D without infinite loops. If [∅, loop1〈∞〉 d] may
produce trace t, then, for any k, there exists a trace t′ such that [∅, d1 seq d2 seq
· · · seq dk seq loopk+1〈∞〉 d] may produce t′ and E S©t = E S©t′.

Proof of lemma 20
Assume: t is produced by [∅, loop1〈∞〉 d]
Prove: There exists a trace t′ such that t′ is produced by [∅, d1 seq d2 seq · · ·

seq dk seq loopk+1〈∞〉 d] and E S©t = E S©t′.
Proof: by induction on k
〈1〉1. Case: k = 1

(induction start)
〈2〉1. The only possible execution step from [∅, loop1〈∞〉 d] is [∅, loop1〈∞〉 d]

τloop−→ [∅, d1 seq loop2〈∞〉 d]
Proof: Rules (6) and (55).

〈2〉2. There exists trace s such that s is produced by [∅, d1 seq loop2〈∞〉 d]
and t = 〈τloop〉�s

Proof: Assumption and 〈2〉1.
〈2〉3. Let: t′ = s

〈2〉4. E S©t = E S©(〈τloop〉�t′) = E S©t′

Proof: 〈2〉1, 〈2〉2, 〈2〉3, def. of S© and τloop �∈ E .
〈2〉5. Q.E.D.

Proof: 〈2〉4.
〈1〉2. Case: k = j + 1 (induction step)

Assume: t′ is produced by [∅, d1 seq d2 seq · · · seq dj seq loopj+1〈∞〉 d] and
E S©t = E S©t′ (induction hypothesis)

Prove: t′′ is produced by
[∅, d1 seq d2 seq · · · seq dj seq dj+1 seq loopj+2〈∞〉 d]
and E S©t = E S©t′′

〈2〉1. There exist traces s, s′, diagram d′ ∈ D, and β ∈ B such that
[∅, d1 seq d2 seq · · · seq dj seq loopj+1〈∞〉 s−→
[β, d′ seq loopj+1〈∞〉 d]

τloop−→
[β, d′ seq dj+2 seq loopj+1〈∞〉 d] s′

−→
and t′ = s�〈τloop〉�s′
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Proof: Induction hypothesis and rules (6), (9), (10) and (55).
〈2〉2. [∅, d1 seq d2 seq · · · seq dj seq dj+1loopj+2〈∞〉 d] s−→

[β, d′ seq dj+1 seq loopj+2〈∞〉 d] s′
−→

Proof: 〈2〉1.
〈2〉3. Let: t′′ = s�s′

〈2〉4. E S©t′ = E S©(s�〈τloop〉�s′) = E S©(s�s′) = E S©t′′

Proof: 〈2〉1, 〈2〉3, properties of S© and τloop �∈ E .
〈2〉5. E S©t = E S©t′′

Proof: Induction hypothesis and 〈2〉4.
〈2〉6. Q.E.D.

Proof: 〈2〉2, 〈2〉4 and 〈2〉5.
〈1〉3. Q.E.D.

Proof: 〈1〉1 and 〈1〉2.

�

Theorem 6 (Soundness) Let d be a diagram without infinite loops. If
[∅, loop〈∞〉 d] produces the trace t, then E S©t ∈ [[ loop〈∞〉 d ]].

Proof of theorem 6
Assume: 1. d is a diagram without infinite loops

2. [∅, loop1〈∞〉 d] produces trace t
Let: t′ = E S©t
Prove: t′ ∈ [[ loop〈∞〉 d ]]
〈1〉1. t′ ∈ [[ loop〈∞〉 d ]] ⇐⇒ t′ ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧

∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t′ = �l t̄)
Proof: Lemma 19.

〈1〉2. t′ ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} �
{h}) ∧ ∀l ∈ L : e.l S©t′ = �l t̄)

Proof: by contradiction
Assume: t′ �∈ H ∨ ∀t̄ ∈ H∞ : (∃j ∈ N : (t̄[j] �∈ [[ d ]]≤j ∨ ∀h ∈ H : t̄[j + 1] �∈

{t̄[j]} � {h}) ∨ ∃l ∈ L : e.l S©t′ �= �l t̄)
Prove: Contradiction
〈2〉1. Case: t′ �∈ H

Proof: We have assumed that all messages are unique, so this must mean
that there exist a message m, traces s, s′, diagrams d1, d2, d3, d4 and states
of the communication medium β′

1, β
′
2, β

′
3, β

′
4 such that

[∅, loop1〈∞〉 d] s−→ [β′
1, d1]

(?,m)−→ [β′
2, d2]

s′
−→ [β′

3, d3]
(!,m)−→ [β′

4, d4]
and

E S©(s�〈(?, m)〉�s′�〈(!, m)〉) � t′

By rules (3) and (8) this is clearly not possible and we must have that
t′ ∈ H and the case assumption is impossible.

〈2〉2. Case: ∀t̄ ∈ H∞ : (∃j ∈ N : (t̄[j] �∈ [[ d ]]≤j ∨ ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} �
{h}) ∨ ∃l ∈ L : e.l S©t′ �= �l t̄)

〈3〉1. Let: s1, s2, s3, . . . , si, . . . be traces and β1, β2, β3, . . . , βi, . . . be states
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of the communication medium such that
[∅, d1] s1−→ [β1, skip]
[∅, d1 seq d2] s1−→ [β1, d

2] s2−→ [β2, skip]

[∅, d1 seq d2 seq d3] s1
�

s2−−−−→ [β2, d
3] s3−→ [β3, skip]

...

[∅, d1 seq d2 · · · seq di]
s1

�
s2

�···�si−1−−−−−−−−−−−→ [βi−1, d
i] si−→ [βi, skip]

...
where we choose s1, s2, . . . , si, . . . such that ev.di S©si = ev.di S©t.
Further we let t1, t2, t3, . . . , ti, . . . be traces such that

t1 = E S©s1

t2 = t1
�(E S©s2)

t3 = t2
�(E S©s3)

...
ti = ti−1

�(E S©si)
...

〈3〉2. tj ∈ [[ d ]]≤j for all j ∈ N

Proof: 〈3〉1 and theorem 4.
〈3〉3. Let: t̄ = t1, t2, t3, . . . , ti, . . .
〈3〉4. Case: ∃j ∈ N : (t̄[j] �∈ [[ d ]]≤j ∨ ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} � {h})
〈4〉1. Choose arbitrary j ∈ N

〈4〉2. Case: t̄[j] �∈ [[ d ]]≤j

〈5〉1. t̄[j] ∈ [[ d ]]≤j

Proof: By 〈3〉3, t̄[j] = tj and by 〈3〉2, tj ∈ [[ d ]]≤j .
〈5〉2. Q.E.D.

Proof: By 〈5〉1, 〈4〉2 is impossible.
〈4〉3. Case: ∀h ∈ H : t̄[j + 1] �∈ {t̄[j]} � {h}
〈5〉1. t̄[j + 1] = tj+1 = tj

�(E S©sj+1) = t̄[j]�(E S©sj+1)
Proof: 〈3〉1 and 〈3〉3.

〈5〉2. t̄[j + 1] ∈ {t̄[j]} � {E S©sj+1}
Proof: 〈5〉1.

〈5〉3. E S©sj+1 ∈ H
Proof: By 〈3〉1, [βj , d

j+1]
sj+1−→ [βj+1, skip], so this follows from

lemma 6 and theorem 4.
〈5〉4. Q.E.D.

Proof: Let h = E S©sj+1. By 〈5〉2 and 〈5〉3 it is clear that 〈4〉3 is
impossible.

〈4〉4. Q.E.D.
Proof: Since j is chosen arbitrarily, and 〈4〉2 and 〈4〉3 are impossible
for this arbitrarily chosen j, 〈3〉4 is impossible.

〈3〉5. Case: ∃l ∈ L : e.l S©t′ �= �l t̄
This means that there must exist l such that e.l S©t′ � �lt̄ or �lt̄ �
e.l S©t′ or ∃j ∈ N : (e.l S©t′)[j] �= (�l t̄)[j].

〈4〉1. Choose arbitrary l ∈ L.
〈4〉2. For any k, e.l S©s1

�e.l S©s2
� · · ·�e.l S©sk � e.l S©t
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〈5〉1. There exists t′′ such that t′′ is produced by [∅, d1 seq d2 seq
· · · seq dk seq loopk+1〈∞〉 d] and E S©t = E S©t′′

Proof: Lemma 20.
〈5〉2. (e.l ∩ ev.d1) S©s1

�(e.l ∩ ev.d2) S©s2
� · · ·�(e.l ∩ dk) S©sk

= e.l ∩ (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) S©t′′

Proof: 〈3〉1, ev.dm ∩ ev.dn = ∅ for m �= n, and rules (3), (9) and
(10) (which handles the ordering on l).

〈5〉3. (e.l ∩ ev.d1) S©s1
�(e.l ∩ ev.d2) S©s2

� · · ·�(e.l ∩ ev.dk) S©sk

= e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk

Proof: ev.di S©si = E S©si for 1 ≤ i ≤ k (〈3〉1) and e.l ⊆ E (by
def. of e. ), which implies that (e.l ∩ ev.di) S©si = e.l S©(ev.di S©si) =
e.l S©(E S©si) = (e.l ∩ E) S©si = e.l S©si.

〈5〉4. e.l ∩ (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) S©t′′ � e.l S©t′′

Proof: (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) ∩ (ev.loopk+1〈∞〉 d) = ∅ and
rules (3), (9) and (10).

〈5〉5. Q.E.D.
Proof: e.l S©s1

�e.l S©s2
� · · ·�e.l S©sk

= (e.l ∩ ev.d1) S©s1
�(e.l ∩ ev.d2) S©s2

�

· · ·�(e.l ∩ ev.dk) S©sk (〈5〉3)
= e.l ∩ (ev.d1 ∪ ev.d2 ∪ · · · ∪ ev.dk) S©t′′ (〈5〉2)
� e.l S©t′′ (〈5〉4)
= e.l S©t (〈5〉1 and e.l ⊆ E)

〈4〉3. e.l S©t′ = e.l S©t
Proof: Assumption that t′ = E S©t and e.l ⊆ E .

〈4〉4. Case: e.l S©t′ � �lt̄

〈5〉1. ∃h ∈ H : h �= 〈〉 ∧ �l t̄ = (e.l S©t′)�h
Proof: Case assumption (〈4〉4) and the properties of �.

〈5〉2. #(e.l S©t′) �= ∞ (i.e. e.l S©t′ is finite)
Proof: 〈5〉1 and #s = ∞ ⇒ s�r = s

〈5〉3. Let: k be the smallest number such that
e.l S©tk = e.l S©s1

�e.l S©s2
� · · · �e.l S©sk = e.l S©t′

Proof: By 〈4〉2, 〈4〉3 and 〈5〉2 such k must exist (because at some
point the si stops containing events from e.l or else e.l S©t′ would not
be finite).

〈5〉4. e.l S©si = 〈〉 for all i > k
Proof: This follows direclty from 〈5〉3.

〈5〉5. �l t̄ = e.l S©tk
Proof: By 〈3〉1, 〈3〉3 and def. of �l t̄, �l t̄ is the least upper bound
of
e.l S©t1, e.l S©t2, . . . , e.l S©tk, e.l S©tk+1, . . . = e.l S©s1, e.l S©(s1

�s2), . . . ,
e.l S©(s1

�s2
� · · ·�sk), e.l S©(s1

�s2
� · · ·�sk

�sk+1), . . .
By 〈5〉4 we must have that �lt̄ = e.l S©tk or else it would not be the
least upper bound.

〈5〉6. �l t̄ = e.l S©t′

Proof: 〈5〉3 and 〈5〉5.
〈5〉7. Q.E.D.

Proof: 〈5〉5 contradicts 〈5〉1, and hence e.l S©t′ � �l t̄ is impossible.
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〈4〉5. Case: �l t̄ � e.l S©t′

〈5〉1. ∃h ∈ H : h �= 〈〉 ∧ e.l S©t′ = (�l t̄)�h
Proof: Case assumption (〈4〉5) and properties of �.

〈5〉2. #(�l t̄) �= ∞ (i.e. �l t̄ is finite)
Proof: 〈5〉1 and #s = ∞ ⇒ s�r = s.

〈5〉3. There exists k such that e.l S©tk = e.l S©ti for all i > k
Proof: By 〈5〉2, �l t̄ is finite and by def. e.l S©ti � �l t̄ for all i, so
there exists a finite bound on e.l S©ti and a place where the e.l S©ti for
i ∈ N stop growing.

〈5〉4. e.l S©si = 〈〉 for all i > k
Proof: 〈3〉1 and 〈5〉3.

〈5〉5. �l t̄ = e.l S©tk
Proof: 〈3〉3, 〈5〉3 and the def. of �l t̄ as the least upperbound of

e.l S©t̄[1], e.l S©t̄[2], . . . , e.l S©t̄[k], . . .
〈5〉6. Let: h[1] = e. Then (�l t̄)�〈e〉 � e.l S©t′

Proof: This follows directly from 〈5〉1.
〈5〉7. There exists n ∈ N such that t′[n] = e

Proof: 〈5〉6.
〈5〉8. There exists j ∈ N such that e ∈ ev.dj

Proof: 〈5〉7, assumption 2, the assumption that t′ = E S©t and
lemma 20.

〈5〉9. e.l S©tj � e.l S©t′

Proof: 〈4〉2 and 〈4〉3.
〈5〉10. j > k

Proof: By 〈5〉5 and 〈5〉6, (e.l S©tk)�〈e〉 � e.l S©t′, so by 〈5〉8 and 〈5〉9
this must be the case (or else rule (10) is violated).

〈5〉11. (e.l S©tk)�〈e〉 � e.l S©tj = e.l S©s1
� · · ·�e.l S©sk

� · · ·�e.l S©sj

Proof: 〈3〉1, 〈4〉3, 〈5〉5, 〈5〉6, 〈5〉9 and 〈5〉10.
〈5〉12. e.l S©sj �= 〈〉

Proof: 〈3〉1, 〈5〉8 and 〈5〉11.
〈5〉13. Q.E.D.

Proof: 〈5〉10 and 〈5〉12 contradicts 〈5〉4, so we must have that 〈4〉5
is impossible.

〈4〉6. Case: ∃j ∈ N : (e.l S©t′)[j] �= (�l t̄)[j]
Assume: j is the smallest such number, i.e.:

(e.l S©t′)|j−1 = (�l t̄)|j−1 ∧ (e.l S©t′)[j] �= (�l t̄)[j]
〈5〉1. Let: k be the smallest number such that #(e.l S©t̄[k]) ≥ j

Proof: Such k must exist. �l t̄ is defined as the least upper bound
of e.l S©t̄[1], e.l S©t̄[2], . . . , e.l S©t̄[i], . . . If �l t̄ is finite, then by the case
assumption (〈4〉6), #(�l t̄) ≥ j, and there must exist k such that
e.l S©t̄[k] = �l t̄ (or else it is not the least upper bound), which im-
plies #(e.l S©t̄[k]) ≥ j. If �l t̄ is infinite this means there is no finite
bound on the length of the e.l S©t̄[i] and we may find k such that
#(e.l S©t̄[k]) ≥ n for any n ∈ N.

〈5〉2. e.l S©t̄[k] � e.l S©t′

〈6〉1. e.l S©t̄[k] = e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk

〈7〉1. t̄[k] = tk = E S©s1
�E S©s2

� · · ·�E S©sk

Proof: 〈3〉1 and 〈3〉3.
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〈7〉2. Q.E.D.
Proof: 〈7〉1 and e.l ⊆ E .

〈6〉2. e.l S©s1
�e.l S©s2

� · · ·�e.l S©sk � e.l S©t
Proof: 〈4〉2.

〈6〉3. Q.E.D.
Proof: 〈4〉3, 〈6〉1 and 〈6〉2.

〈5〉3. e.l S©t̄[k] � �l t̄
Proof: This follow directly from the definition of �l t̄.

〈5〉4. (e.l S©t′)[j] = (�l t̄)[j]
Proof: From 〈5〉2 and 〈5〉3 we have that e.l S©t̄[k] � e.l S©t′ and
e.l S©t̄[k] � �l t̄. By assumption j ≤ #(e.l S©t̄[k]), so we must have
that (e.l S©t′)[j] = (e.l S©t̄[k])[j] = (�l t̄)[j].

〈5〉5. Q.E.D.
Proof: From 〈5〉4 it is clear that 〈4〉6 is impossible.

〈4〉7. Q.E.D.
Proof: Because 〈4〉4, 〈4〉5 and 〈4〉6 is impossible for an arbitrarily
chosen l, 〈3〉5 is also impossible.

〈3〉6. Q.E.D.
Proof: Because 〈3〉4 and 〈3〉5 are impossible, we have found a t̄ that
contradicts 〈2〉2.

〈2〉3. Q.E.D.
Proof: Because 〈2〉1 and 〈2〉2 are impossible we must have that 〈1〉2 is
true.

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Lemma 21 Let d be a diagram without infinite loops and with env.d = ∅ (i.e.
no external communication). If t ∈ [[ loop〈∞〉 d ]], then for all k ∈ N∪ {0} there
exist trace t′, β ∈ B and d′ ∈ D such that

[∅, loop1〈∞〉 d] t′−→ [β, d′] ∧ E S©t′ = t|k

Proof of lemma 21
Assume: 1. d is a diagram without infinite loops

2. env.d = ∅
3. t ∈ [[ loop〈∞〉 d ]]

Prove: For all k ∈ N ∪ {0} there exist t′, β, d′ such that

[∅, loop1〈∞〉 d] t′−→ [β, d′] ∧ E S©t′ = t|k
Proof: by induction on k
〈1〉1. Case: k = 0 (induction start)
〈2〉1. t|k = t|0 = 〈〉

Proof: 〈1〉1 and properties of | .
〈2〉2. Let: t′ = 〈τloop〉
〈2〉3. E S©〈τloop〉 = 〈〉

Proof: τloop �∈ E and properties of S© .

〈2〉4. [∅, loop1〈∞〉 d] t′−→ [∅, d1 seq loop2〈∞〉 d] ∧ E S©t′ = t|k
Proof: This follows trivially from 〈2〉1, 〈2〉2, and rule (55).
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〈2〉5. Q.E.D.
Proof: This follows from 〈2〉3 and 〈2〉4 by letting
β = ∅ and d′ = d1 seq loop2〈∞〉 d.

〈1〉2. Case: k + 1 (induction step)

Assume: ∃t′′, β′, d′′ : [∅, loop1〈∞〉 d] t′′−→ [β′, d′′] ∧ E S©t′′ = t|k (induction
hypothesis)

Prove: ∃t′, β, d′ : [∅, loop1〈∞〉 d] t′−→ [β, d′] ∧ E S©t′ = t|k+1

〈2〉1. Let: t[k + 1] = e

〈2〉2. t|k+1 = t|k�〈e〉 � t
Proof: 〈2〉1 (here we assume t to be infinite, but the case t|k+1 = t would
not change the following argument).

〈2〉3. ∀l ∈ L : e.l S©t|k+1 = e.l S©(t|k�〈e〉) � e.l S©t
Proof: 〈2〉1, 〈2〉2 and properties of l. and S© .

〈2〉4. t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j∧ ∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} �
{h}) ∧ ∀l ∈ L : e.l S©t = �l t̄)

Proof: Assumption 3 and lemma 19.
〈2〉5. Let: n ∈ N be the number such that e ∈ dn and let m ∈ N be the

largest number such that ev.dm ∩ ev.t|k �= ∅
Proof: By our assumption that all messages are unique and are enumer-
ated by the iterations of the loop (cf. rule (55)), both n and m are uniquely
identified.

〈2〉6. Let: j = max(m, n)
〈2〉7. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t|k+1 � e.l S©t̄[j] � e.l S©t
〈3〉1. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t = �l t̄

Proof: 〈2〉4.
〈3〉2. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t̄[j] � �l t̄ = e.l S©t

Proof: 〈3〉1 and def. of �l.
〈3〉3. ∀l ∈ L : e.l S©t|k+1 � e.l S©t

Proof: 〈2〉3.
〈3〉4. ∃t̄ ∈ H∞ : t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t|k+1 � e.l S©t̄[j]

Proof: By 〈3〉2 and 〈3〉3 we must have that, for all l, e.l S©t|k+1 �
e.l S©t̄[j], e.l S©t|k+1 = e.l S©t̄[j] or e.l S©t̄[j] � e.l S©t|k+1. But by 〈2〉5 and
〈2〉6 we must have that #t̄[j] ≥ #t|k+1, so the latter is not possible.

〈3〉5. Q.E.D.
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈2〉8. Let: t̄ be such that t̄ ∈ H∞ ∧ t̄[j] ∈ [[ d ]]≤j ∧ ∀l ∈ L : e.l S©t|k+1 �
e.l S©t̄[j] � e.l S©t

Proof: By 〈2〉6, such t̄ exists.

〈2〉9. ∃β′, t′′, d′′ : E S©t′′ = t|k ∧ [∅, loop1〈∞〉 d] t′′−→ [β′, d′′ seq loopj+1〈∞〉 d] ∧
t′′[#t′′] ∈ E

Proof: This follows from the induction hypothesis, 〈2〉5 and 〈2〉6. (Because
m is the largest number such that ev.dm∩ev.t|k �= ∅ and j ≥ m, j iterations
of the loop is sufficient to produce t′′.) t′′[#t′′] ∈ E is obtained by not
execution silent events after the execution of t[k].

〈2〉10. ∃β′, t′′, d′′ : E S©t′′ = t|k ∧ [∅, loop1〈j〉 d] t′′−→ [β′, d′′] ∧ t′′[#t′′] ∈ E
Proof: This follows directly from 〈2〉9.

〈2〉11. Let: β′, t′′ and d′′ be such that E S©t′′ = t|k ∧ [∅, loop1〈j〉 d] t′′−→
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[β′, d′′] ∧ t′′[#t′′] ∈ E
Proof: By 〈2〉10, such β′, t′′ and d′′ must exist.

〈2〉12. t̄[j] ∈ [[ loop〈j〉 d ]]
Proof: This follows from 〈2〉8.

〈2〉13. ∃tj , βj : E S©tj = t̄[j] ∧ [∅, loop1〈j〉 d]
tj−→ [βj , skip]

Proof: 〈2〉12 and theorem 5.

〈2〉14. Let: tj , and βj be such that E S©tj = t̄[j]∧ [∅, loop1〈j〉 d]
tj−→ [βj , skip]

Proof: By 〈2〉13 such tj and βj exist.
〈2〉15. Let: l.e = l

〈2〉16. e.l S©t|k+1 = e.l S©(t|k�〈e〉) = e.l S©(t|k)�〈e〉 � e.l S©t̄[j]
Proof: This follows from 〈2〉2 and 〈2〉7 by 〈2〉2, e.l ⊆ E and the properties
of S© .

〈2〉17. e.l S©t′′�〈e〉 � e.l S©tj
Proof: This follow from 〈2〉11, 〈2〉14 and 〈2〉16 by e.l ⊆ E and properties
of S© .

〈2〉18. ∃s, β′′, d′′′ : s ∈ T ∗ ∧ [β′, d′′]
s
�〈e〉−−−−→ [β′′, d′′′]

Proof: There are three way this may not be the case. 1) e is blocked by
an event on lifeline e. But by 〈2〉14 and 〈2〉17 we know that a execution
with e following l.e S©t′′ is possible. 2) e is a receive event and its message
is not available in β′. But we have assumed no external communication, t
must obey the message invariant and we have assumed all messages to be
unique, so this is not possible. 3) e is selected away in the execution of a
choice operator. But, by 〈2〉8 and 〈2〉14 we know that all events of t|k can
be executing without choosing away e, and after the execution of t[k] we
have full control over the choices by choosing s in the appropriate way.

〈2〉19. Let: s, β′′ and d′′′ be such that s ∈ T ∗ ∧ [β′, d′′]
s
�〈e〉−−−−→ [β′′, d′′′]

Proof: By 〈2〉18 such s, β′′ and d′′′ exist.
〈2〉20. Let: t′ = t′′�s�〈e〉, β = β′′ and d′ = d′′′ seq loopj+1〈∞〉 d

〈2〉21. [∅, loop1〈∞〉 d] t′−→ [β, d]
Proof: This follows from 〈2〉20, because from 〈2〉9, 〈2〉11 and 〈2〉18 we have

[∅, loop1〈∞〉 d] t′′−→ [β′, d′′ seq loopj+1〈∞〉 d]
s
�〈e〉−→ [β′′, d′′′ seq loopj+1〈∞〉 d]

〈2〉22. E S©t′ = t|k+1

Proof: By 〈2〉1, 〈2〉11, 〈2〉19 and 〈2〉20 we have
E S©t′ = E S©(t′′�s�〈e〉) = (E S©t′′)�(E S©s)�(E S©〈e〉) = t|k�〈〉�〈e〉 =
t|k�t[k + 1] = t|k+1.

〈2〉23. Q.E.D.
Proof: 〈2〉21 and 〈2〉22.

〈1〉3. Q.E.D.
Proof: 〈1〉1 and 〈1〉2.

�

Theorem 7 (Completeness) Let d be a diagram without infinite loops, and
env.d = ∅ (i.e. without external communication). If t ∈ [[ loop〈∞〉 d ]] then there
exists trace t′ such that E S©t′ = t and [∅, loop〈∞〉 d] produces t′.
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Proof of theorem 7
Assume: 1. d is a diagram without infinite loops

2. env.d = ∅
3. t ∈ [[ loop〈∞〉 d ]]

Prove: There exists t′ such that E S©t′ = t and [∅, loop1〈∞〉 d] produces t′

Proof: by contradiction
There are two cases that must be considered: 1) There exists some point
where further execution of t is impossible. 2) t does not satisfy the fairness
constraints of the operational semantics.

〈1〉1. Case: ∃k ∈ N : ∀s, β, d′ : (E S©s = t|k ∧ [∅, loop1〈∞〉 d] s−→ [β, d′]) ⇒
[β, d′]

t[k+1]
�

〈2〉1. t|k+1 = t|k�〈t[k + 1]〉 � t
Proof: Properties of | and [ ].

〈2〉2. Q.E.D.
Proof: By 〈2〉1, t|k+1 is a finite prefix of t. But by assumptions 1, 2 and 3,
and lemma 21 we are able to produce any finite prefix, so 〈1〉1 is impossible.

〈1〉2. Case: ∀k ∈ N : ∃s, β, d′ : (E S©s = t|k ∧ [∅, loop1〈∞〉 d] s−→ [β, d′]

∧ [β, d′]
t[k+1]−−−−→) ∧ ∀t′ : (E S©t′ = t ⇒ ¬wft(t′, loop1〈∞〉 d))

〈2〉1. ∀k ∈ N : ∃s, β, d′ : (E S©s = t|k∧[∅, loop1〈∞〉 d] s−→ [β, d′]∧ [β, d′]
t[k+1]−−−−→

)
Proof: This follows from the fact that 〈1〉1 is impossible.

〈2〉2. ∀t′ : (E S©t′ = t ⇒ ¬wft(t′, loop1〈∞〉 d))
Proof: 〈1〉2 and 〈2〉1.

〈2〉3. Assume: t′ is such that E S©t′ = t
〈2〉4. ¬wft(loop1〈∞〉 d, t′)

Proof: 〈2〉2 and 〈2〉3.
〈2〉5. ¬∃σ ∈ Ξ : π2(head(σ)) = loop1〈∞〉 d ∧ tr(σ) = t′ ∧ wfe(σ)

Proof: 〈2〉4 and def. (25) of wft .
〈2〉6. ∀σ ∈ Ξ : π2(head(σ)) �= loop1〈∞〉 d ∨ tr(σ) �= t′ ∨ ¬wfe(σ)

Proof: 〈2〉5.
〈2〉7. Assume: σ is an execution such that

σ = [β1, d1]
x1−→ [β2, d2]

x2−→ [β3, d3]
x3−→ · · · ∧

[β1, d1] = [∅, loop1〈∞〉 d] ∧ tr(σ) = 〈x1, x2, x3, . . .〉 = t′

Proof: By 〈2〉1 such σ must exist.
〈2〉8. ¬wfe(σ)

Proof: 〈2〉6 and 〈2〉7.
〈2〉9. ∃d′ ∈ D, i ∈ N : (∀j ∈ N ∪ {0} : enabled(d′, [βi+j , di+j ]) ∧ ¬∃k ∈

N ∪ {0} : executed(d′, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))
Proof: 〈2〉8 and def. (23) of wfe.

〈2〉10. Let: d′ be the least complex diagram projection part (as by the weight
function w defined in the proof of theorem 3) such that
∃i ∈ N : (∀j ∈ N∪{0} : enabled(d′, [βi+j , di+j ]) ∧ ∀k ∈ N∪{0} :
¬executed(d′, [βi+k, di+k], xi+k, [βi+k+1, di+k+1]))

Proof: By 〈2〉9 such d′ exists, and we must then be able to find the least
complex d′.

〈2〉11. Let: i be the smallest number such that
∀j ∈ N ∪ {0} : enabled(d′, [βi+j , di+j ]) ∧
∀k ∈ N ∪ {0} : ¬executed(d′, [βi+k, di+k], xi+k, [βi+k+1, di+k+1])
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Proof: By 〈2〉10 such i exists, and we may then find the smallest.
〈2〉12. enabled(d′, [βi, di])

Proof: 〈2〉11.
〈2〉13. d′ is a single event or d′ is a diagram with a high-level operator as its

most significant operator
Proof: Assume not. Then there exists d′′ and d′′′ such that d′ = d′′ seq d′′′

or d′ = d′′ par d′′′. But then by defs. (19), (20) and (21) we must have
enabled(d′, [βn, dn]) ⇒ enabled(d′′, [βn, dn])∨enabled (d′′′, [βn, dn]) and like-
wise for executed . But d′′ and d′′′ are less complex that d′, so then d′ is not
the least complex diagram projection part that satisfy 〈2〉10.

〈2〉14. Case: d′ is a single event
〈3〉1. Let: d′ = e ∈ E
〈3〉2. e � d1

Proof: 〈2〉12 and defs. (20) and (21) of executed and enabled .
〈3〉3. ∃c ∈ N, d′′ ∈ D : di = d′′ seq loopc〈∞〉 d ∧ e � d′′

Proof: By 〈2〉7, rules (55) and (6), and def. (19) of � this is the only
way to obtain 〈3〉2.

〈3〉4. Let: c be the smallest number and d′′ be such that
di = d′′ seq loopc〈∞〉 d ∧ e � d′′

Proof: By 〈3〉3 such c and d′′ exists.
〈3〉5. e ∈ ev.dc−1

Proof: By 〈3〉4, c is the smallest number such that di = d′′ seq loopc〈∞〉 d
and e � d′′. If there existed n < c − 1 such that e ∈ ev.dn there would
have existed d′′′ such that di = d′′′ seq loopn+1〈∞〉 d, but then c would
not be the smallest number to satisfy 〈3〉3.

〈3〉6. [∅, loop1〈∞〉 d]
〈x1,x2,...,xi−1〉−−−−−−−−−−→ [βi, d

′′ seq loopc〈∞〉 d]
Proof: 〈2〉7 and 〈3〉4.

〈3〉7. [∅, loop1〈c − 1〉 d]
〈x1,x2,...,xi−1〉−−−−−−−−−−→ [βi, d

′′]
Proof: By 〈3〉6 and definition of the loop rules.

〈3〉8. There exist s, β such that [βi, d
′′] s−→ [β, skip]

Proof: Because of the syntactical constraints we can assume this to be
the case, i.e. that there is nothing in d′′ that prevent the execution to
reach skip.

〈3〉9. Let: s and β be such that [βi, d
′′] s−→ [β, skip]

Proof: By 〈3〉8, s and β must exist.
〈3〉10. e ∈ ev.(E S©s)

Proof: By 〈3〉3, e � d′′, so by the rules of the operational semantics this
must be the case in an execution from d′′ to skip.

〈3〉11. E S©(〈x1, x2, . . . , xi−1〉�s) ∈ [[ d ]]≤c−1

Proof: loop1〈c − 1〉 d and be considered as d1 seq d2 seq · · · seq dc−1,
so by 〈3〉7, 〈3〉9, defs. (54), (56) and (57), and theorem 4 this must be
the case.

〈3〉12. t ∈ H ∧ ∃t̄ ∈ H∞ : (∀j ∈ N : (t̄[j] ∈ [[ d ]]≤j ∧ ∃h ∈ H : t̄[j + 1] ∈
{t̄[j]} � {h}) ∧ ∀l ∈ L : e.l S©t = �l t̄)

Proof: Assumption 3 and lemma 19.
〈3〉13. Let: t̄ ∈ H∞ be such that

∀j ∈ N : t̄[j] ∈ [[ d ]]≤j ∧∃h ∈ H : t̄[j + 1] ∈ {t̄[j]} � {h})∧∀l ∈
L : e.l S©t = �l t̄

88



Proof: By 〈3〉12 such t̄ exists.
〈3〉14. e ∈ ev.t̄[c − 1]

Proof: We have established that E S©(〈x1, x2, . . . , xi−1〉�s) ∈ [[ d ]]≤c−1

with e ∈ ev.(E S©s) (〈3〉10 and 〈3〉11), t̄[c − 1] ∈ [[ d ]]≤c−1 (〈3〉13) and
e ∈ ev.dc−1 (〈3〉5). The only way we may have e �∈ ev.t̄[c − 1] is that e
is inside and alt or xalt in dc−1. But then, by theorem 4, there does not
exist any finite execution

σ′ = [β′
1, d

′
1]

x′
1−→ [β′

2, d
′
2]

x′
2−→ · · ·

x′
n−1−→ [β′

n, d′n]
with β′

1 = ∅, d′1 = loop1〈c− 1〉 d and d′n = skip such that ∃j ∈ [1..n− 1] :
executed(e, [β′

j , d
′
j ], e, [β

′
j+1, d

′
j+1]). I.e. we have that

∀j ∈ [1..n − 1] : ¬executed(e, [βj ,
′ d′j ], e, [β

′
j+1, d

′
j+1])

but then we we also have that
∀j ∈ [1..n] : ¬enabled(e, [β′

j , d
′
j ])

because reaching skip means either that e is executed or is never en-
abled, and enabled(e, [β′

n, d′n]) is impossible since d′n = skip. Because
we have chosen an execution σ = [β1, d1]

x1−→ [β2, d2]
x2−→ · · · with

enabled(e, [βi, di]) (〈2〉7, 〈2〉12 and 〈3〉1) this is not an interesting sit-
uation, and we may safely assume 〈3〉14.

〈3〉15. ∃m ∈ N : t[m] = e
〈4〉1. Let: l.e = l
〈4〉2. ∃p ∈ N : (�l t̄)[p] = e

Proof: 〈3〉14, def. of �lt̄ (because e.l S©t̄[c−1] � �l t̄) and 〈4〉1 (because
l.e = l ⇔ e ∈ e.l)

〈4〉3. ∃p ∈ N : (e.l S©t)[p] = e
Proof: �lt̄ = e.l S©t (by 〈3〉13) and 〈4〉2.

〈4〉4. Q.E.D.
Proof: By 〈4〉3 and properties of e. , l. and S© such m must exist.

〈3〉16. ∃q ∈ N : q ≥ i ∧ xq = e
Proof: 〈2〉3, 〈2〉7, 〈2〉12 and 〈3〉15.

〈3〉17. executed(e, [βq, dq], e, [βq+1, dq+1])
Proof: 〈3〉16 and the assumption that all events are unique.

〈3〉18. Q.E.D.
Proof: 〈3〉17 contradict 〈2〉10.

〈2〉15. Case: d′ is a diagram with a high-level operator as its most significant
operator

〈3〉1. ∃x, β†, d† : executed(d′, [βi, di], x, [β†, d†])
Proof: 〈2〉12 and def. (21) of enabled .

〈3〉2. Let: x, β† and d† be such that executed(d′, [βi, di], x, [β†, d†])
Proof: By 〈3〉1 such x, β† and d† must exist.

〈3〉3. x ∈ T ∧ β† = βi

Proof: By 〈2〉15 and rule (6) this must be the case.
〈3〉4. Let: xi = x, βi+i = βi = β† and di+1 = d†

Proof: This not affect t because, by 〈2〉3 and 〈2〉7, t = E S©tr(σ) and, by
〈3〉3, xi = x ∈ T . By 〈2〉2 and 〈2〉6 we can use any σ and t′ that have
the property that tr(σ) = t′ and E S©t′ = t, and hence, by 〈3〉2 and 〈3〉3,
we can safely do the assumption that xi = x, βi+1 = βi and di+1 = d†.

〈3〉5. executed(d′, [βi, di], xi, [βi+1, di+1])
Proof: 〈3〉2, 〈3〉3 and 〈3〉4.

〈3〉6. Q.E.D.
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Proof: 〈3〉5 contradicts 〈2〉10.
〈2〉16. Q.E.D.

Proof: Both 〈2〉14 and 〈2〉15 leads to contradictions, so 〈1〉2 is impossible.
〈1〉3. Q.E.D.

Proof: Both 〈1〉1 and 〈1〉2 are impossible, so we must have that there exists
trace t′ such that E S©t′ = t and [∅, loop1〈∞〉 d] produces t′.

�

The above soundness and completeness theorems are concerned with dia-
grams that have only one infinite loop, and the infinite loop as the most signif-
icant operator. In the following we make some reflections on how these results
carry over to other more complex cases. There are three main cases that must
be considered:

1. Combinations d1 op d2 where op is an simple operator and d1 or d2 or
both characterize infinite behavior.

2. Infinite loop inside other high-level operators.

3. The body d of an infinite loop loop〈∞〉 d itself contains infinite loop(s).

In the first case, we have one simple sub-cases and one more complicated.
The simple sub-case is the diagram (loop〈∞〉 d1) par (loop〈∞〉 d2), which simply
yields the merges of the traces of loop〈∞〉 d1 and loop〈∞〉 d2. The weak fairness
ensures that none of the par operands are starved infinitely long. Soundness and
completeness considerations are then reduced to considerations of the oracle p in
the denotational definition of par with respect to our definition of weak fairness.
The complicated sub-case is the case of (loop〈∞〉 d1) seq (loop〈∞〉 d2). If we
have that ll.d2 ⊆ ll.d1 this means we have a strict sequencing of loop〈∞〉 d1

and loop〈∞〉 d2 such that right operand is blocked by the left operand, and
(loop〈∞〉 d1) seq (loop〈∞〉 d2) is equivalent to loop〈∞〉 d1. If, on the other
hand ll.d1 ∩ ll.d2 = ∅, the case is equivalent to (loop〈∞〉 d1) par (loop〈∞〉 d2).
The difficult situation is when ll.d1 �= ll.d2 and ll.d1 ∩ ll.d2 �= ∅, because d1

will block some, but not all of the lifelines, in d2. However, this means that the
result of (loop〈∞〉 d1) seq (loop〈∞〉 d2) is the behavior of loop〈∞〉 d1 merged
with the behavior of loop〈∞〉 d2 not blocked by loop〈∞〉 d1, which probably can
be handled easily.

The case of a infinite loop inside the high-level operators refuse, assert, alt and
xalt poses no problems as its result is just the execution of a silent event before
execution of the loop itself. The diagram loop〈n〉 (loop〈∞〉 d) is equivalent to
loop〈∞〉 d, because the first iteration of the outer loop will block all subsequent
iterations.

Finally, consider a diagram of the form loop〈∞〉 (d1 seq (loop〈∞〉 d2) seq d3).
The behavior characterized by this diagram is actually the same behavior as
characterized by a diagram d1 seq ((loop〈∞〉 d2) par (loop〈∞〉 (d′3 seq d′1))
where d′1 and d′3 are the parts of d1 and d3 not blocked by loop〈∞〉 d2.

Because diagrams with nested infinite loops can be reduced to diagrams
without nested infinite loops, and because composition of diagrams with infinite
loop can be accounted for, there are strong indications that the soundness and
completeness results carry over to these more complex situations.
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