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Reliability of scores from psychological or educational assessments provides important

information regarding the precision of measurement. The reliability of scores is however

population dependent and may vary across groups. In item response theory, this

population dependence can be attributed to differential item functioning or to differences

in the latent distributions between groups and needs to be accounted forwhen estimating

the reliability of scores for different groups.Here, we introduce group-specific andoverall

reliability coefficients for sum scores andmaximum likelihood ability estimates defined by

a multiple group item response theory model. We derive confidence intervals using

asymptotic theory and evaluate the empirical properties of estimators and the confidence

intervals in a simulation study. The results show that the estimators are largely unbiased

and that the confidence intervals are accurate with moderately large sample sizes. We

exemplify the approach with the Montreal Cognitive Assessment (MoCA) in two groups

defined by education level and give recommendations for applied work.

1. Introduction

The reliability of scores from a psychological scale or test refers to the consistency of the
measurement and is an essential component in ensuring the validity of uses of the test

scores (American Educational Research Association, American Psychological Association,

&National Council onMeasurement in Education, 2014). Reliability is generally defined as

the ratio of the true score variance to the observed score variance. The true score variance

and observed score variance are unknown, however, and need to be estimated from the

observed data. In practice, how to estimate the reliability of different scores depends on

the data collection method and the modelling framework employed. The present work

aims to introduce new approaches to estimate reliability coefficients withmultiple-group
item response theory (IRT).

Several reliability coefficients have been proposed in different contexts based on

different modelling frameworks. In classical test theory, where sum scores are typically

used, the most extensively used measure of reliability is coefficient alpha (Cronbach,

1951). However, coefficient alpha is only equal to the reliability of the sum scores with a

tau-equivalent single-factor model (Novick & Lewis, 1967). Since its assumptions almost
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never hold, it is well recognized that coefficient alpha is only a lower bound on the

reliability of the sum scores when using a single-factor model (Sijtsma, 2009). In an IRT,

confirmatory factor analysis or structural equationmodelling framework, reliability of the

sum scores can instead be directly estimated by utilizing the assumptions implicit in these
models (Cheng, Yuan, & Liu, 2012; Green & Yang, 2009; Jöreskog, 1971; Kim & Feldt,

2010). For confirmatory factor analysis models, the reliability of the sum scores is equal to

what is called composite reliability (Jöreskog, 1971). For IRT models, formulas are

available that enable the estimation of the reliability of the sum scores using the estimated

model parameters (Kim & Feldt, 2010). While reliability coefficients most often concern

the reliability of sum scores, it is also possible to consider the reliability coefficient of other

types of scores such as factor scores from factor analysis models or ability estimates from

IRT models (Cheng et al., 2012; Kim & Nicewander, 1993; Kim, 2012; Nicewander &
Thomasson, 1999). Note here that these reliability coefficients refer to the consistency of

measurement of the scores in a population and do not concern the reliability of the sum

score or ability estimate of a single person. In IRT it is common to use the maximum

likelihood ability estimator since it is an unbiased estimator of the abilitywhen thenumber

of items tends to infinity (Lord, 1980). The reliability coefficient of scores based on this

estimatorwas discussed, for example, in Cheng et al. (2012), Kim (2012), and Lord (1983).

Similarly, reliability coefficients for the posterior mean and mode have been considered

(Nicewander & Thomasson, 1999). There are also extensions of the various approaches
that enable the estimation of reliability with multilevel models (Cho, Shen, & Naveiras,

2019; Geldhof, Preacher, & Zyphur, 2014; Raykov & Penev, 2010).

The reliability of the scores from a scale or testmay varywith respect to the population

(McDonald, 1999). This means that scores from the same test can be reliable for certain

populationswhilebeingunreliable forotherpopulations, asdiscussedbyRaykov (2002) in

the context of multiple-group factor analysis. However, although investigations into

differences in item characteristics between populations have become increasingly

commonplace, differences in the corresponding score reliabilities are not always reflected
on. When analysing test data from a heterogeneous population, studies of measurement

invariancewith respect to test-taker characteristics such as biological sex, socioeconomic

status or age group are often done in order to ensure the appropriateness of using the

resulting scores on the test. In these settings, multiple-group IRT is often used (Balsis,

Gleason,Woods,&Oltmanns, 2007;Muthén&Lehman, 1985).When estimatingmultiple-

group IRT models, assuming that there exists a set of invariant items, it is possible to

account for differences in the latent distributions between groups and also differences in

item parameters between groups. A consequence of these differences is that the score
reliabilities for the groupsmaybe different. The differences in reliability coefficients based

on group membership have been considered with multiple-group IRT in software

packages such asmirt (Chalmers, 2012), where item parameter estimates from different

groups were used when computing the marginal reliability coefficient defined in Thissen

and Wainer (2001). However, an exposition of methods for estimating reliability

coefficients with IRT multiple-group models that account for distribution parameters is

missing in the literature.Note that scale scores fromthe same test areoftenused inmultiple

ways.Using the scale scores todraw inferenceof a latent construct for an individual is often
done in relation to the average scores in a particular group defined by specific

characteristics such as education level or age. In this case groupwise reliability coefficients

are of particular interest. However, when using the scale scores as an explanatory variable

in a regressionmodel or path analysis model with data from all individuals in a sample, the

overall reliability coefficient is the relevant quantity of interest and is one way to properly

396 Björn Andersson et al.
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adjust for measurement error (Cole & Preacher, 2014; Gleser, 1992), besides using, for

example,multiple imputation. Thus, inpractice, both the groupwise andoverall reliability

coefficients are important to consider. This study aims to improve the estimation of these

reliability coefficients when using multiple-group IRT models.
Within the framework of IRT, it is possible to estimate the reliability coefficients for

different groups in two ways. One approach is to estimate separate IRT models in the

different groups and for all groups combined, and estimate the reliability coefficients

separately with these models using the existing approaches for single-group models

(Cheng et al., 2012; Kim & Feldt, 2010). Another approach is to use multiple-group IRT

models in order to simultaneously estimate the score reliabilities for each individual group

and also for the multiple groups combined. There are three main statistical advantages to

estimating the reliability coefficients with a multiple-group model. First, the efficiency is
improved in the estimation of the groupwise reliability coefficients since data from all

groups are used to estimate the itemparameters. If instead estimating the itemparameters,

andthusthereliabilitycoefficients,separately ineachgroup,theinformationfromtheother

groups in the data is disregarded and estimation precision is lost. Second, the estimation

accuracy of the overall reliability coefficient (across all groups) is improved compared to

using a single-group model since the multiple-group model accounts for distributional

differences in the individual groups and also possible differential item functioning in the

groups. If there aredifferencesbetween thegroupsand this isnot taken intoaccount, there
will exist bias when estimating the item parameters and thus bias when estimating the

overall reliability coefficient. Third, with the multiple-group model, the groupwise and

overall reliability coefficients are estimated jointly which provides additional tools to, for

example, test the equality of the reliability coefficients in the different groups.

The purpose of this paper is to introduce how group-specific and overall reliability

coefficients for sum scores and maximum likelihood ability estimates can be estimated

with unidimensionalmultiple-group IRTmodels for binary and ordinal data.Wederive the

asymptotic variance of the estimators and outline how to estimate confidence intervals for
the reliability coefficients using the asymptotic variance. In addition to the case of known

group memberships, we outline how reliability coefficients can be estimated from

mixture IRT models (De Ayala & Santiago, 2017; Rost, 1991) where the group

memberships are unknown. We exemplify our results by illustrating how the reliability

coefficients for scores from theMontreal CognitiveAssessment (MoCA) (Nasreddine et al.,

2005) differ between individuals with two different educational levels. The accuracy of

the asymptotic variance and the estimated confidence intervals are evaluated using

simulated data in the case of known groupmemberships. To allow implementation of the
proposed method, we provide the code as supplementary material.

2. IRT with multiple groups

IRTmodels define aprobabilistic relationship between anunobservable continuous latent

variable and the observed categorical variables (De Ayala, 2009). IRT models are
commonly used in the analysis of scales and tests, with the aim of inferring a latent

construct at the level of individuals, evaluating the measurement properties of scales and

tests, and inferring population characteristics such as mean differences between groups

or the relationship between covariates and a latent construct. What defines a particular

IRTmodel is the probability, conditional on the latent variable, of observing each category

of the observed variable. Depending on the model specified, IRT can be usedwith binary,

Multiple group IRT reliability 397
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ordinal or nominal observed variables. In this study we consider the graded response

model (Samejima, 1969, GRM) and the generalized partial credit model (Muraki, 1992,

GPCM) for ordinal data and the two-parameter logistic (2PL) model and the three-

parameter logistic (3PL) model for binary data (Birnbaum, 1968); all of these models are
commonly used in practice. Besides the functional form of the IRT model, an assumption

regarding the marginal distribution of the latent variable is also typically made. For

identification of the model parameters, restrictions on the distribution must be imposed.

and most commonly the distribution is set to have a mean of 0 and a variance equal to 1.

Individuals taking scales or tests can often be categorized into distinct groups based on

their attributes (demographic characteristics, socioeconomic status, or clinical profiles).

The hypothesized difference inmeasurement properties between groups can be assessed

and accounted for bymultiple-group IRTmodels. Thesemodels allow for the estimationof
the mean and variance in the subgroups, provided that the metric is fixed for one of the

groups and that an assumption regarding invariance for some item parameters between

pairs of groups is imposed. When this assumption of invariance is fulfilled, the latent

distributions of the groups and estimates of the latent variable in the different groups can

be compared.

Define Pjkg(z; αjg) as the probability, conditional on the latent variable z, of obtaining

category k∈ f1, . . .,mjg on item j in group g∈ f1, . . .,Gg where αjg is the vector of item

parameters for item j in groupg. Forordinal datawith theGRM, theprobability is definedas

Pjkgðz;αjgÞ ¼ P∗
j,k,gðz;αjgÞ � P∗

j,kþ1,gðz;αjgÞ,

where P∗
j,k0,gðz;αjgÞ ¼ 1=ð1þ expð�ajgz � bj,k0,gÞÞ for 1< k0 <mj þ 1, P∗

j,1,gðz;αjgÞ ¼ 1

and P∗
j,mjþ1,gðz;αjgÞ ¼ 0. With the GPCM, the probability is defined by

Pjkgðz;αjgÞ ¼
exp ∑k

v¼1ðajgz þ bj,v,gÞ
h i

∑mj

c¼1exp ∑c

v¼1ðajgz þ bj,v,gÞ
� � :

With binary data, the above two models are equivalent to the 2PL model. Also with

binary data, the 3PL model defines the success or endorsement probability by

Pj2gðz;αjgÞ ¼ cjg þ 1� cjg

1þ expð�ajgz � bjgÞ :

A central concept in IRT is the expected item information, which is used to estimate

standard errors of estimates of the latent construct and estimate confidence intervals for

the latent construct. It is also used in the calculation of the reliability of maximum

likelihood estimates (MLEs) in a population. For a general IRT model, the expected item
information is equal to (Magis, 2015)

I jgðz;αjgÞ ¼ ∑mj

k¼1

∂Pjkgðz; αjgÞ
∂z

� �2

Pjkgðz;αjgÞ � ∂
zPjkgðz;αjgÞ

∂z2

2
64

3
75:

Let J denote the number of items on a test. The test information function is defined as

the sum of the item information functions, namely Igðz;αgÞ ¼ ∑J

j¼1I jgðz;αjgÞ.

398 Björn Andersson et al.
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Define yng
¼ ðyng1g

, . . . , yngJg
Þ0 as the item response vector for an individual

ng ∈ f1, . . .Ngg in group g, Y as the matrix of item response vectors in all groups, ϕ as

the normal distribution density function, αg as the item parameter vector in group g,

α = (α1,. . ., αG0)0 as the vector of item parameters in all groups, µ = (µ1,. . ., µG)0 as the
vector ofmeanparameters andσ2 ¼ ðσ21, . . ., σ2GÞ0 as the vector of varianceparameters.We

assume independence of the item responses conditional on the latent variable z, such that

Pðyng
jz;αgÞ ¼

QJ
j¼1Pjyngjgg

ðz;αjgÞ. Then we obtain the marginal likelihood function

Lðα,μ,σ2jYÞ ¼
YG

g¼1

YNg

ng¼1

Z
Pðyng

jz;αgÞΦðz; μg, σ2gÞdz,

which canbemaximizedwith anEMalgorithm (Bock&Aitkin, 1981) toobtain theMLEs of

the unknown parameters.

3. Estimating reliability coefficients with multiple-group IRT

After estimating the parameters of an IRT model, it is often desirable to draw inference

with respect to the underlying construct that the test items are meant to measure. Hence,

the individual latent constructs need to be estimated from the observed item response

patterns. One approach, still often used in practice, is to use the sum scores. The sum
score for an individualng is defined simply as the sumof the individual item scores, namely

xng
¼ ∑J

j¼1yngjg:

The sum score does not explicitly use the estimated IRT model parameters. However,

obtaining an accurate estimate of the reliability of the sum score requires using the

estimatedmodel parameters (Green&Yang, 2009; Kim& Feldt, 2010). Another approach

commonly used with IRT models to draw inference of the latent construct is to choose a

specific estimator and use the estimated model parameters and the response patterns to

obtain the estimate of the latent construct. In the literature there are a number of such
methods available, such as maximum likelihood (Birnbaum, 1968), the posterior mean

(Bock & Aitkin, 1981) and the posterior mode (Samejima, 1969). Here, we focus on the

maximum likelihood estimator, ẑMLE , which estimates the latent construct for an

individual ng by maximizing the individual likelihood function with respect to z. The

likelihood is

Lng
ðzjyng

;αgÞ ¼
YJ

j¼1
Pjyngjgg

ðz;αjgÞ,

which is maximized with a numerical optimization routine such as the Newton–Raphson
method. The variance of the maximum likelihood estimator of the latent construct, as the
number of items J tends to infinity, is equal to the inverse of the information function and is

hence given by

VarðẑMLE jzÞ ¼ 1

Igðz;αgÞ : (1)

Multiple group IRT reliability 399

 20448317, 2022, 2, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12269 by U
niversity O

f O
slo C

entral 340, W
iley O

nline L
ibrary on [05/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



For a fixed number of items, the expression in equation (1) is an approximation to the

variance. It is possible to improve the approximation via methods discussed in Lord

(1983), but for simplicity we will not pursue these in the present paper.

When using either the sum score or the maximum likelihood estimator to draw
inference of a latent construct, it is desirable to know the reliability of the scores in a

population in order to provide validity evidence of uses of the scores. We can also note

that besides their utility in estimating a latent construct, sum scores orMLEs from scales or

tests are also often used as the dependent variable or explanatory variable in regression

models or structural equation models. Correct application of these models often requires

the specification of the reliability of the variable used (Gleser, 1992).

However, the reliabilities of the sum scores and theMLEs are not equal and can vary for

different groups. Thankfully we can estimate the reliability of bothwith the estimated IRT
model parameters, as discussed, for example, Green and Yang (2009) and Kim and Feldt

(2010) for sum scores and in Nicewander and Thomasson (1999), Cheng et al. (2012) and

Kim (2012) for the maximum likelihood estimator and other IRT score estimators. We

now proceed to define the reliability of sum scores and MLEs with multiple-group IRT

models, which generalizes previously defined reliability coefficients for such scores to the

case of multiple-group models.

3.1. Reliability of sum scores

Let the score of category k∈ f1, . . .,mjg for item g∈ f1, . . ., Jg be Wjk and let the sum

scores be xi, i∈ f0, . . .,Kg. The reliability of the sum scores in a group g can be calculated

from the regular definition of the reliability in terms of the ratio of the true score variance

to the observed score variance, that is,

ρXg,X
0
g
¼

σ2Tg

σ2Xg

¼ 1�
σ2eg
σ2Xg

:

For IRT models we have, for each group g (Kim & Feldt, 2010),

σ2egðα, μg, σ2gÞ ¼
Z

σ2egjzðαgÞΦðz; μg, σ2gÞdz,

where

σ2egjzðαgÞ ¼ ∑J

j¼1 ∑mj

k¼1Pjkgðz;αgjÞW 2
kj � ∑mj

k¼1Pjkgðz;αgjÞWjk

� �2h i
,

and

σ2Xg
¼ ∑K

i¼0rigðαg, μg, σ
2
gÞx2i � ∑K

i¼0rigðαg, μg, σ
2
gÞxi

� �2

,

with rigðαg, μg, σ
2
gÞ ¼

R
rigðz;αgÞΦðz; μg, σ2gÞdz. Let p ¼ ðp1, . . . pGÞ0 be the vector of

proportions of members in each group, treated in a multiple-group model as fixed and

known and treated as unknown parameters in a mixture IRT model. For all groups, we

have

400 Björn Andersson et al.
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ρX,X 0 ¼ 1� σ2e
σ2X

,

where

σ2e ¼ ∑G

g¼1pg

Z
σ2egjzðαgÞΦðz; μg, σ2gÞdz,

and

σ2X ¼ ∑K

i¼0riðα,p,μ, σ2Þx2i � ∑K

i¼0riðα,p,μ,σ2Þxi
� �2

,

where riðα,p,μ,σ2Þ ¼ ∑G

g¼1pg
R
rigðz;αgÞΦðz; μg, σ2gÞdz. The rig(z;αg) are the sum score

probabilities for group g for a given value of z which are calculated using a recursive

algorithm (Lord &Wingersky, 1984; Thissen, Pommerich, Billeaud, &Williams, 1995). In

brief, the algorithm computes the probabilities of each sum score when adding one

additional item until all the items have been considered. We obtain the following

equation for the sum score probabilities when including J
* items:

r
J∗

igðz;αgÞ ¼ ∑
∑J∗�1

j¼1 Wjk

i0¼0 r
J∗�1
i0g ðz;αgÞ ∑mj

k¼1PJ∗kgðz;αgÞ1ðkþ i0 � 1 ¼ iÞ� �
,

where r
J∗�1
i0g ðz;αgÞ are the sum score probabilities for scores i0∈ 0, . . .,∑J∗�1

j¼1 Wjk

n o
, that

is, when considering only the J
*−1 first items. These probabilities are sequentially

calculated starting from the first item, where the sum score probabilities are simply equal

to the item characteristic function for each category, that is,

r1i0gðz;αgÞ ¼ P1ði0þ1Þgðz;αgÞ:

The integrals in the above equations do not have explicit solutions and need to be

approximated.Here,wewill useGauss–Hermite quadraturewith nodes zl andweightswl,

l ∈ f1, . . ., Lg, for this purpose. For group g, let zlg ¼
ffiffiffi
2

p
σgzl þ μg be the lth quadrature

point. We then obtain the estimator of the sum score reliability in group g as

ρ̂Xg,Xg0 α̂g, μ̂g, σ̂
2
g

� �
¼ 1�

∑L

l¼1σ
2
eg
ðα̂gÞjz¼ẑlgwl

∑K

i¼0rigðα̂g, μ̂g, σ̂2gÞx2i � ∑K

i¼0rigðα̂g, μ̂g, σ̂2gÞxi
h i2 , (2)

where rigðα̂g, μ̂g, σ̂2gÞ ¼ ∑L

l¼1rigðẑlg; α̂gÞwl . Similarly, we obtain the estimator of the

reliability of the sum scores from all groups,

ρ̂X,X 0 ðα̂, p̂, μ̂, σ̂2Þ ¼ 1�
∑G

g¼1p̂g∑
L

l¼1σ
2
egjzðα̂gÞj

z¼ẑlgwl

∑K

i¼0riðα̂, p̂, μ̂, σ̂2Þx2i � ∑K

i¼0riðα̂, p̂, μ̂, σ̂2Þxi
� �2 , (3)

where riðα̂, p̂, μ̂, σ̂2Þ ¼ ∑G

g¼1p̂g∑
L

l¼1rigðẑlg; α̂gÞwl .

Multiple group IRT reliability 401
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3.2. Reliability of maximum likelihood ability estimates

The reliability of themaximum likelihood ability estimates in a population can be found by

considering the ratio of the latent distribution variance to the total variance, where the

total variance is equal to the sum of the latent distribution variance and the error variance
(Cheng et al., 2012).When computing the error variance,wewill integrate the expression

given in equation (1) over the latent distribution in each group. The approach we use

gives the reliability coefficient of the maximum likelihood ability estimates as the number

of items tends to infinity. For a detailed discussion of reliability coefficients for different

types of ability estimators, see S. Kim (2012). For a group g with latent distribution

variance σ2g we thus have that the reliability of the MLEs is

ρΘg
ðαg, μg, σ

2
gÞ ¼

σ2g
σ2g þ

R
1

Igðz; αgÞΦðz; μg, σ2gÞdz
,

where αg, µg and σ2g are the unknown parameters which may potentially differ between

groups.We nowconsider the reliability of themaximum likelihood ability estimates for all

groups, defined as

ρΘðα,p,μ,σ2Þ ¼ σ2

σ2 þ∑G

g¼1 pg
R

1
Igðz; αgÞΦðz; μg, σ2gÞdz

,

where σ2 ¼ ∑G

g¼1 pgððμg � μÞ2 þ σ2gÞ, with μ ¼ ∑G

g¼1 pgμg, that is, µ and σ2 are the mean

and variance of the mixture distribution for all groups, respectively (McLachlan & Peel,

2000). Note that we have defined p1 ¼ 1�∑G

g¼2 pg, and to identify the unknown

parameters we have imposed the restrictions µ1 = 0 and σ21 ¼ 1.
We again approximate the required integral with Gauss–Hermite quadrature and the

estimator of the reliability of themaximum likelihood ability estimates in group g is then a

function of the item and distribution parameter estimators, that is,

ρ̂Θg
ðα̂g, μ̂g, σ̂2gÞ ¼

σ̂2g

σ̂2g þ∑L

l¼1
1

Igðẑlg, α̂gÞwl

: (4)

Similarly, the estimator of the reliability of the MLEs for all groups is

ρ̂Θðα̂, p̂, μ̂, σ̂2Þ ¼
σ̂2

σ̂2 þ∑G

g¼1p̂g∑
L

l¼1
1

Igðẑlg, α̂gÞwl

: (5)

3.3. Confidence interval estimation

The large-sample variances of the estimators in equations (2–5) can be derived with

standard methods from asymptotic theory (Ferguson, 1996). For an estimator ρ̂ that is a

function of a parameter estimator ξ̂with asymptotic covariance matrix∑ξ̂, we have that

the asymptotic covariance matrix for ρ̂ can be approximated by the delta method with
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∑ρ̂≈
∂ρ̂
∂ξ̂

∑ξ̂

∂ρ̂
∂ξ̂

	 
’
(6)

In a particular instance ξ̂ is replaced by the IRT model parameter estimates to obtain

the estimated covariance matrix. The variance of the sum score reliability estimator was
presented in Andersson and Xin (2018) for single-group IRT models with the 3PL model

andGPCM. For themultiple-group reliability coefficients defined in this paper,we need to

account for the additional parameters pg, µg and σ2g, compute the derivatives pertaining to

the reliability coefficient for themaximum likelihood reliability estimates and also provide

support for the GRM. The required derivatives for this are given in the Appendix S1; they

are partly based on the derivatives from Andersson and Xin (2020). We verified the

analytical derivatives by comparing themwith numerical derivatives.With the asymptotic

covariance matrix, we can estimate approximate confidence intervals for a reliability

coefficient ρq ∈ ρ from the estimated standard error ^SEðρ̂qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ arðρ̂qÞ

q
. For example, a

95% confidence interval is estimatedwith ρ̂obsq � z0:975 � ^SEðρ̂qÞ, where z0.975 denotes the

0.975 quantile of the standard normal distribution. We note here that it is also possible to

convert the item parameter estimates from different groups onto a common metric and

utilize the expressions in, for example, Cheng et al. (2012) and S. Kim and Feldt (2010) to

compute the groupwise reliability coefficients defined in equations (2) and (4). Such
conversionswould give the same estimates butwould require different derivations for the

standard error estimation than those presented here.

4. Empirical example: Estimating reliabilities of moca scores in a large

hong kong Sample

In this empirical example,weused data from1,873older personswith andwithout formal

education in Hong Kong to demonstrate the procedure of estimating group-specific and

overall reliability coefficients of the MoCA scores with multiple-group IRT models. The

MoCA is awidely used tool for screening cognitive impairment and dementia (Nasreddine
et al., 2005).When applying theMoCA for cognitive assessment, a commonconcern is the

effect of educational level on the test scores. Substantially different cut-off values for mild

cognitive impairment and dementia have been proposed for people with different

educational levels (Balsis, Choudhury, Geraci, Benge, & Patrick, 2018). An earlier study

applied multiple-group IRT analysis to the MoCA in a low-education older population in

Hong Kong and found that item characteristics differed between older persons with and

without formal education (Luo, Andersson, Tang, & Wong, 2020) by employing a model

selection procedure with the Bayesian information criterion. Using the same data and
model, we extended the earlier analysis by including estimation of the reliability

coefficients using multiple-group IRTmodels. In this sample, 45% of the respondents had

no formal education. The earlier analysis utilized the GRM and identified three items that

functioned differently with respect to education level: Cube, clock number and clock

hand. The selectedmodel had an rootmean squared error of approximation of 0.042 (95%

CI 0.038–0.048) and a standardized root mean squared residual of 0.055 and 0.054,

indicating good model fit Maydeu-Olivares, 2013; Maydeu-Olivares & Joe, 2014).

Based on the selected model from the earlier study, we then estimated the sum score
reliability and the maximum likelihood estimator reliability for each group (from

equations (2) and (4)) and the total sample (from equations (3) and (5)). The point

Multiple group IRT reliability 403
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estimates and associated confidence intervals are presented in Table 1. The mean and

variance of the ‘some formal education’ group was set to 0 and 1, respectively, to identify

the model parameters. The reliability estimates are higher in the ‘no formal education’

group. The test information functions for both groups are plotted in Figure A1 in
Appendix S2, showing that themeasurement precision differs between the groups across

the latent scale. The three items expressing differential item functioning with respect to

the educational level attained have an overall higher measurement precision for the ‘no

formal education group’ at the middle of the latent scale. These findings, along with the

differing distribution parameter estimates in the groups, explain why the measurement

precision is lower in the ‘some formal education’ group than in the ‘no formal education’

group.

5. Monte Carlo simulations

Weconducted aMonte Carlo simulation study to verify the derivations provided, evaluate

the estimation properties and assess the finite-sample properties of the confidence

intervals. The IRT models were estimated with the R (R Core Team, 2020) packagemirt

(Chalmers, 2012), using marginal maximum likelihood with the EM algorithm. The
asymptotic covariance matrix was estimated with the sandwich estimator (Yuan, Cheng,

&Patton, 2014). Newlywritten R codewas used to estimate the reliability coefficients and

confidence intervals. The code can be found in the online supplementary material. In the

simulations, we evaluated the bias of the reliability estimators and the bias of the

confidence interval estimators. To compute the bias, we defined the true reliability

coefficients by the values obtained from plugging in the true distribution parameters and

item parameters via equations (2)–(5) and compared these to the average of the estimates

in the Monte Carlo simulation. We also evaluated the coverage rate of 95% confidence
intervals estimated with the standard errors. To evaluate the estimation efficiency of the

multiple-group model reliability coefficients, estimators based on single-group and

multiple-groupmodelswere compared by considering the relative efficiency. The relative

efficiency was computed using the ratio of the estimated mean squared errors (variance

plus the squared bias) of the estimators.

The simulation study was designed to mimic the example with the MoCA. We

simulated item parameters based on the estimated two-group GRM to simulate item

response data with 14 and 28 items in two groups, where the weights were consistent
with the empirical example (45% and 55%) and where three out of 14 items and six out of

28 items had differential item functioning in the respective settings. For each replication,

four IRTmodels were estimated: three single-group IRTmodels for the data in each of the

two individual groups and the total sample, and one multiple-group model where the

Table 1. Estimated mean cognitive performance (μ), variance of cognitive performance (σ 2), sum

score reliability and maximum likelihood estimate (MLE) reliability in two education levels and

overall, with standard errors in parentheses

Education level μ σ 2 Sum score reliability MLE reliability

Some formal education 0 (−) 1 (−) 0.736 (0.012) 0.760 (0.009)

No formal education −1.081 (0.063) 1.096 (0.103) 0.785 (0.010) 0.819 (0.008)

All education levels −0.486 (0.028) 1.332 (0.066) 0.806 (0.007) 0.825 (0.005)
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invariance constraints were consistent with the empirical example. The IRTmodels were

estimated usingmarginalmaximum likelihood, and then the sum score andMLE reliability

coefficients based on the single-group models and the multiple-group model were

estimated.We considered sample sizes 1,000, 2,000 and 4,000, with 5,000 replications in
each setting.

The simulation results showed that the non-convergence rates with 14 itemswere 6%,

0.36% and 0%, and with 28 items 9.74%, 0.6%, and 0%, for sample sizes 1,000, 2,000 and

4,000, respectively. The results for the bias are given in Table 2, showing that the

estimators are essentially unbiased. The empirical coverage rates of 95% confidence

intervals are given in Table 3. The results indicate that all reliability coefficient confidence

intervals have coverage close to the nominal level with all sample sizes, with exception of

the confidence intervals for the MLE reliability coefficient which are slightly below the
nominal level with sample size 1,000 for some settings. We also investigated the relative

efficiency ofMLE and sum score reliability estimators from single-groupmodels relative to

estimators from multiple-group models and found improved efficiencies in estimators

from multiple-group models across all settings (Table 4).

6. Discussion

In this paper we introduced reliability coefficients for sum scores and maximum

likelihood ability estimates based on multiple-group IRT models. We derived the

asymptotic variance of the reliability coefficient estimators and evaluated the finite-

sample properties of the estimators and confidence intervalswith simulations.Our results

show that the reliability coefficient estimators are largely unbiased and that the

confidence intervals have correct empirical coverage rates. With the results provided,

applied researchers can estimate the groupwise and overall reliability of sum scores and
MLEs directly from the estimated multiple-group IRT model parameters. This enables a

better evaluation of the measurement properties of scale scores in diverse groups.

An alternative to estimating the reliability of sum scores and maximum likelihood

ability estimateswith amultiple-groupmodel is to fit individualmodels for each group and

estimate the reliability separately in each group. However, such a procedure does not

encompass a study ofmeasurement invariance across groups and hence does not enable a

Table 2. Bias for the sum score and MLE reliability estimators, with the 14- and 28-item graded

response models

N

Group 1 Group 2 All groups Group 1 Group 2 All groups

14 items 28 items

Bias of sum score reliability estimators

1,000 −0.0001 −0.0009 0.0000 0.0004 −0.0004 0.0001

2,000 −0.0000 −0.0004 0.0001 0.0003 −0.0001 0.0001

4,000 0.0001 −0.0002 0.0000 0.0003 −0.0001 0.0000

Bias of MLE reliability estimators

1,000 0.0009 0.0003 0.0010 0.0008 0.0003 0.0006

2,000 0.0004 0.0002 0.0005 0.0005 0.0002 0.0003

4,000 0.0004 0.0001 0.0003 0.0004 0.0000 0.0001

Multiple group IRT reliability 405
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common interpretation of the resulting scores across the groups. In addition, the

estimation accuracy and precision are negatively impacted since only the observations in

each individual group are used instead of the entire data. In the present study, the

estimation efficiency decreased markedly when using single-group models compared to

multiple-group modelling. Furthermore, separate estimation in each group does not

provide a method to estimate the reliability of scores for all groups combined. If instead

using a joint single-group model to estimate the reliability for all groups combined, the

potential differences in the item parameters across groups and in the latent distribution
parameters are not taken into account. If the parameters differ between the groups, the

estimation of the reliability with a single-group model may be biased. Such bias impacted

the estimation performance negatively for the overall reliability coefficients based on the

single-group model in the simulation study. Hence we view utilizing the multiple-group

model as a major advantage when estimating the reliability.

We offer some suggestions for the practical use of our results. Since the reliability

coefficients are defined by a multiple-group IRT model, it is essential to establish

appropriate model fit before interpreting the results from the reliability coefficients

Table 3. Empirical coverage rates (%) of 95% confidence intervals for the sum score and MLE

reliabilities,with bold font indicating that the coverage rate is statistically significantly different from

95%

N

Group 1 Group 2 All groups Group 1 Group 2 All groups

14 items 28 items

Sum score reliability estimators

1,000 95.00 94.51 94.94 94.48 94.68 94.62

2,000 94.86 95.04 95.14 95.01 94.71 95.15

4,000 95.28 94.72 95.34 94.86 95.12 94.94

MLE reliability estimators

1,000 94.62 94.53 94.23 93.82 94.17 94.04
2,000 94.72 94.70 94.44 94.71 94.65 94.83

4,000 95.18 94.72 95.14 94.70 94.98 94.64

Table 4. Relative efficiency of sum score and MLE reliability estimators from single-group models

relative to estimators from multiple-group models

N

Group 1 Group 2 All groups Group 1 Group 2 All groups

14 items 28 items

Sum score reliability estimators

1,000 1.12 1.14 1.02 1.06 1.07 1.06

2,000 1.14 1.13 1.04 1.07 1.06 1.14

4,000 1.13 1.11 1.08 1.09 1.08 1.36

MLE reliability estimators

1,000 1.05 1.05 1.11 1.02 1.04 1.10

2,000 1.05 1.04 1.24 1.02 1.03 1.19

4,000 1.05 1.05 1.49 1.03 1.03 1.33
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presented in this paper. If themodel does not fitwell, the subsequent reliability coefficient

estimates can be biased. The results of the simulation study provide support for the use of

the estimators and confidence intervals with a sample size per group as small as 500,

although the confidence intervals for the maximum likelihood ability estimate reliability
had empirical coverage rates that were lower than the nominal level with sample size 500.

The sample size requirements for multiple-group model estimation vary with the

characteristics of the groups and the number and types of items. Generally speaking,

larger differences between groups require larger sample sizes and more items with more

categories also require larger sample sizes.

There are some limitations to the present study. First, the derivations presented

assume a normal distribution as the latent variable distribution in each group, which is

somewhat restrictive. However, we also note that a multiple-groupmodel can be a tool to
model non-normality in IRT since multiple-group models assume that the unconditional

latent distribution is a mixture of multiple-groupwise normal distributions, which can be

highly non-normal. Second, we only considered a selection of IRT models in our study.

Although the 2PL model, 3PL model, GPCM and GRM are the most commonly used

models, there are a large number of additionalmodels available in the literature. However,

note that the derivations presented apply to general unidimensional IRT models, which

means that the results can be easily adapted to additional models. Third, we note that

while we presented how to estimate confidence intervals using a normal approximation,
this procedure can be extended and modified further. The confidence intervals we

presented are symmetric intervals that do not take into consideration the restricted range

of the reliability coefficients. Instead of a normal approximation,we can utilize alternative

methods (Cox&Ma, 1995) to account for the restricted range of the reliability coefficients

and obtain confidence intervals that are more informative when the estimates are close to

the boundary of the parameter space. Fourth, we did not consider the impact of item

parameter estimation on the reliability of the maximum likelihood ability estimates, as

done via multiple imputation in Yang, Hansen, and Cai (2012). Lastly, the maximum
likelihood ability estimator and the subsequent MLE reliability coefficients may be biased

when the number of items is not sufficiently large. However, we did not consider finite-

item adjustments to the MLE reliability coefficients. By utilizing expressions from Lord

(1983), it is possible to improve estimation accuracy of the multiple-group maximum

likelihood reliability estimators when the number of items is small.

We also note a further application of our results that may be useful in practice. The

asymptotic covariance matrix for the reliability coefficient estimator can be used to test

hypotheses regarding the reliability coefficients by utilizing a Wald test (Wald, 1943). For
example, we can test the equality of the reliability of sum scores between groups or we

can test whether a reliability coefficient is statistically significantly larger or smaller than a

particular value. Such tests can be directly applied with the derivations presented in this

paper.

Future extensions to the methods presented here are possible. It is possible to extend

the approach presented to multidimensional IRT models, and obtain more accurate

estimation of the score reliabilitywhen a unidimensionalmodel is not tenable. In addition,

it is possible to consider the reliability of other IRT score estimators such as the posterior
mean and the posterior mode when using multiple-group models.

Multiple group IRT reliability 407
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