
TROPICAL DEGENERATIONS AND STABLE RATIONALITY

JOHANNES NICAISE AND JOHN CHRISTIAN OTTEM

Abstract. We use the motivic obstruction to stable rationality introduced by

Shinder and the first-named author to establish several new classes of stably

irrational hypersurfaces and complete intersections. In particular, we show

that very general quartic fivefolds and complete intersections of a quadric and

a cubic in P6 are stably irrational. An important new ingredient is the use of

tropical degeneration techniques.
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1. Introduction

A central question in algebraic geometry is the rationality problem, which asks
whether a given algebraic variety X over a field k is rational, or, more generally,
stably rational, which means that X ×k Pmk is rational for some m ≥ 0. Here the
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case of hypersurfaces in Pn+1
k is particularly important, with classical results going

back to Clemens–Griffiths [CG72] and Iskovskikh–Manin [IM71] in the early 1970s,
and Kollár [Ko95] in the 1990s. In recent years, there has been much progress
on this problem, triggered by Voisin’s specialization technique [Vo15], as well as
subsequent developments (see [CTP16, To16, Sch19a]). For instance, Schreieder
proved in [Sch19a] that a very general projective hypersurface of degree d and
dimension n ≥ 3 is stably irrational if d ≥ log2 n+2, generalizing existing results by
Totaro [To16] and Kollár [Ko95]. Despite these breakthroughs, many fundamental
questions remain open. Famous unsolved problems include the rationality of a very
general cubic fourfold, the stable rationality of a very general cubic threefold, and
the rationality of smooth quartic hypersurfaces.

In [NS19], Evgeny Shinder and the first-named author introduced a powerful
new tool in the study of rationality properties of algebraic varieties over fields
of characteristic zero. They showed that, to any strictly toroidal one-parameter
degeneration, one can attach a motivic obstruction to the stable rationality of the
geometric generic fiber. They furthermore used this obstruction to prove that the
locus of stably rational geometric fibers in mildly singular families is closed under
specialization. This method was further improved in [KT19] to prove specialization
of rationality instead of stable rationality. A unified treatment of these results was
given in [NO20].

The aim of the present paper is to apply these techniques to concrete rationality
questions. Our main applications are the following (all in characteristic zero):

• A very general quartic fivefold is stably irrational (Corollary 5.2). Stable
irrationality of quartic hypersurfaces was previously known only in
dimensions n ≤ 4 [CTP16, To16]. In dimensions n > 5, we prove the
stable irrationality of very general hypersurfaces of degree d ≥ 4 assuming
stable irrationality of a special quartic in dimension n − 1 (Theorems 5.1
and 5.3). We also establish analogous conditional results in higher degrees
(Proposition 5.7).
• Bounds for the stable irrationality of hypersurfaces in products of projective

spaces. In particular, we classify the bidegrees corresponding to stably
irrational hypersurfaces of dimension at most 4 in products of projective
spaces (Proposition 6.1 and Theorem 6.3).
• If a very general hypersurface of degree d and dimension n is stably

irrational, then a very general hypersurface of degree d+ 1 and dimension
n or n+ 1 is also stably irrational (Theorem 4.4).
• A very general intersection of a quadric and a cubic in P6

k is stably irrational
(Theorem 7.1). Apart from the cubic fourfold, this was the only open
case for complete intersection fourfolds. We also prove that a very general
intersection of two cubics in P7

k is stably irrational (Corollary 7.3).
• Significantly sharper bounds for stable irrationality of very general complete

intersections, at the level of Schreieder’s bounds for hypersurfaces [Sch19a],
see Theorems 7.5 and 7.7. We use Schreieder’s bounds for hypersurfaces as
an essential ingredient in the proof. As a special case of Theorem 7.7, we
obtain that, when n ≥ 4 and r ≥ n−1, a very general complete intersection
of r quadrics in Pn+r

k is stably irrational (Corollary 7.8). This generalizes
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results by Hassett, Pirutka & Tschinkel [HPT17] and Chatzistamatiou &
Levine [CL17].

Given a strictly toroidal one-parameter degeneration, the motivic obstruction to
stable rationality of the geometric generic fiber takes the form of an alternating
sum of the virtual stable birational types of the strata in the degenerate fiber.
In this way, the stable irrationality of the geometric generic fiber can be deduced
from the stable irrationality of special varieties of lower dimensions and/or degrees.
For instance, we degenerate the quartic fivefold to a union of two varieties which
intersect along a very general quartic double fourfold, which is known to be stably
irrational [HPT19]. To prove the non-triviality of the obstruction, it is essential to
control the stable birational types of different strata in the special fiber to make
sure that the stably irrational strata do not cancel out in the alternating sum.
An important tool in this context is the result by Shinder on variation of stable
birational types in families [Sh19]. We refine and extend this result in a more general
setting (Theorem 4.1) and use it at various places to prove the non-triviality of the
motivic obstruction to stable rationality.

In order to apply these methods to concrete problems, one needs to
construct suitable degenerations. For this purpose, we use the theory of tropical
compactifications, which associates toroidal degenerations to a large class of
polyhedral subdivisions of the Newton polytope of a hypersurface in an algebraic
torus. We compute the motivic obstruction for such degenerations by means of the
tropical formulas for the motivic nearby fiber in [NPS16]; see Theorems 3.14 and
3.15. This makes it possible to apply combinatorial methods to rationality problems
in algebraic geometry: one tries to prove stable irrationality of a hypersurface
by showing that its Newton polytope ∆ contains the Newton polytope of a
hypersurface that is already known to be stably irrational, and such that this smaller
polytope is not contained in the boundary of ∆.

Degeneration techniques have been widely used in the study of rationality
questions, especially after Voisin’s pioneering work on the specialization technique
[Vo15, CTP16, To16, Sch19a]. A distinctive feature of our approach is that
our degenerate fibers typically have many irreducible components, whereas
Voisin considered degenerations with integral fibers1. Moreover, in many of our
applications, the stable irrationality of the geometric generic fiber is deduced from
the stable irrationality of strata in the special fiber of smaller dimension. To the best
of our knowledge, such a systematic reduction in dimension has not been achieved
with other methods.

The paper is organized as follows. In Section 2 we recall the main results on
the motivic obstruction to stable rationality from [NS19] and [NO20], and phrase
them in a form that is suitable for our applications. Section 3 is the technical
heart of the paper: we introduce the necessary tools from tropical geometry, and
give a tropical formula for the motivic obstruction (Theorems 3.14 and 3.15). In
the remaining sections, we discuss the applications that were outlined above: we
consider hypersurfaces in projective spaces in Section 5, hypersurfaces in products
of projective spaces in Section 6, and finally complete intersections in projective
spaces in Section 7.

1However, applications involving reducible degenerate fibers have been worked out in [To16,

CL17, CT18]. We are grateful to Jean-Louis Colliot-Thélène for pointing out these references.
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Notations. We denote by k an algebraically closed field of characteristic zero, and
by K the field of Puiseux series over k, that is,

K =
⋃
n>0

k((t1/n)).

We consider the t-adic valuation

ordt:K
× → Q, a 7→ ordt(a)

on K. For every positive integer n and every non-zero element

a =
∑
i∈Z

ait
i/n

of k((t1/n)), the value ordt(a) is the minimum of the set {i/n | i ∈ Z, ai 6= 0}. We
denote by R the valuation ring in K; thus

R = {0} ∪ {a ∈ K× | ordt(a) ≥ 0} =
⋃
n>0

kJt1/nK.

We adopt the following convention in our notations for projective bundles: when
S is a scheme and E is a locally free sheaf of finite rank on S, we denote by PE the
projective bundle Proj SymOS (E∨) on S. In particular, when V is a vector space
over a field F , then PV is a projective space over F whose F -points correspond to
one-dimensional subspaces of V .

2. Specialization of stable birational types

In this section, we recall some results and tools from [NS19] and [NO20] that we
will need in this paper.

2.1. Stable birational types and the theorem of Larsen & Lunts. Let F
be a field. Two F -schemes of finite type X and Y are called stably birational if
X ×F P`F is birational to Y ×F PmF for some non-negative integers ` and m. We say
that X is stably rational if it is stably birational to the point SpecF . We denote by
SBF the set of stable birational equivalence classes of integral2 F -schemes of finite
type; the equivalence class of X will be denoted by [X]sb. We write Z[SBF ] for the
free abelian group on the set SBF . For every F -scheme Z of finite type, we set

[Z]sb =

r∑
i=1

[Zi]sb

2We follow the convention that integral schemes are assumed to be non-empty.



TROPICAL DEGENERATIONS AND STABLE RATIONALITY 5

in Z[SBF ], where Z1, . . . , Zr are the irreducible components of Z (with their induced
reduced structures). In particular, [∅]sb = 0. Note that two reduced F -schemes of
finite type are stably birational if and only if they define the same element in
Z[SBF ].

There exists a unique ring structure on Z[SBF ] such that

[X]sb · [Y ]sb = [X ×F Y ]sb

for all F -schemes X and Y of finite type. The identity element for the ring
multiplication is [SpecF ]sb, the class of stably rational F -schemes of finite type.

We denote by K(VarF ) the Grothendieck ring of F -varieties. As an abelian group,
it is characterized by the following presentation:

• Generators: isomorphism classes [X] of F -schemes X of finite type.
• Relations: whenever Y is a closed subscheme of X, we have

[X] = [Y ] + [X \ Y ].

This abelian group has a unique ring structure such that [X] · [Y ] = [X ×F Y ] for
all F -schemes X and Y of finite type. We write L = [A1

F ] for the class of the affine
line in K(VarF ). To simplify the notation, if ϕ: K(VarF )→ A is any map to some
set A, then we will write ϕ(Y ) instead of ϕ([Y ]) whenever Y is an F -scheme of
finite type.

The following fundamental theorem was proved in [LL03].

Theorem 2.1 (Larsen & Lunts). Assume that F has characteristic zero. There
exists a unique ring morphism

sb: K(VarF )→ Z[SBF ]

that maps [X] to [X]sb for every smooth and proper F -scheme X. It factors through
an isomorphism

K(VarF )/(L)→ Z[SBF ].

Beware that one usually has sb(Y ) 6= [Y ]sb when Y is not smooth and proper;
for instance, sb(A1

F ) = sb(P1
F )− sb(SpecF ) = 0.

2.2. The stable birational volume. The stable birational volume is a version
of the nearby cycles functor for stable birational types that controls how these
degenerate in families. It can be constructed in terms of a particular class of models.
A monoid M is called toric if it is finitely generated, integral, saturated, and sharp
(that is, 0 is the only invertible element in M). This is equivalent to saying that M
is isomorphic to the monoid of lattice points in a strictly convex rational polyhdral
cone. To any monoid M we can attach its monoid R-algebra R[M ]; the monomial
associated with an element m ∈M will be denoted by xm.

Let X be a flat separated R-scheme of finite presentation. We say that X is
strictly toroidal if, Zariski-locally on X , we can find a smooth morphism

X → SpecR[M ]/(xm − tq)

for some toric monoid M , some positive rational number q, and some element m in
M such that k[M ]/(xm) is reduced.

If X is strictly toroidal, then a stratum of the special fiber Xk is a connected
component E of an intersection of irreducible components of Xk. The codimension
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codim(E) of the stratum E is defined to be the codimension in Xk. We will denote
the set of strata of Xk by S(X ).

Example 2.2. Let r and s be positive integers, and let a = (a1, . . . , ar) and
b = (b1, . . . , bs) be tuples of positive integers. With these data we associate the
R-schemes

Xa = SpecR[xi,j | i = 1, . . . , r; j = 1, . . . , ai]/(t−
a1∏
j=1

x1,j , . . . , t−
ar∏
j=1

xr,j),

Yb = SpecR[yi,j | i = 1, . . . , s; j = 0, . . . , bi]/(ty1,0 −
b1∏
j=1

y1,j , . . . , tys,0 −
bs∏
j=1

ys,j).

Then it is easy to see that the schemes Xa, Yb and Xa ×R Yb are strictly toroidal;
we will only spell out the third case. Let M be the quotient of the free monoid

Ne0 ⊕
⊕

i=1,...,r
j=1,...,ai

Nei,j ⊕
⊕

i=1,...,s
j=0,...,bi

Nfi,j

by the congruence relations{
e0 =

∑ai
j=1 ei,j for i = 1, . . . , r,

e0 + fi,0 =
∑bi
j=1 fi,j for i = 1, . . . , s.

Then M is a toric monoid, and

Xa ×R Yb ∼= SpecR[M ]/(xe0 − t).

It follows that every flat separated R-scheme X of finite presentation that admits
Zariski-locally a smooth morphism to a scheme of the form Xa, Yb or Xa ×R Yb
is also strictly toroidal. We say that X is strictly semi-stable if it admits Zariski-
locally a smooth morphism to a scheme of the form Xa with r = 1.

A similar calculation shows that the product of two strictly toroidal R-schemes
is again strictly toroidal; this is one of the advantages of this class of schemes over
the more restrictive class of strictly semi-stable R-schemes.

The following result from [NO20], which generalizes [NS19], furnishes a version
of the nearby cycles functor for stable birational types.

Theorem 2.3. There exists a unique ring morphism

Volsb:Z[SBK ]→ Z[SBk]

such that, for every strictly toroidal proper R-scheme X with smooth generic fiber
X = XK , we have

(2.2.1) Volsb([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb.

Proof. This is Corollary 3.3.5 in [NO20]. �

Example 2.4. Let X be a smooth and proper K-scheme, and assume that X
has a smooth and proper R-model X . Then Volsb([X]sb) = [Xk]sb. In particular,
Volsb([SpecK]sb) = [Spec k]sb.

Corollary 2.5.
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(1) Let X be a smooth and proper K-scheme. If

Volsb([X]sb) 6= [Spec k]sb

in Z[SBk], then X is not stably rational.
(2) Let X be a strictly toroidal proper R-scheme with smooth generic fiber

X = XK . If ∑
E∈S(X )

(−1)codim(E)[E]sb 6= [Spec k]sb

in Z[SBk], then X is not stably rational.

Proof. If X is stably rational, then [X]sb = [SpecK]sb so that Volsb([X]sb) =
[Spec k]sb. The second part of the statement follows immediately from the
expression for Volsb([X]sb) in terms of a strictly toroidal model in formula
(2.2.1). �

We call the morphism Volsb from Theorem 2.3 the stable birational volume. By
Corollary 2.5, we can use the stable birational volume as an obstruction to stable
rationality. In [NS19], Theorem 2.3 was used to deduce the following important
corollary, which we reproduce here for later use.

Corollary 2.6 (Theorem 4.1.4 and Corollary 4.1.5 in [NS19]). Let S be a
Noetherian Q-scheme, and let X → S and Y → S be smooth and proper morphisms.
Then the set

{s ∈ S |X ×S s is stably birational to Y ×S s for any geometric point s based at s}

is a countable union of closed subsets of S.
In particular, the set

{s ∈ S |X ×S s is stably rational, for any geometric point s based at s}

is a countable union of closed subsets of S.

This result was further improved in [KT19] to get the analogous statements
for birational equivalence and rationality instead of stable birational equivalence
and stable rationality; see also [NO20] for a uniform treatment. For our current
purposes, the stable version will be sufficient.

The stable birational volume Volsb is closely related to the motivic volume that
was constructed by Hrushovski and Kazhdan in [HK06]. This is a ring morphism

Vol: K(VarK)→ K(Vark)

that constitutes a motivic upgrade of the stable birational volume Volsb in the sense
that we have a commutative diagram

K(VarK)
Vol−−−−→ K(Vark)

sb

y ysb

Z[SBK ]
Volsb−−−−→ Z[SBk].

Thus every formula for the motivic volume can be specialized to a formula for the
stable birational volume by applying Larsen and Lunts’ realization morphism sb
from Theorem 2.1. We will apply this principle in the proof of Theorem 3.14.
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3. Tropical calculation of the stable birational volume

3.1. Newton polytopes. We recall some standard definitions in tropical
geometry. Let n be an integer satisfying n ≥ −1, and let M be a free abelian
group of rank n+ 1. We set MR = M ⊗Z R.

Let F be a field, and let

g =
∑
m∈M

dmx
m ∈ F [M ]

be a non-zero Laurent polynomial with coefficients in F . The support of g is the set
of lattice points m in M such that dm 6= 0; we denote it by Supp(g). The convex
hull of Supp(g) in the real vector space MR is called the Newton polytope of g, and
denoted by ∆g.

Let V be the real affine subspace of MR spanned by Supp(g). We choose a point
m0 of M∩∆g and we denote by M∆g

the sublattice of M generated by M∩(V −m0),
where V −m0 is the translate of V by −m0. Then the translated polytope ∆g−m0

is a full-dimensional lattice polytope in M∆g ⊗Z R. To such a lattice polytope, one
can attach a polarized projective toric F -variety (PF (∆g),L(∆g)) with dense torus
SpecF [M∆g

]. The toric variety PF (∆g) is defined by the inward normal fan of the
polytope ∆g−m0. We write Zo(g) for the effective Cartier divisor on SpecF [M∆g

]
defined by the equation g = 0, and Z(g) for the effective Cartier divisor on PF (∆g)
defined by the global section g/xm0 of L(∆g). These definitions are all independent
of the choice of the point m0.

Remark 3.1. The hypersurface defined by g in the torus SpecF [M ] is isomorphic
to Zo(g) ×F G`m,F , where ` denotes the codimension of ∆g in MR. In particular,

this hypersurface is stably birational to Zo(g).

For every lattice polytope δ contained in ∆g, we set

gδ =
∑

m∈M∩δ

dmx
m.

If δ is a face of ∆g, then gδ has Newton polytope δ, and we can apply the above
definitions to gδ to obtain a toric variety PF (δ) of dimension dim(δ) with subschemes
Zo(gδ) and Z(gδ). If δ is a vertex of ∆ then these subschemes are empty; if δ has
positive dimension, then they are non-empty and of pure codimension 1.

Definition 3.2. We say that g is Newton non-degenerate if, for every face δ of ∆g,
the scheme Zo(gδ) is smooth over F .

This definition is due to Kushnirenko (see [Ko76] for related notions of Newton
non-degeneracy). If F has characteristic zero, then it follows from Bertini’s theorem
that a general Laurent polynomial g with fixed Newton polytope ∆g is Newton non-
degenerate.

Proposition 3.3. Let g be a non-zero Laurent polynomial in F [M ]. Let π:X →
PF (∆g) be a proper birational toric morphism. Denote by Y the inverse image of
Z(g) in X.

(1) The scheme Y does not contain any torus orbit in X, and π−1(Zo(g)) is
schematically dense in Y . In particular, taking for π the identity morphism,
we see that Zo(g) is schematically dense in Z(g).
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(2) The Laurent polynomial g is Newton non-degenerate if and only if the
schematic intersection of Y with each torus orbit in X is smooth.

(3) Assume that g is Newton non-degenerate. Then we can cover Y by open
subschemes that admit an étale morphism to a toric F -variety. If X is
smooth over F , then Y is smooth over F , as well.

Proof. (1) If δ is a face of ∆g and σ is the corresponding cone in the normal fan of
∆g, then the intersection of Z(g) with the torus orbit O(σ) is isomorphic to Zo(gδ);
in particular, it is empty or of codimension 1 in O(σ). Thus Z(g) does not contain
any torus orbit in PF (∆g). Since π is a toric morphism and Y is the inverse image
of Z(g) in X, the analogous property holds for Y and X. It follows that π−1(Zo(g))
is topologically dense in Y . Since the toric variety X is Cohen-Macaulay, the same
holds for the Cartier divisor Y on X. Thus π−1(Zo(g)) is also schematically dense
in Y .

(2) Let Σ be the normal fan of ∆g and let Σ′ be the complete refinement of
Σ associated with the proper birational toric morphism X → PF (∆g). Let σ′ be
a cone in Σ′ and denote by σ the unique minimal cone of Σ containing σ′. Let δ
be the face of ∆g dual to σ. Then the intersection of Z(g) with the orbit O(σ) is
isomorphic to Zo(gδ), and the intersection of Y with O(σ′) is the inverse image of
Zo(g) under the torus fibration O(σ′)→ O(σ). Thus Zo(gδ) is smooth if and only
if Y ∩O(σ′) is smooth.

(3) This result is well-known to experts; it follows from the fact that Zo(g)
is a schön hypersurface in the torus SpecF [M∆g ], in the sense of Tevelev – see in
particular Theorem 1.4 and the subsequent remark in [Te07]. If X is smooth, then it
was proved already in [Kh77] that Y is smooth, as well. For the reader’s convenience,
we will give a direct argument that covers both the smooth and the singular case.
Replacing M by M∆g

if necessary, we may assume that ∆g has maximal dimension
in MR, so that M = M∆g

.
Let y be a point of Y . Let Σ be the normal fan of ∆g and let Σ′ be the complete

refinement of Σ associated with the proper birational toric morphism X → PF (∆g).
We denote by σ′ the unique cone in Σ′ such that y is contained in the torus orbit
O(σ′), and by σ the minimal cone of Σ containing σ′. Let δ be the face of ∆g that
is dual to σ.

We set U = SpecF [(σ′)∨ ∩M ]; this is an affine toric chart of X with O(σ′) as
its minimal orbit. We choose a splitting

(σ′)∨ ∩M ∼= P ⊕M ′

where P is a finitely generated saturated integral monoid such that P× = {0}, and
M ′ is the lattice of invertible elements in the monoid (σ′)∨∩M . This choice induces
an isomorphism

U ∼= SpecF [P ]×F SpecF [M ′].

The fiber of the projection morphism U → SpecF [P ] over the zero-dimensional
orbit o of SpecF [P ] is precisely the orbit O(σ′).

It follows from [Stacks, Tag 00MG] that the morphism Z(g)∩U → SpecF [P ] is
flat at y. The fiber of this morphism over o coincides with Y ∩O(σ′). In particular,
this fiber is smooth, by (2). Thus the morphism Z(g) ∩ U → SpecF [P ] is smooth
at y, and, locally around y, there exists an étale morphism from Z(g) to the toric

https://stacks.math.columbia.edu/tag/00MG
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variety SpecF [P ]×F A`F , for some ` ≥ 0. If X is smooth then the monoid P is free,
so that Z(g) is smooth at y. �

Proposition 3.4. Assume that F has characteristic zero. Let g be a Laurent
polynomial in F [M ] that is Newton non-degenerate. Then

sb(Z(gδ)) = [Z(gδ)]sb = [Zo(gδ)]sb

for every face δ of ∆g.

Proof. The equality [Z(gδ)]sb = [Zo(gδ)]sb follows immediately from the fact that
Zo(gδ) is dense in Z(gδ), by Proposition 3.3(1). Thus it is enough to show that
sb(Z(gδ)) = [Z(gδ)]sb. It suffices to prove this result for δ = ∆g, since it is obvious
from the definition that each of the polynomials gδ is Newton non-degenerate if this
holds for g.

By Proposition 3.3, the scheme Z(g) has strictly toroidal singularities in the
sense of Example 4.2.6(3) in [NS19]. This implies that we can find a resolution
of singularities Y → Z(g) such that [Y ] ≡ [Z(g)] mod L in K(VarF ) (in fact,
this then holds for every resolution of singularities; see the discussion following
Definition 4.2.4 in [NS19]). Since Y is smooth and proper, we conclude by Theorem
2.1 that

[Z(g)]sb = [Y ]sb = sb(Y ) = sb(Z(g)). �

3.2. Stably irrational polytopes. Let ∆ be a lattice polytope in MR. For
every field F , the Laurent polynomials in F [M ] with Newton polytope ∆ are
parameterized by a dense Zariski open subset U of the F -vector space of maps
∆ ∩ M → F . This open subset is defined by the condition that the images of
the vertices of ∆ are different from zero. We say that a property holds for every
very general Laurent polynomial in F [M ] with Newton polytope ∆ if it holds for
all Laurent polynomials parameterized by a countable intersection of non-empty
Zariski open subsets of U (note that this is an empty statement when the field F
is countable).

Definition 3.5. We say that ∆ is stably irrational if ∆ has dimension at least 2
and, for every algebraically closed field F of characteristic zero, and for every very
general polynomial g in F [M ] with Newton polytope ∆, the hypersurface Zo(g) in
SpecF [M ] is not stably rational. Otherwise, we say that ∆ is stably rational.

In particular, zero-dimensional and one-dimensional polytopes are stably rational
by definition. In these cases, Zo(g) is empty or a finite set of points, respectively. If
∆ has dimension at least 2, and g is as in the definition, then Zo(g) is integral by
Bertini’s theorem. Thus, in all dimensions, we conclude that ∆ is stably rational
if and only if for every g as in the definition, all connected components of Zo(g)
are stably rational. Note that the stable rationality of ∆ does not depend on the
embedding of ∆ in MR: the isomorphism class of the hypersurface Zo(g) is invariant
under unimodular affine transformations of M .

Example 3.6. For every positive integer d, we denote by d∆n+1 the dilatation
with factor d of the unimodular (n+ 1)-dimensional simplex:

d∆n+1 =

{
u ∈ Rn+1

≥0 |
n+1∑
i=1

ui ≤ d

}
.
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Then for every infinite field F , the hypersurfaces Z(g) in PF (d∆n+1) = Pn+1
F defined

by polynomials g with Newton polytope d∆n+1 form a dense open subset of the
space of degree d hypersurfaces in Pn+1

F . Thus d∆n+1 is stably irrational if and only
if n ≥ 1 and, over every algebraically closed field F of characteristic zero, a very
general degree d hypersurface in Pn+1

F is not stably rational.

Example 3.7. The lattice polytope ∆ = 2∆2 × 2∆3 in R5 is stably irrational.
Indeed, for every infinite field F , the hypersurfaces Z(g) in PF (∆) = P2

F ×F P3
F

defined by polynomials g with Newton polytope ∆ form a dense open subset of
the space of bidegree (2, 2) hypersurfaces in P2

F ×F P3
F defined over F . When F

has characteristic 0, a very general member of this family is stably irrational by
[HPT18] (see in particular the summary of results in §7).

Example 3.8. Assume that ∆ has lattice width 1 in the lattice M∆. Then ∆
is stably rational. Indeed, replacing M by M∆, we may assume that ∆ has full
dimension n + 1. Our assumption on the lattice width means that we can find a
primitive vector ` in the dual lattice M∨ such that `(∆∩M) = {a, a+ 1} for some
integer a. Translating ∆ in MR if needed, we may assume that a = 0. Choosing a
basis of M∨ that contains `, we see that for every field F and every polynomial
g in F [M ] with Newton polytope ∆, the hypersurface Zo(g) is isomorphic to a
hypersurface in Gn+1

m,F defined by an equation that is linear in one of the variables.

It follows that Zo(g) is rational.

Example 3.9. Consider the Hassett–Pirutka–Tschinkel quartic

(3.2.1) g = x1x2x
2
3 + x1x

2
4 + x2x

2
5 + x2

1 + x2
2 − 2x1x2 − 2x1 − 2x2 + 1

The Newton polytope ∆ of g is the convex hull of the six points in R5

(0, 0, 0, 0, 0), (2, 0, 0, 0, 0), (0, 2, 0, 0, 0),
(1, 1, 2, 0, 0), (1, 0, 0, 2, 0), (0, 1, 0, 0, 2).

It follows from [HPT18] and [Sch19a] that this hypersurface is stably irrational
over any algebraically closed field F of characteristic 0. Applying Proposition 3.1
in [Sch19a], it also follows that a very general hypersurface over F with Newton
polytope ∆ does not admit a decomposition of the diagonal. In particular, the
polytope ∆ is stably irrational.

In order to confirm that a given lattice polytope is stably irrational using
Definition 3.5, we a priori need to test infinitely many hypersurfaces over infinitely
many base fields. The following proposition guarantees that it suffices to test one
sufficiently general hypersurface over one algebraically closed base field.

Proposition 3.10. Let F0 be a field of characteristic 0, and let W be a reduced
F0-scheme of finite type. Suppose that there exist an algebraically closed extension
F of F0 and a Newton non-degenerate polynomial g in F [M ] with Newton polytope
∆ such that Zo(g) is not stably birational to W ×F0

F . Then for every algebraically
closed extension F ′ of F0 and every very general polynomial h in F ′[M ] with Newton
polytope ∆, the hypersurface Zo(h) is not stably birational to W ×F0

F ′.
In particular, if dim(∆) ≥ 2, then the polytope ∆ is stably irrational if and only

if there exist an algebraically closed field F of characteristic zero and a polynomial
g in F [M ] with Newton polytope ∆ such that g is Newton non-degenerate and Zo(g)
is not stably rational.
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If PQ(∆) is smooth, then the same results hold if we only suppose that Z(g) is
smooth, instead of assuming that g is Newton non-degenerate.

Proof. Replacing M by the sublattice M∆, we may assume that ∆ has full
dimension n + 1. Assume that we can find F and g as in the statement. Let
π:X → PF0

(∆) be a toric resolution of the projective toric variety PF0
(∆) over

F0. If PF0
(∆) is already smooth, we take for π the identity morphism.

Let L(∆) be the canonical polarization on PF0
(∆). Then L(∆) is generated by

global sections, so that the same holds for π∗L(∆). Since PF0(∆) is normal, the
natural map

H0(PF0(∆),L(∆))→ H0(X,π∗L(∆))

is an isomorphism.
Let F ′ be an algebraically closed extension of F0, and let h be a Laurent

polynomial in F ′[M ] with Newton polytope ∆. We set Z ′(h) = Z(h) ×PF0
(∆) X.

Then Zo(h) is schematically dense in Z ′(h), by Proposition 3.3(1). Denote by L′
the pullback of π∗L(∆) to X×F0

F ′. Then Z ′(h) is the member of the linear system
|L′| associated with

h ∈ H0(X ×F0 F
′,L′) ∼= H0(PF0(∆),L(∆))⊗F0 F

′.

Consider the universal family

ψ: Y ↪→ X ×F0
PH0(PF0

(∆),L(∆))

of the linear system |π∗L(∆)| on X. There is a dense open subset U of
PH0(PF0(∆),L(∆)) such that the morphism

ψ−1(SpecF0[M ]×F0 U)→ U

is the universal family of hypersurfaces in SpecF0[M ] with Newton polytope ∆. By
Bertini’s theorem, the smooth fibers of the family

θ: Y ×H0(PF0
(∆),L(∆)) U → U

are parameterized by a dense open subset V of U . By Corollary 2.6, the locus of
geometric fibers of the family θ−1(V ) → V that are not stably birational to W is
a countable intersection of open subsets of V (we can reduce to the case where W
is smooth and proper by resolution of singularities). This locus is non-empty: by
Proposition 3.3, we know that Z ′(g) is smooth, so that it corresponds to a stably
irrational geometric fiber of θ−1(V ) → V . It follows that a very general geometric
fiber of the universal family

ψ−1(SpecF0[M ]×F0
U)→ U

is not stably birational to W . �

Example 3.11. Let ∆ be the lattice polytope in Rn+1 defined by

∆ = {u ∈ Rn+1
≥0 |u1 + . . .+ un + 2un+1 ≤ 4},

and let F be an algebraically closed field of characteristic 0. Then a general quartic
double n-fold in PF (∆) = PF (1, . . . , 1, 2) has Newton polytope ∆, and it is Newton
non-degenerate. A very general quartic double n-fold is stably irrational for n = 3
[Vo15] and n = 4 [HPT19]. Thus ∆ is stably irrational for n ∈ {3, 4}. The n = 3 case
also follows from the classical nodal Artin-Mumford example [AM72] and Theorem
2.3; see Example 4.3.2 in [NS19].
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3.3. Newton subdivisions. We now consider polynomials over the Puiseux series
field K. Let f =

∑
m∈M cmx

m ∈ K[M ] be a non-zero Laurent polynomial with
coefficients cm in K. Let

ϕf : ∆f → R

be the lower convex envelope of the function

Supp(f)→ Q, m 7→ ordt(cm).

Thus ϕf is the largest convex function such that ϕf (m) ≤ ordt(cm) for every m in
Supp(f). Then ϕf is piecewise linear, and the maximal domains where it is affine
define a polyhedral subdivision Pf of ∆f , which is called the Newton subdivision of
∆f . It is easy to see that all the vertices of P lie in Supp(f), and ϕf (m) = ordt(cm)
for every such vertex m.

For every face δ of Pf , we set

fδ =
∑

m∈δ∩Supp(f)

t−ϕf (m)cmx
m ∈ k[Mδ]

where a denotes the image of an element a ∈ R under the reduction morphism
R → k that sends tq to 0 for all positive rational numbers q. Thus fδ is obtained
from f by selecting the terms corresponding to lattice points m ∈M ∩ δ such that
ϕf (m) = ordt(cm), and replacing each coefficient cm by its leading coefficient. We

say that f is schön if Zo(fδ) is smooth over k, for all faces δ of Pf .

Proposition 3.12. If f is schön, then it is Newton non-degenerate.

Proof. The assertion can easily be deduced from the general theory of tropical
compactifications of subvarieties of tori [Te07, LQ11]. Our definition of “schön”
can be rephrased as the property that all the initial degenerations of Zo(f) are
smooth over k. By Proposition 3.9 in [HK12], this is equivalent to the existence of
a SpecR[M ]-toric R-scheme X such that the schematic closure Y of Zo(f) in X
is proper over R and the multiplication morphism

SpecR[M ]×R Y →X

is smooth and surjective. Passing to the generic fiber, we obtain a SpecK[M ]-toric
K-scheme X = XK such that the schematic closure Y of Zo(g) in X is proper over
K and the multiplication morphism

SpecK[M ]×K Y → X

is smooth and surjective. Thus Zo(f) is schön in the sense of [Te07], which is
equivalent to the property that f is Newton non-degenerate – see the remark
following Theorem 1.4 in [Te07]. The equivalence follows from the fact that the
fibers of

SpecK[M ]×K Y → X

over K-rational points of X are torus bundles over the schemes Zo(fτ ), where τ
runs through the faces of ∆f . �

Remark 3.13. If cm ∈ R× for all m in Supp(f), then ϕf = 0 and Pf is the trivial
subdivision of ∆f . In this case, f is schön if and only if it is Newton non-degenerate.
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3.4. Viro’s patchworking polynomial. For the applications we have in mind, it
is often convenient to construct a polynomial f from given tropical data by means of
some reverse engineering. Such an approach was used already around 1980 in Viro’s
patchworking technique to construct real hypersurfaces with prescribed topological
properties [Vi89, Vi06].

Let ∆ be a lattice polytope in MR. A polyhedral subdivision of P is called
integral if all its faces are lattice polytopes. It is called regular if its maximal faces
are the domains of linearity of some convex piecewise linear function ϕ: ∆→ R. In
that case, we will say that ϕ induces the subdivision P. Assume that P is regular
and integral. Then we can choose ϕ such that it takes rational values at the lattice
points in ∆. For every lattice point m in M ∩ ∆, we choose an element dm in k
such that dm 6= 0 whenever m is a vertex of P. Then, for every face δ of P, the
polynomial gδ =

∑
m∈M∩δ dmx

m in k[M ] has Newton polytope δ. If we set

f =
∑

m∈M∩∆

tϕ(m)dmx
m ∈ K[M ]

then f has Newton polytope ∆f = ∆ and Newton subdivision Pf = P, and

fδ = gδ for every face δ of P. If we choose the coefficients dm in such a way that
Zo(gδ) is smooth for all δ, then f is schön. This is always the case for a general
choice of coefficients dm, by Bertini’s theorem.

3.5. The stable birational volume. The following theorem provides an efficient
way to compute the stable birational volume of a general hypersurface with fixed
Newton polytope.

Theorem 3.14. Let f ∈ K[M ] be a Laurent polynomial with coefficients in K.
Assume that f is schön. Then the stable birational volume of Zo(f) satisfies

Volsb([Zo(f)]sb) = (−1)dim(∆f )
∑

δ*∂∆f

(−1)dim(δ)[Zo(fδ)]sb

in Z[SBk], where δ runs through the faces of the Newton subdivision Pf that are
not contained in the boundary of ∆f .

Proof. Replacing M by the lattice M∆f
, we can reduce to the case where ∆f has

full dimension n + 1. We will deduce the result from the tropical formula for the
motivic volume of Z(f) in Proposition 3.13 of [NPS16]. The formula for the motivic
volume can be specialized to a formula for the stable birational volume by applying
Larsen and Lunts’ morphism sb from Theorem 2.1, because of the commutative
diagram at the end of Section 2.

The formula for the motivic volume in Proposition 3.13 of [NPS16] is stated
in terms of the tropicalization of Zo(f), rather than the Newton polytope of f .
An important result in tropical geometry states that the tropicalization of Zo(f)
coincides with the codimension 1 skeleton of the Legendre transform of the triple
(∆f ,Pf , ϕf ) (see for instance [Gr11, §1.1]). More precisely, the Legendre transform
of (∆f ,Pf , ϕf ) is a triple (NR,Q, ftrop) where NR = Hom(M,R) is the dual vector
space of MR, the function

ftrop:NR → R, n 7→ min
m∈M∩Supp(f)

(ordt(cm) + 〈m,n〉)
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is the tropicalization of f , and Q is the polyhedral subdivision of NR given by the
domains of linearity of ftrop. The union of the codimension 1 faces in Q is precisely
the set of points of NR where ftrop is not differentiable; by the fundamental theorem
of tropical geometry, this is the closure of the image of the tropicalization map

trop:Zo(f)(K)→ Hom(M,R), a 7→ (m 7→ ordtx
m(a)).

For every element d in {0, . . . , n + 1}, there is a canonical inclusion-reversing
bijection δ 7→ δ∨ between the d-dimensional faces δ of P and the (n + 1 − d)-
dimensional faces δ∨ of Q. In particular, the faces of the tropicalization of Zo(f)
correspond to the faces of P of positive dimension. In the notation of Proposition
3.13 in [NPS16], if we set X = Zo(f) then the k-scheme Xk(γ) is precisely our
k-scheme Zo(fδ) when γ = δ∨. Thus the formula in that proposition implies that

(3.5.1) Vol(Z(f)) ≡
∑
δ

[Zo(fδ)] mod L

in K(Vark), where δ runs through the faces of P (we do not need to exclude the
zero-dimensional faces δ because, for those faces, we have Zo(fδ) = ∅).

We will now use an inclusion-exclusion argument to show that

(3.5.2)
∑
δ

[Zo(fδ)] =
∑

ε*∂∆f

(−1)n+1−dim(ε)[Z(fε)]

in K(Vark), where ε runs through the faces of P that are not contained in the
boundary of ∆f . For every face δ of P, we can write Z(fδ) as the disjoint union

of the k-schemes Zo(fδ′) where δ′ runs through the faces of δ. It follows that

∑
ε*∂∆f

(−1)n+1−dim(ε)[Z(fε)] =
∑

ε*∂∆f

(−1)n+1−dim(ε)

∑
ε′≤ε

[Zo(fε′)]


in K(Vark), where ε′ runs through the faces of ε. Reordering terms, we see that it
suffices to show that, for every face δ of P, we have∑

ε∈Aδ

(−1)n+1−dim(ε) = 1

where Aδ is the set of faces of P that contain δ and are not contained in the
boundary of ∆f . In terms of the Legendre dual polyhedral decomposition Q, this
is equivalent to showing that for every face δ∨ of Q, we have∑

ε∨∈Bδ∨

(−1)dim(ε∨) = 1

where Bδ∨ is the set of bounded faces of δ∨. But this expression is nothing but the
Euler characteristic of the union of the bounded faces of δ∨, which is equal to 1
because this union is a contractible compact topological space.

The result now follows from equalities (3.5.1) and (3.5.2), together with the fact
that the isomorphism

sb: K(Vark)/(L)→ Z[SBk]

maps [Z(f)] to [Zo(f)]sb and [Z(fδ)] to [Zo(fδ)]sb, for every face δ of P, by
Proposition 3.4. �
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Theorem 3.15. Let n be a positive integer. Let ∆ be a lattice polytope in Rn+1 of
dimension at least 2, and let P be a regular integral polyhedral subdivision of ∆.
For every m in ∆∩Zn+1, we choose an element dm in k such that dm 6= 0 whenever
m is a vertex of P. For every face δ in P, we set

gδ =
∑

m∈Zn+1∩δ

dmx
m ∈ k[Zn+1].

Suppose that, for every face δ in P, the scheme Zo(gδ) is smooth over k. Assume
moreover that

(3.5.3)
∑
δ*∂∆

(−1)dim(δ)[Z(gδ)]sb 6= (−1)n+1[Spec k]sb

in Z[SBk], where the sum is taken over all faces δ of P that are not contained in
the boundary of ∆. Then the polytope ∆ is stably irrational.

Proof. By Proposition 3.10, it is enough to find a Laurent polynomial f in K[Zn+1]
with Newton polytope ∆ such that f is Newton non-degenerate and Zo(f) is stably
irrational. We choose a convex piecewise linear function ϕ: ∆→ R that induces the
regular subdivision P. We set

f =
∑

m∈Zn+1∩∆

tϕ(m)dmx
m ∈ K[Zn+1].

Then f has Newton polytope ∆f = ∆ and Newton subdivision Pf = P, and

fδ = gδ for every face δ of P. By our assumption that Zo(gδ) is smooth for
all faces δ of P, the Laurent polynomial f is schön; in particular, it is Newton
non-degenerate, by Proposition 3.12. Now it follows from Theorem 3.14 and our
assumption (3.5.3) that

Volsb([Zo(f)]sb) 6= [Spec k]sb

in Z[SBk]. Thus [Zo(f)]sb 6= [SpecK]sb in Z[SBK ], which means that Zo(f) is not
stably rational. �

Corollary 3.16. Let n be a positive integer. Let ∆ be a lattice polytope in Rn+1,
and let P be a regular integral polyhedral subdivision of ∆. Assume that P has a
stably irrational face δ0 that is not contained in the boundary of ∆ and such that all
the other faces of P not contained in the boundary of ∆ are stably rational. Then
∆ is stably irrational.

Proof. We choose a very general tuple (dm)m of elements in k indexed by the lattice
points m in ∆, and we define the polynomials gδ as in the statement of Theorem
3.15. Then Zo(gδ) is smooth over k for every face δ of P. In the left hand side
of equation (3.5.3), the term corresponding to δ0 is the only term in the sum that
is not a multiple of [Spec k]sb, because all the other faces that meet the relative
interior of ∆ are stably rational. Thus the inequation (3.5.3) is satisfied, and ∆ is
stably irrational. �

3.6. Tropical degenerations. This section is not strictly necessary for the
applications in this article, but it provides a geometric explanation for the results
we obtained in Theorems 3.14 and 3.15. We will show how the data of Theorem 3.15
give rise to an explicit degeneration of a Newton non-degenerate hypersurface with
Newton polytope ∆ into pieces that are described by the hypersurfaces Zo(gδ).
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Let f =
∑
m∈M cmx

m ∈ K[M ] be a Laurent polynomial with coefficients cm in
K. Denote by ∆f the Newton polytope of f , and by Pf its Newton subdivision.
Let

ϕf : ∆f → R

be the lower convex envelope of the function

Supp(f)→ Q, m 7→ ordt(cm).

Assume that f is schön. Then we can construct a degeneration of Z(f) by
considering the Mumford degeneration of the projective variety PK(∆f ) induced
by the data (Pf , ϕf ) (see for instance Example 3.6 in [Gr11]), and by taking the
schematic closure of Z(f) inside the Mumford degeneration.

Let N = Hom(M,Z) be the dual lattice of M . Let ∆̃ be the polyhedron in
MR × R defined by

∆̃ = {(u, v) ∈MR × R | v ≥ ϕf (u)}.

We choose a positive integer e such that ϕf (u) lies in (1/e)Z for every vertex u of

Pf , and such that the slopes of ϕf lie in (1/e)N . Then ∆̃ is a lattice polyhedron
with respect to the lattice Zn+1 × (1/e)Z, and its asymptotic cone is given by

{0} × R≥0. Thus ∆̃ defines a toric variety Pk(∆̃) with a projective morphism to

A1
k = Spec k[t1/e]. We set X = Pk(∆̃)×k[t1/e]R; this definition does not depend on

the choice of e. The generic fiber XK is precisely PK(∆f ), and the special fiber Xk

is a union of the toric varieties Pk(δ) where δ runs through the faces of maximal
dimension in Pf . These toric varieties intersect along toric strata according to the
combinatorial structure of the subdivision Pf : the closed strata in Xk correspond
canonically to the faces δ in Pf , and this correspondence is inclusion-preserving.

Since Z(f) is a closed subscheme of XK = PK(∆f ), we can consider its schematic
closure in X , which we denote by Y . The schematic intersection of Y with the
open stratum in Xk corresponding to a face δ in Pf is precisely Zo(fδ). Thus if
f is schön, all these intersections are smooth. It follows that, if we endow Y with
the log structure induced by the toric boundary of X (that is, the union of the
special fiber Xk with the closure of the toric boundary of XK = PK(∆f )) and we
endow SpecR with its standard log structure (induced by the closed point), then
the morphism X → SpecR is log smooth. One can now deduce Theorem 3.14 from
the formula for the motivic volume in terms of log smooth models in Theorem A.3.9
of [NS19]. We omit the details of the argument, as we will not use these facts in
this paper.

Let us illustrate this geometric picture by means of an example that will appear
again in Corollary 4.3 and Theorem 4.4.

Example 3.17. Let n and d be positive integers and assume that d ≥ 2. Let
f0 be a general homogeneous polynomial of degree d in k[z1, . . . , zn+1], and let f1

be a general homogeneous polynomial of degree d − 1 in k[z0, . . . , zn+1]. We set
f = tf0 + z0f1; this is a homogeneous polynomial of degree d in K[z0, . . . , zn+1].
The Newton polytope ∆f is the dilatation with factor d of the unimodular (n+ 1)-
dimensional simplex:

∆f = {(u0, . . . , un+1) ∈ Rn+2
≥0 |u0 + . . .+ un+1 = d}.
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Figure 1. Degenerating a quartic surface into a union of a cubic
surface and a rational surface, intersecting along a cubic curve.

The function ϕf is given by ϕf = max{0, 1− u0}. The Newton subdivision Pf of
∆f has two maximal cells, namely,

δ≤ = {(u0, . . . , un+1) ∈ ∆f |u0 ≤ 1},

δ≥ = {(u0, . . . , un+1) ∈ ∆f |u0 ≥ 1}.

They intersect along the codimension 1 face

δ= = {(u0, . . . , un+1) ∈ ∆f |u0 = 1}.

A picture of this Newton subdivision in the case n = 2 and d = 4 is given in Figure
1. Since we chose f0 and f1 to be general, the polynomial f is schön.

The toric k[t]-scheme Pk(∆̃f ) defined by (∆f , ϕf ) is the blow-up of

Pn+1
k[t] = Proj k[t][z0, . . . , zn+1]

along the hyperplane H defined by z0 = 0 in the special fiber Pn+1
k . The toric

R-scheme X is then given by

X = Pk(∆̃f )×k[t] R.

We write Xk = D1 + D2 where D1
∼= Pn+1

k is the strict transform of Pn+1
k and

D2 is the exceptional divisor of the blow-up; thus D2 is the projective bundle
P(OH ⊕ OH(1)) over H, and it is isomorphic to the toric variety Pk(δ≤). The

scheme Z(f) is the hypersurface in Pn+1
K defined by f , and Y is its schematic

closure in X . The scheme Y is a semi-stable proper R-model for Z(f). Its special
fiber consists of two irreducible components, E1 = Y ∩D1 and E2 = Y ∩D2. We
can explicitly describe the closed strata of the special fiber Yk in the following way.

• The component E1 is the degree (d − 1) hypersurface in Pn+1
k defined by

f1 = 0; it is isomorphic to Z(fδ≥).

• Let Ho be the open subscheme of H defined by zn+1 6= 0. We fix a
trivialization of the line bundle OHo(1). Then E2 is the schematic closure
in D2 of the closed subscheme of

P(OHo ⊕OHo(1)) ∼= Ho ×k Proj k[w0, w1]

defined by

w0f0

(
z1

zn+1
, . . . ,

zn
zn+1

, 1

)
+ w1f1

(
0,

z1

zn+1
, . . . ,

zn
zn+1

, 1

)
= 0.
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Thus E2 is rational, and isomorphic to Z(fδ≤).

• The intersection E1 ∩ E2 is the degree (d − 1) hypersurface in H ∼= Pnk
defined by f1(0, z1, . . . , zn+1) = 0; it is isomorphic to Z(fδ=).

Now Theorem 3.14 simply reproduces the formula (2.2.1) for Volsb([Z(f)]sb) in
terms of the semi-stable model Y .

4. Variation of stable birational type

In order to verify the non-triviality of the tropical obstruction to stable
rationality in Theorem 3.15, we need to control possible cancellations between
the contributions of different faces of the Newton polytope. For this purpose,
we will prove that under suitable conditions one can vary the stable birational
type of a very general hypersurface with fixed Newton polytope while preserving
a chosen boundary stratum associated with a face of the Newton polytope. This
result is interesting in its own right; it generalizes theorems on variation of stable
birational types in families due to Shinder [Sh19] and Schreieder [Sch19b], at least
in characteristic zero: Schreieder’s results are valid in positive characteristic, as well.
But its main relevance for us lies in the the calculations of tropical obstructions
to stable rationality: we will give a first application in Theorem 4.4, and further
applications in Section 5.

4.1. Comparison of faces of Newton polytopes.

Theorem 4.1. Let M be a lattice of rank n+ 1. Let ∆ be a lattice polytope in MR,
and assume that ∆ is stably irrational.

(1) Let W be an integral k-scheme of finite type. Assume that ∆ admits a
regular integral polyhedral subdivision P such that every face of P not
contained in the boundary of ∆ is stably rational. Then, for every very
general polynomial g in k[M ] with Newton polytope ∆, the hypersurface
Zo(g) is not stably birational to W .

(2) Let δ be a lattice polytope contained in the boundary of ∆. Assume that ∆
admits a regular integral polyhedral subdivision P satisfying the following
properties:
(a) the polytope δ is a face of P;
(b) every face of P that intersects δ and is not contained in the boundary

of ∆ is stably rational;
(c) every face τ of P that is not contained in the boundary of ∆ admits

a regular integral polyhedral subdivision Q such that every face of Q
not contained in the boundary of τ is stably rational.

Then, for every very general polynomial g in k[M ] with Newton polytope
∆, the hypersurface Zo(g) is not stably birational to Zo(gδ).

Proof. (1) By Proposition 3.10, it suffices to construct a polynomial f in K[M ]
with Newton polytope ∆ such that f is Newton non-degenerate and Zo(f) is not
stably birational to W ×k K. Let f be a schön patchworking polynomial with
Newton polytope ∆ and Newton subdivision P as constructed in Section 3.4, for
a very general choice of coefficients dm in k. Then Zo(f) is stably irrational by our
assumption that ∆ is stably irrational. Using Theorem 2.3 to compute the stable
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birational volume of Zo(f), we find that

Volsb([Zo(f)]sb) = (−1)dim(∆)
∑
δ*∂∆

(−1)dim(δ)[Zo(fδ)]sb = a[Spec k]sb

for some integer a, because the faces δ appearing in the sum are stably rational. On
the other hand, Volsb([W ×k K]sb) = [W ]sb: by resolution of singularities, we may
assume that W is smooth and proper, and then the result follows from Example
2.4. If Zo(f) were stably birational to W ×k K, this would imply that a = 1 and
[Spec k]sb = [W ]sb so that W would be stably rational, contradicting the fact that
Zo(f) is stably irrational.

(2) We may assume that δ is stably irrational, since otherwise, the result is
obvious. We choose a toric resolution of singularities π:X → PQ(∆) and we consider
the universal family

θ: Y ×PH0(PQ(∆),L(∆)) U → U

of hypersurfaces in X with Newton polytope ∆, using the notations from the
proof of Proposition 3.10 (with F0 = Q). For every algebraically closed field F
of characteristic 0, the points u in U(F ) correspond canonically to the polynomials
g in F [M ] with Newton polytope ∆, up to scaling by a factor in F×. Under this
correspondence, the fiber θ−1(u) is the schematic closure of Zo(g) in X ×Q F .

We similarly choose a toric resolution πδ:Xδ → PQ(δ) and consider the universal
family

θδ: Yδ ×PH0(PQ(δ),L(δ)) Uδ → Uδ

of hypersurfaces in Xδ with Newton polytope δ. Let U ′ be the dense open subscheme
of U that parameterizes polynomials g such that gδ has Newton polytope δ. Then
the linear projection

PH0(PQ(∆),L(∆)) 99K PH0(PQ(δ),L(δ)), g 7→ gδ

is defined on U ′ and maps U ′ into Uδ.
By Bertini’s theorem, there is a dense open subscheme V of U ′ such that the

families

Y ×PH0(PQ(∆),L(∆)) V → V, Yδ ×PH0(PQ(δ),L(δ)) V → V

are smooth. By Corollary 2.6, the locus of stably birational geometric fibers in these
families is a countable union of closed subsets of V . Thus it suffices to construct
one Newton non-degenerate polynomial g in F [M ] with Newton polytope ∆, for
some algebraically closed field F of characteristic 0, with the following properties:

• the polynomial gδ has Newton polytope δ and is Newton non-degenerate;
• the scheme Zo(g) is not stably birational to Zo(gδ).

Let f ∈ K[M ] be a patchworking polynomial with Newton polytope ∆ and
Newton subdivision P as constructed in Section 3.4, for a very general choice of
coefficients dm in k. Then fδ has Newton polytope δ, and f and fδ are schön; in
particular, they are Newton non-degenerate, by Proposition 3.12. Moreover, by our
assumption that δ is stably irrational, we know that Zo(fδ) is stably irrational.

By Theorem 3.15, we have

Volsb([Zo(fδ)]sb) = [Zo(fδ)]sb.
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Thus is suffices to prove that

Volsb([Zo(f)]sb) 6= [Zo(fδ)]sb.

Again using Theorem 3.15 to compute Volsb([Zo(f)]sb), we see that it is enough to
show that Zo(fδ) is not stably birational to Zo(fτ ) for any face τ of P that meets
the relative interior of ∆. This certainly holds when τ is stably rational; thus, by
our assumptions, we may suppose that τ is disjoint from δ and that Zo(fτ ) is not
stably rational. Since the coefficients of fτ are very general with respect to those
of fδ, it follows from point (1) that Zo(fτ ) is not stably birational to Zo(fδ). �

Corollary 4.2. Let d be a positive integer. Let W be an integral k-scheme of finite
type. If a very general degree d hypersurface in Pn+1

k is not stably rational, then a

very general degree d hypersurface in Pn+1
k is not stably birational to W .

Proof. This is a special case of Theorem 4.1(1), taking d times the standard simplex
for the polytope ∆. Then ∆ admits a regular subdivision into unimodular simplices;
such simplices are stably rational (see Example 3.8). �

Corollary 4.2 is a refinement of the main result of [Sh19], and implies Theorem
1.1 of [Sch19b] over fields of characteristic zero. It was proved in [Sch19b] that,
if we add the assumption that W is smooth and projective and does not admit a
decomposition of the diagonal, Corollary 4.2 remains valid in positive characteristic,
where our methods do not apply.

Corollary 4.3. Let d and n be positive integers. Let H be a hyperplane in Pn+1
k ,

and let X be a degree d hypersurface in Pn+1
k that is very general with respect to H.

If X is stably irrational, then X is not stably birational to X ∩H.

Proof. Let z0, . . . , zn+1 be homogeneous coordinates on Pn+1
k . We may assume

that H is the coordinate hyperplane defined by z0 = 0. Let g be a very general
homogeneous polynomial of degree d in k[z0, . . . , zn+1]. Then the Newton polytope
of g is given by

∆ = {(u0, . . . , un+1) ∈ Rn+2
≥0 |u0 + . . .+ un+1 = d}.

Let δ be the face of ∆ defined by u0 = 0. We must prove that Zo(g) is not stably
birational to Zo(gδ). For this purpose, it suffices to construct a regular polyhedral
subdivision P that satisfies the conditions of Theorem 4.1(2) (note that ∆ is stably
irrational by our assumption that X is stably irrational). We can take for P the
subdivision whose maximal faces are given by

τ1 = {(u0, . . . , un+1) ∈ ∆ |u0 ≤ 1},
τ2 = {(u0, . . . , un+1) ∈ ∆ |u0 ≥ 1}.

This is precisely the subdivision from Example 3.17, see Figure 1. The only face of
P that intersects δ and that is not contained in the boundary of ∆ is the face τ1.
This face is stably rational, because it has lattice width 1 (see Example 3.8). The
other faces of P that meet the relative interior of ∆ admit regular subdivisions
into unimodular simplices. Thus it follows from Theorem 4.1(2) that Zo(g) is not
stably birational to Zo(gδ). �
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4.2. Raising degree and dimension. Corollary 4.3 has the following interesting
application.

Theorem 4.4. Let d and n be positive integers. Assume that a very general degree
d hypersurface in Pn+1

k is not stably rational. Then for all integers n′ ≥ n and

d′ ≥ d+n′−n, a very general degree d′ hypersurface in Pn
′+1
k is not stably rational.

Proof. By induction, it suffices to prove the theorem for n′ = n and d′ = d+ 1, and
for n′ = n + 1 and d′ = d + 1. Assume that we are in either of these cases. Let ∆
be the dilatation with factor d+ 1 of the unimodular (n′+ 1)-dimensional simplex:

∆ = {u ∈ Rn
′+1
≥0 |u1 + . . .+ un′+1 ≤ d+ 1}.

Let P be the regular polyhedral subdivision of ∆ with maximal faces

τ1 = {(u1, . . . , un′+1) ∈ Rn
′+1
≥0 |u1 + . . .+ un′+1 ≤ d},

τ2 = {(u1, . . . , un′+1) ∈ Rn
′+1
≥0 | d ≤ u1 + . . .+ un′+1 ≤ d+ 1}.

This subdivided polytope is isomorphic to the one from Example 3.17 (with n
replaced by n′ and d by d+ 1), see Figure 1. We denote by σ the intersection of τ1
and τ2.

Let g be a very general polynomial in k[x1, . . . , xn′+1] with Newton polytope ∆.

Then Z(g) is a very general hypersurface of degree d + 1 in Pn
′+1
k , and Z(gτ2) is

stably rational because τ2 has lattice width 1. Moreover, Z(gτ1) is a very general

hypersurface of degree d in Pn
′+1
k , and Z(gσ) is the intersection of Z(gτ1) with the

hyperplane at infinity.
If n′ = n, then our assumptions imply that Z(gτ1) is stably irrational, so that

it is not stably birational to Z(gσ) by Corollary 4.3. If n′ = n + 1, then Z(gσ) is
stably irrational, so that it is still not stably birational to Z(gτ1): if Z(gτ1) is stably
rational then this is trivial, and otherwise it follows again from Corollary 4.3. Thus
for both values of n′, Theorem 3.15 implies that ∆ is stably irrational. �

We will also need the following variant of Theorem 4.4 for products of projective
spaces.

Theorem 4.5. Let `, m, d and e be positive integers. Suppose that a very general
divisor of bidegree (d, e) in P`k×kPmk is stably irrational. Then for all integers `′ ≥ `
and m′ ≥ m, and all integers d′ ≥ d + `′ − ` and e′ ≥ e + m′ −m, a very general
divisor of bidegree (d′, e′) in P`′k ×k Pm

′

k is stably irrational.

Proof. The proof is very similar to that of Theorem 4.4, so we only indicate what
needs to be modified. By induction, it suffices to prove the case where `′ ∈ {`, `+1}
and m′ = m, d′ = d+ 1, e′ = e. We set

∆1 = {u ∈ R`
′

≥0 |u1 + . . .+ u`′ ≤ d+ 1} and ∆2 = {v ∈ Rm≥0 | v1 + . . .+ vm ≤ e},

and we write ∆ = ∆1×∆2. Then ∆ is the Newton polytope of a general hypersurface
of bidegree (d + 1, e) in P`′k ×k Pmk . We apply the subdivision from the proof of
Theorem 4.4 to the polytope ∆1 (with n′ + 1 replaced by `′). Taking the product
with ∆2 we obtain a regular subdivision of ∆ such that the faces that meet the
relative interior of ∆ are τ ′1 = τ1 × ∆2, τ ′2 = τ2 × ∆2 and σ′ = σ × ∆2. The face
τ ′2 has lattice width 1 and, therefore, it is stably rational. Let h be a very general
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polynomial over k with Newton polytope τ ′1. Then, just like in the proof of Theorem
4.4 (where the role of h was played by gτ1), it is enough to show that Z(h) is not
stably birational to Z(hσ′).

If `′ = `, the assumption in the statement implies that Z(h) is stably irrational,
since it is a very general hypersurface of bidegree (d, e) in P`k ×k Pmk . If `′ = ` + 1
then we similarly find that Z(hσ′) is stably irrational. Thus in both cases, we may
assume that τ ′1 is stably irrational. We consider a further regular subdivision of τ ′1
with maximal faces

ρ1 = {(u, v) ∈ τ ′1 |u1 + . . .+ u`′ ≤ d− 1},

ρ2 = {(u, v) ∈ τ ′1 | d− 1 ≤ u1 + . . .+ u`′ ≤ d}.

The face ρ2 has lattice width 1 and thus is stably rational. The face ρ1 does not
intersect σ and admits a regular subdivision into unimodular simplices. Now it
follows from Theorem 4.1 that Z(h) is not stably birational to Z(hσ′). �

Remark 4.6. It may be hard to determine whether a given polytope admits a
subdivision into stably rational polytopes. For instance, consider the simplicial
polytope ∆ given as the convex hull of (6, 14, 17, 65) and the four standard basis
vectors in R4 (this polytope appears in [HZ00]). Then the only lattice points
contained in ∆ are its vertices, so that ∆ cannot be subdivided further. Yet ∆
is itself not stably rational: its so-called Fine interior is non-empty, which implies
that a generic hypersurface with Newton polytope ∆ has non-negative Kodaira
dimension by the results in Jonathan Fine’s PhD thesis (Warwick, 1983). See the
appendix to §4 in [Re87] and Theorem 2.18 in [Ba17] for published accounts.

5. Hypersurfaces in projective space

5.1. The quartic fivefold. It has been conjectured that smooth quartic
hypersurfaces over k are stably irrational in all dimensions n > 0. For curves and
surfaces this follows from existence of global sections of the canonical bundle. Stable
irrationality of a very general quartic threefold was proved by Colliot-Thélène and
Pirutka in [CTP16], and the fact that a very general quartic fourfold is stably
irrational is a special case of Totaro’s results in [To16]. Totaro’s results were later
improved by Schreieder in [Sch19a]. The first open case is that of quartic fivefolds,
which are known to be unirational [CM98]. We will now prove that a very general
quartic fivefold is stably irrational. In fact, we will prove a conditional result in
arbitrary dimension: stable irrationality of a “special” quartic (n− 1)-fold implies
stable irrationality of a very general degree d hypersurface in Pn+1

k for all d ≥ 4.

Theorem 5.1. Let n and d be integers satisfying n ≥ 2 and d ≥ 4. Assume that
there exists a stably irrational quartic double (n−1)-fold over k with at most isolated
ordinary double points as singularities. Then a very general hypersurface of degree
d ≥ 4 in Pn+1

k is not stably rational.

Proof. By Theorem 4.4, it suffices to prove the case d = 4. Let ∆ be the convex
hull in Rn+2 of the points 4e0, 4e1, . . . , 4en+1 where (e0, . . . , en+1) is the standard
basis of Rn+2. Then ∆ is the Newton polytope of a general quartic hypersurface in
Pn+1
k . We will show that ∆ is stably irrational.
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We define a regular integral polyhedral subdivision P of ∆ by slicing ∆ with
the hyperplane

H = {(u0, u1, . . . , un+1) ∈ Rn+1 |u0 = un+1}.

A picture of this subdivision for n = 2 is shown in Figure 2.

Figure 2. Degenerating a quartic surface into a union of two
isomorphic quartic double surfaces intersecting along a quartic
double curve.

Then P has precisely three faces that are not contained in the boundary of ∆:
two faces of dimension n+ 1, namely,

δ≤ = {(u0, u1, . . . , un+1) ∈ ∆ |u0 ≤ un+1}
δ≥ = {(u0, u1, . . . , un+1) ∈ ∆ |u0 ≥ un+1}

and one face of dimension n, namely,

δ= = {(u0, u1, . . . , un+1) ∈ ∆ |u0 = un+1}.

The unimodular involution

τ :Rn+2 → Rn+2, (u0, . . . , un+1) 7→ (un+1, u1, . . . , un, u0)

that swaps the first and last coordinate preserves ∆ and δ=, and exchanges δ≤
and δ≥. The subdivision P is regular: it is induced by the convex piecewise linear
function

ϕ: ∆→ R, (u0, . . . , un) 7→ max{u0, un+1}.
We make a very general choice of coefficients dm in k, where m runs over the

lattice points in δ≤. For every lattice point m in δ≥, we set dm = dτ(m). Then the
data (∆,P, dm) satisfy the non-degeneracy conditions of Theorem 3.15. For every
face δ of ∆, we define the polynomial gδ as in Theorem 3.15:

gδ =
∑

m∈δ∩Zn+2

dmx
m ∈ k[Zn+2].

Now, the face δ= is the Newton polytope of a general quartic double (n − 1)-
fold. By Theorem 4.3.1 in [NS19], our assumption implies that a very general
quartic double (n − 1)-fold is stably irrational. Thus it follows from Proposition
3.10 that Zo(gδ=) is stably irrational. Moreover, by the symmetry in our choice
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of the coefficients dm, the schemes Zo(gδ≤) and Zo(gδ≥) are isomorphic. It follows
that

[Zo(gδ≤)]sb + [Zo(gδ≥)]sb − [Zo(gδ=)]sb = 2[Zo(gδ≤)]sb − [Zo(gδ=)]sb 6= [Spec k]sb

in Z[SBk], because [Zo(gδ=)]sb 6= [Spec k]sb. Now Theorem 3.15 implies that ∆ is
stably irrational. �

Corollary 5.2. A very general hypersurface of degree d ≥ 4 in P5
k or P6

k is not
stably rational. In particular, a very general quartic fivefold is not stably rational.

Proof. The case of dimension 4 follows from Artin and Mumford’s famous example
of a stably irrational quartic double solid with isolated ordinary double point
singularities [AM72]. The case of dimension 5 follows from the result by Hassett,
Pirutka & Tschinkel that a very general quartic double fourfold is stably irrational
[HPT19]. �

The only new case covered by Corollary 5.2 is the quartic fivefold: all other
cases of the corollary were already contained in the range of results by Schreieder
[Sch19a], so we merely obtain an alternative proof.

As a further illustration of our techniques, we also present the following variant
of Theorem 5.1.

Theorem 5.3. Let ` and d be integers satisfying ` ≥ 1 and d ≥ 4. Assume that
there exists a smooth hypersurface of bidegree (2, 2) in P`k ×k P`k (resp. P`k ×k P

`+1
k )

which is stably irrational. Then for n = 2` (resp. n = 2` + 1), a very general
hypersurface of degree d in Pn+1

k is not stably rational.

Proof. By Theorem 4.4, we may assume that d = 4. We will prove the case n = 2`;
the case n = 2`+ 1 is entirely analogous. Let ∆ be the convex hull in Rn+2 of the
points 4e0, . . . , 4en+1 where (e0, . . . , en+1) is the standard basis of Rn+2. Then ∆ is
the Newton polytope of a general quartic hypersurface in Pn+1

k . We define a regular
integral polyhedral subdivision P of ∆ by slicing ∆ with the hyperplanes

Ha = {(u0, . . . , un+1) ∈ Rn+1 |u0 + . . .+ u` = a}
for a = 1, 2, 3. The face Ha ∩ ∆ of P will be denoted by δa. A picture of this
subdivision for ` = 1 and n = 2` = 2 is given in Figure 3.

Figure 3. Degenerating a quartic surface to a chain of four
rational varieties, two of which intersect along a bidegree (2, 2)
curve.
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Every face δ 6= δ2 that is not contained in the boundary of ∆ has lattice width
1; thus these faces are stably rational, by Example 3.8. The face δ2 is the Newton
polytope of a general hypersurface of bidegree (2, 2) in P`k ×k P`k; thus it is stably
irrational by the assumption in the statement. Now it follows from Corollary 3.16
that ∆ is stably irrational, which means that a very general quartic of dimension
n is not stably rational. �

Remark 5.4. We can simplify the proof of Theorem 5.3 in the case n = 2` by
using a symmetry argument as in the proof of Theorem 5.1, only slicing ∆ by H2

and exploiting the unimodular involution

(u0, . . . , un+1) 7→ (u`+1, . . . , un+1, u0, . . . , u`)

that preserves ∆ and exchanges the two faces of maximal dimension in the
subdivision. However, this symmetry argument does not generalize to the case
n = 2`+ 1, which is why we have given the more general proof here.

Theorem 5.3 gives another proof of the result that a very general quartic fivefold
is stably irrational: it was shown in [HPT18] that a very general bidegree (2, 2)
hypersurface in P2

k ×k P3
k is stably irrational.

5.2. Results in higher dimensions. The tropical degenerations appearing in
the proofs of Theorems 5.1 and 5.3 in the case d = 4 are simple enough to write
down explicit equations; see Example 4.3.2 in [NO20] for the case of Theorem 5.1.
Using more sophisticated subdivisions, we can extend the proofs to give conditional
results for hypersurfaces of higher degrees and dimensions (Proposition 5.7). Here
and further on in the paper, our tropical methods really pay off, as it would be
extremely cumbersome to construct these degenerations by hand.

As input for our tropical degeneration, we first construct some suitable stably
irrational lattice polytopes.

Lemma 5.5. Let ` be a positive integer and let d = 2m be an even positive integer.
Suppose that there exists a stably irrational double cover of P`k branched along a
smooth degree d hypersurface. Let j be a positive integer such that j ≤ m. Let
a1, . . . , aj be positive integers such that a1 + . . .+aj = m. Then the following lattice
polytope is stably irrational:

∆ =

{
(u, v) ∈ R`+j≥0 |

∑̀
i=1

ui + a1v1 + . . .+ ajvj ≤ d, v1, . . . , vj ∈ [0, 2]

}
.

Proof. Let us first show that ∆ is in fact a lattice polytope. Consider the projection
p: ∆ → [0, 2]j onto the the (v1, . . . , vj)-plane. Given (v1, . . . , vj) ∈ [0, 2]j , we have
a1v1 + . . . + ajvj ≤ 2a1 + . . . + 2aj = 2m = d. This implies that p is surjective
and if (u, v) ∈ ∆ is a vertex, we must have that v = p(u, v) is a vertex of [0, 2]j ,
hence a lattice point. However, for a lattice point v ∈ [0, 2]j , the preimage p−1(v)
is a lattice polytope (a dilated simplex). Hence every vertex (u, v) of ∆ is a lattice
point, and ∆ is a lattice polytope.

We now prove the claim in the lemma by induction on j. If j = 1, then a1 = m
and ∆ is exactly the Newton polytope of a double cover of P`k branched along a
general degree d hypersurface, which is stably irrational by our assumption and
Corollary 2.6. Thus we may assume that j > 1 and that the result holds for strictly
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Figure 4. The polytope ∆ and its stably irrational subpolytope

smaller values of j. By Corollary 3.16, it suffices to construct a regular polyhedral
subdivision P of ∆ such that exactly one face of P that meets the relative interior
of ∆ is stably irrational.

Let Q = {0 ≤ vj−1, vj ≤ 2} ⊂ R2, and let π: ∆ → Q be the projection map.
Consider the regular subdivision of Q with four maximal polytopes Q0, Q1, Q2, Q3,
where

Qs = {vj + s− 2 ≤ vj−1 ≤ vj + s− 1}
for s = 0, 1, 2, 3. This subdivision is shown in Figure 5.

Q0

Q1

Q2

Q3

Figure 5. The subdivision of Q

We set Qs,s+1 = Qs ∩ Qs+1 for s ∈ {0, 1, 2}. The faces not contained in the
boundary of Q are the following:

• codim 0: Q0, Q1, Q2, Q3. All have lattice width one.
• codim 1: Q01, Q12, Q23. All have lattice width one, except Q12 = {vj−1 =
vj} ∩Q.

Taking preimages under the map π, this induces a regular subdivision P of ∆ such
that each face that meets the relative interior of ∆ has lattice width one, except
for {vj−1 = vj} ∩∆. The latter polytope is isomorphic to{∑̀

i=1

ui + a1v1 + . . .+ (aj−1 + aj)vj−1 ≤ d , v1, . . . , vj−1 ∈ [0, 2]

}
⊂ R`+j−1

≥0 .

By the induction hypothesis, this polytope is stably irrational, so the proof is
complete. �

Lemma 5.6. Let ` be a positive integer and let d = 2m be an even positive integer.
Suppose that there exists a stably irrational double cover of P`k branched along a
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smooth degree d hypersurface. Then for any 0 ≤ j ≤ m, the following polytope is
stably irrational:

Γj =

{
(u, v) ∈ R`+m≥0 |

∑̀
i=1

ui + v1 + . . .+ vm ≤ d , v1, . . . , vj ∈ [0, 2]

}
.

Proof. We prove this using downward induction on j. The base case j = m follows
from Lemma 5.5 above. So assume that j ≤ m− 1 and that the result holds for all
strictly larger values of j.

Consider the regular polyhedral subdivision P of Γj with maximal faces

• γ1 = Γj ∩ {vj ≤ 2}, which equals Γj+1;
• γ2 = Γj ∩ {vj ≥ 2}.

The faces of P that meet the relative interior of Γj are γ1, γ2 and γ12 = γ1 ∩ γ2.
By the induction hypothesis, the face γ1 = Γj+1 is stably irrational. We will use
Theorem 4.1 to argue that a very general hypersurface with Newton polytope γ1

is not stably birational to a very general hypersurface with Newton polytope γ12.
This in turn implies that Γj is stably irrational by Theorem 3.15.

We consider the subdivision of γ1 with maximal faces δ1 = γ1 ∩ {vj ≤ 1} and
δ2 = γ1 ∩ {vj ≥ 1}. These have lattice width one, and therefore are stably rational.
Their intersection δ1 ∩ δ2 = γ1 ∩{vj = 1} admits a unimodular regular subdivision.
Hence the conditions of Theorem 4.1(2) are satisfied, which allows us to conclude
that Γj is stably irrational. �

Figure 6. Subdivision of the polytope Γj

Proposition 5.7. Let ` be a positive integer and let d = 2m be an even positive
integer. Suppose that there exists a stably irrational double cover of P`k branched
along a smooth degree d hypersurface. Then a very general hypersurface of degree d
in P`+mk is stably irrational.

Proof. The Newton polytope of such a hypersurface is given by the dilated simplex

d∆`+m =

{
(u, v) ∈ R`+m≥0 |

∑̀
i=1

ui + v1 + . . .+ vm ≤ d

}
.

The stable irrationality of d∆`+m follows by taking j = 0 in Lemma 5.6. �
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With the current knowledge of rationality properties of double covers,
Proposition 5.7 unfortunately does not yield any cases that have not already
been established by other methods. We expect that it will be useful for future
applications.

6. Hypersurfaces in products of projective spaces

We can also apply our methods to the rationality problem for hypersurfaces in
products of projective spaces. Like hypersurfaces in projective space, these have
been extensively studied [Pu00, So01, Pu13, ABP18, KO18, ABBP20]. We will
classify all bidegrees corresponding to stably rational/irrational hypersurfaces of
dimension at most four, and also settle many open cases in higher dimension.

The arguments here (in particular in Theorem 6.3) utilize the full tropical
machinery in Theorem 3.15. In particular, the degenerations we use are significantly
more involved than the ones considered in Section 5.1, and have special fibers with
large numbers of irreducible components.

Proposition 6.1. Let X be very general divisor of bidegree (a, b) in P`k×kPmk , with
`,m ≥ 2 and a, b ≥ 1.

(1) If a = 1 or b = 1, then X is rational.
(2) If ` = 2 and m ∈ {2, 3}, then X is stably irrational if a, b ≥ 2.
(3) If ` = m = 3, then X is stably irrational if a > 2 or b > 2.
(4) If ` = 2 and m ≥ 3, then X is stably irrational for b ≥ m− 1.

Proof. (1) We may assume that a = 1. Then X is generically a projective bundle
over Pmk , and therefore rational.

(2) If (a, b) = (2, 2), then X was shown to be stably irrational in [HT19] (for
m = 2) and [HPT18] (for m = 3). The result for a, b ≥ 2 now follows from Theorem
4.5.

(3) This follows from Theorem 4.5 and point (2).
(4) This follows by induction on m by Theorem 4.5, using point (2) as the base

case. �

Proposition 6.2. Let a, b, `,m be positive integers such that a ≥ ` + 1. If a very
general hypersurface in Pmk of degree b is stably irrational, then also a very general
(a, b)-divisor X in P`k ×k Pmk is stably irrational.

Proof. The Newton polytope of X is given by the product polytope

a∆` × b∆m = {(u, v) ∈ R`+m≥0 |
∑̀
i=1

ui ≤ a,
m∑
j=1

vj ≤ b}.

Starting with a unimodular subdivision of a∆` and taking the product with b∆m, we
get a regular subdivision P of a∆`× b∆m in which each polytope in P that meets
the relative interior of a∆` × b∆m either has lattice width one, or is isomorphic to
the polytope b∆m, which is stably irrational by assumption. The latter possibility
occurs because a ≥ ` + 1 so that a∆` has an interior lattice point, which must
be a vertex of P. Then by the formula (3.5.3) in Theorem 3.15, we find that also
a∆` × b∆m is stably irrational. �
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Fano fibrations over P1
k are of special interest. There is an extensive literature

on these varieties, especially from the viewpoint of birational rigidity [Pu00, So01,
Ch05, Pu13, KO18]. The main result of this section is the following theorem.

Theorem 6.3. Let X be a very general divisor of bidegree (a, b) in P1
k ×k Pnk , with

n ∈ {2, 3, 4} and a, b ≥ 1. Then X is rational if a = 1 or b ≤ 2, and stably irrational
in all other cases.

Proof. If a = 1, the second projection defines a birational morphism X → Pnk , so
that X is rational. When b ≤ 2, then X → P1

k is generically either a projective
bundle or a quadric bundle, and therefore rational by Tsen’s theorem.

We now prove that X is stably irrational in all other cases. The case n = 2 is
trivial, since there the canonical bundle of X is semi-ample. So we may assume that
n ∈ {3, 4}. It suffices to prove that very general (2, 3)-divisors are stably irrational;
the remaining cases then follow from Theorem 4.5. For n = 3 this was proved in
Theorem 1.2 in [KO18]. So here we only need to consider the n = 4 case.

A very general (2, 3)-divisor X ⊂ P1
k×kP4

k gives rise to a cubic threefold fibration
over P1

k. The second projection is generically 2-to-1, and shows that X is birational
to a double cover of P4

k branched along a determinantal sextic threefold.
Consider the Hassett–Pirutka–Tschinkel quartic (3.2.1) and its Newton polytope

∆ from Example 3.9. The starting observation is that ∆ is contained in the Newton
polytope of a general (2, 3) divisor:

2∆1 × 3∆4 = {(u, v) ∈ R1+4
≥0 |u ≤ 2, v1 + . . .+ v4 ≤ 3}.

In concrete terms, the following bidegree (2, 3) polynomial

x2
0y

3
0 − 2x0x1y

3
0 + x2

1y
3
0 − 2x2

0y
2
0y1 − 2x0x1y

2
0y1

+ x2
0y0y

2
1 + x0x1y1y

2
2 + x2

0y1y
2
3 + x0x1y0y

2
4

dehomogenizes to the quartic (3.2.1) in the affine chart D01 = {x0 = y0 = 1}.
Let P denote the regular subdivision of the polytope 2∆1×3∆4 induced by the

convex function

f :R5 → R, x 7→ min
z∈∆
‖x− z‖2

Using Macaulay2 or polymake we compute the number of faces of each dimension3:

dim δ 0 1 2 3 4 5

number 43 192 353 323 146 26

As P contains the stably irrational polytope ∆ (which has dimension 5), it suffices
by Theorem 3.15 to show that any polytope in P of even dimension is either stably
rational or contained in the boundary of 2∆1 × 3∆4. Going through the faces of
dimension 2 and 4 reveals that any face δ of even dimension either has lattice width
one or is one of the following two polytopes:

(a) Conv{(0, 3, 0, 0, 0), (1, 3, 0, 0, 0), (2, 2, 1, 0, 0), (1, 1, 2, 0, 0), (2, 1, 2, 0, 0),
(0, 1, 0, 2, 0), (1, 1, 0, 2, 0), (1, 1, 0, 0, 2), (2, 1, 0, 0, 2)}

(b) Conv{(2, 0, 0, 0, 0), (0, 2, 0, 0, 0), (1, 1, 2, 0, 0), (0, 1, 0, 2, 0), (1, 0, 0, 0, 2)}

3Macaulay2 code: www.mn.uio.no/math/personer/vit/johnco/papers/subdivp1p4.m2.

www.mn.uio.no/math/personer/vit/johnco/papers/subdivp1p4.m2
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In each of these cases the corresponding hypersurface Y is rational as well: in
the case (a), translating the polytope by the vector (0,−1, 0, 0, 0) shows that Y is
a quadric bundle over P1

k, hence rational. In the case (b), the hypersurface Y is
defined by an affine equation of the form

αz0z1z
2
2 + βz0z1z2 + γz1z

2
3 + δz0z

2
4 + εz2

0 + ζz0z1 + ηz2
1 = 0.

The projection onto Spec k[z2, z3, z4] defines a conic bundle with a section (given
by z0 = z1 = 0), and hence Y is rational. �

Proposition 6.1 and Theorem 6.3 together completely settle the classification of
stably irrational hypersurfaces in P`k ×k Pmk of dimension at most four. Combined
with Proposition 6.2, they also cover a wide range of cases in higher dimensions.

7. Complete intersections

7.1. Intersections of a quadric and a cubic in P6. We now turn our attention
to complete intersections. Table 1 collects what is known about stable rationality
of very general Fano complete intersection fourfolds (excluding the elementary
cases of linear spaces and quadrics in P5

k, and the classical case of intersections
of two quadrics in P6

k; all of these cases are rational). The first column displays
the multidegrees, the second column indicates whether a very general complete
intersection with these multidegrees is stably rational, and the third column
contains the references to the original results.

multidegree stably rational? reference

4 or 5 No Totaro [To16]
(2,4) No Chatzistamatiou-Levine [CL17, 6.1]
(3,3) No Chatzistamatiou-Levine [CL17, 6.1]
(2,2,2) No Hassett-Pirutka-Tschinkel [HPT17]
(2,2,3) No Chatzistamatiou-Levine [CL17, 6.1]
(2,2,2,2) No Chatzistamatiou-Levine [CL17, 6.1]

Table 1. Rationality properties of very general Fano complete
intersection fourfolds

The only open cases are the cubic fourfold and the (2, 3) complete intersection
in P6

k. We will settle the latter case by proving that a very general intersection
of a quadric and a cubic in P6

k is not stably rational. Our proof is again based
on degeneration techniques. Rather than using tropical tools, we will construct a
suitable semi-stable degeneration by hand and then apply the motivic obstruction
provided by Corollary 2.5.

Theorem 7.1. A very general intersection of a quadric and a cubic in P6
k is stably

irrational.

In fact, we will show that a very general complete intersection of a quadric and
a cubic containing a 2-plane in P6

k is stably irrational.

Proof. By Corollary 2.6, it suffices to find an algebraically closed field F of
characteristic zero and a quadric and cubic in Pn+2

F whose intersection is a stably
irrational smooth n-fold. We will construct such an example over F = K.
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We first introduce some notation. For every non-negative integer ` and every
tuple u in N{0,...,`}, we denote by |u| the sum of the coordinates of u, and we
use the multi-index notation xu to denote the monomial xu0

0 · · ·x
u`
` . For every i in

N{0,1,2,3} and every j in N{4,5,6}, we will denote by ij the tuple in N{0,...,6} obtained
by concatenating i and j. We set

I = {(i, j) ∈ N{0,1,2,3} × N{4,5,6} | |ij|= 3}.

Let X be the projective flat kJtK-scheme defined by

X = Proj kJtK[x0, . . . , x6]/(x0x1 − x2x3 + t2(x2
4 + x2

5 + x2
6)).

Let Y be the closed subscheme of X defined by the cubic equation

(7.1.1)
∑

(0,j)∈I

ta0jx
0j +

∑
(i,j)∈I, i6=0

aijx
ij = 0

for a very general choice of coefficients aij in k. We will prove that YK is not stably
rational.

The special fiber Xk is the toric hypersurface in P6
k defined by x0x1− x2x3 = 0.

The scheme X is singular along the plane P in Xk defined by t = x0 = x1 = x2 =
x3 = 0. The closed subscheme Yk is the intersection of Xk with a very general
cubic hypersurface in P6

k containing the plane P . Let π: Y ′ → Y be the blow-up of
Y along P .

We claim that Y ′ is regular, and that its special fiber Y ′k is a reduced divisor
with strict normal crossings. Moreover, Y ′k has two irreducible components E1 and
E2, where E1 is the strict transform of Yk. Finally, we also claim that E1 is stably
irrational and that E1∩E2 is rational. Then by applying Corollary 2.5 to the strictly
semi-stable model Y ′ ×kJtK R of YK , we see that YK is not stably rational.

So let us prove our claims. The plane P is the base locus of the linear system of
cubic forms ∑

(i,j)∈I, i6=0

aijx
ij

on the toric variety Xk. By Bertini’s theorem, the k-scheme Yk is integral, and
smooth away from P , for a general choice of coefficients aij in k. Therefore, we only
need to investigate the structure of Y ′ above a neighbourhood of P . On P at least
one of the homogeneous coordinates x4, x5 and x6 is non-zero; by the symmetry
of our equations, it will be sufficient to consider the affine chart U of Y where
x6 6= 0. To analyze the geometry of the blow-up U ′ → U at P ∩U , it suffices to
compute the t-chart and the x0-chart, because our equations are also symmetric in
the variables x0, . . . , x3.

Let V be the closed subscheme of Proj kJtK[w0, . . . , w6] defined by the equations
w0w1 − w2w3 + w2

4 + w2
5 + w2

6 = 0,∑
(0,j)∈I

a0jw
0j +

∑
(i,j)∈I, i6=0

t|i|−1aijw
ij = 0.

The t-chart U (t) of the blow-up U ′ (by which we mean the chart where the inverse
image of P is defined by t = 0) is the affine chart of V where w6 6= 0. The first
equation defines a smooth quadric, so it follows from Bertini’s theorem that the
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special fiber Vk is integral, and smooth away from the base locus w4 = w5 = w6 = 0
of the linear system of cubics ∑

(i,j)∈I, |i|≤1

aijw
ij .

Thus the open subscheme U
(t)
k of Vk defined by w6 6= 0 is smooth and connected.

The x0-chart U (x0) of the blow-up U ′ is the closed subscheme of
Spec kJtK[s, v0, . . . , v6] defined by the equations

v6 = 1,

sv0 = t,

v1 − v2v3 + s2(v2
4 + v2

5 + 1) = 0,

s(
∑

(0,j)∈I

a0jv
0j) +

∑
(i,j)∈I, i6=0

aijv
|i|−1
0 vı̃j = 0,

where we set ı̃ = (0, i1, i2, i3). The special fiber U
(x0)
k is reduced and consists of

two smooth irreducible components, D1 and D2. The component D1 is the closed
subscheme of Spec k[v0, . . . , v6] cut out by the equations

v6 = 1,

v1 − v2v3 = 0,∑
(i,j)∈I, i6=0

aijv
|i|−1
0 vı̃j = 0.

The closure of D1 in Y ′k is the strict transform of Yk. After the substitution v1 =
v2v3, the third equation becomes a polynomial in k[v0, v2, . . . , v6] of the form∑

p,q∈{0,4,5,6}, p≤q

gp,q(v2, v3)vpvq

where gp,q(v2, v3) is a very general polynomial of bidegree (c+ 1, c+ 1) with c the
number of occurrences of the coordinate 0 in the couple (p, q).

It follows from Corollary 11 in [Sch18] that D1 is not stably rational; in the
notations of [Sch18], the scheme D1 is an open subscheme of a very general quadric
surface bundle of lexicographically ordered type ((1, 1), (1, 1), (1, 1), (3, 3)).

The component D2 is the closed subscheme of Spec k[s, v1, . . . , v6] cut out by the
equations 

v6 = 1,

v1 − v2v3 + s2(v2
4 + v2

5 + 1) = 0,

s(
∑

(0,j)∈I

a0jv
0j) +

∑
(i,j)∈I, |i|=1

aijv
ı̃j = 0.
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The schematic intersection D1 ∩D2 is the closed subscheme of Spec k[v1, . . . , v6]
cut out by the equations 

v6 = 1,

v1 − v2v3 = 0,∑
(i,j)∈I, |i|=1

aijv
ı̃j = 0.

This is a smooth hypersurface in Spec k[v2, v3, v4, v5]. It is rational, because it is
defined by an irreducible polynomial that has degree 1 in the variable v2.

Combining these calculations, we find that Y ′k is reduced, and consists of two

irreducible components E1 = D1 and E2 = D2. These components are smooth over
k, the component E1 is stably irrational, and the intersection E1 ∩ E2 = D1 ∩D2

is a smooth rational k-variety. Our local calculations also show that E1 and E2 are
Cartier along E1∩E2. It follows that Y ′ is regular, and that Y ′k is a reduced divisor
with strict normal crossings. �

7.2. Intersections of two cubics in P7. We can use the result in the previous
section to settle another open problem about stable rationality of complete
intersections: we will prove that a very general intersection of two cubics in P7

k

is stably irrational.

Theorem 7.2. Let n be an integer such that n ≥ 3. Assume that a very general
intersection of a quadric and a cubic in Pn+1

k is not stably rational. Then a very

general intersection of two cubics in Pn+2
k is not stably rational.

Proof. Let q1 and q2 be quadratic forms in k[x0, . . . , xn+2], and let c1 and c2 be cubic
forms in k[x0, . . . , xn+2]. We assume that the tuple (q1, q2, c1, c2) is very general.
Let X be the closed subscheme of

Pn+2
R = ProjR[x0, . . . , xn+2]

defined by the equations

c1 = tc2 − xn+2q2 = 0.

Set X = X ×RK; this is a smooth complete intersection of two cubics in Pn+2
K . The

scheme X is strictly toroidal, because, Zariski-locally, it admits a smooth morphism
to a scheme as in Example 2.2. Thus, we can use Theorem 2.3 to compute the stable
birational volume of X. The special fiber Xk consists of two irreducible components,
E1 and E2, where E1 is the smooth cubic in Pn+1

k defined by c1(x0, . . . , xn+1, 0) = 0,

and E2 is the closed subscheme of Pn+2
k defined by c1 = q2 = 0. The intersection

E12 = E1 ∩E2 is a very general intersection of a quadric and a cubic in Pn+1
k ; thus

it is stably irrational, by the assumption of the theorem. We have

Volsb([X]sb) = [E1]sb + [E2]sb − [E12]sb

in Z[SBk]. We will prove that this element is different from [Spec k]sb; then the
result follows from Corollary 2.5.

It suffices to show that [E1]sb and [E2]sb are both different from [E12]sb. We first
consider the case of E1. We consider the closed subscheme Y of Pn+2

k[t] defined by

tc1 − xn+1q2 = xn+2 = 0.
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For every value of t in k×, the corresponding member of the family Y contains the
subscheme E12 of Pn+2

k . The scheme Y ×k[t] R is strictly toroidal, and its special
fiber is a union of two smooth and proper rational varieties intersecting along a
smooth rational subvariety; thus it follows from Theorem 2.3 that

Volsb([Y ×k[t] K]sb) = [Spec k]sb 6= [E12]sb

in Z[SBk]. This implies that Y ×k[t]K is not stably birational to E12×kK, so that

a very general cubic in Pn+1
k that contains E12 is not stably birational to E12, by

Corollary 2.6.
The case of E2 is quite similar. Let Z be the closed subscheme of Pn+2

k[t] defined

by

tc1 − xn+2q1 = q2 = 0.

For all values of t in k×, the corresponding fiber of the family Z contains E12.
The fiber Z0 of Z over 0 is a union of two smooth and proper rational varieties
intersecting along a smooth rational subvariety (each of these varieties is a quadric
or an intersection of two quadrics). The same argument as above shows that E2 is
not stably birational to E12. �

Corollary 7.3. A very general intersection of two cubics in P7
k is not stably

rational.

Proof. By Theorem 7.1, a very general intersection of a quadric and a cubic in P6
k

is not stably rational. Thus the result follows from Theorem 7.2. �

7.3. Bounds for complete intersections. As another application, we will
provide a significant improvement of the degree bounds for stably irrational
complete intersections, bringing them up to the same level as Schreieder’s results
for hypersurfaces in [Sch19a]. We use Schreieder’s bounds for hypersurfaces as an
essential ingredient of the proof. We first establish a generalization of Corollary 4.3.

Proposition 7.4. Let d and n be positive integers with n ≥ 2 and let X be a very
general hypersurface of degree d in Pn+1

k = Proj k[z0, . . . , zn+1]. For every strict

subset I of {0, . . . , n + 1}, we denote by LI the linear subspace of Pn+1
k defined by

zi = 0 for all i in I. In particular, L∅ = Pn+1
k .

Let J be a subset of {0, . . . , n+ 1} of cardinality at most n− 1 and assume that
X ∩ LJ is not stably rational. Then for every strict subset J ′ of J , the scheme
X ∩ LJ′ is not stably birational to X ∩ LJ .

Proof. Replacing Pn+1
k by LJ′ , we can reduce to the case where J ′ is empty and J

is non-empty. Then we must show that X is not stably birational to X ∩ LJ . Set

∆ = {(u0, . . . , un+1) ∈ Rn+2
≥0 |u0 + . . .+ un+1 = d}

and let δ be the face of ∆ defined by uj = 0 for all j ∈ J . Let g be a very
general homogeneous polynomial of degree d in k[x0, . . . , xn+1]. Then g has Newton
polytope ∆, and it suffices to show that Zo(g) is not stably birational to Zo(gδ).
By our assumption that X ∩ LJ is not stably rational, we know that δ is stably
irrational. If ∆ is stably rational then the result is clear. Otherwise, it follows from
Theorem 4.1(2): after a permutation of the coordinates, we may assume that J
contains the index 0, and then we can use the same subdivision P as in the proof
of Corollary 4.3. �
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Theorem 7.5. Let n and r be positive integers. Let d1, . . . , dr be positive integers
such that dr ≥ di for all i. Assume that

n+ r ≥
r−1∑
i=1

di + 2

and that there exists a stably irrational smooth hypersurface of degree dr in

Pn+r−
∑r−1
i=1 di

k . Then a very general complete intersection in Pn+r
k of multidegree

(d1, . . . , dr) is not stably rational.

Proof. By Corollary 2.6, it suffices to construct a stably irrational smooth complete
intersection of multidegree (d1, . . . , dr) in Pn+r

F , for some algebraically closed field
F of characteristic zero. We will take for F the field K of Puiseux series over k.
If we set d0 = n + r + 1 −

∑r−1
i=1 di, then, together with the assumption in the

statement, Corollary 2.6 also implies that a very general hypersurface of degree dr
in Pd0−1

k is stably irrational.

We denote the homogeneous coordinates on Pn+r
k by zij where i ranges from 0

to r − 1 and j ranges from 1 to di. We denote by

A = k[zij | i = 0, . . . , r − 1; j = 1, . . . , di]

the homogeneous coordinate ring of Pn+r
k .

Let (F1, . . . , Fr) be a very general tuple of homogeneous polynomials in A of
multidegree (d1, . . . , dr). Let X be the closed subscheme of Pn+r

R = Proj (A⊗k R)
defined by

tF1 −
d1∏
j=1

z1j = . . . = tFr−1 −
dr−1∏
j=1

z(r−1)j = 0.

Let Y be the closed subscheme of X defined by Fr = 0. Then YK = Y ×R K is
a smooth complete intersection of multidegree (d1, . . . , dr) in Pn+r

K . We will show
that YK is stably irrational by means of the motivic obstruction from Corollary
2.5.

The scheme Y is strictly toroidal, so that we can compute the stable birational
volume of YK by means of the formula in Theorem 2.3. Let S be the set of couples
(i, j) where i ranges from 1 to r − 1 and j ranges from 1 to di. We say that a
subset T of S is admissible if, for every i in {1, . . . , r − 1}, there exists an element
j in {1, . . . , di} such that (i, j) belongs to T . For every admissible subset T of S,
we denote by LT the linear subspace of Pn+r

k defined by zij = 0 for all (i, j) in
T . Then the irreducible components of Yk are the schemes Z(Fr) ∩ LT where T
runs through the minimal admissible subsets of S. The intersection of all these
irreducible components is Z(Fr)∩LS . This is a very general degree dr hypersurface
in

LS = Proj k[z01, . . . , z0d0 ] ∼= Pd0−1
k ,

and, therefore, stably irrational.
Theorem 2.3 implies that

(7.3.1) Volsb([YK ]sb) =
∑

T⊂S adm.

(−1)|T |−r+1[Z(Fr) ∩ LT ]sb

in Z[SBk]. It follows from Proposition 7.4 that Z(Fr) ∩ LT is not stably birational
to Z(Fr) ∩ LS , for all admissible strict subsets T of S. This means that the term
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[Z(Fr) ∩ LS ]sb does not cancel out in the formula (7.3.1), so that YK is stably
irrational by Corollary 2.5. �

Corollary 7.6. Let n and r be positive integers. Let d1, . . . , dr be positive integers
such that dr ≥ 4 and dr ≥ di for all i. Assume that

r−1∑
i=1

di + 2 ≤ n+ r ≤ 2dr−2 +

r∑
i=1

di − 3.

Then a very general complete intersection in Pn+r
k of multidegree (d1, . . . , dr) is not

stably rational.

Proof. Our assumptions imply that a very general hypersurface of degree dr in

Pn+r−
∑r−1
i=1 di

k is stably irrational, by Theorem 1.1 in [Sch19a]. �

To conclude, we prove the following variant of the above theorem by applying
Corollary 2.5 in a slightly different way. This in particular extends the results for
intersections of quadrics from [HPT17] and [CL17] (see Corollary 7.8).

Theorem 7.7. Let n be a positive integer and let d be an integer which is either
≤ 34 or a prime power. Let d1, . . . , dr be positive integers and assume that a very
general complete intersection of multidegree (d1, . . . , dr) in Pn+r

k is stably irrational.

Then a very general complete intersection of multidegree (d, d1, . . . , dr) in Pn+r+d
k

is also stably irrational.

Proof. Consider the polynomial ring A = k[z0, . . . , zn+r, w1, . . . , wd]. The
symmetric group G = Sd acts on A by permuting the variables w1, . . . , wd (leaving
the zi unchanged). Let (F0, . . . , Fr) be an (r+1)-tuple of homogeneous polynomials
in A of degrees d, d1, . . . , dr respectively. We assume that this tuple is very general
subject to the condition that the forms F1, . . . , Fr are invariant under the action of
G. Let Y be the closed subscheme of

Pn+r+d
R = Proj (A⊗k R)

defined by the equations

F1 = . . . = Fr = tF0 − w1 · · ·wd = 0.

The R-scheme Y is strictly toroidal, by Example 2.2. Thus we can apply Theorem
2.3 to compute the stable birational volume Volsb([YK ]sb) as an alternating sum of
the classes of the strata of Yk in Z[SBk].

The special fiber Yk consists of d irreducible components Y1, . . . , Yd, which
are permuted by the action of G on Pn+r+d

k . For each non-empty subset J of
{1, . . . , d}, let YJ = ∩j∈JYj . This scheme is isomorphic to a complete intersection in

Pn+r+d−|J|
k of multidegree (d1, . . . , dr). For sets J of fixed cardinality, the schemes
YJ are permuted by the action of G, so in particular they are all isomorphic. The
smallest intersection Y{1,...,d} is a very general complete intersection of multidegree

(d1, . . . , dr) in Pn+r
k , which is stably irrational by assumption. From this we get

Volsb([YK ]sb) =

(
d

1

)
[Y1]sb −

(
d

2

)
[Y{1,2}]sb + . . .+ (−1)d+1[Y{1,...,d}]sb.

If d is a prime power, say d = pν , then each of the d− 1 first binomial coefficients
appearing in the sum is divisible by p. This implies that the above expression is
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different from [Spec k]sb in Z[SBk]. the same conclusion holds if d ≤ 34 by a direct
computation. Thus YK is not stably rational, by Corollary 2.5. �

Corollary 7.8. Let n be an integer such that n ≥ 3. Let r be an integer such that
r ≥ 3 and r ≥ n − 1. Then a very general complete intersection of r quadrics in
Pn+r
k is stably irrational.

Proof. We only need to consider the cases where n = r or n = r+1, since, for n < r,
a complete intersection of r quadrics in Pn+r

k has non-negative Kodaira dimension.
For r = 3, the n = 3 case is proved in [HT19, §4.4] and the n = 4 case is proved in
[HPT17]. For r ≥ 4 the result follows from Theorem 7.7, by induction on r. �

Corollary 7.9. Let n and d be positive integers. Assume that a very general degree
d hypersurface in Pn+1

k is stably irrational. Then very general complete intersections
of the following multidegrees are stably irrational:

• multidegree (2, d) in Pn+3
k ;

• multidegree (3, d) in Pn+4
k ;

• multidegree (2, 2, d) in Pn+5
k ;

• multidegree (2, 3, d) in Pn+6
k .

Proof. These are special cases of Theorem 7.7. �

Theorems 7.5 and 7.7 settle many new cases for the rationality question for very
general complete intersections, especially in high dimensions, and at the same time
cover a large portion of the previously known cases in a uniform way. To give a
sample in low dimension, the combined results in this paper show that very general
complete intersection fivefolds of the following multidegrees are stably irrational:

(4), (5), (6), (2, 4), (2, 5), (3, 3), (3, 4), (2, 2, 3), (2, 2, 4), (2, 3, 3),
(2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 2, 2, 2).

To the best of our knowledge, the cases (4), (3, 3), (2, 2, 3) and (2, 2, 2, 2) are new.
The cases (5) and (6) lie in Schreieder’s range [Sch19a], and the remaining ones are
covered by Theorem 6.1 in [CL17]. Since a smooth complete intersection of three
quadrics in P8

k is rational by [Tj75], the only remaining open cases in dimension 5
are the cubic fivefold and the intersection of a quadric and a cubic in P7

k.
In dimension six, our results imply that very general complete intersections of

the following multidegrees are stably irrational:

(5), (6), (7), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (4, 4), (2, 2, 4), (2, 2, 5), (2, 3, 3), (2, 3, 4),
(3, 3, 3), (2, 2, 2, 3), (2, 2, 2, 4), (2, 2, 3, 3), (2, 2, 2, 2, 2), (2, 2, 2, 2, 3), (2, 2, 2, 2, 2, 2)

Here the cases not covered by [Sch19a] and [CL17] are

(2, 4), (2, 5), (2, 3, 3), (2, 2, 2, 3), (2, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2).

References

[AM72] M. Artin and D. Mumford. Some elementary examples of unirational varieties which

are not rational. Proc. London Math. Soc. (3) 25:75–95, 1972.
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non algébriquement clos. In: K-Theory–Proceedings of the International Colloquium,

Mumbai, 2016. Hindustan Book Agency, New Delhi, pages 349–366, 2018.

[CTP16] J-L. Colliot-Thélène and A. Pirutka. Hypersurfaces quartiques de dimension 3: non-
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