
UNIVERSITY OF OSLO
Department of Informatics

Introducing name
resolution into
OLSR

Master thesis

Øyvind Spigseth

11th January 2008

Abstract

Mobile Ad-hoc Networks (MANETs) are wireless networks consisting of autonomous nodes
that exist in an infrastructure-less environment. There are no centralized servers and no
hierarchy of nodes. The Domain Name System (DNS) is important to million of nodes that are
located in the Internet. Through a huge amount of DNS servers spread around the world, they
serve a name resolution service to all nodes existing in Internet. Users of the Internet have the
advantage of using hostnames or fully qualified domain names to communicate with another
host. Because of the fast growth of MANETs, where they tend to be large and dense, a name
resolution service is also desired for these networks. Since MANETs are characterized by
unstable topology the existing DNS can not work in MANETs. Optimized Link State Routing
(OLSR) is a routing algorithm designed for MANETs that propagate IP addresses through
periodically emitted control messages. These control messages are broadcasted through the
Multipoint Relay (MPR) flooding scheme, which reduces the total amount of overhead. This
thesis investigates the possibilities of designing and implementing a distributed name
resolution service for MANETs based on the existing Optimized Link State Routing (OLSR)
algorithm by extending the existing control messages and data sets. The efficiency and
generated overhead are measured to compare this solution together with existing solutions.

 i

 ii

Preface

This thesis is a part of my Master Degree at the University of Oslo, Department of
Informatics. The work was carried out for the Distributed Multimedia Systems (DMMS)
group, during the autumn semester of 2007. My teaching supervisors were Professor Thomas
Plagemann, the leader of the DMMS group, and Matija Pužar. I would like to thank
Plagemann for assisting me giving me feedback and structuring this document and Pužar who
has helped me a lot with technical problems and giving me other useful hints during this
semester.

I would also like to thank my family which has supported me through a semester with great
challenges. Without them I could not have reached this far. Ulrich Schumacher also deserves
an acknowledgement for reading through this report and giving valuable feedback.

Øyvind Spigseth
January 2008

 iii

Contents

1 Introduction .. 1

1.1 Problem description and motivation .. 1
1.1.1 Mobile Ad-hoc networks.. 1
1.1.2 Domain Name System.. 2
1.1.3 DNS in Mobile Ad-hoc Networks.. 3
1.1.4 Claims... 3

1.2 Terminology ... 4
1.3 Methodology .. 4
1.4 Organization of the report .. 5

2 Background... 7

2.1 Related work .. 7
2.1.1 Name resolution system based on a reactive routing protocol........................... 7
2.1.2 Partly distributed name resolution system with clusters 10
2.1.3 MIDAS – Naming by extending OLSR ... 11
2.1.4 OLSRd plug-in ... 12

2.2 Existing solutions versus our claims .. 12
2.3 Optimized Link State Routing – OLSR ... 13

2.3.1 OLSR terminology ... 14
2.3.2 OLSR Information Repositories... 14
2.3.3 OLSR Packet Format ... 15
2.3.4 OLSR Message Types.. 17

2.3.4.1 Multiple Interface Declaration message format ... 17
2.3.4.2 HELLO message format... 17
2.3.4.3 Topology Control message format ... 19

2.3.5 OLSR functionality .. 19
2.3.5.1 Multiple interfaces.. 19
2.3.5.2 Link sensing ... 20
2.3.5.3 Neighbour detection ... 20
2.3.5.4 Two-hop neighbour detection .. 21
2.3.5.5 Multipoint relaying... 22
2.3.5.6 MPR Selector detection.. 23
2.3.5.7 Distribution of Topology Control messages .. 24
2.3.5.8 Forwarding of OLSR control messages ... 25
2.3.5.9 Route calculation.. 25

2.3.6 OLSR Summary ... 26
2.4 Background summary .. 26

3 Design .. 27

3.1 Design claims and assumptions.. 27
3.2 Extending the control messages ... 28

3.2.1 TC messages... 28
3.2.2 HELLO messages... 30
3.2.3 TC-messages and HELLO-message working together 31

3.3 Extending data structures ... 32
3.4 Generating and parsing HELLO messages and TC messages 33

3.4.1 Naming ... 33
3.4.2 Generation and parsing of HELLO messages .. 34

 iv

3.4.3 Generation and parsing of TC messages .. 35
3.5 Name resolution ... 35
3.6 Summary .. 37

4 Implementation... 39

4.1 OLSRd dataflow... 39
4.1.1 Dataflow of generating HELLO messages... 39
4.1.2 Dataflow of parsing HELLO messages.. 41
4.1.3 Dataflow of generating TC messages... 42
4.1.4 Dataflow of parsing TC messages.. 43
4.1.5 Summary code analysis .. 44

4.2 Implementation of the extensions .. 45
4.2.1 Implementing the name table ... 45
4.2.2 Extending HELLO messages with names .. 47
4.2.3 Parsing the new HELLO message.. 50
4.2.4 Extending TC messages with names.. 52
4.2.5 Parsing the new TC messages .. 56
4.2.6 Other changes in OLSRd.. 59

4.3 Testing the implementation.. 59
4.3.1 Test environments .. 60

4.3.1.1 Real nodes .. 60
4.3.1.2 NEMAN ... 60

4.3.2 Test scenario 1.. 63
4.3.2.1 Results with TcRedundancy equal to zero... 64
4.3.2.2 Results with TcRedundancy equal to two ... 66
4.3.2.3 Other results of the first test scenario... 68

4.3.3 Test scenario 2.. 69
4.3.4 Test scenario 3.. 70
4.3.5 Test scenario 4.. 72
4.3.6 Conclusion – testing functionality.. 73

4.4 Summary .. 73

5 Evaluation ... 75

5.1 Test methods .. 75
5.2 Measured overhead in a 500x400 area... 78
5.3 Measured overhead in a 1000x800 area... 81
5.4 Measured overhead when hostname in OLSRd control message increases............. 84
5.5 Summary .. 84

6 Conclusion... 87

6.1 Summary of the report.. 87
6.2 Claims versus our solution ... 87
6.3 Further work... 89

Appendix A ... 91

Bibliography ... 93

 v

List of Figures

Figure 1.1: A small part of the domain namespace.. 2

Figure 2.1: Extension of a reactive protocol’s route requests and route replies. 8

Figure 2.2: A fully distributed name resolution system. .. 9

Figure 2.3: A partially distributed name service. ... 10

Figure 2.4: A MANET partitioned into clusters. ... 11

Figure 2.5: The OLSR information repositories. ... 14

Figure 2.6: The basic layout of any packet in OLSR. .. 16

Figure 2.7: The OLSR MID message format. .. 17

Figure 2.8: The format of the OLSR HELLO message. .. 18

Figure 2.9: The 8-bit Link Code field in the OLSR HELLO message. 18

Figure 2.10: The format of the OLSR Topology Control message.. 19

Figure 2.11: The process of creating a symmetric link between two neighbours. 21

Figure 2.12: The difference between classical flooding and MPR flooding............................ 23

Figure 3.1: A MPR node with 4 MPR selectors... 29

Figure 3.2: The new design of the OLSR TC-message.. 30

Figure 3.3: The name field used in the control messages. ... 30

Figure 3.4: The new HELLO message contains just the name of the originator of the HELLO
message. The name is stored in a name field as explained in Figure 3.3................................. 31

Figure 3.5: Name distribution with HELLO messages and TC messages working together... 32

Figure 3.6: A shared data structure to store names from HELLO messages and TC messages.
.. 33

Figure 3.7: A local name resolution with a DNS server running on a local node.................... 36

Figure 3.8: A local name resolution with the hosts file on a local node. 36

Figure 4.1: Dataflow for HELLO message generation. If an interface is going to be initialized
with OLSR, a scheduler event is registered on that new interface. This event is for HELLO
message generation, and is triggered on a fixed time interval. .. 39

Figure 4.2: Dataflow when parsing a HELLO message... 41

Figure 4.3: Dataflow of generating TC messages. ... 42

Figure 4.4: Dataflow of parsing TC messages. .. 43

Figure 4.5: The control buttons in the graphical user interface of NEMAN. 60

Figure 4.6: The graphical user interface after the scenario file is loaded, and the ”Prepare” has
been pushed. At the top we can see the control buttons. Below them we can see the
geographical area where the nodes are simulated to be. .. 61

Figure 4.7: The topology of the first test scenario. .. 63

 vi

Figure 4.8: Topology used in the second test scenario. The topology shown here is a snapshot
from the NEMAN GUI. ... 69

Figure 4.9: Topology used in the third test scenario. The topology shown here is a snapshot
from the NEMAN GUI. ... 71

Figure 4.10: Topology used in the fourth test scenario. The topology shown here is a snapshot
from the NEMAN GUI. ... 72

Figure 5.1: The experimental design with all input parameters and their values..................... 76

Figure 5.2: This diagram shows us how many packets that were captured during the
experiment when nodes were stored in an area of 500x400. ... 79

Figure 5.3: The measured overhead where nodes exist in a 500x400 area. 80

Figure 5.4: This diagram shows us how many packets that were captured during the
experiment when nodes were stored in a area of 1000x800. ... 82

Figure 5.5: The measured overhead where nodes exist in a 1000x800 area. 83

Figure 5.6: This diagram shows how the total amount of overhead increases with number of
characters in the hostname. .. 84

 vii

List of Tables

Table 2.1: This table shows how existing solutions meet our requirements............................ 13

Table 3.1: A comparison of overhead with different solutions to include the name into the TC
message. ... 29

Table 4.1: Functions that need modifications and/or extensions regarding HELLO messages.
.. 44

Table 4.2: Data structures that need modifications and/or extensions regarding HELLO
messages... 44

Table 4.3: Functions that need modifications and/or extensions regarding TC messages....... 45

Table 4.4: Data structures that need modifications and/or extensions regarding TC messages.
.. 45

Table 4.5: The new name table is an extended data structure of OLSR. 46

Table 4.6: Functions that is needed for the nametable. .. 46

Table 4.7: Configuration of the nodes in the first test scenario. .. 64

 viii

1 Introduction

Rapid growth of Mobile Ad-hoc networks – MANETs – makes it hard not to have a name
resolution service. The number of nodes that participate in a Mobile Ad-hoc network can be
high. It can then be difficult to remember all the network addresses to the corresponding
nodes.

In the Internet we have the Domain Name System – DNS – that is able to serve all hosts a
name resolution service. Problems are met when we try to use DNS in MANETs. This is
because of the special characteristics that these networks have.

The challenge of implementing a name resolution in MANETs is that we need to create a
whole new design in order to make it work properly.

1.1 Problem description and motivation

In this section we first look at the characteristics of Mobile Ad-hoc networks. Then we present
the Domain Name System and discuss why it does not function in these networks.

1.1.1 Mobile Ad-hoc networks

MANETs are wireless networks where nodes use the IEEE 802.11 set of standards for
communication. These networks are formed by an arbitrary number of autonomous nodes.
When a node comes in range of another node, they create a link and are ready to
communicate. If we compare MANETs with other wired networks, we got some important
differences that characterize a MANET:

• Autonomous nodes – All nodes are independent of other nodes. They work on their
own, and are not dependent on others to be able to participate in the MANET.

• No infrastructure – MANETs have no infrastructure that organizes the nodes as in the
Internet.

• Multi-hop environment – All nodes acts as a router. The structure of a MANET is
therefore flat. A path between the source and the destination node can consist of an
arbitrary number of hops of intermediate nodes.

• Unstable topology – MANETs are designed for mobile nodes that can move around
within a geographical area with an arbitrary speed.

• Power constraints – Mobile nodes use battery power and have thereby limitations of
their power sources.

• CPU constraints – In some MANETs, the nodes are small devices that do not have
the same CPU speeds as normal computers.

• Bandwidth constraints – In a given geographical area there may be obstacles between
nodes that limit the bandwidth on links between them. There can also be other
environmental factors like signal interference and atmospheric disturbance.

 1

When designing software for MANETs, these characteristics must be taken into
consideration. This often makes it harder to develop new software for MANETs than for
applications that are intended to work on other networks.

1.1.2 Domain Name System

The Domain Name System (DNS), which is the existing name resolution system, is widely
used on Internet today. DNS is built on a strong hierarchy that is composed by a tree-
structured name space called the Domain Name Space. RFC 1034 [1] illustrates a small part
of the Domain Name Space shown in Figure 1.1. This tree is organized such that each leaf has
one or more resource records. These resource records hold information associated with the
domain name.

Figure 1.1: A small part of the domain namespace.

Name servers hold the information about their domain tree structure. A name server has in
general complete information about a subset of the domain space.

Nodes that want information from a DNS server have to know how to communicate with it.
They send DNS requests to the name servers and receive and process DNS responses. A node
which is able to communicate with a name server in this manner is called a resolver.
Resolving usually entails iterating through several name servers to find the needed
information.

Name construction in DNS reflects the structure of the domain namespace. A name consists
of two parts: The hostname and the domain suffix. The user configures the hostname as well

 2

as the name server in the Internet. This very often leads to an organizational structure. For
instance, all nodes that are related to the University of Oslo use the uio domain. This domain
is part of the no sub domain space. The domain suffix consists of all domains that lead
towards the root of the domain space. Hence we get the uio.no domain suffix for all nodes
that are related to the University of Oslo.

Another aspect of DNS is that domains are often related to a block of network addresses. The
most common network address that is in use today is Internet Protocol (IP) addresses. An
organization reserves a set of IP addresses, which they are free to partition in the way they
want. These partitions define sub networks and reflect often sub domains in the domain
namespace.

DNS is a very hierarchal system when we look at the aspects of domain name space, naming
and organizational structure. If any of the name servers which hold information about a leaf in
the domain space go down, the system does not function properly or not function at all. If a
name server goes down, the consequence becomes greater the more central the name server is
in the domain space.

1.1.3 DNS in Mobile Ad-hoc Networks

The Domain Name System (DNS) is a service that is heavily used in the Internet. Without this
service the Internet would have been much more difficult to use. The alternative is to use IP
addresses in order to connect to other host on a network. This is not intuitive for people
mostly. People often get confused when they are presented a network address like an IP
address. In addition it is much easier to remember a name like www.ifi.uio.no than
129.240.64.24.

The existing DNS do not work in a MANET because of its characteristics as mentioned in
Section 1.1.1. DNS is a service that is strongly bound to a client-server relationship.
Whenever an application on a node wants to translate a name into an IP address a DNS
request is sent to a central DNS server. We can not rely on such a relationship, since the
topology is highly dynamic. There can not be a guarantee that the DNS server gets out of
range from the other nodes. As mentioned in Section 1.1.2 the DNS is dependent on stable
name servers. If a DNS server runs on an arbitrary node and gets out of range, the whole
service fails to operate. This thesis investigates how a service like DNS can be designed for
MANETs.

1.1.4 Claims

In order to serve MANETs a name resolution service, we must think of alternative solutions.
In this section we present claims that our solution needs to meet.

• Distributed service. Unstable topology makes it impossible to base our solution on a
centralized server approach.

• Reduce overhead. Nodes in MANETs often have constraints in their link speed, CPU
speed and battery lifetime. The traffic on the network must therefore be minimized as
much as possible.

 3

• Efficiency. Bindings of IP addresses and names are desired to be made as fast as
possible.

• Application layer transparency. Web browsers, e-mail clients and other applications
should not have to be redesigned in order to work with our solution. Our design must
be made in such a way that existing applications are not affected.

• Independency. Our solution must not depend on a huge number of existing solutions.
This might lead to an unpredictable solution, because of increased complexity. In
addition such solution might also not be an efficient solution.

These claims are referred to throughout the report. They are used in the evaluation of our
solution and other existing solutions.

1.2 Terminology

This section describe a few terms that are used throughout this report:

• When talking about OLSR, it is meant the OLSR routing algorithm that is specified in
the RFC 3626 specification.

• OLSRd is the implementation of the OLSR, where the RFC 3626 is the base of the
design.

• Hosts and nodes on a network are words that are synonyms. It is an abstract term of
devices that can exist on a network. Such devices can be ordinary computers, laptops,
mobile phones, sensors etc.

1.3 Methodology

The methodology for this thesis can be divided into the following steps:

• Literature study – Consists of reading research papers, documentation for existing
software and software that is used as basis for the design in the thesis.

• Code study – Source code study of OLSRd.

• Design – A development of a rough design that make a base for the implementation
process.

• Implementation and functionality testing – The design of a solution is implemented
based on the design. In addition the functionality is tested, in order to know if our
solution works as intended.

• Evaluation – The implementation is more thoroughly analysed.

All the steps include documentation and work on the report. The organization of the report
reflects the methodology used for this thesis, as we see in the next section.

 4

1.4 Organization of the report

The report is organized as follows:

• Chapter 2 presents background material that is necessary in order to continue with
further work on this report.

• Chapter 3 discusses how we develop a design for our solution.

• Chapter 4 describes how we implement our design and how we perform different
functionality tests.

• Chapter 5 performs an analysis on our implementation. It designs different
experiments, present measured results and analyses them.

• Chapter 6 summarizes the report and concludes how our solution fulfilled our claims
declared in Section 1.1.4.

With this report a CD is attached as appendix. A full description of its content is given in
Appendix A.

 5

 6

2 Background

In this chapter we get an overview of the background material that is related to this report. In
Section 2.1, we look at related work that has been done on the problem that this thesis
investigates. Then, in Section 2.2 we compare our claims with the solutions found. Further,
the structure of this chapter reflects a discussion of background material that we are going to
use to design a solution to our problem. Found solutions and their weaknesses is our base for
choosing a solution.

2.1 Related work

The findings from the literature study are presented in this section. Selecting papers was a
difficult process. A subject might be discussed in hundreds of related papers. When searching
for related work on our subject, two libraries were used: ACM digital library and IEEE
xplore. In addition, Google Scholar was used to find other interesting papers which were not
found through the other libraries.

The keyword phrases that are used when searching through the libraries and Google Scholar
are “name resolution MANET” and “naming MANET”. The papers were selected based on
the title. Reading through different papers gave an idea of what has been solved, and what
kind of ideas that lay behind the solution.

When the search through the libraries was finished, suggestions on papers from the staff at the
University played an important role. With various suggestions it is possible to see aspects of a
problem.

As a result from this process a set of papers were selected. Section 2.1.1 and 2.1.2 describes
related work found from library search and literature study. Section 2.1.3 is related work that
was found through suggestions from the staff at the University and own findings from
literature study. Through code study an additional solution was found on our topic. This
finding is presented in Section 2.1.4.

2.1.1 Name resolution system based on a reactive routing protocol

There exist many reactive routing protocols for MANETs [2]. Ad-hoc On-demand Distance
Vector (AODV) and Dynamic Source Routing (DSR) are two examples of such routing
protocols, and act similar. In AODV a node broadcasts a Route Request (RREQ) when a route
to another node does not exist. Every intermediate node maintains a reverse path towards the
destination. The destination node unicast a Route Response (RREP) packet along the reverse
path after the RREQ is received.

Engelstad proposes in [3] a mechanism that extends the traditional RREQ/RREP message with
DNS query message. This extension is illustrated in Figure 2.1. A source node puts the Name
Resolution Request (NREQ) into the RREQ packet that is spread throughout the network. This
source node is now referred to as a Name Resolver (NR). These packets are flooded according
to the arrows that are not dotted in Figure 2.1. If the node receiving the RREQ does not

 7

understand the NREQ extension, it ignores the subsequent process and just forwards it to other
neighbour nodes.

When the destination node receives the request, it generates the piggyback Name Resolution
Reply (NREP) message as well as RREP, and unicast them back to the source node. The
destination node is referred to as a Name Server (NS), since it is able to resolve the received
request. In Figure 2.1 the reply is sent along the path described by the dotted arrows.

Figure 2.1: Extension of a reactive protocol’s route requests and route replies.

This solution made a base for two solutions in [3]:

• A fully distributed system.
• A partially distributed system.

A fully distributed name resolution system (see Figure 2.2) means that all nodes participating
in the MANET are independent of other nodes to make the name resolution system work.
This means that all nodes are a potential Name Server. In addition, all nodes are responsible
for their own participation in the name resolution system. For a MANET this is suitable
because that all nodes are autonomous.

The fully distributed system requires two processes:

• Find – A name resolver needs to find the name server by flooding name requests as
illustrated in Figure 2.1.

• Bind – When the name server is found a binding must be created between the name
server’s name and the resolved IP address.

 8

Figure 2.2: A fully distributed name resolution system.

Nevertheless, a fully distributed name resolution system generates much overhead because of
flooding. A partially distributed name resolution was therefore also proposed in [3].

In the partially distributed approach, illustrated in Figure 2.3 , there are only a few numbers of
elected Name Servers. When we discuss the partially distributed service the Name Server is
called a Name Coordinator. A Name Owner (a MANET node that wants to make its name
discoverable by other MANET nodes) must first find a name coordinator in its surroundings
and register with it. Hence, with this approach name resolution comprises three phases:

• Registration – A name owner must find a name coordinator in its surroundings and
register with it.

• Find – A name resolver needs to find the name server by flooding name requests as
illustrated in Figure 2.1.

• Bind – When the name server is found a binding must be created between the name
server’s name and the resolved IP address.

 9

Figure 2.3: A partially distributed name service.

Figure 2.3 describes how a name owner first must find and Register with a Name
Coordinator. Then a Name Resolver can query the Name Coordinator to Find the Name
Owner. Finally the Name Resolver is able to create a binding between the name of the name
owner and the resolved IP address.

The solutions in Figure 2.2 and Figure 2.3 both provide a name resolution system for a
MANET. Engelstad concludes in [3] that there are a couple of potential problems according
to the partially distributed system. One of the problems is due to the characteristics mentioned
in Section 1.1.1. The partially distributed solution involves using a centralized name service.
In a MANET we can not guarantee the stability of such a service because of dynamic
topology.

Another problem is that the route discovered at the name resolver is not a direct route to the
Name Owner, but through the Name Coordinator. In order to find a direct route, the Name
Resolver must broadcast a new route request to the resolved IP address.

The last disadvantage is that the complexity increases since the partially distributed system
involves more processes to make it work than the fully distributed system.

2.1.2 Partly distributed name resolution system with clusters

This idea is based on MANETs that are partitioned into clusters. The cluster mechanism is
well described in [4] (chapter 4).

A cluster is composed of an arbitrary number of nodes, where each node plays different roles.
The most central node is called the cluster-head, and is the node that defines the cluster. From
a given node in a MANET the shortest distance to one of the surrounding cluster-heads
decides which of the cluster the given node should belong to. If a node has equal distance
between two cluster-heads in it surroundings, it is a member of both of these clusters.

 10

There are several algorithms to elect cluster-heads. Some of them are mentioned in [5] and
[6].

Figure 2.4: A MANET partitioned into clusters.

Hong et al. proposes in [7] a name resolution system that focuses on a partial distributed name
resolution system using clusters and cluster-heads to elect name servers. Figure 2.4 illustrates
the idea of this solution. This is a partial distributed service, because only elected nodes play
the role as a name server. These servers must announce themselves as name servers. Other
nodes are then able to detect existing name servers, and query them for name resolution.

The main advantage of this solution compared to Engelstad’s solution [3] is that a partial
distributed system generates less overhead.

The disadvantage is that the complexity of a partially distributed name resolution system does
not necessarily decrease. A main challenge is to choose a cluster algorithm that works fine
with an unstable topology as we find in MANETs. Choosing wrong cluster algorithms might
lead to frequent re-election of cluster-heads if we have an unstable topology. Nodes in a
cluster might then be confused about which node is the actual name server at a given time. In
addition a partial distributed service involves a centralized client-server relationship. In
MANETs, there is always a risk in depending on such a relationship because of the dynamic
topology.

2.1.3 MIDAS – Naming by extending OLSR

MIDAS [8], [9] is a project initiated and funded by the IST programme of the European
Commission. It started in Jan ’06 and will finish June ’08. One of the project’s tasks is to
design middleware for connectivity and information-sharing over hybrid networks. Such
networks include MANETs.

The MIDAS working group has proposed, in [10], a design for opportunistic connectivity
services. In this design they have issued the naming aspect of addressing in networks like
MANET. As routing protocol they have selected the Optimized Link State Routing (OLSR)
protocol [2]. The solution of a name resolution system described in [10] is build on OLSR.
The MANET scope of this solution involves extension of OLSR to propagate both names and
IP addresses. How this is done is not specified in [10]. The idea is that all names should be
stored in an extended version of the OLSR routing table.

 11

In contrast to the solutions in Section 2.1.1 and 2.1.2 that are build on a reactive routing
protocol, this is a solution that is built on a proactive routing protocol (OLSR). Since this
approach has not come further than the design declaration, it can be an interesting starting
point for our work in this thesis.

The main advantage is that all traffic that needs to be flooded is forwarded through the
Multipoint Relay (MPR) flooding scheme. This flooding scheme reduces greatly overhead
generated by control traffic. The disadvantage is that if we extend the OLSR protocol
compared to the RFC 3626 [11], older versions might not be compatible if they exist on the
same network.

2.1.4 OLSRd plug-in

OLSRd [12] is the implementation of OLSR. It is implemented according to the specifications
in RFC 3626 [11]. This implementation has support for plug-ins that are extensions to the
functionality of the protocol itself.

A plug-in called Nameservice, developed by Bruno Randolf [12], distributes the name of the
node to all other nodes on the network by special name messages. (More information can also
be read in the README file that belongs to the OLSRd plug-in. This file can be found in the
CD-ROM content in Section 0). When a node receives a name message, it stores the name
together with the source address in a table. If all nodes on a MANET uses OLSRd with this
plug-in, each node is able to maintain a table of bindings between IP addresses and names.
The plug-in is also able to write necessary information to files so that each node can act as a
name server in a fully distributed manner.

The advantage of the plug-in is that it takes advantage of the OLSR Multipoint Relay (MPR)
flooding scheme when it broadcasts the name messages. Overhead generated by flooding is
greatly reduced with this mechanism.

The broadcasting of a node’s name is only done every second minute, and is a strategy to
reduce overhead. A disadvantage of this is that it will take quite a long time to discover all
names on the network. Another disadvantage is that the validity time of each entry in the table
is one hour. If no new name message is received from a given node for a while, it is a high
possibility that this entry is not valid in reality, because of the unstable topology of the
MANET. Nevertheless, if the topology is stable, this plug-in works fine.

2.2 Existing solutions versus our claims

This section describes how existing solutions meet our claims from Section 1.1.4 of a name
resolution in MANETs. Table 2.1 gathers all solutions found in Section 2.1, and point out
which of the claims they meet (+) and do not meet (-). (+/-) means that the solution does not
fulfill the claim 100 percent.

 12

Solutions/Claims Distributed
service

Reduce
overhead

Efficiency App. layer
transparency

Independency

Engelstad’s
extension of a
reactive protocol

+ - + + +

Hong et al.’s
clustering
approach in a
partially
distributed
service

+/- +/- + + -

Extension of
OLSRd control
messages and
data sets.

+/? +/? +/? +/? +/?

OLSRd name
service plug-in

+ + - + +

Table 2.1: This table shows how existing solutions meet our requirements.

Table 2.1 has a row that describes “Extension of OLSRd data sets and control messages”.
This solution is the proposed solution in [10] which was discussed in Section 2.1.3. Since it
has not yet been implemented it is impossible for us to say whether or not it meets our claims.
The (+/?) symbol has therefore been used to indicate this.

Nevertheless, this solution is an interesting approach as a starting point of view for developing
a new solution. This involves extending OLSR in such a way that we will not end up with the
same disadvantages that we have already found. The solution in Section 2.1.4 is interesting
with respect to comparing our solution, since it already has been implemented and is ready for
testing.

The next section presents some background information on OLSR. We need this information
in order to start designing an own name resolution system based on an extended version of
OLSR.

2.3 Optimized Link State Routing – OLSR

The Optimized Link State Routing (OLSR) is a proactive routing protocol built on an
ordinary link state algorithm. Unlike a reactive routing protocol like AODV, OLSR is table
driven. The behaviour of a reactive protocol and a proactive (table driven) protocol is
completely different. A main difference is that a proactive routing protocol periodically
broadcasts control messages to gather information from all nodes. It is then able to know the
structure of the whole topology. A reactive protocol only acts if there is no route to host and a
message is to be sent. Only if that occur, it broadcasts a route request.

All presented material in this section is based on the RFC 3626 [11] specification of OLSR
and another master thesis [13] written by Andreas Tønnesen who is also responsible for the
implementation of OLSRd.

 13

2.3.1 OLSR terminology

OLSR deals with some terms that need some explanation:

• A main (interface) address is the IP address that is used in the control traffic as
originator address. If a node only has one interface, this must be set to be the main
address. A node with multiple interfaces must choose one of these interfaces to be its
main interface address.

• The originator address is the same as the source address of a packet
.

2.3.2 OLSR Information Repositories

OLSR uses a set of control messages to exchange information between nodes. In order to
keep all the information from OLSR control messages, OLSR has different databases where
the information is recorded. This information is recorded or updated every time a control
message is received. The databases are in OLSR referred to as sets. These sets are illustrated
in Figure 2.5.

Figure 2.5: The OLSR information repositories.

As we can see from Figure 2.5, almost each set belongs to an information base. An exception
is the duplicate set. All information bases have only one set, except from the neighbourhood
information base which has four sets bound to it. This organisation of the database sets is
mainly to get an intuitive structure of what kind of information a node keeps track of. We now
describe in detail the purpose of each set:

 14

• Interface Association Set – Holds information about nodes that have multiple
interfaces that participate on the same network.

• Link Set – This set keeps track of all links and their state of nodes running OLSR.

• Neighbour Set – This database records all neighbours found.

• 2-hop Neighbour Set – Records all 2-hop neighbours.

• MPR Set – Holds information about all nodes this node has chosen as a MPR node.

• MPR Selector Set – Records every node that has chosen this node as a MPR node.

• Topology Set – Records all possible destination nodes on the network. The information
stored here reflects the topology the network.

• Duplicate Set – Keep track of all incoming packets to ensure that only packets with
new information will be forwarded from a node.

This is a very general introduction of the OLSR information repositories. We later in Section
2.3.5 look at how they actually are used, when we describe more of the OLSR algorithm. We
then get more detailed information about the different technical terms that are used in this
section.

2.3.3 OLSR Packet Format

In OLSR, the control messages are an important part of the algorithm. OLSR has defined its
own packet format that is used to transfer the different control messages in a standardized
way. The basic layout of any packet in OLSR is illustrated in Figure 2.6(omitting IP and UDP
headers).

 15

Figure 2.6: The basic layout of any packet in OLSR.

As we can see from Figure 2.6, the header is divided into two parts. Packet header is the
header which tells us information about the whole packet. The message header is information
about the message. A packet can contain multiple messages. This is indicated with the dotted
line in the message field in Figure 2.6.

The packet header consists of the following fields:

• Packet Length – Is the length of the whole packet in bytes.

• Message Type – Is the type of the control message included in the packet.

The message header consists of the following fields:

• Vtime – The validity time of the message. This field indicates how long the
information carried in the message after reception shall be considered as valid.

• Message Size – The size of this message including the message header.

• Originator address – Main address of the originator of the message.

• Time To Live – This field indicates how many times the message can be forwarded.

• Hop Count – The number of times the message has been forwarded.

 16

• Message Sequence Number – Each time a new OLSR packet is being sent from a
node, this field is incremented by one to ensure freshness of the information in the
message.

This packet format is used whenever a control message is generated and sent. The messages
carried in the packet have their own format. These are discussed in the next section.

2.3.4 OLSR Message Types

This section presents the three most important control messages. All these messages are
encapsulated into the message part of the general OLSR packet format as discussed in Section
2.3.3.

2.3.4.1 Multiple Interface Declaration message format

The Multiple Interface Declaration (MID) message has the format illustrated in Figure 2.7.

Figure 2.7: The OLSR MID message format.

This message is sent in the message part of the general OLSR packet format and only contains
the interface addresses of the node. If a node does not have multiple interfaces, MID messages
are not sent or generated.

2.3.4.2 HELLO message format

The message part of the general OLSR packet format when sending a HELLO message has
the format illustrated in Figure 2.8:

 17

Figure 2.8: The format of the OLSR HELLO message.

As we can see from Figure 2.8, the first 32 bits are only sent in the first portion of the
message. The next 32 bits are header values that are sent in each portion. After these headers
the neighbour interface addresses are stored. If the message has to be split up, it continues
with the second of the 32 bits headers followed by the next neighbour addresses.

The Link Code field has a special format that announces the Neighbour Type and the Link
Type. This format is illustrated in Figure 2.9.

Figure 2.9: The 8-bit Link Code field in the OLSR HELLO message.

We now look at the HELLO message in more detail; it contains the following fields:

• Reserved – There are two fields that have this name. These are fields that are reserved
for future possible extensions. The implementation of OLSR also needs to have these
fields in order to meet the RFC 3626 [11] specification.

• Htime - This field specifies the HELLO emission interval used by the node on this
particular interface, i.e., the time before the transmission of the next HELLO.

• Willingness - Specifies the willingness of a node to carry and forward traffic for other
nodes.

• Link Code - Specifies information about the link between the interface of the sender
and the following list of neighbour interfaces. It also specifies information about the
status of the neighbour.

 18

• Link Message Size - The size of the link message counted in bytes and measured from
the beginning of the Link Code field and until the next Link Code field.

• Neighbour Interface Address – The address of an interface of a neighbour node.

2.3.4.3 Topology Control message format

The format of a Topology Control message is illustrated in Figure 2.10.

Figure 2.10: The format of the OLSR Topology Control message.

This is sent in the message part of the general OLSR packet format. The members in this
message format are now presented in more detail:

• ANSN – This is a sequence number that the originator of the message increases each
time it detects changes in its neighbour set. In that way nodes can always get the most
recent information from the originator node of the TC message.

• Reserved – According to the specifications in RFC 3626 [11], this field must be set to
only zeroes.

• Advertised Neighbour Main Address – The main address of a neighbour of the
originator of the message.

2.3.5 OLSR functionality

Previous section described the three most important OLSR control messages. This section
discuss how these elements work together to achieve the goal of routing.

2.3.5.1 Multiple interfaces

Nodes on a network can have more than one interface which is connected to the same
MANET. The interfaces will have their own address. A mechanism for other nodes to
understand that these addresses belong to the same node is needed in OLSR. Multiple
interface declaration (MID) messages, presented in Section 2.3.4.1, are used to diffuse
information about multi-homed nodes. A MID message contains a list of all interface

 19

addresses the originator has. Upon receiving a MID message, a node updates the Multiple
Interface Association Information Base according to the information carried in the message.
All OLSR interfaces listed in the MID message are registered on the main address of the
originator. The main address is the address among all interface addresses. This is chosen
arbitrarily from the node itself. When adding a route to a node, OLSR adds routes to all
addresses of other interfaces on which the remote node runs OLSR, using the same path.

2.3.5.2 Link sensing

Link sensing is done to keep up to date information about links that exists between a node and
its neighbours. The link sensing is done with periodical exchange of HELLO messages,
presented in Section 2.3.4.2. By exchanging information in HELLO messages, the link set is
updated in each node. The main goal with link sensing is to find out whether or not it is
possible to send a message on a link. Each link to a neighbour gets an associated state of
either symmetric or asymmetric. Symmetric state indicates, that the link to that neighbour
node has been verified to be bi-directional. This means that it is possible to transmit data in
both directions. Asymmetric state indicates that HELLO messages from the node have been
heard, however it is not confirmed that this node is also able to receive messages.

During the process of link sensing a node records a set of Link Tuples in the Link Set:

(L_local_iface_addr,L_neighbour_iface_addr,L_SYM_time,L_ASYM_time,L_time)

Where L_local_iface_addr is the interface address of the local node and
L_neighbour_iface_addr is the interface address of the neighbour node. These to interface
addresses define the two endpoints of a link.

L_SYM_time is the time in which the neighbour interface is considered symmetric and
L_ASYM_time is the time in which the neighbour interface is considered heard. L_SYM_time is
used to decide the Link Type declared for the neighbour interface. If L_SYM_time is not
expired, the link must be declared symmetric. If L_SYM_time is expired, the link must be
declared asymmetric. If both L_SYM_time and L_ASYM_time are expired, the link must be
declared lost.

The last member of the tuple is L_time, which specifies the time at which this record expires
and must be removed.

The information stored here is used for population the neighbour set. This is to be discussed in
the next section.

2.3.5.3 Neighbour detection

As classical link state routing algorithms, OLSR also needs a mechanism to detect
neighbours. In OLSR, neighbours are only nodes that can be reached within a one-hop radius.
A neighbour can have the state of symmetric or asymmetric. The information that tells the
node if a link is symmetric is found in the Link Set that is populated through the link sensing
as described in Section 2.3.5.2. HELLO messages (Section 2.3.4.2) are periodically sent to

 20

accomplish this task. A simplified explanation of how this is done in OLSR is illustrated in
Figure 2.11.

Figure 2.11: The process of creating a symmetric link between two neighbours.

The process of neighbour detection in Figure 2.11 can be summarized as follows: A sends an
empty HELLO message. B receives it and registers A as an asymmetric neighbour. The reason
is that B can not yet find its own address in the HELLO message. B sends a HELLO message
to A, where it tells A that B has registered it as an asymmetric neighbour. A will in the HELLO
from B find its own address and will now register B as a symmetric neighbour. A sends a
HELLO to B again which tells B that A has declared B as a symmetric neighbour. B will now
register A as a symmetric neighbour, and tell A about this in a HELLO message.

Neighbour detection populates the Neighbour Set. Link sensing and neighbour detection are
closely related. Whenever there is created a new link entry, a corresponding neighbour entry
is recorded in the Neighbour Set. The difference is that a node can have several link entries
describing different links to the same neighbour, but there is only one neighbour entry per
neighbour. Every neighbour entry must only be recorded with the neighbour node’s main
address.

In addition, there is also up to date information about the status of a node when there are
changes in the link set. A neighbour is said to be a symmetric neighbour if there exists at least
one link entry where the symmetric timer is not timed out. When a link entry is deleted, the
corresponding neighbour entry is also removed if no other link exists for this neighbour.

A node records a set of Neighbour Tuples in the Neighbour Set:

(N_neighbour_main_addr, N_status, N_willingness)

Where N_neighbour_main_addr is the main address of a neighbour. N_status specifies if
the node is NOT_SYM (not symmetric) or SYM (symmetric). N_willingness is an integer
between 0 and 7, and specifies the node’s willingness to carry traffic on behalf of other nodes.

2.3.5.4 Two-hop neighbour detection

This mechanism entails updating the 2-hop Neighbour Set. Two hop neighbours are nodes
that are reachable through symmetric neighbours. Upon receiving a HELLO message from a
symmetric neighbour, all announced neighbours are added or updated in the two hop
neighbour set.

 21

A node records a set of 2-hop tuples in the 2-hop Neighbour Set:

(N_neighbour_main_addr, N_2hop_addr, N_time)

N_neighbour_main_addr is the main address of a neighbour. N_2hop_addr is the main
address of a 2-hop neighbour with a symmetric link to N_neighbour_main_addr. N_time
specifies the time at which the tuple expires and must be removed.

2.3.5.5 Multipoint relaying

Like other link state routing algorithms, OLSR also need to flood the network with link state
declaration packets. The purpose of these packets is that they announce to all other nodes
which neighbours they have. In OLSR these packets are called Topology Control Messages
(TC messages) and were presented in Section 2.3.4.3.

OLSR takes advantage of Multipoint Relaying (MPR) when flooding the network. The main
purpose with MPR is to reduce the total amount of overhead generated from the control
messages when they are broadcasted.

Each node that uses OLSR keeps track of all its two hop neighbours. A subset of the nodes of
the symmetric neighbour is maintained. Through this subset of nodes, the node, which
maintains this subset, can reach all two hop neighbours. The optimization is illustrated in
Figure 2.12.

 22

Figure 2.12: The difference between classical flooding and MPR flooding.

The left part in Figure 2.12 illustrates a classical flooding scheme and the right part the MPR
flooding scheme. The node coloured in black is a node which node N has chosen as a MPR
node. As we see the overhead is greatly reduced. It is reduced even more if the density of the
nodes is high, compared to the classical flooding scheme.

Each node announces its willingness to forward messages in HELLO messages to their
neighbours. If a node announces that it never forwards a message, this node must never be
chosen as MPR. Based on the different node’s willingness a calculation is performed to make
the MPR set as small as possible. This means that every two hop neighbour can be reached
with a minimum number of 1-hop neighbours.

Based on the willingness in the HELLO messages and the MPR calculation algorithm, the
MPR set gets populated. This set is maintained by each node to store the set of neighbours
which are selected as MPR. The MPR Set only records the neighbours’ main addresses.

2.3.5.6 MPR Selector detection

The MPR flooding scheme, that we discussed in 2.3.5.5, requires that nodes register which
neighbours have chosen them as MPR. This is done by setting the Neighbour Type in Figure
2.9 to MPR_NEIGH in Link Code field of the HELLO message. Upon receiving a HELLO
message, a node checks the announced neighbours in the message (Figure 2.8) for entries
matching one of the addresses used by the local node. If an entry has a matching address and

 23

the neighbour type of that entry is set to MPR_NEIGH, then an entry is updated or created in the
MPR selector set using the main address of the sender of the HELLO message.

This mechanism populates the MPR Selector Set with MPR selector tuples:

(MS_main_addr, MS_time)

MS_main_addr is the main address of a node, which has selected this node as MPR. MS_time
specifies the time at which the tuple expires and must be removed.

2.3.5.7 Distribution of Topology Control messages

Link state routing algorithms entail that all nodes flood their information about their local
links. This is done by using Topology Control (TC) messages.

Based on the information received in a TC message, a node can get an overview of the whole
topology. TC messages are, as mentioned, flooded using the MPR flooding scheme. In OLSR,
based on the RFC 3626 specification [11], only the nodes that are chosen as a MPR node are
generating TC messages. The result is less overhead, since there is a high possibility that there
are less MPR nodes, than ordinary nodes. In addition, the TC messages are flooded
throughout the network using the MPR flooding scheme. With these two techniques OLSR is
greatly optimized compared with ordinary link state routing algorithms.

TC messages are generated on a regular interval and immediately when changes are detected
in the MPR selector set.

In order to keep track of the freshness of the information contained in the message, we need to
have some sort of a counter which indicates this. In OLSR, the TC messages contain a
sequence number called Advertised Neighbour Sequence Number (ANSN). Whenever a node
detects a change in its advertised neighbour set, the ANSN is increased.

As a result from exchanging TC messages to nodes all over the network, the topology set is
populated. Upon receiving a TC message, the header values are inspected and processed from
the following rules:

• If no entry is registered in the Topology Set on the address of the originator, one is
created with validity time and ANSN set according to the TC message header.

• If an entry is registered in the Topology Set on the address of the originator and with
ANSN lower than the received ANSN, then that entry is updated according to the
received TC message.

• If an entry is registered in the Topology Set on the address of the originator with an
ANSN equal to the received ANSN, then the validity time of the entry is updated.

Topology Tuples are recorded in the Topology Set and have these members:

(T_dest_addr, T_last_addr, T_seq, T_time)

 24

T_dest_addr is the main address of a node, which may be reached in one hop from the node
with the main address T_last_addr. Typically, T_last_addr is a MPR of T_dest_addr.
T_seq is a sequence number, and T_time specifies the time at which this tuple expires and
must be removed.

2.3.5.8 Forwarding of OLSR control messages

Based on the information in the OLSR Information Repositories and header fields of an
incoming OLSR packet, a special forwarding algorithm is used:

1. If the link on which the messages arrived is not considered symmetric, the message is
silently discarded. To check the link status the set is queried.

2. If the TTL carried in the message header is 0, the message is silently discarded.
3. If this message has already been forwarded the message is discarded. To check for

already forwarded messages, the Duplicate Set is queried.
4. If the last hop sender of the message, not necessarily the originator, has chosen this

node as MPR, then the message is forwarded. If not, the message is discarded. To
check this, the MPR selector set is queried.

5. If the messages are to be forwarded, the TTL of the message is reduced by one and the
hop count of the message is increased by one before broadcasting the message on all
interfaces.

The Duplicate Set is an OLSR repository for storing messages that have already been
forwarded. The message itself is not stored. Just the originator address, message type and
sequence number is recorded and is enough to identify the message. This data is cached for a
fixed time of DUP_HOLD_TIME suggested to be 30 seconds. If any messages are forwarded
from a node, a new entry in this repository is created. Then, if the node receives the message
again after a while, the node finds it in this repository and discards it. In this way, a node
reduces the number of unnecessary retransmissions.

2.3.5.9 Route calculation

This mechanism is common for all link state routing protocols. OLSR parses information
from the Information Repository and calculates a routing table which contains a path to all
nodes that is registered there. The routing table record tuples with the following members:

(R_dest_addr, R_next_addr, R_dist, R_iface_addr)

R_dest_addr is a destination address to a node which is R_dist number of hops away.
R_next_addr is the address of the next node or first hop in the path towards the destination
node. R_iface_addr is the address of the local interface which R_next_addr is reachable
through.

From the specification in RCF-3626 [11], the algorithm to calculate the routing table is a
shortest path algorithm. This shortest path can be summarized very simplified as follows:

 25

1. First all one hop symmetric neighbours are added.
2. Then all two hop neighbours are added which have not already been added from the

one hop neighbour set. A node can in theory exist in both the one-hop Neighbour Set
and in the 2-hop Neighbour Set which depends on the topology.

3. Finally, the Topology Set is iterated, and entries made in the routing table out of nodes
that not already has been added.

2.3.6 OLSR Summary

As a summary, we can mention that OLSR is a link state routing protocols that is optimized
by using the MPR flooding scheme. By using MPR, the overhead generated from control
messages compared to classical link state routing algorithms is reduced.

The three most important control messages in OLSR are:

• Multiple Interface Declaration (MID) messages are generated by a node, if a node has
multiple interfaces. MID messages are used to announce these addresses which should
be mapped to the same node at another node.

• The purpose of HELLO messages is to perform link sensing, neighbour detection and
MPR selection.

• Topology Control (TC) messages announce a node’s link state. TC messages are
emitted through the MPR flooding scheme.

In order to keep track of the information which the control messages give the nodes, different
information repositories are maintained. These information repositories are also used when
the control messages are generated. The content in the control messages are based on the
information recorded in the OLSR information repository.

2.4 Background summary

The background chapter of this report has first presented related work on the problem of name
resolution in MANETs. We gathered all the solutions in a table that shown us that none of
them met all our claims to a name resolution system. The MIDAS working group has
proposed a solution in a design document [10] that we base our further work on and try to
design a new name resolution system to try to fulfil all our claims. OLSR was therefore
briefly explained in order to be able to create a design.

 26

3 Design

This chapter of the thesis discusses how our design of a name resolution system by extending
OLSR is developed. First we present some design requirements. Then we go in more depth
into what we need to do technically in order to be able to implement a name service for nodes
on a MANET.

3.1 Design claims and assumptions

In Section 1.1.4, we declared a set of claims that our solution has to meet. The characteristics
of a MANET that were described in Section 1.1.1 needs us to design a service that is a
distributed service. This service must transfer data with a minimal cost and a high efficiency.

Section 2.1.3 discusses an alternative way of designing a name resolution system for
MANETs by extending OLSR to propagate both IP addresses and names. Every node is then
able to create bindings between IP addresses and names of all the nodes on the MANET.

In Section 2.1.4 we saw that OLSRd already has a plug-in extension that distributes names
through new defined name messages. The main disadvantage with this solution is that the
efficiency is poor, since the name messages are only broadcasted every second minute.

The solution proposed in this thesis aims to solve the efficiency problem. We want to be able
to offer a node a binding of name and IP addresses of the other nodes whenever there is a
route to a node. The most logical way to attack this problem is to extend the control messages,
as we identified in Section 2.3.4. This is because that route discovery is done through these
control messages. Nevertheless, we must take into consideration the problem of overhead that
this approach creates. Our solution should try to keep a balance of overhead at a minimum
and efficiency at a maximum.

Although this solution seems to be a good approach compared to other solutions, there are
some consequences by extending the OLSR control messages. We therefore need to declare
the following assumptions:

• All nodes on the MANET must use our extension of OLSR in order to make our name
resolution system working.

• Compatibility between our solution and the standard version or older versions of
OLSR can not be guaranteed.

With these claims and assumptions we have created a base for our solution. The next sections
discuss the design of our solution in more detail and create a foundation of the
implementation process.

 27

3.2 Extending the control messages

As mentioned in Section 2.3.4 the three most important types of control messages in OLSR
that offer us route discovery are HELLO, TC and MID messages. This section discusses
which of the control messages need extensions and how it can be done to reach our goals that
defined in Section 3.1.

3.2.1 TC messages

As explained in Section 2.3.5.7, Topology Control (TC) messages are used to announce
neighbours of a node to all other nodes on the MANET.

By extending the TC messages to contain the name of the originator, all nodes on the network
are able to know the name of nodes that are chosen as a MPR node. The reason is that all
nodes that are chosen as MPR generate TC messages, which are flooded to all possible
destinations.

In an ordinary link state routing algorithm, all nodes broadcast their link states. As we have
already discussed in Section 2.3.5.7, this is not the case in OLSR. A node only generates TC
messages if it has been chosen as MPR by another node(s). We have therefore yet to design a
mechanism to distribute the names of the nodes which are not selected as MPRs. This is
discussed further in Section 3.2.2.

TC messages have, as all of the other types of OLSR control messages, a message body. In
TC messages the announced neighbours is stored as we can see in Figure 2.10. A node that is
not chosen as MPR chooses another node as MPR if the MANET consists of at least one two-
hop neighbour. The MPR node includes the main address of the MPR selector into the TC
message. In order to distribute names of the nodes that are not MPR, the TC message body
must also be extended to contain the name as well as the IP address.

The easiest way to design and implement this extended version of TC message is to statically
allocate space for the name with a fixed number of bytes. In the standard C library there is
defined a constant called MAXHOSTNAMELEN set to 256 bytes. If we should allocate such a
great space for the originator name and all of the neighbour names, the TC message could be
potential very large.

 28

Figure 3.1: A MPR node with 4 MPR selectors.

As an example we can imagine a MANET that has a MPR node with four MPR selectors,
visualized in Figure 3.1. For simplicity we assume that all hostname of all nodes have a length
of 15 characters which means that all names need 15 bytes. In the TC messages, this means
that only 15 out of 256 bytes are used. Nevertheless 256 bytes are sent.

The optimal solution only needs 15*5=75 bytes to store all the names in a TC message. The
solution from the last paragraph uses 256*5=1280 bytes. Out of these 1280 bytes, only 75
bytes are used, and 1205 bytes are transferred as empty information for the receiver of the
TC message.

This example proves that such a design of a new TC message does not meet our design
requirements in Section 3.1 to minimize the overhead in control messages as much as
possible. A new design of a TC message must be developed to meet our requirements.

The next idea is to include a byte for each name field that tells us the length of the name. In
that way we can dynamically allocate storage space for the name. As a result, the total
overhead becomes almost optimal as described above. The names claim 75 bytes. In addition
a byte is used for each name to tell us the length under processing of the TC message. The
total extra overhead for this imagined TC message is 80 bytes.

If we look at the two different solutions regarding the design of the TC message, we can
compare them together in a table with respect to the total overhead. The UDP-, IP- or the
OLSR-headers are not included in this calculation. The example as shown in Figure 3.1 is
used. There is one MPR node that has four neighbours connected to it.

Original TC-message: Static name storage in the
TC message.

Dynamic name storage in
TC-message

160 bytes 1440 bytes 240 bytes
Table 3.1: A comparison of overhead with different solutions to include the name into the TC message.

If we have a MPR node with 4 neighbours the message size has the values shown in Table 3.1
dependent on the design of the TC message. We assume that all neighbours have an
announced hostname of 15 bytes. We see if we for each name field should have allocated 256
bytes for a name, we get a very large TC-message.

 29

As a conclusion from Table 3.1, the dynamic name storage must be chosen. The difference
regarding the size of a TC message is that high, that we do not have any choice.

The new TC message is illustrated in Figure 3.2. The ANSN and the RESERVED fields are
untouched and still existing. Next there is a name field where the name of the originator is
stored. The name field is explained in Figure 3.3. Then the main address of the first
announced neighbour is stored followed by the name field of this neighbour. Then the main
address of an eventual second neighbour is stored, followed by its name field. The TC
message body is generated in this manner until all neighbours are represented.

Figure 3.2: The new design of the OLSR TC-message.

The name fields used in the body of the TC message is described in Figure 3.3. One byte is
used to tell the receiving node the length of the name. These fields of the TC message have
variable lengths, which depends on the length of the hostname that is stored there. The length
can have values between 0 and 255. 0 means that there no name represented for the node.

Figure 3.3: The name field used in the control messages.

3.2.2 HELLO messages

In Section 3.2.1 we described how we can distribute names with OLSR TC-messages. There
is still one unsolved challenge: A node that is not chosen as MPR from any other nodes on the
MANET is not generating TC-messages. We therefore also have to extend HELLO messages
in order to distribute the name between neighbours. If one of these neighbours is chosen as
MPR of one node, it begins generating and sending TC messages where all of its neighbours
with names are announced.

As explained in Section 2.3.5, HELLO messages are used for link sensing, neighbour
detection and MPR calculation. They are exchanged within the one-hop neighbourhood from

 30

a node to accomplish these tasks. A HELLO message is never forwarded, since the
information only makes sense between two neighbours.

The extension of HELLO messages is almost the same as for the TC message in Section 3.2.1.
The difference is that we only have to include the name of the originator. We do not need to
include the names of all of the neighbours that are announced in the message body.

The purpose of announcing neighbours through HELLO messages are just for making the
receiver able to keep track of all two-hop neighbours and for later MPR calculation.
Nevertheless, the design of this name resolution service based on OLSR focuses on
distributing names through TC-messages. TC-messages are flooded to all possible
destinations, and it therefore gives us no meaning of sending the name of the neighbours in
the HELLO messages. We also minimize the overhead with this solution.

The new design of a HELLO message, shown in Figure 3.4, consists therefore only of a name
field, as explained in Figure 3.3, that contain the name of the originator of the HELLO-
message.

Figure 3.4: The new HELLO message contains just the name of the originator of the HELLO message.
The name is stored in a name field as explained in Figure 3.3.

3.2.3 TC-messages and HELLO-message working together

In Section 3.2.1 and 3.2.2, we have focused on how we can extend the messages. But as
mentioned in Section 3.2.2, an extension of TC messages can not serve a distribution of
names alone. We need help of HELLO messages as we can see in Figure 3.5.

 31

Figure 3.5: Name distribution with HELLO messages and TC messages working together.

TC messages are generated, based on the information from the HELLO messages. During
exchanging HELLO messages, the Neighbour Set is populated. When the MPR node in Figure
3.5 generates a TC message it includes all of its neighbours. Our extension in Section 3.2.1
provides that all the names of each neighbour are included. To keep the overhead at a
minimum, we not include names in the HELLO messages for a node which is generating TC
messages. If a node generates TC messages, the name are only transmitted through TC
messages to avoid wasting of bandwidth capacity.

3.3 Extending data structures

In order to store the extended information from the control messages in memory of each node,
we also need to extend the data structure of OLSR. This can be done in two ways: Either by
extending the routing table, or defining a new data structure that is shared and used upon
receiving both HELLO and TC messages.

The most logical solution is to extend the existing OLSR information repositories. Upon
receiving HELLO messages, the names are stored in the Neighbour Set. Likewise, upon
receiving TC-messages the names are stored in an extended version of the Topology Set. From
these sets, an extended version of the routing table is created, which holds all bindings to all
possible destinations. There are two arguments against doing it this way:

If we should extend the routing table, the routing table calculation algorithm must be modified
as we shortly explained in Section 2.3.5.9. In addition the two-hop neighbour set must also be
extended with name, since the second step in the routing table calculation algorithm is to
populate the routing table with two hop neighbours. This means that we also have to store
names about every announced neighbour in the HELLO messages. The result is that
unnecessary much overhead is generated. In addition this does not coincide with our earlier
discussed design in Section 3.2.2.

The second argument against extending the existing data structure to store names is that
names can be faster and more independent detected between neighbours. If we create an own
name table for OLSR, that is used upon processing HELLO messages and TC messages as we
can see in Figure 3.6, a node can record the names from both of them without going through
the routing table.

 32

Figure 3.6: A shared data structure to store names from HELLO messages and TC messages.

Figure 3.6 shows us how we can store names in memory of a node without going around the
routing table. The name table is populated under parsing of a HELLO message or a TC
message. The name table records tuples with the following information:

(IP address, Name, Validity time)

IP address is the IP address that corresponds to the Name and vice versa. Validity time is
a timer which decides when the tuple’s information expires and is considered invalid. The
tuple should then be removed from the name table. The purpose of having a validity timer for
names is that we never can guarantee for how stable the topology is. A validity timer ensures
that we always have a certain freshness of the information.

The name table can technically be created using a linked list. Different functions for inserting,
deleting, lookups etc. must be created.

3.4 Generating and parsing HELLO messages and TC messages

Generation of HELLO messages and TC messages is done on a fixed time interval. The
parsing technique used in the implementation of OLSR, OLSRd [12], uses a common parsing
function for all messages that are being received on the socket. The message type is extracted
out of the OLSR header. The message is then forwarded internally to the corresponding
parsing function of that control message type.

In this section we focus on the naming of the nodes. This is an important aspect since it is a
policy of how we identify nodes by names. Then we talk about the changes in the algorithms
of generation and parsing of the HELLO messages and TC messages.

3.4.1 Naming

We described in Section 1.1.2 that the DNS naming convention very much reflects the
organisational structure of a domain. MANETs are characterized by a flat structure where
there is no hierarchy. We therefore meet problems if we use the same name convention as
DNS does in MANETs.

Internet is grouped in blocks of IP addresses that are reserved for an organisation. These
blocks are mostly connected to a domain and sub domains. This is a structure that MANETs
never have. Nevertheless, there can be a policy that all nodes in a MANET in Oslo should

 33

have predefined domain suffix. An example of such naming can be: hostname.oslo-
manet.no. Again this way of naming requires that the oslo-manet.no domain is a reserved
domain for MANET users. This raises the question about security. There must be restrictions
of when you are allowed to use a domain suffix. In Oslo there might be one domain suffix,
and in Bergen another one. Anyway, there is no guarantee, that the user of the nodes follows
these rules by them selves. Automatic configuration of the domain suffix parameter should be
configured automatically, to ensure that nodes always belong to the correct domain suffix.
Such automatic configuration is though difficult to make work in MANETs. Dynamic Host
Control Protocol (DHCP) servers are used for configuration like this in Internet. We then face
the problem with the client-server relationship, which can not work on MANETs.

To solve this problem, is out of scope of this thesis. It is though interesting to see that existing
naming convention is not as intuitive to include in MANETs as it looks. When it comes to
naming nodes in this thesis, we keep our selves to that MANETs have a flat structure and that
domain suffixes have no meaning. None of the nodes are organised in a hierarchical manner.
A node’s hostname is therefore used for naming the nodes. We must therefore assume that all
nodes have unique names. This is also an assumption in DNS [1], since the naming
convention there is <hostname>.<domain suffix>.

Later in this report, we test our solution in NEMAN [14], which is a program for emulation
MANETs. Using only the hostname as the name of a node cause problems, since all the
emulated nodes get the same name, since they physically run on the same node.

There is one way of making a difference in their name. Each emulated interface are assigned
an own interface. Including the name together with the hostname causes the names to be
unique in our emulation test bed.

The name identifier for each node is therefore defined as: <hostname>-<interface-name>.

3.4.2 Generation and parsing of HELLO messages

The HELLO messages are generated on a fixed time interval. Default emission interval for
HELLO messages is two seconds. All headers that existed before will coexist with our
extension, as discussed in Section 3.2. In Section 3.4.1 we decided that the name should be
the hostname of a node in addition to the name of the interface. The hostname has been
configured by the user and can be extracted with the gethostname() function in C, while the
name of the interface can be extracted from the OLSRd.

The already implemented version of OLSR, OLSRd [12], uses two types of HELLO message
structures: One type for use internally at a node, and one packet structure which is in use right
before sending the packet of the HELLO message. This is more detailed discussed in Section
4.2.2. After all, both of these structures need extensions to include the name of the originator.
The internal structure might only have a buffer, since it is only used for internal processing. In
the packet, we must dynamically allocate the size it needs in the header for the name in the
HELLO message. The name is stored in the name field together with its name length as we
saw in Figure 3.2. All functions that work on the internal structure and the packet structure
before sending of a HELLO message must therefore be modified.

 34

When it comes to parsing of HELLO messages, the function that parses HELLO messages
needs to be extended. This is because of the new header where the originator’s name is stored.
The name length is extracted, and the name is copied from the given position to the name
length’s number of bytes from the input buffer. Next, the name extracted is inserted into the
name table.

As a summary we now know that the existing algorithms are still used for the generation and
the parsing. They are just extended or modified in order to store and read the names in a
HELLO message.

3.4.3 Generation and parsing of TC messages

As discussed in Section 3.4.1, the name of a node is set to be <hostname>-<interface> to
make it work in NEMAN. This rule must also be followed in TC messages.

TC messages are generated on a time interval. The default time interval is every fifth second.
We have already mentioned that default behaviour is that a node does not send a TC message,
if it has not been chosen as an MPR node. This is though configurable in OLSRd. A node can
be set to include either just the MPR selectors (default), both MPR selectors and MPR nodes
or all of the neighbours. The last option results in more redundancy but also much more
overhead on the network. The recommended behaviour is that the TcRedundancy in
olsrd.conf that set this option should be kept on the default value which is 0.

The originator’s name is stored in the header together with its name length in the name field.
When the generation algorithm adds all the neighbours, names to them are also added as well.
They are stored in the message body as show in Figure 3.2.

The parsing is done likewise. First the originator’s name is extracted. Then, in addition to the
neighbours IP addresses their names are also extracted. Later, when all header values and
names are extracted out from the message, all the names found in the message are inserted
into the name table.

The generation and parsing algorithm of TC messages are extended to store and read names.
The extended parts of the algorithm do not affect the existing storing and extraction parts of
the algorithm.

3.5 Name resolution

The sections in this chapter have until now only focused on how the names should be
distributed and stored in memory on each node. The next step is to make the names
exchanged from HELLO messages and TC messages useful for name resolution.

In Section 3.1 one of the design requirements is that the service is application layer
transparent. This because that software should avoid being special designed for use on
MANETs. Software that work in the Internet, should also work on MANETs.

 35

In the Internet we have DNS servers that maintain database files over the nodes which the
server is responsible for. The DNS service is based on a client-server relationship which does
not work in a MANET as already mentioned in Section 1.1.3.

In this design chapter we have been discussing how all nodes can know the names of all of the
other nodes. We then have the opportunity to make all nodes acting as a name server.

Each time an application perform a DNS request, an operating system function is called. In a
Unix/Linux environment this function is gethostbyname(). This function first parses the file
/etc/hosts to try to find requested IP address that correspond to the name. If there was no
match, the function tries to find a name server configured in /etc/resolv.conf and forward
the request to that server. In Windows environment we also have a similar file. The path to
that file is C:\WINDOWS\system32\drivers\etc\hosts if C: is the drive that Windows is
installed on.

To serve name resolution it is enough to only perform maintenance on this hosts file and store
all information from the name table there. Any modifications to the /etc/resolv.conf file
are unnecessary.

Figure 3.7: A local name resolution with a DNS server running on a local node.

An alternative solution, as shown in Figure 3.7, is that we install and run a name server such
as BIND [15] on each node. This is perhaps a more robust solution, but requires more
configuration before our name service can be used. Regardless, the focus on this thesis is how
we can distribute the names. We therefore choose to perform the easiest solution and perform
maintenance on the hosts file in the operating system. The solution can be visualized as it is
done in Figure 3.8.

Figure 3.8: A local name resolution with the hosts file on a local node.

The hosts file in both Unix/Linux and Windows platforms has this structure:

<IP address> <Corresponding name> <An eventual alias>

As discussed in Section 3.4.1 the names are only the hostname without any domain suffix.
The structure of our hosts file will therefore be:

<IP address> <Corresponding name>

Aliases are often just the hostname, and used to create shorter names out of the fully qualified
domain name of a specified node.

 36

In order to make maintenance of this hosts file, a new timer entry must be registered into the
scheduler of OLSRd. This timer function is called every time the scheduler starts a new loop
in the main loop of the scheduler. As a result we can therefore guarantee that we have a well
updated hosts file. The timer function empties the file each time it is called by the scheduler,
and rewritten, based on the current information stored in the name table.

This solution serves us an application transparent solution. The applications do not have to
care about where the names are coming from. They just perform DNS requests as they use to
do in the Internet.

3.6 Summary

In this chapter we have discussed the design of a fully distributed name service to nodes in a
MANET. This is done by extending the TC messages and HELLO messages to include
names. A new data structure, a name table, is created in OLSRd to store bindings between
names and IP addresses. This is updated upon receiving HELLO messages and TC messages,
and makes names fast to detect between neighbours. The generation and parsing techniques
also have to be extended. Last, we need a way to make the information in the name table
available to the applications running on the node. This is done by maintaining the hosts file
that is located in /etc/ in Unix/Linux environments.

 37

 38

4 Implementation

This chapter discusses the implementation details that are needed to be done in OLSR in order
to distribute names between nodes. This implementation part consists of analysing the
dataflow of the existing OLSRd implementation. The version used of OLSRd is 0.4.10. After
this analyse is done, we know where to implement the extensions that we explained in the
design chapter. We then look at, and discuss how the implementation is done. At the end we
test our implementation in the NEMAN emulation environment.

4.1 OLSRd dataflow

In Section 3.4.2 and 3.4.3 of the design chapter, we talked about which elements that needed
to be modified in order to reach our goal. To find out exactly which elements that needs to be
modified we look at the dataflow that the OLSRd implementation has.

4.1.1 Dataflow of generating HELLO messages

The dataflow for generating HELLO messages is illustrated in Figure 4.1.

Figure 4.1: Dataflow for HELLO message generation. If an interface is going to be initialized with OLSR,
a scheduler event is registered on that new interface. This event is for HELLO message generation, and is

triggered on a fixed time interval.

 39

From Figure 4.1 we see that if a new interface is going to be initialised in OLSRd, a scheduler
event is registered on that interface. This procedure is done when OLSRd is started. A
scheduler event is triggered for generating HELLO messages on a fixed time interval of every
2nd second. The scheduler function olsr_register_scheduler_event() registers a pointer
to the generate_hello() function. In the main loop of the scheduler, the timer of the
HELLO message event is checked. If the timer of two seconds has expired, the
generate_hello() function is called.

As mentioned in the design chapter, the implementation of OLSRd uses two types of a
HELLO message:

• An internal structure.

• A packet structure.

The internal structure of the HELLO message is used for calculation of header values and
message body. In addition the internal structure is used when processing a HELLO message.
The packet structure is the structure of the HELLO message that is sent over the network.
This structure is encapsulated into an OLSR packet structure and takes into consideration
correct byte order of header values and message body values. It also has the responsibility to
store header members and message body members in correct order, so the receiver can parse
the packet after it has been received. The internal structure has a more intuitive outline, while
the packet structure is a more complex version of the HELLO message. Therefore, all
processing on a HELLO message is done on an internal structure.

The generate_hello() function only uses the internal structure of the HELLO message.
generate_hello() calls olsr_build_hello_packet() to fill the internal HELLO message
with correct values of header values and message body values. In a HELLO message the
message body consists of IP addresses to neighbours with corresponding information like the
link state (symmetric or asymmetric link).

Our extension of a HELLO message consists of only adding the originator’s name into the
header. The olsr_build_hello_packet() must therefore be modified as well as the internal
structure of the HELLO message.

From Figure 4.1, we can see that after the internal HELLO message is filled with correct
information, the message is forwarded to a function that converts the message to the packet
format and sends it. These functions are serialize_hello4() and serialize_hello6().
Which of them that is called, depends on which IP version that is used. When using IPv4,
serialize_hello4() is called, and when using IPv6 serialize_hello6() is called.

serialize_hello4() and serialize_hello6() must also be modified and/or extended to
store correct information into the HELLO message. The packet structure of the HELLO
message must be extended as well, in order to be able to put the information about the
originator’s name and name length as discussed in Section 3.2.2.

We have now analysed which of the functions that need modifications or extensions with
respect to the generation of HELLO messages. In Section 4.2.2 we describe how the
implementation is done.

 40

4.1.2 Dataflow of parsing HELLO messages

Parsing of HELLO messages is done as illustrated in Figure 4.2.

Figure 4.2: Dataflow when parsing a HELLO message.

When OLSRd starts, a parser functions to all known message types registered. This is also
done for HELLO messages. The function olsr_process_received_hello() is registered as
function for parsing of HELLO messages. When a HELLO message is detected as the
incoming message type through olsr_input() and parse_packet(),
olsr_process_received_hello() is called, and the whole message is forwarded to that
function. The first task this function has, is to convert the packet version of the HELLO
message back to the internal message format. This is done in hello_chgestruct(). We need
to do some modifications in this function to parse the new message format correct. Neither the
name length nor the name is extracted from the message without any modifications. Parsing
of other header values also fails, since we redesign the HELLO message as mentioned in
Section 3.1 and 4.1.1.

After the process of parsing and converting from packet format to internal HELLO message
format is done, the HELLO message is ready for processing. This is done in
olsr_hello_tap(). Since this function does not take care of our name extension, we need to
modify this to store the name as discussed in Section 3.3. This should not be a comprehensive
extension. It should only imply calling a function for the new data structure, the name table,
for inserting or updating an entry. This is further discussed and shown how is implemented in
Section 4.2.3.

 41

4.1.3 Dataflow of generating TC messages

The dataflow of generating TC messages can be illustrated as it is done in Figure 4.3.

Figure 4.3: Dataflow of generating TC messages.

As an initial procedure, OLSRd registers a scheduler event to generate TC messages on each
interface. A TC message is generated on a fixed time interval of every fifth second.

OLSRd uses two types of a TC message:

• An internal structure.

• A packet structure.

Their purposes are the same as for the HELLO messages as we described in Section 4.1.1.

The function that is called from the scheduler each time this timer expires, is the
generate_tc() function. It then calls olsr_build_tc_packet() to create an internal
structure of the TC message.

 42

There are three modifications that we need to do: First, the internal structure needs to be
extended to include the originator’s name. Second, the internal structure needs to be extended,
so that every announced neighbour’s main address also includes their corresponding names.
Third, the olsr_build_tc_message() needs to be extended to store the names in the
extended internal structures of the TC message.

A TC message contains information about all necessary names of the originator and all MPR
selectors/neighbours that is to be announced. When an internal TC message is filled up with
correct information, olsr_build_tc_message() calls queue_tc() which again calls
serialize_tc4() or serialize_tc6(). serialize_tc4() is called when IPv4 addresses
are used and serialize_tc6() is called when IPv6 addresses are used. These two functions
build and send the TC message in the external format. We need here to modify and or extend
the serialize_tc4() and serialize_tc6() functions as well as the packet format of the
TC message.

4.1.4 Dataflow of parsing TC messages

The dataflow of parsing incoming TC messages can be illustrated as in Figure 4.4.

Figure 4.4: Dataflow of parsing TC messages.

When OLSRd starts, olsr_init_package_process() is called to add parser functions for all
known message types. This is also the case when coming to TC messages.
olsr_init_package_process() calls olsr_parser_add_function() with
olsr_process_received_tc() as an argument. The parser of all incoming messages is then

 43

registering a new parser function for the TC message type. When a TC message is detected
during parsing, olsr_process_received_tc() is called for further processing. We do not
need to do any modifications here.

When olsr_process_received_tc() is called from the parse_packet(),
olsr_process_received_tc() converts the received external version of the TC message
format to the internal message format. This is done in tc_chgestruct(). We need
modification and/or extensions in order to read all new members of the external TC message.
The internal TC message is already changed as discussed in Section 4.1.3.

When the message has been converted back to the internal format, olsr_process_received_tc()
calls olsr_tc_tap() for further processing. olsr_tc_tap() will update the topology set with new
known destinations, or update the timer on the existing ones. We must here also insert or
update our name table in order to keep track of new or known names. As discussed in Section
3.3 the name table entry consists of a timer that will expire. We want to remove nodes that do
not exist in the MANET due to frequent changes of the topology.

4.1.5 Summary code analysis

We now have pointed out which elements that we need to extend and/or modify. In Section
4.2, we will look at how we can implement these extensions. As a summary from this section,
some tables are presented in order easily to get an overview of which elements that we need to
modify or extend.

Elements regarding HELLO messages:

Functions Located in:
olsr_build_hello_packet() packet.c
serialize_hello4() build_msg.c
serialize_hello6() build_msg.c
hello_chgestruct() rebuild_packet.c
olsr_hello_tap() process_packet.c
Table 4.1: Functions that need modifications and/or extensions regarding HELLO messages.

Data structures Located in
struct hello_message
(internal HELLO message)

packet.h

struct hellomsg
(packet structure of the IPv4 HELLO
message)

olsr_protocol.h

struct hellomsg6
(packet structure of the IPv6 HELLO
message)

olsr_protocol.h

struct hellomsg
(packet structure of the HELLO message)

olsr_protocol.h

Table 4.2: Data structures that need modifications and/or extensions regarding HELLO messages.

 44

Elements regarding TC messages:

Functions Located in:
olsr_build_tc_packet() packet.c
serialize_tc4() build_msg.c
serialize_tc6() build_msg.c
tc_chgestruct() rebuild_packet.c
olsr_tc_tap() process_packet.c
Table 4.3: Functions that need modifications and/or extensions regarding TC messages.

Data structures Located in
struct tc_messsage
(internal TC message)

packet.h

struct tc_mpr_addr
(list of MPR selectors/neighbours in the
internal TC message)

packet.h

struct tcmsg
(packet structure of the IPv4 TC message)

olsr_protocol.h

struct neigh_info
(list of MPR selectors/neighbours in the
packet structure of the IPv4 TC message

olsr_protocol.h

struct tcmsg6
(packet structure of the IPv6 TC message)

olsr_protocol.h

struct neigh_info6
(list of MPR selectors in the packet structure
of the IPv6 TC message)

olsr_protocol.h

Table 4.4: Data structures that need modifications and/or extensions regarding TC messages.

4.2 Implementation of the extensions

This section describes how the implementation is done of the elements pointed out in Section
4.1.5. The code shown is only an abstract of the whole code, since it will most likely confuse
the reader if the whole code is shown here together with the explanation. The whole code can
be read in the CD contents described in Appendix A. When the code differs regarding to the
different IP versions, only IPv4 code is shown. This is to limit the code here and is an agent to
get a nice overview in this section.

When new code is presented, all extensions are commented as “Extended by Øyvind” or
“Extension”.

4.2.1 Implementing the name table

As discussed in Section 3.3, we need a dedicated data structure to store all names received
from within HELLO messages and TC messages. This data structure is hereby called the
name table. Our design of the name table was that it will record tuples with these fields:

(IP address, Name, Validity time)

 45

Since we want to include the extensions that our name service requires into existing code as
much as possible, we choose to include functions and declarations of the name table into an
existing C source file. The name service explained in this thesis is from the writer’s point of
view more related to TC messages than the HELLO messages. We therefore choose to add the
name table into where all information about the TC messages is stored. This is in the file
where the topology set is implemented, located in the tc_set.h and tc_set.c files. All
extensions that are related to the name table is therefore written in these two files.

The C structure of the name table is:

struct name_entry
{
 union olsr_ip_addr destination;
 char name[255];
 clock_t val_time;
 struct name_entry *next;
}

;

The IP address that correspond to the name vice versa, are two members of this structure.
Third member of this structure is the timer that tells when the validity of an entry expires and
must be removed. Fourth member is a next pointer, which indicates that the data structure of
the name table is a linked list. Table 4.5 describes how and where the name table is declared.

Data structures Located in
struct name_entry tc_set.h
extern struct name_entry* nametable
(The name table)

tc_set.h

Table 4.5: The new name table is an extended data structure of OLSR.

We need functions to manipulate the name table. These functions must handle initialisation of
the name table, inserting of new entries, deleting of expired entries, lookup of entries, printing
out information to standard output for debugging purposes and writing of a hosts file as
described in Section 3.5. Functions that corresponds to these functions and that will be created
are presented in Table 4.6.

Functions Located in:
olsr_init_nametable() tc_set.c
insert_name_entry () tc_set.c
delete_name_entry () tc_set.c
find_name_entry() tc_set.c
write_hostsfile() tc_set.c
time_out_nametable () tc_set.c
Table 4.6: Functions that is needed for the nametable.

The first function olsr_init_nametable() has the responsibility to initialise the name table.
A timeout function is registered in the scheduler from olsr_init_nametable(). This
timeout function, named time_out_nametable(), has the responsibility to iterate through the
name table and delete expired entries by calling delete_name_entry(). It also has the
responsibility to write the hosts file by calling write_hostsfile(). write_hostsfile()
might not be in use under all tests of the implementation. This is discussed in Section 4.3.1.2.
insert_name_entry() does as the name says. It inserts entries into the name table if no such

 46

entry exists identified by the IP address. This function also updates timers on existing entries.
To find existing entries, the find_name_entry() function is used.

4.2.2 Extending HELLO messages with names

In Section 4.1.1 and 4.1.5 we pointed out the functions and the data structures that need to be
modified or extended for generating our new design of HELLO messages.

The first step in our implementation is to extend the internal HELLO message structure
located in packet.h. This is done as follows (The extensions are commented with
“Extension by Øyvind”):

struct hello_message
{
 double vtime;
 double htime;
 union olsr_ip_addr source_addr;
 olsr_u16_t packet_seq_number;
 olsr_u8_t hop_count;
 olsr_u8_t ttl;
 olsr_u8_t willingness;
 struct hello_neighbor *neighbors;
 char name[MAXHOSTNAMELENGTH]; /* Extension by Øyvind */
};

The change to the internal structure is minimal. Only the originator’s name is additionally
stored here. The MAXHOSTNAMELENGTH macro is also a new extension and defined in
olsr_protocol.h. This macro is set to 255.

The next step is to store the hostname into the internal message when
olsr_build_hello_message() is called. This function is called every time a new HELLO
message is created to create the HELLO message out of a totally empty internal
hello_message structure:

/* Extension by Øyvind - Ask the OS for the hostname and store it in
 * the TC message.Max hostnamelength is 255 bytes
 */
 gethostname(message->name, MAXHOSTNAMELENGTH);
 /* End of extension */

With these changes the name is stored in the internal structure of a HELLO message.
gethostname() is a build-in function in C that asks the operating system after the current
configured hostname. The maximum number of characters read from the hostname returned
by the operating system is 255, which is the value of MAXHOSTNAMELENGTH. The function
stores the name into name member of the hello_message structure.

The next step is to build the packet version of the HELLO message. As pointed out in Section
4.1.5, that code is located in the serialize_hello4() and serialize_hello6() functions.
The different functions are called dependent on what IP version the interface is used.

Before we start implementing the extensions of serialize_hello4() and
serialize_hello6()we need to do some changes with the packet structure of the HELLO

 47

message. This structure is located in olsr_protocol.h. The modifications are done as shown
below:

struct hellomsg
{
 olsr_u16_t reserved;
 olsr_u8_t htime;
 olsr_u8_t willingness;
 olsr_u8_t name_len; //Extension
 struct hellinfo hell_info[1];
} __attribute__ ((packed));

It is important to notice that the name itself is not stored in this structure. Only the byte that
contains the name length is stored here. Since the structures have the attribute “packed” the
structure is stored in memory such that all structure members are aligned after each other in
memory. In our case we want a char pointer that can have dynamic length that depends on the
name. Though, a structure that has the “packed” attribute, a char pointer will only refer to one
byte in memory. If we try to write more than one byte, other information in the
structure/message will be overwritten. When we build the message on the output buffer, we
therefore need to add the name manually at the end of the message. Even if the name field of
the originator is added at the end of the message, this field is still considered as a header value
as in Figure 3.4.

If we read olsrd.conf located under /etc/ on Unix/Linux platforms, we can locate a
variable named TcRedundancy also mentioned in Section 3.4.3. This variable tells us what
kind of neighbours that we distribute through TC messages. The default value is 0, which
means that only the MPR selectors are announced. MPR selectors are as mentioned in Section
2.3.5.6, neighbour(s) of a node that has/have chosen this node as a MPR node. This is one part
of the optimizations regarding to overhead in OLSR compared to other link state routing
algorithms.

We shortly summarize the other values of the TcRedundancy option of OLSRd: If
TcRedundancy is 1, both MPR selectors and MPR nodes are announced as neighbours in the
TC message. Last, if TcRedundancy is 2, all neighbours are announced in the TC message.
This means that whenever a neighbour is detected, a TC message will be generated. Hence,
we do not add names into HELLO messages if TcRedundancy is 2 to minimize overhead, as
discussed in Section 3.2.3. If TcRedundancy is either 0 or 1, names must be stored into
HELLO messages in order to distribute the names to all nodes on the MANET.

This analysed problem is taken into consideration when building HELLO messages. Hence, a
Boolean variable is created at the top of build_msg.c:

/* Shared variable which is used by the serialize_hello[4/6] and
 * serialize_tc[4/6] function to decide wheter or not to put the
 * name in the HELLO messages. Extension by Øyvind
 */
static olsr_bool mpr_found;

This variable is set to true, if and only if the node has begun to distribute TC messages in
serialize_tc[4/6](). If TcRedundancy is 2 or mpr_found is true, we do not add the

 48

name into the HELLO message, since it will be distributed through TC messages whenever a
neighbour is detected:

/* Extension by Øyvind
 * The name is also sent in HELLO messages if TC Redundancy is less
 * than 2. If the TC Redundancy is 2 or that this node has generated
 * a TC message with data the name in HELLO messages is not added.
 * This to reduce overhead.
 */

if(olsr_cnf->tc_redundancy == 2 || mpr_found == OLSR_TRUE)
{

h->name_len = 0;
 /* Even if we not need to send the name, the byte

 * which indicates the length is still in the header.
 */

 curr_size++;
}
else
{

namelen = strlen(message->name);
message->name[namelen] = '-';
strcpy(&message->name[namelen+1], ifp->int_name);

 h->name_len = strlen(message->name);
 curr_size += h->name_len+1;
 }
 /*End of extension*/

As we can see from the code, the name_len member of the external HELLO message
structure always exists. This implies that the message size always is one byte greater than the
original HELLO message at this point. If the name is stored into the HELLO message, the
message size will increase with the size of the name plus this name_len byte.

In Section 3.4.1 we decided to change the naming convention to be like this:

<hostname>-<interface-name>.

This is handled in the code above after the else statement.

As mentioned, we had to add the name manually at the end of the message. This is done right
before the HELLO message is sent by calling net_outbuffer_push(). We therefore have to
get the pointer in the output buffer of the current position.

The curr_size variable keeps track of this position all the time. Whenever new data is added
to the message, this variable increases. We can see that the name length is already added to
the curr_size variable at this point. This is to define an empty message. As we can see from
the whole code in Appendix A, a partial packet is only sent if the message contains data. An
empty message is in addition to the original HELLO message header also including the
name_len member of the packet structure.

The correct position at the end of the message is therefore curr_size minus the name length.
The name_len byte is added before the message body, so that byte must not be taken into
consideration here.

 49

If TcRedundancy is less than two and the name length is greater than zero, we add the name
behind the external HELLO message into the message buffer as follows:

 /* Extension by Øyvind. We shall add the name if the tc_redundancy
 * is less than 2. We do not add the name if h->name_len has the
 * value 0. This means that mpr_found is FALSE or that we simply
 * do not have any name to add.
 */
 if(olsr_cnf->tc_redundancy < 2 && h->name_len > 0)
 {
 name = (char *)&msg_buffer[curr_size-h->name_len];
 strncpy(name, message->name, h->name_len);
 }
 /* End of extension */

The function serialize_hello6() is modified similarly, but not shown here because of the
reasons stated in the beginning of Section 4.2.

4.2.3 Parsing the new HELLO message

Parsing of a message received from the network implies to read it in a predefined way. The
structure of the message must be known in order to do the parsing correct. In Section 4.2.2 we
changed the external structure of the HELLO message that is sent between neighbours on a
MANET, as well as the internal message format.

In hello_chgestruct() the HELLO message is converted back to the internal format, which
implies modification and extension of this function. First we declare a new char pointer at the
top of this function:

char *name; //Extension by Øyvind

This pointer is to be set at the position at the end of the message, minus the value of the
name_len member of the packet structure of the HELLO message. We can then easily copy
the name from the input buffer and into the internal HELLO message at the receiver side:

/*Extension by Øyvind - Extract the name in the HELLO message */
if(m->v4.message.hello.name_len > 0)
{

name = (char *)m + (ntohs(m->v4.olsr_msgsize) –
m->v4.message.hello.name_len);

 strncpy(hmsg->name, name, m->v4.message.hello.name_len);
 hmsg->name[m->v4.message.hello.name_len] = '\0';
}
else
{

hmsg->name[0] = '\0';
}
/* End of extension */

 50

Since the name is stored at the end of the message, the message body does not last to message
size which is the end of the message. We must therefore alter the for-loop, to last from the
message body position to the message size minus the length of the name:

/* Changed by Øyvind. The name from the originator node carried
 * in the HELLO message is stored after all of the neighbor
 * nodes. Must therefore substract the name length
 */
 for (hinf = m->v4.message.hello.hell_info;
 (char *)hinf < ((char *)m +

(ntohs(m->v4.olsr_msgsize))-m->v4.message.hello.name_len);
 hinf = (struct hellinfo *)((char *)hinf + ntohs(hinf->size)))
{

for (hadr = (union olsr_ip_addr *)&hinf->neigh_addr;
 (char *)hadr < (char *)hinf + ntohs(hinf->size);
 hadr = (union olsr_ip_addr *)&hadr->v6.s6_addr[4])
 {

nb = olsr_malloc(sizeof (struct hello_neighbor),
"HELLO chgestruct");

 COPY_IP(&nb->address, hadr);

 /* Fetch link and status */
 nb->link = EXTRACT_LINK(hinf->link_code);
 nb->status = EXTRACT_STATUS(hinf->link_code);

 nb->next = hmsg->neighbors;
 hmsg->neighbors = nb;

}
}

When the process of converting from packet format to internal message format is finished, the
message will be processed. To HELLO messages this means to update the link set, the
neighbour set, the two-hop neighbour set, the MPR set and the MPR selector set. This is all
done with olsr_hello_tap().

In olsr_hello_tap() we only need to add the functionality of updating the name table. This
can easily be done with one single call on the insert_name_entry() available from the
tc_set.h as declared in Table 4.6. The call is implemented like this:

/*Exension by Øyvind-Insert the name into the nametable*/
insert_name_entry(message->source_addr, message->name, message->vtime);

The IP address and the name of the originator of the HELLO message are taken as the first
and the second argument. The third argument is the validity time. This is declared as an
argument to insert_name_entry(), since HELLO messages and TC messages operate with
different validity times. We also choose to use the same validity time from the received
control message, since we must rely on that we get a new similar control message from the
source node, as the one we newly have received.

By setting these rules we can always keep the name table updated as good as the routing table
of the node. It is important that the name table and the routing table are synchronized in this
way. Whenever a name in the name table is recorded, there should be a route in the routing

 51

table to the same host and vice versa. Our claim about efficiency will then be fulfilled. We
will get a binding between the IP address and the names as fast as possible.

4.2.4 Extending TC messages with names

Modification of TC messages and HELLO messages is done in nearly the same way. The
difference is that in TC messages, we also want to include the announcement of the
neighbours’ names.

The internal structure of the TC messages is located in packet.h and is extended as follows:

struct tc_message
{
 double vtime;
 union olsr_ip_addr source_addr;
 union olsr_ip_addr originator;
 char name[MAXHOSTNAMELENGTH]; //Extended by Øyvind
 olsr_u16_t packet_seq_number;
 olsr_u8_t hop_count;
 olsr_u8_t ttl;
 olsr_u16_t ansn;
 struct tc_mpr_addr *multipoint_relay_selector_address;
};

The tc_message structure is extended only with the originator’s name.

The last member of this structure has a pointer to a tc_mpr_addr structure. Here all
neighbours that are to be announced in the TC message are stored. The tc_mpr_addr pointer
can be considered as the TC message body as illustrated in Figure 3.2.

Next task is to extend the neighbour information. We include the names for each of them.
This is done in this way:

struct tc_mpr_addr
{
 double link_quality;
 double neigh_link_quality;
 union olsr_ip_addr address;
 char name[MAXHOSTNAMELENGTH]; //Extended by Øyvind
 struct tc_mpr_addr *next;
};

MAXHOSTNAMELENGTH is an extended macro defined to 255 bytes. A name has like HELLO
messages a maximum length of 255 bytes.

As mentioned a timer is registered in the scheduler to generate TC messages. When the timer
expires, generate_tc() is called, as seen in Figure 4.3. generate_tc() calls
olsr_build_tc_message() to build an empty internal version of the TC message out of an
empty one. olsr_build_tc_message() first adds all header values as it did originally. Then
it inserts the originator’s name:

/* Extension by Øyvind - Ask the OS for the hostname and store
 * it in the TC message. Max hostnamelength is 255 bytes

 52

 */
gethostname(message->name, MAXHOSTNAMELENGTH);
/* End of extension */

This is done in the same way as with HELLO messages in Section 4.2.2. gethostname() is a
build-in function in C that asks the operating system after the current configured hostname.
The maximum number of characters read from the hostname returned by the operating system
is 255, which is the value of MAXHOSTNAMELENGTH. The function stores the name into the name
member of the tc_message structure.

We now want to insert all of the neighbours in the TC message. As we can see from the next
abstract of the code in olsr_build_tc_message(), is that the number of neighbours depends
on the value of TcRedundancy in olsrd.conf (see also Section 3.4.2 and Section 4.2.2).

In the for-loop that iterates through all neighbours there is a switch-case statement. This code
illustrates how this is done:

switch(olsr_cnf->tc_redundancy)
{

case(2):
 {
 /* 2 = Add all neighbors */
 break;

}
case(1):

 {
 /* 1 = Add all MPR selectors and selected MPRs */

 break;
}
default:

 {
 /* 0 = Add only MPR selectors(default) */
 break;

}
}

If TcRedundancy is 2, all neighbours are added. When TcRedundancy is 1,
olsr_build_tc_message() must perform a lookup in the MPR selector set. If the neighbour
was not found there it performs a lookup into the MPR set. If not found in neither of these two
sets, the loop starts over with the next neighbour, if any, without adding the current one. If
TcRedundancy is 0, which is default, only a lookup into the MPR selector set is performed. If
the current neighbour was not found there, the loop starts over with the next neighbour, if any,
without adding the current one.

In all of these cases, if the requirement for adding the neighbour into the TC message is
fulfilled, we perform a lookup into the name table in order to find the neighbours’ names.

Normally, the names of the neighbours’ names are transported in HELLO messages. Though,
this is not the case if TcRedundancy on a neighbour is set to 2. The name in this scenario is
transported through a TC message from that node as discussed in Section 3.2.3. A name
should therefore be present in the name table, when coming to this point of generating TC
messages.

 53

Next, we perform a call on the function find_name_entry(), to find the name of the current
neighbour in the loop. If the name is found, which is almost guaranteed every time, the name
is added. Otherwise the string end terminator character is set at the beginning of the buffer:

/* Extension by Øyvind */
mpr_hostname = find_name_entry(&entry->neighbor_main_addr);
if(mpr_hostname != NULL)
{

strcpy(message_mpr->name, mpr_hostname->name);
}
else
{

message_mpr->name[0] = '\0';
}
/* End of extension */

The internal TC message is now created. We now discuss how the packet structure of the
message must be extended, and how we store all nodes from the internal TC messages into the
output buffer. The neigh_info structure can be considered as the message body where the
neighbours are located. The tcmsg structure can be considered as the header of the TC
message:

struct neigh_info
{
 olsr_u32_t addr;
 olsr_u8_t mpr_name_len; //Extension
} __attribute__ ((packed));

struct tcmsg
{
 olsr_u16_t ansn;
 olsr_u16_t reserved;
 /* Extended by Øyvind. In order to carry name from the origintator
 * node in the TC message we need the length of it.
 *The name itself is hooked on TC message after all MPR nodes.
 */
 olsr_u8_t name_len;
 /* End of extension */
 struct neigh_info neigh[1];
} __attribute__ ((packed));

The packet structures that compose the message body and the header of the TC message are
only extended with the name lengths. The name themselves must be put into the output buffer
manually. This is the same problem we met when building HELLO messages in Section 4.1.1.

The “packed” attribute organizes the memory so that all members of the packet are stored
right after each other. A char pointer always just allocate 1 byte in memory. The names
therefore overwrite other header values or message body values. To easily integrate our
extension of the TC message, we choose to store the originator’s name at the end of the
message. The originator’s name is still considered as a header value as declared in Figure 3.2.

 54

In this section we only present an abstract of the code. serialize_tc4() and
serialize_tc6() can be seen in Appendix A. The source code shown is only the code
related to IPv4.

The first thing that is done in serialize_tc[4/6]() is to insert all header values that are
stored in the internal TC message and into the packet structure of the message. This also
includes storing the name length into the header. The name itself is stored in the end of
message, because of the problem we meet with the attribute “packed” on packet format of the
TC message structure.

The current size of the message will be the TC message’s IPv[4/6] header, plus the length of
the host name, plus the byte that hold the name length. After this is added to the curr_size
variable, this is the message length that is considered as an empty TC message. An empty TC
message means a TC message without anything stored in the message body, which in TC
messages are information about neighbour nodes.

/* Extension by Øyvind - Get the name of the hostename.
 *
 * Name length is the string length of the hostname.
 */
namelen = strlen(message->name);
message->name[namelen] = '-';
strcpy(&message->name[namelen+1], ifp->int_name);
tc->name_len = strlen(message->name);
/* Current size is now the TC IPv4 header + the string length + the
 * byte which tells us the length of the string. */
curr_size += tc->name_len+1;
/* End of extension */

The next step is the iteration through the announced neighbours. In the code, these neighbours
are referred to as MPR selectors, since default behaviour is that only the MPR selectors are
added.

The loop that iterates through the MPR selectors is modified quite much, as we can see from
the code. All the names to all neighbours in the internal TC message must now be stored into
the output message buffer. This requires modification of the pointers that manipulates the
message output buffer.

First the IP address is added, and the current size of the message is increased by either 32 bits
or 128 bits depending on which IP version that is used. An IPv4 address is always 32 bits
long, while an IPv6 is always 128 bits long:

COPY_IP(&mprsaddr->addr, &mprs->address);
curr_size += ipsize;

The second step is to insert the length of the name to the current MPR selector node. The
length of the name is stored in one byte. This is enough to represent the name length in
decimal notation, since the maximum name length is 255 bytes. The current size of the
message is then increased by one byte:

/* Extension and modifications by Øyvind */
mprsaddr->mpr_name_len = strlen(mprs->name);
curr_size += 1;

 55

After the IP address and the name length of a neighbour, the name is stored. In order to
manage this, the pointer to the output buffer must point at the memory address right after
where the name length was stored. The pointer that now points at the output buffer is
currently a pointer type of a neigh_info structure, and is called mprsaddr.

This structure has been extended with the byte to include the name length. The length of this
structure is therefore now 5 bytes if we use IPv4 addresses and 17 bytes if we use IPv6
addresses.

In order to point at the correct position in the output buffer we increase this neigh_info
pointer by one. It will then point at the position right after currently added neighbour’s name
and name length:

mprsaddr++;

Next, we want to add the name of the MPR selector. We create a char pointer that points to
the location where mprsaddr now points to. This pointer is called mpr_name. The name from
the internal TC message is copied into the output buffer where mpr_name points to.

Then this pointer must be moved to point at the location after the name. The neigh_info
pointer, mprsaddr, is now set to point at the same location at the output buffer as the
mpr_name does, which is right after the current MPR selector’s name in the loop.

mpr_name = (char *)mprsaddr;
strncpy(mpr_name,mprs->name,strlen(mprs->name));
mpr_name += strlen(mprs->name);
curr_size += strlen(mprs->name);
mprsaddr = (struct neigh_info *)mpr_name;
/*End extension */

The last extension is to store the originator’s name into the message. We have already
discussed that the name will be stored at the end of the message, likewise as with HELLO
messages in Section 4.2.2. This procedure is done right before the message is sent. The name
length has already been added to the current size. Therefore the location where the name is to
be stored is current size minus the name length:

name = (char *)&msg_buffer[curr_size-tc->name_len];
strncpy(name, message->name,tc->name_len);

These are the main extensions and modifications that are needed to be done in order to store
all names with corresponding name lengths into the TC message that is to be sent. There are
also some other minor modifications. These can be seen in the Appendix A.

4.2.5 Parsing the new TC messages

The structure of the TC message that is sent over the network has now changed. When an
incoming message is identified as a TC message, olsr_process_received_tc() is called by
parse_packet() as we can see from Figure 4.4.

 56

olsr_process_received_tc() will first call tc_chgestruct() to convert from the packet
format to the internal format, before any further processing. Since we have altered the design
of the TC message, we need to do some extensions and modifications here to read the TC
message correctly.

In the top of the tc_chgestruct() function, we declare some new variables we need further
down in the function:

char *name, *mpr_name; //Extension by Øyvind
olsr_u8_t mpr_name_len; //Extension by Øyvind

The char pointers are set to positions where the names are stored in the input message buffer.
The name pointer will be set to point at the location where the name of the originator is, while
the mpr_name is set to point at the names of the announced neighbours in the TC message
during the iteration of the message body. mpr_name_len is a temporary variable used for
extracting the name length of the neighbours.

First the name of the originator is extracted. This is done similarly as with HELLO messages.
The position of the name in the input message buffer is the messages size, minus the length of
the name. We can now, after setting the correct position of this name pointer, easily copy it
into the internal message format:

/*Extension by Øyvind */
name = (char *)m + (ntohs(m->v4.olsr_msgsize)-tc->name_len);
strncpy(tmsg->name, name, tc->name_len);
tmsg->name[tc->name_len] = '\0';
/* End of extension */

Next, a minor modification is done in the for-loop that iterates through the message body.
Since we have added the originator’s name at the end of the message, we must extend the for-
loop to read the message including the message size plus the length of the name to the
originator.

As illustrated in Figure 3.2, each announced neighbour is stored after each other in the body
of the TC message. A neighbour is in our new design of a TC message represented with first
the IP address, then a name field which consist of the name length and the name. In Section
4.2.4, we extended the neigh_info structure with the name length. After this byte, the name
of the neighbour is stored. The mpr_name char pointer must therefore be updated every time
the for-loop starts over to point at the correct position after name_len byte.

The whole for-loop will as a consequence from the two paragraphs above, be extended and
modified quite much:

/* Changed by Øyvind. The name from the originator node carried in
 * the TC message is stored after all of the MPR nodes. Must
 * therefore substract the name length (-tc->name_len)
 */
for (maddr = mprsaddr;

(char *)maddr < ((char *)m +
(ntohs(m->v4.olsr_msgsize))-tc->name_len);)

{

mprs = olsr_malloc(sizeof(struct tc_mpr_addr), "TC chgestruct");
COPY_IP(&mprs->address, &maddr->addr);

 57

 mpr_name_len = maddr->mpr_name_len;

 /* Extension by Øyvind */
 maddr++;
 mpr_name = (char *)maddr;
 strncpy(mprs->name, mpr_name, mpr_name_len);
 mprs->name[mpr_name_len] = '\0';
 mpr_name += mpr_name_len;
 maddr = (struct neigh_info*)mpr_name;
 /* End of extension */

 mprs->next = tmsg->multipoint_relay_selector_address;
 tmsg->multipoint_relay_selector_address = mprs;
}

The IP address and the mpr_name_len are extracted first from the maddr structure which is of
the neigh_info type. The maddr++ statement that originally was an increase statement of the
for-loop is moved down to the body. The pointer is increased by one, which means that we
move 5 bytes forward in the memory where the message input buffer is stored.

We move 5 bytes forward in memory if IPv4 addresses are used and 17 bytes with IPv6
addresses. This is the same technique used when building TC messages in Section 4.2.4.

We set the mpr_name char pointer to the same location as the maddr. From there we can
extract a neighbour’s name and copy it into the internal message format. After that has been
done we increase the mpr_name pointer’s memory location to point at the length of the
neighbour’s name further ahead in memory.

The location is now either the end of the TC message body or at the next neigbour’s IP
address and nam_len values. The maddr pointer is therefore set to the same location as the
mpr_name after it has been increased. We are now finished with the extension that regards to
parsing of the new TC message.

A similar extension is done for IPv6 parsing of TC messages, and can be seen in Appendix A.

When the converting of the internal TC message format is finished,
olsr_process_received_tc() forwards it to olsr_tc_tap() for further processing.
Originally, this code nearly mere updates the topology set. We also need to update the name
table with the originator’s name and the all the names of the neighbours.

The validity time is the same as stored in the TC message. In that case, the name table and
routing table will be synchronized when it comes to updated information. To update the name
table, the following implementation has been done in olsr_tc_tap():

/* Øyvind - If SYM neighbor, extract the information from
 * the TC header to update the name entry
 */
insert_name_entry(message->originator, message->name, message->vtime);

/* We also insert the mpr node names */
mpr = message->multipoint_relay_selector_address;

while(mpr!=NULL)
{

 58

insert_name_entry(mpr->address, mpr->name, message->vtime);
mpr=mpr->next;

}
//End of extension

With these extensions to the olsr_tc_tap(), all names have been taken care of and we are
finished with the processing of the TC message.

4.2.6 Other changes in OLSRd

In order to initialise the name table, the olsr_init_nametable() must be called when the
initialisation of OLSRd is happening. These calls are done in olsr.c in the
olsr_init_tables() function. This initial procedure is done when OLSRd is starting.
olsr_init_tables() needs only one extension at the bottom after other initialisation calls:

/* Initialize nametable (Øyvind) */
olsr_init_nametable();

During the implementation process, the need to have an overview of the name table has been
present. This is quite useful for debugging purposes. When printing out information to
standard output about neighbours and topology the print_nametable() in tc_set.c, is used
to view information about the name table on the screen. This function is designed in the same
way as the other print function for showing information about other tables to the screen.
print_nametable() is implemented to be called right after all of the other print functions in
olsr_process_changes() located in olsr.c. The only extension of this function was to
implement a call to the print_nametable() function:

print_nametable(); //Extension by Øyvind

4.3 Testing the implementation

This section tests if our implementation works as expected according to our design.
We first describe our test environments in Section 4.3.1. Further in Section 4.3.2, 4.3.3, 4.3.4
and 4.3.5 we describe the different tests.

Our tests do not take into consideration environmental factors, such as node mobility, grey
zones etc. We only want to test the functionality in these tests. If the tests pass without respect
to environmental factors, we also expect that our solution behave similar as OLSRd acts with
these factors. The OLSRd program has run through many tests earlier, and we expect that our
extension not affects its behaviour. We have only extended the control messages hence the
behaviour should be the same as before, regarding to packet loss and other failures that occurs
from environmental factors.

As a start a simple test is done between three one-hop neighbours in Section 4.3.2. Then we
start changing the topology to be more and more complex to see if the names are successfully
distributed to all nodes independently of the complexity of the topology.

 59

4.3.1 Test environments

To test our implementation we have two test environments. These are described in the next
subsections.

4.3.1.1 Real nodes

We can run OLSRd on real hosts. A main limitation is that we can not hire people at the
university campus to run around with mobile nodes. The alternative is therefore to use only a
number of nodes that are connected to each other to test basic functionality of our
implementation.

4.3.1.2 NEMAN

NEMAN [14] is an emulation environment that is able to emulate a MANET with hundreds of
nodes on the computer that runs it. This is done by creating emulated interfaces, where each
emulated node is assigned an interface.

NEMAN consists of two parts: A background process, called topoman, which emulates the
interfaces, and a GUI to interact with this process.

The GUI has to be run on a different machine than the machine that the background process
of the emulation runs at. In order to send control messages, from the GUI at one machine to
the other machine that runs the emulation, a listener is needed to receive NEMAN control
messages and to interact with topoman. This is accomplished with a shell script called
listen.sh, and has to be run all the time where topoman is running.

The GUI of NEMAN has these control buttons as illustrated in Figure 4.5.

Figure 4.5: The control buttons in the graphical user interface of NEMAN.

OpenFile opens a scenario file. This is a file that describes how the topology initially is going
to be, which implies setting correct links between neighbours and coordinates in the emulated
area. An example of such a scenario file is shown below:

Coordinates of the nodes
$node_(0) set X_ 100.0
$node_(0) set Y_ 100.0
$node_(0) set Z_ 0.000000000000
$node_(1) set X_ 250.0
$node_(1) set Y_ 100.0
$node_(1) set Z_ 0.000000000000
$node_(2) set X_ 400.0
$node_(2) set Y_ 100.0
$node_(2) set Z_ 0.000000000000

 60

Links definitions
$god_ set-dist 0 1 1
$god_ set-dist 1 2 1

This is the scenario file used in test presented in Section 4.3. Appendix A contains scenario
files on this format for each test.

If we push Prepare after we have opened a scenario file, the GUI sends control messages to
topoman at the other machine. This control message contains information about all the links
and which nodes that exist in the MANET. Figure 4.6 presents an illustration of the GUI after
the scenario file has been loaded and the Prepare button has been pushed. After the Prepare
button has been pushed, we can start the OLSR routing protocol implementation on each
emulated interface by pushing Start OLSRDs.

Figure 4.6: The graphical user interface after the scenario file is loaded, and the ”Prepare” has been
pushed. At the top we can see the control buttons. Below them we can see the geographical area where the
nodes are simulated to be.

For testing our implementation, NEMAN gives us one challenge that we must solve. We do
not have the possibility to read the standard output on the emulated nodes. In addition we do
not have the possibility to write hosts files from all the emulated nodes, since they run at the
same host. The hosts file will be shared among all of the emulated nodes, which means that
this will not work. When we use NEMAN to test our implementation, we must be able to read
information that the nodes get during exchanging the OLSR control messages in another way.

OLSRd has support for so-called IPC connections, and is used by different plug-ins and the
OLSRd GUI front-end. The code for the IPC front-end is located in ipc_frontend.c (see
Appendix A). By default, a TCP socket is bound to port 1212. Information about new routes
is printed out as messages on this socket. A function in ipc_frontend.c, named
ipc_route_send_rtentry() is responsible for this task. Originally it prints out routing table
information on this form:

1,10.0.0.2,10.0.0.2,1,eth0

 61

This line tells us that there is a route to destination 10.0.0.2 through 10.0.0.2 that is 1 hop
away.

We must extend this message, to also print out the hostname of the destination node. The new
design of each message that is sent on TCP port 1212 is then:

1,10.0.0.2,10.0.0.2,1,eth0,<destination host name>

In order to do this, we must include tc_set.h in the header of ipc_frontend.c to be able to
read our name table:

#include "tc_set.h"

Then we start with the extension of ipc_route_send_rtentry(). We first ask the name table
with the find_name_entry() function to find the name of the destination node of the routing
table entry. We then need a name_entry pointer and a char buffer to store the name. This is
declared among the other variable declarations in the top of the ipc_route_send_rtentry()
function.:

struct name_entry *dest_name_entry; //Extension by Øyvind
char *tmp, tmp2[10], dst_hostname[255]; //New char buffer by Øyvind

If no name is found to the destination address, we print out an appropriate message. This can
be the case, since it can take some time to transport the TC messages to all possible nodes on
the MANET. The extension is implemented as follows:

/* Extension by Øyvind */
dest_name_entry = find_name_entry(dst);
if(dest_name_entry == NULL)
 strcpy(dst_hostname, "No name found yet");
else
 strcpy(dst_hostname, dest_name_entry->name);

/* Modified by Øyvind to include the name or
 * the "No name found yet" string of the message:
sprintf(packet2, "%d,%s,%s,%s,%d,%s\n", add, olsr_ip_to_string(dst),

 dst_hostname, tmp, met, tmp2);
/* End of extension */

If we connect to the TCP port 1212 with a program like netcat onto a node that runs OLSR,
we are able to read all routing destinations together with the hostname. This is the way we
read information from the name table when using NEMAN to test our implementation.

There is still one challenge left regarding the connection to the TCP port 1212. All the nodes
emulated in NEMAN run on one computer. Since they run on the same computer, the TCP
port can only be bound to one interface at a time. A shared library has been created to
accomplish this task. This library is called libsocktap, and is developed by Matija Pužar and
Sergio Cabrero Barros at the University of Oslo, Department of Informatics.

In order to make the testing easy, a shell script is made. This script takes an interface name as
an argument. The shell script binds the TCP socket on port 1212 to that interface given as
argument, and display the information in netcat. The shell script is called
check_neighbours.sh (see Appendix A) and implemented as follows:

 62

#!/bin/sh

LD_PRELOAD=/usr/local/lib/libsocktap.so SO_BINDTODEVICE=$1
CONVERT_PORT=1212 nc localhost 1212

With this shell script together with the extended IPC front-end we can easily see all routing
destinations with corresponding destination names at each emulated interface in NEMAN.

The nodes are identified by the interface which they are running on. They are named tap1,
tap2, tap3 to tapn, and have to corresponding IP addresses 10.0.0.1, 10.0.0.2, 10.0.0.3
to 10.0.x.x. To check the information from the node with IP address 10.0.0.2, we run
check_neighbours.sh like this:

./check_neighbours.sh tap2

As an example we will get the following on the standard output :

1,10.0.0.1,10.0.0.1,1,tap2,dmms-lab119-tap1

The output can be read as: We have a route to destination address 10.0.0.1 through node
with IP address 10.0.0.1 from interface tap2 with destination name dmms-
lab119.ifi.uio.no-tap1.

4.3.2 Test scenario 1

The first test consists of a simple topology which is illustrated in Figure 4.7. It is an important
test, because we can test to see whether or not names are transported correctly through
HELLO messages. In this topology we expect that there will not be exchanged any TC
message if TcRedundancy is 0. If we set this value to 2, we expect that TC messages will be
sent between the neighbours, and that HELLO messages are generated without names. This is
the main purpose of this test, to see whether or not this functionality is working as expected.

Figure 4.7: The topology of the first test scenario.

Since we are only having one-hop neighbours, we have the ability to use real nodes with
wired connection between them as described in Section 4.3.1.1. We can then test the
print_nametable() function that prints out the name table to standard output. In addition we
can also test to see if the write_hostsfile() function works.

The topology in Figure 4.7 consists of the nodes that are described in Table 4.7.

 63

IP address OS hostname Interface name OLSR hostname
10.0.0.11 debiandesktop eth0 debinandesktop-eth0
10.0.0.3 debianlaptop eth0 debinalaptop-eth0
10.0.0.150 debianserver eth0 debianserver-eth0
Table 4.7: Configuration of the nodes in the first test scenario.

We will now run OLSRd on each of these hosts. The test scenario in this section will be used
to perform two individual tests. In the first test, we will set TcRedundancy to 0 which is the
default value. Then, in the second test we set it to 2.

The next two section prints out the information that are printed to standard output on each of
the hosts.

4.3.2.1 Results with TcRedundancy equal to zero

This section presents the results when TcRedundancy is set equal to zero. The standard output
that OLSRd generates is the result that we use in the evaluation. The nodes used in this test
are the nodes that are declared in Table 4.7.

Standard output on debiandesktop (10.0.0.11):

 *** olsr.org - 0.4.10 (Nov 20 2007) ***

--- 17:13:52.11 -- LINKS

IP address hyst LQ lost total NLQ ETX
10.0.0.150 0.875 0.000 0 0 0.000 0.00
10.0.0.3 0.938 0.000 0 0 0.000 0.00

--- 17:13:52.11 -- NEIGHBORS

IP address LQ NLQ SYM MPR MPRS will
10.0.0.3 0.000 0.000 YES NO NO 3
10.0.0.150 0.000 0.000 YES NO NO 6

--- 17:13:52.11 --- TOPOLOGY

Source IP addr Dest IP addr LQ ILQ ETX

--- 17:13:52.11 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.3 debianlaptop-eth0
10.0.0.150 debianserver-eth0

 64

Standard output on debianlaptop (10.0.0.3):

 *** olsr.org - 0.4.10 (Nov 20 2007) ***

--- 17:13:44.90 -- LINKS

IP address hyst LQ lost total NLQ ETX
10.0.0.11 0.938 0.000 0 0 0.000 0.00
10.0.0.150 0.984 0.000 0 0 0.000 0.00

--- 17:13:44.90 -- NEIGHBORS

IP address LQ NLQ SYM MPR MPRS will
10.0.0.11 0.000 0.000 YES NO NO 3
10.0.0.150 0.000 0.000 YES NO NO 6

--- 17:13:44.90 --- TOPOLOGY

Source IP addr Dest IP addr LQ ILQ ETX

--- 17:13:44.90 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.150 debianserver-eth0
10.0.0.11 debiandesktop-eth0

Standard output on debianserver (10.0.0.150):

 *** olsr.org - 0.4.10 (Nov 20 2007) ***

--- 17:14:33.16 -- LINKS

IP address hyst LQ lost total NLQ ETX
10.0.0.11 0.938 0.000 0 0 0.000 0.00
10.0.0.3 0.984 0.000 0 0 0.000 0.00

--- 17:14:33.16 -- NEIGHBORS

IP address LQ NLQ SYM MPR MPRS will
10.0.0.3 0.000 0.000 YES NO NO 3
10.0.0.11 0.000 0.000 YES NO NO 3

--- 18:14:33.16 --- TOPOLOGY

Source IP addr Dest IP addr LQ ILQ ETX

--- 17:14:33.16 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.3 debianlaptop-eth0
10.0.0.11 debiandesktop-eth0

From these results, we can see that all names are found on each node. HELLO messages
distribute names correctly, when they shall do it. We can also see that the topology table is
empty on each host. This means that none of the hosts have received a TC message, which is
the case when we only have a MANET with one-hop neighbours and TcRedundancy set to 0.

 65

As a conclusion of this test, we can say that sending and receiving HELLO messages with our
extension works.

4.3.2.2 Results with TcRedundancy equal to two

This section presents the results when TcRedundancy is set equal to two. The standard output
that OLSRd generates is the result that we use in the evaluation. The nodes used in this test
are the nodes that are declared in Table 4.7.

Standard output on debiandesktop (10.0.0.11):

 *** olsr.org - 0.4.10 (Nov 20 2007) ***

--- 17:21:27.70 -- LINKS

IP address hyst LQ lost total NLQ ETX
10.0.0.150 0.992 0.000 0 0 0.000 0.00
10.0.0.3 0.999 0.000 0 0 0.000 0.00

--- 17:21:27.70 -- NEIGHBORS

IP address LQ NLQ SYM MPR MPRS will
10.0.0.3 0.000 0.000 YES NO NO 3
10.0.0.150 0.000 0.000 YES NO NO 6

--- 17:21:27.70 --- TOPOLOGY

Source IP addr Dest IP addr LQ ILQ ETX
10.0.0.3 10.0.0.150 0.000 0.000 0.00
10.0.0.3 10.0.0.11 0.000 0.000 0.00
10.0.0.150 10.0.0.11 0.000 0.000 0.00
10.0.0.150 10.0.0.3 0.000 0.000 0.00

--- 17:21:27.70 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.3 debianlaptop-eth0
10.0.0.150 debianserver-eth0

 66

Standard output on debianlaptop (10.0.0.3):

 *** olsr.org - 0.4.10 (Nov 20 2007) ***

--- 17:21:20.59 -- LINKS

IP address hyst LQ lost total NLQ ETX
10.0.0.150 0.992 0.000 0 0 0.000 0.00
10.0.0.11 0.998 0.000 0 0 0.000 0.00

--- 17:21:20.59 -- NEIGHBORS

IP address LQ NLQ SYM MPR MPRS will
10.0.0.11 0.000 0.000 YES NO NO 3
10.0.0.150 0.000 0.000 YES NO NO 6

--- 17:21:20.59 --- TOPOLOGY

Source IP addr Dest IP addr LQ ILQ ETX
10.0.0.11 10.0.0.150 0.000 0.000 0.00
10.0.0.11 10.0.0.3 0.000 0.000 0.00
10.0.0.150 10.0.0.11 0.000 0.000 0.00
10.0.0.150 10.0.0.3 0.000 0.000 0.00

--- 17:21:20.59 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.11 debiandesktop-eth0
10.0.0.150 debianserver-eth0

Standard output on debianserver (10.0.0.150):

 *** olsr.org - 0.4.10 (Nov 20 2007) ***

--- 17:22:09.33 -- LINKS

IP address hyst LQ lost total NLQ ETX
10.0.0.3 0.992 0.000 0 0 0.000 0.00
10.0.0.11 0.992 0.000 0 0 0.000 0.00

--- 17:22:09.33 -- NEIGHBORS

IP address LQ NLQ SYM MPR MPRS will
10.0.0.3 0.000 0.000 YES NO NO 3
10.0.0.11 0.000 0.000 YES NO NO 3

--- 17:22:09.33 --- TOPOLOGY

Source IP addr Dest IP addr LQ ILQ ETX
10.0.0.3 10.0.0.150 0.000 0.000 0.00
10.0.0.3 10.0.0.11 0.000 0.000 0.00
10.0.0.11 10.0.0.150 0.000 0.000 0.00
10.0.0.11 10.0.0.3 0.000 0.000 0.00

--- 17:22:09.33 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.11 debiandesktop-eth0
10.0.0.3 debianlaptop-eth0

 67

The time elapsed to update correct information in the name table was greater than the test in
Section 4.3.2.1. It was updated at the same time when the topology table was updated. This is
an expected result, since all names are supposed to be only exchanged by TC messages. We
also see from the Topology table in standard output that all nodes got TC messages with all
known neighbours, because the topology table consists of all possible paths on the network.
This is a consequence of that TcRedundancy is 2.

The test was successful since we can see that HELLO messages do not include names when
TcRedundancy is 2. In addition we can conclude that sending and receiving of the new type of
TC messages work correctly.

4.3.2.3 Other results of the first test scenario

From the results in Section 4.3.2.1 and 4.3.2.2 we have also tested the print_nametable()
function. This function writes name table information of the OLSR standard output. It prints
out the information shown below:

--- 17:22:09.33 --- NAMETABLE

Destination IP addr Destination Name
10.0.0.11 debiandesktop-eth0
10.0.0.3 debianlaptop-eth0

The last test with this test scenario is to show if /etc/hosts file is correctly updated. It is
written by the write_hostsfile() function which is called by the name table scheduler
timeout function. The /etc/hosts file for each node is presented below:

debiandesktop:/home/oyvind/masteroppgave# cat /etc/hosts
127.0.0.1 localhost #localhost
10.0.0.11 debiandesktop #myself
10.0.0.3 debianlaptop-eth0 #debianlaptop-eth0
10.0.0.150 debianserver-eth0 #debianserver-eth0

debianlaptop:/home/oyvind/masteroppgave# cat /etc/hosts
127.0.0.1 localhost #localhost
10.0.0.3 debianlaptop #myself
10.0.0.11 debiandesktop-eth0 #debiandesktop-eth0
10.0.0.150 debianserver-eth0 #debianserver-eth0

debianserver:/home/oyvind/masteroppgave# cat /etc/hosts
127.0.0.1 localhost #localhost
10.0.0.150 debianserver #myself
10.0.0.11 debiandesktop-eth0 #debiandesktop-eth0
10.0.0.3 debianlaptop-eth0 #debianlaptop-eth0

All names are stored, and applications on each of the hosts, will now be able to perform a
DNS request to reach all destinations on the network. There is only one comment. The names
stored on the first and the second line are only the OS hostname. The name convention as
discussed in Section 3.4.1 is not used for names for the node itself, because we not need this
in NEMAN.

 68

4.3.3 Test scenario 2

In this test scenario and the following ones, we use the network emulator NEMAN as
described in Section 4.3.1.2. Scenario files that have been created for NEMAN can be seen in
Appendix A.

In this test we want to examine if the names that should be distributed through intermediate
nodes. The TcRedundancy variable in olsrd.conf is set to 0 and the topology that is used in
this test scenario is illustrated in Figure 4.8.

In this scenario, the names will be distributed as follows, if our implementation works as
intended:

The names of node 1 and 3 will be distributed through HELLO messages. Node 2 will
generate TC messages that consist of addresses and names of the nodes 1 and 2. In this way,
the name of node 1 will be distributed so that node 3 receives it. The final expected result is
that all nodes have bindings between names and corresponding IP addresses.

We use the GUI on NEMAN to start our version of OLSRd, and use the
check_neighbour.sh script that was described in Section 4.2.6.

Figure 4.8: Topology used in the second test scenario. The topology shown here is a snapshot from the
NEMAN GUI.

We get the following results of the different nodes:

Node 1 that is running on IP address 10.0.0.1 on interface tap1:
[root@dmms-lab119 sbin]# ./check-neighbours.sh tap1
1,10.0.0.2,10.0.0.2,1,tap1,dmms-lab119-tap2
1,10.0.0.3,10.0.0.2,2,tap1,dmms-lab119-tap3

 69

Node 2 that is running on IP address 10.0.0.2 on interface tap2:
[root@dmms-lab119 sbin]# ./check-neighbours.sh tap2
1,10.0.0.1,10.0.0.1,1,tap2,dmms-lab119-tap1
1,10.0.0.3,10.0.0.3,1,tap2,dmms-lab119-tap3

Node 3 that is running on IP address 10.0.0.3 on interface tap3:
[root@dmms-lab119 sbin]# ./check-neighbours.sh tap3
1,10.0.0.1,10.0.0.2,2,tap3,dmms-lab119-tap1
1,10.0.0.2,10.0.0.2,1,tap3,dmms-lab119-tap2

The conclusion of these results is that the names are successfully distributed through both
HELLO messages and TC messages. In addition we can conclude that building and parsing of
both message types are successful in this simple topology. The name table has also been
successfully updated on all nodes.

4.3.4 Test scenario 3

In this scenario we create a topology where one of the nodes has more neighbours than the
others. The topology is illustrated in Figure 4.9. In that way, we can test if the implementation
of the TC message body is done correctly when it comes to building it and parsing it. We also
here test if names get distributed through intermediate nodes in a more complex topology.

The TcRedundancy variable in olsrd.conf is set to 0. NEMAN is used to emulate all the
nodes, and the check_neighbours.sh script is used to print out results.

We have a similar topology in this test scenario (Figure 4.9) as we saw in Section 4.3.3. The
nodes are organised in a chain. The difference is that the most central node, 3, has four
neighbours. If our implementation works, the HELLO messages transport the names of node 1
and node 5 respectively to node 2 and 4. This is also the case of node 6 and 7 that will
transport their names through HELLO message to node 3. The rest of the nodes in this
topology are MPR nodes. They will therefore announce their names through TC messages and
include their MPR selectors so that all nodes get all the names.

 70

Figure 4.9: Topology used in the third test scenario. The topology shown here is a snapshot from the
NEMAN GUI.

We show only some results from chosen nodes. The nodes we chose to show information
from are: 1, 5, and 7. The results from the check_neighbours.sh script for these nodes are:

[root@dmms-lab119 sbin]# ./check-neighbours.sh tap1
1,10.0.0.2,10.0.0.2,1,tap1,dmms-lab119-tap2
1,10.0.0.3,10.0.0.2,2,tap1,dmms-lab119-tap3
1,10.0.0.4,10.0.0.2,3,tap1,dmms-lab119-tap4
1,10.0.0.5,10.0.0.2,4,tap1,dmms-lab119-tap5
1,10.0.0.6,10.0.0.2,3,tap1,dmms-lab119-tap6
1,10.0.0.7,10.0.0.2,3,tap1,dmms-lab119-tap7

[root@dmms-lab119 sbin]# ./check-neighbours.sh tap5
1,10.0.0.1,10.0.0.4,4,tap5,dmms-lab119-tap1
1,10.0.0.2,10.0.0.4,3,tap5,dmms-lab119-tap2
1,10.0.0.3,10.0.0.4,2,tap5,dmms-lab119-tap3
1,10.0.0.4,10.0.0.4,1,tap5,dmms-lab119-tap4
1,10.0.0.6,10.0.0.4,3,tap5,dmms-lab119-tap6
1,10.0.0.7,10.0.0.4,3,tap5,dmms-lab119-tap7

[root@dmms-lab119 sbin]# ./check-neighbours.sh tap7
1,10.0.0.1,10.0.0.3,3,tap7,dmms-lab119-tap1
1,10.0.0.2,10.0.0.3,2,tap7,dmms-lab119-tap2
1,10.0.0.3,10.0.0.3,1,tap7,dmms-lab119-tap3
1,10.0.0.4,10.0.0.3,2,tap7,dmms-lab119-tap4
1,10.0.0.5,10.0.0.3,3,tap7,dmms-lab119-tap5
1,10.0.0.6,10.0.0.3,2,tap7,dmms-lab119-tap6

All nodes got name from the other nodes. The implementation did not have any problems
with this topology.

 71

4.3.5 Test scenario 4

This test scenario is the last test that our implementation goes through. The topology consists
of one node that is very central to the other nodes, and has to be chosen as a MPR node to
reach one “outsider” node. The topology is illustrated in Figure 4.10, and its complexity has
been increased. This scenario tests to see whether or not the names are distributed correctly
through either HELLO messages or TC messages.

The TcRedundancy variable in olsrd.conf is set to 0. NEMAN is used to emulate all the
nodes, and the check_neighbours.sh script is used to print out results.

In the topology that is illustrated in Figure 4.10 we expect that only node 3 and 5 will be
selected as MPR nodes. Further, if everything works as expected, node 3 will include the
addresses and names of node 5 and 6, while node 5 will include addresses and names of nodes
1, 2, 3 and 4. Node 3 will therefore distribute the name of itself and node 6 through TC
messages to the other nodes. Node 5 will distribute the names of itself and node 1, 2, 3, and 4.

In that way node 6 will get the names from all nodes on the MANET through TC messages
from node 5. The name distribution between the MPR selectors of node 5 will go through
HELLO messages. In that way, node 5 can include their names into the TC message.

Figure 4.10: Topology used in the fourth test scenario. The topology shown here is a snapshot from the
NEMAN GUI.

We present only results from some chosen nodes. These are node 1, 5 and 6.

[root@dmms-lab119 sbin]# ./check-neighbours.sh tap1
1,10.0.0.2,10.0.0.5,2,tap1,dmms-lab119-tap2
1,10.0.0.3,10.0.0.5,2,tap1,dmms-lab119-tap3

 72

1,10.0.0.4,10.0.0.5,2,tap1,dmms-lab119-tap4
1,10.0.0.5,10.0.0.5,1,tap1,dmms-lab119-tap5
1,10.0.0.6,10.0.0.5,3,tap1,dmms-lab119-tap6

[root@dmms-lab119 sbin]# ./check-neighbours.sh tap5
1,10.0.0.1,10.0.0.1,1,tap5,dmms-lab119-tap1
1,10.0.0.2,10.0.0.2,1,tap5,dmms-lab119-tap2
1,10.0.0.3,10.0.0.3,1,tap5,dmms-lab119-tap3
1,10.0.0.4,10.0.0.4,1,tap5,dmms-lab119-tap4
1,10.0.0.6,10.0.0.3,2,tap5,dmms-lab119-tap6

[root@dmms-lab119 sbin]# ./check-neighbours.sh tap6
1,10.0.0.1,10.0.0.3,3,tap6,dmms-lab119-tap1
1,10.0.0.2,10.0.0.3,3,tap6,dmms-lab119-tap2
1,10.0.0.3,10.0.0.3,1,tap6,dmms-lab119-tap3
1,10.0.0.4,10.0.0.3,3,tap6,dmms-lab119-tap4
1,10.0.0.5,10.0.0.3,2,tap6,dmms-lab119-tap5

The results presented here, show that all nodes got names from the other nodes through
HELLO messages and TC messages. Our implementation also passed this test.

4.3.6 Conclusion – testing functionality

Our implementation passed all the tests presented in this section. Based on the results we now
have a name service that will work independently of the topology structure. HELLO messages
and TC messages work in harmony to update the name table.

4.4 Summary

This chapter first analysed which elements we needed to change by modifying them or
extending them. Then we discussed how we implemented our design. We needed to
implement modifications and extensions for generation of HELLO messages and TC
messages. A consequence of this was that we also needed to do modifications when OLSRd
parses these packets. The name table was created to store names. A timeout function deletes
old entries and writes updated information into the hosts file. The last section of this chapter
described how we tested our implementation. We declared four test scenarios that should
prove to us that our implementation works. In order to test the solution on a real MANET, we
used the MANET emulator NEMAN. All the tests passed, which proves that our solution
works independently of the topology structure.

 73

 74

5 Evaluation

This chapter evaluates our implementation of the name extension in OLSRd. First, we declare
our measurement metrics, and what input parameters that we use to measure them. Results of
the experiments are presented and analysed.

5.1 Test methods

This section describes how we design different experiments to evaluate our implementation.
For a design of different experiments we first have to define the metrics and which input
parameters we should use to measure the metrics. From the parameters we can create
individual experiments that measure the metrics in different ways. The metrics should be able
to measure if we fulfil our claims that are declared in Section 1.1.4.

Our main goal with these tests is to measure the total amount of overhead that our
implementation generates on the network in a given time interval, and compare the overhead
against other variants of the OLSR protocol. In our context overhead means the load in bytes
on the network that corresponds to the payload of the OLSRd control messages.

In OLSRd all control messages are stored in OLSRd packets. Hence, we also want to capture
the number of packets that are generated through the given time interval. This is because we
want to justify the result with respect to the overhead. The overhead is proportional to the
number of packets captured. We need to see results with both of these two metrics in order to
be able to conclude correctly.

The reason why overhead is an interesting metric, is that we declared as one of our claims
(see Section 1.1.4) that our solution should be efficient. Our solution should be efficient, since
bindings between names and IP addresses are created at the same time when a node is
discovered. The question is how the overhead is affected by this.

Summarized, the metrics that we want to measure are:

• Overhead in a given time interval of the experiment.

• The number of packets that are captured during the time interval of the experiment.

The experimental design is designed with the experiment parameters shown in Figure 5.1.

 75

Figure 5.1: The experimental design with all input parameters and their values.

Each parameter has a different purpose to measure different parts of our implementation. The
number of nodes is chosen to be between 10 and 100. With this parameter we can measure the
behaviour of our implementation with different node densities.

We also choose to use two different areas of 500x400 and 1000x800, to see if there is any
difference when the density of nodes decreases because of nodes are located in a greater
space.

These parameters are used to compare the standard version of OLSRd, together with our
implementation of the name extension in OLSRd and the name service plug-in that already
exists with OLSRd.

In order to be able to compare our solution with the plug-in, we must modify the plug-in value
of the emission interval of the name messages. The standard value is that the name messages
are emitted every 2nd minute. In OLSRd the HELLO messages are sent every 2nd second,
while the TC messages are broadcasted every 5th second. Hence, we change the value of the
emission interval of name messages in the plug-in to be two seconds and five seconds.

The last part we want to measure is how the overhead metric increases with respect to the
length of the hostname of a node. This is done by increasing the number of characters in the
hostname for each experiment.

Each measurement has duration of one minute. During one minute we capture a number of
packets that are able to explain the behaviour of OLSRd and give us a reliable result. All
experiments are measured five times to get a more reliable average result. An average value

 76

of the five measurements is enough in order to get a value that should not be affected by a
great variance in one of the tests.

We have now defined what we want to measure, but we also need some tools in order to
perform them:

• NEMAN – is used to emulate all nodes with the different versions of OLSRd.
• tcpdump – is used to capture the traffic from the monitor interface of NEMAN.
• Self made scripts – for measurements and extraction of the results, we create some

scripts for that purpose.

NEMAN is used in these experiments and is briefly explained in Section 4.3.1.2. It has a
monitor interface called tap0, where all traffic from all nodes are sent to. This traffic can then
be captured with a tool like tcpdump and stored to a file with this command:

tcpdump –i tap0 port 698 –w result

All packets that are captured with this command are stored into a file called result. It also
specifies which interface it should listen to, and a filter that specifies what traffic should be
captured. In our case, the filter is port 698, because that all OLSRd traffic is transported
through source and destination port 698. In order to do this the tcpdump command above are
included into a C-program, which controls that it runs five times with duration of 1 minute.

When the whole experiment is finished we can read the result file with tcpdump and extract
the information that we are interested in. In our experiments we are, as mentioned, interested
in the total amount of overhead during the experiment. Next, we have to summarize all the
packet lengths. Each line in the result file corresponds to a packet, and holds all the
information about it. A line from the result file might be presented as follows, with the
tcpdump -n -r result command:

17:15:00.752225 IP 10.0.0.2.698 > 10.0.255.255.698: UDP, length: 77

There exist various versions of tcpdump. It depends on the version of tcpdump how a packet
is presented, but in all our cases a packet is presented as illustrated above. We see that the
length of the packet is located at the end of the line. We can then use the following command
to extract all the lengths and summarize them:

tcpdump -n -r result | awk '{sum += $8} END {print sum}'

This command uses the –n option in order to not convert IP addresses into names. Next the
result file is read with the –r option. Each line will then be piped to the awk program, which
extracts the word number 8 in the line. This word is the last word in the line and is the packet
length. When all packets are read by tcpdump and piped to awk, the sum of all packet lengths
is printed to standard output.

A similar command can also get the number of packets in the result file:

tcpdump -n -r result | awk '{sum += 1} END {print sum}'

Each time a packet is read, the sum-variable is increased by one. When tcpdump is finished
with reading all packets, the sum holds the number of packets read.

 77

The information printed out from the two last tcpdump commands is stored in files for each
measurement. A script gathers all information about an experiment into another file. From this
file we can plot the results into a graph.

As mentioned we use NEMAN for emulation of virtual nodes on a MANET. The computer
that runs the emulated nodes has two Intel Pentium Xeon 2.80 GHz Processors and 256 MB
memory. The operating system is Linux with a 2.6.16 kernel.

When we run NEMAN with 100 virtual nodes, it consumes much of the computer’s CPU
capacity. Hence, it is necessary to have a computer with high CPU resources to avoid
bottleneck behaviour which will affect our results.

5.2 Measured overhead in a 500x400 area

The first results that are presented are from the tests performed where nodes exist in a
500x400 area. There are two diagrams presented to present the average number of packets
during the experiment and the total amount of overhead.

We first discuss our expectations of the results. The average number of captured packets
should be more or less equal between the standard version of OLSRd and our name extension
of it. This because that we have not extended OLSRd in such a way that there should be
generated more messages during a time interval (which is one minute used in these tests). We
have only extended the payload of each packet. Nevertheless, there can be small differences
in the number of captured packets because we can not guarantee when packets are generated
during a time interval. The number of packets captured from the plug-in should be higher than
our name extension of OLSRd and the standard OLSRd. The reason is that with the plug-in
OLSRd will generate more messages than standard OLSRd. Another aspect is that it might be
less number of packets that we expect from OLSRd with plug-in, since an OLSRd packet can
include more than one message, which is illustrated in Figure 2.6. The last expectation of the
results is that the number of packets captured is proportional with the number of nodes.

 78

Captured packets in one minute in a 500x400 area

0

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80 90 100

Number of nodes

Av
er

ag
e

nu
m

be
r o

f p
ac

ke
ts

 c
ap

tu
re

d

Our name extension of
OLSRd
Standard OLSRd

Plug-in (5 second emission
interval)
Plug-in (2 second emission
interval)

Figure 5.2: This diagram shows us how many packets that were captured during the experiment when
nodes were stored in an area of 500x400.

Figure 5.2 presents the results of average packets captured in an area of 500x400. As expected
our name extension and standard OLSRd have almost equal number packets, but we can
locate some differences. Our OLSRd version with the name extension has less number of
packets captured when number of nodes is between 30 and 50. In addition this is also the case
when number of nodes is 80.

This difference from our expectations is difficult to explain from theory. There should be
captured more packets with our solution rather than less. Our extensions of the control
messages should generate more packets. The HELLO messages and the TC messages
consume more space in the packet with respect to number of bytes in each message. Hence,
the average number of messages in each packet should be less than in standard OLSRd. A
consequence of this is that a higher number of packets must be generated in our name
extension of OLSRd in order to transfer the equal number of messages as standard OLSRd.
The aberration is though not that big. An explanation can be arbitrary factors such as
hardware limitations or how NEMAN performs in a given scenario. We also have to look at
the total amount of overhead before we conclude.

When we look at the two lines that are the results from the plug-in in Figure 5.2, the number
of packets captured is higher or equal with our name extension. The exceptions are when
number of nodes is 90 and 100. In these scenarios our solution generates a higher number of
captured packets than the other versions of OLSRd. It is expected that our solution generates a
higher number of packets than standard OLSRd, but not the plug-in versions. The reason can
be an arbitrary factor as mentioned in the last paragraph.

Earlier, we expected that number of packets should be proportional to the number of nodes.
This is not the case as we see in Figure 5.2. The number of packets captured increases
between 10 and 20 nodes. Next, in all of the OLSRd versions the value decreases a lot when

 79

the number nodes are 30. It flattens out and varies a bit up and down as we move right on the
X-axis. The explanation of this might be the behaviour of OLSRd when the density of the
nodes increases. If the density is high, which it is when there are 100 nodes in a 500x400 area,
almost all nodes can hear each other. The result of this is that almost everyone becomes
neighbours, and generation of TC messages will be at a minimum. This can be the explanation
of the variance of number of packets captured.

When it comes to the total amount of overhead in each scenario, we expect that it coincides
with number of packets captured. In addition we expect that our name extension in OLSRd
has higher overhead in each scenario than standard OLSRd. The OLSRd with the name
service plug-in is expected to be more or less equal to our solution. The results are presented
in Figure 5.3.

Measured overhead in a 500x400 area during one minute

0

20000

40000

60000

80000

100000

120000

140000

10 20 30 40 50 60 70 80 90 100

Number of nodes

B
yt

es

Our name extension of
OLSRd
Standard OLSRd

Plug-in (5 second emission
interval)
Plug-in (2 second emission
interval)

Figure 5.3: The measured overhead where nodes exist in a 500x400 area.

Figure 5.2 shows a diagram where the average packet size in bytes (which is the overhead), is
the Y-axis while number of nodes is the elements on the X-axis The diagram in Figure 5.2 is
in coherence with Figure 5.3 and they must be read together when we analyse them. If the
number of packets is high, we get a higher payload and vice versa. There are some differences
from the expected results but if we compare the overhead with the number of packets captured
in Figure 5.2, it gives us a more reasonable understanding. As mentioned if the number of
packets is high, we get a higher payload and vice versa.

The diagram in Figure 5.3 shows the measured overhead that corresponds to the packets
captured in Figure 5.2. The results are as expected when the number of nodes is 10 and 20.
Our solution and the plug-in with an emission interval of five seconds have almost equal
values. We remark that the plug-in generates much more overhead than our solution when the
emission interval is 2 seconds. This is also a behaviour that is expected.

 80

When number of nodes is 30, the value of the overhead heavily decreases at all versions of the
OLSRd protocol. This is a consequence of the behaviour of MPR mechanism. When number
of nodes are 20, the nodes are organised such that the MPR nodes are many compared to the
number of nodes. When the number of nodes is 30, the MPR calculation algorithm selects a
better MPR set to reach all two hop neighbours. Hence, the packets are forwarded many times
when the number of nodes is 20. This is the behaviour of OLSR, and proves that this routing
protocol is more suitable for dense networks.

The trend of the diagram in Figure 5.3 when the number of nodes is 30 through the end shows
more or less expected results. Our solution generates more overhead in one minute compared
to standard OLSRd. In addition we see that the plug-in generates a higher payload than our
solution in all scenarios, except from the scenario when number of nodes is 100. We also note
that the plug-in with 2 second emission interval of name messages always generates more
overhead than our name extension of OLSRd.

5.3 Measured overhead in a 1000x800 area

This section discusses the results from the tests where nodes exist in a 1000x800 area. There
are two diagrams that respectively present the average number of packets during the
experiment and the total amount of overhead.

Expected results from number of packets captured during one minute are values that are equal
or higher when the nodes were in a 500x400 area which we discussed in Section 5.2. If the
density decreases we can expect more MPR nodes that are needed to reach all two hop
neighbours. The consequence is a higher value of retransmissions through intermediate nodes.

Further, we expect that our name extension of OLSRd and standard OLSRd, behave almost
similarly. The difference is that each message is having a higher payload. Hence, we can
expect more packets with our name extension of OLSRd than standard OLSRd.

Both of the OLSRd plug-in versions are expected to have higher number of packets captured
than standard OLSRd and our extension of it. The name service plug-in uses name messages
that are own control messages in OLSRd. Hence, since each host generates more control
messages they have to create more packets in order to be able to emit them.

 81

Captured packets in one minute in a 1000x800 area

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

Number of nodes

Av
er

ag
e

nu
m

be
r o

f p
ac

ke
ts

 c
ap

tu
re

d

Our name extension of
OLSRd
Standard OLSRd

Plug-in (5 second emission
interval)
Plug-in (2 second emission
interval)

Figure 5.4: This diagram shows us how many packets that were captured during the experiment when
nodes were stored in a area of 1000x800.

The diagram in Figure 5.4 presents the number of packets captured through all the scenarios
when the area is 1000x800. Expected results can be seen when number of nodes are 10 and
20. Then the same behaviour can be seen when number of nodes is 30 as we saw in Figure
5.2. The number of packets decreases with a high rate, and can be explained with the same
arguments as we discussed in Section 5.2: When the number of nodes is 20, the MPR nodes
are selected in a way that leads to a higher number of forwardings. The number of MPR nodes
is less when the number of nodes is 30. This proves that OLSRd is suited to dense networks.

When we look at the diagram in Figure 5.4, the trend is that the number of packets, for each
of the OLSRd variants, varies up and down when the number of nodes is between 30 and 100.
In addition we see that the number of packets is almost equal for each of the protocol variants.
The differences are as expected: Our name extension and standard OLSRd has almost equal
number of packets captured, while the plug-in versions have small higher values. An
exception is when the number of nodes is 90. In this scenario, the standard OLSRd version
has a higher value than the others. This is a result that could be explained from arbitrary
factors, such as hardware load and how NEMAN acts at the time when that experiment was
measured. This must be taken into consideration when we look at the measured overhead.

If we compare the number of packets captured in the area of 1000x800 (Figure 5.4) with
500x400 in Figure 5.2, we can see that the number of packets is more or less equal for each
scenario. The greatest differences are when the number of nodes is 10 and 20. In the other
scenarios, the packets are a bit higher when the area is 1000x800 than they are in the area of
500x400.

The measured overhead is from this, expected to be higher in the 1000x800 area, than with an
area of 500x400. We further expect that our solution has higher values of overhead, than the
standard version of OLSRd. The plug-in version, when the emission interval is five seconds

 82

are expected to be nearly equal with our solution. We also expect that the overhead is higher
with the plug-in version when the emission interval is two seconds.

Measured overhead in a 1000x800 area during one minute

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100

Number of nodes

B
yt

es

Our name extension of
OLSRd
Standard OLSRd

Plug-in (5 second emission
interval)
Plug-in (2 second emission
interval)

Figure 5.5: The measured overhead where nodes exist in a 1000x800 area.

The diagram in Figure 5.5 shows the overhead in bytes at the Y-axis, while the number of
nodes is the elements on the X-axis. Results in this diagram look like our expectations: The
minimum value of the overhead almost always belongs to the standard OLSRd version. The
exceptions are when the number of nodes is 50 and 60. In addition we have an exception
when the number of nodes is 90. The result in this scenario must specially be read together
with the diagram in Figure 5.4. As we see there, the number of packets is higher than any of
the other protocol variants, and is also affecting the result of the overhead.

If we look more at the diagram in Figure 5.5, we can see that the overhead is almost equal
between our name extension and the plug-in version with five second emission interval. This
is an expected result.

Some unexpected values can be seen when the number of nodes is 50, 60 and 90. In these
scenarios, our implementation of a name extension in OLSRd seems to generate less overhead
than standard OLSRd. The only explanation of this behaviour is arbitrary environmental
factors, such as hardware limitations.

The plug-in version with 2 second emission interval is the OLSRd variant that always
generates the highest value of overhead (Except from when the number of nodes is 90). This
is an expected behaviour.

 83

5.4 Measured overhead when hostname in OLSRd control message
increases

We discussed in Section 5.1 an input parameter of increasing the number of characters in the
hostname to measure overhead. The expected result of this test is that the overhead increases
proportional with the number of characters that are in the hostname.

Name extension with different name lengths (500x400)

0

20000

40000

60000

80000

100000

120000

140000

160000

20 40 60 80 100 120 140 160 180 200

Number of characters in name

B
yt

es Average packet size

Figure 5.6: This diagram shows how the total amount of overhead increases with number of characters in
the hostname.

We can see from Figure 5.6 that the graph is linear. This result coincides with our expectation.
If we increase the hostnames on every host in a network with the same number of characters,
the result can be described by a mathematical formula. In a given scenario where the number
of nodes, N, is constant, the overhead, O, can be expressed as: O = c * N + P, where c is the
number of characters in the hostname, and P is the payload from other information that flows
on the network. An assumption of this formula is that each host has the same number
characters in its hostname.

5.5 Summary

This chapter has evaluated our implementation with two metrics: overhead and corresponding
number of packets generated. An experiment design was made in order to measure our
metrics in different ways. We divided the results into the two geographical area sizes that
were defines as one of the input parameters in our design of the experiments. Results shown
were in some experiments expected while unexpected in others. The most unexpected result
was that the overhead was not proportional with the number of nodes. The reason is the
behaviour of MPR in OLSR.

 84

We saw some unexpected results that are difficult to explain from theory. For instance, it is
difficult to explain why our solution in some scenarios generates less number of packets and
less overhead in bytes than standard OLSRd. This behaviour can be explained from arbitrary
factors such as hardware limitations and how NEMAN acts.

Otherwise, the trend in our results is that our name extension in OLSRd generated a bit more
overhead than standard OLSRd. Compared to the plug-in versions did our name extension of
OLSRd generate equal or less amount of overhead. We also measured the overhead when we
increased the hostname on each node in a given scenario. It was proven that the overhead is
proportional (linear) to the number of characters.

When we look at our claims we declared in Section 3.1, we declared that we wanted to keep a
balance between efficiency at a maximum and overhead at a minimum. This analysis over the
problem has proven that this claim has been fulfilled, since our solution has equal or better
values compared to the plug-in version.

 85

 86

6 Conclusion

This chapter summarizes this report. It discusses if we have fulfilled our claims that we
defined in Section 1.1.4. Further work on the subject that this thesis reflects are discussed at
the end of this chapter.

6.1 Summary of the report

In the introduction of this thesis we were introduced to problems that we meet when we try to
use the Domain Name System (DNS) in MANETs. Because of unstable topology, it can not
work, because DNS is bound to a client-server relationship.

In order to serve MANETs a reliable name resolution service, we need to redesign the basic
ideas around DNS that are designed for the hierarchal Internet. We defined a set of claims that
our solution must meet.

A literature study was done in order to find related work on this study. Solutions that other
scientists have done were found, but none of them fulfilled all of our claims. The literature
study told us that the MIDAS working group has written a design document, where the OLSR
protocol makes the base of a name resolution system. The idea was based on extensions of the
existing control messages and data sets in OLSR.

This was our base for a design on a name resolution system. The design was implemented and
tested to see if the functionality worked as intended.

Our implementation was evaluated on two metrics: Overhead and number of corresponding
captured packets. It was also compared to other protocols variants to see if the overhead
metric had values that our solution could accept. The result was that our name extension of
OLSRd did it equal or better than the existing OLSRd name service plug-in, based on the
overhead metric.

6.2 Claims versus our solution

In this section we discuss whether we have fulfilled our claims that were defined in Section
1.1.4. We list each claim and argue about the achievements with our solution of name
resolution system:

Distributed service:
Our name resolution service must be a distributed service, since we design the service for
MANETs. The problem with the existing DNS is that it is not a distributed service. It is bound
to a hierarchal client-server relationship that can not work in MANETs because of its dynamic
topology. Since our name resolution system is based on a routing protocol that is designed for
OLSRd, we can say it is a distributed service. The OLSR protocol provides distribution of IP
address so that every node can maintain a routing table to all possible destinations on the
MANET. We have extended OLSR to also distribute names, so it can be reached to all nodes

 87

on a MANET with its corresponding IP address. Hence, we can conclude that our name
resolution service is a distributed service.

Reduce overhead:
Extending an existing protocol is not a way of reducing overhead. There is always a question
of what we want to pay in order to get desired information. Our solution is based on an
existing version of OLSRd. We extend some of its control message to serve node a way of
name resolution. An alternative way of doing this has been implemented as a plug-in. The
name service plug-in floods name messages through the MPR flooding scheme with OLSRd.
Default, the value of the emission interval of name messages is 120 seconds. This is a
disadvantage because of two reasons: First, it is not an effective solution. Second, if we have a
MANET with high mobility the names may be invalid in a long time. In our name resolution
system we try to meet up with these disadvantages, where the main goal is to get a more
efficient solution. The efficiency aspect is one of the declared claims that are discussed next.
From the results in the evaluation chapter in this report, our name resolution system
performed equal or better than the plug-in. In order to justify the overhead value the emission
interval of plug-in name messages was respectively set to two and five seconds. One of the
goals with our design in Section 3.1 was to keep a balance of overhead at a minimum and
efficiency at a maximum. Though, when trying reaching the efficiency at a maximum, the
results from our evaluation can conclude that we have reduced the overhead at a minimum
value.

Efficiency:
The hostnames that are distributed with our name resolution system are transported with
OLSR HELLO and TC messages. Based on this a name entry is simultaneously created in the
name table when a new node on the network is discovered by OLSRd and there is a route to
it. This fulfils the efficiency claim.

Application layer transparency:
We claim that existing software should be able to work on top of our name resolution service
without any modifications. This is solved by maintaining the hosts file in the operating
system. This hosts file exist both on Linux/Unix and Windows platforms. When an
application want to resolve a name, it ask the operating system which calls the
gethostbyname() function. gethostbyname() first tries to find a match by parsing the
hosts file, before any DNS servers are queried. The application is not affected by the
maintenance of the hosts file hence we have achieved application layer transparency.

Independency:
Our solution is built on the OLSR routing protocol. This routing protocol acts independently
of any other technology. Hence, this claim is fulfilled.

 88

6.3 Further work

This section investigates future work that can be done in order to get a better name resolution
service based on OLSRd, than the scope of this thesis was to solve.

Investigating unexpected results
As we discussed in Section 5.5, some of the values in our experiments were unexpected with
respect to theory. The first step in further work on a name resolution, based on what is
described in thesis, is to try to go more in depth in these results in order to explain this
behaviour of OLSRd.

Compress hostname:
First, there are mechanisms that can reduce overhead even more than the MPR flooding
scheme serves us. Storing hostnames into OLSRd control messages makes them much bigger
than they were before. The header size of a HELLO message is 16 bytes. If we assume that a
host has a hostname of 16 characters, the HELLO message becomes twice as large than it was
before the extension. TC messages grow even more, since the new TC messages also add the
neighbour’s name together with the IP address. A mechanism that can reduce the payload is to
use a compressing algorithm of hostname in order to make the names shorter in the control
messages. Such algorithms can be a Huffman algorithm or similar, that is able to compress
text strings.

Name resolution with multiple interfaces:
Because of the test environment we were not able to investigate the possibilities of using
multiple interfaces in OLSRd. In order to make our name resolution service supporting nodes
with more than one interface, MID messages must also be extended like HELLO messages
and TC messages.

Compatibility with other versions of OLSRd:
Problems are met, if we connect nodes that use our name extension OLSRd together with
nodes that use the standard version of OLSRd. Our name resolution is not compatible with
other versions of OLSRd. I.e. if a standard version of the HELLO messages is received with
our extended OLSRd, the result is unpredictable. An assumption in Section 3.1 says that
compatibility between our solution and the standard version or older versions of OLSR can
not be guaranteed. Since building and parsing the new control messages have to be done
differently with respect to the OLSRd version, it might be an impossible task to make them
work together. An alternative is that if it does not understand the structure of the message,
then it should be silently discarded.

Cooperation with occasionally discovered DNS servers:
An interesting approach is to look at the possibilities of making our name resulting service in
OLSRd working with surrounding DNS servers that a node might discover occasionally. If a
node suddenly discovers that it is connected to the Internet, it should be able to use the DNS
to resolve names. In addition, it could be interesting to see if it is possible to upload the
information that this node knows about the MANET to a DNS server. These aspects will
create a hybrid technology of our name resolution system based on OLSRd and DNS.

 89

 90

Appendix A

This report is attached with a CD containing source code, different tools used and a copy of
the report. The CD has the following directories:

• olsrd-0.4.10 source code – The source code of the original OLSR daemon. The C
source files are located under src, while the nameservice plug-in is located under
lib/nameservice/

• olsrd-0.4.10-with_naming – The source code of the OLSR daemon with our name
extension. The C source files are located under src, while the Nameservice plug-in is
located under lib/nameservice/

• NEMAN_scenarios – The scenario files used under testing the functionality (sub-
directory functionallity_test_scenarios) and evaluation measurements (sub-
directory eval_scenarios).

• test_results – The test results we got from the experiments in Chapter 5. They are
divided into sub-directories with these corresponding tests:

o Standard OLSRd – Sub-directory: without_name

o Our extension of OLSRd – Sub-directory: with_name

o The plug-in with 5 second emission interval – Sub-directory: plug-in

o The plug-in with 2 second emission interval – Sub-directory: plug-in2

• tools – Different tools that are programs or scripts that was necessary in order to be
able to perform testing and measurements:

o check-neighbours.sh – The script that uses the shared library
libsocktap.so to convert the ports on the virtual interfaces.

o libsocktap.so – the binary version of the shared library.

o find.sh – a script to find result directories (this script is modified in the
name_length directory). This script is also located under the sub-directories of
each experiment.

o extract_results.sh – a script to extract all results from tcpdump files of an
experiment (this script is modified in the name_length directory). This script
is also located under the sub-directories of each experiment. The result is a text
file for each scenario where the result is stored.

o get_all_results.sh – a script to gather all result files that
extract_results.sh created from an experiment with all its scenarios. The
experiments are divided into the areas of 500x400 and 1000x800. The result is
a text file where all results are stored. This script is also located under the sub-
directories (500x400 and 1000x800) of each experiment. (This script is
modified in the name_length directory.)

o measure.c – a C program that is used for performing automatic tests with
tcpdump

• report – A copy of the report in PDF (.pdf) format and Word (.doc) format.

 91

 92

Bibliography

[1] P. Mockapetris, "Domain Names - Concepts and Facilities (RFC 1034)," 1987.

[2] Laura Marie Feeney, "A Taxonomy for Routing Protocols in Mobile Ad Hoc
Networks," SICS Technical Report T99/07, 1999.

[3] Paal Engelstad, Do Van Thanh, and Geir Egeland, "Name Resolution in On-Demand
MANET and over External IP Networks," presented at Communications, 2003. ICC
'03. IEEE International Conference on, 2003.

[4] Charles E. Perkins, AD HOC Networking: Addison-Wesley, 2001.

[5] Mario Gerla, Taek Jin Kwon, and Guangyu Pei, "On Demand Routing in Large Ad
Hoc Wireless Networks with Passive Clustering," presented at Wireless
Communications and Networking Conference, 2000. WCNC, 2000.

[6] Kaixin Xu and Mario Gerla, "A Heterogeneous Routing Protocol Based On A New
Stable Clustering Scheme," presented at MILCOM 2002, 2002.

[7] Xiaoyan Hong, Jun Liu, and Randy Smith, "Distributed Naming System for Mobile
Ad-Hoc Networks," presented at the 2005 International Conference on Wireless
Networks (ICWN-05), 2005.

[8] MIDAS, "http://www.ist-midas.org/," 2007. Last visited 30.10.2007.

[9] Joe Gorman, "The MIDAS Project: Interworking and Data Sharing," Interworking
2006 Santiago, Chile 15-17 January 2007, 2007.

[10] The MIDAS working group, "D2.1 Annex to MIDAS Project Deliverable: Design of
Oppurtunistic Connectivity Service," 2006.

[11] Thomas Heide Clausen and Philippe Jacquet, "Optimized Link State Routing (RFC
3626)," 2003.

[12] Andreas Tønnesen, "http://www.olsr.org," 2007. Last visited 10.12.07.

[13] Andreas Tønnesen, "Implementing and extending the Optimized Link State Routing
Protocol," in UniK University Graduate Center, vol. Master thesis: University of Oslo,
2004.

[14] Matija Pužar and Thomas Plagemann, "NEMAN: A Network Emulator for Mobile
Ad-Hoc Networks," 2005.

[15] Internet Systems Consortium Inc., "http://www.isc.org/index.pl?/sw/bind/index.php,"
2007. Last visited 29.10.07.

 93

	1 Introduction
	1.1 Problem description and motivation
	1.1.1 Mobile Ad-hoc networks
	1.1.2 Domain Name System
	1.1.3 DNS in Mobile Ad-hoc Networks
	1.1.4 Claims

	1.2 Terminology
	1.3 Methodology
	1.4 Organization of the report

	2 Background
	2.1 Related work
	2.1.1 Name resolution system based on a reactive routing protocol
	2.1.2 Partly distributed name resolution system with clusters
	2.1.3 MIDAS – Naming by extending OLSR
	2.1.4 OLSRd plug-in

	2.2 Existing solutions versus our claims
	2.3 Optimized Link State Routing – OLSR
	2.3.1 OLSR terminology
	2.3.2 OLSR Information Repositories
	2.3.3 OLSR Packet Format
	2.3.4 OLSR Message Types
	2.3.4.1 Multiple Interface Declaration message format
	2.3.4.2 HELLO message format
	2.3.4.3 Topology Control message format

	2.3.5 OLSR functionality
	2.3.5.1 Multiple interfaces
	2.3.5.2 Link sensing
	2.3.5.3 Neighbour detection
	2.3.5.4 Two-hop neighbour detection
	2.3.5.5 Multipoint relaying
	2.3.5.6 MPR Selector detection
	2.3.5.7 Distribution of Topology Control messages
	2.3.5.8 Forwarding of OLSR control messages
	2.3.5.9 Route calculation

	2.3.6 OLSR Summary

	2.4 Background summary

	3 Design
	3.1 Design claims and assumptions
	3.2 Extending the control messages
	3.2.1 TC messages
	3.2.2 HELLO messages
	3.2.3 TC-messages and HELLO-message working together

	3.3 Extending data structures
	3.4 Generating and parsing HELLO messages and TC messages
	3.4.1 Naming
	3.4.2 Generation and parsing of HELLO messages
	3.4.3 Generation and parsing of TC messages

	3.5 Name resolution
	3.6 Summary

	4 Implementation
	4.1 OLSRd dataflow
	4.1.1 Dataflow of generating HELLO messages
	4.1.2 Dataflow of parsing HELLO messages
	4.1.3 Dataflow of generating TC messages
	4.1.4 Dataflow of parsing TC messages
	4.1.5 Summary code analysis

	4.2 Implementation of the extensions
	4.2.1 Implementing the name table
	4.2.2 Extending HELLO messages with names
	4.2.3 Parsing the new HELLO message
	4.2.4 Extending TC messages with names
	4.2.5 Parsing the new TC messages
	4.2.6 Other changes in OLSRd

	4.3 Testing the implementation
	4.3.1 Test environments
	4.3.1.1 Real nodes
	4.3.1.2 NEMAN

	4.3.2 Test scenario 1
	4.3.2.1 Results with TcRedundancy equal to zero
	4.3.2.2 Results with TcRedundancy equal to two
	4.3.2.3 Other results of the first test scenario

	4.3.3 Test scenario 2
	4.3.4 Test scenario 3
	4.3.5 Test scenario 4
	4.3.6 Conclusion – testing functionality

	4.4 Summary

	5 Evaluation
	5.1 Test methods
	5.2 Measured overhead in a 500x400 area
	5.3 Measured overhead in a 1000x800 area
	5.4 Measured overhead when hostname in OLSRd control message increases
	5.5 Summary

	6 Conclusion
	6.1 Summary of the report
	6.2 Claims versus our solution
	6.3 Further work

	 Appendix A
	 Bibliography

