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Abstract

This Master’s thesis addresses how to optimise market moving portfolio
liquidation through a theoretical approach to liquidity cost optimisation with
an exponential bounce-back model in discrete time. We use numerical methods
such as Fixed Point method and Gradient Ascent method, as well as analytical
methods like Lagrange Multiplier method and more general mathematical theory.
Moreover, we evaluate the investor’s investment choices when managing a market
moving portfolio with respect to liquidity, market value, sales value, liquidity
cost and liquidity cost ratio. A normalised sales value model is used to address
liquidation in one, two and three dimensions, where the dimensions represent
the number of liquidation steps the investor can utilise in order to liquidate the
entire portfolio. The thesis explores investment strategy spaces such as buy,
sell and hold, as well as pumping, dumping and short selling. The model and
market are investigated from analytical, numerical and naive perspectives based
on mathematical and financial theory. On this note, we find that the liquidation
cost ratio is constant in one dimension; that the naive analysis seems to be
severely insufficient compared to an analysis using numerical methods; and
that the sequence of market types does not commute, i.e., a BullFlat market
does not behave equal to a FlatBull market. Moreover, we shed light on some
perspectives as to why most struggle to read financial markets correctly.

i



Acknowledgements

Firstly, I would like to thank my thesis advisor Professor Tom Lindstrøm. Had
it not been for your unprecedented competence of teaching mathematics I would
most likely not have believed mathematics to be so easy as I did after my first
lecture. Time would show that doing is not the same as listening to someone
else’s logic. You are an inspiration and I think it to be pretty awesome that the
first person I met at UiO would be the one to follow me across the finishing
line 21 years later. What a ride it has been. You are my rock star!

To my sister, Elin Fængsrud Ek, the funniest person alive! I love every
particle that constitutes you – the finest person I know. But also the most
strange, independent and hard working. You are a pillar of strength.

Mum and Dad, two very different people who have given me diversity, a wide
spectre of perspectives and taught me the importance of believing in myself.
I am very grateful that my parents ended up being you. After 40 years of
walking on this road called life, through dark hours and joyous moments, we
are stronger than ever. That to me is a blessing.

Nikolai Bjørnestøl Hansen, my eminent discussion partner. My master
studies and Lektor degree would not be without you. We have worked mornings,
noons and nights; discussed mathematics, physics, finance, politics, ethics and
what not. Without our conversations I would have little input from other
mathematicians as I did not have the opportunity to attend lectures or groups
all through my studies. Thank you!

My ‘babysitter’ Dr. Martin Helsø, also known as Martiiiiin (said with a very
loving voice). We share a great love for mathematics, www.houseofmath.com
and food. Even when it is ordered from the culinary universe of takeaway.
Your unwavering support and mathematical discussions have been essential and
deeply appreciated in this process. You are a true introvert with an epic sense
of humour and an eye for detail to the extent that we call you The microscope.
I would not have finished this project without you. Thank you!

Kristoffer Huertas, we have been in trenches several time, and you are truly
a person to count on. Thank you for all inputs and discussions these last days,
and congratulations with an A on your Master’s thesis.

To the Supercrew at House of Math, who make our legacy on a daily basis.
Together we have helped millions of students with mathematics across the
World, that is pretty fantastic! Living the dream.

ii

www.houseofmath.com


Finally, thank you to my self. For never giving up, always believing that
hard work will prevail, and always taking care of me. Talking positively when
things have been very trying, encouraging me to push through when I have
been all alone and for creating a space where I get to live my dream. Thank you
for being strong enough to follow my convictions, even when most people find
it tiring, trying, annoying, irritating and frictionful. You are a good partner to
have on this ride called life!

Vibeke Gwendoline Fængsrud

Oslo, June 2022

iii



Contents

Abstract i

Acknowledgements ii

Contents iv

List of figures vii

List of tables ix

1 Introduction 1
1.1 Background and relevance . . . . . . . . . . . . . . . . . . . . 1
1.2 An overview of the problem . . . . . . . . . . . . . . . . . . . 2

1.2.1 Normalisation of variables . . . . . . . . . . . . . . . . 4
1.2.2 The validity of the model . . . . . . . . . . . . . . . . . 5

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Scientific background and prerequisites 8
2.1 Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The insufficient theoretical beginning . . . . . . . . . . 8
2.1.2 Risk measures . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Liquidation value . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Resilience . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Mathematical theory . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Optimisation in N = 2 . . . . . . . . . . . . . . . . . . 11
2.2.2 Optimisation in N = 3 . . . . . . . . . . . . . . . . . . 13

2.3 Financial theory . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Financial strategy 16

4 A dissection of model S with help of case N = 1 19
4.1 Market states and the analytical approach . . . . . . . . . . . 19
4.2 The numerical analysis . . . . . . . . . . . . . . . . . . . . . . 22

5 The case N = 2 25
5.1 Analysis of the model S . . . . . . . . . . . . . . . . . . . . . 26

iv



Contents

5.1.1 Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Dumping . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Market sentiments and investment strategies . . . . . . . . . . 34
5.3 The numerical analysis . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 The case of P̂1 > P̂2: Bear market . . . . . . . . . . . . 39
5.3.1.1 The behaviour of model S in a Bear market . 39

5.3.2 The case of P̂1 = P̂2: Flat market . . . . . . . . . . . . 51
5.3.2.1 The behaviour of model S in a Flat market . 51

5.3.3 The case of P̂1 < P̂2: Bull market . . . . . . . . . . . . 54
5.3.3.1 The behaviour of model S in a Bull market . 54

6 The case N = 3 66
6.1 An analytical approach for N = 3 . . . . . . . . . . . . . . . . 66
6.2 Trade actions for y1, y2 and y3, and strategy spaces . . . . . . 67

6.2.1 Defining the possible strategy spaces . . . . . . . . . . 68
6.2.2 Market types and feasible strategy spaces . . . . . . . 70

6.2.2.1 Bull market: P̂1 < P̂2 < P̂3 . . . . . . . . . . 70
6.2.2.2 BullFlat market: P̂1 < P̂2 = P̂3 . . . . . . . . 71
6.2.2.3 BullBear market: P̂1 < P̂2 ∪ P̂2 > P̂3 . . . . . 72
6.2.2.4 FlatBull market: P̂1 = P̂2 < P̂3 . . . . . . . . 72
6.2.2.5 Flat market: P̂1 = P̂2 = P̂3 . . . . . . . . . . 73
6.2.2.6 FlatBear market: P̂1 = P̂2 > P̂3 . . . . . . . . 73
6.2.2.7 BearBull market: P̂1 > P̂2 ∪ P̂2 < P̂3 . . . . . 74
6.2.2.8 BearFlat market: P̂1 > P̂2 = P̂3 . . . . . . . . 74
6.2.2.9 Bear market: P̂1 > P̂2 > P̂3 . . . . . . . . . . 74

6.3 The numerical analysis . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 The mathematics behind the Python scene . . . . . . 76
6.3.2 Numerical plots, Gradient Ascent and other mathem-

atical stars . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2.1 Bull: P̂1 < P̂2 < P̂3 . . . . . . . . . . . . . . . 77
6.3.2.2 BullFlat: P̂1 < P̂2 = P̂3 . . . . . . . . . . . . 78
6.3.2.3 BullBear: P̂1 < P̂2 ∪ P̂2 > P̂3 . . . . . . . . . 84
6.3.2.4 FlatBull: P̂1 = P̂2 < P̂3 . . . . . . . . . . . . 89
6.3.2.5 Flat: P̂1 = P̂2 = P̂3 . . . . . . . . . . . . . . . 95
6.3.2.6 FlatBear: P̂1 = P̂2 > P̂3 . . . . . . . . . . . . 101
6.3.2.7 BearBull: P̂1 > P̂2 ∪ P̂2 < P̂3 . . . . . . . . . 101
6.3.2.8 BearFlat: P̂1 > P̂2 = P̂3 . . . . . . . . . . . . 106
6.3.2.9 Bear: P̂1 > P̂2 > P̂3 . . . . . . . . . . . . . . 112

6.4 Comparative analysis of different market types . . . . . . . . . 122
6.4.1 Bull vs. Flat vs. Bear . . . . . . . . . . . . . . . . . . 122
6.4.2 FlatBull vs. BullFlat . . . . . . . . . . . . . . . . . . . 122
6.4.3 FlatBear vs. BearFlat . . . . . . . . . . . . . . . . . . 123
6.4.4 BullBear vs. BearBull . . . . . . . . . . . . . . . . . . 123

7 Closing remark 124

A Python code 126
A.1 The case N = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2 The case N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2.1 α̂0, Fixed Point Method . . . . . . . . . . . . . . . . . 128

v



Contents

A.2.2 α̂1, Fixed Point Method . . . . . . . . . . . . . . . . . 130
A.2.3 α̂0, Gradient Ascent Method . . . . . . . . . . . . . . . 132
A.2.4 α̂1, Gradient Ascent Method . . . . . . . . . . . . . . . 135

A.3 The case N = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 141

vi



List of figures

1.1 S(y1) for α̂0 < 0, α̂0 = 0 and α̂0 > 0 . . . . . . . . . . . . . . . . . 6

4.1 Estimated market values M̂(y1) for chosen values of α̂0 . . . . . . 22
4.2 Estimated market value M̂ versus the sales value S(y) for α̂0 = 0.1 24
4.3 Estimated market value M̂ versus the sales value S(y) for α̂0 = 0.5 24
4.4 Estimated market value M̂ versus the sales value S(y) for α̂0 = 1 . 24

5.1 The different scenarios of the number of possible solutions in N = 2 29
5.2 P̂2(y

∗
1) for illustrative α̂-values on the interval 0 < α̂1 < α̂0 < 1 . . 35

5.3 Bear market: S(y1) with P̂2 = 0.5 and α̂0 = 0.99 . . . . . . . . . . 46
5.4 Bear market: S(y1) with P̂2 = 0.9 and α̂0 = 0.99 . . . . . . . . . . 46
5.5 Bear market: S(y1) with P̂2 = 0.5 and α̂0 = 0.4 . . . . . . . . . . . 47
5.6 Bear market: S(y) with P̂2 = 0.9 and α̂0 = 0.4 . . . . . . . . . . . 47
5.7 Bear market: S(y1) with P̂2 = 0.5 and α̂0 = 0.2 . . . . . . . . . . . 48
5.8 Bear market: S(y1) with P̂2 = 0.9 and α̂0 = 0.2 . . . . . . . . . . . 48
5.9 Bear market: S(y1) with P̂2 = 0.5 and α̂0 = 0.99 . . . . . . . . . . 49
5.10 Bear market: S(y1) with P̂2 = 0.9, α̂0 = 0.99 . . . . . . . . . . . . 49
5.11 Bear market: S(y1) with α̂0 from 0.1 to 0.99 and α̂1 = 0.0001 for

P̂2 = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.12 S(y1) with α̂0 from 0.0215 to 0.99 and α̂1 = 0.0001 for P̂2 = 0.9 . . 50
5.13 Flat market: S(y1) with P̂1 = P̂2, α̂0 = 0.9999 . . . . . . . . . . . 52
5.14 Flat market: S(y1) with P̂1 = P̂2, α̂0 = 0.5 . . . . . . . . . . . . . 53
5.15 Flat market: S(y1) with P̂1 = P̂2, α̂0 = 0.2 . . . . . . . . . . . . . 53
5.16 Bull market: S(y) with P̂2 = 1.5 and α̂0 = 0.99 . . . . . . . . . . . 61
5.17 Bull market: S(y) with P̂2 = 1.1 and α̂0 = 0.99 . . . . . . . . . . . 61
5.18 Bull market: S(y) with P̂2 = 1.5 and α̂0 = 0.3 . . . . . . . . . . . . 62
5.19 Bull market: S(y∗) with P̂2 = 1.1 and α̂0 = 0.4 . . . . . . . . . . . 62
5.20 Bear market: S(y) with P̂2 = 1.5 and α̂0 = 0.2 . . . . . . . . . . . 63
5.21 Bear market: S(y) with P̂2 = 1.1 and α̂0 = 0.2 . . . . . . . . . . . 63
5.22 Bull market: S(y) with P̂2 = 1.5, α̂0 = 0.99 . . . . . . . . . . . . . 64
5.23 Bull market: S(y) with P̂2 = 1.1, α̂0 = 0.99 . . . . . . . . . . . . . 64
5.24 Bull market: S(y) with α̂0 from 0.01 to 0.99 and α̂1 = 0.01 for

P̂2 = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.25 Bull market: S(y) with α̂0 from 0.01 to 0.99 and α̂1 = 0.001 for

P̂2 = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 The planes illustrating R3 . . . . . . . . . . . . . . . . . . . . . . . 69

vii



List of figures

6.2 Market diagram for N = 3 . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Sales value surface in Bull market with P̂2 = 2.5 and P̂3 = 9.55 . . 79
6.4 Sales value surface in Bull market with P̂2 = 5.1 and P̂3 = 7.25 . . 80
6.5 Sales value surface in Bull market with P̂2 = 7.8 and P̂3 = 45.55 . 81
6.6 Sales value surface in Bull market with P̂2 = 1.05 and P̂3 = 1.1 . . 82
6.7 Sales value surface in Bull market with P̂2 = 1.25 and P̂3 = 1.5 . . 83
6.8 Sales value surface in BullFlat market with P̂2 = P̂3 = 1.1 . . . . . 85
6.9 Sales value surface in BullFlat market with P̂2 = P̂3 = 1.5 . . . . . 86
6.10 Sales value surface in BullFlat market with P̂2 = P̂3 = 2.5 . . . . . 87
6.11 Sales value surface in BullFlat market with P̂2 = P̂3 = 2.3205 . . . 88
6.12 Sales value surface in BullBear market with P̂2 = 1.1 and P̂3 = 0.1 90
6.13 Sales value surface in BullBear market with P̂2 = 1.1 and P̂3 = 0.36 91
6.14 Sales value surface in BullBear market with P̂2 = 1.1 and P̂3 = 1 . 92
6.15 Sales value surface in BullBear market with P̂2 = 3 and P̂3 = 1 . . 93
6.16 Sales value surface in BullBear market with P̂2 = 10 and P̂3 = 4 . 94
6.17 Sales value surface in FlatBull market with P̂1 = P̂2 = 1 and P̂3 = 1.1 96
6.18 Sales value surface in FlatBull market with P̂1 = P̂2 = 1 and P̂3 = 1.5 97
6.19 Sales value surface in FlatBull market with P̂1 = P̂2 = 1 and P̂3 = 10 98
6.20 Sales value surface in FlatBull market with P̂1 = P̂2 = 1 and

P̂3 = 2.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.21 Sales value surface in Flat market with P̂1 = P̂2 = P̂3 = 1 . . . . . 100
6.22 Sales value surface in FlatBear market with P̂1 = P̂2 = 1 and

P̂3 = 1.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.23 Sales value surface in FlatBear market with P̂1 = P̂2 = 1 and

P̂3 = 0.347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.24 Sales value surface in FlatBear market with P̂1 = P̂2 = 1 and P̂3 = 0.5 104
6.25 Sales value surface in FlatBear market with P̂1 = P̂2 = 1 and P̂3 = 0.9 105
6.26 Sales value surface in BearBull market with P̂2 = 0.1 and P̂3 = 0.11 107
6.27 Sales value surface in BearBull market with P̂2 = 0.1 and P̂3 = 1 . 108
6.28 Sales value surface in BearBull market with P̂2 = 0.9 and P̂3 = 1 . 109
6.29 Sales value surface in BearBull market with P̂2 = 0.9 and P̂3 = 1.87 110
6.30 Sales value surface in BearBull market with P̂2 = 0.9 and P̂3 = 2 . 111
6.31 Sales value surface in BearFlat market with P̂2 = P̂3 = 0.1 . . . . . 113
6.32 Sales value surface in BearFlat market with P̂2 = P̂3 = 0.2535 . . . 114
6.33 Sales value surface in BearFlat market with P̂2 = P̂3 = 0.5 . . . . . 115
6.34 Sales value surface in BearFlat market with P̂2 = P̂3 = 0.9 . . . . . 116
6.35 Sales value surface in Bear market with P̂2 = 0.1 and P̂3 = 0.01 . . 118
6.36 Sales value surface in Bear market with P̂1 = 1, P̂2 = 0.1 and

P̂3 = 0.09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.37 Sales value surface in Bear market with P̂2 = 0.75 and P̂3 = 0.5 . . 120
6.38 Sales value surface in Bear market with P̂2 = 0.95 and P̂3 = 0.9 . . 121

viii



List of tables

5.1 Bear market: Model S on the interval (0, a) . . . . . . . . . . . . . 40
5.2 Bear market: Model S on the interval (a, c) . . . . . . . . . . . . . 40
5.3 Bear market: Model S on the interval (c, 1) . . . . . . . . . . . . . 41
5.4 Bear market: Model S in lower range with P̂2 = 0.5 . . . . . . . . 42
5.5 Bear market: Model S in mid range and P̂2 = 0.5 . . . . . . . . . . 42
5.6 Bear market: Model S with different transitions . . . . . . . . . . 43
5.7 Bear market: Model S in upper range and P̂2 = 0.5 . . . . . . . . 44
5.8 Bear market: Model S with sliding constant ∆α̂ and P̂2 = 0.5 . . . 44
5.9 Flat market: Model S with three α̂0s . . . . . . . . . . . . . . . . . 52
5.10 Bull market: Model S with different transitions . . . . . . . . . . . 56
5.11 Bull market: Model S on the interval (0, a) . . . . . . . . . . . . . 57
5.12 Bull market: Model S on the interval (a, c) . . . . . . . . . . . . . 57
5.13 Bull market: Model S on the interval (c, 1) . . . . . . . . . . . . . 58
5.14 Bull market: Model S in lower range with P̂2 = 1.5 . . . . . . . . . 59
5.15 Bull market: Model S in mid range with P̂2 = 1.5 . . . . . . . . . 59
5.16 Bull market: Model S in upper range with P̂2 = 1.5 . . . . . . . . 60
5.17 Bull market: Model S with sliding constant ∆α̂ and P̂2 = 1.5 . . . 60

ix



CHAPTER 1

Introduction

This thesis investigates how an investor should liquidate a market moving
portfolio part by part in order to reduce the liquidity cost C. That is, to
maximise the sales value S given certain constraints. A part of a portfolio will
be denominated as a block. The liquidation of a portfolio will be studied through
a sales value model S. The model includes a bounce-back function ψ that models
the market’s reaction to different block sizes relative to the portfolio size. On
this basis, we aim to uncover the circumstances where different liquidation
strategies should be chosen in order to optimise the sales value S and reduce
the liquidity cost C.

1.1 Background and relevance

A familiar problem in finance is ‘slippage’ – the difference between the expected
price of a portfolio and the executed price of the trade [Che20c]. This difference
is relevant when stock owners want to liquidate market moving portfolios into
the market. Several factors contribute to the end result such as the liquidity of
the share, the market sentiment, trading volumes, as well as the general macro
picture of the industry and political climates.

Furthermore, the size of an investor’s capital base plays a pivotal role. The
amount of capital needed affects the time period for the liquidation process.
Consequently, different investors may have different liquidity costs on the same
portfolio in the same market as they must choose different liquidation strategies
on the basis of their individual context.

In addition, liquidating a market moving portfolio is not an unusual event,
thus strategies and models for such activities are sought after as they seek to
safeguard the initial portfolio value. Even though the factors are many, we are
interested in models that can do more than infer what the discounted price of
the portfolio may be. We want to study models that may reduce the slippage
and find strategies that, in an ideal world, let the slippage tend towards zero.

A rule of thumb in the finance markets is that the level of risk in a transaction
should imply the level of return to be expected. The higher the risk, the greater
the reward. This is called the risk-return trade off [Sco20]. Consequently,
quantifying risk is essential as it works as an anchor1 for expected returns.

1Defined by the anchoring bias from the works of the psychologists Kahnemann and
Tversky in economy
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1.2. An overview of the problem

As the last decade of research suggests, mainly kicked forward by Acerbi and
Scandolo, that risk measures might have been too strict compared to the
actual behaviour of the financial markets. Continued research into redefining
assumptions will offer the field additional and necessary advances [AS08].

On a grander scale, the business world is primarily about mitigating
unnecessary risk, and at the same time optimise return in an attempt to
find a fulcrum where it all balances. In order to converge towards these points
the field is in need of more accurate risk measures, for then to set more accurate
anchors which in return will give a better expected return estimate. It would
have been interesting to work on a continuation of this aspect, however the
scope of this project is limited to an exploration of a model in discrete time,
which includes risk as a part of all other market parameters.

1.2 An overview of the problem

This thesis is an investigation of how an investor can liquidate a market moving
portfolio with B shares over the discrete times t1, t2, . . . tN in order to maximise
the total sales value of the portfolio.

The model presented in the following is a procedure for portfolio liquidation
starting at time t1. The expected future prices of the share at time tn for
n ∈ {1, 2, . . . , N}, given that no shares from the investor’s portfolio are sold, is
denominated by Pn.

Before we continue, let us refresh some financial jargon. A Bull market
(Pn+1 > Pn) is a market in which prices are rising or expected to rise [Che20b],
and a Bear market (Pn+1 < Pn) is a market in which prices are declining
or expected to decline [Che20a]. Consequently, we define a Flat market
(Pn+1 = Pn) as a market in which prices are expected to stay constant.

Classical economic theory states that a share price will decline when a stock
creates a supply surplus as demand is unable to consume the block of shares
[Kvi21].

Firstly, we use a function of two variables ψ(xn, k) ∈ [0, 1] in order to model
the percentage price reduction after k units of time has passed since xn shares
were sold in the nth block sale. We call ψ the bounce-back function. The
function has the following properties:

• Selling x1 shares at time t1 yields price

E1 = P1ψ(x1, 0)

and total sales value S(x1) = x1E1. If no more shares are sold, then k
units of time after the first sale, the share price will recover to the value
P1ψ(x1, k).

• If we continue to sell shares, then at time t2 we sell x2 shares at price

E2 = P2ψ(x1, 1)ψ(x2, 0)

with total sales value S(x1, x2) = x1E1 + x2E2.

2



1.2. An overview of the problem

• In general : If we sell x1 shares at time t1, and x2 shares at time t2 up to
xm shares at time tm, then the total expected price for n = m is

Em = Pmψ(x1,m− 1)ψ(x2,m− 2) · · ·ψ(xm, 0) (1.1)

with total sales value of

S(x1, x2, . . . , xN ) =

N∑
n=1

xnEn (1.2)

=

N∑
n=1

xnPnψ(x1, n− 1)ψ(x2, n− 2) · · ·ψ(xn, 0).

(1.3)

Secondly, the thesis investigates an exponential bounce-back model ψ with
the following properties

• ψ(x, k) is decreasing in x, and

• ψ(x, k) is increasing in k.

Based on these properties the chosen model is given by

ψ(x, k) = e−αkx (1.4)

where {αk}∞k=0 is a decreasing sequence of real numbers, and α0 <
1
B , where

B ∈ N is the portfolio size. In general, αk is a parameter that describes the
market reaction to a stock sale including psychology, micro and macro trends
and politics that govern the financial markets. The parameter αk > 0 describes
to what extent the market reacts negatively to a given sales volume, where a
larger αk entails a bigger market impact. The parameter α0 must be less than
1
B because x · 1

B , where x is the block size, is the largest possible influence that
block size can have on the market in terms of weighted contribution.

On this note, a negative αk describes how the market reacts positively to a
stock sale, where a larger negative αk entails a bigger positive market impact.
This is contrary to empirical data on dumping stock, and in general the αk

parameter is bounded below by 0. Also, a small α̂k means that the market will
recover quickly. Consequently, the portfolio size B must be defined on N as
described above.

Furthermore, in the case of a sale without long term effects αk = 0 for k > 0.

Subsequently, the expected prices are given by

E1 = P1e
−α0x1 ,

E2 = P2e
−(α1x1+α0x2),

...

Em = Pme
−(αm−1x1+αm−2x2+···+α1xm−1+α0xm),

...

EN = PNe
−(αN−1x1+αN−2x2+···+α1xN−1+α0xN ).
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1.2. An overview of the problem

Finally, the portfolio consists of B shares in total, and we want to liquidate
the stock completely xn shares at a time over N periods. Consequently, the
portfolio can be divided into blocks of undetermined sizes xn such that

x1 + x2 + · · ·+ xN = B. (1.5)

As we do not know the size of a given market moving portfolio in terms of
numbers of stocks we choose to look at a normalisation of the model.

1.2.1 Normalisation of variables

To normalise a variable means to adjust the variable to a given scale. It seems
reasonable to normalise the different variables, as the model can be applied to
a wide range of market situations, rather than a specific case. In this case we
shall normalise to 1 in order to evaluate the percentage size of the portfolio
that is sold for each xn.

In order to normalise we introduce a new variable yn = xn

B , where each yn
is a percentage of the total portfolio. Then x1 + x2 + · · ·+ xN = B turns into

y1 + y2 + · · ·+ yN = 1, (1.6)

as we divide across by B, and the expression for the sales value turns into

S(y1, . . . , yN ) =

N∑
n=1

BynPnψ(By1, n− 1)ψ(By2, n− 2) · · ·ψ(Byn, 0).

As ψ(x, k) = e−αkx we get ψ(y, k) = e−Bαky such that

S(y1, . . . , yN ) =

N∑
n=1

ynBPne
−Bαn−1y1−Bαn−2y2−···−Bα0yn .

If we now introduce P̂n = BPn and α̂k = Bαk ≤ 1 we eliminate the actual
portfolio size such that

S(y1, . . . , yN ) =

N∑
n=1

ynP̂ne
−α̂n−1y1−α̂n−2y2−···−α̂0yn (1.7)

=

N∑
n=1

ynÊn (1.8)

where

Ên = P̂ne
−α̂n−1y1−α̂n−2y2−···−α̂0yn (1.9)

is the normalised expected price at tn.

Remark 1.2.1. A priori, the original purchase price of the portfolio is unknown.
The investor’s goal is to liquidate the portfolio and reduce the liquidity cost
based on today’s market price. For simplicity, and without loss of generality,
we will assume that today’s purchasing price P1 is 1.

4



1.2. An overview of the problem

The task is now to optimise equation (1.7) contingent to equation (1.6),
where xn = Byn will give the actual amount of shares that the investor has to
buy, borrow or sell given a certain portfolio size B.

Furthermore, we have to define the domain of the new parameters P̂n and
α̂n. Firstly we sat P̂1 = 1 as it is the basis for the price development. Now, the
purchase price P̂n > 0, n > 1 may either increase, decrease or remain unchanged.
If P̂n = 0 then the buyer gets the company for free. This is a highly unlikely
scenario, as even a bankruptcy estate usually has fixed or current assets they
can sell in order to raise capital to pay off debt. Also, for example, Norwegian
legislation governs that assets may not be sold for unrealistic prices as it is
seen as an act of avoidance according to Norwegian tax law, [Fin99, Chapter 13
§13-2(3)].

Also, the parameter α̂n, as described previously with αk, describes the stock
market with all its elements such as macro and micro economic factors, the
market psychology, political influence and the market gossip, as well as the
portfolio size. This of course makes the αn parameter extremely powerful but
also difficult to control. As this thesis does not intend to explain the holistic
mystery of the stock markets, we only use the parameter in order to model the
factors of the stock market. This is a flaw that makes the model a theoretical
exercise, rather than a model for investment decisions in real life.

Ideally, α̂n should be defined by multiple parameters in order to look at
different aspects of the stock market, such as the volume of shares that are
dumped into the market in relation to the number of shares traded. Since this
is not the case, we view different sales volumes as a percentage of the number
of shares that the investor holds, and the sales values as a percentage of the
market price of the investors total portfolio.

On this note, this thesis will try to optimise the sales function (1.7) under the
constraint of equation (1.6). This optimisation problem will not be analytically
solvable in general, however we are able to investigate special cases for ψ(y, k)
and N , subsequently we will examine the problem for small values of N such
as N = 1, N = 2 and N = 3, with support from numerical methods.

1.2.2 The validity of the model

The model is an expression for the sales value S(y1, . . . , yN ), which entails that
S ≥ 0 and increases as additional shares yn are sold. Hence, S must be a strictly
increasing function. Moreover, a sales value S < 0 indicates that the investor
must pay money in order to sell shares. This does not, of course, make any sense
as the lower bound of a sale would either be scrap value or a non-tradable share.
The domain of S is subsequently the areas that adhere to these constraints.

There are also validity restrictions on α̂n as it defines market sentiments and
its influence on our model. We mentioned earlier that a negative α̂n influences
the market positively. A negative α̂n thus pushes prices up as shares are dumped
into the market, which contradicts the expected behaviour. Hence, a deeper
inquiry into the influence of α̂n seems to be in order. We use N = 1, the case
where an investor only has one step to liquidate the portfolio, to describe and
illustrate why α̂n has restrictions on R.
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1.2. An overview of the problem

Figure 1.1: All cases in N = 1. The upper left graph displays S(y) with α̂0 > 0.
The upper right graph displays S(y) with α̂0 = 0. The lower graph displays
S(y) with α̂0 < 0.

Firstly, we analyse α̂0 > 0 which shows that we have a maximum for y1 > 0,
as displayed in Figure 1.1, but also that there is an upper bound on α̂n. This
maximum illustrates what portion of the portfolio should be sold in order to
optimise the sales value S. The optimum is given by S′(y1) = 0, which yields
y1 = 1/α0. If the investor chooses to sell more than 1/α0, then each additional
share sold will generate negative value. This entails that the share is sold for
a negative price, hence the buyer gets the share and some additional money.
This will not happen in the stock market as the worst case is defined by selling
a share for scrap value, or get stuck with a non-tradable share. An upper
boundary on α̂0 seems thus to be reasonable. Since, α̂0 < 1/B and B = 1 in the
normalised case we get an upper boundary of α̂0 < 1.

Secondly, the case α̂0 = 0 indicates that the more you sell the more you
earn, as seen in Figure 1.1. This situation includes the possibility for short
selling. However, there is no boundary for how big the short position can be.
The theoretical upper boundary in this case is the amount of shares issued by
the company less the amount of shares the investor already holds.

Finally, we discuss the case of α̂0 < 0, also displayed in Figure 1.1. Here
there is a minimum at y1 = 1/α̂0. There are issues with this situation, as the
model yields negative sale value. This means that for every share sold we have
to include capital in order to liquidate the portfolio, as the sales value only
turns negative as long as negative numbers are added. This situation makes
no sense in the real world stock market, and are thus outside the scope of the
model. Subsequently, the parameter α̂0 should be bound below by zero.
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1.3. Thesis structure

The analysis of the model will consequently be viewed on the interval
0 < α̂n < 1 for n = 1, 2, . . . N .

1.3 Thesis structure

This thesis has seven chapters including this introduction. Chapter 2 gives a
short run-through of the mathematics and finance theory that forms the basis
for the thesis. It is presented in a comprised fashion just to give a theoretical
backdrop. Chapter 3 presents a short introduction to the different financial
strategies that surfaces throughout the body of this text. Following this are the
three chapters on how our model behaves in N = 1, N = 2 and N = 3. The
case N = 1 gives the investor just one step to liquidate the portfolio, namely
to sell all shares in one go. We have thus chosen to look at the model without
constraints in order to acquaint ourselves with its possibilities. The case N = 2
adds another step and the investor can then utilise several investment strategies
in order to liquidate the portfolio, hereunder pumping, dumping and short
selling, as well as buy, hold and sell strategies. The case N = 3 adds yet another
step, which complexifies the liquidation by offering up 27 different strategy
spaces. In Chapters 4 to 6 we look to optimise our sales value model S, where
the case N = 3 also includes a naive analysis in order to make a comparative
analysis with the numerical solutions of the model. This comparative analysis
is made in order to enlighten how difficult it is to say something reasonable
about the stock markets based on lay reasoning. Penultimately, we sum up our
findings and some reflections in the closing remarks in Chapter 7. At the end
of the thesis in Appendix A we have gathered the six different scripts used to
complete the numerical analysis.

All in all, I hope the forthcoming text will have some interest, and not bore
you to an early intellectual grave with platitudes. I wish you a fun journey!

7



CHAPTER 2

Scientific background and
prerequisites

This chapter aims to give a scientific context and set the theoretical background
for the finance and mathematics for this thesis. It is structured as a short
run through of known theory that is required to understand the content and
analysis of the thesis’ aim:

Optimal liquidation of market moving portfolios

We begin with the mathematical theory and continue on to the finance theory
connected to this thesis.

2.1 Scientific context

This scientific context will give a short overview of this theoretical space. It is,
however, important to emphasise that this thesis will focus on an analysis based
on undisturbed markets as well as a simplified sales value model that includes
both risk measures and overall market influence into one parameter α̂n.

The current research of risk measures aims to combine the following theories
into a dynamical framework for finding optimal strategies for liquidation of
portfolios under different kinds of time restraints, and to use this theory to
shed new light on risk measures. The first step is to combine market supply
curves and resilience functions into a common framework that is simple enough
to analyse.

2.1.1 The insufficient theoretical beginning

Consider a market with N + 1 assets where asset number 0 is risk-less. As
usual, a portfolio is a vector p = (p0, p1, . . . , pN ) with the interpretation that
pn is the number of stocks in asset n. As short-selling is allowed, the values of
some of the pn’s may be negative. If the best bid price for option n is m+

n and
the best asking price is m−

n , the value of the portfolio is usually computed as

V (p) = p0 +
∑
n∈L

m+
n pn +

∑
n∈S

m−
n pn (2.1)
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2.1. Scientific context

where L is the set of assets where we have a long position and S is the set of
assets where we have a short position. As this valuation method may not be
optimal in regards to liquidating portfolios, we choose to investigate a simple
discrete time model with a bounce-back rate in order to assess the liquidity
cost.

2.1.2 Risk measures

Portfolios carry risks, and the same portfolio may carry different risks to different
traders according to the overall situation they find themselves in. Risk measures
form a general framework for assessing the risk of portfolios. We follow the
definitions in Föllmer and Schied [FS04] where Ω is a probability space and
a financial position is a random variable X : Ω → R. We let X be a set of
financial positions, and assume that X is a linear space of bounded functions
including the constants. It is often helpful to think of the financial positions X
as the (random) values of portfolios under different scenarios.

Definition 2.1.1. A mapping ρ : X → R is a risk measure if for all X,Y ∈ X :

(i) (Monotonicity) If X ≤ Y , then ρ(X) ≥ ρ(Y ).

(ii) (Cash Invariance) If m ∈ R, then ρ(X +m) = ρ(X)−m.

We say that ρ is positive homogeneous if

(iii) for all λ ≥ 0 and X ∈ X , we have ρ(λX) = λρ(X),

and that it is subadditive if

(iv) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y ∈ X ,

A risk measure satisfying (i)–(iv) is called a coherent risk measure.

Subadditivity is often criticised for being too strict, and it is therefore
common to replace (iii) and (iv) by a fifth axiom:

Definition 2.1.2. We say that a risk measure ρ is convex if it satisfies (i),
(ii) and

(v) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all λ ∈ [0, 1] and X,Y ∈ X .

In the usual arguments against coherent risk measures, it is usually assumed
that the value of a portfolio is given by formula (2.1), but Acerbi and Scandolo
[AS08] have argued that in a risk setting, this is not the right value to use,
and that instead of using the current market value in (2.1), one should use the
‘liquidation value’ that is describe in the next section.
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2.1. Scientific context

2.1.3 Liquidation value

In a pressed situation where one needs to liquidate a market moving portfolio
immediately, one can not expect to get the market value for the entire portfolio
as there usually is a limited supply of traders who are willing to pay the full
market price following the theory of supply and demand. In such situations, it
is more natural to base the calculation of the portfolio value on market supply
curves for the stocks. A market supply curve for stock number n is a function
mn : R \ {0} → R such that:

(i) mn is non-increasing

(ii) mn is right-continuous on (0,∞) and left-continuous on (−∞, 0)

The idea is that m(0+) = limx→0+ m(x) is the current bid price for the stock
(i.e. what we referred to as m+

n above), and that m(x), x > 0, is the bid price
after a quantity x of stocks have already been sold. Hence,

∫ y

0
mn(x) dx is the

profit from selling a total quantity y of stock number n. The interpretation
for x < 0 is similar: m(0−) = limx→0− m(x) is the current asking price for the
stock (i.e. what we referred to as m−

n above), and m(x) is the asking price
after a quantity x has already been traded. Hence, the cost of buying a total
of y stocks is

∫ 0

−y
mn(x) dx. The liquidation value of the portfolio can now be

defined as

L(p) = p0 +

N∑
n=1

∫ pn

0

mn(x) dx. (2.2)

Acerbi and Scandalo [AS08] argue quite convincingly that if the liquidation
value is used to assess the worth of a portfolio, then the arguments against
coherent risk measures lose much of their force (see, however, Lee et al. [LOC15]
and Weber et al. [Web+13] for other perspectives).

2.1.4 Resilience

In many situations where a portfolio needs to be liquidated in order to meet a
demand, the full portfolio need not be liquidated immediately – one has some
time at one’s disposal. This means that one can exploit the market’s resilience,
i.e. the tendency to revert to ‘normal’ prices after a drop in the market. To
model the resilience, authors like Alfonsi et al and Schied and Slynko have
introduced resilience functions as a counterpart to market supply curves. A
resilience function is a non-increasing function G : [0,∞) → [0,∞) with the
following interpretation: If trades ξt0 , . . . , ξtn are made at times t0, . . . , tn, the
asset price at time t is given by

St = S0
t =

∑
tn<t

ξtnG(t− tn),

where S0
t is the undisturbed market price, i.e. the market price we have if no

trades are taking place.

The model in this thesis does not allow for the utilisation of resilience as we
are looking at what happens when an investor has to liquidate a portfolio over
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a time span that does not allow for the market to return to its original state.
Even though we are investigating an up to three-step liquidation scenario, these
liquidation events are too close in time for the market to recover. This thesis
tries to describe how to liquidate a portfolio as optimally as possible when time
is not on the investor side and can utilise resilience theory.

2.2 Mathematical theory

2.2.1 Optimisation in N = 2

This thesis enjoys the study of Fixed Point theory in N = 2 in order to optimise
the sales function S numerically, since we are unable to find a general expression
for the derivatives of S(y1, . . . , yN ). We also include Gradient Ascent, however
this is covered in Section 2.2.2. Also, in the work with optimising N = 2 we
make use of The Lagrange Multiplier method. Hence, this section explains the
theory connected to these two mathematical concepts.

A fixed point of a function is a value that is unchanged by repeated
application of the function. Banach’s fixed point theorem assures that there is a
unique fixed point for contraction mappings. Let’s start off by defining a fixed
point:

Definition 2.2.1 [Lin17, p. 61], Fixed point. For a function f : X → X, a
fixed point x∗ ∈ X is a point where f(x∗) = x∗.

In order to use Banach’s fixed point theorem we need to understand the
definitions of Metric space, Cauchy sequence, Complete metric space and
Contraction mapping. The following contains these definitions:

Definition 2.2.2 [Lin17, Definition 3.1.1.], Metric space. A metric space
(X, d) consists of a nonempty set X and a function d : X ×X → [0,∞) such
that:

(Positivity) For all x, y ∈ X, we have d(x, y) ≥ 0 with equality if and only if
x = y.

(Symmetry) For all x, y ∈ X, we have d(x, y) = d(y, x).

(Triangle Inequality) For all x, y, z ∈ X, we have d(x, y) ≤ d(x, z) + d(z, y).

Definition 2.2.3 [Lin17, Definition 2.2.4.], Cauchy sequence. A sequence
{xn} in Rm is called a Cauchy sequence if for every ϵ > 0, there is an N ∈ N
such that d(xn, xk) < ϵ when n, k ≥ N .

Definition 2.2.4 [Lin17, Definition 3.4.3.], Complete metric space. A
metric space is called complete if all Cauchy sequences converge.

Definition 2.2.5 [Lin17, p. 61], Contraction mapping. Let (X, d) be
a metric space and T : X → X a mapping. We say that f is a contraction
mapping if there exists a positive number s < 1 with

d(f(x), f(y)) ≤ s d(x, y) for all x, y ∈ X.

We call s a contraction factor for f .
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2.2. Mathematical theory

We are now ready to introduce Banach’s fixed point theorem:

Theorem 2.2.6 [Lin17, Theorem 3.4.5.], Banach’s fixed point theorem.
Assume that (X, d) is a complete metric space and that f : X → X is a
contraction. Then f has a unique fixed point a, and no matter which starting
point x0 ∈ X we choose, the sequence

x0, x1 = f(x0), x2 = f◦2(x0), . . . , xn = f◦n(x0), . . . (2.3)

converges to a.

We want to utilise the Fixed Point theory based on the Lagrange Multiplier
method, which is a way to optimise a function subject to constraints. Our
constraints are given by the limitations on block size yn, which must sum to 1.

Theorem 2.2.7 [Ada03, Theorem 13.3.4], Lagrange Multiplier Method.
Suppose that f and g have continuous first partial derivatives near the point
P0 = (x0, y0) on the curve C with equation g(x, y) = 0. Suppose also that, when
restricted to points on C, the function f(x, y) has a local maximum or minimum
value at P0. Finally, suppose that

2.2.7.1. P0 is not an endpoint of C,

2.2.7.2. ∇g(P0) ̸= 0.

Then there exists a number λ0 such that (x0, y0, λ0) is a critical point of the
Lagrangian function

L(x, y, λ) = f(x, y) + λg(x, y).

The methods of Fixed Point theory and Lagrange Multiplier is used to
find the optimum by iterating towards the maximum a of S under different
sentiments determined by α̂n. Hence, we find the size of the block of shares
that we need to sell in each step in order to maximise the sales value S, and
reduce the liquidity cost of selling market moving portfolios. Finding the fixed
point is done by numerical method and the corresponding Python scripts that
utilises these theories can be found in Appendices A.2.1 and A.2.2. The crux
of the method is that the maximum of S is the same as the fixed point of a
function dL, which we describe below.

We use the constraint g(y1, y2) = 1−y1−y2 to reduce the function S(y1, y2)
into the concave, one-variable function S(y1). Hence, the algorithm finds the
maximum of S(y1) by using the property of the fixed point contraction as it
iterates to the maximum.

Starting off, we use the function S and the partial derivatives of the
Lagrangian function L(y1, y2, λ) = S(y1, y2) + λg(y1, y2) to find the maximum
of S. In order to reduce the Lagrangian we substitute the partial derivatives of
L(y1, y2, λ) and the constraint g(y1, y2) into the partial derivative ∂L

∂y1
, yielding

a one-variable function dL.

In order to find the maximum of the concave function S we used the fact
that dL tends to 0 as it moves towards the maximum, and this iteration is the
use of the Fixed Point theorem in the algorithm. Consequently, the fixed point
iteration of the for-loop terminates at the maximum of S.
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2.2.2 Optimisation in N = 3

As we move on to N = 3 the Fixed Point theory is replaced by the method of
Gradient Ascent in order to optimise the sales function S. It is worth mentioning
that an advantage of Gradient Ascent to Fixed Point is that it has no demand
on convexity of the objective function.

In N = 3 we choose to change our optimisation method as the Fixed Point
method proves to be unstable as it struggles to find the correct optimum and
gives deviant results. Hence, we made a change to the Gradient Ascent method,
which was easily implemented. The basic idea of Gradient Ascent is fairly
simple. The idea is to take repeated steps of sufficient size in the direction of the
gradient of a function f at a given point, until f(an) ≰ f(an+1). Consequently,
moving in the direction of the gradient leads to a local maximum of function f
in this case. Before we get to the method of Gradient Ascent we need to define
the gradient and give it some context through a proposition.

Furthermore, it is worth mentioning that most literature refers to Gradient
Descent, a method for finding local minima. However, Gradient Ascent is just
the reverse, so making the adjustment to Gradient Ascent entails moving in
the opposite direction.

Definition 2.2.8 [LH11, Definition 2.4.3], Gradient. Assume that the
partial derivatives of f exist in a point a ∈ Rn. Then

∇f(a) =
(
∂f

∂x1
(a),

∂f

∂x2
(a), . . . ,

∂f

∂xn
(a)

)
is the gradient of f at a.

Proposition 2.2.9 [LH11, Proposition 2.4.7]. Assume that f is differentiable
at a. Then the gradient ∇f(a) points in the direction where f increases the
fastest in a, and the slope of f in that direction is |∇f(a)|.

We now have the necessary background to look into the Gradient Ascent
Method.

Theorem 2.2.10 [Wik22], Gradient Ascent. If a multi-variable function
f(x) is defined and differentiable in a neighbourhood around point a, then f(x)
increases fastest in the direction of the gradient ∇f(a) from a at a. It follows
that, if

an+1 = an + γ∇f(an)
for a small enough step size γ ∈ R+, then f(an) ≤ f(an+1).

The method of Gradient Ascent depends on the step γ not being too large,
as it may send the iterations in the wrong direction. Furthermore, the step size
may vary from case to case as we perform our numerical analysis dependent on
the curvature of the surface.

In the Python script in Appendix A.3 for N = 3 we use the Gradient
Ascent Method on the function S(y1, y2). As it only has two variables we have
reduced it by the help of our constraint y1 + y2 + y3 = 1, and substituted
this into y3 through out S(y1, y2, y3). Subsequently, we use a pre-made partial
derivative algorithm to find the partial derivatives of S(y1, y2).
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In addition, we use the Intermediate Value Theorem to determine the
existence of boundary points between different optimal investment solutions in
N = 3.

Theorem 2.2.11 [Ada03, Theorem 1.4.9], Intermediate Value Theorem.
If f(x) is continuous on the interval [a, b] and if s is a number between f(a)
and f(b), then there exists a number c on [a, b] such that f(c) = s.

2.3 Financial theory

2.3.1 Liquidity

Liquidity refers to the ease with which an asset or security can be converted
into ready cash without affecting its market price [Jam20]. An investor wants
to trade securities in the stock market at an acceptable price and at the desired
time. Hence, a transaction of ownership in a market is optimised when no
friction occurs and both price and time are as intended. This circumstance is
called liquidity. A liquid market is thus a market where all players are able to
buy or sell an unlimited amount of securities with immediacy at the price close
to the last traded price.

A stock market consists of two types or prices. The bid price is defined by a
market participant’s willingness to pay for a number of shares. The ask price is
the price at which a market participant is willing to sell a number of stocks. For
every bid price, there is a specified bid volume, which is the number of shares
that can be bought at that bid price. Likewise, the ask volume is the number of
shares that can be sold at that asking price. The difference between the highest
ask price and the lowest bid price is defined as the spread. When the spread is
0, ask equals bid, and a transaction will occur.

An illiquid market is one where market participants are able to trade,
but only at prices different from the last traded price. In an illiquid market,
transactions cause shifting in the price from the observed price. Markete moving
transactions may cause long time lags as the market reacts and consumes the
portfolio blockwise. A perfectly liquid market is defined by no price movement
irrespective of transaction time, transaction quantity and transaction type. The
perfectly liquid market is unobtainable. Hence, market friction comes at a price.
This liquidity friction is defined as the liquidity cost.

The degree of liquidity in the market is the primary parameter to the
liquidity cost.

Definition 2.3.1. The estimated market value M̂t of an asset at time t, is
defined by the estimated market price P̂t per share multiplied by the number
of shares Bt in the asset:

M̂t := P̂t ·Bt.

Definition 2.3.2. The sales value St of an asset at time t, is defined by the
actual market price Pt per share multiplied by the number of shares Bt in the
asset:

St := Pt ·Bt.
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Definition 2.3.3. The liquidity cost Ct at time t, is defined as the difference
between the sales value St and the estimated market value M̂t:

Ct := St − M̂t = (P̂t − Pt)Bt.

Definition 2.3.4. The liquidity cost ratio LCRt at time t, is defined as the
ratio between the liquidity cost Ct(y) and the estimated market value M̂t(y):

LCRt =
Ct(y)

M̂t(Y )
.

This theory is utilised when we do a comparative analysis of the situation
where the investor must liquidate the entire portfolio versus the situation where
the portfolio need not be liquidated completely or we can borrow shares.
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CHAPTER 3

Financial strategy

This chapter addresses sales and purchase events – transactions – in the stock
market. A transaction is an execution of an underlying trading strategy, of which
the financial markets have a myriad. In the following we will look at a small
selection of these strategies, including investments in the stock market through
buying stock with equity, or selling stock the investor already owns. These
two situations will be defined as trades. Also, we will address the strategies of
pumping and dumping, where the investor either buys more stock or sells stock
to push the price up or down in order to capitalise on the market movement.
In addition, we will describe the financial strategy of short selling, which is the
act of selling borrowed stock in order to repurchase the position in the future
at a lower price, for then to return the stock to its original owner, and discuss
how dumping is a special case of short selling.

Recall that the nth block of shares sold is yn of the entire portfolio. So
in general, a sale in this model is defined on the interval 0 ≤ yn ≤ 1, hence a
positive yn defines a sell request. A sale of yn = 1 in the normalised model
describes the complete sale of the portfolio. A classical purchase is defined on
the interval yn < 0, as negative yn defines a buy request. A sale of yn = −1 is
the case where the investor doubles the size of the initial portfolio. If y1 > 1
the optimal trading strategy is a short position, as the investor needs to sell
more stock then the initial portfolio size.

Furthermore, an investor may utilise pumping or dumping strategies.
These strategies influence the stock price by affecting the supply and demand
mechanisms with trades and/or true and available market information. It
is not particularly popular in all milieus, nonetheless it serves as a trading
strategy. Hence, we shall look into pumping and dumping by analysing a data
set generated by our model. We will address these strategies both analytically
and numerically.

Let’s take a look at the pumping strategy, which may be enforced prior to
when an investor opts to sell a block of shares, as the goal is to achieve the
highest possible sales price by pumping the price upwards.

Definition 3.0.1 Pumping [Lin20]. To buy a stock at time t1 with the
intent to push up the price for then to sell the same stock at t2 within a short
time interval.

The opposite strategy of pumping is dumping, which is utilised when the
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investor sells a larger portion of the stock than they initially want in order to
pull down the price, for then to buy back the stock at a lower price hoping
it will surge in the future to make a profit. This strategy is, amongst other,
favourable when the investor is involved in a short position as described in
Definition 3.0.4.

Definition 3.0.2 Dumping [Lin20]. To sell a larger block of shares at
t1 than initially wanted with the intent to pull down the price, for then to
repurchase the same stock at t2.

Before we continue it seems important to mention The Pump and Dump
Investment Scheme, which is illegal. It entails pumping and dumping in
situations where an investor attempts to boost the stock price by planting
false, misleading or greatly exaggerated information in order to sell the stock at
an inflated price and increase the revenue. It is illegal because the stock price is
based on fraudulent information, subsequently yielding a stock price that lacks
basis in fundamentals or expected growth.

Definition 3.0.3 The Pump and Dump Investment Scheme [Dhi19].
The act of intentionally increasing the price of a stock based on fraudulent
information at one stage in order to sell the stock at a later stage with increased
revenue.

Finally, there is the trading strategy of short selling. This is a well established
manoeuvre in the stock markets. The strategy is relevant for the analysis of
our model, and is defined as follows:

Definition 3.0.4 Short selling a stock [Che19]. To borrow shares in order
to sell in the market at time t1 with the expectations of a market decline, for
then to buy back the shares at a lower price at t2 and return the borrowed
shares.

It seems important to mention that short selling and dumping are
overlapping, and how is dependent on whether the investor must liquidate
the portfolio or not. In our case, the investor must liquidate the entire portfolio,
and thus borrow shares in order to complete a dumping strategy. Consequently,
in this thesis we may view the dumping strategy as a special case of the short
selling strategy.

With this backdrop, the thesis analyse extrema of the sales revenue
function S, and determine for which strategy S has a maximum, and
consequently reduce the liquidity cost as much as possible. The following
will then determine which strategy to choose:

• A pumping strategy can be optimal if there is a maximum in the buy
request domain.

• A dumping strategy can be optimal if there is a maximum in the sell
request domain.

• A short selling strategy can be optimal if there is a maximum in the sell
request domain.
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These domains depend on which space we operate, and a further analysis will be
described in Chapters 4 to 6. In the following chapters, we wish to maximise S
and minimise the liquidity cost C given the sales value S(y1, . . . , yN ) of selling
N blocks of shares.
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CHAPTER 4

A dissection of model S with
help of case N = 1

The case N = 1 may at first glance seem rather uninteresting, as the only
investment strategy available is the sell strategy. This follows by the constraint
of complete liquidation of the portfolio. However, if we look closer we see that
the case of N = 1 may reveal some interesting perspectives of the relation
between the bounce-back function ψ = e−α̂0y1 and the market sentiment α̂0.
Hence, in this section we analyse how the α̂0-value impacts the sales value
S(y1) = y1P̂1e

−α̂0y1 and the bounce-back function ψ’s slippage. As we only
have one time-step we will never see how the function recuperates. It is however
interesting to see how the slippage behaves. Also, a look at N = 1 yields
some interesting insights into the model S itself, if we ignore the constraint
of complete liquidation. We start off by investigating how the α̂0-parameter
influences the market and subsequently the sales value S analytically, and then
dissect numerically.

4.1 Market states and the analytical approach

The market for N = 1 is a snapshot in time because we only evaluate what
happens here and now. Subsequently, the value of the parameter α̂0 is the only
market information available to us. As described earlier, if α̂0 > 0 the market
will react negatively to a sell event, and the larger the value of α̂0 the bigger
the negative impact will be.

Remark 4.1.1. Generally, if we had the opportunity to see a period in the market
and not only a snapshot in time, a sell event may influence the market quite
differently in a Bear market than if it is a Bull market. Bull markets in general
handle negative news less dramatically than Bear markets. In other words, in a
Bull market, the effect of α̂0 is smaller than in a Bear market. Even though
we are looking at 0 < α̂0 < 1 it is interesting to see that if α̂0 < 0 the market
will react positively to a sell event, and the larger the absolute value of α̂0 is
the more positively the market will react. In terms of a Bear market, again
such an event can influence the market differently than if it is a Bull market.
In this case, Bear markets in general handle positive news less optimistically
than Bull markets. Hence, in a Bear market, the effect of the absolute value of
α̂0 is smaller than in a Bull market.
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4.1. Market states and the analytical approach

As initially mentioned the investor has to sell the entire portfolio in the case
N = 1, due to the liquidation constraint in this one-step scenario. Let’s see
how the model behaves if we neglect this constraint.

In order to determine the optimal sales value S∗ we must localise the
maximum. If the maximum is located at (−∞, 0) we are in the buy request
domain for N = 1, where y1 = −1 is a doubling of the portfolio. If the maximum
is located at (0,∞) we are in the sell request domain, where y1 = 1 is a complete
liquidation of the portfolio. Hence, y1 = 0 is the situation where the investor
does nothing. For N = 1 our model S(y1) with P̂1 = 1 and derivative S′(y1) is
given by

S(y1) = y1e
−α̂0y1 ,

S′(y1) = e−α̂0y1 − α̂0y1e
−α̂0y1

= (1− α̂0y1)e
−α̂0y1 ,

with constraint 0 < α̂0 < 1.

We find the optimum by solving S′(y1) = 0:

(1− α̂0y1)e
−α̂0y1 = 0

1− α̂0y1 = 0

y1 =
1

α̂0
.

Hence, the maximum is given by y∗ = 1
α̂0

for N = 1. As 0 < α̂0 < 1 we discover
that

1

α̂0
> 1.

This entails that the optimum is outside the possible sales volume under our
original constraints. Also, in this one-step situation we are unable to short sell
as there is no opportunity to buy back the shares. Consequently, the obtainable
sales value is

S(1) =
1

eα̂0
.

Generally, the optimal sales value looks like this:

S(y∗) = y∗e−α̂0y
∗

=
1

α̂0
e−α̂0· 1

α̂0

=
1

α̂0e
.

With α̂0 > 0, the optimal sales value S∗ = 1/α̂0e increases as α̂0 tends towards 0.
However, since we have established that y∗ = 1/α̂0 > 1 the optimal sales value
S(y∗) tends to the obtainable sales value S(1) as α̂0 → 1−. So, as α̂0 tends to
1 S(y∗) tends to 1/e. Furthermore, when α̂0 → 0 then S(y∗) → ∞ which entails
that the sales value can grow limitlessly outside the scope of any given market.

Let’s continue our investigation and evaluate the sales value S for different
block sizes y1, against the estimated market value M̂ of that block size, as
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4.1. Market states and the analytical approach

described in Definition 2.3.1. First we have

M̂(y1) = y1P̂1 = y1

with P̂1 = 1. Then we look at the liquidity cost ratio LCR, in order to
understand the market reaction to a flooding of too many shares:

LCR(y1) =
C(y1)

M̂(y1)
(4.1)

where C(y1) is the actual liquidity cost given by

C(y1) = M̂(y1)− S(y1). (4.2)

Substituting Equation (4.2) into Equation (4.1) we get

LCR(y1) =
M̂(y1)− S(y1)

M̂(y1)

=
y1 − y1e

−α̂0y1

y1

= 1− e−α̂0y1 .

Thus, the liquidity cost ratio LCR, given α̂0 constant, is dependent on y1. This
is as expected as the block size released into the market is market moving.
Subsequently, it is interesting to evaluate the liquidity cost ratio LCR in the
case of the optimal investment strategy y∗. On this note, we observe that it is
constant for all values of α̂0:

LCR(y∗) = 1− e−α̂0· 1
α̂0 = 1− 1

e
≈ 63.2%.

This is also illustrated with the three black dots coinciding on a line in
Figure 4.1, which is based on the script in Appendix A.1. Furthermore, the
liquidity cost C is used as a measure of risk, the bigger the potential liquidity
cost the bigger the risk. Theoretically, the same figure shows that the most
favourable optimisation in terms of risk is α̂0 = 0, as it is the situation where
the absolute distance between the estimated market value M̂ and sales value S
is 0. This is substantiated by

lim
α̂0→0+

S(y1) = M̂(y1), ∀y1.

Thus, for 0 < α̂0 < 1 the monetary loss for liquidating the portfolio y1 = 1
is the smallest as α̂0 tends to 0. However, it is worth mentioning that all α̂0

on the interval (0, 1) will for some liquidation volume y1 reach the optimal
liquidity cost ratio LCR = 63.2%, but the volume may be bigger than y1 = 1.
It’s only in the constraint situation of N = 1 there is only one possible volume
to liquidate, namely y1 = 1, which tells the investor to hope for a market with
an α̂0 as close to 0 as possible under the constraint. Even though y1 = 1 is not
the maximum in this instance, the difference between S(1) and the estimated
marked value (̂M)(1) is as small as possible.
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4.2. The numerical analysis

Figure 4.1: The upper graph displays the estimated market value M̂(y1), which
is the estimated share price multiplied by the number of shares. It is also the
case of α̂0 = 0. The lower graphs show the sales values S for different values of
α̂0, ranging from α̂0 = 0.99 to α̂0 = 0.10. The dotted vertical lines mark the
extremum for different values of α̂0. The black line illustrates that the liquidity
cost ratio LCR is constant for optimal y∗.

As touched upon, it is important to mention that the case N = 1 has neither
a pumping, dumping or short selling strategy available to the investor, as those
investment strategies demand a two-step scenario. The graphs in Figure 4.1 are
merely there to illustrate the point of constant liquidity cost ratio LCR for y∗.

Remark 4.1.2. This thesis does not investigate the element of timing tn, other
than refer to it to explicitly describe that events are happening at different
points in time. Timing is, however, essential when operating in the actual stock
market.

4.2 The numerical analysis

The model for the sales value S(y1) = y1e
−α̂0y1 describes the situation where

an investor sells the entire portfolio in one block. This entails that the entire
portfolio is released into the market at the same time. The blue curves in
Figures 4.2 to 4.4 based on the script in Appendix A.1 show how the classic
supply and demand theory comes into play. The investor must accept a step-wise
price reduction if supply is larger than demand, and a step-wise price increase if
supply is less than demand. As one would expect we see that supply outperforms
demand as we flood the market with shares. The best bid subsequently reacts
as subblocks are picked up in the market, and sold at whatever market price
is offered until the portfolio is consumed, see Section 2.3.1. The function
ψ = e−α̂0y1 in the model aims to incorporate this event as the bounce-back rate,
as a slippage estimate since we cannot see the recovery in N = 1.
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4.2. The numerical analysis

Now, let’s take a look at our model displayed in Figures 4.2 to 4.4 for different
values of α̂0. Here, the red curve is the estimated market value M̂(y1) = y1,
where y1 is the number of shares. The blue curves in each figure are the
sales values S(y1) for three different values of α̂0 (α̂0 = 0.1, α̂0 = 0.5 and the
boundary case α̂0 = 1) which determines different market states. A market with
α̂0 = 0.1 has a small liquidity cost C (Definition 2.3.3) as shown in Figure 4.2
by the small divergence between the red and the blue graphs. To the contrary,
a market with α̂0 = 1 has a much bigger liquidity cost C as seen in Figure 4.4
by the larger divergence between the red and the blue curve. Hence, the closer
to 1 α̂0 moves the bigger the liquidity cost C, as described in Section 4.1. In the
latter case the S(y1) curve diverges the most from the estimated value M̂(y1)
negatively, and subsequently the liquidity cost C is highest for the model, with
an approximate loss of 60% of the portfolio value. Actually, when α̂0 = 1 the
curve has its maximum at y1 = 1 so we know from Section 4.1 that this liquidity
cost equals the liquidity cost ratio 1− 1

e ≈ 63.2%.

Furthermore, the model suggests in this scenario that selling one more share
after the maximum has zero or negative contribution to the sales value S(y1).
This degrades the stock price to zero or negative value, which is highly unlikely.
Consequently, the model is constrained by α̂0 < 1.

In general, as α̂0 → 0+ the sales value S(y1) will converge towards the
estimated value M̂(y1) = y1, and S(y1) = M̂(y1) for α̂0 = 0:

lim
α̂0→0+

S(y1) = lim
α̂0→0+

y1e
−α̂0y1 = y1 = M̂(y1).

It is no surprise that the sales functions S(y1) in these cases are strictly
increasing within the scope of the model, since we keep adding new value. Also,
the deviation between the sales value S and the estimated market value M̂
increases after the portfolio is consumed, independently of the α̂0-value, since
we keep adding decreasing values.

The case of N = 1 reveals that the model S(y1) for selling a market moving
portfolio is affected by the market sentiment at t1. Also, the sales value is
affected in all market sentiments α̂0 except when α̂0 = 0. Lastly, the investor is
not in a situation where time can be utilised in order to optimise the liquidity
cost C and must thus accept the market sentiments as is.
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4.2. The numerical analysis

Figure 4.2: Estimated market value M̂ versus the
sales value S(y) for α̂0 = 0.1.

Figure 4.3: Estimated market value M̂ versus the
sales value S(y) for α̂0 = 0.5.

Figure 4.4: Estimated market value M̂ versus the
sales value S(y) for α̂0 = 1.
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CHAPTER 5

The case N = 2

In this chapter we want to optimise our model S for N = 2, which also
introduces additional parameters α̂1, P̂2 and a variable y2. We will also establish
pumping, dumping and short selling strategies as we are in a two-step scenario
which introduces an additional transaction opportunity. Moreover, we evaluate
different market types: Bear market P̂1 > P̂2, Flat market P̂1 = P̂2 and
Bull market P̂1 < P̂2, and how different levels of the estimated price P̂2 may
determine which investment strategy is optimal. Let’s start off by introducing
the model for N = 2, and set forth when either pumping, dumping or short
selling is the optimal strategy.

With a two-step strategy we can buy or sell y1 and y2 shares at times t1 and
t2, as long as it liquidates the portfolio. In order to find the optimal investment
strategy for a two-variable function we could look at the partial derivatives of
the model S. However, as y1 + y2 = 1 is a constraint we have the opportunity
to reduce the two-variable sales function S(y1, y2) for N = 2 into a one-variable
function S(y1). This will simplify the analysis. Thus, we substitute y2 = 1− y1
into S(y1, y2), remembering the normalised price estimate P̂1 = 1. Subsequently,
we turn:

S(y1, y2) = y1P̂1e
−α̂0y1 + y2P̂2e

−α̂0y2−α̂1y1

= y1e
−α̂0y1 + y2P̂2e

−α̂0y2−α̂1y1

into,

S(y1) = y1e
−α̂0y1 + (1− y1)P̂2e

−α̂0(1−y1)−α̂1y1 (5.1)

= y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0 . (5.2)

In order to find where the function S(y1) increases/decreases, and subsequently
has stationary points, we need to find S′(y1) for our future endeavours:

S′(y1) = e−α̂0y1 − α̂0y1e
−α̂0y1 − P̂2e

(α̂0−α̂1)y1−α̂0

+ (1− y1)P̂2(α̂0 − α̂1)e
(α̂0−α̂1)y1−α̂0

= (1− α̂0y1) e
−α̂0y1 + P̂2 ((1− y1)(α̂0 − α̂1)− 1) e(α̂0−α̂1)y1−α̂0 . (5.3)

Before we continue it seems timely for a well-intended reminder that the
buy request domain in N = 1 is (−∞, 0) and the sell request domain is (0,∞).
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5.1. Analysis of the model S

This is also applicable in this case as we reduced the function into a one-variable
function.

Now, we reintroduce the pumping strategy from Definition 3.0.1 on page 16
which can be optimal when S(y1) has its maximum in the buy request domain
y1 < 0. Likewise, the dumping strategy from Definition 3.0.2 on page 17 can be
optimal as S(y1) has a maximum in the sell request domain for y1 > 1. The
dumping boundary is equal to 1 as the dumping strategy demands the investor
to sell more than initially intended, which is the entire portfolio. In order to
fulfil the dumping strategy, in the case of liquidating the portfolio, the investor
has to engage in a short selling strategy as defined in Definition 3.0.4 on page 17.
When an investor sells on the interval 0 ≤ y1 ≤ 1 the trade is defined as a
sell strategy. However, if S(y1) has a maximum on y1 > 1 the investor should
borrow shares from a third party and undertake a short selling strategy, which
is a special case of the dumping strategy.

In order to decide on optimal investment strategies we need to perform a
deeper analysis of the model S and unveil some key characteristics. This next
section is an attempt to do so.

5.1 Analysis of the model S

In order to choose the optimal investment strategy we do an in-depth
investigation of the model S. Hence, this section contains general propositions,
corollaries and lemmas to complete the proofs for when a pumping and dumping
strategy is optimal.

First we need to understand how the model acts as y1 → ±∞. Lemmas 5.1.1
and 5.1.2 ensures that the model does not tend towards infinity in neither case.

Lemma 5.1.1. The function

S(y1) = y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0

tends towards −∞ as y1 → −∞ for α̂0 ≥ 0 and α̂0 > α̂1, and tends towards 0
as y1 → −∞ for 0 > α̂0 > α̂1.

Proof. We start off by splitting the limit into two terms

lim
y1→−∞

S(y1) = lim
y1→−∞

y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0

= lim
y1→−∞

y1e
−α̂0y1

(1)

+ lim
y1→−∞

(1− y1)P̂2e
(α̂0−α̂1)y1−α̂0

(2)

We divide the proof into the cases α̂0 ≥ 0 and α̂0 < 0, where the latter is
included for a deeper insight into the model even though it is outside the scope.

The case α̂0 ≥ 0 (negative market impact):

lim
y1→−∞

y1e
−α̂0y1 = −∞(1):

and

lim
y1→−∞

(1− y1)P̂2e
(α̂0−α̂1)y1−α̂0 = lim

y1→−∞

(1− y1)P̂2

e−(α̂0−α̂1)y1+α̂0
(2):
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5.1. Analysis of the model S

L’H
= lim

y1→−∞

P̂2

(α̂0 − α̂1)e−(α̂0−α̂1)y1+α̂0

= 0,

where L’H signals that we used L’Hôpital’s rule. Hence,

lim
y1→−∞

S(y1)α̂0≥0 = −∞+ 0 = −∞.

The case α̂0 < 0 (positive market impact):

lim
y1→−∞

y1e
−α̂0y1 = lim

y1→−∞

y1
eα̂0y1

L’H
= lim

y1→−∞

1

α̂0eα̂0y1
= 0(1):

and

lim
y1→−∞

(1− y1)P̂2e
(α̂0−α̂1)y1−α̂0 = lim

y1→−∞

(1− y1)P̂2

e−(α̂0−α̂1)y1+α̂0
(2):

L’H
= lim

y1→−∞

P̂2

(α̂0 − α̂1)e−(α̂0−α̂1)y1+α̂0

= 0.

Hence,

lim
y1→−∞

S(y1)α̂0<0 = 0 + 0 = 0.

■

Lemma 5.1.2. The function

S(y1) = y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0

tends towards −∞ as y1 → ∞, if α̂0 > 0 and α̂0 > α̂1.

Proof. First we split the limit into two terms:

lim
y1→∞

S(y1) = lim
y1→∞

y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0

= lim
y1→∞

y1e
−α̂0y1

(1)

+ lim
y1→∞

(1− y1)P̂2e
(α̂0−α̂1)y1−α̂0

(2)

We evaluate each limit by itself:

lim
y1→∞

y1e
−α̂0y1 = lim

y1→∞

y1
eα̂0y1

(1):

L’H
= lim

y1→∞

1

α̂0eα̂0y1

= 0

and
lim

y1→∞
(1− y1)P̂2e

(α̂0−α̂1)y1−α̂0 = − lim
y1→∞

(y1 − 1)P̂2e
(α̂0−α̂1)y1−α̂0(2):

= −∞,
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5.1. Analysis of the model S

where L’H signals that we used L’Hôpital’s rule. Hence,

lim
y1→∞

S(y1)α̂0>0 = 0−∞ = −∞.

■

Secondly, we want to understand how the function acts between the limits.
Lemma 5.1.3 tell us that the function S has at most one maximum on R.

Lemma 5.1.3. The function

S(y1) = y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0

has at most one maximum on R for α̂0 > α̂1 and P̂2 > 0.

Proof. We will show that S(y1) has no more than one maximum, by showing
that S has no more than two stationary points. We start off by finding the
number of solutions of S′(y1) = 0:

S′(y1) = 0

(1− α̂0y1) e
−α̂0y1 + P̂2 ((1− y1)(α̂0 − α̂1)− 1) e(α̂0−α̂1)y1−α̂0 = 0.

By rearranging the terms we get an equation with a rational function with
linear polynomials in the numerator and the denominator on the left-hand side,
and an exponential function on the right-hand side:

(1− α̂0y1) e
−α̂0y1 = P̂2 (1− (1− y1)(α̂0 − α̂1)) e

(α̂0−α̂1)y1−α̂0

(1− α̂0y1) = P̂2 ((α̂0 − α̂1)y1 + (1− α̂0 + α̂1)) e
(2α̂0−α̂1)y1−α̂0

−α̂0y1 + 1

(α̂0 − α̂1)y1 + (1− α̂0 + α̂1)
= P̂2e

(2α̂0−α̂1)y1−α̂0 (5.4)

The rational expression on the left-hand side of (5.4) and the exponential
expression on the right-hand side are both strictly decreasing or strictly
increasing functions for α̂0, α̂1 ̸= 0.

The graph defined by the rational function is a hyperbola denoted H. The
graph defined by the exponential function is denoted E . The two graphs, H and
E , intersects in either zero, one, two, or infinitely many points. The different
cases are illustrated in Figures 5.1(a) to 5.1(d). The number of intersections
may be proved by looking at the asymptotes of the hyperbola. The horizontal
asymptote of the hyperbola is given by

−α̂0

α̂0 − α̂1
,

and the vertical asymptote of the hyperbola is given by

(α̂0 − α̂1)y1 + (1− α̂0 + α̂1) = 0

y1 =
α̂0 − α̂1 − 1

α̂0 − α̂1

y1 = 1− 1

α̂0 − α̂1
.

Now, based on these expressions H and E have:
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5.1. Analysis of the model S

(a) The case of one solution as described in
Item i.).

(b) The case of zero solutions as described
in Item ii.).

(c) The case of two solutions as described in
Item iii.) on the following page.

(d) The case of infinitely many solutions as
described in Item iv.) on the following page.

Figure 5.1: The different scenarios of the number of possible solutions in N = 2
for E and H.

i.) One point of intersection if α̂0 ≥ 0 and α̂0 > α̂1.

When α̂0 ≥ 0 and α̂0 > α̂1, the expression

−α̂0

α̂0 − α̂1
< 0,

because −α̂0 < 0 and α̂0 − α̂1 > 0 by the constraint criteria. Thus, the
graph E with P̂2 > 0 only intersects the part of H that lies above the
horizontal asymptote. Hence, we have one point of intersection.

See Figure 5.1(a) for an illustration of this situation.

The following three cases are again outside our scope, however they are included
for the reader to get a deeper understanding of the model and its general
behaviour.

ii.) Zero points of intersection if P̂2 < 0 and α̂0 = α̂1 or the vertical asymptote
of H is at y1 ≤ 0.
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There are two different scenarios here. The first case is when α̂0 = α̂1 > 0,
and the hyperbola H degenerates into a line with negative slope. The
linear function does not intersect the graph of the exponential function,
as E tends to −∞ much faster than H in this case.

The second case is when the vertical asymptote of H is at y1 ≤ 0, which is
the case that is displayed in Figure 5.1(b) on the preceding page. Either
case is relevant in the general situation, however as we demand that
0 < α̂1 < α̂0 < 1 both of these cases are outside our scope. Furthermore,
as P̂2 < 0 the scope is also breached.

iii.) Two points of intersection if α̂0 < 0 and α̂0 > α̂1.

We have two intersection points when the expression

−α̂0

α̂0 − α̂1
≥ 0,

as the exponential function P̂2e
(2α̂0−α̂1)y1−α̂0 > 0 given P̂2 > 0.

Consequently, the graph E intersects the hyperbola H on both sides
of the horizontal asymptote, and we have two points of intersection.

See Figure 5.1(c) on the previous page for an illustration of this situation.

iv.) Infinitely many or zero intersection points if α̂0 = α̂1 = 0.

We have zero points of intersection in the case where α̂0 = α̂1 = 0 and
the graph E is given by P̂2 ̸= 1 as the hyperbola H intersects the second
axis at 1. There are infinitely many intersection points if P̂2 = 1 and the
hyperbola H is defined as above. In both cases we are in breach of the
constraint α̂0 > α̂1 in the model.

See Figure 5.1(d) on the preceding page for an illustration of this situation.

Consequently, S(y1) has at most one maximum on R. ■

Item i.) describes the situation 0 < α̂1 < α̂0 < 1, which we are investigating.
As this is crucial to our constraints it seems reasonable to create a corollary in
its honour.

Corollary 5.1.4. If α̂0 > 0 and α̂0 > α̂1, the function S has a single
extremum, which is a global maximum.

Proof. As we saw in Item i.), we only have a single extremum when α̂ > 0. This is
a global maximum, as limy1→−∞ S(y1) = −∞, and limy1→∞ S(y1) = −∞. ■

We end this section by restating that the model S has a global maximum,
since S tends to −∞ in both directions. Also, as S only has one extremum we
have shown the existence of a unique optimum. Now, let’s continue on to the
investment strategies that are available in N = 2.
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5.1.1 Pumping

For N = 2, pumping entails buying more stock at time t1 (increasing the
portfolio) and selling at time t2 (liquidating the entire portfolio). Subsequently,
a boundary condition for pumping is the situation where no purchase is made
at t1, and all shares are sold at t2. In the normalised case in the original
two-variable function S(y1, y2), the boundary case for pumping is thus given
by y1 = 0, i.e. no shares are bought at t1, and y2 = 1, i.e. all shares are
sold at time t2. Since we are investigating the one-variable case we restate the
boundary case which is y1 = 0.

Also, we must assess when the model S demands a buy event and when it
is correct to choose a sell event. This may be determined by evaluating where
the model has an extremum, and under what sentiments (parameter values of
α̂n) these extremas are located. Proposition 5.1.5 ensures us that the model S
for N = 2 has one maximum. Consequently, we want to determine when the
stationary point is found at y1 < 0.

When looking for stationary points it seems natural to begin with an
optimisation analysis based on the derivative, in this case S′(y1). If the
maximum of S is located at y1 < 0, then we have a buy event and possibly a
pumping situation. Conversely, if the maximum of S is located at y1 > 0, then
we have a sell event and possibly a dumping situation. These locations do affect
the slope S′(0). If S′(0) > 0, then the maximum is located at y1 > 0, and if
S′(0) < 0, then the maximum is located at y1 < 0. Hence, investigating S′(0)
may reveal the location of the maximum.

We know from Corollary 5.1.4 that our model S has a single maximum.
There are two possibilities for the location of the maximum:

i.) If S′(0) ≤ 0, then the maximum is located at y1 < 0 and there is an
optimal pumping strategy.

ii.) If S′(0) > 0, then the maximum is located at y1 > 0 and there is no
optimal pumping strategy.

On this note, we wish to prove that if S′(0) ≥ 0 for 0 < α̂1 < α̂0 < 1, then
there is no optimal pumping strategy. The following proposition summarises
the finding:

Proposition 5.1.5. There is no optimal pumping strategy for N = 2 in the
model

S(y1, . . . , yN ) =

N∑
n=1

ynP̂ne
−α̂n−1y1−α̂n−2y2−···−α̂0yn ,

subject to y1 + y2 + · · · + yN = 1 and 1 > α̂0 > α̂1 > 0, if S′(0) > 0 for the
rewritten one variable function S(y1).

Proof. In order to show that a pumping strategy will not be the optimal trading
strategy when S′(0) ≥ 0, we must show that
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i.) The function S(y1) does not tend towards ∞ as y1 → −∞. This is to
ensure that the model does not demand the investor to pump the stock
indefinitely.

ii.) There is at most one maximum on R.

iii.) If there is a maximum, then it is located at y1 ≥ 0.

Lemma 5.1.1 ensures us that S(y1) does not tend towards ∞ as y1 → −∞.

Lemma 5.1.3 ensures that S(y1) has at most one maximum on R.

Lastly, we have to prove that if there is a maximum then it is located at
y1 ≥ 0. Since there exists a maximum by Corollary 5.1.4, we use the assumption
S′(0) ≥ 0 to prove that it must be located at y1 ≥ 0. Lemma 5.1.2 ensures that
S(y1) tends to −∞ as y1 tends to ∞ under the constraint of 0 < α̂1 < α̂0 < 1.

Hence, since S′(0) ≥ 0 and the function does not tend towards infinity we
must have a maximum for y1 > 0. ■

In conclusion, there is no available optimal pumping strategy for S(y1)
in N = 2 under the constraint 0 < α̂1 < α̂0 < 1 and given S′(0) ≥ 0.
However, there may be optimal pumping strategies available under certain
market sentiments as long as S′(0) < 0. We will take a closer look at this in
Section 5.3 where we look at the model from a numerical point of view. Now,
let’s take a look at the dumping investment strategy.

5.1.2 Dumping

We continue in the same manner as in the pumping case. However, in the
dumping scenario the investor sells a market moving block of shares in order
to pull down the price for then to repurchase the same stock at a later stage.
This repurchase is only possible in a multi-step scenario if the investor utilises
a short selling strategy, as the repurchased stock then will be returned to the
lender. That way the investor liquidates the entire portfolio, which is our task.

Now, in the two variable function the boundary case for dumping is given
by y1 = 1 and y2 = 0. This is the case where the investor liquidates the entire
portfolio at t1, and does not buy back any shares at t2. As we reduced the
two-variable model S(y1, y2) into a one-variable model S(y1) it seems polite to
remind the reader of the one-variable model:

S(y1) = y1e
−α̂0y1 + (1− y1)P̂2e

(α̂0−α̂1)y1−α̂0

with its derivative

S′(y1) = (1− α̂0y1) e
−α̂0y1 + P̂2 ((1− y1)(α̂0 − α̂1)− 1) e(α̂0−α̂1)y1−α̂0 .

Likewise, we also redefine the boundary conditions.

So, the boundary condition for the one-variable model S(y1) for the dumping
strategy is y1 = 1, as this is the complete liquidation of the portfolio. It is also
the boundary between a sell and the dumping strategy with short selling. This
means that we dump stock if the maximum should be located at y1 > 1. In our
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search for the possible dumping scenarios we start off by using the derivative at
the boundary S′(1), as its sign helps us determine the location of the maximum.
Based on Corollary 5.1.4 our model S has a single maximum. Once again, there
are two possible locations for the maximum:

i.) If S′(1) ≤ 0, then the maximum is not located at y1 > 1 and there is no
optimal dumping strategy.

ii.) If S′(1) > 0, then the maximum is located at y1 > 1 and there is an
optimal dumping strategy.

Subsequently, the investor should never choose a dumping strategy if S′(1) ≤ 0.
We summarise this as a proposition:

Proposition 5.1.6. There is no dumping strategy that is the optimal
investment strategy for N = 2 in the model

S(y1, . . . , yN ) =

N∑
n=1

ynP̂ne
−α̂n−1y1−α̂n−2y2−···−α̂0yn ,

subject to y1 + y2 + · · · + yN = 1 and 0 < α̂1 < α̂0 < 1, if S′(1) ≤ 0 for the
rewritten one variable function S(y1).

Proof. Let’s build this proof on the same premises as in the proof of
Proposition 5.1.5. Hence, we must show that

i.) The function S(y1) does not tend towards ∞ as y1 → ∞, to ensure that
the function does not demand infinite dumping.

ii.) There is at most one maximum on R.

iii.) If there exists a maximum, then it is not located at y1 > 1.

Lemma 5.1.2 ensures us that S(y1) does not tend towards ∞ as y1 → ∞.

Lemma 5.1.3 ensures that S has at most one maximum on R.

Lastly, we have to prove that if there is a maximum then it is located at
y1 ≤ 1. There exists a maximum by Corollary 5.1.4, and we use the assumption
S′(1) ≤ 0 to prove that it must be located at y1 ≤ 1. Lemma 5.1.2 ensures that
S(y1) tends to −∞ as y1 tends to ∞ under the constraint of 0 < α̂1 < α̂0 < 1.

Hence, since S′(1) ≤ 0 and the function does not tend towards infinity we
must have a maximum for y1 < 1. ■

In conclusion, there is no dumping strategy for S(y1) in N = 2 under the
constraint 0 < α̂1 < α̂0 < 1 and given S′(1) ≤ 0. However, there may exist
dumping strategies under certain market sentiments as long as S′(1) > 0. We
will deep dive into this in Section 5.3 where we look at the model from a
numerical point of view. In the next section we dive into how market strategies
are influenced by market sentiments.
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5.2. Market sentiments and investment strategies

5.2 Market sentiments and investment strategies

From empirical observations we know that different investment strategies are
utilised in order to optimise return in different markets. In some cases the
investment strategies are easily implemented, while in others it may demand
access to sufficiently large funds. On that note, it is fun to mention Black
Wednesday [Ken20]. One of the most famous short positions in history, when
George Soros decided to bet against the British Pound in August and September
of 1992, which made him a billion dollars and almost broke the Bank of England.
Even the Queen was involved as the British government tried to fend off the
attack.

Now, in light of different investment strategies we also need to define different
market sentiments as these two are closely linked. Hence, in this numerical
analysis we want to evaluate the model S for different market sentiments α̂0 and
α̂1 and estimated prices P̂2 to determine when different investment strategies
should be implemented. We start by restating the three types of markets a
stock can operate within at a given point in time:

1.) Bear market as P̂1 = 1 > P̂2,

2.) Flat market as P̂2 = P̂1 = 1 and

3.) Bull market as P̂1 = 1 < P̂2.

Naturally, the estimated price P̂2 has to be positive. Also, the different market
sentiments α̂n can all operate within the different market types.

In general, a given strategy can be used in different types of markets to
achieve different outcomes, however without being the optimal solution in each
case. For instance, a pumping strategy can be used in the following way. Given
a Bull market P̂2 > 1 an investor may wish to contribute to a price increase
and thus initiate a pumping strategy. The same may be the case in a Flat
market in order to get the stock price moving. A pumping strategy may also
be adopted if the investor wishes to slow down a negative price development.
Hence, there are several situations where a certain investment strategy can be
utilised in order to optimise a trade.

Based on these descriptions we now look further into the estimated price
P̂2, which determines the market type in terms of the optimal trading volumes
y∗1 represented by a percentage of portfolio. We know that different optimal
trading volumes defined by the model S yields different investment strategies
as illustrated in Figure 5.2. The figure shows different estimated prices P̂2 as a
function of the optimal trading volume as a percentage of portfolio y∗1 for four
different market sentiments α̂1 given a fixed α̂0 depicted with different colours.
A first glance analysis reveals that if the optimal trading volume y∗1 ∈ (−∞, 0)
then P̂2 must be at a certain level (intersection of the second axis and the graph)
in order to pump the stock, rather than initiate in a buy strategy. Figure 5.2
only illustrate some values for α̂0 and α̂1, but it does give an impression of how
the model behaves in the different domains. However, if the optimal trading
volume y∗1 ∈ (0,∞) then P̂2 must be under another certain level (less than
the intersection of the vertical dotted line and the graph) in order to dump
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5.2. Market sentiments and investment strategies

and short sell the stock, rather than engage in a sell strategy. In the following
we deep dive into P̂2(y

∗
1) for a more rigorous analysis of the market type and

investment strategies.

Figure 5.2: The estimated price P̂2(y
∗
1) for illustrative α̂-values on the interval

0 < α̂1 < α̂0 < 1. The horizontal dotted line P̂2 = 1 is a Flat market, where
the area above is a Bull market and the area below is a Bear market. The
vertical dotted line y∗1 = 1 is the dumping boundary line. The second axis is
the estimated price P̂2(y

∗
1) and also represents the pumping boundary line.

So, in order to evaluate P̂2 we use the derivative of the model S(y1) in
Equation (5.3) to find an expression for P̂2 in terms of the optimised transaction
volume y∗:

S′(y∗) = (1− α̂0y
∗) e−α̂0y

∗
+ P̂2(y

∗) ((1− y∗)(α̂0 − α̂1)− 1) e(α̂0−α̂1)y
∗−α̂0 = 0

which implies that

P̂2(y
∗) =

(1− α̂0y
∗)e−α̂0y

∗(
1− (1− y∗)(α̂0 − α̂1)

)
e(α̂0−α̂1)y∗−α̂0

(5.5)

=
1− α̂0y

∗

(α̂0 − α̂1)y∗ + 1− α̂0 + α̂1
e(−2α̂0+α̂1)y

∗+α̂0 . (5.6)

Remember that P̂2 is the estimated price, so keeping α̂0 and α̂1 constant we are
looking to establish at what levels (type of market) it favours certain investment
strategies.

From our previous endeavours we know that if S has its maximum at
y∗1 > 1 the investor should short sell or dump the stock. If S has its maximum
at y∗1 < 0 the investor should buy or pump the stock, while if 0 < y∗1 < 1
the investor should initiate a sell transaction. Also, the boundary case in
the pumping situation is y∗1 = 0, and the dumping situation has boundary
y∗1 = 1. Subsequently, the estimated prices at the boundaries P̂2(0) and P̂2(1)
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yield the condition for when to implement the different investment strategies.
Equation (5.6) is used to find the boundary estimated prices P̂2(0) and P̂2(1):

P̂2(0) =
1

1− α̂0 + α̂1
eα̂0 , (5.7)

and

P̂2(1) = (1− α̂0) e
α̂1−α̂0 , (5.8)

where
P̂2(0) =

1

1− α̂0 + α̂1
eα̂0 >

1

1− (α̂0 − α̂1)
> 1

and

P̂2(1) = (1− α̂0) e
α̂1−α̂0 < (1− α̂0) < 1.

Based on Equations (5.7) and (5.8) we get the following relations between
market type and investment strategies:

• If y∗1 < 0, which is the pumping request domain, the estimated price
P̂2(y

∗) > P̂2(0) > 1. Then the pumping strategy is optimal in a Bull
market since P̂2(y

∗
1) > 1 and 0 < α̂1 < α̂0 < 1.

• If 0 < y∗1 < 1, which is the traditional sell domain, the estimated price
P̂2(y

∗
1) ∈

(
P̂2(1), P̂2(0)

)
= (1− ϵ1, 1 + ϵ2) for some ϵ1, ϵ2 > 0. Thus, the

trading strategy is available in all three markets (Bear P̂2 < 1, Flat P̂2 = 1
and Bull markets P̂2 > 1) for 0 < α̂1 < α̂0 < 1.

• If y∗1 > 1, which is the dumping request domain, the estimated price is
P̂2(y

∗
1) < P̂2(1) < 1. Then the dumping strategy is optimal in a Bear

market since P̂2(y
∗
1) < 1 and 0 < α̂1 < α̂0 < 1.

Consequently, we confirmed and elaborated on the first glance analysis: There
are levels where the estimated price P̂2 triggers a certain investment strategy, and
these investment strategies are found in distinct types of markets as displayed
in Figure 5.2.

5.3 The numerical analysis

As previously mentioned the case N = 2 with n = 1, 2 models the situation
where an investor sells the entire portfolio in two, not necessarily equal, blocks.
As stated in the case N = 1 the investor is restricted to a certain liquidation
time period. This time restriction limits the possibility for the price to bounce
back to its original level between trades. The bounce-back function ψ in the
model is to be viewed as a discount factor.

Our numerical investigation of the case N = 2 starts with a visit to the
Lagrange Multiplier method in Theorem 2.2.7. It is used to maximise the
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function S(y1, y2), as we have constraints, in order to use the Fixed Point
method Theorem 2.2.6. Based on our model in (1.7) we get

S(y1, y2) = y1e
−(α̂0y1) + y2P̂2e

−(α̂0y2+α̂1y1)

subject to

g(y1, y2) = y1 + y2 − 1

where y1 and y2 are weighted blocks of shares as a percent of the total portfolio.

The Lagrangian is thus given by

L(y1, y2, λ) = S(y1, y2) + λg(y1, y2)

= y1e
−(α̂0y1) + y2P̂2e

−(α̂0y2+α̂1y1) + λ(y1 + y2 − 1)

= y1Ê1 + y2Ê2 + λ(y1 + y2 − 1)

where

Ê1 = e−α̂0y1

Ê2 = P̂2e
−(α̂0y2+α̂1y1)

as described on page 4. In order to optimise the sales value S(y1, y2) contingent
to the constraint g(y1, y2) = 1−y1−y2 we find the derivative of the Lagrangian,
L(y1, y2, λ) with respect to y1, y2 and λ, and equate these expressions to 0 in
order to solve the system of equations. Then,

∂L
∂y1

= Ê1 + y1
∂Ê1

∂y1
+ y2

∂Ê2

∂y1
+ λ,

∂L
∂y2

= y1
∂Ê1

∂y2
+ Ê2 + y2

∂Ê2

∂y2
+ λ, and

∂L
∂λ

= y1 + y2 − 1,

where

∂Ê1

∂y1
= −α̂0e

−α̂0y1 = −α̂0Ê1,

∂Ê1

∂y2
= 0,

∂Ê2

∂y1
= −α̂1P̂2e

−(α̂0y2+α̂1y1) = −α̂1Ê2, and

∂Ê2

∂y2
= −α̂0P̂2e

−(α̂0y2+α̂1y1) = −α̂0Ê2.

Thus, we get the following system of equations

Ê1 − α̂0Ê1y1 − α̂1Ê2y2 + λ = 0, (5.9)

Ê2 − α̂0Ê2y2 + λ = 0, and (5.10)
y1 + y2 − 1 = 0. (5.11)
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Equating the two first equations by eliminating λ gives

Ê1 − α̂0Ê1y1 − α̂1Ê2y2 = Ê2 − α̂0Ê2y2.

Solving this for y2 gives

y2 =
Ê1(1− α̂0y1)− Ê2

Ê2(α̂1 − α̂0)
.

Substituting y2 into the third equation (5.11) yields an expression for y1:

1 = y1 +
Ê1(1− α̂0y1)− Ê2

Ê2(α̂1 − α̂0)

y1 =
Ê2(α̂1 − α̂0) + Ê2 − Ê1

Ê2(α̂1 − α̂0)− α̂0Ê1

(5.12)

=
(α̂1 − α̂0 + 1) P̂2e

−(α̂0y2+α̂1y1) − e−α̂0y1

(α̂1 − α̂0)P̂2e−(α̂0y2+α̂1y1) − α̂0e−α̂0y1

Now, we find an expression for y2:

y2 = 1− y1

y2 =
Ê1(1− α̂0)− Ê2

Ê2(α̂1 − α̂0)− α̂0Ê1

, (5.13)

=
(1− α̂0)e

−α̂0y1 − P̂2e
−(α̂0y2+α̂1y1)

(α̂1 − α̂0)P̂2e−(α̂0y2+α̂1y1) − α̂0e−α̂0y1

(5.14)

Thus we managed to find an analytic solutions for y1 and y2, if we neglect that
Ê1 is a function of y1 and that Ê2 is a function of y1 and y2. However,
this dependency is destructive for an analytic solution, as the standard
method of separating variables is pivotal to get the right answer. Nonetheless,
Equations (5.13) and (5.14) are useful together with the Lagrangian to optimise
the model S in the Fixed Point method. The reason is that the Fixed Point
method iterates recursively, and thus works well when separating variables is
problematic. While running the Fixed Point method with Equations (5.13)
and (5.14) we found that the it became unstable in a Bull market due to the
complexity of the system of equations and how they intertwine. Subsequently,
we introduce the Gradient Ascent method Theorem 2.2.10 as we work with the
Bull market.

Appendices A.2.1 to A.2.4 shows the script for the Fixed Point method
and Gradient Ascent method that is used to investigate different values for
α̂0, α̂1, ∆α̂ and the bounce-back function ψ for cases P̂1 > P̂2 (Bear market),
P̂1 = P̂2 (Flat market) and P̂1 < P̂2 (Bull market) in order to find optimal
solutions for y∗1 , y∗2 and S(y∗1 , y∗2). The following numerical sections also contain
tables describing the development of α̂0, α̂1, ∆α̂ = α̂0 − α̂1, y∗1 , y∗2 , S(y∗1 , y∗2),
S(1, 0) and ∆S, where the analysis deep dive into the first five parameters. The
parameters S(1, 0) and ∆S = S(y∗1 , y

∗
2) − S(1, 0) are included as supporting

material to shed further light on the analysis and for the reader to enjoy. The
following analysis is based on the results of these scripts and tables.
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5.3.1 The case of P̂1 > P̂2: Bear market

A Bear market is defined by P̂1 > P̂2, where the market price is expected to
decline in the near future. The following scenarios look at a Bear market with
strategically chosen α̂0s, α̂1s and P̂1 = 1.

There are three parameters that influence the behaviour of the model: The
market sentiment α̂0 at t1, the market sentiment α̂1 at t2 and the estimated
price P̂2 given as the growth factor relative to P̂1 = 1. Also, the difference
∆α̂ = α̂0 − α̂1 plays an important role when determining what actions to take
to optimise the sales value S in order to minimise the liquidity cost C. The
parameters influence the model to different degrees, where ∆α̂ seems to be more
important than α̂n independently, and P̂2 is a scaling factor. Also, it seems
friendly to remind the reader that α̂n > 0 means that the market will react
negatively to a sell event.

5.3.1.1 The behaviour of model S in a Bear market

To analyse the model S numerically we have used the Python script for Fixed
Point method in Appendices A.2.1 and A.2.2. For illustrative purposes we have
used the market drop of 50% to make a general description of the model in a
Bear market to emphasise the outcomes. We tested numerous values for P̂2

without loss of generality. Limitations of numerical methods are discussed in
Chapter 2.

The rest of this Bear market section will be divided into a general view
point of the model through, The effect of changes in α̂0, α̂1 and P̂2, and a short
bullet point list of examples describing Investment decisions for α̂0, α̂1 and P̂2

based on specific data sets.

The effect of changes in α̂0, α̂1 and P̂2

In a Bear market the model S displays one type of behaviour, and it is determined
by the difference ∆α̂ and the location of α̂0 on the α̂-domain (0, 1). Also, the
market drop (1− P̂2) and the size of ∆α̂ determine the location of the transition
points b where S(y∗) changes from increasing to decreasing. In general, we
discovered the following: Given the α̂-domain (0, 1) with 0 < a < b < c < 1, for
some transition points a, b and c, and 0 < α̂1 < α̂0 < 1, then for a, b and c
defined by P̂2, ∆α̂ and α̂0 we have that

i.) if α̂0 ∈ (0, a) and α̂0 and ∆α̂ decrease then the sales value S(y∗) increases.
See Table 5.1 and Figures 5.7 and 5.8.

ii.) if α̂0 ∈ (a, c) then the sales value S(y∗) increases as ∆α̂ moves from the
transition point b to 0, and as ∆α̂ moves from b to α̂0. See Table 5.2
and Figure 5.5.

iii.) if α̂0 ∈ (c, 1) and α̂1 increases as ∆α̂ → 0 then the sales value S(y∗)
decreases. See Table 5.3 and Figures 5.3, 5.4 and 5.6.

Furthermore, we discovered that S behaves differently dependent on the
location of α̂0 and α̂1 on the α̂-domain (0, 1). We also discovered that, given a
fixed ∆α̂ with α̂0 close to 1 on the α̂-domain then S has the bigger liquidity
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Table 5.1: Chosen differences ∆α̂ = α̂0 − α̂1 on the lower interval (0, a) for
P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.0001 1e− 07 0.0001 1725.4129 -1724.4129 427.6768 0.9999 426.6769

0.0001 1e− 06 0.0001 1732.5281 -1731.5281 429.2733 0.9999 428.2734

0.0001 9e− 05 0.0000 2912.1954 -2911.1954 677.9729 0.9999 676.9730

0.1 1e− 07 0.1000 2.1793 -1.1793 1.0891 0.9048 0.1843

0.1 0.0001 0.0999 2.1801 -1.1801 1.0892 0.9048 0.1844

0.1 0.001 0.0990 2.1871 -1.1871 1.0906 0.9048 0.1857

0.1 0.05 0.0500 2.6755 -1.6755 1.1809 0.9048 0.2761

0.1 0.09 0.0100 3.3257 -2.3257 1.2970 0.9048 0.3922

0.3 1e− 06 0.3000 1.0274 -0.0274 0.7411 0.7408 0.0003

0.3 0.0001 0.2999 1.0275 -0.0275 0.7411 0.7408 0.0003

0.3 0.12 0.1800 1.1423 -0.1423 0.7461 0.7408 0.0053

0.3 0.135 0.1650 1.1600 -0.1600 0.7473 0.7408 0.0065

0.3 0.15 0.1500 1.1786 -0.1786 0.7486 0.7408 0.0078

0.3 0.29 0.0100 1.4124 -0.4124 0.7696 0.7408 0.0288

Table 5.2: Chosen differences ∆α̂ = α̂0 − α̂1 on the middle interval (a, c) for
P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.35 1e− 09 0.3500 0.9447 0.0553 0.7058 0.7047 0.0012

0.35 0.0001 0.3499 0.9447 0.0553 0.7058 0.7047 0.0012

0.35 0.12 0.2300 1.0239 -0.0239 0.7049 0.7047 0.0002

0.35 0.135 0.2150 1.0358 -0.0358 0.7051 0.7047 0.0004

0.35 0.15 0.2000 1.0482 -0.0482 0.7054 0.7047 0.0007

0.35 0.3 0.0500 1.2080 -0.2080 0.7136 0.7047 0.0090

0.35 0.3449 0.0051 1.2729 -0.2729 0.7185 0.7047 0.0138

0.4 1e− 05 0.4000 0.8824 0.1176 0.6761 0.6703 0.0058

0.4 0.0001 0.3999 0.8825 0.1175 0.6761 0.6703 0.0058

0.4 0.1 0.3000 0.9289 0.0711 0.6721 0.6703 0.0018

0.4 0.3 0.1000 1.0643 -0.0643 0.6713 0.6703 0.0010

0.4 0.35 0.0500 1.1110 -0.1110 0.6731 0.6703 0.0027

0.4 0.37 0.0300 1.1316 -0.1316 0.6740 0.6703 0.0037

0.4 0.39 0.0100 1.1534 -0.1534 0.6751 0.6703 0.0048

0.45 1e− 05 0.4500 0.8339 0.1661 0.6501 0.6376 0.0124

0.45 0.0001 0.4499 0.8339 0.1661 0.6500 0.6376 0.0124

0.45 0.1 0.3500 0.8684 0.1316 0.6444 0.6376 0.0067

0.45 0.3 0.1500 0.9649 0.0351 0.6380 0.6376 0.0003

0.45 0.35 0.1000 0.9968 0.0032 0.6376 0.6376 0.0000

0.45 0.4 0.0500 1.0328 -0.0328 0.6379 0.6376 0.0003

0.45 0.449 0.0010 1.0728 -0.0728 0.6388 0.6376 0.0011
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Table 5.3: Chosen differences ∆α̂ = α̂0 − α̂1 on the upper interval (c, 1) for
P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.47 0.0001 0.4699 0.8173 0.1827 0.6404 0.6250 0.0154

0.47 0.01 0.4600 0.8201 0.1799 0.6398 0.6250 0.0148

0.47 0.1 0.3700 0.8481 0.1519 0.6343 0.6250 0.0093

0.47 0.3 0.1700 0.9332 0.0668 0.6263 0.6250 0.0013

0.47 0.4 0.0700 0.9921 0.0079 0.6250 0.6250 0.0000

0.47 0.469 0.0010 1.0416 -0.0416 0.6254 0.6250 0.0004

0.9 0.0001 0.8999 0.6352 0.3648 0.4900 0.4066 0.0834

0.9 0.01 0.8900 0.6354 0.3646 0.4891 0.4066 0.0826

0.9 0.1 0.8000 0.6373 0.3627 0.4819 0.4066 0.0753

0.9 0.5 0.4000 0.6549 0.3451 0.4544 0.4066 0.0478

0.9 0.75 0.1500 0.6748 0.3252 0.4408 0.4066 0.0342

0.9 0.89 0.0100 0.6894 0.3106 0.4343 0.4066 0.0277

0.99 0.0001 0.9899 0.6161 0.3839 0.4660 0.3716 0.0945

0.99 0.01 0.9800 0.6161 0.3839 0.4652 0.3716 0.0937

0.99 0.1 0.8900 0.6164 0.3836 0.4582 0.3716 0.0866

0.99 0.5 0.4900 0.6243 0.3757 0.4313 0.3716 0.0597

0.99 0.75 0.2400 0.6358 0.3642 0.4176 0.3716 0.0461

0.99 0.9 0.0900 0.6454 0.3546 0.4105 0.3716 0.0389

0.99 0.98 0.0100 0.6514 0.3486 0.4070 0.3716 0.0354

cost C than if α̂0 is located close to 0 on the α̂-domain as shown in Tables 5.4,
5.5 and 5.7. Hence, there is a sliding decrease in S which is an increase in the
liquidity cost as the location of α̂0 given the fixed ∆α̂ moves towards 1 on the
α̂-domain. Table 5.8 illustrate an example of the finding.

We also see that the volume y∗1 the investor has to acquire at t1 is increasing
as α̂0 with fixed ∆α̂ moves towards 0. This is illustrated in Table 5.8 and can
also be seen comparatively across the rows in Tables 5.4, 5.5 and 5.7. Moreover,
in the lower half of the α̂-domain the model suggests a short selling position
when α̂0 given fixed ∆α̂ is located there.

Tables 5.4, 5.5 and 5.7 further illustrate that the range of the volume y∗1 is
much greater as the location of α̂0 given fixed ∆α̂ decreases and stays close to
0 in the lower range (illustratively described by ∆y1,l = 163.345) than in the
middle range (∆y1,m = 0.3753) and upper range (∆y1,u = 0.032). This lends
evidence to more stable markets as α̂0 given fixed ∆α̂ is located at the upper
end of the α̂-domain. At the same time the liquidity cost C is at its highest as
the sales value S is at its lowest. The respective ranges in S from lower range to
upper range on the α̂-domain in the illustrated tables are: Sl = (0.4864, 41.0106),
Sm = (0.4724, 0.6065) and Su = (0.4590, 0.4037).

Moreover, as α̂0 increases the slippage of S displayed by the bounce-back
function ψ increases as well. Consequently, the investor may not benefit from a
short position as the market struggles to recover in this situation. Contrary,
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if α̂1 decreases the market will bounce back faster, which in turn speaks for a
delay in sales as the sales value S increases. This is illustrated in Figure 5.3.

Table 5.6 alludes to generality of the list on page 39. Numerous runs suggest
that as long as P̂2+∆α̂ ≈ 0.9 the model S will fluctuate as described in Item ii.)
on page 39. We have been unable to produce this fluctuation in all cases,
however as these are disbursed unevenly we believe it is due to our inability to
hit the correct values for ∆α̂, rather than lack of fluctuations. This suspicion
is also based on the continuity and pretty behaviour of the model in itself.
Figures 5.3 to 5.8 on pages 46–48 illustrate this behaviour, both in terms of the
fluctuation and monotonicity of S(y∗).

Table 5.4: Chosen differences ∆α̂ = α̂0 − α̂1 in the lower range of interval (0, 1)
for P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.91 0.01 0.9000 0.6330 0.3670 0.4864 0.4025 0.0839

0.81 0.01 0.8000 0.6585 0.3415 0.5149 0.4449 0.0701

0.71 0.01 0.7000 0.6905 0.3095 0.5463 0.4916 0.0546

0.61 0.01 0.6000 0.7324 0.2676 0.5813 0.5434 0.0380

0.51 0.01 0.5000 0.7902 0.2098 0.6216 0.6005 0.0211

0.41 0.01 0.4000 0.8757 0.1243 0.6701 0.6637 0.0064

0.31 0.01 0.3000 1.0162 -0.0162 0.7335 0.7334 0.0001

0.21 0.01 0.2000 1.2922 -0.2922 0.8317 0.8106 0.0212

0.11 0.01 0.1000 2.0890 -1.0890 1.0590 0.8958 0.1632

0.011 0.001 0.0100 16.80 -15.80 4.722 0.9891 3.7333

0.0011 0.0001 0.0010 163.9780 -162.9780 41.0106 0.9989 40.0117

Table 5.5: Chosen differences ∆α̂ = α̂0 − α̂1 in the mid range of interval (0, 1)
for P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.95 0.05 0.9000 0.6246 0.3754 0.4724 0.3867 0.0857

0.9 0.1 0.8000 0.6373 0.3627 0.4819 0.4066 0.0753

0.85 0.15 0.7000 0.6529 0.3471 0.4920 0.4274 0.0646

0.8 0.2 0.6000 0.6720 0.3280 0.5028 0.4493 0.0535

0.75 0.25 0.5000 0.6960 0.3040 0.5146 0.4724 0.0423

0.7 0.3 0.4000 0.7263 0.2737 0.5277 0.4966 0.0311

0.65 0.35 0.3000 0.7657 0.2343 0.5424 0.5220 0.0204

0.6 0.4 0.2000 0.8184 0.1816 0.5595 0.5488 0.0107

0.55 0.45 0.1000 0.8918 0.1082 0.5802 0.5769 0.0032

0.505 0.495 0.0100 0.9870 0.0130 0.6035 0.6035 0.0000

0.5005 0.4995 0.0010 0.9987 0.0013 0.6062 0.6062 0.0000

0.50005 0.49995 0.0001 0.9999 0.0001 0.6065 0.6065 0.0000
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Table 5.6: Model S with different P̂1 > P̂2 and α̂0 to illustrate transition areas
with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

P̂2 = 0.7

0.2 0.1999 0.0001 1.2902 -0.2902 0.8304 0.8187 0.0117

0.2 0.1 0.1000 1.0515 -0.0515 0.8193 0.8187 0.0006

0.2 0.01 0.1900 0.9319 0.0681 0.8200 0.8187 0.0013

0.2 0.001 0.1990 0.9227 0.0773 0.8204 0.8187 0.0017

0.2 1e− 05 0.2000 0.9217 0.0783 0.8205 0.8187 0.0018

0.2 1e− 06 0.2000 0.9217 0.0783 0.8205 0.8187 0.0018

P̂2 = 0.5

0.4 0.3999 0.0001 1.1647 -0.1647 0.6757 0.6703 0.0054

0.4 0.37 0.0300 1.1316 -0.1316 0.6740 0.6703 0.0037

0.4 0.3 0.1000 1.0643 -0.0643 0.6713 0.6703 0.0010

0.4 0.01 0.3900 0.8866 0.1134 0.6756 0.6703 0.0053

0.4 1e− 06 0.4000 0.8824 0.1176 0.6761 0.6703 0.0058

P̂2 = 0.3

0.6 0.5999 0.0001 1.1270 -0.1270 0.5522 0.5488 0.0034

0.6 0.5 0.1000 1.0784 -0.0784 0.5503 0.5488 0.0015

0.6 0.3 0.3000 0.9954 0.0046 0.5488 0.5488 0.0000

0.6 0.1 0.5000 0.9301 0.0699 0.5506 0.5488 0.0018

0.6 0.001 0.5990 0.9032 0.0968 0.5527 0.5488 0.0039

0.6 1e− 06 0.6000 0.9030 0.0970 0.5527 0.5488 0.0039

P̂2 = 0.2

0.8 0.7999 0.0001 1.0000 0.0000 0.4493 0.4493 0.0000

0.8 0.7 0.1000 0.9794 0.0206 0.4494 0.4493 0.0001

0.8 0.6 0.2000 0.9592 0.0408 0.4497 0.4493 0.0004

0.8 0.5 0.3000 0.9398 0.0602 0.4503 0.4493 0.0010

0.8 0.1 0.7000 0.8719 0.1281 0.4552 0.4493 0.0059

0.8 1e− 06 0.8000 0.8575 0.1425 0.4573 0.4493 0.0079
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Table 5.7: Chosen differences ∆α̂ = α̂0 − α̂1 in the upper range of the interval
(0, 1) for P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and
∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.99 0.09 0.9000 0.6163 0.3837 0.4590 0.3716 0.0874

0.99 0.19 0.8000 0.6172 0.3828 0.4515 0.3716 0.0800

0.99 0.29 0.7000 0.6187 0.3813 0.4446 0.3716 0.0730

0.99 0.39 0.6000 0.6210 0.3790 0.4380 0.3716 0.0664

0.99 0.49 0.5000 0.6240 0.3760 0.4319 0.3716 0.0603

0.99 0.59 0.4000 0.6278 0.3722 0.4261 0.3716 0.0545

0.99 0.69 0.3000 0.6325 0.3675 0.4207 0.3716 0.0491

0.99 0.79 0.2000 0.6381 0.3619 0.4157 0.3716 0.0441

0.99 0.89 0.1000 0.6446 0.3554 0.4109 0.3716 0.0394

0.99 0.98 0.0100 0.6514 0.3486 0.4070 0.3716 0.0354

0.999 0.998 0.0010 0.6486 0.3514 0.4040 0.3682 0.0358

0.9999 0.9998 0.0001 0.6483 0.3517 0.4037 0.3679 0.0358

Table 5.8: Model S with sliding constant ∆α̂ on the interval (0, 1) for
P̂1 > P̂2 = 0.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 > P̂2 = 0.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.999999 0.8 0.2000 0.6348 0.3652 0.4127 0.3679 0.0449

0.9 0.7 0.2000 0.6702 0.3298 0.4433 0.4066 0.0367

0.8 0.6 0.2000 0.7112 0.2888 0.4774 0.4493 0.0281

0.7 0.5 0.2000 0.7596 0.2404 0.5158 0.4966 0.0192

0.6 0.4 0.2000 0.8184 0.1816 0.5595 0.5488 0.0107

0.5 0.3 0.2000 0.8920 0.1080 0.6102 0.6065 0.0037

0.4 0.2 0.2000 0.9879 0.0121 0.6704 0.6703 0.0000

0.3 0.1 0.2000 1.1200 -0.1200 0.7448 0.7408 0.0040

0.2 1e− 07 0.2000 1.3160 -0.3160 0.8432 0.8187 0.0244

Resulting investment decisions for P̂2 = 0.5 and P̂2 = 0.9

This section summarises some specific examples from P̂2 = 0.5 and P̂2 = 0.9
in order to show how the investor should utilise different trading strategies
dependent on the market sentiments. It also shows actual transition points b
that we discussed in The effect of change in α̂0, α̂1 and P̂2.
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• Figure 5.11 show that as α̂0 → 0 there is a point where the investor must
change strategy, and undertake a short position in order to minimise the
liquidity cost. The point of strategy change depends on the value of α̂0

and α̂1. For example, given α̂0 = 0.315 and α̂1 = 0.0001 with a 50%
market drop, y∗1 = 1.0 is a transition point b from sell to short selling.
However, the investor is still experiencing a liquidity cost on the trade.
Not until α̂0 = 0.123 and α̂1 = 0.0001 do we reach a break-even point of
S(y∗1) = 1. At this point the investor must also take a short position of
more than 85% of the initial portfolio size in order to make a profit, that
might not be possible in itself.

• Figures 5.11 and 5.12 display that the transition point b for taking a short
position is at α̂0 = 0.052 and α̂1 = 0.0001 in the 10% market drop, while
at α̂0 = 0.315 and α̂1 = 0.0001 in the 50% market drop. In comparison
to the 50% market drop where the liquidity cost was 0.27, the liquidity
cost in the 10% market decline is 0.051, a difference of 0.219. This is as
expected since α̂0 is much larger in the cracked market compared to the
10% decline. So, in a short position the gain should be larger in a 50%
drop than in a 10% drop, which is the case if the α̂0s and α̂1s were equal.

• Also, Figures 5.11 and 5.12 show that the market crack allows for negative
liquidity cost at α̂0 = 0.1, while the market correction of 10% decline gives
a negative liquidity cost for α̂0 = 0.0215, which means that the investor
earns money on the model. In the first instance the investor has to take a
short position of y∗1 = 1.857, while in the latter case y∗1 = 1.721. Again,
the market crack demands a larger short position due to unequal α̂s.

• Figure 5.11 also displays the transition point of the market crack,
α̂0 = 0.315. It is easy to see that the transition point b from a sell
to a short position y∗1 changes from 1.0 in the cracked market to 0.576 in
the corrected market. At the same time the S(y∗1) = 0.73 in the cracked
market while at S(y∗1) = 0.814 in the corrected market, as shown in
Figure 5.12. Empirical observations expect us to see a faster transition in
a cracked marked.

• Figure 5.10 is the case of a market correction of 10% decline with
y∗1 = 0.472 and S(y∗1) = 0.473 given α̂0 = 0.99 and α̂1 = 0.98, and
a difference ∆α̂ = 0.01. If we change α̂1 to 0.0001 giving a difference
∆α̂ = 0.9899, then y∗1 = 0.518 and S(y∗1) = 0.579. In this case a larger
difference between α̂0 and α̂1 yields a smaller liquidity cost. This can be
seen by the change in sales values of 0.106 in this case.

• Also, Figure 5.9 is the case of a market crack of 50% with y∗1 = 0.651
and S(y∗1) = 0.407 given α̂0 = 0.99 and α̂1 = 0.98, and a difference
∆α̂ = 0.01. If we change α̂1 to 0.0001 giving a difference ∆α̂ = 0.9899,
then y∗1 = 0.616 and S(y∗1) = 0.466. In this case a larger ∆α̂ yields again
a smaller liquidity cost, with a change in S(y∗1) of 0.059. We notice that
the change in S(y∗1) is almost halved, from the change i the previous bullet
point 0.106 to this, between a market decline of 10% and 50%. In general,
as we ran the script we saw that as P̂2 → 0 then the change in S(y∗1) → 0.
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Figure 5.3: Graphs of S(y1) with P̂2 = 0.5 and α̂0 = 0.99 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the liquidity cost and
the smaller the y∗1 volume. The stars show the Fixed Point iterations locating
maximum and the optimal sales value S(y∗1).

Figure 5.4: Graphs of S(y1) with P̂2 = 0.9 and α̂0 = 0.99 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the liquidity cost and
the bigger the y∗1 volume. The stars show the Fixed Point iterations locating
maximum and the optimal sales value S(y∗1).
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Figure 5.5: Graphs of S(y1) with P̂2 = 0.5 and α̂0 = 0.4 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the y∗1 volume, while
the liquidity cost first decreases for then to increase again. The stars show the
Fixed Point iterations locating maximum and the optimal sales value S(y∗1).
The figure reveals a transition point b ∈ (0.01, 0.25) in the α̂1-domain where
S(y∗1) decreases as α̂1 moves from 0 to b, and increases from b to 1.

Figure 5.6: Graphs of S(y) with P̂2 = 0.9 and α̂0 = 0.4 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the y∗1 volume and the
smaller the liquidity cost. The stars show the Fixed Point iterations locating
maximum and the optimal sales value S(y∗). The figure does not reveal any
transition points.
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Figure 5.7: Graphs of S(y1) with P̂2 = 0.5 and α̂0 = 0.2 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the y∗1 volume, while
the liquidity cost first decreases for then to increase again. The stars show the
Fixed Point iterations locating maximum and the optimal sales value S(y∗1).

Figure 5.8: Graphs of S(y1) with P̂2 = 0.9 and α̂0 = 0.2 with six different
α̂1. The graphs show the bigger the difference ∆α̂ the smaller the y∗1 volume
and the smaller the liquidity cost. The stars show the Fixed Point iterations
locating maximum and the optimal sales value S(y∗1).
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Figure 5.9: Graphs of S(y1) with P̂2 = 0.5 and α̂0 = 0.99 with two different α̂1.
The development of the graphs show that the bigger the difference between α̂0

and α̂1 the smaller the liquidity cost and the smaller the y∗1 volume. The stars
show the Fixed Point iterations locating maximum and the optimal sales value
S(y∗1).

Figure 5.10: Two graphs of S(y1) with P̂2 = 0.9, α̂0 = 0.99 and α̂1 = 0.98 and
α̂1 = 0.00001. The stars show the Fixed Point iterations locating maximum
and the optimal sales value S(y∗1).
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Figure 5.11: Five graphs of S(y1) with α̂0 from 0.1 to 0.99 and α̂1 = 0.0001 for
P̂2 = 0.5 showing their sales values S. The stars show the Fixed Point iterations
locating maximum and the optimal sales value S(y∗). The stars show the Fixed
Point iterations locating maximum and the optimal sales value S(y∗).

Figure 5.12: Six graphs of S(y1) with α̂0 from 0.0215 to 0.99 and α̂1 = 0.0001
for P̂2 = 0.9 showing their sales value S. The stars show the Fixed Point
iterations locating maximum and the optimal sales value S(y∗1).

50



5.3. The numerical analysis

5.3.2 The case of P̂1 = P̂2: Flat market

A Flat market is described by P̂1 = P̂2, where the market price is expected
to stay unchanged in the near future. The following scenarios look at a Flat
market with strategically chosen α̂0s and α̂1s. In this section we use the Fixed
Point method in Appendices A.2.1 and A.2.2.

5.3.2.1 The behaviour of model S in a Flat market

Starting out, the greater the difference ∆α̂ the smaller the liquidity cost C
incurred on the investor. This is supported by the increasing S(y∗1) no matter
the difference between α̂0 and α̂1 and the location of α̂0, see Figures 5.13 to 5.15
and Table 5.9. Now, the smaller the difference ∆α̂ the smaller the stock sale
y∗1 in t1. This is supported by the decreasing y∗1 for all differences ∆α̂. As α̂0

moves close to 0 it yields a faster recovery. These findings are as expected.

We know that the location of α̂0 on the α̂-domain influences the sales value
S. Also, as α̂1 decreases the market recovers faster than if α̂1 is closer to 1.
As the location of α̂0 moves to 0 the sales value S increases, consequently α̂1

gets smaller. Moreover, as α̂0 given a fixed ∆α̂ is located close to 0 then S → 1
in a Flat market. Subsequently, as α̂0 and α̂1 are located close to 1 such that
∆α̂ decreases, then S has its highest liquidity cost C. An illustration of this is
displayed in Table 5.9. The Flat market displays the effects of the α̂ns on the
model, as described in the introduction.

Resulting investment decisions for P̂1 = P̂2

Again we summarise specific examples from P̂1 = P̂2. In this case the possibility
space for trading strategies is limited to a sell strategy.

• We find no transition point where the investor should change to a short
position in a Flat market. In general, regardless of ∆α̂ the model advises
the investor to sell y∗ = 0.5 at t1 as ∆α̂ increases. However, the different
market sentiments of α̂0 yield a spread in S(y∗1) from 0.5 in Figure 5.13 to
0.905 in Figure 5.15. Numerous runs showed that S(y∗1) → 1 as α̂0 → 0.

• Table 5.9 shows y∗1 = 0.4385 and S(y∗) = 0.4996 given ∆α̂0 = 0.1099. If
we change ∆α̂ to 0.9999, then y∗1 = 0.5 and S(y∗) = 0.6066. In this case
a larger ∆α̂ yields a smaller liquidity cost C, because α̂1 is closer to 0.
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Table 5.9: The table displays chosen values for α̂0 and α̂1 when P̂1 = P̂2 = 1
with calculated values for ∆α̂, y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 = P̂2 = 1

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.2 0.1999 0.0001 0.4873 0.5127 0.8618 0.8187 0.0431

0.2 0.1 0.1000 0.4935 0.5065 0.8828 0.8187 0.0641

0.2 0.01 0.1900 0.4993 0.5007 0.9026 0.8187 0.0839

0.2 0.001 0.1990 0.4999 0.5001 0.9046 0.8187 0.0859

0.2 0.0001 0.1999 0.5000 0.5000 0.9048 0.8187 0.0861

0.2 1e− 05 0.2000 0.5000 0.5000 0.9048 0.8187 0.0861

0.5 0.4999 0.0001 0.4675 0.5325 0.6930 0.6065 0.0865

0.5 0.4 0.1000 0.4734 0.5266 0.7085 0.6065 0.1020

0.5 0.2 0.3000 0.4862 0.5138 0.7418 0.6065 0.1353

0.5 0.1 0.4000 0.4930 0.5070 0.7598 0.6065 0.1533

0.5 0.001 0.4990 0.4999 0.5001 0.7786 0.6065 0.1721

0.5 1e− 05 0.5000 0.5000 0.5000 0.7788 0.6065 0.1723

0.9999 0.89 0.1099 0.4385 0.5615 0.4996 0.3679 0.1317

0.9999 0.8 0.1999 0.4434 0.5566 0.5084 0.3679 0.1405

0.9999 0.6 0.3999 0.4555 0.5445 0.5292 0.3679 0.1613

0.9999 0.3 0.6999 0.4763 0.5237 0.5647 0.3679 0.1968

0.9999 0.1 0.8999 0.4918 0.5082 0.5918 0.3679 0.2239

0.9999 1e− 05 0.9999 0.5000 0.5000 0.6066 0.3679 0.2386

Figure 5.13: Six graphs of S(y1) with P̂2 = P̂1, α̂0 = 0.9999 and six different
α̂1s.
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Figure 5.14: Six graphs of S(y1) with P̂2 = P̂1, α̂0 = 0.5 and six different α̂1s.

Figure 5.15: Six graphs of S(y1) with P̂2 = P̂1, α̂0 = 0.2 and six different α̂1s.
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5.3.3 The case of P̂1 < P̂2: Bull market

A Bull market is described by P̂1 < P̂2, where the market price is expected to
increase in the near future. The following scenarios look at a Bull market with
strategically chosen α̂0s, α̂1s and P̂2.

While working on the numerical method for the Bull market we found that
the Fixed Point iterations had limitations as α̂0 moved below a transition
point on (0, 1) as ∆α̂→ 0. As the model is a smooth concave curve it seemed
curious that the algorithm had problems finding the stationary point in this
situation. However, a more rigorous analysis showed that the complexity of the
expressions in themselves accompanied by how they are intertwined made the
method unstable. Consequently, we decided to switch to the Gradient ascent
method, which we keep for the rest of N = 2 and the whole of N = 3. Now,
why did we not use Gradient Ascent all along? Because, to begin with the
Fixed Point method seemed to do the job as the curves and surfaces are simple
and smooth in its kind. When we discovered the more intricate problems it
seemed important to show that things are not always as they appear, and being
able and prepared to use several methods are in itself an important skill when
faced with a challenge.

5.3.3.1 The behaviour of model S in a Bull market

Again we have used a Python script, this time for the Gradient Ascent
method in Appendices A.2.3 and A.2.4 to analyse the model S numerically.
For illustrative purposes we use the market surge of 50% to make a general
description of the model in a Bull market to emphasise the outcomes. Also,
this time we tested numerous values for P̂2 without loss of generality. For a
review into the limitations of numerical methods please see Chapter 2.

The effect of changes in α̂0, α̂1 and P̂2

In a Bull market the model S displays the same type of behaviour as in the
Bear market, however with different transition points for trading strategies.
Also, this time it is determined by α̂0 and α̂1. Moreover, the market surge
(P̂2 − 1) and the distance between α̂0 and α̂1 determine the location of the
transitions points (b) where S changes from decreasing to increasing. In general,
and analogous to the Bear market, we see: Given the α̂-domain (0, 1) with
0 < a < b < c < 1, for some transition points a, b and c, and 0 < α̂1 < α̂0 < 1,
then for a, b and c defined by P̂2, α̂0 and ∆α̂ we have that

i.) if α̂0 ∈ (0, a) and α̂0 and ∆α̂ decreases then the sales value S increases.
See Table 5.11 and Figure 5.20.

ii.) if α̂0 ∈ (a, c) then the sales value S increases as ∆α̂ moves from the
transition point b to 0, and as ∆α̂ moves from b to α̂0. See Table 5.12
and Figure 5.18.

iii.) if α̂0 ∈ (c, 1) and α̂1 increases as ∆α̂→ 0 then the sales value S decreases.
See Table 5.13 and Figures 5.16, 5.17, 5.19 and 5.21.
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As the model S behaves more or less identical in both Bear and Bull markets,
in this respect, we keep the following bullet list short and efficient by reiterating
the findings in this list:

• The model S behaves differently dependent on the location of α̂0 and α̂1

on the α̂-domain (0, 1), as the sales value S fluctuates as certain locations
of α̂0 yield a decrease followed by an increase as α̂1 moves towards α̂0, in
Tables 5.6 and 5.11 and Figures 5.16 to 5.21.

• Given a fixed ∆α̂ with α̂0 close to 1 on the α̂-domain, then S has the
bigger liquidity cost C than if α̂0 is located close to 0 on the α̂-domain,
as shown in Table 5.17.

• There is a sliding decrease in S as the location of α̂0 given the fixed ∆α̂
moves towards 1. Table 5.17 illustrates an example of the finding.

• The range of the volume y∗1 is much greater as the location of α̂0 given fixed
∆α̂ decreases and stays close to 0 in the lower range (∆y1,l = 39.794) than
in the middle (∆y1,m = 0.3259) and upper range (∆y1,u = 0.1443), which
lends evidence to more stable markets as α̂0 given fixed ∆α̂ is located
at the upper end of the α̂-domain. The respective ranges from lower to
upper on the α̂-domain in terms of sales value S in Tables 5.14 to 5.16 are:
Sl = (0.7977, 17.042), Sm = (0.7728, 0.9139) and Su = (0.6090, 0.7489).

The model’s behaviour differs from the Bear market, as the volume the
investor has to sell at t1 is decreasing as α̂0 with fixed ∆α̂ moves towards 0.
This is illustrated in Table 5.17 and can also be seen comparatively across the
rows in Tables 5.14 to 5.16. Further contrary to the Bear market, there is no
short selling opportunity when α̂0 decreases.

Moreover, as α̂0 increases the slippage of S(y1) displayed by the bounce-back
function ψ increases as well. However, the slippage in a Bull market is much less
than the slippage in a Bear market, it can even be negative. For the illustrative
case of a 50% increase or decrease in the market, the change in slippage is
0.3113, as seen by taking the difference between the sales values of the first row
in the lower intervals of Tables 5.4 and 5.14. Consequently, the investor should
not take a short position in a Bull market – which is no surprise. However, there
are pumping opportunities as α̂0 resides closer to 0 with ∆α̂ moving towards α̂0,
as illustrated in Figures 5.18 and 5.20. These pumping situations also include a
negative slippage as the sales value S > 1.

Contrary, if α̂1 decreases the market will bounce back faster, which in turn
speaks for a delay in sales as the sales value S increases. This is illustrated in
Figure 5.16.

Resulting investment decisions for P̂2 = 1.1 and P̂2 = 1.5

This section merely summarises some specific examples from P̂2 = 1.1 and
P̂2 = 1.5 in order to show how the investor should utilise different trading
strategies dependent on the market sentiments. It also shows an actual transition
points b that we discuss in The effect of change in α̂0, α̂1 and P̂2. Moreover,
we look at Bull markets compared to Bear markets.
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• In Figure 5.25 with a 10% market increase we see that the transition
point for taking a buy position is at α̂0 = 0.0471 with α̂1 = 0.00001. This
yields a sales value of S(0) = 1.049 as all shares are sold in t2. This
transition point is at α̂0 = 0.192 in the case of a 50% increase. Also, the
50% sales value for α̂0 = 0.0471 is 1.725 compared to 1.049 in the 10%
market. While the first situation is a pure sell case, the latter situation is
a pumping position.

Table 5.10: Model S with different P̂1 < P̂2 and α̂0 to illustrate transition areas
with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 < P̂2

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

P̂2 = 0.7

0.2 0.1999 0.0001 1.2902 -0.2902 0.8304 0.8187 0.0117

0.2 0.1 0.1000 1.0515 -0.0515 0.8193 0.8187 0.0006

0.2 0.01 0.1900 0.9319 0.0681 0.8200 0.8187 0.0013

0.2 0.001 0.1990 0.9227 0.0773 0.8204 0.8187 0.0017

0.2 1e− 05 0.2000 0.9217 0.0783 0.8205 0.8187 0.0018

0.2 1e− 06 0.2000 0.9217 0.0783 0.8205 0.8187 0.0018

P̂2 = 0.5

0.4 0.3999 0.0001 1.1647 -0.1647 0.6757 0.6703 0.0054

0.4 0.37 0.0300 1.1316 -0.1316 0.6740 0.6703 0.0037

0.4 0.3 0.1000 1.0643 -0.0643 0.6713 0.6703 0.0010

0.4 0.01 0.3900 0.8866 0.1134 0.6756 0.6703 0.0053

0.4 1e− 06 0.4000 0.8824 0.1176 0.6761 0.6703 0.0058

P̂2 = 0.3

0.6 0.5999 0.0001 1.1270 -0.1270 0.5522 0.5488 0.0034

0.6 0.5 0.1000 1.0784 -0.0784 0.5503 0.5488 0.0015

0.6 0.3 0.3000 0.9954 0.0046 0.5488 0.5488 0.0000

0.6 0.1 0.5000 0.9301 0.0699 0.5506 0.5488 0.0018

0.6 0.001 0.5990 0.9032 0.0968 0.5527 0.5488 0.0039

0.6 1e− 06 0.6000 0.9030 0.0970 0.5527 0.5488 0.0039

P̂2 = 0.2

0.8 0.7999 0.0001 1.0000 0.0000 0.4493 0.4493 0.0000

0.8 0.7 0.1000 0.9794 0.0206 0.4494 0.4493 0.0001

0.8 0.6 0.2000 0.9592 0.0408 0.4497 0.4493 0.0004

0.8 0.5 0.3000 0.9398 0.0602 0.4503 0.4493 0.0010

0.8 0.1 0.7000 0.8719 0.1281 0.4552 0.4493 0.0059

0.8 1e− 06 0.8000 0.8575 0.1425 0.4573 0.4493 0.0079
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Table 5.11: Chosen differences ∆α̂ = α̂0 − α̂1 on the lower interval (0, a) for
P̂1 < P̂2 = 1.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.0001 9e− 05 0.0000 -50.3898 51.3898 26.3938 2.4991 23.8948

0.0001 1e− 06 0.0001 -49.7024 50.7024 25.7227 2.4983 23.2244

0.0001 1e− 07 0.0001 -49.6955 50.6955 25.7160 2.4983 23.2178

0.1 0.09 0.0100 -1.3811 2.3811 1.6018 1.5483 0.0535

0.1 0.05 0.0500 -0.8480 1.8480 1.4810 1.2415 0.2396

0.1 0.001 0.0990 -0.4915 1.4915 1.4119 0.8976 0.5144

0.1 0.0001 0.0999 -0.4866 1.4866 1.4111 0.8915 0.5196

0.1 1e− 07 0.1000 -0.4861 1.4861 1.4110 0.8909 0.5201

0.2 0.1999 0.0001 -0.5263 1.5263 1.2896 -0.5554 1.8451

0.2 0.1 0.1000 -0.1645 1.1645 1.2368 -1.8272 3.0640

0.2 0.01 0.1900 0.0063 0.9937 1.2281 -2.6883 3.9164

0.2 0.001 0.1990 0.0193 0.9807 1.2283 -2.7623 3.9905

0.2 1e− 05 0.2000 0.0207 0.9793 1.2283 -2.7703 3.9986

0.2 1e− 06 0.2000 0.0207 0.9793 1.2283 -2.7704 3.9987

Table 5.12: Chosen differences ∆α̂ = α̂0 − α̂1 on the middle interval (a, c) for
P̂1 < P̂2 = 1.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.24 0.2399 0.0001 -0.3516 1.3516 1.2122 0.3070 0.9052

0.24 0.2 0.0400 -0.2245 1.2245 1.1950 0.0355 1.1595

0.24 0.15 0.0900 -0.1069 1.1069 1.1839 -0.2754 1.4593

0.24 0.1 0.1400 -0.0188 1.0188 1.1801 -0.5568 1.7369

0.24 0.01 0.2300 0.0951 0.9049 1.1843 -0.9975 2.1818

0.24 0.0001 0.2399 0.1052 0.8948 1.1854 -1.0413 2.2267

0.3 0.2999 0.0001 -0.1780 1.1780 1.1212 -0.3112 1.4325

0.3 0.25 0.0500 -0.0776 1.0776 1.1134 -0.6278 1.7412

0.3 0.15 0.1500 0.0614 0.9386 1.1129 -1.1746 2.2875

0.3 0.1 0.2000 0.1118 0.8882 1.1174 -1.4096 2.5270

0.3 0.01 0.2900 0.1833 0.8167 1.1306 -1.7777 2.9083

0.3 0.0001 0.2999 0.1900 0.8100 1.1323 -1.8143 2.9467

0.35 0.3499 0.0001 -0.0797 1.0797 1.0593 -0.8570 1.9164

0.35 0.3 0.0500 -0.0053 1.0053 1.0570 -1.1582 2.2152

0.35 0.15 0.2000 0.1451 0.8549 1.0682 -1.9019 2.9700

0.35 0.1 0.2500 0.1806 0.8194 1.0757 -2.1041 3.1798

0.35 0.01 0.3400 0.2335 0.7665 1.0923 -2.4210 3.5133

0.35 0.0001 0.3499 0.2386 0.7614 1.0944 -2.4525 3.5469
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Table 5.13: Chosen differences ∆α̂ = α̂0 − α̂1 on the upper interval (c, 1) for
P̂1 < P̂2 = 1.5 with calculated values for y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.36 0.3499 0.0101 -0.0480 1.0480 1.0474 -1.0321 2.0795

0.36 0.3 0.0600 0.0193 0.9807 1.0467 -1.3243 2.3710

0.36 0.15 0.2100 0.1583 0.8417 1.0602 -2.0460 3.1062

0.36 0.1 0.2600 0.1917 0.8083 1.0680 -2.2423 3.3104

0.36 0.01 0.3500 0.2418 0.7582 1.0852 -2.5498 3.6350

0.36 0.0001 0.3599 0.2467 0.7533 1.0873 -2.5804 3.6677

0.9 0.89 0.0100 0.2594 0.7406 0.6582 -10.3060 10.9642

0.9 0.75 0.1500 0.2900 0.7100 0.6756 -10.7439 11.4196

0.9 0.5 0.4000 0.3380 0.6620 0.7115 -11.2772 11.9887

0.9 0.1 0.8000 0.4047 0.5953 0.7830 -11.7299 12.5129

0.9 0.01 0.8900 0.4188 0.5812 0.8018 -11.7908 12.5926

0.9 0.0001 0.8999 0.4203 0.5797 0.8040 -11.7968 12.6008

0.99 0.98 0.0100 0.2745 0.7255 0.6147 -1.5876 2.2023

0.99 0.75 0.2400 0.3159 0.6841 0.6424 -1.8144 2.4567

0.99 0.5 0.4900 0.3566 0.6434 0.6776 -2.0083 2.6859

0.99 0.25 0.7400 0.3947 0.6053 0.7188 -2.1594 2.8782

0.99 0.1 0.8900 0.4169 0.5831 0.7469 -2.2335 2.9804

0.99 0.001 0.9890 0.4314 0.5686 0.7670 -2.2766 3.0436

• The greater the ∆α̂ the smaller liquidity cost C for the investor in the
upper range, see Tables 5.7 and 5.16. This is substantiated by the increase
in S(y∗) values for the same α̂0 for decreasing α̂1. This is equal to a Bear
market with the exception of the size of the liquidity cost. As the market
declines 50% the liquidity cost is much larger (S(y∗) = 0.4590) than if
the market increases by 50% (S(y∗) = 0.7489), however not equal to the
marekt movement. Now, the smaller the difference between α̂0 and α̂1 the
smaller the stock sale at t1. This is supported by the decreasing y∗ values
for the same α̂0. Also, this is contrary to the Bear market, in accordance
with empirical observations.

• In the middle and lower range our model S behaves differently. The
greater the difference between α̂0 and α̂1 the bigger liquidity cost C for
the investor, see Tables 5.4, 5.5, 5.14 and 5.15. This is substantiated
by the decrease in S(y∗) values for the same α̂0 for decreasing α̂1. This
is again equal to a Bear market with the exception of the size of the
liquidity cost. As the market declines 50% the liquidity cost is much
larger (Sm(y∗) = 0.4724, Sl(y

∗) = 0.4864) than if the market increases by
50% (Sm(y∗) = 0.7728, Sl(y

∗) = 0.7977). Now, the smaller the difference
between α̂0 and α̂1 the smaller the stock sale at t1. This is supported by
the decreasing y∗ values for the same α̂0. Again, this is contrary to the
Bear market.
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• Now, as α̂0 moves towards 0 there is a transition point where the investor
must change strategy. As the difference between α̂0 and α̂1 is smaller than
0.1 the investor should initiate a pumping strategy in a market with 50%
surge. This will incur a negative liquidity cost C and the investor manages
to avoid a loss on the portfolio. As can be seen in Table 5.14. This is
contrary to the Bear market where the investor should change strategy
from sell to short as α̂0 moves towards 0 and the difference between α̂0

and α̂1 is smaller than 0.3 with a market drop of 50% Table 5.4.

Table 5.14: Chosen differences∆α̂ in the lower range of the interval (0, 1) for
P̂1 < P̂2 = 1.5 with calculated values for ∆α̂, y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.91 0.01 0.9000 0.4201 0.5799 0.7977 -12.0443 12.8420

0.81 0.01 0.8000 0.4052 0.5948 0.8407 -9.7020 10.5427

0.71 0.01 0.7000 0.3865 0.6135 0.8867 -7.7287 8.6154

0.61 0.01 0.6000 0.3618 0.6382 0.9364 -6.0379 6.9743

0.51 0.01 0.5000 0.3278 0.6722 0.9906 -4.5523 5.5429

0.41 0.01 0.4000 0.2775 0.7225 1.0513 -3.1991 4.2504

0.31 0.01 0.3000 0.1947 0.8053 1.1226 -1.9065 3.0291

0.21 0.01 0.2000 0.0317 0.9683 1.2163 -0.5988 1.8152

0.11 0.01 0.1000 -0.4409 1.4409 1.3899 0.8084 0.5815

0.011 0.001 0.0100 -9.0877 10.0877 3.6228 2.3182 1.3047

0.0011 0.0001 0.0010 -39.3736 40.3736 17.0419 2.4817 14.5602

Table 5.15: Chosen differences for ∆α̂ in the middle range of the interval (0, 1)
for P̂1 < P̂2 = 1.5 with calculated values for ∆α̂, y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and
∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.95 0.05 0.9000 0.4193 0.5807 0.7728 -13.0841 13.8570

0.9 0.1 0.8000 0.4047 0.5953 0.7830 -11.7299 12.5129

0.85 0.15 0.7000 0.3885 0.6115 0.7938 -10.4736 11.2674

0.8 0.2 0.6000 0.3701 0.6299 0.8054 -9.2971 10.1024

0.75 0.25 0.5000 0.3485 0.6515 0.8178 -8.1814 8.9992

0.7 0.3 0.4000 0.3225 0.6775 0.8315 -7.1063 7.9378

0.65 0.35 0.3000 0.2898 0.7102 0.8467 -6.0493 6.8960

0.6 0.4 0.2000 0.2468 0.7532 0.8643 -4.9848 5.8490

0.55 0.45 0.1000 0.1864 0.8136 0.8856 -3.8827 4.7683

0.505 0.495 0.0100 0.1049 0.8951 0.9106 -2.8292 3.7398

0.5005 0.4995 0.0010 0.0945 0.9055 0.9136 -2.7194 3.6331

0.50005 0.49995 0.0001 0.0934 0.9066 0.9139 -2.7084 3.6223
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• Figures 5.24 and 5.25 show that the 50% market increase has a negative
liquidity cost of 0.725 for α̂0 = 0.0471, the negative liquidity cost in the
10% market increase is 0.049. This is as expected given that a larger
market increase will induce a larger gain than a smaller increase.

• Figures 5.22 and 5.23 show that a smaller α̂1 yields a greater sales value
S(y∗). This is to be expected, because a smaller α̂1 means that the market
will recover more quickly from the first sell event. Moreover, the figures
show that the sales value is greater for P̂2 = 1.5 than for P̂2 = 1.1, again
as expected.

Table 5.16: Chosen differences for ∆α̂ in the upper range of the interval (0, 1)
for P̂1 < P̂2 = 1.5 with calculated values for ∆α̂, y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and
∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.99 0.09 0.9000 0.4184 0.5816 0.7489 -14.2091 14.9580

0.99 0.19 0.8000 0.4036 0.5964 0.7298 -14.1479 14.8776

0.99 0.29 0.7000 0.3887 0.6113 0.7118 -14.0732 14.7850

0.99 0.39 0.6000 0.3736 0.6264 0.6950 -13.9819 14.6768

0.99 0.49 0.5000 0.3581 0.6419 0.6791 -13.8704 14.5495

0.99 0.59 0.4000 0.3423 0.6577 0.6643 -13.7342 14.3984

0.99 0.69 0.3000 0.3260 0.6740 0.6503 -13.5678 14.2182

0.99 0.79 0.2000 0.3091 0.6909 0.6373 -13.3646 14.0019

0.99 0.89 0.1000 0.2914 0.7086 0.6250 -13.1165 13.7415

0.99 0.98 0.0100 0.2745 0.7255 0.6147 -12.8465 13.4612

0.999 0.998 0.0010 0.2741 0.7259 0.6095 -13.0948 13.7043

0.9999 0.9998 0.0001 0.2741 0.7259 0.6090 -13.1199 13.7289

Table 5.17: Model S with sliding constant ∆α̂ on the interval (0, 1) for
P̂1 < P̂2 = 1.5 with calculated values for ∆α̂, y∗1 , y∗2 , S(y∗1 , y∗2), S(1, 0) and ∆S.

P̂1 < P̂2 = 1.5

α̂0 α̂1 ∆α̂ y∗1 y∗2 S(y∗1 , y
∗
2) S(1, 0) ∆S

0.999999 0.8 0.2000 0.3099 0.6901 0.6325 -13.6684 14.3009

0.9 0.7 0.2000 0.3002 0.6998 0.6823 -10.8729 11.5552

0.8 0.6 0.2000 0.2872 0.7128 0.7371 -8.5507 9.2878

0.7 0.5 0.2000 0.2699 0.7301 0.7974 -6.6125 7.4099

0.6 0.4 0.2000 0.2468 0.7532 0.8643 -4.9848 5.8490

0.5 0.3 0.2000 0.2157 0.7843 0.9387 -3.6070 4.5457

0.4 0.2 0.2000 0.1728 0.8272 1.0222 -2.4291 3.4513

0.3 0.1 0.2000 0.1118 0.8882 1.1174 -1.4096 2.5270

0.2 1e− 07 0.2000 0.0207 0.9793 1.2283 -0.5140 1.7423
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5.3. The numerical analysis

Figure 5.16: Graphs of S(y) with P̂2 = 1.5 and α̂0 = 0.99 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the liquidity cost
and the smaller the y∗1 volume. The stars show the Gradient ascent iterations
locating maximum and the optimal sales value S(y∗).

Figure 5.17: Graphs of S(y) with P̂2 = 1.1 and α̂0 = 0.99 with six different α̂1.
The graphs show the bigger the difference ∆α̂0 the smaller the liquidity cost
and the bigger the y∗1 volume. The stars show the Gradient ascent iterations
locating maximum and the optimal sales value S(y∗).
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5.3. The numerical analysis

Figure 5.18: Graphs of S(y) with P̂2 = 1.5 and α̂0 = 0.3 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the y∗1 volume, while
the liquidity cost first decreases for then to increase again. The stars show the
Gradient ascent iterations locating maximum and the optimal sales value S(y∗).
The figure reveals a transition point b ∈ (0.1, 0.25) in the α̂1-domain where
S(y∗1) decreases as α̂1 moves from 0 to b, and increases from b to 1

Figure 5.19: Graphs of S(y∗) with P̂2 = 1.1 and α̂0 = 0.4 with six different α̂1.
The graphs show the bigger the difference ∆α̂0 the smaller the y∗1 volume and
the smaller the liquidity cost. The stars show the Gradient ascent iterations
locating maximum and the optimal sales value S(y∗). The figure does not reveal
any transition points.
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5.3. The numerical analysis

Figure 5.20: Graphs of S(y) with P̂2 = 1.5 and α̂0 = 0.2 with six different α̂1.
The graphs show the bigger the difference ∆α̂ the smaller the y∗1 volume, while
the liquidity cost first decreases for then to increase again. The stars show the
Gradient ascent iterations locating maximum and the optimal sales value S(y∗).

Figure 5.21: Graphs of S(y) with P̂2 = 1.1 and α̂0 = 0.2 with six different α̂1.
The graphs show the bigger the difference ∆α̂0 the smaller the y∗1 volume and
the smaller the liquidity cost. The stars show the Gradient ascent iterations
locating maximum and the optimal sales value S(y∗).
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5.3. The numerical analysis

Figure 5.22: Two graphs of S(y) with P̂2 = 1.5, α̂0 = 0.99 and α̂1 = 0.98 and
α̂1 = 0.00001.

Figure 5.23: Two graphs of S(y) with P̂2 = 1.1, α̂0 = 0.99 and α̂1 = 0.98 and
α̂1 = 0.00001.
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5.3. The numerical analysis

Figure 5.24: Five graphs of S(y) with α̂0 from 0.01 to 0.99 and α̂1 = 0.01 for
P̂2 = 1.5 showing their sales value. The stars show the Fixed Point iterations
locating maximum and the optimal sales value S(y∗).

Figure 5.25: Five graphs of S(y) with α̂0 from 0.01 to 0.99 and α̂1 = 0.001 for
P̂2 = 1.5 showing their sales value. The stars show the Fixed Point iterations
locating maximum and the optimal sales value S(y∗).
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CHAPTER 6

The case N = 3

This chapter evaluates trading strategies for liquidating a stock portfolio for
N = 3. In Section 6.1 we show that the system of equations in the Lagrange
Multiplier method is also unsolvable for N = 3. Secondly, in Section 6.2 we use
naive analysis from psychology to determine which strategy spaces are feasible
and optimal feasible in the different market types. In this case a naive analysis
follows from the American Psychological Association’s definition: ‘A process of
reasoning or intuiting by which laypersons determine whether “an actor” caused
a certain action’, [APA22]. In this definition ‘an actor’ is to be understood
as the blocks of shares and ‘action’ is to be understood as market reaction to
the actor. Hence, the naive feasible and optimal naive feasible solutions do
not take the market’s reaction to block volumes into consideration. Thirdly,
in Section 6.3 we solve the problem of optimising the sales value by numerical
iteration in Python, based on the method of Gradient Ascent, Theorem 2.2.10.
Lastly, in Section 6.4 we do a comparative analysis of strategies in chosen
market types based on the numeric results.

Remark 6.0.1. As narrowing N = 3 to fit the scope of the thesis had a myriad
of possibilities we chose the twist of naive analysis to show how first glance
intuition can diverge from deeper analysis. This seems interesting as the world
is experiencing disbelief in science, so showing examples of deviations may be a
super tiny step in bridging the gap between feelings and science.

6.1 An analytical approach for N = 3

Here we show that the optimisation of model S is unsolvable analytically. We
also start by introducing a third transaction opportunity t3 as we are in N = 3.
Hence, we have the option to execute a one-step, two-step or three-step strategy;
to buy, sell or hold y1, y2 and y3 shares at times t1, t2 and t3, where pumping,
dumping and short selling are combinations of buy and sell actions.

So, our model S is now a three-variable sales function S(y1, y2, y3). Again,
we wish to simplify the analysis and reduce the function S(y1, y2, y3) into a
two-variable function S(y1, y2). This time, we substitute y3 = 1− y1 − y2 into
S, remembering that P̂1 = 1. Subsequently, we turn:

S(y1, y2, y3) = y1P̂1e
−α̂0y1 + y2P̂2e

−α̂0y2−α̂1y1 + y3P̂3e
−α̂0y3−α̂1y2−α̂2y1

= y1e
−α̂0y1 + y2P̂2e

−α̂0y2−α̂1y1 + y3P̂3e
−α̂0y3−α̂1y2−α̂2y1
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6.2. Trade actions for y1, y2 and y3, and strategy spaces

into

S(y1, y2) = y1e
−α̂0y1 + y2P̂2e

−α̂0y2−α̂1y1 (6.1)

+ (1− y1 − y2)P̂3e
−α̂0(1−y1−y2)−α̂1y2−α̂2y1

= y1e
−α̂0y1 + y2P̂2e

−α̂0y2−α̂1y1

+ (1− y1 − y2)P̂3e
(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0 . (6.2)

Analytically, we now find where the function S(y1, y2) has stationary points,
which we do by an investigation of the partial derivatives of S(y1, y2). We start
out by taking the partial derivatives, equating them to 0 and see if it is possible
to solve for y1 and y2. We were unable to find analytical solutions for y1 and
y2 in N = 2, so the chance of success in this case seems rather small. But, let’s
see what happens:

∂S

∂y1
= e−α̂0y1 − α̂0y1e

−α̂0y1 − y2P̂2α1e
−α̂0y2−α̂1y1

− P̂3e
(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

+ (1− y1 − y2)P̂3(α̂0 − α̂2)e
(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

= (1− α̂0y1)e
−α̂0y1 − α̂1y2P̂2e

−α̂0y2−α̂1y1

−
(
1− (1− y1 − y2)(α̂0 − α̂2)

)
P̂3e

(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0 (6.3)

∂S

∂y2
= 0 + P̂2e

−α̂0y2−α̂1y1 − y2P̂2α̂0e
−α̂0y2−α̂1y1

− P̂3e
(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

+ (1− y1 − y2)P̂3(α̂0 − α̂1)e
(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

= (1− α̂0y2)P̂2e
−α̂0y2−α̂1y1

−
(
1− (1− y1 − y2)(α̂0 − α̂1)

)
P̂3e

(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0 . (6.4)

These equations are on the same form, but more complicated than their N = 2
siblings. We tried to solve the equations analytically, but as expected the system
of equations ∂S

∂y1
= 0 and ∂S

∂y2
= 0 is unsolvable. Hence, this is done numerically

in Section 6.3 by the use of Python, after the naive analysis of how trading
strategies may be chosen by reasoning rather than numerical analysis.

6.2 Trade actions for y1, y2 and y3, and strategy
spaces

We start this section by looking at trade strategy spaces: Sell, buy, short
selling, dumping, pumping and no trade, described by 3-tuples with +, − and
0. Afterwards, we investigate different markets and hypothesise which strategy
spaces are feasible and optimal feasible in each market by a naive analysis. Not
all strategy spaces complete the task of liquidating an already existing portfolio,
hence we will exclude them from further analysis.

67



6.2. Trade actions for y1, y2 and y3, and strategy spaces

As the end game is to liquidate the entire portfolio the sum of the trades
must equal to 1. For example, the strategy (0, 0, 0) states that the investor
should do nothing. This of course does not sum to 1, and is not only suboptimal,
it is outside the scope of the task of liquidating the portfolio. On this note, it
is only the no trade strategy and the pure buy strategy space that are outside
the scope, as the investor is unable to liquidate the portfolio. In all other cases
a combination of pumping, dumping, buy, sell, no trade and short selling can
liquidate the portfolio. Furthermore, the dumping strategy space is a subspace
of the short selling strategy space, as it is one out of several ways to short sell
in a market.

6.2.1 Defining the possible strategy spaces

We use combinatorics to find the different strategy spaces for trading stocks
in N = 3 steps. We are looking at an ordered situation with the possibility
of returning the elements for y1, y2 and y3. As the investor may either buy
(−), sell (+) or do nothing (0), we have three possible actions. We also have
three steps to carry out each action. Hence, we have nr = 33 = 27 different
strategy spaces to choose from, where n is the number of possible actions in
each position r. So, in the following, m is defined as the number of trade actions
the investor utilises in a strategy space.

m = 1 is the situation where the investor only engage in one type of action.
The cases where the investor either chooses to sit still and not engage in
any trades (0, 0, 0), sell some stock in each step (+,+,+), or buy some
stock in each step (−,−,−) are the only possibilities. The total number
of trade actions for m = 1 is three. Of these three permutations we must
exclude those marked in red, as they do not liquidate the portfolio. Hence,
only one strategy space is within the scope of our assignment.

m = 2 is the situation where the investor can engage in only two types of
actions. The only possible cases are those where the investor either sells
and buys (+,+,−), (−,−,+), (+,−,+), (−,+,−), (−,+,+), (+,−,−),
sells and holds (+, 0, 0), (0,+, 0), (0, 0,+), (+, 0,+), (+,+, 0), (0,+,+),
or buys and holds (−, 0, 0), (0,−, 0), (0, 0,−), (−, 0,−), (−,−, 0),
(0,−,−). The total number of trade actions for m = 2 is 18. Of these
18 permutations we must exclude the six marked in red, as they do not
liquidate the portfolio. Hence, only twelve strategy spaces are within the
scope.

m = 3 is the situation where the investor engages in all three actions. The
cases where the investor either sells, buys or holds stock at either step
are (+,−, 0), (−,+, 0), (+, 0,−), (−, 0,+), (0,+,−) and (0,−,+). The
number of trade actions for m = 3 is six, where all permutations may
liquidate the portfolio.

Of the 27 strategy spaces above 19 are within the scope of our task, namely to
liquidate the portfolio. The aim now is to find the strategy spaces that yields
the smallest liquidity cost C through maximising the sales value S, so we must
investigate these 19 strategy spaces further.
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At a first glance it seems tempting to include the hold action as a part of
the sell strategy space. But, let’s wait to see how this unravels. On this note,
we may now classify the different strategy spaces in terms of the areas in R3.
For a geometric representation, see Figure 6.1.

Figure 6.1: The three planes illustrate R3 sliced into y3 < 0, y3 = 0 and y3 > 0.
The points are randomly placed within its strategy space within the scope of
the model S. The orange quadrants are short selling spaces. The light blue
quadrant is the dumping space. The green quadrants are the buy and sell
spaces. The red quadrants are the pure sell spaces. The dark blue quadrant is
the pumping space. The pale lines in the strategy space colours indicate which
strategy space the points on the axes belongs to. The origin is outside the scope
of the model.

Orange quadrants: Short selling strategy spaces, SH .

(−∞, 0]× (0,∞)× (−∞, 0) ∪ (0,∞)× (−∞, 0]× (−∞, 0]

Light blue quadrant: Dumping strategy space, D .

(0,∞)× (0,∞)× (−∞, 0)
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Green quadrants: Sell and buy strategy space, T .

(−∞, 0)× [0,∞)× [0,∞) ∪ [0,∞)× (−∞, 0)× (0,∞)

Red quadrants: Pure sell strategy space, S .

[0,∞)× [0,∞)× [0,∞)

Dark blue quadrant: Pumping strategy space, PU .

(−∞, 0)× (−∞, 0)× (0,∞)

We have now defined the locations in R3 for the different strategy spaces.
However, there is also a white domain which is outside the scope of our model.
In order to operate in these spaces the investor must have the opportunity to
do nothing or just buy stock. We do not allow those strategy spaces, as they do
not liquidate the portfolio. Furthermore, it seems important to emphasise that
Figure 6.1 is R3 sliced into three layers defined by y3 < 0, y3 = 0 and y3 > 0.
In the following we perform a naive analysis to decide which strategy spaces
are feasible and optimal feasible in different market types.

6.2.2 Market types and feasible strategy spaces

The strategy spaces displayed in Figure 6.1 must be evaluated based on market
types. As both P̂2 and P̂3 may be either Bull, Flat or Bear markets we have nine
different market types, all having specific naive optimal market strategies: Bull,
BullFlat, BullBear, Flat, FlatBull, FlatBear, Bear, BearFlat and BearBull. We
now naively analyse which strategy spaces are feasible and which are optimal
feasible for each market type. Furthermore, we provide arguments for the
rationale of each strategy space in every market type.

Remark 6.2.1. The optimal feasible strategy space is the one that results in
the largest sales value S, under the assumption of an undisturbed market, i.e.,
no bounce-back function ψ. Also, feasible strategy spaces are those that are
not guarantied a loss, hereunder estimated market value or legal action. An
illustration of all strategy spaces based on market types is depicted in Figure 6.2,
where the optimal feasible strategy spaces are marked with a golden star.

6.2.2.1 Bull market: P̂1 < P̂2 < P̂3

Feasible strategy spaces: PU 1 = (−,−,+), T2 = (−,+,+), T3 = (−, 0,+),
S4 = (0,+,+), S5 = (+,+,+) and S6 = (0, 0,+).

Optimal feasible strategy space: Buy more shares at t1 and sell all shares
at t3, T3 = (−, 0,+).

Rationale:

• The pumping strategy space where the investor buys more shares
at t1 or t2 for then to sell all shares at t3. This strategy space will
yield a profit under these market sentiments.

70



6.2. Trade actions for y1, y2 and y3, and strategy spaces

P2<P3

P1<P2

Market

diagram

P1=P2

P1>P2

P2=P3 P2>P3

BullFlat BullBear

FlatBull

Flat

BearBull


FlatBear

Bear

SH5

Bull

T2, T3 T1 T1
SH1

T2, T3

S1, S2 S1, S2

S1, S2S1, S2

S3, S7

S3, S7

S3

SH2

S3

T4, T5

T4, T5

S4, S5,

S6

S4, S5,

S6

S4, S5,

S6

S4, S5,

S6

BearFlat

D1, SH3

D1, SH3

S2, SH4S2, SH4

PU1

PU1
SH5

Figure 6.2: The different candidates for feasible and optimal feasible strategy
spaces placed into market types. Candidates marked with a golden star are
optimal feasible strategy spaces. See Figure 6.1 for strategy space definitions.

• The buy and sell strategy spaces where the investor will buy all stock
at t1 or t2 for then to sell all shares at t3. In these spaces the investor
is guaranteed to buy low and sell higher and no loss can occur.

• The pure sell strategy spaces include liquidating the stock step-wise
in t1, t2 and t3, assuring no loss of sales value on the portfolio as the
market is rising.

• The strategy space T3 = (−, 0,+) is optimal feasible as the investor
buys stock when the price is cheapest and sells all when the price is
highest.

6.2.2.2 BullFlat market: P̂1 < P̂2 = P̂3

Feasible strategy spaces: S1 = (0,+, 0), S2 = (+,+, 0), S4 = (0,+,+),
S5 = (+,+,+), S6 = (0, 0,+), T1 = (−,+, 0), T2 = (−,+,+) and
T3 = (−, 0,+).

Optimal feasible strategy space: Buy more shares at t1 and sell all at t2,
T1 = (−,+, 0).

Rationale:

• The pure sell strategy spaces have the investor liquidate the stock
step-wise in t1, t2 or t3, assuring a possibility of gain on the estimate
market value on the portfolio.
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• The buy and sell strategy spaces have the investor buy stock at t1
for then to sell all shares at t2 or t3. In these cases the investor is
guaranteed to buy low and sell higher and no loss can occur.

• The optimal strategy space is T1 = (−,+, 0) as the full gain is taken
as soon as possible, reducing the inflation risk and foregoing other
investment opportunities.

6.2.2.3 BullBear market: P̂1 < P̂2 ∪ P̂2 > P̂3

Feasible strategy spaces: T1 = (−,+, 0), S1 = (0,+, 0), S2 = (+,+, 0),
SH 1 = (−,+,−) and SH 2 = (0,+,−).

Optimal feasible strategy space: Buy more shares at t1, borrow shares and
sell those and the original portfolio at t2, for then to buy back borrowed
shares at t3, SH 1 = (−,+,−).

Rationale:

• The pure sell strategy spaces have the investor liquidate the stock in
t1 or t2, assuring the possibility of a gain on the estimated market
value.

• The buy and sell strategy space have the investor buy stock at t1 for
then to sell all shares at t2. In this case the investor is guaranteed
to buy low and sell higher and no loss can occur.

• The short selling strategy spaces where the investor buys more and
borrows stock at t1 for then to sell it all at t2. In order to capitalise
on the Bear market the investor buys back the borrowed portion of
the sold stock, for then to return the borrowed shares. In this case
the investor earns the price delta of the market increase from P1 to
P2 and on the decrease from P2 to P3.

• The optimal strategy space SH 1 = (−,+,−) is thus where the
investor earns money on the market increase by buying more stock
at t1 and on the market decrease by utilising a short selling strategy
space on the entire portfolio plus borrowed shares.

6.2.2.4 FlatBull market: P̂1 = P̂2 < P̂3

Feasible strategy spaces: S4 = (0,+,+), S5 = (+,+,+), S6 = (0, 0,+),
T4 = (+,−,+) and T5 = (0,−,+).

Optimal feasible strategy space: Buy more share at t2 for then to sell the
entire portfolio at t3, T5 = (0,−,+).

Rationale:

• The pure sell strategy spaces have the investor liquidate the stock
step-wise in t1, t2 or t3, assuring a possibility of a gain compared to
the estimated market value.
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• The buy and sell strategy spaces have the investor buy stock at t2 for
then to sell all shares at t3. In these cases the investor is guaranteed
to buy low and sell higher and no loss can occur.

• The optimal strategy space is T5 = (0,−,+) as the entire portfolio
is liquidated in the Bull part.

6.2.2.5 Flat market: P̂1 = P̂2 = P̂3

Feasible strategy spaces: S1 = (0,+, 0), S2 = (+,+, 0), S3 = (+, 0, 0),
S4 = (0,+,+), S5 = (+,+,+), S6 = (0, 0,+) and S7 = (+, 0,+).

Optimal feasible strategy space: Sell entire portfolio at t1, S3 = (+, 0, 0).

Rationale:

• The feasible strategy spaces have the investor sell all strategy spaces
as the investor needs to get out of the market in order to reinvest in
different assets.

• The optimal strategy space is to sell the entire portfolio at t1 in
order to release funds to make other investments, S3 = (+, 0, 0).

6.2.2.6 FlatBear market: P̂1 = P̂2 > P̂3

Feasible strategy spaces: D1 = (+,+,−), SH 2 = (0,+,−), SH 3 =
(+, 0,−), S1 = (0,+, 0), S2 = (+,+, 0) and S3 = (+, 0, 0).

Optimal feasible strategy space: Sell original portfolio and borrowed
shares at t2 and repurchase the borrowed shares at t3, SH 2 = (0,+,−).

Rationale:

• The dumping strategy space have the investor sell original and
borrowed stock at t1 and t2 for then to repurchase the borrowed
shares at t3.

• The pure sell strategy spaces have the investor liquidate the stock in
t1 or t2, assuring a possibility of a gain compared to the estimated
market value.

• The short selling strategy spaces have the investor sell the original
and borrowed stock at t1 or t2 for then to repurchase the borrowed
shares at t3. In these spaces the investor earns the price delta of the
market decline from P1 or P2 to P3.

• The optimal strategy space is SH 2 = (0,+,−) as the investor holds
the short position a shorter amount of time and thus reduces the
exposure risk.
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6.2. Trade actions for y1, y2 and y3, and strategy spaces

6.2.2.7 BearBull market: P̂1 > P̂2 ∪ P̂2 < P̂3

Feasible strategy spaces: SH 5 = (+,−, 0), T4 = (+,−,+) and T5 =
(0,−,+).

Optimal feasible strategy space: Sell stock at t1, buy more stock at t2 and
sell the complete position at t3, T4 = (+,−,+).

Rationale:

• The short selling strategy spaces have the investor sell original and
borrowed stock at t1 for then to repurchase the borrowed shares at t2.
In this case the investor earns the price delta of the market decline
from P1 to P2.

• The buy and sell strategy spaces where the investor sells or keeps
stock at t1, then buys more stock as the market is at a low at t2, for
then to sell it all when the market is back up again at t3.

• The optimal strategy space is T4 = (+,−,+) as the investor
capitalises before the market is in decline. Then the investor buys
more stock when the market is at the lowest for then to sell at t3
and collect a gain on the Bull market.

6.2.2.8 BearFlat market: P̂1 > P̂2 = P̂3

Feasible strategy spaces: S2 = (+,+, 0), S3 = (+, 0, 0), SH 4 = (+,−,−)
and SH 5 = (+,−, 0).

Optimal feasible strategy space: Sell original and borrowed stock at t1 for
then to repurchase the borrowed stock at t2, SH 5 = (+,−, 0).

Rationale:

• The pure sell strategy spaces have the investor liquidate the stock in
t1 or t2, assuring a possibility of a gain compared to the estimated
market value.

• The short selling strategy spaces have the investor sell original and
borrowed stock at t1 for then to repurchase the borrowed shares at
t2 or t3. In this case the investor earns the price delta of the market
decline from P1 to P2 or P3.

• The optimal strategy space is SH 5 = (+,−, 0) as the market potential
is released in the shortest amount of time, reducing the exposure
risk.

6.2.2.9 Bear market: P̂1 > P̂2 > P̂3

Feasible strategy spaces: PU 1 = (−,−,+), D1 = (+,+,−), S2 = (+,+, 0),
S3 = (+, 0, 0), S7 = (+, 0,+), SH 3 = (+, 0,−) and SH 4 = (+,−,−).
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Optimal feasible strategy space: Sell short at t1 and repurchase at t3,
SH 3 = (+, 0,−).

Rationale:

• The pumping strategy space have the investor buy stock at t1 and
t2 in order to support a declining stock. This is not a strategy
space that must yield a loss compared to the estimated market value,
however it is used in order to dampen the price reduction. It is thus
not optimal in terms of sales value.

• The dumping strategy space have the investor sell stock at t1 and t2
in order to reduce the liquidity cost. This strategy space will often
incur a loss compared to the estimated market value. However, if
the stock was originally bought in a market that came from a lower
price point than the sell price in the Bear market, the investor may
make a profit. This profit will though be lower than if the investor
takes a short position.

• The pure sell strategy spaces have the investor try to liquidate the
stock in order to dampen a decline in the price development. These
strategy spaces, are of course, no-profit strategies unless the stock
was bought in a market with a lower price point. Nonetheless, these
strategy spaces cannot compete with a short selling strategy space
in terms of a profit opportunity.

• The short selling strategy spaces have the investor sell stock at t1 or
t2 and repurchase borrowed stock at t3. In this case the investor earns
the price delta of the market decline. Under these circumstances the
investor is guaranteed to sell high and buy back low and no loss can
occur.

• The optimal strategy space SH 3 = (+, 0,−) is thus where original
and borrowed shares are sold at t1 and the borrowed shares are
repurchased and returned at t3.

Remark 6.2.2. It is necessary to mention that some of these optimal strategy
spaces may demand that the investor pump or dump shares indefinitely. This is
of course outside the scope of our model, so we limit the scope by the individual
investor’s access to capital and shares, as well as the amount of shares issued
by a given company.

Consequently, we have defined strategy spaces in R3 where we naively found
optimal strategy spaces for different market types. In the next chapter we try to
determine the location of the actual maxima numerically in either market type,
and do a comparative analysis between the naive analysis without bounce-back
considerations and our model S with the bounce-back function ψ. Finally, in
the next section, we do a comparative analysis of the numeric results across the
different market types.

6.3 The numerical analysis

In the numerical approach we plot the model and optimise by Gradient Ascent,
and describe the different actual optimal strategy spaces and numerical strategies
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for all nine markets defined in the previous section. An actual optimal strategy
space in this case is one with a numerical strategy that our model S generates
under certain market sentiments α̂0, α̂1 and α̂2 and market types P̂2 and P̂3.

The case N = 3 and n = 1, 2, 3 models the situation where the investor
sells the entire portfolio of stock in three – not necessarily equal – blocks. As
mentioned before, the market will not have time to stabilise between each trade,
and the function ψ describes the discount factor generated by the market’s
lacking ability to bounce-back.

6.3.1 The mathematics behind the Python scene

Our deep dive into the case N = 3 starts this time with a visit to the Gradient
Ascent through partial derivatives and the gradient ∇S. The model is given by
S(y1, y2, y3), as introduced in Equation (1.7):

S(y1, y2, y3) = y1P̂1e
−α̂0y1 + y2P̂2e

−(α̂0y2+α̂1y1) + y3P̂3e
−(α̂0y3+α̂1y2+α̂2y1),

where y1, y2 and y3 are weighted blocks of shares as a percentage of the
total portfolio. This also entails that y1 + y2 + y3 = 1, which we use to
reduce the function S(y1, y2, y3) to a function of two variables by substituting
y3 = 1− y1 − y2, just like before. This way we may plot the surface, and find
the optimum by Gradient Ascent. We found this expression in (6.2) in the
previous section:

S(y1, y2) = y1P̂1e
−α̂0y1 + y2P̂2e

−(α̂0y2+α̂1y1)

+ (1− y1 − y2)P̂3e
(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

The partial derivatives (6.3) and (6.4) are

∂S

∂y1
= (1− α̂0y1)e

−α̂0y1 − α̂1y2P̂2e
−α̂0y2−α̂1y1

−
(
1− (1− y1 − y2)(α̂0 − α̂2)

)
P̂3e

(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

and
∂S

∂y2
= (1− α̂0y2)P̂2e

−α̂0y2−α̂1y1

−
(
1− (1− y1 − y2)(α̂0 − α̂1)

)
P̂3e

(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0 .

Hence, the gradient ∇S is as follows.

∇S(y1, y2) =
(
(1− α̂0y1)e

−α̂0y1 − α̂1y2P̂2e
−α̂0y2−α̂1y1

−
(
1− (1− y1 − y2)(α̂0 − α̂2)

)
P̂3e

(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0 ,

(1− α̂0y2)P̂2e
−α̂0y2−α̂1y1

−
(
1− (1− y1 − y2)(α̂0 − α̂1)

)
P̂3e

(α̂0−α̂1)y2+(α̂0−α̂2)y1−α̂0

)
.

As Python has packages that calculate the partial derivatives, we choose to
utilise these in the numerical script. We want, however, to display the gruelling
expressions to show what is going on behind the scene.
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6.3.2 Numerical plots, Gradient Ascent and other
mathematical stars

In this section we find the actual optimal strategy spaces and compare them to
the naive optimal strategy spaces. We use the Method of Gradient Ascent to
visualise the actual optimal strategy spaces in 3D plots defined by the reduced
model S(y1, y2).

A weakness of this section is that it only includes one set of α̂s: α̂0 = 0.9,
α̂1 = 0.5 and α̂2 = 0.1. It would have been very interesting to compare and
contrast several combinations of α̂s, sadly the scope of this thesis does not allow
for that. This limitation does restrict our insight into the behaviour in N = 3
of our model, nonetheless we do see some interesting things as we compare the
model to the naive analysis.

We continue onto numerical calculations to find different optima dependent
on market sentiments α̂n, as well as the estimated prices P̂n. As market
sentiments are impossible to determine, but merely are functions of political,
psychological and events of the World, we optimise based on different estimated
prices P̂n, as an investor’s trading decisions often are based on the stock price
development rather than market sentiment. Yes, the stock price is of course a
result of the overall market, however stock prices can move counter-cyclical to
market sentiments. An example in these times of war is the oil price.

Remark 6.3.1. When the naive analysis was made there was no inference to any
restrictions on the market type or its price development.

6.3.2.1 Bull: P̂1 < P̂2 < P̂3

In Section 6.2.2.1 on page 70 we found the naive optimum to be the buy and sell
strategy space T3 = (−, 0,+) for a pure Bull market. In this case the investor
buys more stock at t1, does nothing at t2, for then to sell the entire portfolio at
t3.

The naive optimum T3 = (−, 0,+), approximated by Figure 6.3, is a
boundary case between T2 = (−,+,+) and PU 1 = (−,−,+), Figures 6.4
and 6.5 display two examples of actual optimal strategy spaces for the cases
T2 = (−,+,+) and PU 1 = (−,−,+). Based on the Intermediate Value
Theorem 2.2.11 we know that the investment strategy space T3 = (−, 0,+) also
can be found as an actual optimum under certain price conditions given the
continuity of the model. It is also important to emphasise that the strategy
space chosen in the naive case, T3 = (−, 0,+), is just that: A naive approach
to making investment decisions, as there is no one solution to fit all price
developments in a certain type of market. Our numerical analysis unravels that
our naive optimum is not the optimal strategy space in most cases.

So, why is it that T3 = (−, 0,+) is not optimal at all times? It seems that
the bounce-back function ψ in the last step t3 does not have enough bounce.
Hence, the price drop of flooding the market at t3 will outperform the profit
from the extra stocks bought in step t1. It may however be argued that an
insignificant portfolio could benefit from the T3 strategy space as the bounce
element will be negligible, but this is outside the scope of this thesis.
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Furthermore, numerous iterations within the scope of conceivable price
changes found several incidents where many of the naive feasible strategy
spaces were the actual optimum, such as the example T4 = (+,−,+) shown in
Figure 6.3. In addition, Figures 6.6 and 6.7 display counter-examples of the
naive optimum T3 = (−, 0,+), and thus another naive feasible strategy space
turned actual optimal strategy space. Both of these solutions belong to the
trading strategy space S5 = (+,+,+) where the investor should sell a portion
of the portfolio in each step, rather than buy even more stock at t1 for then to
sell all at the last step t3.

Finally, our model shows that in a moderate market increase, displayed in
Figure 6.6, the investor manages to salvage only 69.33% of the portfolio value
with this three-step strategy. Even in a hot market with 50% increase shown in
Figure 6.7, the investor only manages to escape with 83.16% of the portfolio
value, incurring a 16.84% liquidity cost due to the size of the portfolio. So,
a market change of 40 percentage points gives a sales value change of 13.83
percentage points. Also, the market increase of 50% steals more value (66.84%)
from the investor than the market increase of 10% (40.70%) even though the
investor is able to salvage more of the portfolio, compared to the case where the
portfolio size was unable to move the market. Hence, the bounce-back function
ψ influence less by a bigger market increase than a smaller market increase.

6.3.2.2 BullFlat: P̂1 < P̂2 = P̂3

In Section 6.2.2.2 on page 71 we found the naive optimal strategy space to be
the buy and sell strategy space T1 = (−,+, 0), where the investor buys more
stock in step t1, sells all in t2 and does nothing in t3.

The numerical analysis shows that the naive optimum, also in this case, is
not the actual optimal strategy space. Iterations within the scope of conceivable
price changes disclosed options where several of the naive feasible buy and sell
strategy spaces were actual optimal strategy spaces, such as S5 = (+,+,+)
shown in Figures 6.8 and 6.9. The figures display a BullFlat market with 10%
and 50% increase before levelling out, respectively.

Furthermore, the naive optimal strategy space T1 = (−,+, 0) is a boundary
case for T2 = (−,+,+) and SH 1 = (−,+,−). It is clear that we are unable to
find SH 1, as this is a short selling strategy space, which is not naive feasible in
a non-declining market. We were however able to find another optimal strategy
space in addition to S5 = (+,+,+) among the naive feasible strategy spaces,
namely the buy and sell strategy space T2 = (−,+,+). Figure 6.11 shows an
approximation to the boundary case S4 = (0,+,+) between S5 and T2, and
Figure 6.10 displays an example of T2.

Based on numerical iterations of P̂2 = P̂3 we see that the second and
third coordinate of our 3-tuple (y1, y2, y3) seem to stay positive independent of
whether we make P̂2 go towards 1 or some big positive number even outside of
a possible scope. It is interesting to see that the naive optimal strategy space
T1 = (−,+, 0) is thus degraded to a non-feasible strategy space. Furthermore,
several of the naive feasible strategy spaces hypothesised in the BullFlat scenario
are after the numerical analysis degraded to naive non-feasible strategy space.
Of the naive feasible strategy spaces the following are now degraded to naive
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Figure 6.3: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 2.5 and P̂3 = 9.55 in a Bull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.4: An example of T2 = (−,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 5.1 and P̂3 = 7.25 in a Bull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.5: An example of PU 1 = (−,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 7.8 and P̂3 = 45.55 in a Bull market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.

81



6.3. The numerical analysis

Figure 6.6: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 1.05 and P̂3 = 1.1 in a Bull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.7: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 1.25 and P̂3 = 1.5 in a Bull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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non-feasible strategy spaces: S1 = (0,+, 0), S2 = (+,+, 0), S4 = (0,+,+),
S6 = (0, 0,+), T1 = (−,+, 0) and T3 = (−, 0,+).

So, why is it that T1 = (−,+, 0) is not optimal at all, not even feasible in
the model? It seems that the bounce-back function ψ in step t2 does not have
enough bounce in this case. Hence, the price drop of flooding the market at t2
will outperform the profit from the extra stocks bought in step t1. Again, it
may however be argued that an insignificant portfolio could benefit from the T1
buy and sell strategy space as the bounce-back function ψ will be negligible.

Finally, our model shows that in the moderate market (10% increase)
displayed in Figure 6.8 the investor manages to salvage only 70.24% of the
portfolio value with this S5 three-step strategy. Even in the extreme market
(50% increase) shown in Figure 6.9 the investor only manages to escape with
88.43% of the portfolio value, incurring a 29.76% liquidity cost in the moderate
market and a liquidity cost of 11.57% in the extreme market due to the size
of the portfolio. Consequently, a bigger market increase only helps reduce the
liquidity cost by 18.19 percentage points, while the market moved 40 percentage
points. Hence, the bigger the market increase the bigger the effect from the
bounce-back function ψ.

6.3.2.3 BullBear: P̂1 < P̂2 ∪ P̂2 > P̂3

In this case we know that P̂1 < P̂2 and P̂2 > P̂3, however we do not know
whether P̂3 is smaller, greater or equal to P̂1. Consequently, we have to evaluate
several different situations in order to say something sensible about a BullBear
market.

In Section 6.2.2.3 on page 72 we found the naive optimal strategy space to
be the short selling strategy space SH 1 = (−,+,−), where the investor buys
more stock at t1, sells stock at t2, for then to buy back the borrowed shares at
t3.

The numerical analysis shows that the naive optimal strategy space was not
found. Numerous iterations within a scope of conceivable price changes found
several incidents where no representatives from the naive feasible buy and sell
strategy spaces were the actual optimal strategy spaces, such as the example
D1 = (+,+,−), S5 = (+,+,+) and T2 = (−,+,+) shown in Figures 6.12, 6.14
and 6.16.

Interestingly, D1 = (+,+,−), which is the space where the investor sells
stock at t1 and t2 for then to buy back stock in t3, represents both a short selling
strategy space, as well as a dumping strategy space. As discussed previously,
the dumping strategy space is a special case in the set of short selling strategy
spaces. It is exciting that this strategy space surfaced as an actual optimal
strategy space, as it may seem counter-intuitive that dumping stock into the
market, which in itself will drive down the price, actually gives the largest sales
value.

Furthermore, since S2 = (+,+, 0) is the boundary case of S5 = (+,+,+) and
D1 = (+,+,−), we know by the Intermediate Value Theorem 2.2.11 that S1 can
give an actual optimal strategy space, which is what we naively hypothesised as
a feasible strategy space. Figure 6.13 shows an approximation of S1 = (+,+, 0).
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Figure 6.8: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = P̂3 = 1.1 in a BullFlat market. The contour
plot below shows the sales value surface and the iterations of the Gradient
Ascent to the maximum.
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Figure 6.9: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = P̂3 = 1.5 in a BullFlat market. The contour
plot below shows the sales value surface and the iterations of the Gradient
Ascent to the maximum.
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Figure 6.10: An example of T2 = (−,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = P̂3 = 2.5 in a BullFlat market. The contour
plot below shows the sales value surface and the iterations of the Gradient
Ascent to the maximum.
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Figure 6.11: An example of S4 = (0,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = P̂3 = 2.3205 in a BullFlat market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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In addition, Figure 6.15 can be viewed as an approximation of S4 = (0,+,+),
which is also the boundary case of T2 = (−,+,+) and S5 = (+,+,+).
Interestingly enough, neither of these strategy spaces were included in the
naive feasible strategy space.

Our model shows some interesting profits. The sales value is 128.28% of the
portfolio value when the market moves 200% on the second step and falls back
to its original price point. Also, in the even more extreme market where the
market moves 900% for then to fall back to a 300% increase, the sales value is
545.12% of the portfolio value, incurring a negative liquidity cost in both cases,
as displayed in Figures 6.15 and 6.16.

In a more moderate market these numbers are quite different. As the market
moves 10% and falls back to its original price point, the investor only manages to
salvage 67.97% of the portfolio with the optimal trading strategy S5 = (+,+,+).
If the market falls further, for instance to 10% of original value the investor
manages to save 63.09% of the portfolio value with the dumping strategy space
D1 = (+,+,−), here shown in Figures 6.12 and 6.14.

So, why were only one of the naive feasible strategy spaces a strategy space
in the numerical case? Again, it seems reasonable to suggest the behaviour
of the bounce-back function ψ. It has already shown us that it is difficult to
embed its behaviour in the naive analysis.

6.3.2.4 FlatBull: P̂1 = P̂2 < P̂3

In Section 6.2.2.4 on page 72 we found the naive optimal strategy space to be
the buy and sell strategy space T5 = (0,−,+), where the investor does nothing
in step t1, buys more shares in t2 and sells all in t3.

The numerical analysis shows that the naive optimal strategy space, also in
this case, is not the actual optimal strategy space, even though it is an edge
case of a naive optimal strategy space, namely T4 = (+,−,+). Iterations within
the scope revealed that two of the naive feasible strategy spaces gives an actual
optimum, namely S5 = (+,+,+) and T4 = (+,−,+). In addition, we found
an approximation to S7 = (+, 0,+) which also gives an optimum. These are
shown in Figures 6.17 to 6.20.

It is interesting to see that the naive optimal strategy space T5 = (0,−,+)
is thus degraded to a non-feasible strategy space, as in the BullFlat case.
Furthermore, several of the naive feasible strategy spaces in the FlatBull scenario
are after the numerical analysis degraded to non-feasible strategy spaces. Of the
naive feasible strategy spaces, the following are now degraded to non-feasible:
S4 = (0,+,+), S6 = (0, 0,+) and T5 = (0,−,+).

Then, why is it that T5 = (0,−,+) is not an actual optimal strategy space,
not even feasible in this model? It looks like the bounce-back function ψ in step
t3 does not have enough bounce. Hence, the price drop of oversupplying the
market at t3 will outperform the profit from the extra stocks bought in step t2.
Again, it may however be argued that an insignificant portfolio could benefit
from the T5 buy and sell strategy space as the bounce-back function ψ will be
negligible.
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Figure 6.12: An example of D1 = (+,+,−). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 1.1 and P̂3 = 0.1 in a BullBear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.13: An example of S2 = (+,+, 0). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 1.1 and P̂3 = 0.36 in a BullBear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.14: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 1.1 and P̂3 = 1 in a BullBear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.15: An example of S4 = (0,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 3 and P̂3 = 1 in a BullBear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.16: An example of T2 = (−,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 10 and P̂3 = 4 in a BullBear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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The investigation shows that if P̂3 < 2.2, then S5 = (+,+,+) is the
actual optimal strategy space. If P̂3 > 2.25, then T4 = (+,−,+) is the optimal
strategy space. Hence, at some point on the interval 2.2 < P̂3 < 2.25 the optimal
strategy space is given by S7 = (+, 0,+). Figure 6.20 shows an approximation
of S7 = (+, 0,+) with a P̂3 = 2.23. Based on numerical iterations of P̂1 = P̂2,
we see that the first and third coordinate of our 3-tuple (y1, y2, y3) seem to stay
positive independent of whether we make P̂3 go towards 1 – as in the case of
the Flat market (Section 6.3.2.5) – or some big positive number even outside of
a possible scope.

Finally, our model shows that in the moderate market (10% increase)
displayed in Figure 6.17, the investor manages to salvage only 68.49% of the
portfolio value with this three-step strategy, incurring a 31.51% liquidity cost.
Even in the extreme market (50% increase) shown in Figure 6.18, the investor
only manages to escape with 79.50% of the portfolio value, yielding a liquidity
cost of 20.50%. Subsequently, in a FlatBull market, a bigger market increase
only helps reduce the liquidity cost by 11.01 percentage points, while the market
moves 40 percentage points. Hence, the bigger the market increase the bigger
the effect from the bounce-back function ψ.

6.3.2.5 Flat: P̂1 = P̂2 = P̂3

In Section 6.2.2.5 on page 73 we found the naive optimal strategy space to
be the sell strategy space S3 = (+, 0, 0), where the investor sells the complete
market moving portfolio at t1, and does nothing at t2 and t3.

This numerical analysis shows that our naive optimal strategy space is not
the actual optimal strategy space in any case when it comes to market moving
portfolios. As the market is Flat we have P̂1 = P̂2 = P̂3 = 1, so only one run is
needed. In this case the sell strategy space S5 = (+,+,+) is again the actual
optimal strategy space, as seen in Figure 6.21.

Our model shows that in the Flat market (0% increase) displayed in
Figure 6.21, the investor manages to salvage only 66.09% of the portfolio
value with the optimal strategy. The optimum incurs a 33.91% liquidity cost
on the portfolio.

Also, in a Flat market the feasible strategy spaces were defined as:
S1 = (0,+, 0), S2 = (+,+, 0), S3 = (+, 0, 0), S4 = (0,+,+), S5 = (+,+,+),
S6 = (0, 0,+) and S7 = (+, 0,+). Interestingly, according to our model
under the restriction of the α̂ns, all naive feasible strategy spaces except for
S5 = (+,+,+) are degraded to non-feasible. It is interesting to see that all
degraded feasible strategy spaces are boundary cases for other strategy space.
Nonetheless, the naive optimal strategy space is now non-feasible as well.

Naively, we did not determine which feasible strategy space gave the largest
sales value. Actually, we hypothesised that they would be exactly the same.
The reason for choosing S3 = (+, 0, 0) was that it would take the capital out
of the market in order to invest in other opportunities and have a chance for
increased profit. On that note, the above argument may be valid in the other
feasible strategy spaces, however the model does not take reinvestment into
consideration.
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Figure 6.17: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 1.1 in a FlatBull market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.18: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 1.5 in a FlatBull market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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6.3. The numerical analysis

Figure 6.19: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 10 in a FlatBull market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.20: An example of S7 = (+, 0,+). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 2.23 in a FlatBull market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.21: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface in a Flat market, P̂1 = P̂2 = P̂3 = 1. The contour plot below
shows the sales value surface and the iterations of the Gradient Ascent to the
maximum.
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6.3.2.6 FlatBear: P̂1 = P̂2 > P̂3

In Section 6.2.2.6 on page 73 we found the naive optimal strategy space to
be the short selling strategy space SH 2 = (0,+,−), where the investor does
nothing in step t1, sells original and borrowed shares in t2 and buys back the
borrowed shares in t3.

The numerical analysis shows that the naive optimal strategy space, also
in this case, is not the actual optimal strategy space, even though it is an
edge case of an actual optimal strategy space, namely D1 = (+,+,−). Further
iterations on the scope showed that one of the naive feasible strategy spaces
gave an actual optimal strategy space, D1 = (+,+,−). In addition, we found
an approximation to S2 = (+,+, 0) which also gave an actual optimal strategy
space. Again, S5 = (+,+,+) came up as a dark horse and gave another actual
optimal strategy space on the interval 0.348 < P̂3 < 1. These are shown in
Figures 6.22 to 6.25.

The analysis also shows that if P̂3 < 0.347 then D1 = (+,+,−) is the actual
optimal strategy space. If P̂3 > 0.348 then S5 = (+,+,+) is the actual optimal
strategy space. Hence, at some point on the interval 0.347 < P̂3 < 0.348 the
actual optimal strategy space is given by S2 = (+,+, 0). Based on numerical
iterations of P̂1 = P̂2, we see that the first and second coordinate of the 3-tuple
(y1, y2, y3) seem to stay positive independent of whether we make P̂3 go towards
0 or 1 in a FlatBear market.

Again, we see that the naive optimal strategy space SH 2 = (0,+,−) is
degraded to a non-feasible one. Furthermore, several of the naive feasible
strategy spaces in the FlatBear scenario are after the numerical analysis degraded
to non-feasible, such as: SH 2 = (0,+,−), SH 3 = (+, 0,−), S1 = (0,+, 0) and
S3 = (+, 0, 0).

Now, why is it that SH 2 = (0,+,−) is not an optimal strategy space, not
even feasible in this model? It looks like the bounce-back function ψ has taken
us for a spin yet again. Hence, the price drop of oversupplying in the market at
t2 will outperform the profit from the extra stocks bought in step t3, even with
the help of the shorted stock. Also, it may again be argued that an insignificant
portfolio size could benefit from the SH 2 trading strategy as the bounce-back
function ψ will be negligible.

Our model shows that in an extreme market (90% decrease) displayed in
Figure 6.22, the investor manages to salvage only 60.20% of the portfolio value
with this three-step strategy, incurring a 39.80% liquidity cost. Even in the
less extreme market (50% decrease) shown in Figure 6.24, the investor only
manages to escape with 57.54% of the portfolio value, yielding a liquidity cost
of 42.46%. Hence, an additional 40 percentage point drop in the market yields
only a marginally increased sales value (2.66 percentage points). Consequently,
the bounce-back function ψ is stronger the bigger the market drop.

6.3.2.7 BearBull: P̂1 > P̂2 ∪ P̂2 < P̂3

In the BearBull case we know that P̂1 > P̂2 and P̂2 < P̂3, however this is also a
case where we do not know whether P̂3 is smaller, greater or equal to P̂1. Hence,
we have to evaluate each situation in order to analyse the BearBull market.
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Figure 6.22: An example of D1 = (+,+,−). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 0.1 in a FlatBear market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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6.3. The numerical analysis

Figure 6.23: An example of S2 = (+,+, 0). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 0.347 in a FlatBear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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6.3. The numerical analysis

Figure 6.24: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 0.5 in a FlatBear market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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6.3. The numerical analysis

Figure 6.25: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = P̂2 = 1 and P̂3 = 0.9 in a FlatBear market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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In Section 6.2.2.7 on page 74, we found the naive optimal strategy space
to be the buy and sell strategy space T4 = (+,−,+), where the investor sells
stock at t1, buys more stock at t2, for then to sell it all at t3.

The numerical analysis shows that the naive optimal strategy space was
indeed found, however only in extreme market sentiments. Numerous iterations
within the scope found other strategy spaces than the naive feasible strategy
spaces. These are S5 = (+,+,+) and S7 = (+, 0,+), as shown in Figures 6.28
and 6.29. We were unable to locate the naive feasible strategy spaces:
T5 = (0,−,+) and SH 5 = (+,−, 0). Hence, the only naive feasible strategy
space located was the one that we chose as the naive optimal strategy space.

Also, in this case we were able to find an approximation to the boundary
case of S5 = (+,+,+) and T4 = (+,−,+), namely S7 = (+, 0,+). By
the Intermediate Value Theorem 2.2.11 we are assured its existence. The
approximation of the boundary case is shown in Figure 6.29.

Our model shows some interesting sales values. The investor earns 41.14%
of the portfolio value when the market declines 90% in the second step, for then
to increase 10% in t3. The liquidity cost of 58.86% beats the overall market
drop of 89%, actually salvaging 30.14 percentage points on the market. See
Figure 6.26.

In the case where the market has a 90% decline in t2, for then to return
to its original state in step t3, the investor experiences a liquidity cost of
12.72% as only 87.28% of the initial portfolio value is rescued. See Figure 6.27.
Furthermore, in the case where the market has only a 10% decline in t2, for
then to return to its original state in step t3, the investor experience a liquidity
cost of 35.50%, as only 64.50% of the initial portfolio value is rescued. See
Figure 6.28. It is interesting to see that a dramatically larger decline in step
t2 yields a much smaller liquidity cost on the sales value S. The liquidity cost
delta is 22.78 percentage points in favour of the dramatic decline in t2.

A closer look shows that the case of a 90% decline in t2 follows the trading
strategy T4 = (+,−,+) shown in Figure 6.26, while the 10% decline in t2
optimises S5 = (+,+,+) shown in Figure 6.28. As T4 lends opportunity to buy
more stock as the drop occurs, the investor seems to capitalise on the surge of
900% from P̂2 = 0.1 to P̂3 = 1. In that respect it seems rather poor that the
actual optimal strategy only gives a sales value less than 1. This again lends
evidence to the strength of the bounce-back function ψ. Or maybe it should be
called the ‘lack-of-bounce-back function’?

Finally, in Figure 6.30 we notice that the market declines 10% in step t2,
for then to return to a doubling of the original state in t3, the investor incurs
a 4.48% liquidity cost due to the bounce-back function. The market doubles,
however the investor does not even manage to salvage the original value of the
portfolio. The model tells a story of the power of oversupplying the market and
how much this influences the actual purchasing price in an unstable market.

6.3.2.8 BearFlat: P̂1 > P̂2 = P̂3

In Section 6.2.2.8 on page 74 we found the naive optimal strategy space to be
the short selling strategy SH 5 = (+,−, 0), where the investor borrows and sells
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6.3. The numerical analysis

Figure 6.26: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.1 and P̂3 = 0.11 in a BearBull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.27: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.1 and P̂3 = 1 in a BearBull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.28: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.9 and P̂3 = 1 in a BearBull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.29: An example of S7 = (+, 0,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.9 and P̂3 = 1.87 in a BearBull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.30: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.9 and P̂3 = 2 in a BearBull market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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both borrowed and original stock in step t1, buys back the borrowed stock in t2
for then to do nothing in t3.

The numerical analysis shows that the naive optimal strategy space
SH 5 = (+,−, 0), also in this case, is not the actual optimal strategy space.
Again, numerous iterations within the scope of conceivable price changes showed
that none of the naive feasible strategy spaces were available in this market –
so neither S2 = (+,+, 0), S3 = (+, 0, 0), SH 4 = (+,−,−) and SH 5 = (+,−, 0).

Our model shows that in a market of 10% decline displayed in Figure 6.34,
the investor manages to salvage only 62.14% of the portfolio value with the
three-step strategy space S5 = (+,+,+), which is the actual optimal strategy
space. Even in a declining market of 50% shown in Figure 6.33 the investor
only manages to escape with 48.62% of the portfolio value, incurring a 37.86%
liquidity cost in the 10% decline and a liquidity cost of 51.38% in the 50%
decline. Furthermore, in both cases the investor is losing towards the market,
which declines 10% and 50%, respectively. Hence, a big decrease in the market
only yields a minor reduced sales value (13.52 percentage points) compared to
the 10% market decline. Consequently, the bounce-back function ψ is weaker
in a big market drop than in a small market drop.

Figure 6.32 shows that the investment strategy space S5 = (+,+,+) is the
actual optimal strategy space until the market declines 74.65%. At this point the
model suggests S7 = (+, 0,+), which is the boundary between S5 = (+,+,+)
and T4 = (+,−,+), as the optimal strategy space yielding a 42.89% sales value
and thus incurring a 57.11% liquidity cost. It is interesting that the investor in
this case beats the market with 17.54 percentage points.

Even the 90% market decline yields a positive result on the market decline
as the investor’s sales value is 40.98%. This is a markup on the market of 30.98
percentage points. In this case the model suggest the investment strategy space
T4 = (+,−,+). See Figure 6.31.

Based on numerical iterations of P̂2 = P̂3 we see that the first and third
coordinate of our 3-tuple (y1, y2, y3) seem to stay positive independent of whether
we make P̂2 go towards 0 or 1.

In general, it seems like a small market drop results in the investor losing
towards the market, as the sales value of the portfolio is much smaller than the
market drop, see Figures 6.33 and 6.34. Contrary, as the market experiences a
dramatic drop the investor, in these cases, beat the market as the sales value of
the portfolio is bigger than the market drop, see Figures 6.31 and 6.32.

6.3.2.9 Bear: P̂1 > P̂2 > P̂3

In Section 6.2.2.9 on page 74 we found the naive optimal strategy space to be
the short selling strategy space SH 3 = (+, 0,−), where the investor sells the
entire portfolio, including borrowed stock at t1, does nothing at t2, for then to
buy back the borrowed stock at t3.

Our numerical analysis unravels that our naive optimal strategy space
SH 3 = (+, 0,−) can be an actual optimal strategy space in a Bear market, as it
is a boundary strategy space for D1 = (+,+,−). It may thus, under the given
circumstances, be the optimal strategy space the investor is searching for.
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Figure 6.31: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1 and P̂2 = P̂3 = 0.1 in a BearFlat market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.32: An example of S7 = (+, 0,+). The upper plot shows the complete
sales value surface for P̂1 = 1 and P̂2 = P̂3 = 0.2535 in a BearFlat market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.33: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1 and P̂2 = P̂3 = 0.5 in a BearFlat market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.34: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1 and P̂2 = P̂3 = 0.9 in a BearFlat market. The
contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.

116



6.3. The numerical analysis

Another set of iterations within the scope of conceivable prices found one
incident where a naive feasible strategy space was the actual optimal strategy
space, namely D1 = (+,+,−) shown in Figure 6.35. In addition, we found
that the naive strategy spaces T4 = (+,−,+) and S5 = (+,+,+) shown in
Figures 6.36 and 6.37 to yield actual optimal strategy spaces. Consequently, we
see that the boundary strategy space between S5 = (+,+,+) and T4 = (+,−,+),
S7 = (+, 0,+), also must be an actual optimal strategy space. Furthermore,
the boundary strategy space between S5 = (+,+,+) and D1 = (+,+,−),
S2 = (+,+, 0), is also an optimal strategy space. The naive feasible spaces
S7 and S2 were not found by iteration, however the Intermediate Value
Theorem 2.2.11 ensures their existence.

Our model shows that in a moderately declining market displayed in
Figure 6.38, the investor manages to salvage only 62.97% of the portfolio
value with this three-step strategy space, incurring a liquidity cost of 37.03%.
Even in the extreme market shown in Figure 6.37, the investor manages to
escape with 52.11% of the portfolio value, incurring a 47.89% liquidity cost due
to the size of the portfolio. In the latter case, it is interesting to see that the
investor beats the market by 2.11 percentage points, while the investor in the
first case is beaten by the market by 27.03 percentage points. This follows the
pattern in the BearFlat where a smaller market drop yields a bigger liquidity
cost C, and a bigger market drop yields a smaller liquidity cost C than the
market decline.

So, why is it that SH 3 = (+, 0,−) is not an actual optimal strategy space
at all times? It seems that the bounce-back function ψ in the last step t1 does
not have enough bounce. Hence, the price drop of flooding the market at t1
will outperform the profit from the extra stocks bought back in step t3. Again,
it may be argued that an insignificant portfolio could benefit from the SH 3

strategy space, as the bounce-back function ψ will be negligible.
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Figure 6.35: An example of D1 = (+,+,−). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.1 and P̂3 = 0.01 in a Bear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.36: An example of T4 = (+,−,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.1 and P̂3 = 0.09 in a Bear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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Figure 6.37: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.75 and P̂3 = 0.5 in a Bear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.

120



6.3. The numerical analysis

Figure 6.38: An example of S5 = (+,+,+). The upper plot shows the complete
sales value surface for P̂1 = 1, P̂2 = 0.95 and P̂3 = 0.9 in a Bear market.
The contour plot below shows the sales value surface and the iterations of the
Gradient Ascent to the maximum.
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6.4 Comparative analysis of different market
types

It is natural to wonder if a BullFlat market behaves equal to a FlatBull market.
At first glance, that may even be expected. The same goes for market types that
just seem to have changed the order of movement – do they actually commute?
Hence, this section seeks to shed some light on how market types that naively
may be viewed as equal actually move, based on our model S.

6.4.1 Bull vs. Flat vs. Bear

The only strategy space the three pure markets Bull, Flat and Bear have in
common is S5 = (+,+,+). While the naive strategy spaces for both Bull and
Bear markets were actual optimal strategy spaces in the model, this was not
the case in the Flat market.

Also, Bull and Bear markets have several strategy spaces as actual optimal,
while the Flat market just has S5 = (+,+,+). The Bull market has actual
optimal strategy spaces in T4 = (+,−,+) and T2 = (−,+,+) in addition
to PU1 = (−,−,+) and S5 = (+,+,+), and the Bear market has actual
optimal strategy spaces in SH 3 = (+, 0,−), D1 = (+,+,−), S2 = (+,+, 0),
T4 = (+,−,+), S5 = (+,+,+) and S7 = (+, 0,+).

The bounce-back function ψ displays different behaviours in the three
pure markets. While the bounce-back function ψ in a Flat market has a
33.91% liquidity cost, the bounce-back function in a Bull market influences the
sales value S less by a bigger market increase than a smaller market increase.
Moreover, in the Bear market a smaller decrease yields a bigger liquidity cost
than a bigger decrease.

6.4.2 FlatBull vs. BullFlat

Naively it may seem intuitive that these two should have the same result, as
the only difference on the surface is the order of the markets. This is not the
case. The naive optimal strategy space in both the BullFlat and the FlatBull
markets ends up as non-feasible strategy spaces in our model. Again, both have
S5 = (+,+,+) as an actual optimal strategy space. However, The BullFlat
market includes T2 = (−,+,+) and S4 = (0,+,+) as optimal strategy spaces,
while the FlatBull market includes S7 = (+, 0,+) and T4 = (+,−,+) as well.

Furthermore, the FlatBull market performs worse than the BullFlat market
with respectively a sales value of 68.49% and 70.24% in the 10% market increase.
These sales values are 79.50% and 88.43% with the 50% market increase.

Also, in a BullFlat market, a bigger market increase only helps reduce the
liquidity cost by 18.19 percentage points, while in a FlatBull market a bigger
market increase only helps reduce the liquidity cost by 11.01 percentage points,
both while the market moves 40 percentage points. Hence, the bigger the market
increase the bigger the effect from the bounce-back function ψ in both cases.

Interestingly, in the FlatBull market, the difference in sales value between
a 10% and a 50% market increase is only 11.01 percentage points, while in a
BullFlat market this delta is 18.19 percentage points.
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6.4.3 FlatBear vs. BearFlat

Also here, the naive optimal strategy space in both the BearFlat and the
FlatBear markets ends up as non-feasible strategy spaces in our model. Yet
again, both have S5 = (+,+,+) as an actual optimal strategy space. However,
The BearFlat market includes T4 = (+,−,+) and S7 = (+, 0,+) as actual
optimal strategy spaces, while the FlatBear market includes D1 = (+,+,−)
and S2 = (+,+, 0) as well.

We see the same pattern of significant differences between BearFlat and
FlatBear as we did with BullFlat and FlatBull. Also in this case, starting with
a Flat market yields a smaller drop in sales value compared to ending with a
Flat market. In BearFlat we see a sales value of 62.14% in the 10% market
drop and 48.62% in the 50% market drop, compared to a sales value of 60.20%
in the 10% market drop and 57.54% in the 50% market drop. This gives a sales
value differences within the same market drops of 13.53 and 2.66 percentage
points, respectively. Hence, in the BearFlat market a big decrease in the market
yields a smaller reduction in sales value (13.52 percentage points) than the
10% market decline. While in a FlatBear market, an additional 40 percentage
point drop in the market yields only a marginally increased sales value (2.66
percentage points). Consequently, the bounce-back function ψ is stronger the
bigger the market drop.

6.4.4 BullBear vs. BearBull

The BullBear market does not have its naive optimal strategy space SH 1 =
(−,+,−) as an actual optimal strategy space, while the BearBull market does.
The naive optimal strategy space is one of the actual optimal strategy spaces,
T4 = (+,−,+). Both market types have other actual optimal investment
strategy spaces as well. The BullBear market includes D1 = (+,+,−),
T2 = (−,+,+), S2 = (+,+, 0), S4 = (0,+,+), as well as the all-rounder
S5 = (+,+,+). The optimal strategy space S5 = (+,+,+) is also an actual
optimal strategy space in the BearBull market, accompanied by S7 = (+, 0,+).

The BullBear market also offers the investor a negative liquidity cost. This
is not the case in the BearBull market. Now, in the BullBear market where the
market first rise 10%, for then to return to its original state, the sales value is
67.97% and the liquidity cost is 32.03%. In the BearBull market with a 90%
decrease before returning to its original state, the sales value is 87.28% with a
liquidity cost of 12.72%. Again we see these markets behaving differently.

This asymmetric movement is expected in this case as the base for percentage
change is not the same. Interestingly, the change in sales value accounts for
close to 20 percentage points (18.19) which is the same as the 20 percentage
point change (22.78) in the P̂2 for the two market types.
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CHAPTER 7

Closing remark

On a grander scale, the business world is primarily about mitigating unnecessary
risk, and at the same time optimise return in an attempt to find a fulcrum
where it all balances. In order to converge towards these points the field is in
need of more accurate risk measures, for then to set more accurate anchors,
which in return will give a better expected return estimate. It would have been
interesting to work on a continuation of this aspect, however the scope of this
project is limited to an exploration of a model in discrete time, which includes
risk as a part of all the other market parameters in the model.

This Master’s thesis investigates the normalised sales value model S in one,
two and three dimensions. The model describes how an investor can optimise
market moving portfolio liquidation in certain markets defined by P̂n, with
respect to liquidity, market value, sales value, liquidity cost and liquidity cost
ratio. Possible investment strategies are sorted into strategy spaces which are
clustered under the investment opportunities buy, sell, hold, pumping, dumping
and short selling. In order to decide which strategy space and numerical
strategies that optimise the liquidation we used naive, analytical and numerical
methods. The thesis begins with the Fixed Point method, however changes to
Gradient Ascent method as the first one becomes unstable in N = 2.

Across the different dimensions N = 1, 2, 3, we discover the following: The
investigation in N = 1 finds that the liquidity cost ratio LCR is constant across
all price developments as long as y1 can be bigger than 1, and that the closer
to 1 α̂0 moves the bigger the liquidity cost C.

In N = 2 we find that the model S has a unique maximum, and there
is no available optimal pumping strategy for S(y1) under the constraint
0 < α̂1 < α̂0 < 1 and given S′(0) ≥ 0. However, there may be pumping
strategies available under certain market sentiments as long as S′(0) < 0. There
is also no dumping strategy for S(y1) under the constraint 0 < α̂1 < α̂0 < 1
and given S′(1) ≤ 0. Moreover, there may exist dumping strategies under
certain market sentiments as long as S′(1) > 0. Also, there are levels where the
estimated price P̂2 triggers a certain investment strategy, and these investment
strategies are found in distinct types of markets.

For N = 3 the naive analysis seems to be severely insufficient compared to
an analysis based on numerical method, as most of the optimal feasible strategy
spaces are non-feasible. Furthermore, the sequence of market types does not
commute, i.e., a BearFlat market does not behave equal to a FlatBear market.
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Also, it seems more risky to choose strategy spaces with a hold action, i.e., a 0
in the 3-tuple, as they are boundary spaces, and thus more difficult to target.

Moreover, this thesis has its clear limitations. The vast opportunity space in
N = 3 reduces the analysis in three dimensions to a game with numbers rather
than a complete rigorous analysis. As a consequence, this analysis also lacks
an investigation of an arbitrary N . Also, our model is discrete in time while
financial markets are modelled continuously. Furthermore, these models are
often based on time series and our model is independent of time. Besides, there
are numerous factors that drive the stock markets, while this model consolidates
them all into the α̂n parameters.

Finally, the analysis enlightens how difficult it may be to read the financial
markets based on naive intuition and reasoning, and that mathematical
modelling has its clear advantages. Someone who has had a great deal of
success with this approach is the previous mathematics professor Jim Simons
and his investment company Renaissance Technologies, who have delivered
impressive returns for decades.
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APPENDIX A

Python code

A.1 The case N = 1

This Python program runs the model S for N = 1 and prints all plots in
Chapter 4. The different plots are a result of different values for α0. Short
descriptions of each block in the program are written in the script.

1 from math import exp
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 # Defining the functions
6 def S(alpha, P, y):
7 return y*P*np.exp(-alpha*y)
8 def M(P,y):
9 return P*y

10 def E(a0):
11 return (-a0)
12

13 # Some parameters and y-axis
14 y = np.linspace(0,2.5,100)
15 P = 1
16 alphas = [0.99, 0.75, 0.50, 0.25, 0.1]
17 fig = plt.figure()
18 ax = fig.add_subplot(1, 1, 1)
19 a0 = np.linspace(0,1,100)
20

21 # Making the plots
22 for alpha in alphas:
23 y0 = 1/alpha
24 d = (M(P,y0)-S(alpha,P,y0))/M(P,y0)
25 print(d)
26 top_point = (P/alpha)*np.exp(-1)
27 f = S(alpha = alpha, P = P, y = y)
28 plt.plot(y,f, linewidth=2, label = ’a0={0} Total sales value’.format(alpha

))
29 if (y0 <= 2):
30 plt.plot([y0],[top_point],’o’, color=’k’)
31 ax.axvline(x=y0, linewidth=0.5, linestyle = ’--’)
32 plt.plot(y, M(P = P, y=y), linewidth=2, color=’magenta’ ,label=’Estimated

value’)
33

34 # Eliminate upper and right axes
35 ax.spines[’right’].set_color(’none’)
36 ax.spines[’top’].set_color(’none’)
37
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38 # Show ticks in the left and lower axes only
39 ax.xaxis.set_ticks_position(’bottom’)
40 ax.yaxis.set_ticks_position(’left’)
41 plt.xlabel(’Block size, $y$’)
42 plt.ylabel(’Total sales value, $S$’)
43 plt.legend(loc=’best’)
44 plt.show()
45

46 # Show ticks in the left and lower axes only of elasticity plot
47 plt.plot(a0,E(a0), linewidth=2, label = ’Elasticity’)
48 ax.xaxis.set_ticks_position(’bottom’)
49 ax.yaxis.set_ticks_position(’left’)
50 plt.xlabel(’Market, $\hat{\\alpha}_0$’)
51 plt.ylabel(’Elasticity, $E_{\psi}$’)
52 plt.legend(loc=’best’)
53 plt.show()
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A.2 The case N = 2

A.2.1 α̂0, Fixed Point Method

This Python program runs the model S for N = 2 with the Fixed Point
method. It prints all plots with a singular α̂0 and several α̂1s in Chapter 5.
The different plots are a result of different carefully chosen values for α0 and
α̂1s, as well as P̂2. Short descriptions of each block in the program are written
in the script. The script is used for the Flat and the Bear type market.

1 from math import exp
2 from mpl_toolkits import mplot3d
3 import matplotlib.pyplot as plt
4 import numpy as np
5

6 # Defining the functions
7 def dL(y, params):
8 ah_0 = params["ah_0"]
9 ah_1 = params["ah_1"]

10 return Eh_1(y, params)*(1-y*ah_0)-(1-y)*ah_1*Eh_2(y,1-y,params)\
11 -(Eh_2(y,1-y, params)-ah_0*(1-y)*Eh_2(y,1-y, params))
12 def ph_next1(ph, params):
13 ah_0 = params["ah_0"]
14 ah_1 = params["ah_1"]
15 return (Eh_2(ph,1-ph, params)*(ah_1-ah_0)+Eh_2(ph,1-ph, params)-Eh_1(ph,

params))/ \
16 (Eh_2(ph,1-ph, params)*(ah_1-ah_0)-ah_0*Eh_1(ph, params))
17 def S(y_1, y_2, params):
18 return y_1*Eh_1(y_1,params)+y_2*Eh_2(y_1,y_2,params)
19 def Eh_1(y_1, params):
20 ah_0 = params["ah_0"]
21 return np.exp(-ah_0*y_1)
22 def Eh_2(y_1,y_2, params):
23 ah_0 = params["ah_0"]
24 ah_1 = params["ah_1"]
25 Ph_2 = params["Ph_2"]
26 return Ph_2*np.exp(-(ah_0*y_2+ah_1*y_1))
27 def S2(y, params):
28 return y*Eh_1(y, params)+(1-y)*Eh_2(y,1-y, params)
29

30 # Deciding the market types
31 P2 = 0.9
32

33 # Fixed point alogrithm
34 def fixed_point(ah_0, ah_1, Ph_2, ph=0, tol=1e-9, n=int(1e5)):
35 Ph_2 = P2
36 svar_y = []
37 svar_S = []
38 print(ah_0, ah_1)
39 params = {"ah_0": ah_0, "ah_1": ah_1, "Ph_2": Ph_2}
40 for _ in range(n):
41 Sval = S2(ph, params)
42 if abs(dL(ph, params))<tol:
43 print(’jippi’)
44 break
45 ph=ph_next1(ph, params)
46 svar_y.append(ph)
47 svar_S.append(S2(ph, params))
48 return svar_y, svar_S, ph, Sval
49

50 # Producing plots and Latex-tables
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51 if __name__ == "__main__":
52 tableline = "${alpha_0}$ & ${alpha_1}$ & {alpha_diff:0.4f} & {y_1:0.4f} &

{y_2:0.4f} & {S:0.4f} & {Smin:0.4f} & {diff:0.4f} \\\\ \n"
53 a0list = [0.4]
54 a1list = [0.3999, 0.35, 0.25, 0.1, 0.01, 0.0001]
55 latexstring = ""
56 latexstringshort = ""
57 color = [’orange’, ’cyan’ ,’purple’, ’lightblue’, ’yellow’, ’green’, ’grey

’]
58 for a_0 in a0list:
59 legends = []
60 if a_0 != 0:
61 latexstring += "\\midrule \n"
62 a1_values = list(filter(lambda x: x <= a_0, a1list))
63 for index,a_1 in enumerate(a1_values):
64 ah_0 = a_0
65 ah_1 = a_1
66 da = ah_0-ah_1
67 svar_y, svar_S, ph, S = fixed_point(ah_0, ah_1, P2, ph=5, n=int(1

e5))
68 y_1 = ph
69 y_2 = 1-ph
70 params = {"ah_0":ah_0, "ah_1":ah_1, "Ph_2":P2}
71 Smin = S2(1,params)
72 line = tableline.format(alpha_0=a_0,\
73 alpha_1=a_1, alpha_diff=ah_0-ah_1,\
74 y_1=y_1, y_2=y_2, S=S, Smin=Smin, diff=S-Smin)
75 latexstring += line
76 if index == 0 or index == len(list(a1_values))-1:
77 latexstringshort += line
78 # Making plots
79 xmin = -1
80 xmax = 4
81 y=np.linspace(xmin,xmax,1000)
82 plt.xlim(xmin,xmax)
83 f_1=S2(y, params)
84 plt.ylim(0, np.max(f_1)*1.15)
85 plt.plot(y,f_1,label="Total sales value as a quotient of initial

portfolio value")
86 plt.plot(svar_y,svar_S,’*’,color=color[index], label=’_nolegend_’)
87 plt.plot(svar_y[-1],svar_S[-1],f’*r’)
88 plt.xlabel("Volume of shares sold $y_1$")
89 plt.ylabel("Sales value $S$")
90 plt.title(f"$\\alpha_0 = {ah_0}$, $\\hatP_2 = {P2}$")
91 legends += [f"$\\alpha_1 = {ah_1}$, $\\Delta\\alpha = {round(da,3)

}$",\
92 f"$S(y^*) = {round(svar_S[-1],3)}$, $y^* = {round(svar_y[-1],3)}$"

]
93 plt.legend(legends)
94 plt.savefig(f"a0_{a_0}a1{a_1}P2{P2}.png")
95 plt.show()
96 latexstring += "\\bottomrule"
97 print(latexstring)
98 with open(f"a0_{a_0}_a1_{a_1}_P2{P2}.tex", "w") as file:
99 file.write(latexstring)
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A.2.2 α̂1, Fixed Point Method

This Python program runs the model S for N = 2 with the Fixed Point
method. It prints all plots with a several α̂0s and one α̂1 in Chapter 5. The
different plots are a result of different carefully chosen values for α0s and α̂1, as
well as P̂2. Short descriptions of each block in the program are written in the
script. The script is used for the Flat and the Bear type market.

1 from math import exp
2 from mpl_toolkits import mplot3d
3 import matplotlib.pyplot as plt
4 import numpy as np
5

6 # Defining the functions
7 def dL(y, params):
8 ah_0 = params["ah_0"]
9 ah_1 = params["ah_1"]

10 return Eh_1(y, params)*(1-y*ah_0)-(1-y)*ah_1*Eh_2(y,1-y,params)\
11 -(Eh_2(y,1-y, params)-ah_0*(1-y)*Eh_2(y,1-y, params))
12 def ph_next1(ph, params):
13 ah_0 = params["ah_0"]
14 ah_1 = params["ah_1"]
15 return (Eh_2(ph,1-ph, params)*(ah_1-ah_0)+Eh_2(ph,1-ph, params)-Eh_1(ph,

params))/ \
16 (Eh_2(ph,1-ph, params)*(ah_1-ah_0)-ah_0*Eh_1(ph, params))
17 def S(y_1, y_2, params):
18 return y_1*Eh_1(y_1,params)+y_2*Eh_2(y_1,y_2,params)
19 def Eh_1(y_1, params):
20 ah_0 = params["ah_0"]
21 return np.exp(-ah_0*y_1)
22 def Eh_2(y_1,y_2, params):
23 ah_0 = params["ah_0"]
24 ah_1 = params["ah_1"]
25 Ph_2 = params["Ph_2"]
26 return Ph_2*np.exp(-(ah_0*y_2+ah_1*y_1))
27 def S2(y, params):
28 return y*Eh_1(y, params)+(1-y)*Eh_2(y,1-y, params)
29

30 # Estimated price
31 P2 = 0.5
32

33 # Fixed point alogrithm
34 def fixed_point(ah_0, ah_1, Ph_2, ph=0.3, tol=1e-9, n=int(1e5)):
35 Ph_2 = P2
36 svar_y = []
37 svar_S = []
38 print(ah_0, ah_1)
39 params = {"ah_0": ah_0, "ah_1": ah_1, "Ph_2": Ph_2}
40 for _ in range(n):
41 Sval = S2(ph, params)
42 if abs(dL(ph, params))<tol*ah_0:
43 print(’jippi’)
44 break
45 ph=ph_next1(ph, params)
46 svar_y.append(ph)
47 svar_S.append(S2(ph, params))
48 return svar_y, svar_S, ph, Sval
49

50 # Making labels nicer
51 def prettify(n):
52 if n == 0:
53 return "0"
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54 else:
55 return "n"
56

57 # Producing plots and Latex-tables
58 if __name__ == "__main__":
59 tableline = "${alpha_0}$ & ${alpha_1}$ & {alpha_diff:0.4f} & {y_1:0.4f} &

{y_2:0.4f} & {S:0.4f} \\\\ \n"
60 a0list = [0.99]
61 a1list = [0.99]
62 latexstring = ""
63 latexstringshort = ""
64 color = [’orange’, ’cyan’ ,’purple’, ’lightblue’, ’yellow’, ’green’, ’grey

’]
65 legends = []
66 for a_1 in a1list:
67 if a_1 != 0:
68 latexstring += "\\midrule \n"
69 a0_values = list(filter(lambda x: x > a_1, a0list))
70 for index,a_0 in enumerate(a0_values):
71 ah_0 = a_0
72 ah_1 = a_1
73 da = ah_0-ah_1
74 svar_y, svar_S, ph, S = fixed_point(ah_0, ah_1, P2, ph=-20, n=int

(1e5))
75 y_1 = ph
76 y_2 = 1-ph
77 params = {"ah_0":ah_0, "ah_1":ah_1, "Ph_2":P2}
78 Smin = S2(1,params)
79 line = tableline.format(alpha_0=prettify(a_0),\
80 alpha_1=prettify(a_1), alpha_diff=ah_0-ah_1,\
81 y_1=y_1, y_2=y_2, S=S)
82 latexstring += line
83 if index == 0 or index == len(list(a0_values))-1:
84 latexstringshort += line
85 # Making plots
86 xmin = -0.5
87 xmax = 3
88 y=np.linspace(xmin,xmax,1000)
89 plt.xlim(xmin,xmax)
90 plt.ylim(0, S*1.15)
91 f_1=S2(y, params)
92 plt.plot(y,f_1,label="Total sales value as a quotient of initial

portfolio value")
93 plt.plot(svar_y,svar_S,’*’,color=color[index], label=’_nolegend_’)
94 plt.plot(svar_y[-1],svar_S[-1],f’*r’)
95 plt.xlabel("Volume of shares sold $y_1$")
96 plt.ylabel("Sales value $S$")
97 plt.title(f"$\\alpha_1 = {ah_1}$, $\\hatP_2 = {P2}$")
98 legends += [f"$\\alpha_0 = {ah_0}$, $\\Delta\\alpha = {round(da,3)

}$",\
99 f"$S(y^*) = {round(svar_S[-1],3)}$, $y^* = {round(svar_y[-1],3)}$"

]
100 plt.legend(legends)
101 plt.savefig(f"a1_{a_1}P2{P2}.png")
102 plt.show()
103 latexstring += "\\bottomrule"
104 with open("a0_099_P2_05.tex", "w") as file:
105 file.write(latexstring)
106 with open("a0_099_P2_05short.tex", "w") as file:
107 file.write(latexstringshort)
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A.2.3 α̂0, Gradient Ascent Method

This Python program runs the model S for N = 2 with the Gradient Ascent
method. It prints all plots with a one α̂0 and several α̂1s in Chapter 5. The
different plots are a result of different carefully chosen values for α0 and α̂1s, as
well as P̂2. Short descriptions of each block in the program are written in the
script. The script is used for the Bull type market.

1 from math import exp
2 from scipy import misc
3 from mpl_toolkits import mplot3d
4 from mpl_toolkits.mplot3d import Axes3D
5 import matplotlib.pyplot as plt
6 from matplotlib import cm
7 import matplotlib as mpl
8 from matplotlib.ticker import LinearLocator, FormatStrFormatter
9 import random

10 import numpy as np
11

12 def dL(y, params):
13 ah_0 = params["ah_0"]
14 ah_1 = params["ah_1"]
15 return Eh_1(y, params)*(1-y*ah_0)-(1-y)*ah_1*Eh_2(y,1-y,params)\
16 -(Eh_2(y,1-y, params)-ah_0*(1-y)*Eh_2(y,1-y, params))
17 def ph_next1(ph, params):
18 ah_0 = params["ah_0"]
19 ah_1 = params["ah_1"]
20 return (Eh_2(ph,1-ph, params)*(ah_1-ah_0)+Eh_2(ph,1-ph, params)-Eh_1(ph,

params))/ \
21 (Eh_2(ph,1-ph, params)*(ah_1-ah_0)-ah_0*Eh_1(ph, params))
22 def S(y_1, y_2, params):
23 return y_1*Eh_1(y_1,params)+y_2*Eh_2(y_1,y_2,params)
24 def Eh_1(y_1, params):
25 ah_0 = params["ah_0"]
26 return np.exp(-ah_0*y_1)
27 def Eh_2(y_1,y_2, params):
28 ah_0 = params["ah_0"]
29 ah_1 = params["ah_1"]
30 Ph_2 = params["Ph_2"]
31 return Ph_2*np.exp(-(ah_0*y_2+ah_1*y_1))
32 def S2(y, params):
33 return y*Eh_1(y, params)+(1-y)*Eh_2(y,1-y, params)
34

35 # Finding the derivative for the Gradient Ascent
36 def derivative(params, var=0, point=[]):
37 args = point[:]
38 def wraps(x):
39 args[var] = x
40 args[1] = 1-x
41 return S(*args,params)
42 return misc.derivative(wraps, point[var], dx = 1e-10)
43

44 def gradient_ascent(params): # iteration
45 lr = 0.1 # learning rate
46 nb_max_iter = 1000 # Nb max iteration
47 eps = 1e-9 # stop condition
48

49 svar_y1 = []
50 svar_y2 = []
51 svar_S = []
52

53 y_1 = -1 # start point
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54 y_2 = -1
55 z0 = S(y_1,y_2,params)
56 svar_y1.append(y_1)
57 svar_S.append(z0)
58

59 cond = eps + 10.0 # start with cond greater than eps (assumption)
60 nb_iter = 0
61 tmp_z0 = z0
62 while cond > eps and nb_iter < nb_max_iter:
63 dydt = derivative(params, 0, [y_1,y_2])
64 tmp_y1 = y_1 + lr * dydt
65 y_1 = tmp_y1
66 y_2 = 1-y_1
67 z0 = S(y_1,y_2,params)
68 svar_S.append(z0)
69 nb_iter = nb_iter + 1
70 cond = abs( tmp_z0 - z0 )
71 tmp_z0 = z0
72 svar_y1.append(y_1)
73 svar_y2.append(y_2)
74 return np.array(svar_y1), np.array(svar_y2), np.array(svar_S), y_1, y_2,

z0
75

76 # Making 2D
77 if __name__ == "__main__":
78 tableline = "${alpha_0}$ & ${alpha_1}$ & {alpha_diff:0.4f} & {y_1:0.4f} &

{y_2:0.4f} & {S:0.4f} & {Smin:0.4f} & {diff:0.4f} \\\\ \n"
79 a0list = [0.99]
80 a1list = [0.98, 0.00001]
81 latexstring = ""
82 latexstringshort = ""
83

84 color = [’orange’, ’cyan’ ,’purple’, ’lightblue’, ’yellow’, ’green’, ’grey
’]

85

86 # Estimated price
87 P1 = 1
88 P2 = 1.1
89

90 color_index = 0
91 color = [’orange’, ’green’, ’black’,
92 ’purple’, ’yellow’, ’cyan’, ’orange’]
93 mycmap = plt.get_cmap(’gist_earth’)
94 legends=[]
95 for index, ah_1 in enumerate(a1list):
96 a0_values = list(filter(lambda x: x >= ah_1, a0list))
97

98 if (len(a0_values) > 0):
99 latexstring += "\\midrule \n"

100 for ah_0 in a0_values:
101 params = {"ah_0": ah_0, "ah_1": ah_1, "P1": P1, "Ph_2": P2}
102 svar_y1, svar_y2, svar_S, y1val, y2val, Sval = gradient_ascent(

params)
103 da = ah_0 - ah_1
104 xmin = -2
105 xmax = 2
106 y=np.linspace(xmin,xmax,1000)
107 plt.xlim(xmin,xmax)
108 f_1=S2(y, params)
109 plt.ylim(0, np.max(f_1)*1.15)
110 plt.plot(y,f_1,label="Total sales value as a quotient of initial

portfolio value")
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111 plt.plot(svar_y1,svar_S,’*’,color=color[index], label=’_nolegend_’
)

112 plt.plot(svar_y1[-1],svar_S[-1],f’*r’)
113 plt.xlabel("Volume of shares sold $y^*_1$")
114 plt.ylabel("Sales value $S$")
115 plt.title(f"$\\alpha_0 = {ah_0}$, $\\hatP_2 = {P2}$")
116 Smin = S2(xmin,params)
117 line = tableline.format(alpha_0=ah_0,\
118 alpha_1=ah_1, alpha_diff=ah_0-ah_1,\
119 y_1=y1val, y_2=y2val, S=Sval, Smin=Smin, diff=Sval-Smin)
120 latexstring += line
121 legends += [f"$\\alpha_1 = {ah_1}$, $\\Delta\\alpha = {round(da,3)

}$",\
122 f"$S(y^*) = {round(svar_S[-1],3)}$, $y^* = {round(svar_y1[-1],3)}$

"]
123 plt.legend(legends)
124 plt.savefig(f"ah_0{ah_0}ah_1{ah_1}P2{P2}.png")
125 plt.show()
126 latexstring += "\\bottomrule"
127 with open(f"ah_0_{ah_0}_ah_1_{ah_1}_P2{P2}.tex", "w") as file:
128 file.write(latexstring)
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A.2.4 α̂1, Gradient Ascent Method

This Python program runs the model S for N = 2 with the Gradient Ascent
method. It prints all plots with a several α̂0s and one α̂1 in Chapter 5. The
different plots are a result of different carefully chosen values for α0s and α̂1, as
well as P̂2. Short descriptions of each block in the program are written in the
script. The script is used for the Bull type market.

1 from math import exp
2 from scipy import misc
3 from mpl_toolkits import mplot3d
4 from mpl_toolkits.mplot3d import Axes3D
5 import matplotlib.pyplot as plt
6 from matplotlib import cm
7 import matplotlib as mpl
8 from matplotlib.ticker import LinearLocator, FormatStrFormatter
9 import random

10 import numpy as np
11

12 def dL(y, params):
13 ah_0 = params["ah_0"]
14 ah_1 = params["ah_1"]
15 return Eh_1(y, params)*(1-y*ah_0)-(1-y)*ah_1*Eh_2(y,1-y,params)\
16 -(Eh_2(y,1-y, params)-ah_0*(1-y)*Eh_2(y,1-y, params))
17 def ph_next1(ph, params):
18 ah_0 = params["ah_0"]
19 ah_1 = params["ah_1"]
20 return (Eh_2(ph,1-ph, params)*(ah_1-ah_0)+Eh_2(ph,1-ph, params)-Eh_1(ph,

params))/ \
21 (Eh_2(ph,1-ph, params)*(ah_1-ah_0)-ah_0*Eh_1(ph, params))
22 def S(y_1, y_2, params):
23 return y_1*Eh_1(y_1,params)+y_2*Eh_2(y_1,y_2,params)
24 def Eh_1(y_1, params):
25 ah_0 = params["ah_0"]
26 return np.exp(-ah_0*y_1)
27 def Eh_2(y_1,y_2, params):
28 ah_0 = params["ah_0"]
29 ah_1 = params["ah_1"]
30 Ph_2 = params["Ph_2"]
31 return Ph_2*np.exp(-(ah_0*y_2+ah_1*y_1))
32 def S2(y, params):
33 return y*Eh_1(y, params)+(1-y)*Eh_2(y,1-y, params)
34

35 # Finding the derivative for the Gradient Ascent
36 def derivative(params, var=0, point=[]):
37 args = point[:]
38 def wraps(x):
39 args[var] = x
40 args[1] = 1-x
41 return S(*args,params)
42 return misc.derivative(wraps, point[var], dx = 1e-10)
43

44 def gradient_ascent(params): # iteration
45 lr = 0.1 # learning rate
46 nb_max_iter = 1000 # Nb max iteration
47 eps = 1e-9 # stop condition
48

49 svar_y1 = []
50 svar_y2 = []
51 svar_S = []
52

53 y_1 = -1 # start point
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54 y_2 = -1
55 z0 = S(y_1,y_2,params)
56 svar_y1.append(y_1)
57 svar_S.append(z0)
58

59 cond = eps + 10.0 # start with cond greater than eps (assumption)
60 nb_iter = 0
61 tmp_z0 = z0
62 while cond > eps and nb_iter < nb_max_iter:
63 dydt = derivative(params, 0, [y_1,y_2])
64 tmp_y1 = y_1 + lr * dydt
65 y_1 = tmp_y1
66 y_2 = 1-y_1
67 z0 = S(y_1,y_2,params)
68 svar_S.append(z0)
69 nb_iter = nb_iter + 1
70 cond = abs( tmp_z0 - z0 )
71 tmp_z0 = z0
72 svar_y1.append(y_1)
73 svar_y2.append(y_2)
74 return np.array(svar_y1), np.array(svar_y2), np.array(svar_S), y_1, y_2,

z0
75

76 # Making 2D
77 if __name__ == "__main__":
78 tableline = "${alpha_0}$ & ${alpha_1}$ & {alpha_diff:0.4f} & {y_1:0.4f} &

{y_2:0.4f} & {S:0.4f} & {Smin:0.4f} & {diff:0.4f} \\\\ \n"
79 a0list = [0.99, 0.497, 0.192, 0.115, 0.0471, 0.03]
80 a1list = [0.00001]
81 latexstring = ""
82 latexstringshort = ""
83 color = [’orange’, ’cyan’ ,’purple’, ’lightblue’, ’yellow’, ’green’, ’grey

’]
84

85 # Estimated price
86 P1 = 1
87 P2 = 1.5
88

89 color_index = 0
90 color = [’orange’, ’green’, ’black’,
91 ’purple’, ’yellow’, ’cyan’, ’orange’]
92 mycmap = plt.get_cmap(’gist_earth’)
93 legends=[]
94 for index, ah_0 in enumerate(a0list):
95 a1_values = list(filter(lambda x: x < ah_0, a1list))
96

97 if (len(a1_values) > 0):
98 latexstring += "\\midrule \n"
99 for ah_1 in a1_values:

100 params = {"ah_0": ah_0, "ah_1": ah_1, "P1": P1, "Ph_2": P2}
101 svar_y1, svar_y2, svar_S, y1val, y2val, Sval = gradient_ascent(

params)
102 da = ah_0 - ah_1
103 xmin = -9
104 xmax = 4
105 y=np.linspace(xmin,xmax,1000)
106 plt.xlim(xmin,xmax)
107 f_1=S2(y, params)
108 plt.ylim(0, np.max(f_1)*1.15)
109 plt.plot(y,f_1,label="Total sales value as a quotient of initial

portfolio value")
110 plt.plot(svar_y1,svar_S,’*’,color=color[index], label=’_nolegend_’
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)
111 plt.plot(svar_y1[-1],svar_S[-1],f’*r’)
112 plt.xlabel("Volume of shares sold $y^*_1$")
113 plt.ylabel("Sales value $S$")
114 plt.title(f"$\\alpha_1 = {ah_1}$, $\\hatP_2 = {P2}$")
115 Smin = S2(xmin,params)
116 line = tableline.format(alpha_0=ah_0,\
117 alpha_1=ah_1, alpha_diff=ah_0-ah_1,\
118 y_1=y1val, y_2=y2val, S=Sval, Smin=Smin, diff=Sval-Smin)
119 latexstring += line
120 legends += [f"$\\alpha_0 = {ah_0}$, $\\Delta\\alpha = {round(da,3)

}$",\
121 f"$S(y^*) = {round(svar_S[-1],3)}$, $y^* = {round(svar_y1[-1],3)}$

"]
122 plt.legend(legends)
123 plt.savefig(f"ah_1{ah_1}ah_0{ah_0}P2{P2}.png")
124 plt.show()
125 latexstring += "\\bottomrule"
126 with open(f"ah_1_{ah_1}_ah_0_{ah_0}_P2{P2}.tex", "w") as file:
127 file.write(latexstring)
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A.3 The case N = 3

This Python program runs the model S for N = 3 with the Gradient Ascent
method. It prints all plots with a several α̂0s and several α̂1s in Chapter 6. The
different plots are a result of different carefully chosen values for α0, α̂1 and α̂2

as well as P̂1, P̂2 and P̂3. Short descriptions of each block in the program are
written in the script. The script is used for all market types.

1 from math import exp
2 from scipy import misc
3 from mpl_toolkits import mplot3d
4 from mpl_toolkits.mplot3d import Axes3D
5 import matplotlib.pyplot as plt
6 from matplotlib import cm
7 import matplotlib as mpl
8 from matplotlib.ticker import LinearLocator, FormatStrFormatter
9 import random

10 import numpy as np
11

12 # Defining the funcitons
13 def S(y1,y2,params):
14 a0 = params["a0"]
15 a1 = params["a1"]
16 a2 = params["a2"]
17 P1 = params["P1"]
18 P2 = params["P2"]
19 P3 = params["P3"]
20 A = y1*P1*np.exp(-a0*y1)
21 B = y2*P2*np.exp(-a0*y2-a1*y1)
22 C = (1-y1-y2)*P3*np.exp((a0-a1)*y2+(a0-a2)*y1-a0)
23 S = A+B+C
24 return S
25

26 # Finding the partial derivatives for the Gradient Ascent
27 def partial_derivative(params, var=0, point=[]):
28 args = point[:]
29 def wraps(x):
30 args[var] = x
31 return S(*args,params)
32 return misc.derivative(wraps, point[var], dx = 1e-10)
33

34 def gradient_ascent(params): # iteration
35 alpha = 0.1 # learning rate
36 nb_max_iter = 1000 # Nb max iteration
37 eps = 1e-10 # stop condition
38

39 svar_y1 = []
40 svar_y2 = []
41 svar_S = []
42

43 y1_0 = 0 # start point
44 y2_0 = 0
45 z0 = S(y1_0,y2_0,params)
46 svar_y1.append(y1_0)
47 svar_y2.append(y2_0)
48 svar_S.append(z0)
49

50 cond = eps + 10.0 # start with cond greater than eps (assumption)
51 nb_iter = 0
52 tmp_z0 = z0
53 while cond > eps and nb_iter < nb_max_iter:
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54

55 tmp_y1_0 = y1_0 + alpha * partial_derivative(params, 0, [y1_0,y2_0])
56 tmp_y2_0 = y2_0 + alpha * partial_derivative(params, 1, [y1_0,y2_0])
57 y1_0 = tmp_y1_0
58 y2_0 = tmp_y2_0
59 y3_0 = 1.0 - y1_0 - y2_0
60 z0 = S(y1_0,y2_0,params)
61 svar_S.append(z0)
62 nb_iter = nb_iter + 1
63 cond = abs( tmp_z0 - z0 )
64 tmp_z0 = z0
65 svar_y1.append(y1_0)
66 svar_y2.append(y2_0)
67 return np.array(svar_y1), np.array(svar_y2), np.array(svar_S), y1_0, y2_0,

z0
68

69 # Making 2D and 3D plots
70 if __name__ == "__main__":
71 # sentiment
72 a0list = [0.9]
73 a1list = [0.5]
74 a2list = [0.1]
75 # Estimated prices
76 P1 = 1
77 P2 = 10
78 P3 = 4
79 color_index = 0
80 color = [’orange’, ’green’, ’black’,
81 ’purple’, ’yellow’, ’cyan’, ’orange’]
82 mycmap = plt.get_cmap(’gist_earth’)
83 for index, a2 in enumerate(a2list):
84 a1_values = list(filter(lambda x: x >= a2, a1list))
85 for a1 in a1_values:
86 legends=[]
87 fig = plt.figure()
88 fig2 = plt.figure()
89 ax = fig.add_subplot(111, projection=’3d’)
90 ax.set_xlabel(’$y_1$’)
91 ax.set_ylabel(’$y_2$’)
92 ax.set_zlabel(’$S$’)
93 ax2 = fig2.add_subplot()
94 ax2.set_xlabel(’$y_1$’)
95 ax2.set_ylabel(’$y_2$’)
96 a0_values = list(filter(lambda x: x >= a1, a0list))
97 y3 = 0
98 y1 = np.arange(-2.5, 1.5, 0.01)
99 y2 = np.arange(-0.25, 2.75, 0.01)

100 for a0 in a0_values:
101 params = {"a0": a0, "a1": a1, "a2": a2, "P1": P1, "P2": P2, "

P3": P3}
102 svar_y1, svar_y2, svar_S, y1val, y2val, Sval = gradient_ascent

(params)
103 print(params)
104 X, Y = np.meshgrid(y1, y2)
105 Z = S(X, Y, params)
106 my_col = cm.jet(Z/np.amax(Z))
107 # In parallell
108 h = ax2.contourf(X,Y,Z,cmap=’jet’)
109 this_color = color[color_index % 2]
110 other_color = color[2+(color_index % 2)]
111 ax2.scatter(svar_y1, svar_y2, s=25, label=’_nolegend_’,color=

’white’)
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112 ax2.scatter(y1val, y2val, s=50,color=’black’)
113 surf = ax.plot_surface(X, Y, Z,cmap=mycmap,rstride=1, cstride

=1, facecolors = my_col,
114 linewidth=0, antialiased=False)
115 surf._edgecolors2d = surf._edgecolor3d
116 surf._facecolors2d = surf._facecolor3d
117

118 legends += [f"$\\hat \\alpha_0 = {a0}$, $S(y_1^*,y_2^*) = {
round(svar_S[-1],4)}$",

119 f"$y_1^* = {round(svar_y1[-1],4)}, y_2^* = {round(
svar_y2[-1],4)}$"]

120 color_index+=1
121 y3 = 1 - y1val - y2val
122 title = f"$\\hat P_1 = {P1}$, $\\hat P_2 = {P2}$, $\\hat P_3 = {P3

}$, $\\hat \\alpha_1 = {a1}, \\hat \\alpha_2 = {a2}, y_3^* = {round(y3,4)}
$"

123 window_title = f"P2 = {P2}, P3 = {P3}, a1 = {a1}, a2 = {a2}"
124 ax.set_title(title)
125 ax2.set_title(title)
126 figure_name = f"{P2}-{P3}-{a1}-{a2}.png"
127 figure_name_contour = f"{P2}-{P3}-{a1}-{a2}-contour.png"
128 fig.canvas.manager.set_window_title(window_title)
129 fig2.canvas.manager.set_window_title(window_title)
130

131 ax.legend(legends)
132 ax2.legend(legends)
133 fig.savefig(figure_name)
134 fig2.savefig(figure_name_contour)
135 plt.show()
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