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Abstract

Juvenile dermatomyositis (JDM) is a rare, severe autoimmune disease and the most common idiopathic inflammatory myopathy
of children. JDM and adult-onset dermatomyositis (DM) have similar clinical, biological and serological features, although these
features differ in prevalence between childhood-onset and adult-onset disease, suggesting that age of disease onset may influence
pathogenesis. Therefore, a JDM-focused genetic analysis was performed using the largest collection of JDM samples to date. Caucasian
JDM samples (n = 952) obtained via international collaboration were genotyped using the Illumina HumanCoreExome chip. Additional
non-assayed human leukocyte antigen (HLA) loci and genome-wide single-nucleotide polymorphisms (SNPs) were imputed. HLA-
DRB1∗03:01 was confirmed as the classical HLA allele most strongly associated with JDM [odds ratio (OR) 1.66; 95% confidence interval
(CI) 1.46, 1.89; P = 1.4 × 10−14], with an independent association at HLA-C∗02:02 (OR = 1.74; 95% CI 1.42, 2.13, P = 7.13 × 10−8). Analyses
of amino acid positions within HLA-DRB1 indicated that the strongest association was at position 37 (omnibus P = 3.3 × 10−19), with
suggestive evidence this association was independent of position 74 (omnibus P = 5.1 × 10−5), the position most strongly associated
with adult-onset DM. Conditional analyses also suggested that the association at position 37 of HLA-DRB1 was independent of some
alleles of the Caucasian HLA 8.1 ancestral haplotype (AH8.1) such as HLA-DQB1∗02:01 (OR = 1.62; 95% CI 1.36, 1.93; P = 8.70 × 10−8), but
not HLA-DRB1∗03:01 (OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10−5). No associations outside the HLA region were identified. Our findings
confirm previous associations with AH8.1 and HLA-DRB1∗03:01, HLA-C∗02:02 and identify a novel association with amino acid position
37 within HLA-DRB1, which may distinguish JDM from adult DM.
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Introduction
Juvenile dermatomyositis (JDM) is a rare, severe autoim-
mune disease and the most prevalent idiopathic inflam-
matory myopathy with proximal muscle weakness
and skin rash as typical features. Clinical features are
heterogeneous and can include serious complications
such as calcinosis, ulceration, treatment-resistant rash
and involvement of major organs, including gut, lungs
and brain. Although some patients achieve remission
following standard disease management, which consists
of long-term immunosuppression with glucocorticoids,
methotrexate and other medications, others respond
poorly.

While JDM and adult-onset dermatomyositis (DM)
share similar clinical and biological features, there are
differences in prevalence of clinical features (1). The
incidence of JDM is approximately one-tenth of the
incidence of DM (2). DM can be associated with cancer,
but this has not been reported in JDM. Conversely,
calcinosis is a major cause of morbidity in JDM but has
a lower prevalence in DM. The prevalence of myositis-
specific autoantibodies (MSAs), which are linked to
different clinical features of disease, also differs between
the adult and juvenile forms of the disease. Anti-nuclear
matrix protein-2 is one of the more abundant MSAs in
JDM (reported in 20–25% of patients (3–5)) but has a
lower prevalence in DM (reported in 1.6–17% of different
patient populations) (6–8). The most prevalent MSA in
DM, anti-histidyl tRNA synthetase (anti-Jo-1), is rare in
JDM. These differences in the distribution of MSA and
clinical features suggest an influential role for age of dis-
ease onset in the pathogenesis of disease. However, little
is known at the mechanistic level about the influence
of age on JDM phenotypes and pathogenesis. Knowledge
about how disease mechanisms differ between patient
subgroups and interact with patient age to result in
different complications may enable targeting of novel
molecular pathways, more accurate modelling of life-
long risk and more stratified therapeutic approaches to
address this risk.

Candidate gene and genome-wide studies of myositis
have established the strongest genetic association within
the Caucasian 8.1 ancestral haplotype (AH8.1; HLA A1-
B8-DR3-DQ2) of the major histocompatibility complex
(MHC), also associated with many other immune-
mediated diseases (9–13). Distinct human leukocyte
antigen (HLA) alleles have been identified as associated
with serological subphenotypes of myositis in different
ethnic populations. Most notably associations between
the development of anti-Jo-1 autoantibodies and HLA-
DRB1∗03:01, HLA-DQB1∗02:01 and HLA-B∗08, consistent
with AH8.1, have been identified in Caucasian and
African-American patients (11,12,14). In adult myosi-
tis, gene–environment interactions have been found
between HLA-DRB1∗03, smoking and the presence of anti-
Jo-1 autoantibodies, and between HLA-DRB1∗11:01 and
anti-3-hydroxy-3-methylglutaryl-CoA reductase (anti-
HMGCR)-positive statin-induced immune-mediated

necrotising myopathy (15,16). To date, the rarity of JDM
has meant that candidate gene studies in JDM have been
small and subgroup analyses of JDM in genome-wide
studies have had limited statistical power relative to
other myositis phenotypes. The aim of this research was
to identify novel genetic loci associated with JDM using a
larger cohort of patients.

Results
Samples and genotyping quality control
Samples of Caucasian ancestry (n = 952) were obtained
via international collaboration including samples from
the UK Juvenile Dermatomyositis Cohort & Biomarker
Study, the Childhood Myositis Heterogeneity Study Group
and the Myositis Genetics Consortium (Table 1). Many of
these cases have contributed to previous analyses (10,17).
Demographic features are described in Supplementary
Material, Table S1. After genotyping and stringent qual-
ity control (QC), n = 178 164 single-nucleotide polymor-
phisms (SNPs) remained (Supplementary Material, Table
S2) on n = 851 JDM samples (Supplementary Material,
Tables S3 and S4). The proportion of phenotypic variance
explained by these markers was estimated as 0.18 (0.02).

HLA-DRB1∗03:01 confirmed as allele most
strongly associated with JDM
Case–control analysis of assayed SNPs confirmed that
the strongest association with JDM was within the HLA
region (Fig. 1; Supplementary Material, Fig. S1). Analysis
of imputed markers within the HLA region indicated
that the strongest association was with SNP rs3117103
[odds ratio (OR) = 1.87; 95% confidence interval (CI)
1.64, 2.13; P = 1.79 × 10−20] and the classical allele HLA-
DRB1∗03:01, consistent with previous reports (9,10). The
OR for HLA-DRB1∗03:01 itself was 1.66 (95% CI 1.46, 1.89;
P = 1.4 × 10−14; Supplementary Material, Table S5).

Conditioning on this allele, an independent association
with HLA-C∗02:02 was identified (OR = 1.74; 95% CI 1.42,
2.13, P = 7.13 × 10−8) as reported previously (10). The next
most associated allele was HLA-B∗44:02, but the P-value
for this association was above the threshold for statistical
significance (OR = 1.31, 95% CI 1.15, 1.50; P = 6.04 × 10−5).
No alleles within HLA-A were associated with JDM (all P-
values above 0.08).

Analysis of amino acid positions within
HLA-DRB1 identifies position 37 as the most
significantly associated with JDM
Since the strongest association with JDM was identified
within HLA-DRB1, further analysis sought to resolve
this association at the level of amino acid positions.
Position 37 was the most strongly associated with
disease (omnibus P = 3.3 × 10−19; Fig. 2 and Table 2).
Residues at position 37 are located within the P9
pocket of the antigen-binding groove (Supplementary
Material, Fig. S2) (18,19). Relative to Tyr-37, Ser-37 was
the most significantly associated residue at this position
(OR = 0.65; 95% CI 0.57, 0.75; P = 7.34 × 10−10), followed
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Table 1. Sources of samples from Caucasian patients with JDM

Country Source Genotyped samples (n = 952) Genotyped samples after quality
control (n = 851)

UK UK Juvenile Dermatomyositis Cohort &
Biomarker Study

365 326

USA National Institute of Environmental Health
Sciences

262 224

Northwestern University 140 116
Emory University 41 31
George Washington University 32 30
Mayo Clinic 13 12

Canada The Hospital for Sick Children, Toronto 24 24
IWK Health Centre 16 16
Alberta University 10 9

Norway Oslo University Hospital 49 46

Figure 1. Manhattan plot of the association of assayed SNPs with JDM. SNPs (n = 178 164) were available for n = 851 JDM samples and n = 12 232 controls
of Caucasian origin. Association was tested using logistic regression, with the first 10 principal components included as covariates to account for
population stratification. The red dotted line indicates genome-wide level of significance (5 × 10−8).

by Phe-37 (OR = 0.63; 95% CI 0.54, 0.75; P = 1.14 × 10−7)
(Table 3). Asn-37, which is found on HLA-DRB1∗03:01,
was not associated relative to Tyr-37 (OR = 1.13; 95% CI
1.06, 1.19; P = 0.05). Conditioning on position 37, there was
suggestive evidence of possible independent associations
at positions 74 (P = 5.1 × 10−5) and 26 (P = 5.9 × 10−5),
although the P-values for these associations were not
significant (Table 2).

To evaluate whether position 37 explained the asso-
ciation within HLA-DRB1 more convincingly than the
classical HLA-DRB1∗03:01 allele and AH8.1, condi-
tional analyses were performed. Conditioning on HLA-
DRB1∗03:01, the association of position 37 was above
the threshold for significance (omnibus P = 4.42 × 10−5),
although there may be weak evidence of an independent
association. After conditioning on all residues at position
37, there was evidence of independent effects for

HLA-DQB1∗02:01 within AH8.1 (OR = 1.62; 95% CI 1.36,
1.93; P = 8.70 × 10−8) and HLA-C∗02:02 (OR = 1.72; 95% CI
1.40, 2.10; P = 1.58 × 10−7). However, the effect for HLA-
DRB1∗03:01 did not meet the threshold for significance
(OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10−5). Taken
together, these results indicate an effect of position 37
that is independent of some of the previously reported
effects within AH8.1 and at HLA-C∗02:02, but that is not
independent of HLA-DRB1∗03:01.

Genome-wide imputation identifies possible loci
associated at a suggestive level of significance
Following genome-wide imputation, there were no
additional loci identified at the genome-wide level
of statistical significance (P = 5 × 10−8). Two loci with
P < 1 × 10−6 and minor allele frequency (MAF) over 0.05
were identified (Table 4; Fig. 3). rs6501160 is an intronic
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Figure 2. Representation of the P-values for omnibus tests of individual amino acid positions within HLA-DRB1 for association with JDM. Blue circles
represent P-values for amino acid positions tested alone. Green circles represent P-values for amino acid positions after conditioning on position 37. Red
circles represent P-values for 4-digit classical alleles. The grey dashed line represents the threshold for statistical significance (P = 6.8 × 10−6).

Table 2. Analysis of amino acid positions within HLA-DRB1
associated with JDMa

Effects independent of
position 37

Position χ2 b P-value χ2 P-value

37 89.2 3.3 × 10−19 – –
74 76.7 1.6 × 10−16 22.5 5.1 × 10−05

26 59.5 1.2 × 10−13 19.5 5.9 × 10−05

10 47.5 5.4 × 10−12

67 46.0 1.2 × 10−11

−17 41.0 1.5 × 10−10

−16 37.5 9.1 × 10−10

30 39.5 2.6 × 10−9

−25 34.4 4.5 × 10−9

11 40.2 9.9 × 10−9

13 40.0 1.1 × 10−08

233 32.3 1.3 × 10−8

71 27.8 1.4 × 10−7

−1 26.1 3.2 × 10−7

181 28.9 5.3 × 10−7

57 24.2 8.8 × 10−7

60 25.4 3.1 × 10−6

aAlpha threshold for statistical significance in the MHC region taken as
6.8 × 10−6 (47). bTest statistics compared using a chi-squared distribution.

variant within transmembrane protein 114 (TMEM114), a
transmembrane protein. rs6892006 is an intronic variant
within myocyte enhancer factor 2C antisense RNA 1 (MEF2C-
AS1), an anti-sense RNA gene (Supplementary Material,
Fig. S3). Associations with clinical phenotypes have not
been reported for either variant. Although additional loci

were identified at P < 5 × 10−8 (Supplementary Material,
Table S6 and Supplementary Material, Fig. S4), these
had MAF between 0.01 and 0.05 and may represent
imputation artefacts.

Discussion
This analysis represents the largest international genetic
study of JDM to date. We found that the strongest asso-
ciation was in the HLA region within HLA-DRB1∗03:01,
consistent with previous studies (9,10,17). We confirmed
an independent association with HLA-C∗02:02 and found
some evidence of a possible additional independent asso-
ciation at HLA-B∗44:02, which would need to be con-
firmed in a future study. Interestingly, we did not find
evidence of an association with HLA-A, even though
associations within this gene are well known for mul-
tiple other autoimmune diseases including rheumatoid
arthritis (RA), juvenile idiopathic arthritis (JIA), psoriatic
arthritis and type I diabetes (20–23).

In this analysis focused on juvenile-onset disease, we
found amino acid position 37 within HLA-DRB1 had the
strongest association with JDM, with Ser-37 and Phe-
37 having protective effects relative to Tyr-37. We also
found evidence that the association with position 37 was
independent of AH8.1, a well-established association
with myositis, but there was only weak evidence of
independence from HLA-DRB1∗03:01, and so this needs
to be followed up in future studies with greater numbers
of both juvenile-onset and adult-onset patients using the

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/31/14/2471/6517526 by O
slo U

niversity user on 05 D
ecem

ber 2022

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac019#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac019#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac019#supplementary-data


Human Molecular Genetics, 2022, Vol. 31, No. 14 | 2475

Table 3. Association of residues within position 37 with JDM, with effects of classical HLA alleles linked to these residuesa,b

Residue Classical HLA allele
linked to residue

Allele frequency
in JDM

Allele frequency
in controls

OR 95% CI P-value

Tyr-37 – 0.37 0.31 - - -
Ser-37 – 0.21 0.26 0.65 0.57, 0.75 7.3 × 10−10

– HLA-DRB1∗01:01 0.10 0.12 0.76 0.65, 1.46 1.7 × 10−3

– HLA-DRB1∗15:01 0.11 0.14 0.66 0.57, 0.78 6.5 × 10−7

Phe-37 – 0.11 0.15 0.63 0.54, 0.75 1.1 × 10−7

– HLA-DRB1∗07:01 0.09 0.13 0.67 0.57, 0.79 2.8 × 10−6

– HLA-DRB1∗14:01 0.02 0.02 0.86 0.60, 1.24 0.42
Asn-37 – 0.31 0.24 1.13 1.06, 1.19 0.05
– HLA-DRB1∗03:01 0.19 0.12 1.66 1.46, 1.89 1.4 × 10−14

aSummary statistics for individual residues derived from the omnibus model for position 37, with Tyr-37 used as the reference residue. Summary statistics for
classical four-digit HLA alleles derived from case–control analysis of imputed HLA data. Alleles linked to these residues at position 37 but not represented were
filtered out during QC. bAlpha threshold for statistical significance in the MHC region taken as 6.8 × 10−6 (47).

Table 4. Genome-wide imputed loci displaying potential association with JDM, with P-value cut-offs of 1 × 10−6 and MAF cut-off of
0.01a

Rsidb Chromo-
some

Position Allele A Allele B MAF OR 95% CI P-value Imputation
R2 c

Information
measured

Association
information
measuree

rs6501160 16 8 607 139 G A 0.27 0.72 0.65, 0.81 5.8 × 10−8 0.91 0.91 0.91
rs6892006 5 88 450 541 T G 0.13 0.68 0.58, 0.79 8.7 × 10−7 0.87 0.87 0.89

aLoci with P-values below a suggestive level of significance (1 × 106) are displayed for MAF cut-offs of 0.05 and 0.01; only additional loci captured by the lower
MAF cut-off are shown for that cut-off. bRsid, Reference SNP cluster ID. There were no assayed markers within 100 000 kb of either of these loci. cSquared
correlation of imputation of genotypes with true unmeasured genotypes, as estimated by Minimac3 during imputation via the Michigan Imputation
Server: https://genome.sph.umich.edu/wiki/Minimac3_Info_File#Rsq. dImpute INFO measure calculated by SNPTEST: https://mathgen.stats.ox.ac.uk/genetics_
software/snptest/snptest.html#info_measures. eRelative information measure about parameters of the model fitted during association testing: https://
mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.v2.p.

Figure 3. Manhattan plot of the association of imputed SNPs with JDM. Loci were filtered according to MAF of 0.05. Data were imputed for n = 851 JDM
samples and n = 12 232 controls of Caucasian origin. The first 10 principal components were adjusted for during analysis to account for population
stratification. SNPs were weighted by the information score to account for imputation uncertainty. The red dotted line indicates genome-wide level
of significance (5 × 10−8). The degree of transparency of each data-point represents the R2 value for imputation accuracy, with more solid colours
representing higher certainty.

same genotyping chip. Amino acid position 37 is within
the P9 pocket of the antigen-binding groove (18,19).
Substitution of Ser-37 to Tyr-37 has been shown to be
sufficient to alter alloantigenicity and stimulate a T-cell
response (24). Tyr-37 promotes a stronger response to
streptococcal protein (25).

The previous Immunochip analysis of adult and
juvenile myositis combined identified the strongest
association within HLA-DRB1 at amino acid position
74 (10). Subsequent analyses of that dataset identified
position 74 as having an association with anti-Jo1, anti-
PM/Scl and Anti-cytosolic 5′-nucleotidase 1A (anti-cN1A)
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autoantibodies (26), which are less prevalent in juvenile-
onset disease. We found weak evidence of independent
association at position 74 after conditioning on position
37, above the threshold for significance and so this
finding needs to be followed up with greater number of
patients. Nonetheless, it raises an intriguing possibility
that children and adults may have different dominant
autoantigenic peptides being presented in the antigen-
binding groove, although we recognize that multiple
antigens with different allelic associations are likely to
be involved in disease. While the Immunochip analyses
benefitted from a relatively large cohort (n = 2544), the
number of JDM patients was approximately half that
of our analysis (n = 493). These patients are represented
in our analysis, along with additional cases. It may be
that the effects of juvenile-onset disease were obscured
by larger number of adult-onset patients and other
phenotypes present in the combined cohort. Future work
and greater numbers are required to better dissect the
genetic influence on age effects in juvenile and adult-
onset disease, as well as on clinical and serological
heterogeneity.

Associations between other positions within HLA-DRB1
and autoimmune disease have been reported. For exam-
ple, position 11 has the strongest effect in RA, with inde-
pendent effects at positions 71 and 74 (27). In JIA, position
13 has the strongest effect, although in systemic JIA the
strongest effect is at position 58 (21,28). Positions 71/74
have also been implicated in anti-fibrillarin-positive sys-
temic sclerosis, Crohn’s disease, multiple sclerosis, type I
diabetes and Grave’s disease (29–33). In systemic lupus
erythematosus (SLE), Ser-1, Phe47 and Ala71 are asso-
ciated with disease (34). Position 37 has been found to
be associated with primary sclerosing cholangitis, ulcer-
ative colitis in Asians, ACPA+ RA in Han Chinese, SLE in
Asians and psoriasis vulgaris in Taiwanese (18,19,35–37).
Interestingly, a recent report of Japanese patients with
RA identified an association between position 37 and
younger age of disease onset (defined as 16–30 years of
age), but not with older age of onset (defined as over
60 years of age) (38). At present, it is not well understood
how these differing positional effects relate to the spec-
trum of phenotypes represented in autoimmune disease,
and how these effects interact with ethnicity and age of
disease onset.

The major limitation of our study is limited statistical
power for identifying associations outside the HLA
region, which is a practical challenge for rare disease
research. Although our combined cohort represents the
largest-ever assembled international cohort of Cau-
casian patients with JDM, it is a relatively small sample
size for a genetic study. As such, the findings of sug-
gestive associations will need to be confirmed in future
studies with greater number of patients. Nonetheless, we
were able to confirm the findings of previous studies in
a larger cohort dedicated to JDM. Future studies with
greater numbers may better define the relationship
between the associations at HLA-DRB1∗03:01 and amino

acid positions within HLA-DRB1 such as position 37. Loci
outside the HLA region identified at genome-wide and
suggestive levels of significance in previous analyses
(including PTPN22, UBE2L3, CD28, TRAF6, STAT4) were
not replicated in this study, although signals at these
loci were not specifically tested for. This may reflect the
smaller sample size of this study and the dominance of
adult patients in those analyses whose characteristics
may differ from paediatric disease (10). JDM is a het-
erogeneous phenotype; however, the small sample size
restricted our ability to analyse more clinically homo-
geneous subgroups, such as autoantibody subgroups. It
may be that future developments in methodologies for
genetic analysis will enable further insights to be derived
from this dataset. Many of the patients in this study over-
lapped with a previous analysis, which identified asso-
ciations with major MSA subtypes, including anti-Jo-1,
anti-PM/Scl, anti-cN1A, anti-Mi-2 and anti-TIF1γ (26). As
more patients become available for inclusion in genetic
studies, analyses of further MSA subtypes may become
possible. It will also be critical to study genetic associa-
tions with MSA subtypes in different ethnic populations.

Analysis following genome-wide imputation identified
2 possible suggestive loci, an intronic variant within
TMEM114 and an intronic variant within MEF2C-AS1.
TMEM114 is a glycosylated transmembrane protein, and
knowledge of its cellular function is limited, although
missense mutations in this gene and a chromosomal
translocation in its promoter are associated with
congenital and juvenile cataract disorders, respectively
(39). MEF2C-AS1 is a non-coding anti-sense RNA gene
with no known function. It is unclear how these loci
relate to JDM, but it may be these alleles function as
epigenetic marks.

In summary, we have confirmed the association
between JDM and HLA-DRB1∗03:01 and shown that within
HLA-DRB1, position 37 is most strongly associated with
disease in a population of patients with juvenile-onset
myositis.

Materials and Methods
Genotyping and genotype calling
Genotyping of Caucasian JDM samples (n = 952) was per-
formed using the Illumina (Cambridge, UK) HumanCore-
Exome chip across three batches at a single centre (Uni-
versity College London). This cohort included the major-
ity of JDM cases included in previous analyses, as well as
additional cases recruited subsequent to those analyses
including cases from more centres (10,17). GenomeStudio
2.0 (version 2.0.4 of the Genotyping Module and the
GenTrain 3.0 Cluster Algorithm) was used for genotype
clustering and calling for each separate batch. Samples
with less than 90% call rate were excluded, and genotype
clustering and calling were repeated, before data were
exported in PLINK format for QC.

Data on healthy individuals (n = 12 474) of European
ancestry who had also been genotyped using the
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HumanCoreExome chip as part of the International
Age-Related Macular Degeneration Genetic Consortium
were obtained from dbGaP (dbGAP Study Accession
phs001039.v1.p1).

Quality control
QC of markers and samples was performed as described
previously (22). The following steps were done separately
for each of the three batches of JDM data and the
control data using PLINK 1.07 (40). Mitochondrial and
Y chromosome SNPs were excluded. SNPs were also
excluded if they had elevated missing rates (over 2%), had
a MAF below 1% and deviated significantly from Hardy–
Weinberg equilibrium (HWE; threshold of P < 0.0001).
Samples with elevated missing genotypes (over 5%) and
outlying heterozygosity rates (above or below 5 standard
deviations from the mean rate). Data were aligned to the
Haplotype Reference Consortium (HRC) before merging
for further QC using the HRC checking tool (41).

Duplicated or related individuals in the merged
dataset were identified using identity-by-descent, per-
formed on a linkage disequilibrium (LD)-pruned dataset
of 65 862 SNPs with MAF over 5%. A PI_HAT threshold
of 0.2 was used, with the individual with the most miss-
ing data excluded. Principal component analysis was
performed using PLINK 1.9 (42), to evaluate population
stratification in the LD-pruned data merged with the
International HapMap 3 data (43). Cases and controls
were retained if they were within 10 standard deviations
of the mean value for the first two principal components
(PCs) for the HapMap CEU population (Supplementary
Material, Fig. S5).

Following QC, there were 178 164 SNPs for n = 851 JDM
cases and n = 12 232 controls (Supplementary Material,
Tables S1–S4).

Analysis of assayed markers
Autosomal markers were analysed for association with
JDM using logistic regression in PLINK with adjustment
for the first 10 PCs to control for population stratification.
Manhattan plots were generated using R version 6.3 and
the ‘ggplot2’ package (version 3.3.2). The proportion of
phenotypic variance explained by the SNPs and a stan-
dard error for that estimated proportion were estimated
using the genome-based restricted maximum likelihood
(GREML) method using GTAC version 1.93.3, assuming an
approximate prevalence of 0.00004 for JDM (2,44,45).

Imputation of HLA loci
Classical HLA alleles, amino acids and SNPs within the
HLA region were imputed using SNP2HLA (version 1.0.3)
and the Type 1 Diabetes Genetics Consortium reference
panel (n = 5225) (46). QC of imputed markers used the
following criteria: imputation information score (R2) over
0.9, MAF over 0.01 and significant departures from HWE
in controls (P < 0.001). Imputed markers were coded as
present or absent.

Analysis of HLA and amino acid positions
Case–control analysis of all imputed HLA was performed
assuming an additive model using logistic regression in
PLINK, also with adjustment for the first 10 PCs, to iden-
tify the most strongly associated locus. Clinical covari-
ates were not adjusted for. For HLA analyses, P-values
below 6.8 × 10−6 were considered statistically significant,
using a Bonferroni correction for the number of imputed
markers as reported previously (47). The two- and four-
digit classical alleles identified by this locus were sub-
sequently conditioned on in further logistic regression
analyses to identify any independent associations.

Amino acid positions were interrogated using likeli-
hood ratio tests (LRTs) in R as follows. At each position,
logistic regression models were fitted with all residues in
the model, except the residue that was most prevalent
in the controls and served as the reference. The first
10 PCs were adjusted for in each of these models. To
evaluate whether amino acid positions were associated
with disease, LRTs were performed to compare the model
that was fitted for the residues at each position against
a null model, which comprised the first 10 PCs only.
The effect of each amino acid position evaluated using
a LRT is represented by the LRT P-value, but there is no
estimated effect size for the amino acid position gener-
ated by this test. Allele frequencies, odds ratios and P-
values for amino acid residues at key positions are also
reported. Possible independent effects were identified by
conditional analysis as above.

Genome-wide imputation and analysis
Genome-wide imputation of SNPs was performed using
the Michigan Imputation Server (version 1.2.4) and the
HRC reference panel (version r1.1; Supplementary Mate-
rial, Fig. S6) (41,48). Imputed SNPs with MAF below 0.01 or
imputation information score below 0.5 were filtered out.

Imputed SNPs were analysed using SNPTEST version
2.5.4-beta3 (49), with adjustment for the first 10 PCs
and weighting for the imputation information score to
account for imputation uncertainty. Since imputation
artefacts are enriched in rare variants, a stringent MAF
threshold of 0.05 was used during analysis, although loci
with MAF 0.01–0.05 are also reported in Supplementary
Material.

Supplementary Material
Supplementary Material is available at HMG online.
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