
Shukun Tokas

Analysis and Enforcement of
GDPR-related Privacy Principles in
Object-Oriented Distributed
Systems

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

Faculty of Mathematics and Natural Sciences

2021

© Shukun Tokas, 2021

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1234

ISSN 1234-5678

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

To Sushila Devi, Satyapal Singh Tokas, Dilbag Singh Tokas, and Ravi Tokas.

Abstract

It is important to have a meaningful balance between innovation,
economic growth, and fundamental privacy rights. Data protection laws
and regulations have evolved as a result of the interactive relationship
between businesses, technologies, citizens, and governments. With an ever-
burgeoning amount of data and the requirement to comply with numerous
data protection regulations, it is essential to align the software ecosystem
with the privacy-related requirements for better data protection. To
strengthen data protection and protect privacy of the individuals within
the European Union (EU) and the European Economic Area (EEA),
the European Union Parliament approved the General Data Protection
Regulation (GDPR). The requirement of data protection by design have
been formally embedded in Article 25 of the GDPR, which requires the
data controllers to design and develop products with a built-in ability to
demonstrate compliance towards the data protection obligations. GDPR
is particularly oriented towards service-oriented systems, which involves
processing of personal information by an actor(s) in such systems and
communication between the actors and the users of the system. The
overall goal is to look at analysis of GDPR-related privacy compliance in
a language setting where these two aspects are highlighted.

This thesis studies specification and enforcement of security and privacy
requirements in distributed systems, more specifically through language-
based techniques, considering an object-oriented setting, in particular, the
active object paradigm. The protection of personal information involves two
aspects: information security and data protection. For security awareness,
the language is enriched with secrecy constructs such as secrecy levels,
and a notion of an interaction non-interference policy is defined, which
is followed by a formalization of a secrecy type system and static trace
analysis. This approach restricts information access based on confidentiality
levels. However, to regulate the access to a narrower set of the authorized
uses with respect to requirements that are integral to the data protection
such as purpose, privacy by design and privacy by default, data subject
access rights, consent etc, several key data protection aspects are developed
and embedded into the language. In particular, we use a combination of
static and dynamic approaches for their specification and enforcement.

ii

Preface
This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here is
conducted under the supervision of Professor Olaf Owe, Professor Martin Steffen,
and Postdoctoral Fellow Toktam Ramezanifarkhani.

The thesis is a collection of four papers, presented in chronological order.
The common theme to them is a LATEX thesis template. The papers are preceded
by an introductory chapter that relates them together and provides background
information and motivation for the work. All papers are joint work with
supervisors.

iii

Preface

Acknowledgements

The true delight is in the finding out rather than in the knowing.
-Isaac Asimov

I thank my supervisor, Olaf Owe, for hours of insightful discussions and for
teaching me to think and write scientifically. I could not thank him enough
for believing in me and supporting me in what I wanted to do. I have been
very fortunate to have collaborated directly with him. I vividly remember long
hours of arguments and discussions on improving the formalisms (and a lot of
just staring at the type rules on the screen with mutual skepticism). Just by
observing his dedication and passion for work have kept me on track. Many
fond memories of receiving his comments and feedbacks from metro, flights,
airports. We survived two deadlines communicating through in-flight WiFi.
Humility and infinite patience are two of his traits that stands out for me. This
research work and dissertation would never exist without him. I am thankful
to my co-supervisor, Martin Steffen for his detailed comments and constructive
criticism on papers drafts, presentations, and thesis draft. Throughout these
four years, he was always ready to answer my often silly questions. His objective
thinking, suggestions, and guidance have been invaluable, and have immensely
contributed to clarity of the thesis. I am thankful to my second co-supervisor,
Toktam Ramezanifarkhani for sharing her expertise in the field of security and
information flow control. I have learnt a great deal from her, and i would to
thank her for helping me understand the area better. Just by observing her, I
have tried to learn to maintain a healthy work-life balance.

PhD would have been colorless without my dear friends: Shareq, Divya,
Shannu, Sudeepta, Hogne, Lykke, Anne, Michelle, Gaurav, Harish, Pallavi,
Chinmayi, Isaac, Vasileios, Kamer, Elahe, Hamed, Florian, Ijlal, Tim, Anya,
Babita, Meghna, Vatsal, Lazlo, Laura, Magdalena, Karan, Raja, I am fortunate
to have you as my friends. Am thankful to Daniel for his support and guidance
in most critical times during PhD. Being new to formal methods, fear of working
in the unknown field, and feeling utterly useless, wouldn’t have sailed through
without your encouragement and (in particular) the "snail story". Grateful to
have met Fabrice, two novice having long conversations on spirituality and futility
of words. Antonio is the one that I missed the most in final year of PhD, thank
you for all the chocolates, fudges, cakes, endless laughter and (most importantly)
bearing with me. I am thankful to Konstantin for joining in for sharing the joys
of small walks to get some sun, coffee, chai latte, and spontaneous eating out
plans. I am always grateful to Fahri, thank you for always being around and
guiding me to the right path.

It is impossible to thank my parents enough for their unconditional love and
for their sacrifices for my upbringing and education. Everything I do is for you.
I am thankful to my brothers for their unconditional love and support, their
trust in me, and of-course sometimes for much needed distractions.

Shukun Tokas
Oslo, February 2021

iv

Contents

Preface iii

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2
1.3 Methodology . 4
1.4 Outline . 4

2 GDPR related data protection principles and research
focus in GDPR 5
2.1 Personal data . 6
2.2 Data subject . 6
2.3 Data controller and data processor 6
2.4 Privacy policy and privacy notice 7
2.5 Our research focus in GDPR 7
2.6 Principles relating to processing of personal data (Article 5) 7
2.7 Lawfulness of processing (Article 6) 9
2.8 Right of access by the data subject (Article 15) 9
2.9 Data protection by design and by default (Article 25) . . . 10

3 Language-based approach to privacy specification and
enforcement 11
3.1 An imperative programming language 11
3.2 Operational semantics . 12
3.3 Type and effect analysis 13
3.4 Soundness . 13
3.5 Static enforcement . 14
3.6 Runtime enforcement . 16

4 Overview of the research papers 17
4.1 Paper I : A secrecy-preserving language for distributed and

object-oriented systems . 17
4.2 Paper II : Language-based mechanisms for privacy by design 18
4.3 Paper III : Static checking of GDPR-related privacy

compliance for object-oriented distributed systems 18
4.4 Paper IV : A formal framework for consent management . 19
4.5 Additional papers . 20

v

Contents

5 Discussion 21
5.1 Summary of the contributions 21
5.2 Limitations and future work 24

Papers 28

6 A secrecy-preserving language for distributed and object-
oriented systems 29
6.1 Introduction . 30
6.2 Behavior of object-oriented distributed systems 33
6.3 Interaction non-interference 37
6.4 The SeCreol language . 39
6.5 Secrecy-type system . 45
6.6 Network level leakage . 51
6.7 Theoretical results . 61
6.8 Operational semantics . 63
6.9 Related work . 68
6.10 Conclusion . 70

7 Language-based mechanisms for privacy by design 73
7.1 Introduction . 73
7.2 Language constructs for policy specification 75
7.3 Embedding policy with program constructs 80
7.4 An effect system for privacy 82
7.5 Case study . 84
7.6 Related work . 86
7.7 Conclusion . 88

8 Static checking of GDPR-related privacy compliance for
object-oriented distributed systems 89
8.1 Introduction . 90
8.2 Relevance to the GDPR and research focus 92
8.3 Formalization of static privacy policies and policy compliance 94
8.4 An imperative programming language 106
8.5 An effect system for privacy 111
8.6 Awareness of subject . 123
8.7 Operational semantics . 125
8.8 Related work . 134
8.9 Conclusion . 137

9 A formal framework for consent management 139
9.1 Introduction . 139
9.2 Language setting . 141
9.3 Consent management . 145
9.4 Runtime system . 147
9.5 Related work . 153

vi

Contents

9.6 Conclusion . 155

Bibliography 157

vii

Chapter 1

Introduction

1.1 Motivation

Rapid progress and adoption of ICT in day to day market solutions results in
collection and processing of personal information for transactions for commercial
goods or public services. Although these developments offer significant economic
advantages, they also have adverse impact on the privacy of individuals. It is
therefore important to have a meaningful balance between innovation, economic
growth, and fundamental privacy rights. In response to the emerging privacy
concerns, the European Union Parliament has approved the General Data
Protection Regulation (GDPR) [41] to strengthen and impose data protection
across the European Union (EU) and the European Economic Area (EEA).
Moreover, the requirements of data protection by design and data protection by
default have been formally embedded in Article 25 of the GDPR, which requires
the individuals and organizations that process personal data of EU citizens or
provide services in EU, to design and develop products with a built-in ability
to demonstrate compliance towards the data protection obligations. On similar
grounds, Bennette and Raab in [13] mention that “if one accepts, however, that
at least part of the privacy problem is caused by the properties inherent in
the design of certain information technologies, then it follows that the same
technologies can be effectively shaped to protect privacy, rather than to invade it”.
This principle can be approached by considering privacy as a primary concern
rather than a secondary one, i.e., by building privacy into the applications.

The GDPR is particularly oriented towards service-oriented systems, which
involves processing of personal information by the actors in the system as well
as the communication between the actors and the external users. In particular,
we are interested in a framework where these two main aspects can be studied
at a high level of abstraction and with a simple and modular semantics, so that
the security and privacy type and effect system can be defined with relatively
fewer and simple rules. In all papers that contributes to this dissertation, we
target distributed, object-oriented and service-oriented systems and consider a
general concurrency model for distributed systems, based on concurrent objects
communicating by asynchronous methods, often called the active object model.

The main theme for the thesis is information privacy. However, privacy or
data protection is a wide area, ranging from privacy-enhancing technologies,
networks, hardware, to support through programming languages. This work
aims to contribute in privacy engineering by providing concepts and constructs
to capture and formally verify critical aspects of data protection that facilitates
the design of systems that are privacy-compliant by construction. In particular,
we use formal language-based approaches with static analysis to enforce security

1

1. Introduction

and privacy requirements.
Traditionally, security is defined in terms of the CIA triad, i.e., the three

quality attributes: confidentiality, integrity, and availability. In this thesis, a
security policy (henceforth “security level”) refers to the confidentiality attribute,
meaning that information with a high secrecy level is only accessible to users
tagged with high secrecy level. The two secrecy levels, denoted high and low,
encode two confidentiality levels, and the so called non-interference policy is an
information flow policy that enforces access restrictions on the use of confidential
data and information derived from the data. This approach restricts access
to the confidential information based on secrecy levels. We extend this to
regulate the access to the confidential information with respect to regulatory
data protection requirements such as purpose limitation, consent. The privacy
relevant information need to be enforced to impose such restrictions. We propose
a policy specification language for specifying purpose, access right, policy, and
consent. A notion of static and runtime policy compliance is formalized to
compare policies. The syntax and semantics of the core language is extended with
privacy specifications and policy compliance. Privacy compliance is established
by static and runtime analysis. Overall, the approach provides means to make
legal requirements into tangible and measurable compliance control.

The thesis proposes several interfaces and classes needed to design and build
solutions with privacy in mind. For example, the interfaces Sensitive, Principal,
Subject. We believe that “Data subject” is a key concept in the GDPR and it is
the data subject that benefits from privacy. So this notion, if taken into account
in designing systems, may contribute greatly to privacy protection. The privacy-
by-design approach is presented in the papers included in the dissertation shows
that i) processing of information is restricted by stated policies, i) a transparent
execution of Right of Access request, i.e., there is no hiding (in system) from
the data subject, and ii) a direct subject-system interaction for managing the
subject’s privacy preferences.

This work is a step towards integrating data protection requirements and
system’s functional requirements, and addressing them using a formal approach.

1.2 Research questions

The main research goal of the thesis is to develop language features that allow
us to give precise meaning to privacy related notions, and leverage program
analysis for their enforcement.

The papers included in this thesis address this challenge, by choosing language
mechanisms that are useful for modeling service-oriented distributed systems
and modular system analysis. In particular, we consider a general concurrency
model [61] based on the active object paradigm [16] using asynchronous method
calls as the only interaction mechanisms. This captures the main mechanisms
for structured and efficient communication in service-oriented systems. This
concurrency model is combining the Actor model [57] with object-oriented
concepts. The considered language has a compositional semantics, which is

2

Research questions

beneficial to analysis.

The overall goal is as follows :

To formalize and explore a suitable high-level language for modeling
of service-oriented distributed systems, extend the syntax and the
semantics of the language with security and privacy-related notions,
and to develop analysis techniques for the extended language ensuring
security and privacy properties.

To achieve this goal, this thesis will address the following specific research
questions:

1. RQ1: How to formalize and enforce confidentiality properties and policies?

2. RQ2: How to formalize privacy requirement specifications?

3. RQ3: How to define notions of static and run-time privacy compliance?

4. RQ4: How to enforce and check enforcement of static privacy compliance?

5. RQ5: How to enforce and check a policy compliant access and support
dynamic consent changes at runtime?

This thesis includes the following research publications, which describe
research results in light of these research questions:

1. Paper I : A Secrecy-Preserving Language for Distributed and Object-
Oriented Systems
Authors: Toktam Ramezanifarkhani, Olaf Owe and Shukun Tokas.
Publication: The Journal of Logic and Algebraic Programming, 2018 [93].

2. Paper II : Language-Based Mechanisms for Privacy by Design
Authors: Shukun Tokas, Olaf Owe and Toktam Ramezanifarkhani.
Publication: Proceedings of the 14th IFIP International Summer School
on Privacy and Identity Management (2019) [109].

3. Paper III : Static Checking of GDPR-Related Privacy Compliance for
Object-Oriented Distributed Systems
Authors: Shukun Tokas, Olaf Owe and Toktam Ramezanifarkhani.
Publication: Submitted to the Journal of Logic and Algebraic Program-
ming, in first round revision [110].

4. Paper IV : A Formal Framework for Consent Management
Authors: Shukun Tokas and Olaf Owe.
Publication: Proceedings of the 40th International Conference on Formal

3

1. Introduction

Techniques for Distributed Objects, Components, and Systems, FORTE
2020 [107].

1.3 Methodology

To answer these research questions, the methodology used in the thesis employs
a combination of static and dynamic approaches. We define suitable languages
augmented with awareness of security and privacy aspects. The static approach
involves: Devise a semantics for the programming language to specify a notion
of security and privacy policies; Formulate static analysis (of interaction non-
interference and policy compliance, respectively) as type and effect systems;
Define small-step operational semantics for the programming language; Establish
consistency of the type and effect system with respect to the operational semantics.
For dynamic checking and enforcement of privacy compliance, the runtime system
is extended with runtime checks. We have made a theoretical evaluation of
the static and dynamic checks by means of soundness theorems, and have
demonstrated the suitability of the approach by examples and case studies.

1.4 Outline

The rest of the introductory part of the dissertation gives a general background
on the underlying programming language family and data protection notions,
and sets forth the context of the work presented in the research papers in Part
II of the thesis. Chapter 6 review concepts of security, privacy, the GDPR and
our research focus in GDPR domain. Chapter 7 introduces the programming
model and discusses its underlying concepts. Chapter 8 gives a short summary
of each of the research paper included in the dissertation. Chapter 9 concludes
the introductory part with a discussion on research contribution with respect to
the research questions and suggests possible directions for future work.

4

Chapter 2

GDPR related data protection
principles and research focus in
GDPR

The significance of privacy is reflected by the fact that the fundamental documents
that define human rights (such as Universal Declaration of Human Rights,
the Organization for Economic Co-operation and Development guidelines, the
European Convention on Human Rights, etc.) incorporate reference to privacy
or privacy related concepts [24]. Interpreted broadly, privacy has a rich history in
law and philosophy, and many definitions attempting to define privacy consider
one or more distinct perspectives on privacy [17]. In [24], Clarke presents
comprehensive interpretation of privacy as about the integrity of the individual.
Furthermore, privacy is also said to encompass different perspectives: privacy of
the person, privacy of personal behaviour, privacy of personal communication,
and privacy of personal data. In [103], Sieghart promotes privacy in terms of
ensuring that “the right data are used by the right people for the right purposes”.
The right data requires the information to be accurate, complete, relevant and
timely. The right purpose requires that the purposes are expressly or implicitly
agreed by the data subject or are sanctioned by the law. The right people are the
entities that will use the data for only those purposes. Absence of any of these
conditions may jeopardize critical rights, interests, and services [103]. These
definitions of privacy are still valid in current times.

Privacy is considered as a fundamental human right [40] in the European
Union, giving the right to a private life and associated freedoms (such as in
control of information about yourself) to its citizens. Lately, a new term is
introduced in the privacy literature, namely data protection. In the context of
the GDPR, privacy and data protection are connected. However the term data
protection means something more specific. Data protection is about concepts
such as specified purposes, legitimate basis of processing personal information,
protection of personally identifiable information, etc. “Privacy is recognized as
a universal human right while data protection is not – at least not yet” [39].
Furthermore, the notion of data protection derives from the right to privacy and
is instrumental in preserving and promoting fundamental values and rights [39].

The rest of this chapter gives a description of GDPR’s core data protection
concepts relevant for the thesis.

5

2. GDPR related data protection principles and research focus in GDPR

2.1 Personal data

The concept of personal data is central to data protection and its definition in the
GDPR is kept intensionally broad. Article 4(1) of the GDPR defines personal data
as “any information relating to an identified or identifiable natural person” [41].
Example of general personal data include date of birth, gender, marital status,
citizenship, association with organizations, address, phone number, identity
verification information. This also includes information such as dynamic IP
addresses and cookies, as this information can be used to track online activities
and generate a user profile which can be linked to devices and in most cases, an
individual [114]. Only personal information is subject to the regulation.

The regulation identifies certain kinds of personal data, i.e., the information
that their processing could create significant risks to data subject’s fundamental
rights. Genetic data, biometric data, data concerning health, personal data
revealing philosophical beliefs or ethnic origin, etc. are considered as sensitive
personal data.

In our work, we do not differentiate between personal data and sensitive
data. In several places, we use the terms sensitive data and personal data
interchangeably.

2.2 Data subject

The concept of data subject is a key concept in data protection as it is the
data subject that benefits from privacy. However, surprisingly it is not defined
explicitly in the GDPR. Instead, it is defined parenthetically within the definition
of personal data, as an identified or identifiable natural person as being a data
subject [114]. In particular, the data subject is the individual about whom or
from whom the information is being collected and processed.

2.3 Data controller and data processor

A data controller is a natural person, organization, public authority, or agency,
which collects information about data subjects, determines the purposes of
processing personal information, and processes the information (including its
storage, disclosure). A data processor is a natural person, organization, public
authority, or agency, that processes personal data on behalf of the data controller,
which essentially means that a data processor is simply a service provider for a
data processor [114]. The data controllers are the ones that exercise the decisions
about collection, disclosure, processing, retention and destruction of personal
data. As a result, a data controller is responsible for most of the compliance
requirements (Article 5(1)). Through Article 24 and Article 25 of the GDPR,
the requirements of integrating necessary safeguards into processing of personal
information are imposed on the data controller.

6

Privacy policy and privacy notice

The solution proposed in this dissertation demonstrates how such require-
ments can be addressed by the data controller, using a language-based approach
focused on compliance-by-design (a.k.a. compliance-by-construction).

2.4 Privacy policy and privacy notice

In general, there are two types of documents that communicate privacy practices:
a privacy policy and a privacy notice. A privacy policy is an internal document
addressed to employees accessing personal information, clearly stating how
the personal information will be collected, stored and disclosed to meet the
organizational/regulatory privacy requirements. A privacy notice is an external
document and a transparent notification that is addressed to data subjects that
describes how their personal information is being handled, including information
on the legal basis of processing and specific legitimate interests pursued by the
data controller. In principle, the privacy notices should be in alignment with
the privacy policies.

The work presented in this dissertation is mostly focused towards privacy
policies, it is hinted in the papers that it is necessary that the policy terminology
used towards the data subjects should be with a formal connection to the
underlying programming elements.

2.5 Our research focus in GDPR

The GDPR contains 99 articles covering quite diverse aspects of privacy such as
data protection principles, accountability, data protection impact assessment,
certification, penalties, etc. In this dissertation, we have focused on (mostly)
static and runtime analysis of privacy compliance on the intersection of Article 5,
Article 6, Article 15 and Article 25. However, we do not claim to cover these
articles thoroughly; our main focus is on those aspects that are susceptible to
formalization from the language perspective. In particular, we use a combination
of static and dynamic approaches, for the enforcement of initial policies (by system
designers) and redefined policies (by data subjects), respectively. Figure 8.1
illustrates our research focus in the GDPR.

2.6 Principles relating to processing of personal data
(Article 5)

The GDPR’s processing principles, as set out in Article 5, are required to be
followed by the entities responsible for processing personal data. In fact the
data controllers are prescribed with the duty to demonstrate compliance with
processing principles. The principles are broadly interpreted, but their violators
may incur large administrative fines. The processing principles are: lawfulness,
fairness, and transparency of processing; purpose limitation; data minimization;
accuracy; storage limitation; integrity and confidentiality; and accountability.

7

2. GDPR related data protection principles and research focus in GDPR

Pr
iv
ac
y
Pr

in
cip

les

Article 5

Data
Protection by Design and

D
efaultArticle 25

SubjectAccessRights

Article 15

La
wf
ul
ne
ss

of
Pr

oc
es
sin

g

Article 6

Runtime
Analysis

Static
Analysis

Figure 2.1: Our research focus in the context of GDPR

In this thesis, we have focused only on:

1. Lawfulness, fairness, and transparency of processing, which requires honest
usage and communication with the data subject about their personal data.
The three components here are linked with one another, and requires that
the controllers are open and clear towards data subjects.

2. Purpose limitation requires the collection and processing of personal data
for specific, explicit and legitimate purposes only. To determine if the
personal data could be used for secondary purposes (i.e., purposes for which
information was not collected in first place), the GDPR provides guidelines
to assess the compatibility of secondary purpose with the original purpose
(but the discussion is not so relevant here).

3. Confidentiality and integrity require protection of personal data against
unauthorized processing. This regulation promotes the use of techniques
such as pseudonymisation, implementing an information security frame-
work, etc.

8

Lawfulness of processing (Article 6)

4. Accountability means that the organizations process personal data
responsibly by complying with the different obligations and need to show
and evidence their compliance.

2.7 Lawfulness of processing (Article 6)

Lawfulness means the personal data must only be processed for valid legal
grounds of processing. Following are the six lawful grounds of processing for the
controllers: contractual necessity, consent, legal obligation, vital interests, public
interests and legitimate interests. The processing must be carried out within
the limit of the applicable processing grounds. Consent is the lawful ground
that reflects a data subject’s agreement and provides the data controller with
permission to process a subject’s personal data for a specific purpose. Article 7
sets out the conditions for processing when relying on consent, and requires the
controller to keep records of consent as they may be obligated to demonstrate
that it was obtained in first place. Additionally, if a controller relies on consent
as a lawful ground for processing then the data subject must be able to withdraw
his or her consent.

The solution proposed in this dissertation, in Chapter 9 in particular,
demonstrates how these consent based requirements can be addressed at runtime
using predefined interfaces between the system and the data subject.

2.8 Right of access by the data subject (Article 15)

The regulation prescribes that the data subject has Right of Access, which
requires the data controllers to provide any data subject (that requests to know)
with his or her personal data, the purposes of processing, the legal basis for doing
so, recipients of data when personal information has been or will be disclosed,
and more such relevant information. Transparency is a key concept in the GDPR
and is promoted to assure the right to privacy for the individuals, by properly
informing the individuals how their personal data is processed. In practice,
processing such requests are likely to pose a substantial administrative burden,
so the organizations should take into consideration having processes in place to
assist with the task [114]. WP29 1 recommends controllers to introduce tools,
such as a privacy dashboards through which the data subject can be informed
and engaged regarding the processing of their personal data [5].

The solution proposed in this dissertation demonstrates how these require-
ments can be addressed at compile time and at runtime. Chapter 8 presents
an approach to handle static awareness of a data subject, by using predefined
interfaces and types, and a default policy to give each subject read access to
personal data about himself and herself. Chapter 9 presents an approach to
handle data subject access request by using predefined interfaces between the

1WP29 is an abbreviation for Article 29 Working Party, which was an advisory body
composed of representatives of the national data protection authority of each EU member
state, the European Data Protection Supervisor and the European Commission.

9

2. GDPR related data protection principles and research focus in GDPR

system and the data subject, and a broadcast method call that enables collection
of personal data from all objects processing information about the given subject.

2.9 Data protection by design and by default (Article 25)

Article 25 introduces data protection by design and data protection by default
obligations on data controllers. The data protection by design requirement
requires the controller to implement appropriate technical and organizational
measures [41], but it is not clear how such measures can be translated and
embedded into the design. However, this generality gives the designers the
flexibility while still strategically promoting privacy (as integral to design) and
data protection compliance as forethought in the development of product, services,
or technologies.

In addition, it introduces a specific data protection by default obligation.
This requires that an organization may only process the personal data that is
necessary for the fulfillment of stated purposes. In practice, the by-default setting
could mean that the strictest privacy settings apply automatically when the
subject acquires a new product or service [114]. “It is about how to build things
that people can trust” [27]. For static checking of compliance, when the lawful
basis of processing of personal information is the performance of the contract or
other valid bases but not the consent, the policies should be formulated in a way
that ensures that they are built into the system by default, i.e., no measures
are required by the data subject in order to maintain his or her privacy. This is
demonstrated in Chapter 7 and Chapter 8. In our work, when consent is the
basis of processing, the choices of the data subjects are captured at runtime as
outlined in Chapter 9.

10

Chapter 3

Language-based approach to
privacy specification and
enforcement

In this chapter, we present an overview of the syntax and semantics of the core
language on which our work is based, in Section 9.2.2 and Section 3.2. The
methodology used in the thesis employs a combination of compile time and
runtime approaches. Section 3.3 present a general discussion on type and effect
systems as a well known approach to program analysis. Section 3.4 presents a
general discussion on soundness of the analysis. Section 3.5 and 3.6 presents
a discussion on static enforcement and on the use of runtime information for
runtime enforcement.

3.1 An imperative programming language

The programming model is chosen in such a way that allows us to focus on
major challenges concerning specification and analysis of security and privacy
properties in modern service-oriented systems, without the complications related
to shared variables and low-level synchronization mechanisms such as explicit
signaling and notification.

In order to study the security and privacy properties at a high level of
abstraction, we consider a small imperative, high-level language supporting the
active object programming paradigm [16], based on the actor model [57]. In the
actor formalism, a distributed system is seen as a collection of concurrent entities
(called actor) that are isolated from each other and communicate via message
passing only. Languages that integrate the actor model with object-oriented
concept, are often called active object languages [16]. The active object paradigm
is based on concurrent autonomous objects and offers both synchronous and
asynchronous communication. We will consider a small but expressive language
based on the active object concurrency model.

The language studied in this thesis supports interface abstraction, i.e., an
object can only be accessed through an interface and remote field access is illegal.
This enables us to precisely articulate the interface between an object and its
environment [118]. Object communication is only by asynchronous method calls,
implemented by means of asynchronous message passing. The language provides
non-blocking method calls, to avoid undesirable waiting in a distributed setting.
By means of a suspension mechanism, incomplete method invocations in an
object may be placed on the object’s process queue. The process will be enabled
when the object receive the response.

11

3. Language-based approach to privacy specification and enforcement

The considered language has a compositional semantics, as presented in [61,
93], which is beneficial to the analysis. The language is imperative and strongly
typed, using data types for defining data structures locally inside a class. The
data type sublanguage is side-effect-free. The programs we consider are defined
by a sequence of declarations of interfaces (containing method declarations),
classes (containing class parameters, fields, methods and class constructors), and
data type definitions.

For this language setting, we present two different formalizations of static
type and effect analyses (Chapter 6 and Chapter 7, 8) and a runtime analysis
that uses static and runtime information (Chapter 9), covering different security
and privacy goals of this dissertation.

3.2 Operational semantics

Semantics is the mapping of syntax to meaning. Formal semantics may serve
as the basis for static and dynamic analysis. In general, there are three main
categories of formal semantics: operational semantics, denotational semantics,
and axiomatic semantics. The idea behind operational semantics is to give a
precise description and meaning of a statement or program by specifying the
effects of running it on a machine [101]. The effect in an imperative setting is a
sequence of changes in its object-state, where an object-state is mapping from
variable to values. The intended behaviour of each statement is given in rigorous
mathematical terms. Moreover, there are sub-categories among the operational
semantics: natural operational semantics, in which the rules are used to determine
the final result of the execution of a program, and the small-steps operational
semantics [92], in which the goal is in determining the precise meaning of a
program by examining the complete sequence of the state changes for a program
execution. Denotational semantics is an alternative to operational semantics,
in which each language construct is defined by a mathematical entity and a
function that maps constructs of the language onto instances of the mathematical
entity [101].

Thus the meaning of a program construct denotes a mathematical object,
and the aim of denotational semantics is to construct such mathematical objects
denoting the meaning of their corresponding syntactic constructs. Axiomatic
semantics is based on mathematical logic, and specifies what can be proven about
the program [101]. The meaning of a statement is defined by the statement’s
effect on assertions about the data affected by the statement.

The goal of this dissertation is to find potential non-compliant accesses to
sensitive information. We check at compile-time whether a program will possibly
run into a state where sensitive information is not accessed as per security or
privacy specifications. For this purpose, we chose to use structural operational
semantics because it is structural (compositional) and intensional [92]. It allows
interpretation and prototyping of programs provided the operational semantics
is executable. It is compositional because an object proceeds with a computation
step if and only if a phrase within the object can make the step, and it is

12

Type and effect analysis

intensional because the derivation tree drawn to take a computational step
contains all intermediate branches that generated the step [72]. In particular,
this style enables us to reason about intermediate stages in a program execution
and allows to deal with non-terminating programs [83]. These formal descriptions
serves as a semantically sound basis for analysis of the proposed static analysis.
A compositional semantics is used which facilitates proof by structural induction
on program syntax. It is also needed for scalability of analyses techniques.

The possible execution traces for the extended languages, proposed in
Chapter 6, Chapter 8, and Chapter 9, are defined by the semantics as a structural
operational semantics, covering different security and privacy goals of this
dissertation. Chapter 6 use an environment with a mapping, binding variable
names to confidentiality levels, and the rules in Chapter 8 use an environment
with a mapping from program variable names to policy sets, while the rules in
Chapter 9 use an environment with a mapping from variable names to tagged
values.

3.3 Type and effect analysis

A program variable can take a range of values during a program execution [21],
and the range is defined by the type of the variable [21]. A type system is a
component of the programming language that comprises of a set of rules that
assigns types to program constructs such as variables or expressions. The type
rules take a general form: a type is associated with a program construct relative
to a type environment that provide the type for each free variable [83], and other
declared entities such as functions, methods, classes and interfaces. An effect
system extends the notion of type, the typing rules take a general form: a type
and an effect associated with a program construct relative to a type environment.
Conceptually, an effect describes intensional information about what takes place
during program evaluation [83], such as changes in the typing environment.

The process of checking for type errors in a program at compile time is called
type checking. Type checking is one of most widely used forms of static program
analysis. A program that successfully passes the type checking is said to be well-
typed, which means that all executions of the program are guaranteed to cause
only allowed executions, i.e, executions where the variables have values within
the declared types. Ill-typed programs mean that it could not be guaranteed to
be well-behaved [83], for example assigning boolean values to object variables.

A natural extension of type checking techniques is to enrich the types with
annotations. In this dissertation, we annotate the types with high and low secrecy
levels (in Chapter 6), and with privacy policy and policy sets (in Chapter 7, 8).
The effects changes these annotations.

3.4 Soundness

Once a type system and a semantics are formalized, we can prove type soundness.
Type soundness is a basic property of a type system stating that programs

13

3. Language-based approach to privacy specification and enforcement

Semantically W
ell-behaved

Statically W
ell-typed

Figure 3.1: Static enforcement

do not cause forbidden errors, i.e., well-typed programs are well behaved [21].
There are two different systems operating here: (i) a type checker that checks
the program and never consider a program execution (like runtime values) in
detail, and (ii) an operational semantics that describes how a program actually
runs dynamically. The conformance of the two systems is discussed by means of
soundness, i.e., a type system is sound with respect to the operational semantics.
A soundness theorem says that if we have an expression e with a type T , i.e.,
eT , and when e is executed it produces a value v, then v also have a type T , i.e.,
vT . The connection is made from both sides, the static side where e has a type
T and the dynamic side where e is going to produce a value with a type T [67].
Then we can safely say that the static type checker was able to correctly predict
the type of the value, without running the program. The soundness proof is
carried out in inductive manner.

In the dissertation, we proved soundness of the network analysis (Chapter 6)
and compliance analysis (Chapter 7), with respect to the respective operational
semantics.

3.5 Static enforcement

The static type checker in our work ensures that an information with higher
policy level cannot be accessed from a lower policy level context and that a
variable with lower policy type may not be assigned information with higher
policy type. Type systems are given for static enforcement, based on security
and privacy policies outlined in the papers. Static enforcement means enforcing
polices on static entities in a way that does not depend on concrete runtime

14

Static enforcement

information. In Chapter 6, static secrecy levels are types that are associated with
variables and parameters, and its enforcement is built on the approach introduced
in [116]. In Chapter 7 and Chapter 8, types and methods are annotated with
privacy policies. Each command in the program is analyzed to ensure that its
execution causes allowed flow of information with respect to the security lattice
(Chapter 6) and lattice over sets of policies (in Chapter 7 and Chapter 8).

Static checking over-approximates the security and privacy restrictions, i.e.,
it ensures that the system is safe, meaning that it accepts programs that surely
satisfy our security/privacy property, while rejecting programs that might still
be safe. Consider a statement:

if m(upolicyL) 6= n(upolicyL)

then upolicyL := vpolicyH else upolicyL := upolicyL fi

where m and n are semantically equivalent functions (m(x) = n(x) for all values
of x), u is a variable with a low policy (policyL) and v is a variable with a
high policy (policyH), such that policyL v policyH. The sub-policy relation
v expresses policy compliance, meaning that a less restrictive policy (policyL)
complies with a more restrictive policy (policyH). A detailed description of the
policy compliance can be found in Chapter 7. The static policy of a variable is
indicated by a subscript, i.e., upolicyL. The expression m(upolicyL) 6= n(upolicyL)
will always be false, and upolicyL := upolicyL is a valid assignment, which means
that the statement causes only allowed executions. However, the fact that m
and n are equivalent cannot (in general) be statically checked. In addition, in
static analysis both the branches of the if statement are analyzed. This will
lead to rejection of the program by static analysis. In particular, the static
analysis over-approximates the privacy and security restrictions by ensuring that
ill-typed programs are not accepted, while it might reject the programs that
are actually well-behaved at runtime. All well-typed programs are semantically
well-behaved, but not all semantically correct program are statically compliant.
This is depicted in Figure 3.1. In general, static analysis for checking some
undesired issues of a program gives 3 possible outcomes: yes meaning that there
is not an issue, no meaning that there is an issue, and maybe meaning that
there maybe an issue. There are two ways of grouping the results: yes versus
no/maybe, and yes/maybe versus no. The first approach is good when the
maybe cases are few, which is adopted in Chapter 6. The second approach is
appropriate when the maybe cases are many (as is the case with compliance w.r.t.
consent), and one can then use runtime checking to detect the bad programs.
In this case, runtime testing is needed to check the maybe programs; however,
the number of runtime errors is reduced since programs classified as “no” do not
pass the static test. We use a combination of the two approaches for different
aspects of program behavior.

In this thesis we have limited our work on static program analysis to fully
automated methods. We have therefore not considered program logics such as
Hoare Logic for proving partial correctness, since they in general depend on
user interaction, for instance in the specification of loop invariants. However,

15

3. Language-based approach to privacy specification and enforcement

in order to ensure that there is no information leakage at the network level, by
attackers that may observe aspects of the communication interaction between
active objects, we have devised a simplified Hoare Logic. This logic is dealing with
trace expressions rather than state predicates, and invariant-like trace expressions
are generated automatically. The logic for detecting possible leakage through
observation of communication traces can be applied without user interaction.
This is part of the work in Chapter 6.

3.6 Runtime enforcement

Some information becomes known only at runtime, such as changes in policies or
the policy on newly created data. Dynamic enforcement means to enforce polices
through the use of information available at runtime. This is done in Chapter 9,
which includes tagging of values with privacy tags at runtime and checking that
the program execution causes allowed flow of information with respect to the
dynamically changing privacy policies. Coming back to the example given in
Section 3.5, the runtime system will allow execution of the statement, since the
then branch is never reached, because m(upolicyL) 6= n(upolicyL) is false.

In particular, this thesis combines the two methods by detecting the static
security and privacy violations by an extended type and effect system, and
enhancing permissiveness of the static analysis by using runtime information, in
particular privacy issues that are not guaranteed by the static checking.

16

Chapter 4

Overview of the research papers

This chapter presents a short summary of the research papers in Part II of
this dissertation. The full contents of the papers appear as in their original
publications, but have been reformatted to fit the dissertation structure.

4.1 Paper I : A secrecy-preserving language for distributed
and object-oriented systems

Authors: Toktam Ramezanifarkhani, Olaf Owe and Shukun Tokas
Publication: The Journal of Logic and Algebraic Programming, 2018 [93]
Summary: It is often necessary to distinguish between confidential (high-
level) and non-confidential (low-level) information, and ensure that confidential
information is only accessible to authorized users. This paper studies specification
and enforcement of an information flow policy within programs to protect the
confidentiality of information. Secure information flows are often expressed by
semantic models of program execution in the form of a non-interference policy.

To formalize the approach, we consider a high-level core language based on
the chosen concurrency model, namely the paradigm of so-called active objects
using asynchronous method calls as the only interaction mechanism, thereby
combining the Actor model and object-orientation. The paper presents a core
language called SeCreol, supporting the active object paradigm with cooperative
scheduling. The communication mechanisms are extended with the awareness of
secrecy levels as well as secrecy type information.

Due to the non-deterministic nature of objects in this setting and the
non-trivial implicit information flow leakage related to the observation of
communication pattern, standard definitions of non-interference are not suitable
in this setting. A notion of interaction non-interference is defined, which
is tailored to this language setting. Interaction non-interference stipulates
indistinguishability of interactions, i.e., program executions to be equivalent in
the view of attackers observing method call events. Interaction non-interference
property is enforced by two kinds of static analysis: i) a secrecy type system
and ii) trace analysis system, in inter-object and network level communication,
respectively. The approach is illustrated with several versions of an example
from a news subscription service. We prove that interaction non-interference is
satisfied by the combination of these analysis techniques. Thus any deviation
from the policy caused by implicit information leakage visible through observation
of network communication patterns, can be detected.

17

4. Overview of the research papers

4.2 Paper II : Language-based mechanisms for privacy by
design

Authors: Shukun Tokas, Olaf Owe and Toktam Ramezanifarkhani.
Publication: Proceedings of the 14th IFIP International Summer School on
Privacy and Identity Management (2019) [109].
Summary: There is a growing demand for verifiable privacy compliance in
order to produce evidence for regulatory requirements such as privacy by design,
accountability, transparency etc. This paper presents a formal language based
approach to bake privacy into the design of systems and verify if the design
satisfies the privacy specification. In particular, the paper focuses on static
privacy compliance, i.e., privacy notions that can be expressed and checked
statically.

To express privacy policies we define a policy specification language. In
this setting, a privacy policy is a statement that expresses permitted use of the
personal information by the declared program entities. A policy is given by a
triple of the form (principal, purpose, access-right). A policy set is given by set
of such policy triples. A principal is given by an Interface and these interfaces
are organized in an open-ended inheritance hierarchy. Purposes and access-rights
are organized in a directed-acyclic graph and a lattice, respectively. A formal
notion of (static) policy compliance is defined to compare policies, in order to
make access decisions and enforce appropriate use of personal data.

To embed the privacy compliance with a core modelling language [61], the
syntax and semantics of the language is extended with policy specification and
policy compliance. In particular, we formulate a type-based static analysis using
a set of syntax-directed rules. The rules are defined with respect to the policies
and policy compliance. Policies are specified only for data types and methods
that deal with personal information. An access is valid only if the policy on the
method is compliant with that of the data type of the accessed value, ensuring
an authorized access and appropriate use of personal data. This approach
of incorporating legal privacy requirements and employing static compliance
checking is demonstrated on an example from the healthcare domain.

Furthermore, to create the sensitive types, i.e., specify policy on types for
personal data, sensitive functions are introduced, which produce sensitive types
when i) a data subject’s information is combined with personal or non-personal
information, or ii) personal information is used.

By making privacy an intrinsic component in design and development of
systems, this approach provides a way to turn privacy needs into tangible controls
and a way to verify if the design is privacy compliant.

4.3 Paper III : Static checking of GDPR-related privacy
compliance for object-oriented distributed systems

Authors: Shukun Tokas, Olaf Owe and Toktam Ramezanifarkhani.
Publication: Submitted to the Journal of Logic and Algebraic Programming,

18

Paper IV : A formal framework for consent management

in first round revision [110]. This paper is an extended version of research work
done in [109].
Summary: This paper extends [109], by including (i) an elaborate explanation
on the proposed policy specification language, formalization of policy compliance,
policy rules (including addition of more rules), (ii) self as an additional access
right to cover a key concept in GDPR, i.e., data subject access request, and (iii)
an operational semantics, and (iv) proof of soundness and progress.

Since it is the data subject that benefits from privacy, it is important that
the notion of data subject is taken into account in designing privacy compliant
systems. An additional access right, self, is introduced which allows us to specify
and control access to self data for a data subject. This is useful in particular
when considering subjects at compile time. For example, analysis can detect
expressions involving the data subject and give the subject read access on its own
data. The benefit of this approach is in maintaining transparency towards the
data subject, as it gives (Subject, all, self u read) as a default policy on personal
information, meaning the data subject has read access to data about itself.

Sensitive functions are introduced, which are used in construction of sensitive
data types, i.e., combining a type with either a sensitive type or a subject entity.
Not all classes represent a principal and will therefore not be a natural part of
policies on data type. This is addressed by introducing a notion of transfer of
principal rights from caller to callee, i.e., allow the caller to act as a principal
inside the method body of callee. In this paper, we continue with the case study
from [109], and demonstrate how to use policies in combination with types,
methods, and interfaces.

We have defined an operational semantics with policy tagging on data values,
and prove policy soundness, i.e., any policy level obtained at runtime guarantees
the one calculated by the static policy typing. Finally, we prove a progress
property stating that the execution of each object in a program will continue
unless the object is idle and there are no incoming messages reflecting method
calls.

4.4 Paper IV : A formal framework for consent management

Authors: Shukun Tokas and Olaf Owe.
Publication: Proceedings of the 40th International Conference on Formal
Techniques for Distributed Objects, Components, and Systems, FORTE
2020 [107].
Summary: This paper presents a formal framework for consent management
that can be used to construct software systems that comply with several
requirements in European Union’s GDPR. In particular, we focus on the GDPR
specific privacy requirements of lawfulness and transparency, data protection by
design and data subject access request, that can be expressed at runtime and
included in the overall system design. For this purpose we consider a high-level
modeling language for distributed active object-systems.

The framework provides a general solution for data subjects, to view all

19

4. Overview of the research papers

personal data about himself/herself in the system and change their privacy
settings. The formalization is based on a policy and consent specification
language, a notion of runtime policy compliance, a set of predefined interfaces
and classes to deal with the consent, and an operational semantics which includes
runtime checks for privacy compliance.

Privacy-enabling interfaces and classes are introduced that allow a data
subject to inspect its own personal information and update previously given
consent decisions. In order to check policy compliant access, personal data is
tagged with sets of (subject, purpose) pairs and a method accessing personal
data is tagged with a purpose. The runtime system combines this information
with consented policies for a given subject to derive an effective policy, and
checks that every access to personal data complies with the consented policies.
In addition, the approach includes a built-in generation of runtime privacy tags
when new personal information is created. This approach to specification of
privacy notions at runtime, dynamic compliance checking, and data subject’s
interaction with the system is demonstrated by a case study from the healthcare
domain.

4.5 Additional papers

This section lists papers to which the author of this dissertation has contributed
during her Ph.D. research, and which are not directly included as a part of this
dissertation. The first two extended abstracts and research report corresponds
to preliminary versions of papers included in the thesis. The last is a survey of
code diversification techniques to improve security in internet of things.

1. Title: Language-Based Support for GDPR-Related Privacy Requirements
Authors: Shukun Tokas and Toktam Ramezanifarkhani.
Publication: Proceedings of the 30th Nordic Workshop on Programming
Theory (NWPT), October 2018 [111].

2. Title: A Formal Framework for Consent Management
Authors: Shukun Tokas and Olaf Owe.
Publication: Proceedings of the 31st Nordic Workshop on Programming
Theory (NWPT), November 2019 [106].

3. Title: Code Diversification Mechanisms for Internet of Things
Authors: Shukun Tokas, Olaf Owe and Christian Johansen.
Publication: A long version has been published as a UiO Research
Report 473, January 2020 [108].

20

Chapter 5

Discussion

In this chapter, we return to the research questions formulated in Section 1.2 and
summarize the contributions of the dissertation towards the overall research goal,
and discuss the individual research goals in connection with the contributions,
in Section 5.1. In addition, we discuss in Section 5.2 the limitations of the
dissertation and potential future work.

5.1 Summary of the contributions

The overall goal of the dissertation is to investigate how to formalize non-
functional requirements or properties pertaining to privacy and security, and
leverage program analysis to enforce these requirements in the settings of object-
oriented distributed systems. To tackle the complexity of distributed service-
oriented systems, we have chosen a language setting that allows a simple and
compositional semantics, which is beneficial for class-wise analysis. As motivated
in Chapter 3, it is valuable to apply checks thoroughly and consistently in order
to detect problems in the code at compile time, without actually executing the
code. It makes the system more stable, since the number of runtime errors is
reduced. Therefore, this thesis has focused on static checking when possible
and considered runtime (compliance) checking of statically checked programs.
The computational aspects of our language setting such as: method oriented
communication, black box view of objects, and interface abstraction, makes
our results relevant for a large part of object-oriented distributed systems. In
particular the active object paradigm is suitable for modelling of service-oriented
systems.

The information within a system is accessed and transformed in multiple
ways by the declared program entities, and it is necessary to protect information
which is of personal or confidential or sensitive nature. Furthermore, protection
of the information involves two aspects: information security and information
privacy, and we have developed different static analysis methods for these notions.
With respect to information security measures: access control and information
flow control are used to present authorized access to confidential information.
With respect to information privacy measures: role, purpose, consent and access
rights are used to ensure an authorized use of information.

Systems that process personal information needs to ensure that information
access is in accordance with application privacy expectations that usually comes
from regulations such as the GDPR, HIPPAA etc. However, much of the
compliance efforts rely mostly on manual auditing and review. For large systems
the challenges of checking and demonstrating that it is compliant with privacy
requirements, remains unresolved. Incorporating the privacy specification in the

21

5. Discussion

system design, allows the analysis to identify potential erroneous accesses that
might be lurking in it. In addition, it provides an evidence, i.e., the algorithmic
check of compliance for accountability and transperancy requirements.

We will now briefly discuss the contributions of this dissertation with respect
to the individual research goals (cf. also Chapter 4):

1. RQ1: How to formalize and enforce confidentiality properties and
policies?

The methodology proposed in this thesis offers an approach to express
confidentiality and integrity as the security requirements in system design
as follows: The syntax and semantics of the core language [61] is extended
with awareness of secrecy levels (high and low) and secrecy type information,
as explained in Chapter 6. Chapter 6 defines notion of interaction non-
interference tailored to the non-deterministic nature of objects the language
setting. This property is enforced by a combination of two kinds of static
analysis: a secrecy type system and the trace analysis system, in inter-
object and network level communication, respectively. The approach is
illustrated with several versions of an example from a news subscription
service, in Chapter 6.

2. RQ2: How to formalize privacy requirements specifications? The
methodology proposed in this thesis offers the possibility to express
regulatory privacy requirements into the system design specifications
as follows: Chapter 7 presents a formal policy specification language
for specifying purpose, access rights and policy, and explains how these
privacy specifications are integrated into the syntax and semantics of the
language [61]. (Here, the specification deals with static notions.) Chapter 7
demonstrates how to specify these privacy requirements on personal data
and program constructs. Furthermore, it explains how to operationalize the
privacy by design and privacy by default principles. Chapter 8 introduces
an additional access right self , which allows one to statically specify an
access right on information about self, i.e., the data subject. Chapter 8,
also introduces an additional interface Subject, in order to handle static
awareness of data subject, as subject entities are not known at compile
time. In Chapter 7 and Chapter 8, data subject’s consent is expressed
by presence of policies. In order to deal with dynamic changes in consent
by the data subject, Chapter 9 introduces constructs to specify a positive
consent (to reflect allowed access), a negative consent (to reflect forbidden
access), and a consent list (i.e., a list of positive and negative consent(s) for
a given data subject). In addition, Chapter 9 introduces a set of interfaces
that forms the basis for interaction with external users, a set of classes that
is used in interaction with the runtime system, and presents an approach to
demonstrate how to employ them to ensure that the personal information
is accessed in accordance with the current privacy settings.

22

Summary of the contributions

3. RQ3: How to define notions of static and run-time privacy
compliance?

The methodology proposed in this thesis formalizes two notions compliance:
static privacy compliance and dynamic privacy compliance. For static
privacy compliance, the definitions needed to express compliance such
as policy compliance, compliance of policy sets, join and meet over
policy sets and implication on policy set, are given in Chapter 7 and
Chapter 8. Formalization of static compliance that discuss application of
the compliance definitions on program entities, can be found in Chapter 8.
In addition, Chapter 8 presents the runtime formalization of compliance
that is based on policy tags (on data values). This runtime formalization in
Chapter 8 is adapted for checking runtime compliance on consented policies
in Chapter 9. Note that the definition of policy compliance is different
for static checking and dynamic checking. Chapter 9 presents a runtime
formalization of compliance where compliance is defined with respect to a
list of consented policies (i.e., list of positive and negative consent), for a
given data subject.

4. RQ4: How to enforce and check enforcement of static privacy
compliance?

The methodology proposed in this thesis allows enforcement and checking
of static compliance as follows: The syntax and semantics of the considered
core language is extended with privacy specifications and policy compliance,
static privacy compliance is established by static analysis, as explained in
Chapter 7 and Chapter 8. Chapter 7 describes annotating policies on data
types and methods of interfaces and classes, and explains how these policies
puts restrictions on how they (types) are used and on actions they (methods)
perform. In particular, it briefly describes how to create sensitive types
and methods. In addition, Chapter 7 presents static policy checking which
is defined by a set of syntax-directed rules, i.e., the type and effect system
that checks that the policies are respected when the sensitive information
is accessed. This integration of privacy specification and policy compliance
in the language, and application of the static analysis is demonstrated
on a small case study. A more in-depth description on the formalization
presented in Chapter 7 can be found in Chapter 8. Furthermore, the policy
rules from Chapter 8 are modified and extended in an improved compliance
check, with awareness of self access. With the proposed type and effect
system, it is not possible to check self access. To tackle this situation,
Chapter 8 proposes an approach which allows the policy on a method to
comply with the policy on the sensitive type, if the method uses only self
access. Chapter 8 demonstrates the static analysis on a larger case study,
which builds upon the one used in Chapter 7.

5. RQ5: How to enforce and check a policy compliant access and
support dynamic consent changes at runtime?

23

5. Discussion

The methodology proposed in this thesis allows enforcement and checking
of runtime compliance, supporting dynamic consent changes, as follows:
The solution, proposed in Chapter 9, consists of a privacy and consent
specification language, a set of interfaces that forms the basis for interaction
with external users together with class implementations and a set of
classes that is used in interaction with the runtime system, and runtime
checks for all access to personal data to check compliance with the current
privacy settings. Chapter 9 presents this approach of dynamic compliance
checking, in which the personal data is tagged with (subject, purpose) pairs,
and methods accessing personal data are annotated with the purpose of
processing. The tags are generated automatically be the run-time system.
In addition, separate runtime checks are formulated for accessing personal
data at runtime, which uses information from the tags on data and the
calling context, and compare the information with consented policies of the
subject to determine if the access is compliant with respect to the current
consent specifications.

5.2 Limitations and future work

In this section we reflect on the limitations of our work and identify some
potential extensions and future work.

In order to keep the formalizations and analysis techniques simple and
presentable, we have focused on some key privacy concepts of the GDPR.
Completeness of GDPR requirements has not been a goal. We have tried
to identify those requirements that are susceptible to formalization, in particular,
by static (compile-time) analysis using a type and effect system, and we have
briefly looked at runtime analysis. The interplay of these two kinds of analysis is
clearly useful. Mainly we focus on the intersection of four Articles of the GDPR:
5, 6, 15 and 25. Since we base our work only on a small subset of privacy policy
requirements, the proposed policy specification language is limited in terms of
what can be expressed and checked.

The specification language can be extended to include privacy notions, such as:
data controller and data processor to identify data controller and data processor
in various stages of processing in distributed projects; temporal validity to
express data retention requirements and address storage limitation requirement;
exceptions to model restrictions within a given policy; distributed enforcement to
express multiple applicable regulatory requirements. Since this work deals with
tags on data values, it is more practical to include information about applicable
regulations or sectoral laws in tags in order to check compliance. For now,
this seems complicated because they are extensive and may have conflicting
expectations. Furthermore, creator and data owner for identification of creator
and owner of information, can easily be added to the tags. Perhaps the personal
data could have both a data subject and a data owner (like national tax office,
national healthcare services), which will allow to model conditions such as the
data subject may not remove the data alone since the data is owned by other

24

Limitations and future work

entities as well (for legitimate purposes, such as archiving, national interest,
etc.).

The work presented in thesis can be extended to allow specification for more
than one policy set (one for each sector/jurisdiction) and also adapt the policy
compliance to include checks for additional information in tags. For static
compliance checking, we are limited to one policy on a method. This can be
generalized, but we believe that the idea of one purpose for each method (working
on personal information) is clarifying and prohibits inflation of privacy-correct
programs. An extension to multiple purposes for each method should discuss
these aspects.

We have used the concept of cointerface in the language that allow type-
correct callbacks to external caller objects. This concept gives the possibility
of stating minimal security and privacy requirements to callers of methods of
an interface. This potential can be explored further, for example to check more
fine-grained attributes on callers such as owner or creator.

The work presented in the thesis can be extended to accommodate other
legal bases (including the overriding ones, i.e., exceptions such as public interest,
vital interest, emergencies etc.) by having separate policy lists for each legal
basis, and a disjunction to chose from these bases depending on the context.
Although we have the implicit policy that allows the data subject to have read
access to self data, there is a downside to it: We have not taken the following
cases into account (in Chapter 9). The initial policy is (S, all, rincr) to allow
self-access for a subject S. Should this be added explicitly in the consented
list or would it be better to be baked in as an invariant? Should a user be
allowed to remove self-access? These are interesting questions to look into. Since
we consider only the consented policy list (as we focus on processing based on
consent in Chapter 9), then baking it in is the best choice. However, when other
legal bases are also included at runtime then keeping it as a policy is probably a
better design choice. There are some exceptional situations where a user may
be declined self-access, for instance in criminal proceedings or situations where
other legal basis takes over and inhibits subject‘s right to access. Removing self-
access in such cases would require means to disable self access. In our approach,
this would require removing the (S, all, rincr) policy from the consented list.
However, in our current approach since (S, all, rincr) is implicitly added to the
consented list of S, its removal would require adding a neg(S, all, rincr) to the
consented by some other means (this not discussed in the paper).

It is necessary that the policy terminology used towards the data subject is
simple but with a formal connection to the underlying programming elements.
This is hinted briefly in the papers, more research is needed to identify and
develop frameworks and techniques.

Often artificial intelligence technologies are developed using huge amounts
of personal data, which is then used for analysis and predictions about data
subjects. It would be very nteresting to investigate if development of AI systems
is in accordance with PbD principle and gaining insight into accountability and
compliance in such systems. It would be interesting to explore if the approach
presented in this paper is applicable or can be adapted for AI technologies.

25

Papers

Chapter 6

A secrecy-preserving language for
distributed and object-oriented
systems

Toktam Ramezanifarkhani, Olaf Owe, Shukun Tokas
Published in The Journal of Logic and Algebraic Programming, October 2018,
volume 99, pp. 1–25. DOI: 10.1016/j.jlamp.2018.04.001.

I

Abstract

In modern systems it is often necessary to distinguish between confidential
(low-level) and non-confidential (high-level) information. Confidential
information should be protected and not communicated or shared with
low-level users. The non-interference policy is an information flow policy
stipulating that low-level viewers should not be able to observe a difference
between any two executions with the same low-level inputs. Only high-level
viewers may observe confidential output. This is a non-trivial challenge
when considering modern distributed systems involving concurrency and
communication.

The present paper addresses this challenge, by choosing language
mechanisms that are both useful for programming of distributed systems
and allow modular system analysis. We consider a general concurrency
model for distributed systems, based on concurrent objects communicating
by asynchronous methods. This model is suitable for modeling of modern
service-oriented systems, and gives rise to efficient interaction avoiding
active waiting and low-level synchronization primitives such as explicit
signaling and lock operations. This concurrency model has a simple
semantics and allows us to focus on information flow at a high level
of abstraction, and allows realistic analysis by avoiding unnecessary
restrictions on information flow between confidential and non-confidential
data.

Due to the non-deterministic nature of concurrent and distributed
systems, we define a notion of interaction non-interference policy tailored
to this setting. We provide two kinds of static analysis: a secrecy-
type system and a trace analysis system, to capture inter-object and
network level communication, respectively. We prove that interaction non-
interference is satisfied by the combination of these analysis techniques.

The authors were partially supported by IoT-Sec (NRC) (https://its-wiki.no/wiki/IoTSec:
Home) and by the project SCOTT (www.scott-project.eu).

29

https://doi.org/10.1016/j.jlamp.2018.04.001
https://its-wiki.no/wiki/IoTSec:Home
https://its-wiki.no/wiki/IoTSec:Home
www.scott-project.eu

A secrecy preserving language for OODS

Thus any deviation from the policy caused by implicit information leakage
visible through observation of network communication patterns, can be
detected. The contribution of the paper lies in the definition of the notion
of interaction non-interference, and in the formalization of a secrecy type
system and a static trace analysis that together ensure interaction non-
interference. We also provide several versions of a main example (a news
subscription service) to demonstrate network leakage.

6.1 Introduction

Programming languages can provide fine-grained control for security issues
because they allow accurate and flexible security information analysis of program
components [56]. In particular, to specify and enforce information-flow policies,
the effectiveness of language-based techniques has been established. Information-
flow policies are essentially specified based on a mapping from the set of
logical information holders to a lattice of security classes representing levels
of information sensitivity. Moreover, these policies usually dictate that no
execution of the program should lead to an information-flow from more sensitive
to less sensitive information holders [55], otherwise the information-flow is called
“illegal”.

Since information-flow policies are hyper-properties [25], i.e., are characterized
as sets of trace properties, their specification, enforcement, and reasoning
are difficult, especially in complicated systems. Therefore, giving a precise
definition of the policy regarding legal and illegal information flows is challenging
and highly dependent on the model of the system, the attackers, and their
capabilities. Secure information flows are often expressed by semantic models of
program execution in the form of a non-interference policy. Non-Interference
stipulates that manipulation and modification of confidential data should be
allowed in programs, as long as their visible outputs do not improperly reveal
information about the confidential data. In addition, attackers are typically
assumed to be able to view “low” information. The usual method for showing
that non-interference holds is to demonstrate that the attacker cannot observe
any difference between two executions that differ only in their confidential
input [47]. In other words, if two possible input states of a program share the
same low values, then the observable behaviors of the program execution on these
states should be indistinguishable by the attacker [56]. Although the observable
behavior is defined by the program output, there is no limitation in specifying
program behaviors, and there is no fixed limitation on what is observable by
the attackers. For example, when programs have runtime interactions with the
environment, attackers may also see intermediate outputs [7]. In addition, the
attacker may observe the progress of the program, e.g., absence or presence
of the next observable value, which leads to the concept of progress-sensitive
non-interference [7].

In the setting of distributed concurrent objects communicating by asyn-
chronous methods calls, variables are encapsulated by objects and are not
directly observable when forbidding remote variable access. Thus illegal ex-

30

Introduction

plicit flows in the sense of assignment of confidential (or high) variables to
non-confidential (or low) variables inside objects are not critical. In this setting,
method calls and replies are represented by messages sent over a network, and
thus network traffic could be observable to attackers. Therefore, patterns of
network messages reflecting calls and replies can be informative to attackers and
may reveal high-level information. For example, consider the following code in
which for a specific user role the program’s privileges are temporary raised to
allow the creation of a new user folder1:

t ry :
i f (URole) :

o . r a i s e P r i v i l e g e s ()
os . mkdir (‘ /home/ ’ + username)
o . l ow e rP r i v i l e g e s ()

except OSError :
p r i n t (‘ Unable to c r e a t e new user d i r e c to ry ’)
re turn Fal se

re turn True

where the syntax o.m(e) denotes a remote method call to o. An attacker may
deduce confidential information about the user role based on the observation
of method calls because in the then-branch there is a call and in the else-
branch, which is empty in this case, there is no method call. This is a case
of implicit information flow, which may appear when the observable program
behavior includes observation of method calls. In addition, such information
leakage can result in other successful critical attacks such as arbitrary code
execution in injection attacks, which have been among the Top Ten critical
attacks for years [87]. Here the essential information that makes the attack
successful, is related to when and how to attack the program. For instance in
the above example, the attacker knows that in some executions the program
only raises the privilege level for a short while before lowering it again. After
observation of the call in an execution, he can find a useful step toward a
successful attack, for instance by throwing an exception, which leads away from
the call to lowerPrivileges(). As a result, the program is indefinitely operating
in a raised privilege state, possibly allowing further exploitation to occur by the
attacker such as calling privileged functions [23], executing the attacker’s own
code and launching an injection attack.

To prevent information leakages in distributed concurrent object systems, we
enrich the notation of non-interference by considering observability of interactions
among objects by attackers. So, we introduce a notion of Interaction Non-
Interference, which stipulates program executions to be equivalent in the view of
attackers observing method call events. In addition, we are considering prevention
of inter-object leakages when an object improperly sends secret information to
another object, that might be non-observable from the network view. We also

1This vulnerability has been exploited in SplitVT, which is a program for splitting terminals
into two shells, and allowing arbitrary code execution by attackers CVE-2008-0162.

31

A secrecy preserving language for OODS

consider some special cases of network leakage based on sophisticated mechanisms
including suspension and non-blocking calls, which increase difficulties in
specification and enforcement of non-interference. For example, attackers might
be able to distinguish between executions with the same sequence of method
calls that only differ in blocking or suspension behavior. However, we do not
impose unnecessary restrictions on information flows from more sensitive to
less sensitive variables inside objects, which make our approach more realistic
than other pessimistic approaches based on static analysis, and thus significantly
reduces the rate of false positives.

Our setting To formalize our approach we consider a high-level core language
based on the chosen concurrency model, namely the paradigm of so-called active
objects using asynchronous method calls as the only interaction mechanism,
thereby combining the Actor model and object-orientation. This language is
derived from Creol [60, 63]. Shared variables as well as thread-based notification
are avoided. Synchronization control is achieved by cooperative scheduling:
A local suspension mechanism allows an object to perform other tasks while
waiting for a condition to become true or for a method result to appear. In
Creol, an object can be seen as a black box in the sense that its content such as
its fields are not observable from outside the object, and the main observation of
objects is through their interaction by means of method calls. In a network this
is observed through messages corresponding to invocations and completions of
remote method calls, and dynamic object creation. Underlying network protocols
may ensure that an attacker may observe but not alter the content of a message
[55], and message content may be considered non-observable due to encryption
techniques [123]. We consider the case that the destination and source of a
message is considered observable, and in addition, we assume that an observer
may be able to deduce the method name and whether it reflects a method
invocation or a method completion. In addition, confidential message content
communicated through the network to untrusted objects is also a source of secrecy
leakage. Our approach covers these kinds of information leakages, and is relevant
in Actor-based systems since these are based on message interaction. The notion
of observable events may be further refined, for instance by considering certain
parts of the network secure, say locally created objects.

We present an extension of Creol called SeCreol, in which Creol is extended
with awareness of secrecy levels as well as secrecy type information. We show
that programs respecting certain static restrictions, including secrecy typing,
satisfy interaction non-interference. Moreover, to ensure that a system preserves
secrecy of information, we use a combination of access control and information
flow control of communicated information capturing direct access, and tracking
communication patterns to capture indirect accesses.

Contribution The following are the main contributions of this paper: (i)
Introducing interaction non-interference for non-deterministic distributed systems
communicating by message passing. (ii) Extending the core Creol language by
providing a security-type system and developing a static analysis approach

32

Behavior of object-oriented distributed systems

for detection of network leakage. (iii) Provably enforce the interaction non-
interference property in programs of the SeCreol language by static analysis.

There is evidence, for example in [23], showing that the interaction between
components and objects, e.g., the sequence of system and method calls, are
valuable for attackers and can cause information leakage. Therefore, interaction
non-interference is a critical property in a variety of secure systems, and thus its
satisfaction and application are not limited to object-oriented systems.

Paper outline Section 6.2 formalizes the observable behavior of object-oriented
distributed systems by explaining their execution model, and discusses security
and attack models, as well as system assumptions, leading to the notion of
interaction non-interference in Section 6.3. Section 6.4 introduces the SeCreol
core language and a subscription example, to demonstrate our approach. A
type system for secrecy levels is given in Section 6.5, while network leakage is
considered in Section 6.6. Section 6.7 shows soundness of the network analysis,
using the operational semantics of SeCreol given in Section 6.8. Section 6.9
discusses related work, and Section 9.6 concludes the paper points, and suggests
possible future work.

6.2 Behavior of object-oriented distributed systems

We consider concurrent, distributed objects where each object has its own
execution thread. An object does not have access to the internal state variables
of other objects. Object communication is only by method calls, allowing
asynchronous communication, implemented by means of asynchronous message

o o′

o→ o′.m(e)

o� o′.m(e′)

o� o′.m(e)

o← o′.m(e′)

Figure 6.1: Illustration of method interaction: Object o calls a method m on
object o′ with arguments e. The long arrows indicate message passing, and the
bullets indicate generation of events. The corresponding event is written next to
each bullet.

33

A secrecy preserving language for OODS

passing. In order to avoid undesirable waiting in the distributed setting, we
allow mechanisms for non-blocking method calls. By means of a suspension
mechanism, unfinished method invocations in an object may be placed on the
object’s process queue, for instance while waiting for a response from another
object. The process will be enabled when the object receives the response. This
allows flexible interleaving of incoming calls and (enabled) suspended processes.
Internally in an object, there is at most one process executing at any time.
Objects reflect concurrent system components, while data structure inside an
object is defined by data types using functional programming.

The execution of a distributed system can be represented by the sequence of
communication events that has appeared between the system components. This
sequence is called the communication history (or trace) [19, 29, 58], which in
our case consists of invocation and completion events of the called methods. At
any point in time, the communication history abstractly captures the system
state [28]. And we represent the set of executions of a distributed system by
its possible communication histories, letting infinite histories represent non-
terminating executions. The formalization of interaction non-interference, which
we define later, is given as a property over the communication history.

Definition 1. (Communication events) We consider the following events Ev
of a system, where o, o′ are objects, m is a method, and e is a list of expressions:

• the set of invocation events o→ o′.m(e),

• the set of invocation reaction events o� o′.m(e),

• the set of completion events o← o′.m(e),

• the set of completion reaction events o� o′.m(e),

• the set of object creation events o↔ o′.newC(e)

The arrows reflect the direction of the message sending, and a two-way arrow
indicates a synchronization event.

In our model, a method call to m is reflected by the four communication
events

o→ o′.m(e); o� o′.m(e); o← o′.m(e′); o� o′.m(e′)

as graphically illustrated in Fig. 6.1. The figure shows the time-line of the
caller object o and the callee object o′. An invocation message is sent from
o to o′ when a method m is called, which is reflected by the invocation event
o → o′.m(e) where e is the list of actual parameters. The invocation reaction
event o � o′.m(e) reflects that o′ starts execution of the method, and the
completion event o← o′.m(e′) reflects method termination, where e′ is the list
of returned values. Reading the reply in object o is reflected by the completion
reaction event o � o′.m(e′). Other events may be interleaved with these four
events, and in particular there might be an arbitrary delay between message
receiving and reaction (due to message queuing).

34

Behavior of object-oriented distributed systems

Figure 6.2: Illustration of the categories of method-related events for an object
o. Observable network events for o consist of events from o (SNDo) and events
to o (RCVo), while non-observable o events are the internal reaction events of o
(RACo).

Object creation is similar to method interaction. The event o↔ o′.newC(e)
can be understood as the sequence o→ o′.C(e); o� o′.C(e); o← o′.C(void); o�
o′.C(void) where C represents the class constructor.

Fig. 6.2 categorizes communication events between objects. Messages sent
from an object o are denoted by SNDo and messages received by an object o are
denoted by RCVo, while RACo denotes reactions events of the object o, which
are internal o events. For a given object o, these three event sets are disjoint.

SNDo ≡ {o→,← o} send events of o
RCVo ≡ {→ o, o←} receive events of o
RACo ≡ {� o, o�} reaction events of o

where o→ denotes the set of invocation events from o and ← o the set of
completion events from o, while → o denotes the set of invocation events to o
and o← the set of completions events to o, and so on. The set SNDo represents
output from o, while RCVo and RACo represent (external and internal) input
to o. The union of SNDo and RCVo represents events visible over the network,
while RACo represents internal events not visible over the network, as illustrated
in Fig. 6.2.

Next, we define communication histories as a sequence of events.

Definition 2. (Communication histories) The communication history for a
system at a given point in an execution is a finite sequence of Ev events.

In our static analysis, we will consider finite traces (histories), representing
executions up to a given program point, or segments of such executions. The
empty sequence is denoted empty and we let semicolon denote sequence append
(adding an event to the end of a sequence). Thus any sequence is either
empty or can be seen as an appended sequence. We let t/S denote the

35

A secrecy preserving language for OODS

projection of trace t by a set of events S defined by empty/S = empty and
(t;x)/S = if x ∈ S then (t/S);x else t/S, and we overload the notation by
letting t/o denote the projection of a trace t by the set of events that has the
object o as sender or receiver, i.e., the subsequence of events that involve o.

6.2.1 Attack model

We consider two levels of attacks: i) Inter-object leakage, where attackers appear
as objects and improperly obtain secret information from other objects. ii)
Network leakage, where attackers derive secret information by observing the
network traffic.

We consider the case that network attackers may know the whole system
including program code and the distribution, but can only observe observable
runtime events at the network level. Based on the explained behavioral model of
object-oriented distributed systems, these events are passed as messages between
objects. Therefore, even when assuming encryption of message content, the
source and the destination object of messages are (implicitly) visible for attackers.
Knowledge of the program code may allow an attacker to sometimes deduce
the methods name in an event and whether it is an invocation or a completion
message. By overestimating the attackers’ capabilities, we assume that the
method name might be known to an attacker, and therefore we assume that all
aspects of a message except the parameters are observable. However, reaction
events are not observable by attackers since they are internal to an object.

Hence, possible leakage of information includes network leakages and inter-
object leakages. Leakage of network traffic is caused by observing the patterns of
network traffic, while leakage to other objects occurs when an object improperly
sends secret information to the other object, something that might not be
observable from the network view, but from the other object.

Self-calls will not be observable over the network and do not cause network
leakage. Similarly, communication to and from internal objects (for instance
object generated by this at the same location) could also be considered non-
observable at the network level (as well as local communication over internal
sub-nets, assumed to be safe). However, for simplicity, we do not here include
location awareness and treat all objects as if they were in different locations.
(Location awareness could easily be added.)

In a distributed object system, the relative execution speed of the objects
is not known. This is reflected in our model by letting the queue of incoming
messages to an object be unspecified. Two messages sent from one object to
another may be handled in the reverse order. In general, the ordering of RACo
events in an execution may differ from the ordering of RCVo events in the same
execution. This gives a certain degree of non-determinism at the object level. At
the network level one might consider message overtaking, loss, and duplication.
However this gives an even higher degree of non-determinism, and therefore a
weaker notion of leakage. We therefore ignore message overtaking, message
loss, and message resubmission at the network level, since sequence information
represents the upper limit of what is observable at the network level, assuming

36

Interaction non-interference

reasonable reliable and efficient networks. The order of messages in a sequence
is then observable and can be informative for attackers, and may cause network
leakage.

This notion of network observability can be formalized as an equivalence
relation over histories, called observable network equivalence (≈net), and will be
used to compare the behaviors of two different execution histories (σ and σ′) in
order to detect leakage.

Definition 3. (Observable network equivalence)

σ ≈net σ′ ≡ (obs(σ) = obs(σ′))

where obs expresses observable trace information, defined inductively over finite
histories σ by:

obs(empty) = empty
obs(σ; (o→ o′.m(e))) = obs(σ); (o→ o′.m) if o 6= o′

obs(σ; (o′ ← o.m(e))) = obs(σ); (o′ ← o.m) if o 6= o′

obs(σ; (o↔ o′.newC(e))) = obs(σ); (o→ o′.C)(o← o′.C)
obs(σ;x) = obs(σ) otherwise

The otherwise case is taken when no other equation applies (in this case when
x is a reaction event). Similarly, observable network equivalence relative to a
particular object o is defined by

obs(σ/o) = obs(σ′/o)

The latter will be used when we do class-wise analysis, focusing on the object
represented by this.

6.3 Interaction non-interference

As mentioned, non-interference ensures that an attacker should not be able to
obtain confidential information by observing the low input and output of an
executions of a system. We therefore need to capture the possible observations
at a given point in an execution, represented by the communication history at
that point, and define a notion of low equivalence between histories. Intuitively,
two histories are low equivalent if they have the same low information, i.e., when
ignoring non-observable events and arguments that are not low.
Definition 4. (Low equality) σ =L σ

′ is defined by low(σ) = low(σ′), defining
the low projection over histories and expressions as follows

low(empty) = empty
low(σ; o→ o′.m(e)) = low(σ); o→ o′.m(lowm(e))
low(σ; o← o′.m(e)) = low(σ); o← o′.m(lowm(e))
low(σ; o↔ o′.newC(e)) = low(σ); o→ o′.C(lowC(e)); o← o′.C(void)
low(σ;x) = low(σ) otherwise

where lowm(e) is defined by the sublist of those parameters ei for which the ith
parameter is declared as Low according to the method declaration. Similarly,

37

A secrecy preserving language for OODS

lowC(e) is the sublist of actual class parameters ei for which the ith class
parameter is declared as Low.

Observation It follows directly from the definitions above that low equality is
a stronger relation than observable equality, i.e. σ =L σ

′ implies σ ≈net σ′.
Let Σ be the set of (finite or infinite) traces of events for all possible completed

executions of a system, letting finite traces represent terminating executions.
Below σ and σ′ will range over Σ. Non-interference of an object o expresses that
if two executions involving o are low equal up to a certain time i, then also the
low output will be the same, including the next step (after the given time), if it
is an output (i.e., a SNDo event). If the object is deterministic with respect to
its input, this could be expressed by

∀σ, σ′, i . (σ/o)|i =L (σ′/o)|i∧(σ/o)[i+1] ∈ SNDo ⇒ (σ/o)| i+1 ≈net (σ′/o)| i+1

where i represents the time relative to o (the number of o steps), σ[i] denotes
the ith element of σ (i ∈ Nat), and σ|i is the sequence prefix σ[1..i] (or σ if the
length of σ is less than i).

Since our objects are non-deterministic, due to non-deterministic queues of
incoming messages and of internal process queues, which in turn reflect non-
deterministic network speed and object processing speeds, this definition cannot
be used. It would be too strong, since it essentially expresses that the next
low output (if any) from a given object o at a given time is deterministic. For
instance if one possible execution at a given time starts with a low output event
x from o and another with an observably different low output event x′ from o,
interference would not be satisfied, since the execution that starts with x has
next a low output that is not observably the same as in all other executions.

In order to deal with non-determinism, we need to consider the set of possible
executions, such that observable network equivalence holds for the set of possible
next steps, i.e., considering all possible continuations of σ after i compared to
the set of all possible continuations of σ′ after i. In general, equivalence of two
sets can be expressed by using existential quantification. We therefore express
our notion of non-interference using an existential quantifier, as follows.

Definition 5. (Interaction non-interference) We define interaction non-
interference (INI o) for an object (or a group of objects) o:

∀σ, σ′, i . (σ/o)|i =L (σ′/o)|i ∧ (σ/o)[i+ 1] ∈ SNDo

⇒ ∃σ′′ . (σ′/o)|i ≤ (σ′′/o) ∧ (σ/o)|i+ 1 ≈net (σ′′/o)|i+ 1

where ≤ expresses the sequence prefix relation.

Here σ, σ′, σ′′ range over sequences of events reflecting possible completed
executions (Σ). Thus the definition implies liveness (progress sensitivity). Class-
wise analysis implies that we are interested in a given object o. The existential
quantifier reflects possible non-determinism, and σ′′ allows to choose the non-
deterministic extension of σ′ that follows σ for the given object o. The definition
says that if an execution (sigma) has an output from o at time i + 1 then

38

The SeCreol language

Pr ::= In∗ Cl∗ program
L ::= Low | High | ... secrecy levels
T ::= I | Int | Any | Bool | String | Void | List[T] | ... types
U ::= T | T : L type/secrecy level

In ::= interface I [extends I+] [with I]{D∗} interface declaration
Cl ::= class C ([U cp]∗) [implements I+]

{[U w [:= e]]∗ [B] [[with I] M]∗} class definition
M ::= D B method definition
D ::= U m([U y]∗) method signature
B ::= {[T x [:= e];]∗ [s;] return e} method blocks
v ::= x | y | w variables (local/field)
e ::= null | void | this | caller | cp | v | f(e) | e v e pure expressions
rhs ::= e | new C(e)[: L] | e.m(e) right-hand-sides
s ::= skip | s; s | v := rhs assignment

| e!m(e) asynchronous call
await v := e.m(e) | await e suspension
| if e then s [else s] fi | while e do s od if and while

Figure 6.3: SeCreol BNF language syntax, with C denoting class name, I
interface name, m method name, cp formal class parameter, w fields, y method
parameter, x local variable. The brackets in [T] and [T] are ground symbols.
We let []∗, []+ and [] denote repeated, repeated at least once, and optional
parts, respectively.

any other execution with the same low o events up to time i has a possible
extension (σ′′) after time i with the observably same output event. Thus the
set of observable output events for a given object at a given time must be
deterministic relative to the low inputs before this time.

This definition of interaction non-interference is sufficient to avoid leakage
by network attackers.

Our goal is to statically detect the INI o property by means of two kinds of
static analysis: i) a deductive system for secrecy typing ii) a deductive system
for trace analysis of network events, such that both analyses are class-wise. In
order to show this in some detail we will consider a high-level core language for
the chosen concurrency model.

6.4 The SeCreol language

We define a minimal high-level language illustrating the concurrency model of
concurrent objects communicating with asynchronous methods. The language,
called SeCreol, builds on the concurrency model of Creol [60], extended with

39

A secrecy preserving language for OODS

secrecy constructs, including declaration of static secrecy levels for variables and
parameters, and testing of runtime secrecy levels of objects.

The syntax of SeCreol is given in Fig. 6.3. A program consists of a number
of interfaces and classes. We let the last class declared in the program be taken
as the main class, which is instantiated automatically and its body will start
to execute. An interface may have a number of super-interfaces and method
declarations. A method of an interface or class may have a cointerface, which
gives the (minimal) interface of the caller objects. (For simplicity an interface
may only use one common cointerface for all its methods.) This allows type-
correct call-backs [60]. A class C takes a list of class parameters cp, defines fields
w, and has an optional method body for initialization B (also called the class
constructor), followed by method definitions, with the corresponding cointerfaces
as declared in the interfaces. Class parameters cp are like fields apart from
being initialized through the new statement. Class parameters, the implicit class
parameter this and the implicit method parameter caller are read-only. A class
may implement a number of interfaces, and for each method of an interface of
the class it is required that the class defines the method such that the cointerface
and types of each method parameter and return value are respected. Additional
methods may be defined in a class as well, but these may not be called from
outside the class. For simplicity we omit class inheritance.

All variables and parameters are typed by data types or interfaces and for
simplicity the syntax of the data type language is omitted here. Classes are
not allowed as types, which means that an object can only be seen though
an interface, and therefore, remote access to fields nor methods that are not
exported through an interface is not allowed. This limits the possible interactions
between the concurrent objects, regardless of where they are located, and in
particular, shared variables concurrency is avoided. With respect to security
analysis, it has the advantage that no field is observable from outside of an object.
Thus observable behavior is limited to interaction by means of method-oriented
communication.

Expressions e and functions f are side-effect free, and e is a (possibly empty)
expression list, comma-separated. Statements include standard constructs for
assignment, skip, if, while, object generation, and sequential composition. The
simple call statement e!m(e) is like message passing; a message is sent to the
object expressed by e (the callee) indicating that it should execute method m
(when the callee is free to do this) with a list of actual parameters e. Thus
the current object is not blocked, and will not receive the return value. If
the return value is desired by the calling object, it may use the blocking call
statement v := e.m(e) or the non-blocking call statement await v := e.m(e).
The latter call statement forces the caller object to suspend the current process,
allowing it to continue with any enabled suspended process in its process queue
or perform an incoming call. Similarly, the conditional await statement await e
suspends, placing the current process on the process queue. This process is
enabled when the Boolean condition e is satisfied. The considered core language
allows high-level and yet efficient method-based interaction between concurrent
objects, supporting both passive and active waiting. The operational semantics

40

The SeCreol language

of the language is given in Section 6.8.
The language is strongly typed, and a typing system can be given in the style

of [62]. We use a standard notion of subtyping (subsuming subinterfacing). If T ′
is a subtype/subinterface of T , we say that T ′ is better than T , and a method
declaration D′ is better than D if they have the same method name and number
of parameters, the return type of D′ is better than that of D, and each formal
parameter of D is better than the corresponding one of D′ (i.e., contravariance).
The type system will ensure that a class properly defines all the methods of its
declared interfaces (and superinterfaces), or better ones, and it ensures that each
method call will be bound to a method declaration. The self-call this.m(e) will
be bound to the enclosing class (which must have a type-correct declaration of
m). When e is of interface I, the method call e.m(e) will be bound to I (or the
closest superinterface of I with a (type-correct) declaration of m). For simplicity,
we do not allow interfaces nor classes to declare several methods with the same
name. Interface Any is the most general interface, supported by any object.

A variable is typed either by an interface or by a data type, called object
variable or data variable, respectively. The runtime value of an object variable is
an object identity (or null), and that of a data variable is a data value. Data
variables are passed by value and object variables are passed by reference (i.e.,
the object identity is passed by value). Note that all object expressions are typed
by an interface, except this, which is typed by the enclosing class. In a well-typed
program, we may assume that each call is annotated by the interface/class of
the callee, as in o.mI(e) where I will contain a declaration of m.

Secrecy Levels We enrich the typing system with secrecy levels. Secrecy levels
range over L of basic secrecy descriptions with ordering v, such that (L, v) is
a lattice, i.e., a partially ordered set with meets (u), joins (t), a top element
> and bottom element ⊥. Higher in the lattice means more secure; and thus
the top element is the most secure. For example, a simple multi-level secrecy
system might have secrecy descriptions low, medium, and high, with ordering
low v medium v high, where low =⊥ and high = >. A more expressive lattice
could have several medium elements, indexed by object identities, or sets of
object identities, for controlling access rights. This is essential at runtime for
controlling secrecy with respect to objects; however, in our static analysis we
will not use levels indexed by identities, since in general there is limited static
knowledge about object identities.

In the syntax, all fields, formal parameters, and return values are given a
secrecy level, with level low as default (if none is specified). Local variables do not
have a declared secrecy level; their level starts as Low but may change after each
statement. At runtime, objects are assigned a secrecy level that protects against
unauthorized changes. Such a protected part is typical in policy enforcement
research [38]. The statically assigned level of a formal data parameter represents
the maximal level of any actual parameter. The declared secrecy level of an
object variable expresses the secrecy of the object identity, which is typically low,
reflecting that object identities (as such) are considered non-secret, whereas the

41

A secrecy preserving language for OODS

runtime secrecy level of an object gives more detailed information, for instance
about the access rights of the object. The static analysis is class-based, and
therefore the analysis is based on the (statically) declared levels, and not the
runtime object levels. However, the language allows specification of restrictions
on the secrecy level of a new object (as in x:=new C():Low) which determines
the initial runtime secrecy level of the generated object. At runtime an object
generated by the statement x:=new C():l will get the level l u lthis where lthis is
the level of the parent object. Note that l u lthis v lthis, which ensures that the
secrecy level of the generated object will not exceed that of the parent object.
As an object encapsulates local data and fields, these are not accessible from
outside of the object, and we do not need static control of write access to fields
of an object. At runtime the secrecy level of an object can be tested using the v
operation in the program.

In the static analysis, we consider all statically assigned levels, and all
possibilities for levels that can be assigned at runtime. This allows us to detect a
maximal secrecy level for each program variables at any given point in a program
(see Sec. 6.5). The next subsection describes an example of a network leakage,
as well as a non-leaking version.

A subscription example

A simple subscription example illustrates the different language mechanisms,
including simple, blocking and non-blocking method calls, and suspension
mechanisms. Note the use of cointerfaces in Fig. 6.4, which implies that
the caller of subscr is of type Client, which in turn allows the field users
in class SUBSCLIENT to be typed as a list of Clients, thereby allowing the call
users[i]!notify(n) in the class to be type correct since users[i] then is of interface
type Client. Here List is a predefined generic data type with generators empty
and insert, and with functions length and delete. All program variables in the
example are declared as Low (by default) except the parameters to notify and
publish, allowing high level News information to be passed to clients through
these methods. The data type News may be defined as a String or a more
complex data structure. To control and limit the notification of high level news,
the test n v first(user) is made before notification. Thereby notification is
restricted to client objects with a high enough runtime secrecy level.

We use the convention that class names are written in upper-case, interfaces
and types are capitalized, while variable, method, and function names are in
lower-case characters. We omit return void at the end of a class body. The non-
blocking call await v := c. notify (n) makes a NEWSPROVIDER object send
notifications at a speed adjusted to the Client c, without blocking itself from
responding to other calls. In contrast, the notify method in class SUBSCLIENT
uses a simple call, users[i]! notify (n), to notify each client, without suspending
nor waiting for each one to receive the call. Also, the main program (i.e.,
the constructor of the main class) uses simple calls, in order to set up the
initial system structure without waiting for replies. The suspending call in
make_subscr allows the SUBSCLIENT object to continue with notifications

42

The SeCreol language

interface Client {
Void notify(News:High n)
Bool make_subscr(s:Subscriber) }

interface Subscriber with Client {
Bool subscr()
Bool unsubscr() }

interface SubsClient extends Subscriber, Client {}
interface Publisher {Void publish(News:High n)}
class SUBSCLIENT() implements SubsClient{

List[Client] users := empty; // to store subscribers
Void notify(News:High n) {Nat i:=1;

while (i ≤ length(users)) do
if n v users[i] // checking runtime sec.levels
then users[i]!notify(n) fi; // simple call
i:=i+1 od;

return void}
Bool make_subscr(s:Subscriber){Bool ok;

await ok:= s.subscr(); return ok}
with Client

Bool subscr(){
if caller 6= this
then users := insert(users,caller) fi;
return caller 6= this }

Bool unsubscr(){
users := delete(users,caller);
return true} }

class NEWSPROVIDER(Client c) implements Publisher {Void v;
Void publish(News:High n){v := await c.notify(n); return v}}

class MAIN() { // main program
SubsClient s1 := new SUBSCLIENT():High;
SubsClient s2 := new SUBSCLIENT():High;
Client a := new SUBSCLIENT();
Client b := new SUBSCLIENT():High;
Client c := new SUBSCLIENT();
Publisher n1 := new NEWSPROVIDER(s1):High;
Publisher n2 := new NEWSPROVIDER(s1);
s2!make_subscr(s1);
a!make_subscr(s2);
b!make_subscr(s2);
c!make_subscr(s1)}

Figure 6.4: A simple subscription example (with occurrences of High
emphasized).

43

A secrecy preserving language for OODS

Figure 6.5: Illustration of the flow of news for the subscribers, clients, and news
providers in the main program.

class SUBSCLIENT() implements SubsClient {
... // as before

Void notify(News:High n) {Nat i:=1;
while (i ≤ length(users)) do
if n v users[i] // checking runtime sec.levels
then users[i]!notify(n)
else users[i]!notify(empty) fi; // async. call
i:=i+1 od;

return void }
}

Figure 6.6: Secure Class Server, second version – more secure, but generates
dummy calls.

and other requests while waiting for Subscriber s to respond. The main program
declares a subscriber s1 getting news from n1 and n2, and s1 notifies c and s2,
while s2 further notifies a and b, as illustrated in Fig. 6.5. Note that s1 and s2
play a dual role, that of a client and that of a subscriber, and must therefore be
of interface SubsClient. This makes the program well-typed.

The first version of the example poses a possible network leakage because
a network observer may detect which subscribed client objects are High, by
comparing the network traffic from a given subscriber object over time. The
second version uses a dummy call in the else branch of notify to confuse a network
observer (which cannot see the news content). The third version reduces the need
for dummy calls due to non-deterministic background (self) activity that makes
dummy calls when the object is not busy with other things. Here a somewhat
different version of notify is given.

It is noticeable that in our approach we are considering the worst case
scenario. For instance, in the subscription example, we consider that the set of
subscribed and unsubscribed clients are known to the attacker (i.e., by tracking

44

Secrecy-type system

class SUBSCLIENT() implements SubsClient { List[Client] users := empty;
{ this!mask() } //initialization, starting internal

background activity by a self-call
...
Void notify(News:High n) { Nat i:=1;

if improper(n) then skip
else while (i ≤ length(users)) do

users[i]!notify(n);
i:=i+1 od fi;
return void}

// send to all or none

Void mask(){Nat i:=1;
while (i ≤ length(users)) do
await true;
users[i].notify(empty) ; // suspending call
i:=i+1 od;

this!mask();
return void}

}

Figure 6.7: Secure Class Server, third version

the execution communication), otherwise an observer may not be sure that
the lack of notification to a client is due to unsubscription or the presence of
high-level news.

6.5 Secrecy-type system

Prevention of information flow from one information holder to another one with a
lower level have been considered in the literature. In our setting of active objects,
characteristics such as information hiding and encapsulation imply that there is
no external access to class fields [60]. Instead, we need to prevent information
flow from one object to another, which we specify by means of static rules for
acceptable information flow. We enforce this policy in our secrecy-type system for
any well-typed program. Hence, our static analysis does not need to imply any
restrictions inside a class such as limitations on information flows from high-level
variables to low-level ones (e.g. vHigh := vLow), unless high information can
be revealed in communication among objects or during suspension. Therefore,
despite the fact that static analysis usually appears as a rather pessimistic and
restrictive technique implying a high rate of false positives [66], we are able to
be less restrictive. In order to make our static analysis as precise as possible, we
allow the secrecy levels of program variables differ with the different program
points. This makes our analysis flexible. However, we rely on level information

45

A secrecy preserving language for OODS

about fields formulated in a way similar to a class invariant, to be respected
upon leaving a method invocation.

Our analysis is done class-wise. This is possible in our setting since remote
access to fields is forbidden and since all object interaction is done by methods
declared in an interface. The secrecy analysis of a class only depends on that class
declaration, related interfaces, and the class parameter declaration of instantiated
classes (through the new construct). We assume a well-typed program and assume
each method call e.m(e) is augmented by annotating the method name m by
the interface of the callee e (as in e.mI(e)), or the enclosing class when e is this.
The secrecy-type system for classes and methods are shown in Fig. 6.8. The
confidentiality of a class definition Cl is formalized by judgments of the form

` Cl ok

expressing that the class definition obeys the confidentiality rules. The
confidentiality of a method definition M is formalized by judgments of the
form

C `M ok

where C is the enclosing class. The confidentiality of a statement s is formulated
by considering judgments of the form

C ` [Γ, pc] s [Γ′, pc′]

where C is the enclosing class, Γ is a mapping binding variable names to
confidentiality levels for a given program point, and pc is the confidentiality level
of the current program point. As Γ and pc depends on the program point, we
let the “pre-binding” [Γ, pc] denote the bindings in the pre-state of s and the
“post-binding” [Γ′, pc′] those in the post-state of s. Finally, the confidentiality
of expressions and right-hand-sides rhs, given in Fig. 6.9, are formulated by
judgments of the form

C ` [Γ, pc] rhs :: l

where l is the resulting confidentiality level of rhs. Post-bindings are not needed
here as our expressions and right-hand-sides are side-effect free.

For simplicity, we let the mapping ΓC (corresponding to table look-up)
represent the declared secrecy levels of fields and class parameters for a class C
as given in the class definition. If the secrecy level of a field w is declared as l,
the binding w 7→ l is included in ΓC . In contrast, Γ expresses confidentiality
information depending on a particular program point. Since Γ-levels of class
fields can increase and decrease, the type rules insist that at the end of each
method (and at each ion point) their resulting levels should not exceed the
declared secrecy level (or equal). This allows us to assume the declared level at
each method start and after suspension. Furthermore, the notation Λ[I,m, i]
denotes the level of the ith parameter of the method as declared in interface I.
And similarly for classes. For a class C, we let C also be the name of the class
constructor (initialization code).

46

Secrecy-type system

(S-class)
C ` Mi ok, for each Mi ∈M

` class C(cp : U){w : U
′; M} ok

(S-method)
C ` [ΓC [y 7→ L(U), x 7→ Low], Low] s [Γ, pc]

C ` [Γ, pc] e :: l′

l′ v l

Γ[w] v ΓC [w]
C ` T : l m(y : U){var x : T ; s; return e} ok

Figure 6.8: SeCreol confidentiality type system for classes and methods where
ΓC denotes the declared secrecy levels for class parameters and fields, in class C
and Γ expresses confidentiality information depending on a particular program
point.

Map notation A mapping M is given by a set of bindings zi 7→ valuei for a
finite set of disjoint identifiers zi, the domain. The empty map is denoted ∅.
Map look-up is written M [z] where z is an identifier. A map update, written
M [z 7→ d], is the map M updated by binding z to d, regardless of any previous
bindings of z. Similarly M [S] denotes M updated with a set S of (disjoint)
bindings.

According to Rule S-CLASS in Fig. 6.8, confidentiality of each class is
satisfied, or simply is ok, if the confidentiality of each method is satisfied. The
confidentiality of a method (see Rule S-METHOD) is satisfied if its body
satisfies confidentiality starting with the declared level bindings (for fields and
class parameters, method parameters, and local variables) and with Low as the
starting pc level, and resulting in some binding [Γ, pc] such that Γ respects the
declared field and class parameter bindings levels (i.e., Γ[z] v ΓC [z] for each
field/class-parameter z) and such that the returned value respects the declared
output level of the method. As stated before, we check Γ[z] v ΓC [z] because the
secrecy level of program variables is allowed to be changed in different program
points. This is not unlike previous approaches such as [123], except that we make
no distinction between confidential and non-confidential variables as long as they
do not affect the communication behavior. However, a complication for object
oriented programs is that the order of method calls (and suspended processes) is
not statically given, therefore the declared level of fields (and class parameters)
must be respected at each method return and suspension point. This allows us
to assume the declared level at method start and after suspension. This implies
that the level of a field may temporarily be higher than the declared level. As
we will explain with more details in secrecy-type system, it also implies that a
simple fix-point calculation is required to be used when dealing with while-loops.

The SeCreol secrecy-type system for expressions and statements are shown
in Fig. 6.9 and Fig. 6.10, respectively. These figures present a collection of

47

A secrecy preserving language for OODS

typing rules describing which secrecy type is assigned to each occurrence of an
expression and program variable. In general, based on these rules, the level
of an occurrence of an expression is determined using Γ and pc. The rules
check that each occurrence of an actual parameter (or return value) respects
the declared level of the corresponding formal parameter (or method return
level), and that fields and class parameters respect the corresponding declared
levels at suspension points and at method returns. In our formalization this is
checked by premises in the rules; thus if these premises cannot be derived, the
program will not be accepted as a program satisfying the secrecy rules. Note
that each statement may adjust Γ, but only if and while statements may affect
pc. Thus the level of variables and pc may differ at different program points,
which for example means a call that is acceptable at one program point, might
be unacceptable at another point. Furthermore, the rules ensure that parameters
of calls made in a branch with a high condition will be high and may therefore
not leak information.

Rule S-EXP states that the confidentiality of an expression e is achieved
by Γ[e] t pc. We include pc since it represents the context level of the current
program branch. Thus a low level expression occurring in a program branch
with level pc, gets pc as its level, since it may reveal context information. We
define Γ[e] as follows: For a constant c (including null, this, void, and caller) Γ[c]
is Low (i.e., ⊥), Γ[e v e′] is High (i.e., >), and for other kinds of expressions
(including function applications) Γ[e] is defined as tv∈e Γ[v], where v ranges
over the variables textually occurring in e, and Γ[v] is its level recorded in Γ.
For simplicity, we here ignore so-called sanitizer functions, which are special
functions resulting in a lower level than some of its inputs. Moreover, Object
identities are not confidential, thus object variables are typically declared with a
Low level. However, the level of such variables in Γ is affected by the branch
level pc as other program variables. Thus the resulting level of object creation
is pc as object identities as such are considered Low. For the right-hand-side
of a call or new corresponding other rules in Fig. 6.9, each actual parameter is
required to have a level not exceeding the declared level of the corresponding
formal parameter. The resulting level of the call right-hand-side is the declared
return level of the method, joined with the current context level pc. We observe
that

C ` [Γ, pc] rhs :: l ⇒ pc v l

which means the rhs level is always at least as high as pc. This fact can easily be
proved by looking at each case of an expression or right-hand-side rhs according
to the SeCreol syntax (Fig. 6.3).

According to the secrecy-type system for statements in Fig. 6.10, skip does
not change anything. Similarly, a simple call does not change Γ nor pc, but the
actual parameter levels must respect the declared levels of the corresponding
formal parameters (as above). For an assignment, object creation statement,
or call, v := rhs, with level l for rhs, the level of v in Γ is changed to l, which
could imply a downgrade or an upgrade (or no change) of level. The pc is not
modified since such a statement is considered efficiently terminating without any

48

Secrecy-type system

(S-Exp)
C ` [Γ, pc] e :: Γ[e] t pc

(S-New)
C ` [Γ, pc] ei :: li li v ΓC′ [cpi]
C ` [Γ, pc] (new C′(e) : l) :: pc

(S-Call)
C ` [Γ, pc] ei :: li li v Λ[I, m, i]
C ` [Γ, pc] e.mI(e) :: Λ[I, m] t pc

(S-SelfCall)
C ` [Γ, pc] ei :: li li v Λ[C, m, i]
C ` [Γ, pc] this.m(e) :: Λ[C, m] t pc

Figure 6.9: SeCreol secrecy-type system for expressions and right-hand-sides.

branching.
For an await statement we must ensure that the declared levels of all

fields and class parameters are respected, since the suspension may cause other
processes to continue, for which we assume these declared levels. As mentioned,
the declared level of fields must be respected at the end/suspension of each
process. Levels of local variables will remain after an await statement since
local variables are not affected by other processes. We therefore use map
composition (+) in the post-state of an await to overwrite the levels of fields
and class parameters by the declared levels (ΓC). In the case of a call, the
effect of the assignment part is added after the map composition since this
assignment happens after suspension. A high await condition may cause implicit
leakage, since the presence of high information may be leaked through a low
output, for instance await <leaving house>; x.report(true) where report takes
low input. Therefore the pc level resulting from an await is that of the await
condition/right-hand-side (which is at least as high as the former pc level).

With respect to typing of security levels, a blocking call v :=
e.m(e) can be seen as the sequence e!m(e); v:= <returned value>, and
the non-blocking call await v := e.m(e) can be seen as the sequence
e!m(e); await <long enough>; v:= <returned value>. The rules for blocking
and non-blocking calls can be derived from this understanding. Note
that an await-statement may affect the pc. A high await condition may
reveal secret information that may be leaked. An example could be
await <leaving home>; athome:= false. where leaving one’s home is consid-
ered secret. By raising the level after the high await condition, the athome
variable becomes high, and leakage through data values is avoided. Other
indirect leakage of an await statement is considered in the next section.

As mentioned an if statement may cause implicit leakage of high information,
i.e., an if statement with a high test may reveal secret information through
branches with different low level values communicated to other objects. To avoid
this, Rule S-IF lifts the pc level of each branch by the level of the test. This will
make all expressions occurring in both branches at least as high as the if-test.
Thereby this kind of implicit leakage is avoided. (Note that l is at least as high
as pc in the rule.) Since the static analysis does not know which branch is taken
at runtime, the resulting value of Γ for each variable is calculated as the highest
level of each branch. An if statement without an else-branch is like an if
statement with skip in the else-branch.

49

A secrecy preserving language for OODS

(S-skip)
C ` [Γ, pc] skip [Γ, pc]

(S-composition)
C ` [Γ, pc] s1 [Γ1, pc1] C ` [Γ1, pc1] s2 [Γ2, pc2]

C ` [Γ, pc] s1; s2 [Γ2, pc2]

(S-simple-call)
C ` [Γ, pc] e.mI(e) :: l

C ` [Γ, pc] e!mI(e) [Γ, pc]

(S-rhs)
C ` [Γ, pc] rhs :: l

C ` [Γ, pc] v := rhs [Γ[v 7→ l], pc]

(S-await)
C ` [Γ, pc] e :: l

Γ[w] v ΓC [w]
C ` [Γ, pc] await e [Γ + ΓC , l]

(S-await-call)
C ` [Γ, pc] rhs :: l

Γ[w] v ΓC [w]
C ` [Γ, pc] await v := rhs [(Γ + ΓC)[v 7→ l], l]

(S-If)
C ` [Γ, pc] e :: l

C ` [Γ, l] s1 [Γ1, pc1]
C ` [Γ, l] s2 [Γ2, pc2]

C ` [Γ, pc] if e then s1 else s2 fi [Γ1 t Γ2, pc]

(S-While)
C ` [Γi, pci] e :: li

C ` [Γi, li] s [Γ′i, pc′i]
Γi+1 = Γi t Γ′i, pci+1 = pci t pc′i

C ` [Γ1, pc1] while e do s od [F IXi(Γi), pc1]

i = 1, 2, . . .

Figure 6.10: SeCreol secrecy-type system for statements.

The treatment of while is similar to an if statement without an else-branch,
except that the static analysis cannot predict how many times the branch is
iterated. Each iteration may lift the levels in Γ or pc. However, a loop will
have a finite number of program variables and since there is a finite number of
levels, there is a minimal fixpoint reachable in a finite number of approximations
(typically i equal to one or two). Rule S-while reflects this fixpoint calculation.

The secrecy typing ensures that there is no flow from high values to low
values, and that values evaluated in an if-branch with a high test are high (since
they may depend on the test), and similarly for values evaluated after an await

50

Network level leakage

with a high test or inside a while-loop with a high test. Thus the values of low
variables in any program state do not depend on high inputs. Furthermore, this
ensures that for any event generated by o, the values of parameters declared as
low do not depend on high inputs. A proof of this based on a semantics that
includes runtime secrecy levels, is given in [90], which proves the soundness of
the secrecy rules presented here. 2

The subscription example The subscription example in Fig. 6.4 has a straight
forward secrecy typing. The secrecy analysis of the while loop needs no iteration
to reach the fixpoint. The notify call in class newsprovider (as well as that in
SUBSCLIENT) has a high actual parameter (n), which is acceptable since the
notify method in Client is declared with a high (formal) parameter. However,
the if-statement has a high test, and at the network level the pattern of notify
calls could cause network leakage, which we consider in the next section. The
High annotations on the objects created in the main class concern the runtime
level of these objects, and not the variables declared in the main program. The
second and third versions of the example have no additional secrecy challenges,
the argument empty is low which is always acceptable.

Another example A (quasi) example is given in Fig. 6.11 to illustrate possible
changes in the levels of fields (xh and xl) and local variables (x). Level changes
are written to the right of each line, not repeating unchanged information.
The program satisfies the rules for confidentiality, i.e., the program does not
leak information in its explicit output and respects field levels at return/await
statements. Note that the lowering of xh was needed to make the check call
allowed, that the higher level of the x was maintained over the await (since x is
local), that the higher level of x was acceptable in the passw call, and that the
high level of the local variable x is allowed at the return point (after which x is
de-allocated). If the await condition had been high, pc would be raised to high
after the await, and the call to check would not be secrecy-type correct since xh
would then be high.

6.6 Network level leakage

We here consider enforcement of network-level non-interference (INI o) for SeCreol
programs by means of static trace analysis. We assume a given program that
is secrecy-type correct, i.e., has passed the secrecy-type analysis of Section 6.5.

2Alternatively, one could add a level to methods, letting this level be used as the starting
pc level of the method body, and require that methods called with high pc must be high.
In the subscription example, the local variable u would then be high, the notify call would
be accepted, and the secrecy analysis of the while loop would need no iteration (as before).
However, this would mean that a high method is not observable and therefore do not cause
leakage. All methods called by a high method must also be high, which gives some limitations
in what is allowed. If we believe that different notify patterns represent an observable leakage,
we can consider the generated pattern and check for leakage. This approach is explained below
in Sec. 6.6.

51

A secrecy preserving language for OODS

interface Passw{
Int:Low passw(Int:High x)// store password, return a ref number
Int:High check(Int:Low x)// check validity of password given ref

}

class TEST(Passw o){
Int:High xh;
Int:Low xl;

Int:High test(Int x){ xh 7→ High . Note: all others are Low
xl := x; xl 7→ Low
x := xh; x 7→ High
xh := xl; xh 7→ Low . Note: suspension is ok even with x high
await <low cond.>; xh 7→ High, x 7→ High . Note: all others are Low
xh := o.passw(x); xh 7→ Low . Note: the call is ok with x high
x := o.check(xh); x 7→ High . Note: the call is ok since xh now is Low
return x Note: return is ok with x High, since xh v High ∧ xl v Low

}}

Figure 6.11: An example showing level changes in fields and local variables
(indicated to the right in each line).

Moreover, we assume that await-, if-, and while-tests are decorated with the
levels resulting from the secrecy-type analysis, using the notation el, and we
assume the interface of a callee is known from the type analysis.

The static analysis is class-wise and we check that a class is not leaking
network information, according to INI this. The analysis is based on trace
expressions, ∆, detected by means of static analysis applied to method bodies.
The trace expression of a method reflects the possible traces of an execution
of that method including calls generated and consumed by the method. Each
trace expression may contain "high" subtraces, caused by high if- and while-
conditions. Therefore we check whether any high (sub)trace can be reduced
to a low (sub)trace (given the context of the class), as formalized below by
INIcheck. In the class rule of Fig. 6.12, the premise INIcheck(∆mi

) checks the
INI property for the trace expression of each method mi of the class. It must
be checked that each trace expression reveals no high information, as detailed
further below. We let isOK denote that a class declaration satisfies interaction
non-interference, and we let M reveals ∆ denote that a method declaration
M reveals the trace set ∆. In the method rule, defaultT denotes the default
initial value for variables of type T . The substitution of default values for the
local variables makes the initial values explicit. In this analysis, we ignore the
initial reaction event since it is implicit for the given method.

For statements s we consider judgments of the form ` [∆′] s [∆]. Due to
non-determinism caused by suspension and process queues, we cannot estimate

52

Network level leakage

(class)
` mi(y){var x; s; return e} reveals ∆mi , for each mi ∈M

INIcheck(∆mi) , for each i

` class C(cp){w; M} isOK

(method)
` [∆] s [caller← this.m]

` m(y){var T x; s; return e} reveals ∆[defaultT /x]

Figure 6.12: Network level rules for classes and methods.

the exact history of a method body as a single trace, but may estimate it
as an (extended) regular expression, using (. . . | . . .) for choice, semicolon for
sequential composition, and superscript ∗i for repetition, and in addition • for
any (finite) sequence. The latter represents unknown activities of the object
during suspension. Thus a trace expression defines a set of possible traces. Input
events will not occur in the trace expressions, since they cannot be detected
from the code. But we include reaction events of the form this� o.m because
they can be detected from the code and give implicit information about the
corresponding input events (this ← o.m). So even though reaction events are
not directly observable in the class code; they implicitly restrict the time where
the corresponding observable input event this← o.m may occur. For instance, a
blocking call to m on an external object o gives the trace this→ o.m; this� o.m
while a simple call to m gives this → o.m. In the first case there will not
be any output from the object between the observed events this → o.m and
this← o.m, as opposed to the second case which gives no restriction for how late
the completion event may appear. So an observer may distinguish a difference.
Without the reaction events in the traces, the two cases will have the same trace
expressions and our system would be unsound since observable differences are
not captured. Simple, blocking, and suspending calls are observably different
and are represented differently in the traces.

Furthermore, self-calls pose some non-trivial challenges. For instance, consider
the code

if eHigh then v:=this.m1() else v:=this.m2() fi

If m1 makes the call o!n(true) and m2 makes the call o!n(false), where the
parameter is Low, the outcome of the high if-test is leaked to object o. In order
to handle such cases we include self-calls in the traces even though they are
not observable. The example will then not pass the INIcheck test. And in
the example if eHigh then this.m(true) else this.m(false) fi , the outcome of the
if-test may seem to be leaked if m(x) makes the call o.n(x) where o is an external
object. However, in this example the argument to m must be high in order to
pass the secrecy-typing requirements, which means that there is no leakage.

53

A secrecy preserving language for OODS

Another challenge related to self-calls is that a call o.m(e) may be a self-call
if o equals this, unless the interface of o is not supported by the enclosing class
(for instance when m is not implemented in the class). This means that calls can
be categorized as self-calls (calls to this), external calls (calls through interfaces
not supported by the enclosing class), and calls for which we do not know at
static time if they are self-calls or not. The analysis must deal with all these
categories. The call events of external calls are visible to an observer, but not
for self-calls. However, for a self-call the activity caused by called method might
be important, but not for external calls since the output of such an invocation is
not an output of this object. Thus the static treatment is non-trivial.

In the analysis of statements, we employ backward trace analysis for detection
of generated observable events, by triples [∆′] s [∆] similar to Hoare triples,
where ∆ denotes a trace expression. Intuitively, it means that the statement
s generates the trace ∆′ (the pre-trace) when ∆ is the trace generated after
s has terminated (the post-trace). The notation ∆[e/x] denotes the trace set
expression ∆ with all occurrences of the variable x replaced by the expression e.
The example if high then o:=o ’; o!m(. . .) else o’!m(. . .) fi, motivates that the
effects of assignments should be considered in the analysis (in order to detect
non-leakage in this case). As we will explain later in this section, the above
code satisfies the policy. Therefore, the reason for doing a backward analysis is
that the generated trace expressions contain program variables, and therefore
the effect of assignments must be considered. The handling of assignments can
then be done by backward substitution as in Hoare logic. Thus an assignment
x := e causes the replacement of e for x in the pre-trace, letting [e/x] denote the
substitution. Similar substitutions are caused by object creation, blocking, and
non-blocking calls with assignment part x := rhs, except that here the value
assigned to x is not statically given, and is reflected by a fresh value.

In the axioms of Fig. 6.13 for basic statements, the pre-trace ∆′ is expressed
by means of the post-trace, given by a symbol ∆, consistent with left-constructive
analysis. Based on these rules, skip does not have any effect on a trace while in
case of an assignment, the pre-trace is determined by replacement of x with e in
the post-trace. Moreover, in case of a simple call, a call event is added to the
pre-trace (even if it is a self-call). In the rules for await, the symbol • represents
arbitrary traces caused by suspension. Since a high test in a conditional await-
statement may depend on high variables, its enabledness may reveal secret
information. For instance, an await statement with a condition testing raised
privileges gives a high (sub)trace. Therefore the • is considered high in this
case, which affects the INIcheck. For instance, a program path going through a
conditional await testing raised privileges gives a high trace expression, which
cannot be used to match any low trace. The notation of ∆[fresh/x] in these rules
denotes that all occurrences of the variable x is replaced by a fresh constant.

Rules for trace analysis are shown in Fig. 6.14. The rule for sequential
composition resembles that of Hoare Logic. We may for instance derive
` [∆′] skip; s [∆] from ` [∆′] s [∆]. In Rule if-else we encode the traces of
the branches, ∆1 and ∆2, into a branching expression, (∆1 | ∆2)l where l is
the level of the if-expression (as obtained by the secrecy-typing). The rule for

54

Network level leakage

` [∆] skip [∆]
` [∆[e/x]] x := e [∆]
` [(this→ o.m); ∆] o!m(e) [∆]
` [(this→ o.m); (this� o.m); ∆[fresh/x]] x := o.m(e) [∆]
` [((this→ x.C); (this� x.C); ∆)[fresh/x]] x := newC(e) [∆]
` [(•)l; ∆] await el [∆]
` [(this→ o.m); •; (this� o.m); ∆[fresh/x]] awaitx := o.m(e) [∆]

Figure 6.13: Trace axioms for basic statements. Here fresh denotes a fresh
symbol.

(seq-comp)
` [∆′′] s [∆′] ` [∆′] s′ [∆]

` [∆′′] s; s′ [∆]

(if-else)
` [∆1] s1 [ε] ` [∆2] s2 [ε]

` [(∆1|∆2)l; ∆] if el then s1 else s2 [∆]

(while)
` [∆] s [ε]

` [((∆[fresh/w])l)∗i; ∆′] el do s od [∆′]

Figure 6.14: Rules for trace analysis. In ∆∗i each fresh constant c is replaced
by ci, making freshness depend on the iteration, and w is the list of program
variables used in a right hand side inside an iteration.

while is similar, using superscript ∗i for repetition where the iteration index i
allows us to refer to each iteration. In particular, this allows freshness to be
dependent on an iteration i, as captured by ∆∗i. Remark that the nesting of if-
and while-statements determine the inner secrecy labels in a regular expression.
For a loop with a counter variable j starting on 1 and such that j := j+ 1 occurs
in the loop body as the only update of j, we simply use j as the iteration index,
ignoring the statement j := j + 1 in the further analysis, and avoiding replacing
j with a fresh constant, and thereby allowing more simplifications.

Subscription example Consider the original notify method defined in Fig. 6.4.
We need to find ∆′ such that [∆′] body [caller← this.notify] for the body. Using
the rules (in a left to right manner) we determine ∆′ as

((this→ users[i].notify | ε)High)∗i; caller← this.notify

55

A secrecy preserving language for OODS

(∆|∆)l −→ ∆

•; • −→ •

(ε)l −→ ε

this→ this.m; ∆ −→ ∆ for a simple, recursive call to m outside a branch,
if ∆ does not start with [•;]this� this.m

Figure 6.15: Simplification rules for the trace set of a method m. A self-call
this → this.m is detected as simple if it is not followed by this � this.m nor
•; this� this.m. And a self-call is recursive if it is to the enclosing method m
(as in method mask).

which contains high subtraces. As explained below, it will not satisfy the
INIcheck.

For the second version of notify, we get the trace expression

((this→ users[i].notify | this→ users[i].notify)High)∗i; caller← this.notify

As explained below it simplifies to (this→ users[i].notify)∗i; caller← this.notify,
which does not contain high subtraces, and satisfies the INI property.

For method make_subscr, we need to solve

[∆′] body [caller← this.make_subscr]

for the method body. We determine ∆′ as

this→ s.subscr; •; this� s.subscr; caller← this.make_subscr

which has no high subtrace, and is therefore not causing network leakage.

INIcheck The INIcheck test of a class is done by checking INIcheck(∆m)
for each method m of the class (including the constructor) where ∆m is the
trace expression generated for the body of m. The test is passed if ∆m can be
reduced to a trace expression without high subtraces, using the simplification
rules defined in Fig. 6.15. If the simplified ∆m has high subtraces, we flatten
∆m to a set of trace expressions ti, by flatting the branches, where each ti is
defined as high if it goes through a path of ∆m with a high branch (or subtrace),
and otherwise low. For example, a trace such as ∆1; (∆|∆′)l; ∆2 is flattened to
t1 = ∆1; ∆l; ∆2 and t2 = ∆1; ∆′l; ∆2. For each flattened high trace ti we must
then check if it can be recreated from the set of flattened low traces of the same
method, considering also possible other activities during suspension. This check
is denoted

ti matches S

where S is the union of the set of low traces of the same method and the set of low
traces of any background self activity without the final non-observable completion

56

Network level leakage

events. The background self activity is captured by the set of flattened traces of
recursive methods, with a simple or non-blocking recursive self-call, and where
the method is called by a simple self-call from the class constructor (directly or
indirectly). The rules for detecting recreation is defined in Fig. 6.16. Thus a
high trace ti passes the check if ti matches S following from the rules, where as
mentioned, S is the union of all low traces of the same method and low traces
representing self behavior. The final non-observable completion event is omitted
in a trace representing self behavior since this event is non-observable. Clearly,
in order to match the final completion event of ti one must involve a low trace
of the same method, while self behavior may appear at suspension points.

The simplification rules in Fig. 6.15 are used to reduce an INIcheck. The
rules are confluent and terminating. The first rule says that a branch expression
with two identical branches can be simplified, removing the level of the branch
expression. The second rule says that suspending twice in a row is equivalent
to suspending once (since any number of enabled suspended processes may be
taken during each suspension). The last rule says that a simple recursive call
(after the last suspension point of a trace) can be ignored since the event is
non-observable, the recursive invocation will be done later during suspension, and
since an irreducible trace must be revealed in a single invocation. Thus a leakage
in a recursive method can be found in the body without the recursive call. A call
is detected as a self-call if it has the form this→ this.m and as recursive if m is
to the enclosing method. An event this→ this.m in a flattened trace is detected
as a simple self-call if it is not followed by this� this.m nor •; this� this.m. In
the rules we let sscalls(t) denote the low traces of the methods called by simple
self-calls in trace t, omitting the final completion event (this← this), which is
non-observable. In order to limit the amount of false positives, one may add
further rules, such as replacing (∆|∆′)l by (∆′|∆)l according to some ordering
over trace expressions. And one may add that an initial • in a branch can be
removed, if the branch expression is preceded by a •, and similarly for a final •
in a branch. However, a more detailed study is beyond the scope of this paper.

The rules in Fig. 6.16 incorporate suspended behavior S of an object, by
starting with a (low and flattened) trace t in S and either stopping at a suspension
point (•), adding the remaining part of t to S, and continuing with another trace
in S. We may add a suspension point at the front or at the end of trace in S,
since each such trace is starting from and ending in a suspension (explaining
rule 5 and 6 of Fig. 6.16). And an iteration may be included or skipped, and a
bullet in an iteration may be ignored. Thus S is in general infinite; however, in
the context of checking whether a given flattened trace expression ti is in S, we
may expand S while matching ti from left to right. This can be done in finite
time letting each application of a rule match a lager part of ti.

The formalization of matching depends on the duration of network observa-
tions. If we assume the observations are made over a short term, it is plausible
that any method of an interface of the class has been called before the ob-
servations starts, and its low traces should therefore be included in S. If the
observation is long term which we take as the default, this assumption is not
appropriate, and the low traces of the active self behavior may safely be included

57

A secrecy preserving language for OODS

ε matches S

t matches S if t ∈ S

t; t′ matches S if t matches S ∧ t′ matches S ∪ sscalls(t)
t; t′′ matches S if t; •; t′ matches S ∧ t′′ matches S ∪ {t′} ∪ sscalls(t)
•; t matches S if t matches S

t; • matches S if t matches S

t; t′′ matches S if t; (t′)∗i; t′′ matches S

t; t′; t′′ matches S if t; (t′)∗i; t′′ matches S

(t; t′)∗i matches S if (t; •; t′)∗i matches S

Figure 6.16: Rules to determine if a (high) trace matches a set of low traces, while
adding any new suspended processes to S. t is a branch-free trace expression,
and S a set of such expressions. Here sscalls(t) denotes the set of low trace
expressions, without the final non-observable completion event, for each method
with a simple self-call in t. (Exemplified in Fig. 6.17 and Fig. 6.18).

in S. Thus we consider here the worst case in this respect, but the same approach
can be used for the case of observations with short duration.

Examples Fig. 6.17 and Fig. 6.18 explains the application of rules in INIcheck
with some synthetic examples to cover different possibilities. In the first example,
the if statement has the trace (this→ o′.m ; this� o′.m | this→ o′.m; this�
o′.m)High simplified to this → o′.m; this � o′.m using the simplification rules,
which has no high subtrace, and therefore there is no network leakage. Exp2
will not pass the INIcheck because m1 is textually different from m2. Remark
that if o = this and if m2 and m1 make the same calls, we have a false positive.
In the third example, there is no high subtrace, and therefore no leakage. The
examples Exp4 to Exp7 do not satisfy the INIcheck because they have a pair of
high traces (and here no background self activity set S is given). In Exp7 the
two self-calls may indirectly cause an observable difference, if m has observable
output, since the call in the then-branch makes this output happen before the
current method is finished (with a visible ← this event) while this need not to
be the case for the call in the else-branch. Exp8 has a possibility of leakage,
which is detected. This happens when more than one call happens at runtime,
in which case the second call reveals information about the high test. Otherwise,
an attacker cannot distinguish between the high or low if-tests. Moreover, as
explained in the details in the figure, Exp9 satisfies the INIcheck because the
high trace can be matched by low traces, and thus the execution traces are
indistinguishable from the attacker’s point of view. The last non-trivial example,
Exp10, also satisfies the INIcheck. It is because the only high flattened subtrace
in mtd1, i.e., t1 can be also recreated with the combination of the low trace of
the same method, i.e., t2 and the trace of simple self-call to method n in mtd1,
i.e., tn. In other words, the observer cannot distinguish t1 from an execution that
includes t2 such that tn happens at the suspension point. This example shows

58

Network level leakage

(Exp1)
if e then o := o′; v := o.m else v := o′.m fi

X : Trace: (this→ o′.m ; this� o′.m

| this→ o′.m; this� o′.m)High

Simplified to this→ o′.m; this� o′.m

No high subtrace.

(Exp2)
if e then v := o.m1 else v := o.m2 fi

× : Trace: (
t1︷ ︸︸ ︷

this→ o.m1; this� o.m1

|
t2︷ ︸︸ ︷

this→ o.m2; this� o.m2)High
Both t1, t2 are high.

(Exp3)
v := o.m1; await eLow; v := o.m2

X : T race : this→ o.m1; this� o.m1;
•; this→ o.m2; this� o.m2

No high subtrace.

(Exp4)
if e then v := o.m else await v := o.m fi

× : T race : (
t1︷ ︸︸ ︷

this→ o.m; this� o.m

|
t2︷ ︸︸ ︷

this→ o.m; •; this� o.m)High
No simplification, and t1, t2 high.

(Exp5)
if e then v := o.m else o!m fi

× : T race : (
t1︷ ︸︸ ︷

this→ o.m; this� o.m

|
t2︷ ︸︸ ︷

this→ o.m)High, t1, t2 both high.

(Exp6)
if e then await v := o.m else o!m fi

× : Trace: (this→ o.m; •; this� o.m

| this→ o.m)High

Figure 6.17: Examples of network level rule applications for INIcheck (Part I).
Here e is high and X indicates success and × failure.

the application of sscalls(t) as the set of low trace expressions for a method
with a simple call in the matching rules in Fig. 6.16.

59

A secrecy preserving language for OODS

(Exp7)
if e then await v := this.m

else this!m fi

× : T race : (this→ this.m; •; this� this.m

| this→ this.m)High

(Exp8)
mtd1(){

if (e)Low then v := o.m1 fi;
if (e′)Low then v := o.m2 fi;
if (e)High then v := o.m1

else v := o.m2 fi}
× : Traces similar to EXP 2.

(Exp9)
constructor(){this!n()}
n(){v := o.m1; this!n}

mtd1(){if e then v := o.m1 else skip fi}
X : Trace of mtd1 : (this→ o.m1; this� o.m1 | ε)High; caller ← this.mtd1

Flattened : t1 = (this→ o.m1; this� o.m1; caller ← this.mtd1)High and t2 = caller ← this.mtd1
Simplified trace of method n : tn = this→ o.m1; this� o.m1

Here t1 = tn; t2 and t2 is low. So t1 matches S since both t1, tn are in S.

(Exp10)
n(){v := o.m1}

mtd1(){this!n(); await eLow; if e then v := o.m1 else skip fi}
X : Trace of mtd1 : (this→ this.n; •; (this→ o.m1; this� o.m1 | ε)High; caller ← this.mtd1)

Flattened : t1 = this→ this.n; •; (this→ o.m1; this� o.m1)High; caller ← this.mtd1
and t2 = this→ this.n; •; caller ← this.mtd1

Trace of n : tn = this→ o.m1; this� o.m1; caller ← this.n

Thus sscalls(this→ this.n) = t′n = this→ o.m1; this� o.m1
Then this→ this.n; t′n; caller ← this.mtd1 matches S since t2 ∈ S and t′n is in the extended S.

Figure 6.18: Examples of network level rule applications for INIcheck (Part II).
Here e is high and X indicates success and × failure.

The subscription example revisited The original notify method reveals

(this→ users[i].notify | ε)∗iHigh; caller ← this.notify

where i is the iteration index. In order to remove the first high call we need to
look at any other background activity in this object. In the first version we do
not have any such activity, so based on our simplification rules, the call in the
high branch cannot be removed, and not satisfaction on INIcheck is detected.
However, for the second version, the redefined notify method reveals the following
trace expression

(this→ users[i].notify | this→ users[i].notify)∗iHigh; caller ← this.notify

60

Theoretical results

which is simplified to

(this→ users[i].notify)∗i; caller ← this.notify

which means there is no leaking because due to textually equivalence of the
two branches the high subscript is removed. Therefore, this method passes the
INIcheck test.

For the last version of the subscription example, the redefined version of
notify reveals the trace expression

(ε | (this→ users[i].notify)∗i)High; caller ← this.notify

Flattening gives the low trace caller ← this.notify, denoted t1, and the high
trace t2 given by:

((this→ users[i].notify)∗i; caller ← this.notify)High

We then need to show that t2 matches {t1} ∪ S where S is the low traces of
the background self activity. Since t1 is without suspension, t2 must end with
t1, and we need to show (this→ users[i].notify)∗i matches S. The constructor
of class SUBSCLIENT has a simple self-call to mask and mask has a simple
recursive self-call. Thus S contains the trace expression of mask (ignoring the
final non-observable completion event)

(this→ users[i].notify; •)∗iLow; this→ this.mask

where the simple recursive self-call can be removed based on the simplification
rules. Thus we have

(this→ users[i].notify; •)∗i matches S

Clearly, we also have (this → users[i].notify)∗i matches S by the last rule of
Fig. 6.16. Therefore also this example passes the INIcheck test! In contrast, the
original notify method would need a masking method that selects a subset of
the users for notification for instance by using non-deterministic choice (if added
to the language).

6.7 Theoretical results

In this section, we prove that by applying the proposed network trace analysis
in Section 6.6, any possible deviation from the INI policy defined in Section 6.3
will be detected. The possible execution traces σ for our language are defined by
the operational semantics in Section 6.8.

For an execution trace σ, the subtrace involving a given object o, denoted σ/o,
consists of output events SNDo, input events RCV o, and internal (input) events
RAC o. The rules for generating trace expressions ∆ of an object o talk about the
events generated by o, namely SNDo and RAC o, as well as •. Non-observable
self calls are included in the traces σ and trace expressions ∆.

61

A secrecy preserving language for OODS

Lemma 1 (Traces correspond to the operational semantics). Consider a trace
expression generated by the trace analysis of a given method m. The trace
expression will cover all traces possible by an execution of m according to the
operational semantics (Section 6.8) in the sense that each execution of m gives
a trace that is an instantiation of one of the flattened trace expressions, when
restricted to events generated by the method execution.

Proof outline Consider a given class C and method m with method body
s. We show that the trace expression ∆ generated for m, based on the trace
axioms (TAx) of Fig. 6.13 and the trace analysis rules (TSt) of Fig. 6.14, is
according to the operational semantics, in the sense that the events generated at
runtime by any invocation of m is an instantiation of one of the flattened traces
of ∆ (instantiating the variables in ∆). To obtain the subtrace generated by
an invocation of m we let the events generated by the rules of the operational
semantics be tagged by the unique identity of the invocation, given by the value
of δ[callId] where δ is the state of the object in the left-hand-side of the rule.
In the trace generated by an execution we may then extract the subtrace with
a given callId tag, called an invocation trace, which will consist of output and
reaction events generated by the object (i.e., SNDo and RACo events) with the
completion event of the method as the last event.

Consider an arbitrary invocation trace of an arbitrary execution of the
given method m. We may then prove that the invocation trace is equal to an
instantiation of a flattened trace expression. Each triple [∆] s [∆′] in the trace
analysis can be understood as the Hoare triple [h ∈ {∆}] s [h ∈ {∆′}] where
h is the local communication history (trace), using for instance a reasoning
system similar to [35] (without futures). The soundness of the axioms and
rules of Figs. 6.13 and 6.14 follows from the soundness of the reasoning system
for histories in [35], using this translation to Hoare logic. In particular, the
events generated in the pre-traces in the axioms of Fig. 6.13 correspond exactly
to the events generated in the operational semantics, and the substitutions
in the assignment-like statements in Fig. 6.13 correspond to those of Hoare logic.�

Theorem 1 (INI Deviation Detection). The interaction non-interference policy
is satisfied for a set of objects if the corresponding INIcheck is satisfied by the
corresponding classes of those objects. For each object o of a class C we have

INIcheckC ⇒ INI o

Proof outline Let us prove INIcheckC ⇒ INI o by contradiction, i.e.,
INIcheckC ∧ ¬INI o. We assume that there is a class C that based on the rules
in Fig. 6.12 satisfies isOK and that there is an object o of that class that does not
satisfy INI, i.e., ¬INI o. This means that for each method m in that class with s
as the method body, ∆ is calculated in the form of [∆]s[caller ← this.m] based on
Fig. 6.13 and 6.14. According to Lemma 1, ∆ reflects the communication traces
obtained from the operational semantics. Due to the satisfaction of INIcheck,

62

Operational semantics

we know that each high trace t obtained after simplification and flattening of ∆
(using the simplification rules in Fig. 6.15) can be recreated by the set S of low
traces of m and background self activity (i.e., t matches S), using the rules in
Fig. 6.16.

And, based on ¬INI , there are sequences of events σ and σ′, and some i,
such that:

(σ/o)|i =L (σ′/o)|i ∧ (σ/o)[i+ 1] ∈ SNDo∧
@σ′′ . (σ′/o)|i ≤ σ′′ ∧ (σ/o)|i+ 1 ≈net (σ′′/o)|i+ 1

where σ, σ′ and σ′′ range over possible execution traces. Therefore, based on
¬INI there is not any execution trace σ′′ which contradicts that the flattened t
is matched by the set S of suspension behaviors. The set of trace expressions
representing background self activity provides an underestimation of the process
queue of o when an invocation of m is made. Thus there is an execution that
continues with an instance of t after (σ′/o)|i.

It suffices to consider σ and σ′ such that the inputs to o from other objects
come as late as possible, i.e., a call o′ → o comes just before o′ � o and such
that a completion o← o′ comes just before o� o′ (for o′ different from o). This
can be made possible by considering executions where the objects generating
calls or completions to o are slowed down. This has no effect on the behavior
of o, and it allows us to derive the missing RCVo events from a flattened trace
expression.

It is also clear that if for each object oi of class Ci the trace analysis of Ci
is OK, and thus INI oi

is satisfied, then for a set of such objects O, INIO is
satisfied as well. Since any receive event for an object must happen after the
corresponding send event, we consider the subset of executions where the inner
send events match the corresponding receive events. We may assume σ is in
this set. Formally, consider any σ, σ′ (in this set), and i. We may assume the
left side of the implication, i.e. (σ/O)|i =L (σ′/O)|i ∧ (σ/O)[i+ 1] ∈ SNDO and
need to prove ∃σ′′ . (σ′/O)|i ≤ (σ′′/O)∧ (σ/O)|i+ 1 ≈net (σ′′/O)|i+ 1. We have
that (σ/O)[i+ 1] ∈ SNDO and thus there must be an object o in O such that
(σ/o)[i+ 1] ∈ SNDo. This means that we can apply INI o since σ/o and σ′/o are
determined by σ/O and σ′/O and we may choose σ′′ such that o is scheduled in
the next step (as in σ). �

6.8 Operational semantics

We here present the operational semantics of the core language. The main
purpose of this semantics is to understand the communication traces appearing
at runtime. We therefore omit the complication of assigning runtime secrecy levels
to objects and values of program variables. An operational semantics with secrecy
levels is presented in [90]. The semantics formalizes the notion of process queue
(PQ), idleness, and generation of events (as labels on the transition relation).
Thus a sequence of execution steps gives rise to a sequence of events, capturing

63

A secrecy preserving language for OODS

the history. Generation of identities for objects and method calls is handled
by underlying semantics functions and implicit attributes. The operational
semantics uses an additional construct get to deal with (the completion of) call
statements, letting get u appear as a right-hand-side, where u denotes a method
call identity. The query v:=get u will block while waiting for completion of u and
v:=await get u will suspend. We use the notation explained above for mappings,
and a denotes an object expression, b denotes a Boolean expression, o denotes
an object identity, u denotes a method identity, and d denotes a value (a data
value or an object identity).

For simplicity we omit rules for while. While can be handled by expanding
a while-statement to be executed to an if-statement with an inner while upon
execution of the the while-statement. The semantics of the while-statement while
b do s od is equivalent to that of if b then s; while b do s od fi. The semantics of
an if-statement without else-part, if b then s; while b do s od fi, is equivalent to
if b then s else skip fi.

The operational semantics of the core language is given in Fig. 6.19 and
Fig. 6.20. A runtime configuration of a system is seen as a multiset of objects
and messages (using blank-space as a binary multiset constructor). Each rule in
the operational semantics deals with only one object o, and possibly messages,
reflecting that we deal with concurrent distributed systems communicating
asynchronously. When a subconfiguration c can be rewritten to a c′, this means
that the whole configuration . . . c . . . can be rewritten to . . . c′ . . ., reflecting
interleaving semantics. Each object o is responsible for executing all method
calls to o as well as self-calls. An object has at most one active process, reflecting
a method execution, and a sequence of suspended processes organized in a
process queue PQ. Remote calls and replies are handled by messages. Objects
have the form

o : ob(δ, s)
where o is the object identity, δ is the current object state, and s is a sequence of
statements ending with a return, representing the remaining part of the active
process, or idle when no active process. A message have the form

msg o→ o′.m(e)

representing a call event, where o is caller, o′ callee, m the method and e the
actual parameter values, or

msg o← o′.(u, d)

representing a completion event where d is the returned value and u the identity
of the call.

In the operational semantics rules, pc is the confidentiality level of the object
that is going to execute an instruction at the current program point. Moreover,
the operational semantics uses some additional variables, like PQ for holding the
process queue and nextId and nextOb for generating unique identities for calls
and objects. These appear as fields in the operational semantics. Furthermore,
this is handled as an implicit class parameter, while callId and caller appear

64

Operational semantics

skip: o : ob(δ, skip; s)
empty−−−−→ o : ob(δ, s)

assign : o : ob(δ, v := e; s)empty−−−−→ o : ob(δ[v := e], s)

if-true : o : ob(δ, if b then s1 else s2 fi; s)empty−−−−→ o : ob(δ, s1; s)
if δ[b] = true

if-false : o : ob(δ, if b then s1 else s2 fi; s)empty−−−−→ o : ob(δ, s2; s)
if δ[b] = false

new : o : ob(δ, v := new C(e); s)o ↔ δ[nextOb].C(δ[e])−−−−−−−−−−−−−−→ o : ob(δ[v := nextOb,nextOb := next(nextOb)], s)
δ[nextOb] : ob(δC [this 7→ δ[nextOb], cp 7→ δ[e]], initC)

simple call : o : ob(δ, a!m(e); s)
o→δ[a].m(δ[nextId,e])−−−−−−−−−−−−−→ o : ob(δ[nextId := next(nextId)], s)

msg o→ δ[a].m(δ[nextId, e])

call : o : ob(δ, [await] v := a.m(e); s)
o→δ[a].m(δ[nextId,e])−−−−−−−−−−−−−→ o : ob(δ, [await] v := get δ[nextId]; s)

msg o→ δ[a].m(δ[nextId, e])

start : msg o′ → o.m(u, d)
o : ob((α|β′), idle)

o′�o.m(u,d)−−−−−−−−→ o : ob((α|(β[caller 7→ o′, callId 7→ u, y 7→ d])), s)
where m is statically bound to (m, y, β, s) in the class
of this

Figure 6.19: Operational rules (Part I) for small-step semantics (without secrecy
levels).

as implicit method parameters, holding the identity of a call and its caller,
respectively. The operational semantics uses an additional query statement,
[await] get u, for dealing with the termination of call/await call statements.
The syntax [await] denotes an optional await. The query get u is blocking
while waiting for the method response with identity u, and await get u is a
suspending query.

The state of an object is given by a twin mapping, written (α|β), where
α is the state of the field variables (including PQ, nextId, nextOb) and class
parameters cp (including this), and β is the state of the local variables and formal

65

A secrecy preserving language for OODS

return : o : ob(δ, return e)
δ[caller]←δ[this].(δ[callId],δ[e])−−−−−−−−−−−−−−−−−−→ o : ob(δ, idle)

msg δ[caller]← δ[this].(δ[callId], δ[e])

query : msg o← o′.(u, d)
o : ob(. . . [await] v := get u . . .)

o�o′.(u,d)−−−−−−−→ o : ob(. . . v := d . . .)

await : o : ob(δ, await b; s)
empty−−−−→ o : ob(δ, s)

if δ[b] = true

continue : o : ob((α|β′), idle)empty−−−−→ o : ob((α[PQ 7→ rest])|β), s)
if deq(α[PQ], α) = ((β, s); rest)

suspend : o : ob((α|β), s)empty−−−−→ o : ob((α[PQ 7→ enq(α[PQ], (β, s))], ε), idle)
if s starts with await

Figure 6.20: Operational rules (Part II) for small-step semantics (without
secrecy levels).

parameters (including callId and caller) of the current process. Look-up in a twin
mapping, (α|β)[z], is simply given by (α+β)[z]. For an expression e, the notation
α[z := e] abbreviates α[z 7→ alpha[e]], and the notation (α|β)[v := e] abbreviates
if v in β then (α |β[v 7→ (α|β)[e]]) else (α[v 7→ (α|β)[e]] |β), where in is used
for testing domain membership.

The process queue PQ is the queue of suspended processes, of form (β, s)).
The operations enq(PQ, p) and deq(PQ,α) are used to add a process p to the
queue, and to select an enabled process (if any) from the queue, respectively.
The latter results in the sequence (p;PQ′) of the selected enabled process p and
the remainder of the queue PQ′ (depending on the specific scheduling policy),
or the empty sequence empty if no process is enabled. A process (β, s) is enabled
if it starts with an enabled statement. A conditional await statement is enabled
if the condition evaluates to true (in state α|β), and an await call statement
is not enabled (unless reduced by the query rule). All other statements are
enabled.

Asynchronous (simple) method invocation is captured by the rule simple
call/call. The generated call identity is locally unique (and globally unique
in combination with the parent object). The call identity generated by this
rule is passed through an invocation message, which is to be consumed by the
callee object by the rule start. When an object has no active process, denoted
idle, a suspended process may be continued (by rule continue), given that

66

Operational semantics

the process is enabled, or a method call is selected for execution by rule start.
The invocation message is removed from the configuration by this rule, and
the identity of the call is assigned to the implicit parameter callId. With rule
return, a return value is generated upon method termination and passed in a
completion message together with the call identity stored in callId. The return
value is fetched by rule query. Note that a query statement blocks until the
corresponding future value is generated by rule return.

The query rule says that an occurrence of await v := get u, or v := get u,
in object o is replaced by the assignment v := d when the completion
msg o ← o′.(u, d) appears. The keyword await is removed when in front of
such a query statement. Note that rule query removes the completion message
from the configuration, which is possible since any corresponding get will be
found in the object when the completion message appears There is at most one
such occurrence (in the first statement of either the active statement list or a
process in PQ). If object o does not contain get u then the completion message
is removed without any effect on o. This happens when the corresponding call
was a simple call. In Rule start, we assume that m is bound to a method with
local state β (including default values) and code s. Note that bindings for the
parameters y and the implicit parameter nextId are added to the local state.

Object creation is captured by the rule new. The generated object identity
is locally unique, and also globally unique since the object identity is given by
a generator term embedding the parent object. The generated object gets this
identity. Here initC denotes the initialization statements (the constructor) of
class C, and δC denotes the initial state of class C with default/initial values
for the fields. The binding of class parameters and this is added explicitly (by
this 7→ δ[nextOb] and cp 7→ δ[e]). We obtain an active object by letting init
initiate internal activity, using simple self-calls to allow the object to interleave
continued internal activity with reaction to external calls. The initialization
statements of a program will typically create the other initial objects.

In the case that an await statement is not enabled, the current process
is placed on the process queue and the object becomes idle, as described by
rule suspend. An idle object may next start a new process (according to rule
start) or continue with an enabled process from the process queue (according
to rule continue). This choice depends on the underlying scheduling inside an
object. The given language fragment may be extended with constructs for local
(stack-based) method calls, e.g., by using the approach of [36]. As we focus on
inter-object communication, this is omitted here. For simplicity we omit runtime
secrecy levels and therefore the result of evaluating a secrecy comparison (by v)
is not defined in the operational semantics.

For a given program (and starting object) the operational semantics defines
a set of executions, each given by a sequence of global states (configurations).
The state of an execution E at time t is the state given by E[t]. A sequence
of execution steps E[i] ei−→ E[i + 1] ei+1−−−→ E[i + 2] ei+2−−−→ . . . generates the
trace ei; ei+1; ei+2 Even if an execution E may be infinite, our analysis
will deal with finite segments. In our concurrency model the objects compute

67

A secrecy preserving language for OODS

independently at their own speed (when not blocked), and we assume that one
object is not unboundedly delayed (unless blocked). Thus for our concurrency
model we may assume inter-object fairness.

6.9 Related work

As stated in the introduction, programming languages can provide fine-grained
control for security issues, and a large amount of work is based on Denning’s
paper on information flow security [33]. Substantial contributions have been
made to prevent disclosure of confidential information based on static, dynamic,
or hybrid information flow control approaches.

Statically checking information flow to protect confidentiality and integrity
is a promising technique as it provides increased precision [33] and low runtime
overhead of dynamic security classes [80]. To enforce information flow control
policies using static program analysis, program elements are annotated with
necessary information. Volpano et al [116] were the first ones to formulate
Denning’s approach [33] based on program certification, as a type system and
proved soundness of a version of non-interference theorem for a core deterministic
language. To track information flow in Java, Myer [80] extended the type system
of Java and proposed a decentralized label model. The extended type system
was later implemented in Jif compiler. In another adaptation, type system of
functional language OCaml, was extended to Flow Caml [104] by annotating
ML types with security labels. Major challenges pertaining to static approaches
are that they usually require complicated type annotations and often result in a
significant degree of false positives [115]. Although, theorem proving techniques
are used in [31, 64] to improve precision of static program analysis.

In contrast, dynamic mechanisms such as [8, 34] are more permissive, imposing
high overhead and may require changes to the runtime systems, e.g. special
schedulers. Additionally, in a majority of real time systems, security policies vary
dynamically [122] and cannot be determined at compile time. In [122] Zheng et
al expanded the scope of information flow control by providing mechanism to
update label values of program elements during run time. Tse and Zdancewic
facilitate dynamic flow control by proving non-interference for a security-typed
lambda calculus with runtime principals and enable more expressive security
polices [113]. Sabelfeld and Russo [97] compare and contrast static with dynamic
program analysis, and deduce (using simple imperative language) that both
techniques assure the same level of termination-insensitive non-interference.

Exploration of both static and dynamic approaches are made in [95], and
hybrid mechanisms such as [14, 20, 99], are provided to enhance the information
flow capability and increasing permissiveness, by realizing static analysis by
security type systems and realizing dynamic analysis by monitors. This hybrid
approach was also employed in the development of a new system and language,
Fabric [73], which is used to build secure distributed information systems. Fusion
of static and dynamic mechanisms of analysis for concurrent programs has been
proposed by Guernic [48], using an automaton to monitor the information flow

68

Related work

for a single execution of a concurrent program. Most of the work in programming
language research that provides information flow control is based on the principle
of non-interference.

M. Miller [78] explores language-based capabilities in the context of the object
capability model in his Ph.D. thesis. This model is useful for investigating object
communication and computation aspects. However, it focuses on robustness
issues rather than security issues. Additionally, Hammer and Snelting [51]
propose information flow control based on program dependency graphs, and
demonstrates significant reduction in annotation overhead and improved program
analysis precision [50].

Our proposed approach falls in the category of static analysis. However, in
this approach we have prevented a high false positive rate since, due to hiding
and encapsulation in our distributed object-oriented setting, we do not impose
unnecessary restrictions on information flow inside objects. In addition to a
new security type- and effect-system for the considered language, we propose
a new kind of class-wise trace analysis to restrict the flow of control among
objects communicating by asynchronous methods, to avoid indirect leakage
observable at the network level. Moreover, while most of the related work aims
at preventing traditional progress-insensitive non-interference, we are considering
progress-sensitive non-interference, where an attacker can indirectly observe
the progress of an object, caused by e.g. process termination or suspension.
To the best of our knowledge, there is no prior work considering a concept
similar to interaction non-interference, which stipulates indistinguishability of
interactions between distributed objects for a network viewer observing the
messages exchanged through method calls on the communication channels in
the network, given that the communicated low input values are the same.

In general, techniques that come with different goals might also have some
similarities. For example, model-based verification has a significant different goal
than our work. For instance, the main difference between our work and [46] is
that in our case there is no exploitable bug in the program. Instead, we consider
legal program behavior that might be informative to attackers. The attack
model and assumptions make remarkable differences as well. For example, in our
setting, there is no direct interaction with the malicious agent, the interaction is
indirect though asynchronous method calls. With respect to non-interference, we
are focusing on security leakages where the attacker is capable of observing the
interactions between agents, which for example is totally different from works
where attackers have interactions with the system, e.g. [117]. However, by our
trace analysis, we are also looking at runtime state changes and try to prevent
reaching states that may result in information leakage according to interaction
non-interference. This has similarities to to model-based verification techniques
such as Hoare logic, model checking, or state-based analysis approaches. In
contrast to Hoare logic we avoid verification conditions requiring (non-trivial)
theorem proving, and in contrast to model checking we transform a program to
a trace expression used for further analysis.

69

A secrecy preserving language for OODS

6.10 Conclusion

We have studied non-interference for concurrent distributed object systems
communicating by means of asynchronous method calls. The concurrent objects
may communicate confidential and non-confidential information, restricting
confidential information to method parameters/returns declared as safe channels
for confidential information. Due to the non-deterministic nature of such systems
and due to the non-trivial implicit information flow leakage related to observation
of communication patterns, standard definitions of non-interference are not
suitable. We have defined a notion of interaction non-interference and have
shown how to enforce it by static analysis, using a type and effect system for
secrecy levels and using analysis of communication traces addressing indirect
network leakage. The analysis is modular and is done class-wise, and we have
outlined a proof for soundness. We have considered an object-oriented language
centered around the chosen concurrency model. The setting of concurrent objects
and object-orientation gives some benefits as well as some challenges, compared
to other settings. The benefits include:

• protection of state. Each object encapsulates its state in the sense that
remote access is not allowed. This means that we do not restrict information
flow between confidential and non-confidential variables as long as they do
not affect communication behavior to cause a leakage. All fields are private
and their secrecy level may vary dynamically with the static knowledge of
their values and with the implicit context of high level if- and while-tests.

• concurrency control. The high level await mechanism allows cooperative
scheduling with explicit control of process suspension and resumption
without low level mechanism such as locking or signaling mechanisms. This
enables a compositional analysis.

• message-oriented communication. The underlying message passing
mechanism for method interaction defines one-way as well as two-way
interactions. Based on our analysis, the implicit leakage at the network
level can then be addressed by expressing communication traces for each
method.

• inflation of high levels. Our approach does not lead to inflation of high
levels, since method calls in a high context do not require methods to be
high, and since fields and program variables may go from a high level to a
low level.

However, this setting implied some challenges, which we have addressed:

• secrecy level invariants. The presence of suspension points imply that
secrecy levels of fields may change during suspension. We use an approach
similar to class invariants for controlling the level of fields during suspension.
Secrecy levels of fields must be maintained upon suspension and method
completion. In contrast, the levels of local variables may change freely
since their values are not modified during suspension.

70

Conclusion

• modularity. For a given object, the precise timing of observable input
events, reflecting method invocation and completion to the object, cannot
be detected statically since these events cannot be determined from the
program code. This makes the trace analysis less direct. We solve this by
considering trace expressions that include reaction events. These are by
definition non-observable, but give partial information about the timing of
the corresponding input events, which makes the analysis less direct.

• implicit self-calls. Self-calls pose non-trivial challenges for the modular
analysis, since the static analysis cannot in general detect if a call o.m(. . .)
is a self-call or not, and since a self-call may indirectly have observable
effects (when the called method calls external objects). We solve this by
including self-calls in the trace expressions, making special considerations
for calls detected as self-calls (i.e., calls to this).

The considered language is small, but includes mechanisms for process control,
which often is defined by the underlying operating system. With a dedicated
virtual machine this makes it possible to limit attacks from within the underlying
operating system.

Future work As future work, we will consider other language features such
as inheritance, which was not considered here, enrich our static analysis, and
providing a hybrid approach to satisfy the interactive non-interference policy
combining runtime and static analysis. The latter point requires an operational
semantics assigning runtime level to objects as well as to values of program
variables.

Inheritance and late binding will complicate the analysis in that the binding
of a method call is not in general static. As our approach depends on static
binding to be able to compute the traces, it cannot be extended to deal with
inheritance in a straight forward manner. However, the approach for partial
correctness reasoning used in [88, 89] allows modular reasoning for each (sub)class
with static binding of self calls, based on the assumption that the runtime class
of the considered object is the same as the considered class. Calls other than
(explicit) self-calls are statically controlled by interfaces (as in SeCreol). This
means that trace sets of inherited methods need to be recalculated in a subclass
(due to possible renewed bindings of Self-calls). This would create problems in
the frameworks such as behavioral subtyping or lazy behavioral subtyping [37].
Using the approach of [89], we may extend the current class-wise static analysis
of non-interference to deal with inheritance and late binding.

The concept of cointerface was used in the language to allow type-correct
callbacks to external caller objects. This concept gives the possibility of stating
minimal security requirements to callers of methods of an interface. We would
like to explore this possibility in future work.

To enrich the static analysis, we aim to use the program dependency graphs
(PDGs) by considering the effects of program control flow and data flow [94]
on interactive communication among objects with security levels which is also

71

A secrecy preserving language for OODS

proven at least as powerful as security type systems in detecting potential
information flows [74] while it can decrease false positives even more in progress-
sensitive approaches. In addition, to improve the enforcement, we consider
dynamic labeling and decentralized label model (DLM) [73] to provide a hybrid
enforcement mechanism as future work.

Acknowledgements. This work was partially supported by the project IoTSec
- Security in IoT for Smart Grids, with number 248113/O70 part of the
IKTPLUSS program funded by the Norwegian Research Council, and by the
project SCOTT (www.scott-project.eu) funded by the Electronic Component
Systems for European Leadership Joint Undertaking under grant agreement No
737422. This Joint Undertaking receives support from the European Unions
Horizon 2020 research and innovation programme of Austria, Spain, Finland,
Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, and Norway.

Authors’ addresses

Toktam Ramezanifarkhani University of Oslo, Postboks 1337 Blindern, 0316
Oslo, Norway, toktamr@uio.no

Olaf Owe University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
olaf@uio.no

Shukun Tokas University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
shukunt@uio.no

72

mailto:toktamr@uio.no
mailto:olaf@uio.no
mailto:shukunt@uio.no

Chapter 7

Language-based mechanisms for
privacy by design

Shukun Tokas, Olaf Owe, Toktam Ramezanifarkhani
Published in Proceedings of the 14th IFIP International Summer School on
Privacy and Identity Management, June 2019, volume 576, pp. 142–158. DOI:
10.1007/978-3-030-42504-3_10.

II
Abstract

The privacy by design principle has been applied in system engineering.
In this paper, we follow this principle, by integrating necessary safeguards
into the program system design. These safeguards are then used in the
processing of personal information. In particular, we use a formal language-
based approach with static analysis to enforce privacy requirements. To
make a general solution, we consider a high-level modeling language
for distributed service-oriented systems, building on the paradigm of
active objects. The language is then extended to support specification
of policies on program constructs and policy enforcement. For this we
develop i) language constructs to formally specify privacy restrictions,
thereby obtaining a policy definition language, ii) a formal notion of policy
compliance, and iii) a type and effect system for enforcing and analyzing a
program’s compliance with the stated polices.

7.1 Introduction

Advances in information technologies have often led to concerns about privacy.
With the adoption of information and communication technology in our daily lives,
the gathering and processing of personal information fundamentally increases the
potential for privacy threats. In particular, privacy and data protection features
are often ignored by conventional engineering approaches [30] or accommodated
as an afterthought. Aligning the software ecosystem with the privacy-related
requirements is an essential step towards better data protection. In order to
endorse privacy as a first-class requirement and promote privacy compliance from
the outset of product development, the privacy by design (PbD) requirement
has been formally embedded in the GDPR regulations (Article 25 [41]). Article

The authors were partially supported by IoT-Sec (NRC) (https://its-wiki.no/wiki/IoTSec:
Home) and SCOTT (EU)(www.scott-project.eu).

73

https://doi.org/10.1007/978-3-030-42504-3_10
https://its-wiki.no/wiki/IoTSec:Home
https://its-wiki.no/wiki/IoTSec:Home
www.scott-project.eu

7. Language-based mechanisms for privacy by design

25 [41] obliges the controllers to design and develop products with a built-in
ability to demonstrate compliance towards the data protection obligations.

The main idea of privacy by design is to make privacy a key consideration in
development of systems. Privacy by design is a framework consisting of seven
foundational principles: i) proactive not reactive; preventive not remedial, ii)
privacy as default setting, iii) privacy embedded into design, iv) full functionality
- positive-sum, not zero-sum, v) end-to-end security - full lifecycle protection, vi)
visibility and transparency, and vii) respect for user privacy - keep it user-centric.
We focus on the privacy embedded-into-design principle, due to its potential
connection with language mechanisms. We explore the idea of adding privacy
requirements into programming/specification languages and use static analysis
for enforcing such privacy requirements.

In this paper, we follow the privacy by design principle, by integrating
necessary safeguards into the processing of personal information, using a language-
based approach. In particular, we explore how to formalize fundamental privacy
principles and to provide built-in abilities to fulfill data protection obligations.
As a step towards this goal we develop a policy specification language that
provide constructs for specifying privacy requirements on sensitive (personal)
data In particular, a policy is given by a set of triples that put restrictions on
the principals that may access the information for certain purposes and the
permitted access rights. Such policy statements are then linked with language
constructs of a high-level modeling language oriented towards distributed and
service-oriented systems. Policies are annotated with the data types and methods.

Certain aspects of privacy restrictions can be expressed by means of static
concepts, while others can only be expressed at runtime, such as data subject,
consent, and other user-defined changes. In this paper, we focus on statically
declared policies and implicit consent (at compile time presence of policy implies
consent). Changes in consent and policies are handled at runtime through
predefined functionalities, which is beyond the scope of this article. In addition
to read and write access, we consider incremental access (incr), allowing addition
of sensitive information without read access and without modifying existing
information. For instance, in a healthcare setting, a lab assistant may have incr
access to treatment data, while a nurse may have both read and incremental
access (read t incr), and a doctor may have full access (read t write). We
formalize a notion of policy compliance, to develop a scheme of policy inheritance.
Finally, to enforce policy compliance, we define a set of rules, i.e., the type and
effect system that checks that the policies are respected when the sensitive
information is accessed. The theory of the current work is presented in more
details in [pricreol19].

In summary, the main idea is to provide language constructs that express
privacy policy specifications capturing static aspects of privacy and use these
to statically analyze a program’s compliance with the policy specifications. We
make the following contributions: i) propose a policy language for specifying
purpose, access and policy requirements (see Figure 9.1), ii) formalize a notion
of policy compliance, iii) show how the policy language can be used with an
underlying object-oriented language, and iv) develop a mechanic type and effect

74

Language constructs for policy specification

A ::= read | incr | write | self basic access rights
| no | full | rincr | wincr abbreviated access rights
| A uA | A tA combined access rights

P ::= (I,R,A) policy
Ps ::= {P∗} | Ps u Ps | Ps t Ps policy set
RD ::= purpose R+

[where Rel [andRel] ∗] purpose declaration
Rel ::= R+ < R+ sub-purpose declaration

Figure 7.1: BNF syntax definition of the policy language. I ranges over interface
names and R over purpose names. The operators t and u denote join and meet,
respectively.

system for analyzing a program’s compliance with the annotated privacy policies.
Paper outline. The rest of the paper is structured as follows. Section 7.2 presents
the formalization of privacy policies, including a policy definition language and
a formalization of policy compliance. Section 7.3 introduces the core language,
with support for the specification of privacy principles. Section 7.4 presents the
type and effect system. Section 7.5 demonstrates the analysis on a small case
study. Section 8.8 discusses related work, and Section 8.9 concludes the paper.

7.2 Language constructs for policy specification

Privacy policies are often described in natural language statements. To verify
formally that the program satisfies the privacy specification, the desired notions
of privacy need to be expressed explicitly. To formalize such policies, we define a
policy specification language. Furthermore, to establish a link between policies
and programming language constructs, we extend the syntax and semantics
of a small core language (see Section 7.3). In our setting, a privacy policy is
a statement that expresses permitted use of the sensitive information by the
declared program entities. To support privacy-by-design, we define policies at
the design level, and associate policies to data types and methods of interfaces
and classes, such that the policies of a method in a class must comply with
the corresponding policy in an interface of the class. In particular, a policy is
given by a set of triples that put restrictions on: What principals may access the
sensitive data, which purposes are allowed, and which access-rights are permitted.
That being the case, a policy P is given by a triple (I,R,A), where i) I ranges
over interfaces, which are organized in an open-ended inheritance hierarchy, ii) R
ranges over purposes, which are organized in a hierarchy (reflecting specialization),
and iii) A ranges over access rights, which are organized in a lattice. Thus
principals are expressed by the Interfaces, while new language constructs are
added to represent purposes, access rights, and policies.

The language syntax for policies is summarized in Figure 9.1, where [] is used

75

7. Language-based mechanisms for privacy by design

as meta-parenthesis, and superscripts ∗ and + denote general and non-empty
repetition, respectively. Here we briefly discuss the specification constructs.

Principal describes the roles that can access sensitive information and is given
by an interface. For instance for a call x := o.m(e), where o is typed by
an interface with policy (I,R,A), the caller object must support interface
I. Interfaces are organized in an open-ended inheritance hierarchy, letting
I < J denote that I is a subinterface of J . For example,

Specialist < Doctor < HealthWorker

Any is predefined as the least specialized interface, i.e., the superinterface
of all interfaces. We let ≤ denote the transitive and reflexive extension of
<.

Purpose names are used to restrict usage of sensitive data to specific purposes.
Such purpose names can be organized in a hierarchical structure, reflecting
a purpose hierarchy [53]. We let purposes be organized in a directed acyclic
graph reflecting specialization. Purpose names are defined by the keyword
purpose. For instance, the declaration

purpose spl_treatm, treatm where spl_treatm < treatm

makes spl_treatm more specialized purpose than treatm. If data is collected
for the purpose of spl_treatm then it cannot be used for treatm. However, if
it is collected for the purpose of treatm then it can be used for spl_treatm.
We let ≤ denote the transitive and reflexive extension of <.

Access-right describes permitted operations on sensitive data. Access rights are
given by a lattice, with meet and join operations (see Figure 8.3): read gives
read access, write gives write access (without including read access), incr
allows addition of new information but neither read nor write is included.
The combination of read and incr, i.e., read t incr is abbreviated rincr
gives read and incremental access. Similarly, write t incr is abbreviated
as wincr, which gives write and incremental access. Full access is given
by a combination of read and write (which includes incremental access),
i.e., full is the same as read t write. These general access rights can be
combined with access rights on self, i.e., access rights when the principal is
the subject herself. (details are omitted). For instance, a nurse should be
able to see treatment data of a patient and add new data, and needs rincr
access, while a lab assistant may add lab data and needs only incr access.
A patient should see data about herself, which requires self u read.

A single policy (P) is given by a triple (I,R,A), and a policy set (Ps) is
given by a set of policy triples (with meet and join operation defined). For
our purposes, we annotate methods with single policies while data types are
annotated with policy sets reflecting the permitted usage by different principals.

76

Language constructs for policy specification

full

rincr wincr

read incr write

no

Figure 7.2: The lattice for general access rights (without self). Note that rincr
is the same as read t incr, wincr is the same as write t incr, and full is the
same as read t write.

Example. The example in Figure 8.5 gives an illustration for declaring
policies, and annotating methods and types with policies. The policy
(Doctor, treatm, rincr) restricts access to objects typed by the Doctor interface,
for only treatm (treatment) purposes, and with rincr data access. This is checked
by a type and effect system in section 7.4. The policy set

{(Doctor, treatm, full), (Doctor, treatm, rincr), (Nurse, treatm, read)}

restricts access by these three policies. Here, the policy (Doctor, treatm, rincr) is
redundant since (Doctor, treatm, rincr) v (Doctor, treatm, full), and is colored
grey to indicate that. Method makePresc has policy (Doctor, treatm, rincr),
meaning that this method must be called by a Doctor object (or a more specialized
object), for purposes of treatment and with read and incremental access (but not
write access). Thus a doctor can add new prescription, but not change or remove
old ones. Method getPresc has policy (Nurse, treatm, read), meaning that this
method must be called by a Nurse object (or a more specialized object such as a
Doctor object), for purposes of treatment, and with read-only access. These two
methods, with associated policies, are inherited in interface PatientData.

7.2.1 Policy compliance definition

Here, we briefly present a few definitions needed to express policy compliance.

Definition 6 (Policy Compliance). The sub-policy relation v, expressing policy
compliance, is defined by

(I ′, R′, A′) v (I,R,A) ≡ I ≤ I ′ ∧R′ ≤ R ∧A′ v A

77

7. Language-based mechanisms for privacy by design

purpose basic_treatm, treatm where basic_treatm < treatm

policy PDoc = (Any, treatm, full)
policy PAddPresc = (Doctor, treatm, rincr)
policy PGetPresc = (Nurse, treatm, read)
policy PPresc = {PGetPresc,PAddPresc,PDoc}

type Presc == Patient * String :: PPresc

interface Patient extends Subject {Void getSelfData() :: PSelfPresc}
interface AddPresc {Void makePresc(Presc newp):: PAddPresc}
interface GetPresc {Presc getPresc(Patient p) :: PGetPresc}
interface PatientData extends AddPresc, GetPresc {}
interface Nurse extends Principal { Presc nurseTask() :: PGetPresc}
interface Doctor extends Nurse{ Void doctorTask(Patient p) :: PDoc}

class PATIENTDATA() implements PatientData {
type PData = List[Presc] :: PPresc
PData pd = empty();
Presc getPresc(Patient p){return last(pd/p)} :: PGetPresc
Void makePresc(Presc newp) {

if newp 6=emptyString() then pd:+ newp fi } :: PAddPresc }

class DOCTOR() extends NURSE implements Doctor{//inherits pd
Void doctorTask(Patient p){

Presc oldp = pdb.getPresc(p);
String text = ...; //new presc using symptoms info and oldp
Presc newp = (p, text); // here, new sensitive data is created!
pdb!makePresc(newp)}:: PDoc }

Figure 7.3: Interface, class, type, and policy definitions for the Prescription
Example. Grey policy specifications are implicit while underlined ones need to
be explicitly stated. A class implementation of Nurse is omitted. The projection
pd/p is the list of strings associated to patient p, and the function last gives the
last element.

(where the last v operation is on access rights) with • as bottom element,
representing non-sensitive information. It follows that v is a partial order.

A policy P ′ complies with P if it has the same or larger interface, the same
or more specialized purpose, and if the access rights of P ′ are the same or weaker
than that of P. In particular, the policy of the implementation of a method
should comply with that of the interface. Note that • v P expresses that an
implementation without access to sensitive information complies with any policy.

Moreover, the use of self in the access part allows us to distinguish between

78

Language constructs for policy specification

different kinds of self access for different purposes, such as (Patient, all, read u
self) and (Patient, private_settings, self). The latter gives full access to data
about self for purposes of private settings, while the first gives read access to
data about self for all purposes.

We define a lattice over sets of policies with meet and join operations, and
generalize the definition of compliance to sets of policies:

Definition 7 (Compliance of Policy Sets).

{P ′i} v {Pj} ≡ ∀i .∃j .P ′i v Pj

This expresses that a policy set S′ complies with a policy set S if each policy
in S′ complies with some policy in S. We define meet and join operations over
policy sets by set union and a kind of intersection, respectively, adding implicitly
derivable policies:

Definition 8 (Join and Meet over Policy Sets).

S t S′ ≡ closure(S ∪ S′)

S u S′ ≡ closure({P | P v S ∧ P v S′})
where the closure operation is defined by

closure(S) ≡ S ∪ {(I,R,A tA′) | (I,R,A) v S ∧ (I,R,A′) v S}

We have a lattice with ∅ as the bottom element. The closure operation adds
implicitly derivable policies, and ensures that {(I,R,A tA′)} v {(I,R,A)} t
{(I,R,A′)}. For instance, {(Doctor, treatm, read)} t {(Doctor, treatm,write)}
is the same as {(Doctor, treatm, full)}. These constructs are useful in
specification of constraints and in capturing access to sensitive information
with declared privacy policies. The meet operation typically reflects worst-case
analysis.

Definition 9 (Implication on Policy Set). We define the notation Ps′ =⇒ Ps
(Ps′ implies Ps) by {•} =⇒ Ps and Ps v Ps′ for Ps′ other than {•}.

Implication is used to check policy compliance of an actual parameter with
respect to a formal parameter. If {•} is the policy on the actual parameter and
Pdoc the policy on the formal parameter, we will check {•} =⇒ Pdoc.

Policies on methods. Let PI,m denote the policy of a method m given in an
interface I, and PC,m denote the policy of a methodm given in a class C. We will
require that the implementation of a method in a class (C) respects the policy
stated in the interface (I), i.e., PC,m v PI,m. And we also require that a method
redefined in an interface (I) respects the policy of that method in a superinterface
(J), i.e., PI,m v PJ,m. By transitivity of v, a method implementation in a
class that respects the policy given in an interface also respects the policy
of the method given in a superinterface, i.e., PC,m v PI,m and PI,m v PJ,m

79

7. Language-based mechanisms for privacy by design

implies PC,m v PJ,m. For instance, consider an interface GetPresc with a method
getPresc() with policy (Nurse, treatm, read). An implementation of this method
in a class must have a policy that complies with it, such as (Any, treatm, read),
(Nurse, treatm, self u read), or (Nurse, basic_treatm, read). In contrast, the
implementation cannot have policy (Doctor, treatm, read), as this would not
allow a Nurse as the caller object, and also not (Nurse, all, rincr), because this
violates purpose and access restrictions.

Policies on types. We let the policy of a type T , denoted PT , be a policy
set. Let the policy set {(Doctor, treatm, rincr), (Nurse, treatm, read)} be the
policy set on type Presc. This allows the data of type Presc to be accessed based
on these two policies, depending on the calling context. For instance, if the caller
is a Doctor object and the purpose is treatm then read as well as incr access is
allowed on data of type Presc. The policy set of an actual variable must imply
the policy set of the type of the corresponding formal variable. Together, the
policies on methods and types provide sufficient abstractions to control access
to sensitive data.

In the next section we consider a high-level imperative language for service-
oriented systems where policy specifications are integrated.

7.3 Embedding policy with program constructs

We target object-oriented, distributed systems (OODS) and consider the active
object programming paradigm [85], which is based on the actor model [57]
and gives a high-level view of communication aspects in OODS. In the active
object model, objects are autonomous and execute in parallel, communicating
by so-called asynchronous method invocations. We assume interface abstraction,
i.e., an object can only be accessed through an interface and remote field access
is illegal. This allows us to focus on major challenges of modern architectures,
without the complications of low-level language constructs related to the shared-
variable concurrency model.

We propose a small core language, based on Creol [61], centered around a
few basic statements. It has a compositional semantics which is beneficial to
analysis [61, 93]. The language is imperative and strongly typed, with data
types for data structure locally inside a class. The data type sublanguage is
side-effect-free. The motivation is that the language gives high-level descriptions
of distributed systems and synchronous and asynchronous interaction based on
methods, thereby avoiding shared variable access, and avoiding explicit signaling
and notification. The BNF syntax of the language is summarized in Figure 7.4.
As before, optional parts are written in brackets (except for type parameters,
as in List[T], where the brackets are ground symbols). Class parameters (z),
method parameters (y) the implicit class parameter this and the implicit method
parameter caller are read-only. A class may implement a number of interfaces,
and for each method of an interface (of the class) it is required that the class
defines the method such that policy of each method parameter and return value

80

Embedding policy with program constructs

Pr ::= [T | RD | In | Cl]∗ program
T ::= typeN [T] =<type_expression> [::Ps] type definition
T ::= I | Int | Any | Bool | String | Void | List[T] | N types
In ::= interface I [extends I+] {D∗} interface declaration
Cl ::= class C ([T z [:: P]]∗) class definition

[implements I+] [extends C] support, inheritance
{[T w [:= ini] [:: P]]∗ fields
[B [::P]] class constructor
[[with I] M]∗} methods

D ::= T m([T y [:: P]]∗) [:: P] method signature
M ::= T m([T y [:: P]]∗) [{s}] [:: P] method definition
B ::= {[T x [:= rhs];]∗ [s;] return rhs} method blocks
v ::= w | x assignable variable
e ::= v | y | z | this | caller | void | f(e) pure expressions
ini ::= e | new C(e) initial value of field
rhs ::= ini | e.m(e) right-hand sides
s ::= skip | s; s sequence

| v := rhs| v :+rhs | e!m(e) | I!m(e) assignment and call
| if e then s [else s] fi if statement
| while e do s od while statement

Figure 7.4: BNF syntax of the core language. A field variable is denoted w, a
local variable x, a method parameter y, a class parameter z, and list append is
denoted +. The brackets in [T] and [T] are ground symbols.

are respected. Additional methods may be defined in a class, but these may not
be called from outside the class. The language supports single class inheritance
and multiple interface inheritance (using the keyword extends). Below, we give
BNF syntax for method and type declarations.

Definition 10 (Method Declaration Syntax).

T m([Y y]∗) [:: P]

where T is the result type and Y is the type of parameter y.

An inherited method m inherits the policy of m from the superinterface,
unless the interface declares its own policy for m. However, the redefined policy
of m (of interface I) cannot be more restrictive than that of the superinterface
(J), i.e., PI,m v PJ,m, ensuring that a class implementation of m satisfying PI,m
also satisfies any declarations of m in a superinterface.

Definition 11 (Data Type Declaration Syntax and Sensitivity).

type N [TypeParameters] =< type_definition > [:: Ps]
where the type parameters are optional. The predefined basic types (Nat, Int,

81

7. Language-based mechanisms for privacy by design

String, Bool, Void) are non-sensitive. A user-defined type is sensitive if a policy
set is specified in the type definition.

For example, a sensitive String type restricted by a policy Ps can be defined
by

type Info = String :: Ps
and encryption could go from Info to String, and decryption the other way.

We consider next sensitive functions, which create new sensitive data, for
instance a product of individually non-sensitive data may be sensitive. Generator
functions (here called constructors) are considered sensitive if they i) combine
information about a subject with non-sensitive or sensitive information or ii)
use sensitive information. We assume that sensitive generators produce sensitive
types (with some exceptions, such as constructors of encrypted data). Defined
functions are sensitive if their type is sensitive and the definition directly or
indirectly contains a sensitive application of a constructor. For instance we may
(recursively) define a parameterized list type by List[T] = empty()|append(List[T]∗
T) meaning that lists have the form empty() or append(l, x), where l is a list and
x a value of type T . (We let the notation l+x abbreviate append(l, x).) The list
is sensitive if T is sensitive, but the append constructor function is not sensitive.
A pair product type can be defined by PatientData = (Patient ∗ String) where
Patient is a interface representing a data subject. This type is sensitive (even
though String is not), and the pair (current_patient, ”no health problems”) is
a sensitive application of the product constructor. These examples suffice for
our purposes here. It can be detected statically if a function is sensitive (further
details are omitted). Applications of sensitive functions may create new sensitive
data, something which require write access. This way the policy control is driven
by the declared data types rather than variable declarations. Data types are
reusable and therefore their policies are likely to more reliable and appropriate
than one-time adhoc specification for program variables.

When the lawful basis of processing of personal information is performance of
contract or other valid bases but not the consent, the policies must be formulated
in a way that ensures that they are built into the system by default, i.e., no
measures are required by the data subject in order to maintain his/her privacy.
However, when consent is the basis of processing the data subjects, choices in
privacy settings are captured at runtime (as outlined in [106]).

We next show how to define static policy checking for our core langauge.

7.4 An effect system for privacy

We propose static policy checking defined by a set of syntax-directed rules, given
as a type and effect system [84], but dealing with policies rather than types. We
consider two kinds of judgments. For a statement s, the judgment

C,m ` [Γ] s [Γ′]

expresses that inside a method body m and an enclosing class C, the
statement(list) s when started in a state satisfying the environment Γ results

82

An effect system for privacy

(P-var)
read v Γ[v] u (PC,m@(C,m))
C,m ` [Γ] v :: Γ[v] u Γ[pc]

(P-func)
C,m ` [Γ] ei :: P for each argument ei of a sensitive type

write v PT u (PC,m@(C,m)) if fT is a sensitive function
C,m ` [Γ] fT (e) :: PT u Γ[pc]

(P-call)
PI,n vCo,R PC,m@(C,m)

C,m ` [Γ] e :: P ′
C,m ` [Γ] ei :: Pi Pi =⇒ Ppar(I,n)i

for each i
C,m ` [Γ] e.nI(e) :: Pout(I,n)

Figure 7.5: Policy Rules for Expressions and Right-Hand Sides.

in a state satisfying the environment Γ′. Here Γ is a mapping from program
variable names to policy sets, such that the policy set of a variable in a given
state gives an upper bound of the permitted operations. In order to deal with
branches of if- and while-statements where the context policy is influenced by
that of the if- and while-tests, Γ uses an additional variable pc (the program
context) reflecting the current branching policy (as in [93]). Note that the rules
are right-constructive in the sense that Γ′ can be constructed from Γ and s.

For an expression or right-hand side e, the judgment

C,m ` [Γ] e :: Ps

expresses that the evaluation of e in a state satisfying Γ gives a value satisfying
the policy set Ps, where m is the enclosing method and C the enclosing class.

Figure 8.9 defines the typing rules for expressions and right-hand sides, and
Figure 8.10 defines the typing rules for (selected) statements. We let PI,m denote
the policy of method m of interface I, PC,m denote the policy of method m
of class C, and PT denote the policy associated with a type T . If no policy is
specified for any declaration, we understand that there is no sensitive information,
i.e., the policy is {•}. Data types with sensitive constructors will be considered
sensitive. A non-sensitive method would not be able to access or create sensitive
data, and a non-sensitive type declaration would not allow assignment of sensitive
information to variables of that type.

Rule P-var says that the policy of a variable v (a field, parameter, or local
variable) is the one recorded in Γ for v, i.e., Γ[v], combined with that of the
program context pc. The premise states that there must be read access to v,
both according to the policy set of the variable and according to the policy set of
the enclosing method body. If the policy of the enclosing method m is (I,R,A),
the policy set of the method body is defined by

(I,R,A)@(C,m) ≡ (I,R,A) ∪ (∪i {(Ii, R,A)})

83

7. Language-based mechanisms for privacy by design

where Ii ranges over all the interfaces of C that export m. Thus the policy set
of the method body is that of the method and those where this object is the
principle (as seen through one of the interfaces exporting m).

Rule P-func says that the policy of a function application fT (e) is that of
the resulting type T (detected by ordinary typing) combined with that of the
program context pc. Sensitive arguments must be checked (which ensure read
access to the variables occurring in these arguments), and in case f is a sensitive
function application, there must be write access according to the policy of T
and the policy of the method body. Constants (function without arguments), as
well as object creation, have policy set {•}.

Rule P-call says that the policy of a remote call e.nI(e) where I is the interface
of the method (detected by ordinary typing), is the policy on the return type of
the method (as given by the declaration of m in I). The first premise ensures
that the policy of the called method complies with policy of the enclosing body.
The second premise ensures that the callee expression has a valid policy, and
the last premise ensures each actual parameter has a policy set that implies the
policy set of the corresponding formal one.

The rule P-Skip says that the environment is not changed. The rule for
sequential composition says that the final environment of s1 is used as the
starting environment for the next statement s2. The rules P-write and P-local-
write say that the final environment is that of the right-hand side. Writing to a
field requires write access, while writing to a local variable is always allowed. An
incremental assignment w : +e requires incr access, and the final environment is
as for the assignment w := w + e. The premises for asynchronous call is as for
P-call, and the resulting environment is unchanged (since no variable is changed).

Note that, if by mistake, no policy is specified due to forgetfulness, the
static compliance checking would detect any use of sensitive information and
the program would not pass the privacy checks. In particular, data types with
constructors associating data to subjects will be considered sensitive. A non-
sensitive method would not be able to access or create sensitive data, and a
non-sensitive type declaration would not allow assignment of sensitive information
to variables of that type.

We next show how to apply the static analysis on the Prescription case study.

7.5 Case study

Consider the example from Figure 8.5 where Doctor, Nurse, Patient, PatientData,
AddPresc, GetPresc are interfaces. A PatientData object contains data for a
number of patients, and can be accessed by doctors and nurses, based on different
policies. Policies are declared by the keyword policy. Patient data pd of type
PData (list of Presc) is labeled with polices: {PGetPresc,PDoc}, and an implicit
policy (Subject, all, self u read) is included in every policy set to allow read
access when the principal is the data subject. This policy (PPresc) allows (i) a
patient to access his/her own data, (ii) gives full (i.e., read, incr, write) access
to the Doctor for treatm purposes, and (iii) gives read-only access to the Nurse

84

Case study

(P-skip)

C,m ` [Γ] skip [Γ]

(P-composition)
C,m ` [Γ] s1 [Γ1] C,m ` [Γ1] s2 [Γ2]

C,m ` [Γ] s1; s2 [Γ2]

(P-write)
C,m ` [Γ] rhs :: P

write v ΓC [w] u (PC,m@(C,m))
C,m ` [Γ] w := rhs [Γ[w 7→ P]]

(P-local-write)
C,m ` [Γ] rhs :: P

C,m ` [Γ] x := rhs [Γ[x 7→ P]]

(P-incr)
C,m ` [Γ] rhs :: P

incr v ΓC [w] u (PC,m@(C,m))
C,m ` [Γ] w :+rhs [Γ[w 7→ Γ[w] u P]]

(P-asyncCall)
C,m ` [Γ] e.nI(e) :: Pout(I,n)

C,m ` [Γ] e!nI(e) [Γ]

Figure 7.6: Policy Rules for Statements.

for treatm purposes. The purpose treatm is declared by the keyword purpose.
The policies need to be declared only once and then the effect system will keep
track of the policies in a given program state. For example, the declaration of
makePresc() includes the policy PAddPresc. Now we show an application of a
few type rules, on the statements in the method doctorTask() from Figure 8.5.

1. x := rhs
String text = rhs //Apply P-LocalWrite
The premise rhs :: • associates • with rhs, since it is a local variable and
has no policy.

Γ[x 7→ P] =⇒ Γ[text 7→ •]
Gamma for text is updated with •.

2. Presc newp = (p, text); //Apply P-Func, P-LocalWrite

85

7. Language-based mechanisms for privacy by design

a) read v Γ[v] u (PC,m@(C,m))
(Γ[p] u Γ[text]) u PPresc
(• u •) u (PC,m@(C,m))
i.e., (• u •) u PDoc since (PC,m@(C,m)) = PDoc
which reduces to PDoc
read v PDoc (i.e., read v Γ[v] u (PC,m@(C,m)))
which reduces to read v full, using the notation A v (I,R,A′) when
A v A′, and A v {(I,R,A′)i} when A v (I,R,A′)i for some i (i.e.,
A v A′i).

b) write v PT u (PC,m@(C,m)), since the constructor (_,_) is sensi-
tive
write v PDoc u PPresc
which reduces to write v full, and the policy of (p, text) is PPresc

c) Γ[newp 7→ Γ[(p, text)]]
Γ[newp 7→ PPresc] //since pc is empty here

In the first statement, the policy set on text is {•} because it is not yet
associated with a subject. But when non-sensitive text is combined with a
subject identity, this is seen as construction of a sensitive data, and P-Func
is used to ensure that the information can be read and constructed by the
current context. The rest of the example can be checked in a similar way.

7.6 Related work

Language-based mechanisms are techniques based on programming languages
that are often used in developing secure applications. In particular, language-
based security mechanisms are used in specification and enforcement of security
policies. In recent years, various techniques (compilers, automated program
analysis, type checking, program rewriting etc.) have been explored from the
perspective of their applicability in enforcing security and privacy policies in
programs. Privacy by Design (PbD) has been discussed and promoted from
several viewpoints such as privacy engineering [30, 49, 86], privacy design patterns
[26, 59], and formal approaches [71, 100, 112]. Tschantz and Wing, in [112] and
Daniel Métayer, in [71] discuss the significance of formal methods for foundational
formalizations of privacy related aspects. In [100], Schneider discusses the main
ideas of Privacy by Design and summarizes key challenges in achieving Privacy by
Construction and probable means to handle these challenges. The paper calls for
ways to ensure control of purpose integrated in programming languages. It is also
indicated that in order to ensure that privacy-compliant code is sound and correct,
formal methods would be helpful in proving soundness and completeness (with
respect to a set of predefined privacy concepts). Privacy design strategies [59]
focus on how to take privacy requirements into account from the beginning and
make it a software quality attribute. The engineering aspects of privacy by
design is addressed, but there is a lack on how to apply them in practice. In

86

Related work

our work, we adhere to several privacy design strategies such as separating and
hiding the data, and encapsulation in an object-oriented context.

Hayati and Abadi [53] describe a language-based approach based on
information -flow control, to model and verify aspects of privacy policies in
the Jif (Java Information Flow) programming language. In this approach data
collected for a specific purpose is annotated with Jif principals and then the
methods needed for a specific purpose are also annotated with Jif principals.
Explicitly declaring purposes for data and methods ensures that the labeled
data will be used only by the methods with connected purposes. Purposes
are organized in a hierarchy, with sub-purposes. However, this representation
of purpose is not sufficient to guarantee that principals will perform actions
compliant with the declared purpose. But this can be checked statically in our
approach, because the principal is restricted by a purpose-based access control.

Basin et al. [11] propose an approach that relates a purpose with a business
process and use formal models of inter-process communication to demonstrate
GDPR compliance. Process collection is modeled as data-flow graphs which
depict the data collected and the data used by the processes. Then these
processes are associated with a data purpose and are used to algorithmically i)
generate data purpose statements, ii) detect violation of data minimization, and
iii) demonstrate compliance of some more aspects of GDPR. Since in GDPR,
end-users should know the necessary purpose of data collection, some works such
as [11] propose to audit logs and detect if a computer system supports a purpose.
In a continuation of this work [4], Arfelt et al. show how such an audit can be
automated by monitoring. Automatic audits and monitoring can be applied to
a system like ours as a complementary step to verify how it complies with the
GDPR. Besides, our work is more focussed on integrating such legal instruments
during the design phase, using formal language semantics. In [1], Adams and
Schupp consider black-box objects that communicate through messages. The
approach is centered around algorithms that take as input an architecture and a
set of privacy constraints, and output an extension of the original architecture
that satisfies the privacy constraints. This work is complementary to ours in
that it puts restrictions on the run-time message handling. In contrast to our
work, the approach does not concern analysis of program code.

In [43], Ferrara and Spoto discuss the role of static analysis for GDPR
compliance. The authors suggest combining taint analyses and backward slicing
algorithms to generate reports relevant for the various actors (i.e., data protection
officers, chief information officers, project managers, and developers) involved at
various stages of GDPR compliance. In particular, taint analysis is performed
on each program statement and then the data-flow of sensitive information is
reconstructed using backward-slicing. These flows are then abstracted into the
information needed by the compliance actors. However, they do not formalize
nor check privacy policies (as we do).

In the sense of access control mechanisms such as RBAC that controls and
restricts system access to authorized users, there are some common features. In
addition to the hierarchies of roles and access rights supported by RBAC, our
framework introduces hierarchies of purposes to control role access. However, our

87

7. Language-based mechanisms for privacy by design

work uses static analysis while RBAC uses runtime analysis. Anthonysamy et
al. [3] demonstrate a semantic-mapping approach to infer function specifications
from semantics of natural language. This technique is useful in compliance
verification as it aids in identification of program constructs that implements
certain policies. The authors implement this technique in a tool, CASTOR,
which takes policy statements (in natural language) and source code as input, and
outputs a set of semantic mappings between policies and function specifications
(function name, associated class, parameters etc.).

7.7 Conclusion

We have investigated challenges and opportunities in approaching privacy from
the by-design perspective, i.e., embedding privacy design requirements into a
language. We have considered a small core language supporting active objects,
and extended it to integrate privacy policies. We chose three primary constituents
of a privacy policy, i.e., principal, purpose, and access right. Policies are declared
for methods and data types, and together restrict the usage of sensitive data.

We defined a language for formulating these policies, discussed static privacy
polices, and formalized a concept of static privacy policies. We have formulated
rules for policy compliance, given by an extended effect system. The problem of
checking a program’s compliance with privacy policies, reduces to efficient type-
checking. The analysis is class-wise, which is a benefit in open object-oriented
systems, and for scalability. Needless to mention that much work needs to be
done, in terms of defining possibly new constructs and abstractions in order to
formalize the essential data protection principles. In the future we would like
to i) extend the policy definition language, to express a wider range of privacy
restrictions, ii) work out a larger case study, and iii) in particular focus on the
dynamic policy and consent management.

Acknowledgements. The authors were partially supported by IoT-Sec (NRC)
and SCOTT (EU).

Authors’ addresses

Shukun Tokas University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
shukunt@uio.no

Olaf Owe University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
olaf@uio.no

Toktam Ramezanifarkhani University of Oslo, Postboks 1337 Blindern, 0316
Oslo, Norway, toktamr@uio.no

88

mailto:shukunt@uio.no
mailto:olaf@uio.no
mailto:toktamr@uio.no

Chapter 8

Static checking of GDPR-related
privacy compliance for
object-oriented distributed
systems

Shukun Tokas, Olaf Owe, Toktam Ramezanifarkhani
Submitted to the Journal of Logic and Algebraic Programming, in first round
revision

III

Abstract

The adoption of information technology in foremost sectors of human
activity such as banking, healthcare, education, governance etc., increases
the amount of data collected and processed to enable these services. With
the convenience the technology offers, it also brings increased challenges
pertaining to the privacy. In response to these emerging privacy concerns,
the European Union has approved the General Data Protection Regulation
(GDPR) to strengthen data protection across the European Union. This
regulation requires individuals and organizations that process personal
data of EU citizens or provide services in EU, to comply with the privacy
requirements in the GDPR. However, the privacy policies stating how
personal information will be handled to meet regulations as well as
organizational objectives, are given in natural language statements. To
demonstrate a program’s compliance with privacy policies, ideally, a link
should be established between policy statements and the program code,
with the support of a formalized analysis.

Based on this vision, we formalize a notion of privacy policies and a
notion of compliance for the setting of object-oriented distributed systems.
For this we provide explicit constructs to specify constituents of privacy
policies (i.e., principal, purpose, access right) on personal data. We present
a policy specification language and a formalization of compliance, as well
as a high-level language for distributed systems extended with support
for policies. We define a type and effect system for static checking of
compliance of privacy policies and show soundness of this analysis based
on an operational semantics. Finally, we prove a progress property.

The authors were partially supported by IoT-Sec (NRC) (https://its-wiki.no/wiki/IoTSec:
Home) and SCOTT (EU)(www.scott-project.eu).

89

https://its-wiki.no/wiki/IoTSec:Home
https://its-wiki.no/wiki/IoTSec:Home
www.scott-project.eu

Static checking of GDPR-related privacy compliance for OODS

8.1 Introduction

With the adoption of information technology in almost all areas of our life,
the collection and processing of personal data have intensified. This develop-
ment depends on trustworthy functioning of information and communication
technologies to support the individual privacy rights and democratic values of
society [30]. To address the challenges of data protection and privacy of the
individuals within the European Union (EU) and the European Economic Area
(EEA), the European Union Parliament approved the General Data Protection
Regulation (GDPR) [41]. The GDPR is said to be “The single most important
change in data privacy regulation in 20 years” [77].

To promote data protection from the outset of the product/service
development, requirements to data protection by design and data protection
by default have been formally embedded in Article 25 of the GDPR. Article 25
requires the controllers to design and develop products with a built-in ability to
demonstrate compliance towards the data protection obligations. Note that the
terms privacy by design [22] and GDPR’s data protection by design have similar
goals, and are often used interchangeably. The principle of data protection by
default says that privacy is built into the system, i.e., no measures are required
by the data subject in order to maintain her privacy.

In this paper we follow the data protection by design and data protection
by default principles, by integrating necessary safeguards into the processing
of personal information, using a language-based approach. Our ambition is
to investigate how to formalize fundamental privacy principles and to provide
built-in abilities to fulfill data protection obligations under the GDPR. As a
step towards this goal, we develop a policy language that provides constructs for
specifying privacy requirements on personal data and then present a type and
effect system for analyzing a program’s compliance with respect to the stated
privacy policies.

A privacy policy in this setting is a statement that expresses permitted use
of personal information of the declared program entities, such as data types
and methods of interfaces and classes. In particular, we define a notion of
privacy policies given by sets of triples that put restrictions on what kind of
principals may access the personal information, for what purposes, and what
kind of operations and access are permitted on this data, i.e., restricting who,
why, and what. A policy on declared program entities puts restrictions on
how they are used and on actions they perform. We define a notion of policy
compliance, and show how compliance can be checked at compile time by an
extended type and effect system for an object-oriented, distributed language
centered around asynchronous and synchronous method interaction, extended
with policy specifications. The static checking is class-wise and is dealing with
privacy policies rather than ordinary types, and is performed on classes that are
type-correct with respect to ordinary typing. Information without a policy is
non-sensitive, and its access is not restricted. The static type-checker ensures
that a non-sensitive method may not access sensitive information and that a
variable of a non-sensitive type may not be assigned sensitive information. (We

90

Introduction

use the term “sensitive” as a synonym of “personal”.)
Certain aspects of the GDPR can be expressed by means of static concepts,

whereas some can only be expressed at runtime, such as subject or consent
changes by external users, whereas others are not easily formalized, such as
the economic penalty rules. At compile time we let the statically declared
policies provide privacy by default, and then give a framework enabling change
of consent at runtime. The static policies serve as initial policies for a program,
while changes in consent and policies can be handled at runtime, for instance
through predefined functionalities. By annotating declared program entities with
privacy policies and developing a scheme of policy inheritance, we may limit the
number of policy annotations needed. This should make the approach simple
and easy to use in practice, as demonstrated by our case study. At runtime these
policies, possibly extended with additional information such as data subject, can
be attached to the data values and objects. However, only limited information
about the subject is available at compile time; for instance the static analysis of
a class may be aware of local data where the caller object is the subject.

The static compliance checking is done by a static type and effect system
based on the kind of privacy policies outlined here. Even though static notions
may only cover limited parts of the GDPR, static compliance checking has the
advantage of ensuring that all programs passing the checks do comply with the
static GDPR policies, thereby providing a strong guarantee before the programs
are executed. The rules are syntax-directed, following the legal formation of
expressions and function applications as well as statements. The requirements
to communication constructs such as remote calls are central.

We target distributed, object-oriented and service-oriented systems. We
formalize a static notion of policy declarations in this setting. To demonstrate
the analysis of static policy compliance for imperative programs, we develop a
type and effect system for checking policy compliance for a high-level language
supporting the active object programming paradigm [16, 61, 65, 85], based on
the actor model [57]. In this programming model, objects are autonomous and
execute in parallel, communicating by so-called asynchronous method invocations.
Object-local data structures are defined by data types. We assume interface
abstraction, i.e., an object can only be accessed though an interface and remote
field access is illegal. This allows us to focus on major challenges of modern
architectures, without the complications of low-level language constructs related
to the shared-variable concurrency model. Remote field access would make the
analysis less precise.

In summary, the main idea is to provide language constructs that express
privacy policy specifications capturing static aspects of the GDPR specific privacy
principles and use these to statically analyze a program’s compliance with the
policy specifications. We make the following contributions:

1. Propose a policy specification language for specifying purpose, access and
policy requirements.

2. Formalize a notion of policy compliance.

91

Static checking of GDPR-related privacy compliance for OODS

3. Show how the policy language can be used with an underlying object-
oriented language.

4. Develop a mechanic type and effect system for analyzing a program’s
compliance with the specified privacy policies.

5. Develop a runtime system with policy tags. Prove soundness/progress.

Whereas all of these represent novel research, the overall contribution of the
paper is to show how to approach the formalization of GDPR specific data
protection requirements from a static point of view.

Paper outline. The remainder of the paper is structured as follows. Our
research focus and the relevance to the GDPR are stated in the next section.
Section 8.3 presents our formalization of the GDPR policies, including a policy
specification language and a formalization of policy compliance, and outlines
how it applies to the setting of object-oriented distributed systems (OODS).
We discuss the usage of policies and include the first part of a case study. For
the second part of the case study, we define an executable, imperative, high-
level language for active object systems, extended with policy specifications.
Section 8.4 introduces this language. Section 8.5 presents the static compliance
checking by means of a type and effect system, and demonstrates the analysis
on the case study. Section 8.6 briefly discusses an extension to deal with consent
and self access to personal data about a data subject. Section 8.7 presents an
operational semantics and proves soundness and progress. Section 8.8 discusses
related work, and Section 8.9 concludes the paper.

8.2 Relevance to the GDPR and research focus

The GDPR contains 99 articles covering quite diverse aspects of privacy such as
data protection principles, accountability, data protection impact assessment,
certification, penalties etc. However, we will focus on the intersection of mainly
Article 5, Article 15, and Article 25, due to their potential for establishing
links with programming language mechanisms and in particular static analysis.
Figure 8.1 illustrates this idea and our focus. Clearly, one may express a larger
part of the GDPR concepts by runtime entities than by compile time entities.
Furthermore, it is clear that static analysis will in general be less precise than
runtime analysis and typically over-approximate the privacy restrictions. Thus
static analysis may seem like a less fruitful approach; however, static analysis has
the advantage that problems caught during static checking can be solved before
runtime and thereby gives rise to more reliable software and fewer runtime errors.
Therefore it is interesting to investigate compile time aspects of the GDPR and
to define a notion of static compliance of these aspects.

Article 5 lists the data protection principles related to personal data
processing, which includes the following: lawfulness, fairness, and transparency;
purpose limitation; data minimization; accuracy; storage limitation; integrity
and confidentiality. Compliance with these principles is intrinsic for better data
protection.

92

Relevance to the GDPR and research focus

Pr
iv
ac
y
Pr

in
cip

les

Article 5

Data Protection by
D
esign

Article 25

SubjectAccessRights

Article 15

Runtime
Analysis

Static
Analysis

Figure 8.1: Research focus

Article 15 creates a Right for access by the data subjects to have access to
their personal data that an organization processes and holds about them. The
data subject is entitled to obtain, for example, the purposes of data processing;
which recipients (such as organizations) is the personal data shared with; how
the personal information was collected; existence of right to restrict processing
or erasure of personal data. More on subject access rights are discussed in
Section 8.3.

Article 25 introduces data protection by design and data protection by default
obligations. It requires the organizations to embed data protection into the
design and later stages of product/service development. In addition, it requires
that by default, an organization may only process the personal data that is
necessary for fulfillment of the stated purposes.

In addition to the articles mentioned above, Article 6 of the GDPR outlines
six lawful grounds, such as consent or fulfillment of contractual obligation, for
processing of personal data. The regulation treats consent as one of the guiding
principles for legitimate processing, and Article 7 sets out the conditions for
processing personal data (when relying on consent). We sketched these articles
very briefly. For more details, please refer to Articles and Recitals in [41].

In our setting, we specify privacy-by-default policies, which are statically
checked. When the lawful basis of processing of personal information is
performance of the contract or other valid bases but not the consent, the
policies should be formulated in a way that ensures that they are built into the

93

Static checking of GDPR-related privacy compliance for OODS

system by default, i.e., no measures are required by the data subject in order
to maintain her privacy. However, when consent is the basis of processing, the
choices (or privacy settings) of the data subjects are captured at runtime (as
outlined in [106]).

To verify formally that a system satisfies its privacy specification, the desired
notions of privacy need to be expressed explicitly. However, given these principles
and obligations, not all privacy requirements are susceptible to formalization.
We study an intersection of these main concepts from the design as well as the
legal point of view, with a motivation to establish links between the two views.
However, we do not cover all the aspects of the aforementioned articles. For
example, the requirements for data minimization, integrity, storage limitation,
and accuracy require a different set of tools and methods for assessing compliance.

We illustrate the research focus with an example. In order to provide
healthcare services, a clinic collects information related to an individual‘s health.
So as to collect and process this information, the clinic first needs to identify
the purposes for which this personal information will be used. This is done
by statically declaring privacy policy requirements on the methods and data
types. These requirements are expressed in a policy specification language, which
allows designers to express privacy requirements, contributing towards purpose
limitation, transparency, data protection by design, data protection by default,
and accountability requirements. In the next section, we discuss the parts of the
GDPR that can be formalized, i.e., what can be expressed as policies, and what
can be checked. In particular, we focus on static policies and static checking.

8.3 Formalization of static privacy policies and policy
compliance

In the object-oriented language setting, an object may assume different views,
depending on the interaction context. These views are expressed by specification
of the externally observable behaviour of objects, declared through interfaces. We
extend this specification of observable behaviour of objects to provide language
support for the enforcement of privacy policies.

Clearly, at compile time we are limited to static entities, while at runtime we
can deal with runtime entities. Thus, compile time policies must in general be
more coarse-grained than runtime policies, for instance the compile-time policy
of the value of a variable is based on a worst-case symbolic analysis while at
runtime it can be based on the value itself. At compile time, we may express and
analyze the GDPR-related notions using static names, either names occurring
in the executable program text, or names occurring in specifications capturing
GDPR-related aspects. Examples of the former are method names, variable
names, type names, class names, and interface names. Examples of the latter
are names describing purpose, access rights, and policies. The combination of
these two categories of names gives a way of expressing static policies restricting
access to the sensitive information. At runtime, it is natural to associate the
policies with objects and data values, but these entities are not known at compile

94

Formalization of static privacy policies and policy compliance

A ::= read | incr | write | self basic access rights
| no | full | rincr | wincr abbreviated access rights
| A uA | A tA combined access rights

P ::= (I,R,A) policy
Ps ::= {P∗} | Ps u Ps | Ps t Ps policy set
RD ::= purpose R+

[where Rel [andRel] ∗] purpose declaration
Rel ::= R+ < R+ sub-purpose declaration

Figure 8.2: BNF syntax definition of the policy language. I ranges over interface
names and R over purpose names.

time. At compile time, policies on data values can be approximated by policies
on the corresponding data types. Static policies serve a double purpose: They
should have an abstract view meaningful to external users, so that they may
understand and reconsider their privacy settings, and at the same time should be
meaningful to analysis in terms of program technical concepts at compile time.

8.3.1 Policies

We consider three vital constituents of the GDPR privacy policies, namely
principal, purpose, and access right, specified by triples (I,R,A) where I , R,
and A denote the three constituents, respectively. The main emphasis of the
policy specification language is on the specification of privacy restrictions at
the language level. It would be appropriate to link an external user’s policy
view with the system’s policy view. For example, a policy (Doctor , treatm, rincr)
on a data subject’s health information in the system is expressed in natural
language to an external user as: A Doctor can process your personal health
information for treatment purposes, but is only allowed to read health records
and add new ones without the right to change or delete existing records. Below
we give a general description of these policy constituents, as well as how they
can be related to the view of external users, and how they will be represented at
the programming level.

Principals A principal identifies a single principal or a set of principals,
authorized to invoke the method and use the personal data. At the external
user level, we let principals be described by either an individual or a group
of individuals. At the programming level, an individual corresponds to
an object representing that individual. A group of individuals is either
represented by a set of objects, or by an interface, with the understanding
that an interface represents the set of objects that supports the interface.
(We say then an object supports an interface if the class of the object
implements the interface.) As not all interfaces represent principals, we
introduce an interface Principal, and require that an interface used to

95

Static checking of GDPR-related privacy compliance for OODS

specify principals must be a subinterface of Principal. Thus in compile
time policies, principals are described by subinterfaces of Principal. The
interface Subject corresponds to a “data subject”, extending Principal.
An interface I is used to restrict the access to information, by requiring that
the accessing object supports I . For policies reflecting external user settings
(for instance policies on data types), I will be a subtype of Principal. For
policies reflecting declared policies in a program (for instance policies on
methods), I need not be a subtype of Principal. Interfaces are organized
in an open-ended inheritance hierarchy, as in object-oriented program
development, letting I < J denote that I is a subinterface of J . For
example, Specialist < Doctor < HealthWorker . We do not define a bottom
element, since the hierarchy is open-ended. We let ≤ denote the transitive
and reflexive extension of <.

Purposes A purpose R identified by a purpose name, allows us to specify
that personal data must only be collected and processed for the given
purpose. At the user level, purposes are described by purpose names.
At the programming level, such purpose names are used in policy
specifications. For instance, if a method is annotated with a purpose,
the annotation specifies that the method may only be called when the
caller has (at least) this purpose. Purpose names are defined by the keyword
purpose and can be organized in a hierarchical structure, representing
a purpose hierarchy [53]. We allow purpose names to be organized in an
open-ended acyclic graph. Examples of purposes are treatment, research,
or marketing. We let all be a predefined purpose, denoting the least
specialized purpose. Consider the declaration

purpose a, b, c where a, b < c

This declaration makes a and b more specialized purposes than c. For
example, treatm, diagnosis, research < health, and monitoring < treatm.
If data is collected for treatm purposes, then it can be used for treatm as
well as purposes subsumed under treatm purposes, but not for research. If
data is collected for say diagnosis, then it can neither be used for treatm
nor for research.
We allow purpose names to be organized in an open-ended directed acyclic
graph. Consider an example, where healthcare, and shopping, have billing
as a subpurpose; and treatment could be a subpurpose of both healthcare
and billing. This example indicates that a strict tree-structure could be
too limiting. This allows a single purpose name to reflect a specialization
of a set of more general purposes. We let ≤ denote the transitive and
reflexive extension of <.

Access rights The access right A restricts the access rights, restricting the
kinds of operation that can be performed on the data, such as read access
(read), incremental access (incr), write access (write), or a combination

96

Formalization of static privacy policies and policy compliance

of these. We define a complete lattice of these general access rights (in
Figure 8.3) with no (no access) and full (full access) as the least and greatest
access rights, respectively. The read access right gives read-only access to
the principal, and similarly write allows for a write access. Incremental
access, incr , gives the right to add new information without changing or
reading old information. For instance, a lab assistant may be allowed
to add test results to a patient’s health records, but without reading
existing information. The combination of read access and incremental
access, readt incr denoted rincr , allows a principal to read the information
and to add more information, but not change existing information. This
is quite useful in practice, for instance a nurse may be allowed to read
and add test results to a patient’s health records, but not overwrite or
change old information. The combination of write t incr , denoted wincr ,
allows a principal to change and add more information, without reading,
for instance she may overwrite, delete and add health records, but without
the right to look inside these records. The partial ordering of access rights
is denoted vA. We have that incr vA (read t write) holds, reflecting that
the incremental update x : + e can be expressed as x := x+ e.
Furthermore, read u write, incr u write, and incr u read give no access.
The combination of read and write gives full access (including incremental
access), i.e., full is the same as read t write. This means that we have
seven elements in the lattice for basic access rights as seen in Figure 8.3.
In subsection 8.3.2, we extend this lattice with access rights for a data
subject to access data about herself. At the program level, the specified
access rights can be checked for a given program.

A policy is specified by a triple (I,R,A) restricting principals, purpose, and
access rights, respectively. Such policy triples can be combined to form policy
sets, which are used to represent restrictions due to multiple policies.

Privacy policies and consent are supposed to be decided and changed upon
need by the subjects, i.e., the external users of a system that do not in general have
insight into to program text. This means that external user defined restrictions
on principal, purpose, and access right should be given in terms of a vocabulary
or language meaningful to such external users. On the other hand, the external
user defined restrictions must connect to concepts at the program level so that
compliance can be defined and checked. In our approach, consent is expressed
by the presence of policies.

In order to limit the amount of policy definitions, we consider user-defined
policies for data types and methods, and define an effect system to deduce
policy restrictions in each program state on the program variables. Policies
on data type declarations give a higher degree of reusability than policies on
for instance variable declarations. When personal information is limited to a
relatively small number of methods and data types, this means that the privacy
policy specifications needed are relatively few. We use a special policy symbol •
to denote non-sensitive information. The default policy of a method is • if no
policy is specified. Note that a method with no policy will not be able to access

97

Static checking of GDPR-related privacy compliance for OODS

full

rincr wincr

read incr write

no

Figure 8.3: The lattice for general access rights (without self). Note that rincr
is the same as read t incr, wincr is the same as write t incr, and full is the
same as read t write.

or use any sensitive information, and variables of types with no policy cannot be
assigned sensitive information. This will be checked statically.

For a method m that accesses sensitive information, the associated policy
specifies which principals can invoke this method, for what purpose, and an
upper bound on permissible access operations. Similarly a data type T with
policy PT expresses that all values of type T must respect the policy PT , which
can be ensured by policy compliance checks during static analysis.

In the GDPR, processing of personal data is defined in terms of any operation
or set of operations such as collection, storage, use, dissemination etc. (see
Article 4 [41]). We focus on use and disclosure of personal information. At the
programming level, use corresponds to the access rights given by the access rights
lattice and disclosure is expressed by the first restriction on the policy (principal)
i.e., a policy set on data describes to whom data is disclosed. Disclosure of
information is also captured when information is exchanged through method
parameters. However, towards the external users, the terms use and disclose
may be meaningful.

8.3.2 Access rights for data subjects

Under Article 15 [41], the Right of Access by the data subject requires the
data controller to give the data subject information about the personal data
that the controller has about the subject (including the purposes for which
this information is used). Based on this requirement, we introduce an interface
Subject below interface Principal as the superinterface of all classes representing
external users. Moreover, we introduce an additional access right, self. By means
of self , one may specify access rights on information about self, i.e., the data

98

Formalization of static privacy policies and policy compliance

{all}

{treatm} {research} {admin}

{monitoring} {diagnosis} {billing} {third_party}

Figure 8.4: Sample purpose hierarchy

subject. One may then express general access rights in combination with access
rights on self data. The policy triple

(Subject, all, self u read)

supports Article 15 (1a) to (1c), by allowing each data subject read access to
information about herself. It expresses the principle of giving a subject read
access to data about herself. This triple could be added as a default policy
for every sensitive data type. Note that the universal purpose all is needed to
express to express this principle.

Mathematically, our lattice can be defined by a pair lattice as follows:

Definition 12 (Lattice of Access Rights). Access rights are organized in a lattice
with carrier set {(a, b) | a vA b} where both a and b range over the lattice of
general access rights (given in Figure 8.3). We define

(a, b) vA (a′, b′) ≡ a vA a′ ∧ b vA b′

(a, b) t (a′, b′) ≡ (a t a′, b t b′)
(a, b) u (a′, b′) ≡ (a u a′, b u b′)

It follows that the redefined vA is a partial order, and the carrier set has
22 elements. The element (a, b) is written a t (self u b), and the access right
a t (self u a) is abbreviated a. The access right a t (self u b) expresses that a
is the access right on data in general (including self data) and b is the added
access right on self data. Thus the access on self data is a t b.

We have that no is an identity element of t, and full an identity element
of u. For instance, no t (self u full) is the same as self , meaning full access to
self data, but no access to data about others. Furthermore, self u rincr gives
a principal the right to read self data and add new information about herself.
In contrast, read t self means full access to self data and read access to other
data, and read t (self u rincr) means that a principal may read all data and
also increment self data.

99

Static checking of GDPR-related privacy compliance for OODS

The identity of data subjects can be captured at runtime, but not in general
at compile time, since these identities are in general not statically known. In
order to check access rights about self , the static checking will try to detect if
the data subject is the same as this or caller. This is discussed in Section 8.6.

8.3.3 Policy compliance

Methods and types are annotated with policies. Annotating these program
constructs with policies is a prerequisite for assuring that processing is performed
in accordance with the specified policies. The language syntax for policies is
summarized in Figure 9.1 and some sample policies are found in Figure 8.5.
Optional parts are written in brackets (as in [...]), while superscripts ∗ and +

denote repetition and non-empty repetition, respectively.

Definition 13 (Policy Compliance). The sub-policy relation less, expressing
policy compliance, is defined by

(I ′, R′, A′) v (I,R,A) ≡ I ≤ I ′ ∧R′ ≤ R ∧A′ vA A

with • as bottom element, representing non-sensitive information. It follows
that v is a partial order. We let Any denote the most general interface, such
that I ≤ Any for each I.

A policy P ′ complies with the policy P if it has the same or larger principal, the
same or more specialized purpose, and if the access rights of P ′ are the same or
weaker than that of P . We let Any denote the most general interface, such that
I ≤ Any for any I.

We say that a method respects a policy P if the policy of the method
complies with P. The default policy of a method is • if no policy is
specified. Intuitively, P v P ′ is used to express that the policy of a method
implementation/respecification P complies with that of the method specification
P ′. In particular, • v P expresses that an implementation without access to
sensitive information complies with any policy.

Let PI,m denote the policy of a method m given in an interface I , and
PC,m denote the policy of a method m given in a class C. It is required that
the implementation of a method in a class C respects the policy stated in the
interface I , i.e., PC,m v PI,m. In addition, it is also required that a method
redefined in an interface I respects the policy of that method in a superinterface
J , i.e., PI,m v PJ,m. By transitivity of v, a method implementation in a class
that respects the policy given in an interface also respects the policy of the
method given in a superinterface, i.e., PC,m v PI,m and PI,m v PJ,m implies
PC,m v PJ,m.

For instance, consider an interface GetPresc with a method getPresc()
with a policy (Nurse, treatm, read). An implementation of this method in
a class must have a policy that complies with it, such as (Any, treatm, read),
(Nurse, treatm, self u read), or (Nurse,monitoring, read). In contrast, the
implementation cannot have a policy (Doctor, treatm, read), as this would not

100

Formalization of static privacy policies and policy compliance

allow a Nurse as the caller object, and also not (Nurse, all, rincr), because this
violates the purpose and the access restriction.

Moreover, the use of self in the access part allows us to distinguish
between different kinds of self access for different purposes, for instance
(Patient, all, readuself) and (Patient, privacy_settings, self). The latter gives
full access to data about self for purposes of privacy_settings,1 while the first
gives read access to data about self for all purposes.

We define a lattice over sets of policies with meet and join operations, and
generalize the definition of compliance to sets of policies:

Definition 14 (Compliance of Policy Sets).

{P ′i} v {Pj} ≡ ∀i .∃j .P ′i v Pj

This expresses that a policy set S′ complies with a policy set S if each policy in
S′ complies with some policy in S. When no confusion occurs we simply write
P instead of {P}. For instance, P v S denotes {P} v S, and P u S denotes
{P} u S. Furthermore we use the notation A vA (I,R,A′) when A vA A′,
and use the notation A vA {(I,R,A′)i} when A vA (I,R,A′)i for some I (i.e.,
A vA A′i).

We define meet and join operations over policy sets by set union and a kind
of intersection, respectively, adding implicitly derivable policies:

Definition 15 (Join and Meet Over Policy Sets).

S t S′ ≡ closure(S ∪ S′)

S u S′ ≡ closure({P | P v S ∧ P v S′})
where the closure operation is defined by

closure(S) ≡ S ∪ {(I,R,A tA′) | (I,R,A) v S ∧ (I,R,A′) v S}

We have a lattice with ∅ as the bottom element, S v S t S′, and S u S′ v S.
The closure operation adds implicitly derivable policies, and ensures that
{(I,R,A tA′)} v {(I,R,A)} t {(I,R,A′)}. For instance, we have that
{(Doctor, treatm, read)} t {(Doctor, treatm,write)} is the same as
{(Doctor, treatm, full)}. 2

The meet operation typically reflects worst-case analysis. For an actual
parameter (or method result) we need to check that the policy set of the actual
parameter allows all policies in the policy set of the corresponding formal
parameter. For this we use the following notion:

Definition 16 (Implication of Policy Sets). We define the notation

Ps′ =⇒ Ps

(Ps′ guarantees Ps) by {•} =⇒ Ps and Ps v Ps′ for Ps′ other than {•}.
1private_ settings purpose is not defined. Does it reflect consent update?
2CUT? This also means that join and meet operations on policy sets will not result in

conflicting information since we have a lattice.

101

Static checking of GDPR-related privacy compliance for OODS

In particular, {•} =⇒ Ps, expresses that a non-sensitive actual parameter always
is acceptable. If Ps′ =⇒ Ps we also say that the former guarantees the latter.
(Note that Ps′ and Ps denote policy sets.)

8.3.4 Policies in an object-oriented setting

Here, we proceed to discuss how to use policies in combination with interfaces,
methods, and types. An imperative programming language for defining classes is
given in Section 8.4 by means of an imperative-style language for active objects.
An example with policies and interfaces is given in Figure 8.5.

Definition 17 (Interface Syntax). An interface is declared with the BNF syntax

interface I [extends J+] {D∗}

where I and J range over interface names, and D denotes a method declaration
(without body), with its own (optional) policy.

Here a new interface I is declared, extending a number of superinterfaces. A
method redefined in I must have a policy that complies with that of the method
in a superinterface J . Methods may be inherited (keeping the superinterface
method policy) or redefined in I. For simplicity, we assume that a redefined
version of the same method has the same parameter and return types as in the
superinterface. (Alternatively we could use a version of co/contra-variance.)

We consider next single class inheritance given by an implements clause. A
class C extending a superclass inherits all declarations of the superclass, apart
from redefined methods and the implements clause (and class constructors
are concatenated). We may allow a subclass to implement different interfaces
than its superclass, and we may allow a redefined method to have a different
policy than that of the superclass. In particular C does not need to support the
interfaces of its superclass. The motivation for this is to achieve better flexibility.
This requires that typing of object variables is done by interfaces, following the
semantics of [89]. Thus, the policies of redefined methods need not comply with
those in the superclass, as long as they comply with the policies of the interfaces
implemented by C. We let the policies of inherited method be inherited as well,
and must then comply with the requirements of the enclosing class (C).

Definition 18 (Method Declaration Syntax).

T m([Y y]∗) [:: P]

where T is the return type and Y is the type of parameter y.

An inherited method m inherits the policy of m in the superinterface, unless
the interface declares its own policy for m. As mentioned, the redefined policy
of m in an interface cannot be more restrictive than that of the superinterface
(J), i.e., PI,m v PJ,m, ensuring that a class implementation of m satisfying PI,m
also satisfies any declarations of m in a superinterface.

102

Formalization of static privacy policies and policy compliance

Definition 19 (Type Declaration Syntax).

type N [TypeParameters] =< type_definition > [:: Ps]

where the type parameters are optional. We let the policy of a type N , denoted
PN , be a policy set. Types declared without a policy are non-sensitive.

The predefined basic types (Nat, Int, String, Bool, Void) are non-sensitive.
Furthermore, object variables (references) are non-sensitive since a reference in
itself does not carry any sensitive information. A user-defined type is sensitive
if a policy set is specified, or if the definition contains a sensitive data type
constructor (as explained below). If there for instance is a need for strings with
sensitive information, restricted by a policy Ps, one would define a type for this
by

type Info = String :: Ps

A list type List[T] is sensitive if T is sensitive, and has the policy of T , i.e.,
PList[T] ≡ PT . The same principle applies to other container types, such as sets
and multisets. When T ′ is declared as a subtype of T , we require that the policy
of the subtype guarantees that of the supertype, i.e.,

T ′ ≤ T ⇒ (PT ′ =⇒ PT)

A sensitive data type can often be defined as a pair of (possibly non-sensitive)
data, say

type Presc = Patient ∗ String
:: {(Doctor, treatm, full)), (Nurse, treatm, read)}

In this case the Presc constructor function (i.e., the pair operator) is considered
sensitive, since it associates data to a subject. An application of this constructor
may create new sensitive information about a patient, and therefore we require
that the enclosing method has a policy with write access to treatm data (such as
the policy PDoc). In general, an application of a sensitive data type constructor
requires write access, as will be formalized in the policy type rules for expressions
(Section 8.5).

We consider next sensitive functions, which create new sensitive data, for
instance a product of individually non-sensitive data may be sensitive. Generator
functions (here called constructors) are considered sensitive if they i) combine
information about a subject with non-sensitive or sensitive information or
ii) use sensitive information. We assume that sensitive generators produce
sensitive types (with some exceptions, such as constructors of encrypted data).
Defined functions are sensitive if their type is sensitive and the definition
directly or indirectly contains a sensitive application of a constructor. For
instance we may (recursively) define a parameterized list type by List[T] =
empty() | append(List[T] ∗ T) meaning that lists have the form empty() or
append(l, x), where l is a list and x a value of type T . We let the notation l+ x
abbreviate append(l, x). The list is sensitive if T is sensitive, in which case the

103

Static checking of GDPR-related privacy compliance for OODS

append constructor function is also sensitive. The Presc type is sensitive (even
though String is not), and the pair (current_patient, ”no health problems”) is
a sensitive application of the product constructor. These examples suffice for
our purposes here. It can be detected statically if a function is sensitive (further
details are omitted). Some predefined type constructors including encryption
functions could be defined as non-sensitive.

Applications of sensitive functions may create new sensitive data, something
which require write access. In this way the policy control of variables is driven by
the declared types rather than variable declarations. The advantage is that policy
specifications on the defined types are reusable in the same way that the defined
types are reusable, while policy specifications on variable declarations would not
in general be reusable. Furthermore, reusable policy specifications developed
over time are likely to be more reliable than one-time adhoc specifications for
program variables.

Example The example in Figure 8.5 shows a data type Presc with policy set
{(Doctor, treatm, full), (Doctor, treatm, rincr), (Nurse, treatm, read)}. The
policy (Doctor, treatm, rincr) is redundant since (Doctor, treatm, rincr) v
(Doctor, treatm, full), and is colored grey to indicate that. Method makePresc
has policy (Doctor, treatm, rincr), meaning that this method must be called by
a Doctor object (or a more specialized object), for purposes of treatment and
with read and incremental access (but not full write access). Thus a doctor can
add new prescription but not change or remove old ones. Method getPresc has
policy (Nurse, treatm, read), meaning that this method must be called by a
Nurse object (or a more specialized object such as a Doctor object), for purposes
of treatment and with read-only access. These two methods, with associated
policies, are inherited in interface PatientData. The method getMyPresc offered
by the Nurse interface has policy (Patient, treatm, self), meaning that this
method must be called by a Patient object for treatment purposes and access is
limited to data about the caller patient but not other patients. Alternatively,
the policy could be (Patient, treatm, self u read) if a patient is not allowed to
change her treatment records.

8.3.5 Compliance checking of OODS languages

Consider an OODS language extended with policy specifications as above. Thus,
methods that may access personal information are annotated with single policies,
and data types that may involve personal information are annotated with policy
sets reflecting the permitted usage by different principals. We assume pure
expressions. In this setting, static checking of compliance consists of checking
that interface extensions and implementations by classes respect the method
policy specifications, and that method calls and all program variable accesses
are done according to the relevant policies. Since the policy sets of the values
of program variables may change from state to state, we use an effect system
to keep track of the policy sets in a given program state. The rules use an
environment Γ, which is a mapping from program variable names to policy sets,

104

Formalization of static privacy policies and policy compliance

such that the policy set of a variable in a given state gives an upper bound of
the permitted operations. The environment is also used to determine the policy
set of an expression. For each statement in a considered language there is one
or more rules explaining how the environment Γ is modified by the statement.
This is normally reflected in the conclusions of the rules. The premises of the
rules incorporate policy checks, and in general this can be explained as follows:

• For a subinterface it is checked that the policy of a method complies with
(v) that of the same method in the superinterface.

• For a class it is checked that

– the declared policy of each method complies with (v) that of the
same method in any interface implemented by the class (if any).

– the actual policy of the implementation of a method complies with
(v) the declared policy in the class of that method.

• For a method call, it is checked that

– the policy of the called method complies with (v) the policy of the
calling context (as given by the enclosing method body)

– the policy set of each actual parameter guarantees (=⇒) that of the
corresponding formal parameter.

• For a new statement, a similar check is done on the actual parameters.

• For read/write/incr access to a program variable, it is checked that

– there is read/write/incr access in the policy set of the variable and also
in the policy of the calling context (given by the enclosing method).

– However, we may assume write access to local variables. This
is harmless since they cannot be used to store information after
termination of the enclosing method.

• For a return statement, it is checked that

– the policy set of the returned value guarantees (=⇒) that of the
method return type.

– the policy set of each field according to Γ guarantees (=⇒) the declared
policy of that field according to the policy on the type.

• For each application of a constructor function giving rise to sensitive
information, it is checked that the enclosing method has write access.

105

Static checking of GDPR-related privacy compliance for OODS

Justification

The specification of policies could be a burden on the programmer. Reuse of
policies is advantageous, and it would be desirable to keep the amount of policy
specifications at a minimum. Therefore we let policies be specified for data types
and methods only, and not for individual variables. Moreover, we imagine that
only a limited amount of data types/methods deal with sensitive information.
Thus it is advantageous to limit the policy specification to those. The policy
inheritance of policies on methods increases policy reuse. We believe a single
policy is appropriate for a method, and this means that data access for other
purposes than the one in the method policy is not allowed. For instance, a
method body with “treatm” as the method policy purpose cannot make calls to
methods with “marketing” in the method policy.

If by mistake a data type/method is lacking a policy, the static detection
would not be successful, since sensitive constructors are detected statically and
require the corresponding data type to be sensitive. This implies that a subset
of the data types and methods must be sensitive and have a non-empty policy
in order for the static checking to be OK. However, there could be data types
that should be sensitive but without a specified policy and without constructors
detected as sensitive, for instance text with embedded personal information.
This is left as the programmer’s responsibility.

Another issue could be that a programmer specifies full access for all purposes
on all methods, for instance intending to shortcut the static checking of data
manipulations in the body, and thereby hoping to allow everything. However,
this will not work well since the principal part I of the policy of a method would
need to be less than the principal parts of the policies on all the data types
involved. In practice, that would mean that I must be less than a large number
of interfaces, which is not possible in an open-ended hierarchy without a bottom
element.

In our formalization a method has a single policy because each method should
be made with a certain user group (principal) in mind. We have seen here that
this decision has the benefit of making it harder to bypass the policy checks
(regardless of whether it is intended or unintended). These considerations make
it harder to get away with "wrong" policy specifications, but do not take away
the programmers’ responsibility of making appropriate policy specifications. The
static checking is based on the given specifications and will complain when there
is something wrong with the policies.

In the next section, we will consider a small imperative language for active
object systems and then define a type and effect system along the lines explained
above. Figure 8.7 defines classes corresponding to the interfaces in Figure 8.5,
using the imperative language.

8.4 An imperative programming language

In order to give a high-level view of distributed systems, we choose a small
language based on the active object paradigm supporting high-level interaction

106

An imperative programming language

purpose monitoring, treatm, health
where monitoring < treatm < health

policy PDoc = (Doctor, treatm, full)
policy PDocTask = (Any, treatm, full)
policy PAddPresc = (Doctor, treatm, rincr)
policy PGetPresc = (Nurse, treatm, read)
policy PGetSelfPresc = (Nurse, health, read)
policy PPatientPresc = (Patient, treatm, read)
policy PStart = (Any, treatm, no)

policy PPresc = {PGetPresc,PAddPresc,PDoc}

type Presc == Patient * String :: PPresc

interface Patient extends Subject {Void getSelfData() :: PStart}
interface AddPresc {Void makePresc(Presc newp):: PAddPresc}
interface GetPresc {Presc getPresc(Patient p) :: PGetPresc}
interface PatientData extends AddPresc, GetPresc {}
interface Nurse extends Principal {

Presc nurseTask() :: PGetPresc
with Patient

Presc getMyPresc() :: PPatientPresc }
interface Doctor extends Nurse{

Void doctorTask(Patient p) :: PDocTask }

Figure 8.5: Interface, type and policy definitions for the prescription example.
Grey policy specifications are implicit while underlined ones need to be explicitly
stated.

mechanisms [16]. The active object paradigm is based on concurrent autnomous
objects and offers both synchronous and asynchronous communication, while
avoiding shared variables and avoiding low level synchronization mechanisms such
as explicit signaling and notification. This setting allows a simple, compositional
semantics, as in [61, 93], which is beneficial to analysis. All code is organized in
methods definitions inside classes, something which is helpful for static policy
declarations and for class-wise static policy checking.

The language is imperative and strongly typed, using data types for defining
data structure locally inside a class. The data type sublanguage is side-effect-free.
A type system (for checking type-correctness w.r.t. ordinary types) can be made
as in [62]. We formalize the analysis outlined in Section 8.3.5 for this language by
incorporating policy specifications as defined in the previous section for method
declarations and data types. An effect system calculates the policy set of a
variable in a given program state and checks all variable accesses as well as

107

Static checking of GDPR-related privacy compliance for OODS

Pr ::= [T | RD | In | Cl]∗ program
T ::= typeN [T] =<type_expression> [::Ps] type definition
T ::= Int | Any | Bool | String | Void | List[T] |I | N interfaces and types
In ::= interface I [extends I+] {D∗} interface declaration
Cl ::= class C ([T z]∗) class definition

[implements I+] [extends C] support, inheritance
{[T w [= ini]]∗ fields
[B [::P]] class constructor
[[with I] M]∗} methods

D ::= T m([T y]∗) [:: P] method signature
M ::= T m([T y]∗) [B] [:: P] method definition
B ::= {[T x [= rhs];]∗ [s] [; return rhs]} method blocks
v ::= w | x assignable variable
e ::= v | y | z | this | caller | void | f(e) | (e) pure expressions
ini ::= e | new C(e) initial value of field
rhs ::= ini | e.m(e) right-hand sides
s ::= skip | s; s sequencing

| v := rhs | v :+e | e!m(e) | I!m(e) assignment and call
| if e then s [else s] fi if statement
| while e do s od while statement

Figure 8.6: BNF syntax of the core language, extended with policy specification.
A field is denoted w, a local variable x , a method parameter y, a class parameter
z, type names N , and list append is denoted +. The brackets in [T] and
[T] are ground symbols. Function symbols f range over pre-/user-defined
functions/constructors with prefix/mixfix notation.

policy restrictions on called methods and generated sensitive data. We assume
type-correct programs with respect to ordinary types.

The BNF syntax of the language is summarized in Figure 9.3. The notation
e denotes a list of expressions e. As before, optional parts are written in
brackets (except for type parameters, as in List[T], where the brackets are
ground symbols). The superscripts ∗ and + denote repetition and non-empty
repetition, respectively. The cointerface of a method is given by a with clause,
and gives restrictions on the callee object: only objects supporting the cointerface
may call methods in the interface. Thus for a call o.m(. . .), the caller (available
through the caller variable) will be typed by the cointerface. For instance in
the class implementation of Nurse in Figure 8.7, the with clause is needed for
method getMyPresc in order to make the call to getMyPresc type correct since
here it is required that caller is of interface Patient.

Class and method parameters, the implicit class parameter this, and the
implicit method parameter caller are read-only. A class may implement a number
of interfaces, and for each method of an interface of the class, it is required

108

An imperative programming language

class PATIENTDATA() implements PatientData {
type PData = List[Presc] :: PPresc
PData pd = empty();

Presc getPresc(Patient p){return last(pd/p)} :: PGetPresc
Void makePresc(Presc newp) {

if newp 6=emptyString() then pd:+ newp fi } :: PAddPresc
}

class NURSE(PatientData pdb) implements Nurse{
Presc nurseTask(Patient p){ return pdb.getPresc(p)} :: PGetPresc
with Patient

Presc getMyPresc() {return pdb.getPresc(caller)} :: PPatientPresc
}

class DOCTOR() extends NURSE //inherits class parameter pdb
implements Doctor{

Void doctorTask(Patient p){
Presc oldp = pdb.getPresc(p);
String text = ...; //new presc using symptoms info and oldp
Presc newp = (p, text);
pdb!makePresc(newp)}:: PDocTask

}

class PATIENT(String id, Doctor d, Nurse n) implements Patient{
Void getSelfData(){ n!getMyPresc() } :: PStart
}

class MAIN(){
PatientData pdbase = new PATIENTDATA();
Nurse n = new NURSE(pdbase);
Doctor d = new DOCTOR(pdbase);
Patient p = new PATIENT("P001",d,n);

{ d!doctorTask(p); p!getSelfData() } :: PStart // class constructor
}

Figure 8.7: Doctor and Nurse classes accessing patient prescriptions

109

Static checking of GDPR-related privacy compliance for OODS

that the class defines the method such that the cointerface and types of each
method parameter and return value are respected. Additional methods may
be defined in a class as well, but these may not be called from outside the class.
The language supports single class inheritance and multiple interface inheritance
(using the keyword extends).

We assume that all inherited or implemented versions of a method m declared
in an interface have the same input and output types. A method body T x = e; s
with initialization of the local variables can be understood as T x;x := e; s
without initialization of the local variables. We assume type-correct programs,
and when needed include type information in the programs subjected to static
analysis: In the static analysis, we write eT for an expression of type T , where
T results from the underlying type checking. We write o.mI(e) when I is the
interface of o as resulting from the underlying type checking.

As mentioned, we let ≤ denote the subtype relation. For instance, Nat ≤ Int,
and for a subinterface I ′ of I, we have I ′ ≤ I. We also write C ≤ I if class C
implements interface I, or a subinterface of I. The only variable typed by a
class is this (allowing calls of form this!m(...) where m is a method of the class,
including privates ones).

The language could be extended in various ways, for instance with non-
blocking forms of two-way method interaction. Local futures are supported by
the runtime system and may trivially be included in the language. This would
allow a future generated by one method to be picked up by another method
executed by the same object. Furthermore, the language may be extended with
cooperative scheduling (supporting suspended remote calls) as in [61]. This
would be orthogonal to the treatment of privacy policies.

8.4.1 Data types and sensitive data types

A data type is defined by a type expression, possibly recursive. For our
purposes we consider type expressions composed of disjoint unions and products,
using names to distinguish the different cases (variants) of a disjoint union.
These variants are called constructor functions since they define the values
of the data type. For instance we may define a parameterized list type by
List[T] = empty() + append(List[T] ∗ T), meaning that lists have the form
empty() or append(l, x), where l is a list and x a value of type T . A pair
product type can be defined by PatientInfo = (Patient ∗ Nat) where Patient
is a subinterface of Subject. Then the pair (p, d) is of type PatientInfo for p
of interface Patient and d of type Nat. (Here “(_,_)” is the constructor.)
Functions over a data type can then be defined by case expressions over the
different variants of the type, or simply by a set of equations representing
the different cases. Consider the type List[PatientInfo]. We may define
a projection operator (proj : List[PatientInfo] ∗ Patient → List[PatientInfo])
by proj(empty(), p) = empty() and proj(append(l, (p, d)), p′) = if p = p′ then

append(proj(l, p′), (p, d)) else proj(l, p′). Using the infix notion / for proj
and + for list append, this gives the definition empty()/v = empty() and
(l + (v1, v2))/v = if v = v1 then (l/v) + (v1, v2) else l/v. The projection

110

An effect system for privacy

operator is extracting those pairs which have a given first element. The last
function on lists of PatientInfo is defined such that last(append(l, x)) = x.

A data type is considered sensitive if its definition contains a variant with
sensitive information or a product where one component is of interface Subject,
or a subinterface of Subject, because a value of this type could be used to
encode personal information about a data subject. (One could consider ways
to override this, in cases where no personal information may occur.) Similarly,
a constructor is considered sensitive if it contains a sensitive component or a
component of interface Subject (or a subinterface). For instance the pair (p, d) is
sensitive when p is of interface Patient. Moreover empty() is not sensitive while
append(l, (p, d)) is. A defined function is considered sensitive if the function
type is sensitive and the definition contains a sensitive subexpression. (Again
the language could have ways to overrule this when required, for instance in
order to accomodate encryption functions.) An application of a constructor of
a sensitive type and with an argument which is either sensitve or of interface
Subject, may create new sensitive information. This requires write access (as
checked by the type rules for expressions).

8.4.2 An example

An example program is given in Figure 8.7, showing class implementations
of the interfaces given in Figure 8.5 as well as a main class. The getPresc
call is a blocking call while the other calls are asynchronous. Note that the
tuple (p, text) in method doctorTask is sensitive and requires write access by the
enclosing method, which is satisfied by the policy PDocTask = (Any, treatm, full).
If the policy had been PDoc, the call to doctorTask from the main program
would fail the policy checking. The expression last(pd/p) is sensitive since it
gives a sensitive type, with policy PPresc. The enclosing method has policy
PGetPresc, which is sufficient for read access of this kind of information since
PGetPresc v PPresc. The details of the policy checking for the example is shown
in Section 8.5.1.

8.5 An effect system for privacy

In general, a static type or effect system consists of a set of rules that establish
safety properties that hold in all states of an execution [84]. As we are interested
in privacy policies, our rules ensure that a well-typed program enforces the
specified privacy policies correctly. (This is done after ordinary type checking.)
The rules use an environment Γ expressing statically derivable information about
program variables in a given state, in our case privacy policies. As explained
in Section 8.3.5, Γ is a mapping from program variable names to policy sets,
such that the policy set of a variable in a given state gives an upper bound on
the permitted usage. The environment may change from state to state, and
therefore the rules will modify the environment, which means that we have an
effect system. We use the notation Γ[v] for map look-up and Γ[v 7→ P] for

111

Static checking of GDPR-related privacy compliance for OODS

(P-interface)

PI,m v PJ,m for each J ∈ J such that m ∈ J
Γ ` interface I extends J{D} ok

(P-class)

PC,m v PI,m for each I ∈ I such that m ∈ I
C ` M ok for each M ∈M

` class C(Z z) implements I {W w; M} ok

defining ΓC = [z 7→ PZ , w 7→ PW , this 7→ {•}, pc 7→ {•}]

(P-method)
C,m ` [ΓC [y 7→ PY , x 7→ {•}, caller 7→ {•}]] s [Γ]

C,m ` [Γ] rhs :: P ′ P ′ =⇒ PT
Γ[w] =⇒ ΓC [w] for each field w

C ` T m(Y y){X x; s; return rhs} :: P ok

Figure 8.8: Policy rules for classes and methods. (Note: read-only access for z
and y.)

extending Γ with a new binding (replacing any old binding for v). The policy
set of a variable v in the context of Γ is simply given by Γ[v].

Type enforcement requires that the policies are respected when the variables
are accessed. This gives more fine-grained control letting the policies change
with the program point. To reflect changes related to branching constructs we
use an addition program variable pc (the “program counter”) as common in
type systems for security aspects [96]. For instance, in the branches of an if
statement with a sensitive test, pc is adjusted by the policy set of the test. The
statement l := h where l and h are boolean variables, is semantically equivalent
to if h then l := true else l := false fi, so both should result in a sensitive
value for l when h has a sensitive value. The presence of pc makes this possible
since the level of l is adjusted by the level of the test (recorded in pc) in the
branches.

We give an effect system for ensuring privacy policy compliance, formalized
by five kinds of judgments: For a statement s, the judgment

C,m ` [Γ] s [Γ′]

expresses that inside a method body m and an enclosing class C , the
statement(list) s when started in a state satisfying the environment Γ results in
a state satisfying the environment Γ′. The rules are right-constructive in the
sense that Γ′ can be constructed from Γ and s. For an expression or right-hand
side e, the judgment

C,m ` [Γ] e :: P

112

An effect system for privacy

(P-var)
read vA Γ[v] u (PC,m@(C,m))
C,m ` [Γ] v :: Γ[v] u Γ[pc]

(P-constant)

C,m ` [Γ] const() :: Γ[pc]

(P-func)
C,m ` [Γ] ei :: Pi for each argument ei of a sensitive type

write vA PT u (PC,m@(C,m)) if fT is a sensitive constructor
C,m ` [Γ] fT (e) :: PT u Γ[pc]

(P-call)
C 6≤ I PI,n vCo,R PC,m@(C,m)

C,m ` [Γ] e :: P ′
C,m ` [Γ] ei :: Pi Pi =⇒ Ppar(I,n)i

for each i
C,m ` [Γ] e.nI(e) :: Pout(I,n) u Γ[pc]

(P-LocalCall)
C ≤ I PI,n v PC,m@(C,m)

C,m ` [Γ] e :: P ′
C,m ` [Γ] ei :: Pi Pi =⇒ Ppar(I,n)i

for each i
C,m ` [Γ] e.nI(e) :: Pout(I,n) u Γ[pc]

(P-New)
C,m ` [Γ] ei :: Pi Pi =⇒ ΓC′ [zi]
C,m ` [Γ] new C ′(e) :: Γ[pc]

Figure 8.9: Policy rules for expressions and right-hand sides.

expresses that the expression e when evaluated in a state satisfying Γ gives a
value satisfying policy P, where m is the enclosing method and C the enclosing
class. For a method definition M in a class C , the judgment

C ` M ok

expresses that a method complies with its privacy policy. Similarly for a class
definition Cl, the judgment

` Cl ok
expresses that the method definitions comply with the behaviour described
by the interfaces and that the method definitions in the class are OK. For an
interface definition In, the judgment

` In ok

expresses that any re-defined policy of the method in In must comply with that
of the superinterface.

113

Static checking of GDPR-related privacy compliance for OODS

(P-skip)

C,m ` [Γ] skip [Γ]

(P-composition)
C,m ` [Γ] s1 [Γ1] C,m ` [Γ1] s2 [Γ2]

C,m ` [Γ] s1; s2 [Γ2]

(P-write)
C,m ` [Γ] rhs :: P

write vA ΓC [w] u (PC,m@(C,m))
C,m ` [Γ] w := rhs [Γ[w 7→ P]]

(P-local-write)
C,m ` [Γ] rhs :: P

C,m ` [Γ] x := rhs [Γ[x 7→ P]]

(P-incr)
C,m ` [Γ] rhs :: P

incr vA ΓC [w] u (PC,m@(C,m))
C,m ` [Γ] w :+rhs [Γ[w 7→ Γ[w] u P]]

(P-asyncCall)
C,m ` [Γ] e.nI(e) :: P
C,m ` [Γ] e!nI(e) [Γ]

(P-broadcast)
PI,n vCo,R PC,m@(C,m)

C,m ` [Γ] ei :: Pi Pi =⇒ Ppar(I,n)i
for each i

C,m ` [Γ] I!n(e) [Γ]

(P-if)
C,m ` [Γ] e :: P

C,m ` [Γ[pc 7→ (Γ[pc] u P)]] s1 [Γ1]
C,m ` [Γ[pc 7→ (Γ[pc] u P)]] s2 [Γ2]

C,m ` [Γ] if e then s1 else s2 fi [(Γ1 u Γ2)[pc 7→ Γ[pc]]]

(P-while)
C,m ` [Γi] e :: Pi

C,m ` [Γi[pc 7→ (Γi[pc] u Pi)]] s [Γ′i] i = 1 . . . n
Γi+1 = Γi u Γ′i i = 1 . . . n
C,m ` [Γ1] while e do s od [Γn[pc 7→ Γ1[pc]]]

Figure 8.10: Policy rules for statements. In the last rule n is the least i such
that Γi+1 = Γi.

114

An effect system for privacy

The typing rules for interfaces, classes, and methods are given in Figure 8.8,
Figure 8.9 defines the typing rules for expressions and right-hand sides, and
Figure 8.10 defines the typing rules for statements. We let PI,m denote the
policy of method m of interface I , PC,m denote the policy of method m of class
C , and PT denote the policy associated with a type T . If no policy is specified
for any declaration, we understand that there is no sensitive information, i.e.,
the policy is {•}. Note that, if by mistake, no policy is specified on a method
due to forgetfulness, the static compliance checking would detect any use of
sensitive information and the method body would not pass the privacy checks.
In particular data types with constructor functions associating data to subjects
will be considered sensitive. A non-sensitive method would not be able to access
or create sensitive data, and a non-sensitive type declaration would not allow
assignment of sensitive information to variables of that type.

The rule P-interface checks that a redeclared method m in an interface I
respects the policy of m in a superinterface J . The premise ensures that the
policy declaration of m in I complies with the policy of m in J , i.e., PI,m v PJ,m.
(The premise is redundant when the policy of m is inherited from J .)

In Rules P-class and P-method, W is the type of field w, Z is the type of class
parameter z, X is the type of local variable x, and Y is the type of formal
parameter y. Rule P-class checks that a class definition is OK, requiring that the
policy of each exported method complies with the policy of the method in the
corresponding interface, and that each method definition respects its policy. A
class constructor (if any) is treated like a method, with the name init (with an
implicit return void() at the end). We therefore need not show the case of the
class constructor explicitly.

Rule P-method checks that a method definition respects the declared policy P ,
requiring that the method body relates the starting enviroment to the resulting
environment Γ, and that the policy on the return value evaluated in Γ must
comply with the policy of the return type. The starting environment of a method
is the environment of the class, denoted by ΓC , defined by the declared policies
of the types of the class parameters and fields, updated with the policies of
the types of the formal parameters, and those of the initial values of the local
variables. The latter are all {•}, and so are the policies of this and caller, since
they are object references. Rule P-method also ensures that policies on the fields at
method end according to Γ guarantee the policies on the types. (The guarantee
operator, =⇒, is defined in Definition 5). The presence of a with clause gives no
change in the premises, since the cointerface defines the interface of the caller,
which has the default policy {•}. Notice that the policies of declared types,
methods, as well as ΓC , are constant, while the policies of Γ[v] change with the
program point.

To check variable accesses and calls made in a method body, we define the
policy of method body. This will allow the caller to act as a principal inside the
method body (with the purpose and access right of the method), something
which is needed when the current object does not in itself reflect a principal (i.e.,
when C does not implement a principal).

115

Static checking of GDPR-related privacy compliance for OODS

Definition 20 (Method Body Policy Set).
The policy set of the body of a method m in class C is defined by

(I,R,A)@(C,m) ≡ {(I,R,A)} if I ≤ Principal
∪i {(Ii, R,A)} otherwise

where (I,R,A) is the policy of the method and where Ii ranges over all the
interfaces of C that export m.

For example, PDocTask@(DOCTOR, doctorTask) will give {(Doctor, treatm,
full)}. This allows the body of doctorTask to call getPresc since it can act
as a Doctor (and since PDocTask is the policy on method doctorTask). As
another example, PAddPresc@(PATIENTDATA,makePresc) will search for
an interface which exports makePresc, which is the interface AddPresc. This
means that the method body policy set of makePresc is {(Doctor, treatm,
rincr)}, which suffices for the incremental update of pd.

The rules in Figure 8.9 define the policies resulting from expressions and
right-hand sides: The Rule P-Var says that the policy set of a variable v is the
policy of v according to the environment (Γ[v]) and the policy set of the program
counter pc according to Γ. The premise ensures that there is read access to v
according to the policy set of the variable and according to the policy of the
enclosing method body. Note that read vA {•}, and the same holds for write,
incr, and self as well.

Constant constructors represent non-sensitive information since they are not
composed by sensitive information. The policy set of a constant is therefore
given by the policy of pc in the current environment Γ, as stated in Rule P-Const.
This rule also applies to predefined constants such as void().

The Rule P-func considers a function application fT (e) where T is the resulting
type. The policy set of the function application is the meet of the policy set
of T and the policy of pc in the environment Γ. The first premise ensures that
each sensitive argument is OK. This implies that there is read access to each
variable v, occurring in a sensitive argument. In case the function f is a sensitive
constructor, it is required that there is write access according to the policy set
of T and the policy set of the enclosing method body (premise 2). As constant
constructor functions are considered non-sensitive and have no arguments, Rule
P-Const can be seen as a special case of Rule P-func.

In addition to controlling the information extracted from an object, one
also needs to control the information flowing into an object. This is checked
by ensuring that the actual parameters respect the policies of the types of the
formal parameters. This is checked as part of the P-call rule, and similarly, the
actual class parameters are checked in the P-new rule. The Rule P-call ensures
that the current object has sufficient access to call method n through interface I ,
that the arguments and callee expressions are OK. We use the notation par(I, n)
to denote these types, and out(I,n) to denote the return type. The operation
vCo,R is a simplified policy compliance check, which only compares the I and R
parts of the policies, i.e., (I ′, R′, A′) vCo,R (I,R,A) ≡ I ≤ I ′ ∧R′ ≤ R. When
a method n is called through an interface I , we check that the purpose of the
method body complies with that of n and that the calling object supports the

116

An effect system for privacy

cointerface of n. The call itself then gets the policy given by the return type, as
defined in the method n of interface I , and this is adjusted by the policy of pc.

Local calls are similar to remote calls, but as they may update the fields of
the current object, it must be checked that the access rights of the enclosing
method is respected by the called method. Therefore Rule P-LocalCall is like Rule
P-Call, but the first premise is stronger than the case of remote calls, considering
also the access right part. The first premise of checks that the interface of the
called method is either the current class C (in which case the call is local) or is
implemented by C (in which case the call is local if o is this). This overestimates
the set of possible local calls in a sound manner (since the condition o = this is
beyond static control).

The Rule P-New ensures that the arguments are OK, and that the policy sets
of each argument respects the policy of the type of the corresponding formal class
parameter (as defined in class C ′ using init as the name of the class constructor).
The value resulting from the object creation is a reference to the new object,
and therefore has no sensitive information ({•}). The value resulting from the
object creation is then adjusted with the policy of pc.

The effect rules of Figure 8.10 explain the handling of statements. The rule
P-Skip says that a skip statement does not change the environment. The rule
P-Composition for sequential composition indicates that the environment resulting
from one statement can be used as the starting environment for the following
statement.

The Rule P-write considers the case that the left-hand side variable is a field
w and checks that there is write access to this field, both with respect to the
policy of the type of w and the policy of the enclosing method body. This check
is done in the second premise. The first premise ensures that the right-hand side
is OK and results in a policy set P. This policy set is then used as the policy
associated with w in the environment resulting from the assignment statement.
Thus assigning non-sensitive values to fields is allowed if the enclosing method
and the type have a policy with write access. The rule P-LocalWrite is similar
except that we need not check write access (since full access is allowed for local
variables). For simplicity, formal class and method parameters (as well as this
and caller) are read-only in our language, and this is enforced by the BNF syntax
of assignments because it’s only allowed to write to the fields and local variables.

The rule P-incr for incremental assignment to a field w is similar to Rule
P-write except that here incr access is required. The resulting policy for w is the
meet of the policy on the former value and the policy on the right-hand side
since the new value is w + rhs. Incremental assignment to a local variable, say
x :+rhs, is semantically the same as x := x+ rhs since there is full access to
local variables, and we omit a rule for this.

For Rules P-write, P-local-write, and P-incr, the policy on rhs also captures the
change in sensitive context due to if and while tests using the policy on pc, due
to the rules for expressions. This ensures that the policy on rhs complies with
that of the program counter context, i.e., pc.

The rule P-asyncCall for an asynchronous call is similar to Rule P-call, except
that the return type is ignored (since no information is returned). The rule for

117

Static checking of GDPR-related privacy compliance for OODS

broadcast calls P-broadcast is similar, but without a check on the callee. The call
is broadcast to all objects supporting interface I .

The rule P-If is straight forward, apart from two considerations: In case the
if-test is sensitive, the pc of the starting environment of each branch must be
adjusted by the policy of the expression in the if-test. This is done by a meet
operation on Γ[pc], i.e., Γ[pc 7→ (Γ[pc] u P)]. Secondly, the policy resulting from
an if-statement is the meet of the policies at the end of each branch, corresponding
to a worst case analysis, with the policy of pc in the final environment reset to
its value before the if-statement. The rule P-While is somewhat similar to P-If,
but the resulting policy is the least fix-point of the iterated effect on the starting
policy, reflecting that the number of iterations is unknown at compile time. The
fix-point will exist since the lattice hierarchy is finite, and since Γi+1 is less than
v Γi since Γi+1 = Γi u Γ′i. After the while statement pc is reset to its value
before the while-statement.

8.5.1 Static compliance checking of the example

In Figure 8.7, which is a continuation of the example in Figure 8.5, we
consider some classes implementing the interfaces, including a main class that is
automatically instantiated when running the program.

Note that all policies on the visible methods (those exported by an interface)
are inherited from the respective interfaces, and need not be repeated by the
programmer. They are therefore marked as gray. Also the policy on the sensitive
data type PData follows from that on Presc since the policy of List[T] is the
policy of T . Only the local class constructor of MAIN needs an explicitly specified
policy. The classes demonstrate most of the language features including blocking
calls, asynchronous calls, and broadcasts, as well as write access, incremental
access, and read access. And they demonstrate privacy policy specifications.
A challenge here is that the construct (p, text) requires write access since it
constructs sensitive data. As discussed later this is acceptable in class DOCTOR
since type Presc gives full treatment access to Doctor objects and class DOCTOR
has interface Doctor . This expression would not be allowed in class Nurse.

We show below the static analysis of the program in Figure 8.7. The premises
are handled one by one. The outline below demonstrates that the program
satisfies the static analysis.

1. Rule P-asyncCall. Consider the following snippet.

class MAIN(){ ...
{d!doctorTask(p)} :: PStart }

Here, e!nI(e) is d!doctorTask(p). The premises are shown below:

1.1. [Γ] e.nI(e) :: P

118

An effect system for privacy

1.1.1. C 6≤ I
MAIN 6≤ Doctor

PI,n vCo,R PC,m@(C,m)
PDocTask,doctorTask vCo,R PMAIN ,init ⇔
(Any, treatm, full) vCo,R (Any, treatm, no)

1.1.2. [Γ] e :: P ′
[Γ] d :: {•} //object references are not sensitive

1.1.3. [Γ] ei :: Pi
[Γ] p ::= {•}

Pi =⇒ Ppar(I,n)i

{•} =⇒ Ppar(Doctor,doctorTask)
{•} =⇒ Pp
{•} =⇒ {•} // trivially true

1.1.4. [Γ] e.nI(e) :: Pout(I,n) u Γ[pc]
[Γ] e.nI(e) :: {•} u {•}
[Γ] e.nI(e) :: {•}

1.2. [Γ]d!doctorTask(p) [Γ]

2. Rules P-CALL, P-LOCAL-WRITE

class DOCTOR() extends NURSE implements Doctor{
Void doctorTask(Patient p){

Presc oldp = pdb.getPresc(p); ...}:: PDocTask
}

Here, x := rhs =⇒ Presc oldp = pdb.getPresc(p)

2.1. [Γ] rhs :: P // P-LOCAL-WRITE premise
rhs is pdb.getPresc(p)

2.1.1. C 6≤ I
DOCTOR 6≤ GetPresc
PI,n vCo,R PC,m@(C,m)
PGetPresc,getPresc vCo,R PDocTask@(DOCTOR, doctorTask)⇔
PGetPresc,getPresc vCo,R (Any, treatm, full)@(DOCTOR, doctorTask)
⇔
(Nurse,treatm,read)vCo,R (Doctor,treatm,full) ⇔
(Def: Method Body Policy Set)
(Nurse, treatm, read) vCo,R (Doctor, treatm, full)

119

Static checking of GDPR-related privacy compliance for OODS

(Def: Policy Compliance)

Here, Interface Doctor inherits getPresc() from the Nurse interface,
i.e., Doctor ≤ Nurse, and policy of the inherited method complies
with the policy in current context making this call valid.

2.1.2. [Γ] e :: P ′
[Γ] pbd :: {•} //object references are not sensitive

2.1.3. [Γ] ei :: Pi
[Γ] p ::= {•}

Pi =⇒ Ppar(I,n)i

{•} =⇒ Ppar(GetPresc,getPresc)
{•} =⇒ Pp
{•} =⇒ {•}

2.1.4. pdb.getPresc(p) :: Pout(I,n) u Γ[pc]
pdb.getPresc(p) :: PPresc u {•} // since pc is non-sensitive
i.e., pdb.getPresc(p) :: PPresc

2.2. Γ[x 7→ P] =⇒ Γ[oldp 7→ PPresc]

3. Rules P-Func, P-Var, P-Local-Write, P-asyncCall

class DOCTOR() extends NURSE implements Doctor{
Void doctorTask(Patient p){...

String text = ...; //new presc using symptoms and oldp
Presc newp = (p, text);
pdb!makePresc(newp)}:: PDocTask

}

3.1. x := rhs
String text = rhs //P-LocalWrite
rhs :: {•}

Γ[x 7→ P] =⇒ Γ[text 7→ {•}]
3.2. Presc newp = (p, text); //P-Func, P-Var, P-LocalWrite

3.2.1. [Γ] ei :: Pi
3.2.1.1. read vA Γ[v] u (PC,m@(C,m)) // P-Var

Γ[p] u (PDocTask @ (DOCTOR, doctorTask))
{•} u ((Any, treatm, full) ∪ (Doctor, treatm, full))
{•} u (Doctor, treatm, full)
i.e., (Doctor, treatm, full).

120

An effect system for privacy

read vA (Doctor, treatm, full), which reduces to
read vA full

Likewise, for text as it is also non-sensitive and same method
body context applies.

3.2.1.2. p :: Γ[p] u Γ[pc]⇔
p :: {•}, since pc is non-sensitive here.

These premises ensures that the variables in the constructor
function has read access as well as that the current context
complies with read access.

3.2.2. write vA PT u (PC,m@(C,m)), since the constructor (_,_) is
sensitive
fT (p, text) and T is PPresc
write vA PT u (PC,m@(C,m))
write vA PPresc u (PDocTask@(DOCTOR, doctorTask))
write vA {(Nurse, treatm, read), (Doctor, treatm, full)}u

(Doctor, treatm, full)
write vA (Doctor, treatm, full), which reduces to write vA full.

This premise checks if the sensitive information (p, text) can be
constructed in the current context, and here it can be constructed
because the current context has write access.

3.2.3. [Γ] (p, text) :: PT u Γ[pc]
[Γ] (p, text) :: PPresc, since pc is non-sensitive here.

3.3. e!nI(e) = pdb!makePresc(newp)

3.3.1. C 6≤ I
Doctor 6≤ AddPresc

PI,n vCo,R PC,m@(C,m)
PAddPresc,makePresc v PDocTask@(DOCTOR, doctorTask)⇔
(Doctor, treatm, rincr) vCo,R (Doctor, treatm, full)⇔
(Doctor, treatm, rincr) vCo,R (Doctor, treatm, full)

3.3.2. [Γ] e :: P ′
[Γ] pdb :: {•}

3.3.3. [Γ] ei :: Pi
[Γ] newp :: PPresc // P-Var

Pi =⇒ Ppar(I,n)i

Pnewp =⇒ Ppar(AddPresc,makePresc)

121

Static checking of GDPR-related privacy compliance for OODS

PPresc =⇒ PPresc

4. Rules P-If, P-Incr

class PATIENTDATA() implements PatientData { ...
Void makePresc(Presc newp) {

if newp 6=emptyString() then pd:+ newp fi } :: PAddPresc
}

if e then s1 else s2 fi

4.1. e :: P // P-Var
newp 6= emptyString() :: P

read v Γ[v] u (PC,m@(C,m)) // P-Var
read vA Γ[newp] u (PAddPresc @ (PATIENTDATA,makePresc))
read vA PPresc u PAddPresc, since PatientData is not a principal.
read vA {(Nurse, treatm, read), (Doctor, treatm, full)} u (Doctor,

treatm, rincr)
read vA (Doctor, treatm, rincr)

newp :: [Γ[newp] u Γ[pc]]
newp :: [PPresc u PPresc]
newp :: PPresc

emptyString() :: P // P-Constant
emptyString() :: Γ[pc]
emptyString() :: {•}, since pc is non-sensitive here.

newp 6= emptyString() :: PPresc

4.2. [Γ[pc 7→ (Γ[pc] u P)]] s1 [Γ1]
Γ[pc 7→ (PPresc u PPresc)] pd : +newp [Γ1]
Γ[pc 7→ PPresc] pd : +newp [Γ1]

Now, rule P-Incr, on s1

4.2.1. rhs :: P
newp :: PPresc // since Γ[pc 7→ PPresc]

4.2.2. incr vA ΓC [w] u (PC,m@(C,m))
incr vA ΓC [pd] u (PAddPresc@(PATIENTDATA,makePresc))
incr vA PPresc u (PDoctor,treatm,rincr)
incr vA PAddPresc
incr vA (Doctor, treatm, rincr)

122

Awareness of subject

which reduces to incr vA rincr

4.2.3. [Γ[w 7→ (Γ[w] u Γ[pc])]
[Γ[pd 7→ (Γ[pd] u Γ[pc])]]
[Γ[pd 7→ (PPresc u PPresc)]]
[Γ[pd 7→ PPresc]]

4.3. [Γ] if e then s1 else s2 fi [Γ1 u Γ2[pc 7→ Γ[pc]]]
Γ1[pc 7→ Γ[pc]]
Γ1[pc 7→ PAddPresc]

Interface PatientData extends interfaces GetPresc and AddPresc, but does not
redefine the policies on inherited methods. So the policies on inherited methods
trivially complies with that of the superinterfaces. Thus interface PatientData is
well-formed. Class PATIENTDATA is well-formed because

1. PPATIENTDATA,getPrescvPGetPresc,getPresc and PPATIENTDATA,makePrescv
PAddPresc,makePresc, i.e., the policies on the method definitions comply with
those of the method declarations in the interfaces.

2. For method getPresc, the policy on the return value complies with the
policy of the return type, i.e., PPresc =⇒ PPresc.
Moreover, for method makePresc,

• ΓC is defined by [newp 7→ PPresc, caller 7→ {•}] and the if-statement
is well-formed (as described above in 4).

• The policy on the field pd complies with that on the declared type,
i.e., PPresc =⇒ PPresc.

We may conclude that the static analysis is successful. However, with the
current rules we cannot check if a Patient accessing her own information, through
method GetMyPresc, is valid. In particular, we can not check the self access.
We return to this in Section 8.6.

8.6 Awareness of subject

We discuss here how the above framework could be extended so that (static)
awareness of the subject of sensitive information is handled. In particular, we
would like the analysis to detect that expressions such as last(pd/p) (with pd
as in the example) result in data with p as data subject, and therefore can
be communicated/returned to p by the principle of read access to data about
self. With the formalism above it is required that the caller supports the Nurse
interface.

Our framework uses interfaces to describe the visible aspects of the active
objects and data types to define data structures, including personal data. We
use subtyping to distinguish (potential) personal data from non-personal data.

123

Static checking of GDPR-related privacy compliance for OODS

The data type hierarchy is extended with a subtype PersonalData, and all
sensitive data types must be of a subtype of PersonalData. We introduce the
interface Sensitive as the superinterface of all classes holding personal information.
Interface Subject is below Principal, and for instance interface Patient is below
Subject. We let PersonalData support a function subjects returning the set of
the subjects of the data, of type Set[Subject]. Let p be a subject. For a pair
(p, d) where d is non-sensitive, we have that subjects((p, d)) is {p}, and for a
sensitive constructor f we have that subjects(f(p, d)) is {p} when the list d is
non-sensitive.

We now specify purpose by terms of the form name(p) where name is a
purpose name as before and p identifies the subject, either by an object (for
instance given by this or caller), an interface name, or a set of object expressions.
In a runtime tag, p will be a set of object references, while it may be over-
approximated by an interface in the static setting.

In the example we would have that the policy for method makePresc could
be (Doctor, treatm(Patient), rincr). Furthermore, we could make a policy
(Doctor, treatm(p), rincr) where p is a Patient object. This way we may
distinguish between the treatment of individual patients. With the added
notions, we may extract the subject(s) of sensitive information inside a method.
The data structure in the example with patient data pd is defined as a list
of pairs as before, but now we can express that subjects(pd/p) = {p} and
subjects(last(pd)) = subjects(pd) for a Patient p.

As mentioned in Section 8.3, we may include the general policy

(Subject, all, self u read)

to give each subject read access to personal data about herself. This allows
a more liberal policy checking than in the previous section, by allowing the
statement return e when subjects(e) is caller, and allowing a parameter e in a
method call to o when subjects(e) is o.

The main achievement with the renewed example (see Figure 8.11) is that we
detect statically that the getMyPresc method complies with the static policies,
even if patients have no specified access rights on PATIENTDATA objects,
because this method uses only self access. We will also be able to treat methods
such as getMyPresc in class NURSE and getSelfData in class PATIENT in
Figure 8.7.

In order to deal with dynamic changes in consent, we let interface Sensitive
contain a method for updating the policies of sensitive data, upd_consent,
with the new consent settings as a parameter new_policy. A class supporting
Sensitive must then implement this method (preferably implemented directly in
the runtime system) by changing the tag on any local data in the object where
the caller is the subject (as given in the purpose part). If this is the case, the
runtime tag l must be changed to lunew_policy. To initiate a change in consent
settings with new policy np, a subject may make the broadcast

Sensitive!upd_consent(np)

124

Operational semantics

policy PDoc = (Doctor, treatm(Patient), full)
policy PGetPresc = (Nurse, treatm(Patient), read)
policy PPresc = {PGetPresc,PDoc}

class PATIENTDATA() implements PatientData {
type PData = List[Presc] :: PPresc
PData pd = empty();
Void makePresc(Presc newp) {

if newp 6=emptyString() then pd:+ newp fi }
:: (Doctor, treatm(Patient), rincr)

Presc getPresc(Patient p){return last(pd/p)}
:: (Nurse, treatm(p), read)

with Patient
Presc getMyPresc() {return getPresc(caller)}

:: (Patient, treatm(caller), read)
// allowed since a subject has read access to self data

... }

Figure 8.11: Example with subject awareness. As before, gray parts are implicit.

v ::= . . . | pcs | nextId added variables
s ::= . . . | v := get u added statement

Figure 8.12: BNF syntax of additional constructs used in the operation semantics.

which will go to all Sensitive objects and lead to adjustments of all sensitive
data in the system where subject is caller.

8.7 Operational semantics

The operational semantics of the considered language is given in Fig. 9.9. Data
values are tagged with policy sets. Compared to the static analysis, we could use
more expressive policies, in particular, we may use sets of objects to define the
principals, rather than interfaces. However, for simplicity we use interfaces as
principals, letting each interface denote the set of object supporting the interface,
making the correspondence with the type system easier. We could also let the
operational semantics define the subject and owner (i.e., creator) of the data, as
well as other GDPR-relevant aspects such as expiration time, but this is ignored
here since we focus on the aspects of the static system.

We briefly explain the main elements of the runtime system used in the
operational semantics. A runtime configuration of an active object system
is captured by a multiset of objects and messages (using blank-space as the

125

Static checking of GDPR-related privacy compliance for OODS
assign : o : ob(δ, v := e; s)

empty−−−−→ o : ob(δ[v := e], s)

if-true : o : ob(δ, if b then s1 else s2 fi; s)
empty−−−−→ o : ob(δ[pcs := push(pcs, l)], s1; pcs := pop(pcs); s)

if δ[b] = truel

if-false : o : ob(δ, if b then s1 else s2 fi; s)
empty−−−−→ o : ob(δ[pcs := push(pcs, l)], s2; pcs := pop(pcs); s)

if δ[b] = falsel

while : o : ob(δ, while b do s1 od; s)
−→ o : ob(δ, if b then s1; while b do s1 od fi; s)

new : o : ob(δ, v := new C(e); s)
o ↔ δ[nextOb].C(δ[e])−−−−−−−−−−−−−→ o : ob(δ[v := o′], s)

o′ : ob(δC [this 7→ o′, cp 7→ δ[e]], initC)
where o′ = (fresh, C),
with fresh a fresh reference relative to C

async. call : o : ob(δ, a!m(e); s)
o→δ[a].m(δ[nextId,e])−−−−−−−−−−−−−→ o : ob(δ[nextId := next(nextId)], s)

msg o→ δ[a].m(δ[nextId, e])

sync. call : o : ob(δ, v := a.m(e); s)
o→δ[a].m(δ[nextId,e])−−−−−−−−−−−−−→ o : ob(δ, a!m(e); v := get δ[nextId]; s)

start : msg o′ → o.m(u, c)
o : ob((α|β′), idle)

o′�o.m(u,c)−−−−−−−−→ o : ob((α|(β[caller 7→ o′, callId 7→ u, y 7→ c,
pcs 7→ empty()])), s)

where (m, y, β, s) is the body of m
in the class of this

return : o : ob(δ, return e)
δ[caller]←δ[this].(δ[callId],δ[e])−−−−−−−−−−−−−−−−−→ o : ob(δ, idle)

msg δ[caller]← δ[this].(δ[callId], δ[e])

query : msg o← o′.(u, c)
o : ob(δ, v := get u ; s)

o�o′.(u,c)−−−−−−−→ o : ob(δ, v := c; s)

no-query : msg o← o′.(u, c)
o : ob(δ, s)

o�o′.(u,c)−−−−−−−→ o : ob(δ, s)
if get u 6∈ s

Figure 8.13: Operational rules defining small-step semantics with policies.

126

Operational semantics

binary multiset union constructor). Each rule in the operational semantics
deals with only one object o, and possibly messages, reflecting the nature of
concurrent distributed active objects, communicating asynchronously. Remote
calls and replies are handled by message passing. When a subconfiguration
C can be rewritten to a C′, this means that the whole configuration . . . C . . .
can be rewritten to . . . C′ . . ., reflecting interleaving semantics. Each object
o is responsible for executing all method calls to o as well as self-calls. An
object has at most one active process, reflecting the remaining part of a method
execution. For our programming language we need not consider futures or
suspended processes, but such mechanisms can be added in a straight forward
manner since they do not pose additional privacy challenges. In order to handle
method returns, our semantics creates an identity for each call (like a local future)
passed as an implicit parameter, and inserts get statements referring to the call
identity. (see Figure 8.12). By lifting these call labels and get statements to the
language syntax, we would obtain support for object-local futures, as described
in [65].

Objects have the form
o : ob(δ, s)

where o is the object identity, δ is the current object state, and s is a sequence of
statements ending with a return, representing the remaining part of the active
process, or idle when there is no active process. A message has the form

msg o→ o′.m(e)

representing a call to m with o as caller, o′ callee, and e actual parameters, or

msg o← o′.(u, d)

representing a completion event where d is the returned value and u the identity
of the call. In addition, msg o → I.m(e) denotes a broadcast to all objects
supporting interface I.

The operational rules reflect small-step semantics. For instance, the rule for
skip is given by

o : ob(δ, skip; s) empty−−−−→ o : ob(δ, s)
saying that the execution of skip has no effect on the state δ of the object.

The semantics in Figure 9.9 formalizes the notion of idleness, and generation
of objects and messages, including a rule (no-query) for disposal of unused reply
messages. Generation of identities for objects and method calls is handled by
underlying semantic functions and implicit attributes.

The operational semantics uses some additional variables, like pcs (“program
counter stack”) for remembering the stack of policies corresponding to the nesting
of if/while statements, and nextId for generating unique identities for calls. These
appear as fields in the operational semantics (nextId initialized with some value
and with a next function to generate new unique values). Furthermore, this is
handled as an implicit class parameter, while callId and caller appear as implicit
method parameters, holding the identity of a call and its caller, respectively.

127

Static checking of GDPR-related privacy compliance for OODS

The operational semantics uses an additional query statement, get u, for dealing
with the termination of call statements. A synchronous call is treated as an
asynchronous call followed by a get query. The query get u is blocking while
waiting for the method response with identity u. The added constructs are shown
in Figure 8.12. We let a denote an object expression, b a Boolean expression, o
an object identity, u a method call identity, d a value (a data value or an object
identity), and c a value tagged with a policy.

The state of an object is given by a twin mapping, written (α|β), where
α is the state of the field variables w (including nextId) and class parameters
cp (including this), and β is the state of the local variables x and formal
parameters y (including callId and caller) of the current process. Look-up
in a twin mapping, (α|β)[z], is simply given by (α + β)[z]. The notation
α[z := e] abbreviates α[z 7→ α[e]], and the notation (α|β)[v := e] abbreviates
if v in β then (α |β[v 7→ (α|β)[e]]) else (α[v 7→ (α|β)[e]] |β), where in is used
for testing domain membership.

Method invocation is captured by the rules async call/sync. call. The
generated call identity is locally unique, and globally unique in combination with
the parent object. The call identity generated by this rule is passed through an
invocation message, which is to be consumed by the callee object by the Rule
start. When an object has no active process, denoted idle, a method call can
be selected for execution by rule start. The invocation message is removed
from the configuration by this rule, and the identity of the call is assigned to
the implicit parameter callId. With Rule return, a return value is generated
upon method termination and passed in a completion message together with
the call identity stored in callId. The return value is then fetched by Rule
query. Note that a query statement blocks until the corresponding return value
is generated by Rule return, whereas asynchronous calls do not block. The
query rule says that v := get u, in object o is replaced by the assignment v := d
when the completion msg o← o′.(u, d) appears, and the completion message is
removed from the configuration. If object o does not contain get u then the
completion message is removed without any effect on o. This happens when
the corresponding call was an asynchronous call, which is similar to one-way
message passing. In Rule start, we assume that m is bound to a method with
local state β (including default values) and code s. Note that bindings for the
parameters y and the implicit parameter nextId are added to the local state.

Object creation is captured by the rule new. The generated object identity
is based on a non-deterministically generated reference (reflecting factors outside
the program). Note that an object reference encodes the class name, which
makes the rules more compact. Here initC denotes the initialization statements
(the class constructor) of class C, and δC denotes the initial state of class C with
default or initial values for the fields. The binding of class parameters and this is
added explicitly in the rule. We obtain an active object by letting initC initiate
internal activity, using asynchronous self calls to allow the object to interleave
continued internal activity with reaction to external calls. The initialization
statements of a program (given by the class constructor of an instantiation of
the last class in the program) will typically create the other initial objects.

128

Operational semantics

The semantics of an if-statement without an else-part, if b then s fi, is
usually equivalent to if b then s else skip fi. However, this is not the case with
respect to policy tags. For instance, the policy after x := false; if b then x :=
true fi is not the same as after if b then x := true else x := false fi when
b is sensitive, because in the latter case the policy of x is not changed when
the else branch is taken, while it is changed in the former case. A solution to
this is discussed at the end of the next section (on related work). A while loop
is handled by expanding while b do s od to if b then s; while b do s od fi
upon execution of the while-statement. Void methods return the value void.
We assume all methods end in a return statement, including class constructors,
which end in return void (although omitted in the examples). We assume that
assignments of the form w :+ e are represented by w := w + e at runtime, and
that initial values given to fields or local variables is expanded to assignments,
as described earlier. A rule for broadcasting is omitted; however, the semantics
is similar to that of asynchronous calls.

The given language fragment may be extended with constructs for local
(stack-based) method calls, e.g., by using the approach of [DSOS] and it may
be extended with cooperative scheduling and synchronization control as in [61].

8.7.1 Runtime policies

We explain here the privacy aspects of the operational semantics. We assume
that the program has passed the policy typing, and therefore the operational
semantics does not include a duplication of the static policy requirements during
reduction. We then prove that any policy level obtained at runtime guarantees
the one calculated by the static policy typing. This property, called policy
soundness, is stated by Theorem 2. It guarantees that the policy checks will be
satisfied at runtime when based on the runtime policy levels. We also prove a
progress property.

As mentioned, the semantics uses an additional variable pcs in each method,
reflecting the stack of context policy levels of enclosing if- and while-branches.
The top of the pcs stack reflects the policy of the innermost branch. At an entry
to an if/while statement, pcs is pushed with the policy set of the test expression,
and pcs is popped upon exit. Note that pcs can be local since it must be empty
upon method return. The relationship between pcs and pc as used in the static
checking, is given as part of Theorem 2.

At runtime the evaluation of an expression e gives a policy tag l, in addition
to a (normal) value d. We let the tagged value dl denote this result, and let
c denote tagged values, and let dl.tag be l. When such a value is assigned to
a program variable v, the binding v 7→ dl is added to the state. The state of
an object is given by a twin-mapping as above, but the values of variables are
now bound to tagged values. Thus the values appearing in the semantics are all
tagged. Each object identity has the form of a pair (oid, C) where C is the class
of the object and oid a unique identity relative to C.

The evaluation of an expression e in a state δ and with policy context pcs is
denoted δ[e], where the data value d is evaluated ignoring tags, resulting in a

129

Static checking of GDPR-related privacy compliance for OODS

ground term, i.e., a term with only constructor functions, and where the tag is
defined by

level(δ[pcs]) u tag(d)

where level(δ[pcs]) is the meet of all the policies in the stack pcs, and where the
tag of d is evaluated according to the policies of the constructor functions in d,
letting type constructors of non-sensitive types give a {•} policy.

The runtime policy level of a variable v in an execution state can differ from
that of the static level in the corresponding program point. There are several
reasons for this. For instance, there can be many calls to the same method
with actual parameters of different policy levels. The runtime system uses the
policies of actual parameters whereas the static analysis uses that of the formal
parameters. At the start of a method, the static analysis will assume the declared
policy levels for fields, whereas at actual runtime levels might differ. This is
clarified below.

8.7.2 Theoretical results

In order to keep the operational rules simple, we have assumed that programs
are well typed and have passed the static policy checks. Still it is not obvious
that a statically correct program cannot go wrong, if for instance the statically
derived policies are not respected at runtime. We therefore show results reflecting
soundness and progress.

We observe that each state of an object of class C in an execution corresponds
to a (static) program state in class C, and that each expression (other than
future-related variables) evaluated at runtime corresponds to an occurrence
of an expression in the program text. To formalize this correspondence we
associate a statement number with each statement in the code, and when a
statement s is executed we may obtain the statement number by the syntax #s.
When an object is about to execute a statement s appearing in the program
code, the corresponding program state is given by the static environment just
before that statement, denoted Γ#s. The number also identifies the enclosing
method and class. Since the last statement of a then-branch has the same next
statement as the last statement of the else-branch we cannot distinguish these
in the correspondence. We need a way to solve this, for instance by letting the
execution of a method record the trace of program statements executed as a list
of statement numbers. This gives sufficient information to see which branch is
taken, but not to determine if the corresponding program state is before or after
the end of the if-statement. However, this can be determined by the presence
of the pop-statement: After pop the corresponding state is the one after the
if-statement, and before pop the corresponding state is the last state of the
branch as given by the trace. For a given state o : ob(δ, s), we may therefore
talk about the unique corresponding program state and its environment Γ. (Even
runtime states starting with a get-statement correspond to program states, since
the values of all program variables are the same as before the start of the call.)

130

Operational semantics

Furthermore, we observe that the policies at runtime may differ from those
at compile time, for instance in connection with parameter passing since the
runtime policies are driven by the actual parameters while the static ones are
driven by the declaration of the formal parameters. In general, the static rules
use meet operations corresponding to worst-case analysis, while the runtime
rules give the actual policy.

We first prove a soundness result saying that the runtime value of a variable
or expression will have a policy that guarantees the one calculated statically
according to Γ in the corresponding state: The run time value of a variable will
have a policy that guarantees the one in the corresponding Γ. This also holds
for expressions. For the special variable pc, there is a similar correspondence
with pcs.

Theorem 2 (Soundness). Consider a given state o : ob(δ, s) of an object o, and
let Γ be the policy environment of the corresponding program state (as defined
above) in method m of a class C. We have

(C,m ` [Γ] v :: P)⇒ (δ[v].tag =⇒ P) (8.1)

(C,m ` [Γ] e :: P)⇒ (δ[e].tag =⇒ P) (8.2)

level(δ[pcs]) =⇒ Γ[pc] (8.3)

where v is a program variable and e is an expression over program variables.

Proof. We first prove that property (2) follows from (1) and (3), and then prove
property (1) and (3) by course-of-values induction on the derivation of executions
as given by the operational rules and by induction on the derivation of the static
compliance. We consider an arbitrary object o, which have state o : ob(δ, s)
with m of class C as the enclosing method and with Γ as the environment of
the corresponding program state. Note that the derivation of static policies
is terminating and deterministic. Each program state is assigned a unique
environment Γ defining the static policies in the state. We let Γ[e] denote the
unique policy set P such that C,m ` [Γ] e :: P.

Consider expressions e (other than variables), and assume (1) and (3) in
a (runtime) state δ corresponding to a static program state with environment
Γ. We prove that δ[e].tag =⇒ Γ[e]. This is trivial when δ[e].tag is {•} since
{•} =⇒ P for any P . It remains to prove that Γ[e] v δ[e].tag holds when δ[e].tag
is not {•}. The static policy of a functional expression f(e) of type T is given
by PT u Γ[pc]. The runtime policy is based on the result of the evaluation. A
functional expression f(e) when evaluated gives a value d of type T ′ for T ′ ≤ T
with policy level(δ[pcs]) u tag(d). It suffices that tag(d) =⇒ PT . For T ′ ≤ T we
have PT ′ =⇒ PT .

Consider next property (3), level(δ[pcs]) =⇒ Γ[pc]. The pc and pcs variables
are only changed at the entry and exit of if- and while-statements. The condition
trivially holds over other statements. To simplify the connection between pc
and pcs, we could add a local variable pcs in the static policy type rules. We
then let the starting environment of each branch in an if- or while-statement

131

Static checking of GDPR-related privacy compliance for OODS

modify pcs by Γ[pcs := push(pcs,P)] where P is the policy of the test, and let
the final environment update pcs by Γ[pcs := pop(pcs)]. We may prove that
Γ[pc] = level(Γ[pcs]) by induction over the policy rules. Instead of property (3),
it then suffices to prove the property

level(δ[pcs]) =⇒ level(Γ[pcs]) (8.4)

The induction hypothesis IH is now the conjunction of (1), (2), and (4). Below
we will look at proof cases of the form IH ⇒ IH ′ where IH ′ is IH with δ and
Γ replaced by the state and environment after executing an arbitrary program
statement.

Before entry to an if-statement with test b, we assume IH and must prove

level(δ[pcs 7→ push(δ[pcs], l)][pcs]) =⇒ level(Γ[pcs 7→ push(Γ[pcs],P)][pcs])

where l is δ[b].tag and P is given by C,m ` [Γ] b :: P. This reduces to

level(δ[pcs]) u l =⇒ level(Γ[pcs]) u P

which follows from (2) and (4) of IH and monotonicity of u with respect to =⇒,
i.e., (X =⇒ X ′ ∧ Y =⇒ Y ′)⇒ (X u Y =⇒ X ′ u Y ′), which is obvious.

Before exit of an if-statement we have the induction hypothesis at the end of
the chosen branch, and we need to prove

level(δ[pcs 7→ pop(δ[pcs])][pcs]) =⇒ level((Γ1 u Γ2)[pcs 7→ pop(Γ[pcs])][pcs])

where Γ1 and Γ2 are the respective environments at the end of the two branches.
This reduces to

level(pop(δ[pcs])) =⇒ level(pop((Γ1 u Γ2)[pcs]))

which is trivial if pop(Γ1[pcs]) is the same as pop(Γ2[pcs]), which can easily be
proved by induction over the derivations of the type and effect system. The
situation for while-loops is similar.

Finally we consider variables: We observe that Γ is only modified by
assignment-like statements (to fields and local variables), if- and while-state-
ments, and method start, and program variables in δ are only updated by
assignment-like statements and method start. We consider below assignments,
if-statements, and method start. Assume IH . For an assignment x := e we need
to prove that

C,m ` [Γ[x 7→ Pe]] v :: P ⇒ δ[x 7→ δ[e]][v].tag =⇒ P

where C,m ` [Γ] e :: Pe. For variables other than x this reduces to IH . For x
we need to prove:

δ[e].tag =⇒ Pe
which holds by the second conjunct of IH . Consider next the end of an if-
statement. Let IH hold at the end of the chosen branch. We need to prove

C,m ` [Γ u Γ′] v :: P ⇒ δ[v].tag =⇒ P

132

Operational semantics

where Γ′ is the environment at the end of the branch not chosen. This reduces
to

δ[v].tag =⇒ (Γ u Γ′)[v] u (Γ u Γ′)[pc]
which is trivial since Γ[v] =⇒ (Γ u Γ′)[v]. At method start, i.e., when o has the
form o : ob(δ, idle), we need to prove for the case of a field w

δ[w].tag =⇒ PW

where W is the type of field w (PW is the same as ΓC [w]) and δ is the state
resulting from the previous method execution, or the initial value of w. (The
operational semantics ensures that a method start must follow a method end, or
start from initial values, because the former creates an idle state and the latter
represents the only way to continue from an idle state.) From IH we know that
δ[w].tag =⇒ Γ[w] where Γ is the environment of the previous method execution.
From the premise of the P-method we have that Γ[w] =⇒ PW . By transitivity
of =⇒ the rest follows. (The case of initial values is straight forward since the
operation semantics and static analysis use the same expressions for the initial
values.)

The situation for method parameters y is similar. At the start of a method
execution (Rule start), the runtime policies of the method parameters y is given
by the tags of the actual parameters, which by IH must guarantee the static
policies of the parameters, which by Rule P-call must guarantee the policies
of the formal parameter types Y , which are fixed fora method m of class C,
Altogether we have that runtime polices guarantee that static ones at method
start.

Consider a query statement where c is the value received by the caller. In
the runtime system this value is the same as the one returned by the callee,
and the policy of the returned value at runtime must guarantee the static one
by IH , and the static policy of the returned value guarantees the policy of the
method’s return type (say T) by Rule P-method. Thus the runtime policy of c
guarantees PT . On the caller side, the policy of the received result is that of c
and in the static system it is the type of the method result, i.e., PT . We have
therefore proved (1) for queries. New statements are similar. Asynchronous calls
are simpler since no program variable is changed. �

The above result does not have so much value if the runtime system allows
programs that do not progress when they are supposed to do so, i.e., if no
rule applies in a state where execution should continue. We therefore prove a
progress property of the operational semantics saying that the execution of each
object in a program will continue, unless the object is idle and there are no
incoming messages reflecting method calls, or the object is blocked, i.e., trying
to perform a get statement when the corresponding reply message has not
appeared. Moreover, no errors are generated apart from undefined expressions.

Theorem 3 (Progress). Assume that the evaluation of program expressions is
terminating normally with a defined value. If a configuration C rewrites to
C′ by the operation rules and C′ cannot be reduced further, then each object

133

Static checking of GDPR-related privacy compliance for OODS

o : ob(δ, s) ∈ C′ is idle (s is idle) and there is no invocation message
msg o′ → o.m(...) ∈ C′, or o is blocked (s starts with get u) and there is
no message msg o← o′.(u, c) ∈ C′.

Proof. We show that for each statement one rule will apply as long as the
conditions stated in the theorem do not hold. There is one unconditional rule
for each statement, except if, which has two complementary rules, one for each
case of the value of the if-test. No rules depend on a context condition, except
the rules start and query, which require the presence of an appropriate message,
but these are exactly the acceptable conditions stated in the theorem. Consider
next the well-definedness of expressions over variables added in the operation
semantics (pcs, nextFut, myfuture). The pop operations on pcs will terminate
normally since each pop is preceded by a push. Each return statement must be
preceded by a start statement, therefore myfuture will have a value. The special
variable nextFut always has a value. �

In particular, there will be no errors or exceptions, apart from undefined
values resulting from evaluation of expressions. A call to a null object is possible,
and this could lead to blocking of the caller object, if there is a get-statement
for the call. Method-not-understood errors is captured by the underlying type
checking [62].

8.8 Related work

The focus of this paper is the intersection of the GDPR, privacy policy
formalization, and programming languages. This intersection is relatively recent
and features several threads of active research such as policy specification, policy
enforcement, monitoring, privacy by design, language based privacy, privacy
enhancing technology.

Several attempts have been made to express privacy polices, through a
language with formal syntax and semantics such as XACML [105], EPAL [6],
APPEL [75], and XPref [2]. An analysis of these policy languages can also
be found in [10, 68]. Privacy restrictions are also expressed formally using
ontologies [15] or dedicated logics such as [9, 12, 18]. However, a direct comparison
of these policy languages and logics with our policy language is not straight
forward, mainly because we focus on policy aspects that can be verified statically
and can only express limited aspect of a policy, while these policy languages can
express a wider range of privacy restriction. In contrast to the mentioned policy
languages, we focus on static checking and in particular check compliance of
program, by class-wise analysis.

Access control models, such as discretionary access control (DAC) [69] and
role based access control (RBAC) [98], have been historically utilized in order to
support security requirements [32]. In RBAC, permissions (to perform operations)
are associated with a role or set of roles [98]. Thus there are common features
in our work and RBAC. In addition to the hierarchies of roles and access rights
supported by RBAC, our framework introduces hierarchies of purposes to control

134

Related work

role access. However, our work uses static analysis while RBAC uses runtime
analysis. In a literature review [42], by Fernández-Alemán et al. identifies
the access control models deployed by electronic health records (EHR), where
35 of 45 reviewed articles used access control methods. Interestingly, 27 of
those 35 specifically used RBAC. However, these conventional access models
are not designed to enforce privacy policies [45], due to lack of several privacy
protection requirements (e.g. purpose). In order to express purpose (and other
privacy-related aspects), the RBAC model is extended, as in [76, 82, 121].

Privacy by Design (PbD) has been discussed and promoted from several
viewpoints such as formal approaches [71, 100, 112], privacy engineering [30, 49,
86], privacy-enhancing technologies (PET) [44, 52], and privacy design patterns
[26, 59]. Tschantz and Wing, and Daniel Métayer, discuss the significance of
formal methods for foundational formalizations of privacy related aspects [71,
112]. In [112], Tschantz and Wing point out the usefulness of mathematical
formulations of privacy notions for the purpose of guiding the development of
privacy preserving technologies and making it easier to spot privacy violations.
In [100], Schneider discusses the main ideas of Privacy by Design and summarizes
key challenges (purpose, right to be forgotten, consent, and compliance) in
achieving privacy-by-construction and probable means to handle these challenges.
Our work addresses the challenges concerning purpose and (at least partially)
compliance “by construction”. Hoepman, in [59] derives and defines eight privacy
design strategies, from existing privacy principles and data protection laws.
The engineering aspects of privacy by design is addressed, but there is a lack
on how to apply them in practice. In our work, we adhere to several privacy
design strategies such as separating and hiding the data and encapsulation in an
object-oriented context.

Hayati and Abadi [53] describe a language-based approach based on
information-flow control, to model and verify aspects of privacy policies in
the Jif (Java Information Flow) programming language. In this approach data
collected for a specific purpose is annotated with Jif principals and then the
methods needed for a specific purpose are also annotated with Jif principals.
Explicitly declaring purposes for data and methods ensures that the labeled
data will be used only by the methods with connected purposes. Purposes are
organized in a purpose hierarchy, where sub-purposes can be declared using the
(Jif specific) acts-for relation. However, this representation of purpose is not
sufficient to guarantee that principals will perform actions compliant with the
declared purpose. In contrast, this can be checked statically in our approach,
because principals are restricted by purposes.

Basin et al. [11] propose an approach that relates a purpose with a business
process and use formal models of inter-process communication to demonstrate
GDPR compliance. Process collection is modeled as data-flow graphs which
depict the data collected and the data used by the processes. Then these processes
are associated with a data purpose and are used to algorithmically generate
data purpose statements (i.e., specifying which data is used for which purpose)
and detect violation of data minimization. Since in GDPR, end-users should
know the necessary purpose of data collection, some works such as [11] propose

135

Static checking of GDPR-related privacy compliance for OODS

to audit logs and detect if a system supports a purpose. In a continuation of
this work, in [4] Arfelt et al., show how such an audit can be automated by
monitoring. Automatic audits and monitoring can be applied to a system like
ours as a complementary step to verify how it complies with the GDPR. Besides,
our work is more focused on integrating such legal instruments during the design
phase, using formal language semantics.

Anthonysamy et al. [3] demonstrate a semantic-mapping approach to infer
function specifications from semantics of natural language. This technique is
useful in compliance verification as it aids in identification of program constructs
that implements certain policies. The authors implement this technique in a tool,
CASTOR, which takes policy statements (in natural language) and source code
as input and outputs a set of semantic mappings between policies and function
specifications (function name, associated class, parameters etc.). In [102], Sen et
al. develop and demonstrate techniques for policy compliance checking in big data
systems. Privacy policies, are specified using a policy language LEGALEASE,
and restrict the information-flow based on store (data store), purpose, role, and
other considerations. And then GROK (data inventory tool) maps code-level
schema elements to data types in LEGALEASE. Compliance checking then
reduces to information flow analysis.

In [1], Adams and Schupp consider black-box objects that communicate
through messages. The approach is centered around algorithms that take as
input an architecture and a set of privacy constraints, and output an extension
of the original architecture that satisfies the privacy constraints. This work
is complementary to ours in that it puts restrictions on the run-time message
handling. In contrast to our work, the approach does not concern analysis of
program code. In [43], Ferrara and Spoto discuss the role of static analysis
for GDPR compliance. The authors suggest combining taint analyses and
backward slicing algorithms to generate reports relevant for the various actors
(i.e., data protection officers, chief information officers, project managers, and
developers) involved at various stages of GDPR compliance. In particular, taint
analysis is performed on each program statement and then the data-flow of
sensitive information is reconstructed using backward-slicing. These flows are
then abstracted into the information needed by the compliance actors.

Dynamic flow sensitivity [54] also applies to privacy, as pointed out by
Schneider in [100]. A branching statement with sensitive information in the test,
may indirectly leak privacy information if a variable changed in one branch is
not changed in the other branch. This is not a problem in the static analysis,
since after a branching construct the information of all branches are combined.
But it is a problem in the operational semantics, since there you only see the
chosen branch. To avoid this problem in our operational semantics, we take the
following approach: For an if-statement with sensitive information in the test,
we add trivial assignments v := v to ensure that the variables changed in one
branch also are changed in the other branch. Such an assignment will upgrade
the privacy policy of v with level(pcs), which prevents branching-related privacy
leakage. (While-statements can be handled similarly.)

136

Conclusion

8.9 Conclusion

In this paper we started by investigating challenges and opportunities with
the GDPR from a language-based perspective. Specifically we focused on
the data protection by design principle, embedding privacy requirements into a
programming language, and discussed the relevance for the OODS setting where
all interaction between objects is made through interfaces, so-called interface
abstraction.

We defined a specification language for formulating privacy policies, and
discussed static and runtime privacy polices, and formalized a concept of static
privacy policies as well as the notion of policy compliance. We chose three
primary constituents of a privacy policy, namely principal, purpose, and access
right. Such policies are meaningful at compile time, but cover only a subset of the
GDPR aspects. We show how privacy policies can be declared for methods and
data types, restricting the usage of sensitive data. The policy specification
language can be added to any programming object-oriented programming
language supporting interface abstraction.

We have formulated rules for privacy policy compliance, and these rules are
given by an extended type and effect system for a high-level imperative language
supporting active objects, extended with privacy policy specifications. The
problem of checking a program’s compliance reduces to efficient type-checking.
If the program satisfies the checks, then there is no violation of the stated
privacy policies. Implication in the other direction is not guaranteed, due to
over-approximation in the static analysis. However, the case study demonstrates
that the static analysis covers realistic scenarios.

We distinguish between read, write, and incr access rights. For a given
principal and purpose, incr allows addition of personal information but without
read access to existing personal information, whereas the combination of read
and incr (rincr) allows both. These different access rights proved practically
valuable in the case study related to healthcare, allowing us to differentiate
the roles of a nurse (read), doctor (rincr), and lab assistant (incr). We have
briefly discussed how to improve the analysis so that a data subject has access
to personal data about herself, adding self as an additional access right.

The combination of method and data type policies allows class-wise static
checking. It also encourages reuse of policy specifications and makes it possible
to detect too strong or too weak policies by means of the static analysis (as
discussed at the end of Section 8.3). A challenge of object-oriented programming
is that not all classes represent principal actors, and will therefore not be a
natural part of policies on data types. We compensate this by a notion of transfer
of principle rights from caller to callee.

Furthermore, we have defined an operational semantics with policy tags on
sensitive data, and proved soundness of the static compliance analysis with
respect to the operational semantics. Finally, we have shown a progress property.
In the future we would like to work out a larger case study, and in particular
focus on the dynamic policy management and consent as outlined here and
in [106].

137

Static checking of GDPR-related privacy compliance for OODS

Acknowledgements. We thank the anonymous reviewers for their comments
and feedback, which helped us to improve the manuscript.

This work was partially supported by the project IoTSec - Security in IoT
for Smart Grids, with number 248113/O70 part of the IKTPLUSS program
funded by the Norwegian Research Council, and by the project SCOTT
(www.scott- project.eu) funded by the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 737422.

Authors’ addresses

Shukun Tokas University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
shukunt@uio.no

Olaf Owe University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
olaf@uio.no

Toktam Ramezanifarkhani University of Oslo, Postboks 1337 Blindern, 0316
Oslo, Norway, toktamr@uio.no

138

mailto:shukunt@uio.no
mailto:olaf@uio.no
mailto:toktamr@uio.no

Chapter 9

A formal framework for consent
management

Shukun Tokas, Olaf Owe
Published in Proceedings of the 40th International Conference on Formal
Techniques for Distributed Objects, Components, and Systems, FORTE 2020,
June 2020, pp. 169–186. DOI: 10.1007/978-3-030-50086-310.

IV

Abstract

The aim of this work is to design a formal framework for consent
management in line with EU’s General Data Protection Regulation
(GDPR). To make a general solution, we consider a high-level modeling
language for distributed service-oriented systems, building on the paradigm
of active objects. Our framework provides a general solution for data
subjects to observe and change their privacy settings and to be informed
about all personal data stored about them. The solution consists of a set
of predefined types for privacy related concepts, a formalization of policy
compliance, a set of interfaces that forms the basis of interaction with
external users for consent management, a set of classes that is used in
interaction with the runtime system, and a runtime system enforcing the
consented policies.

9.1 Introduction

In response to the emerging privacy concerns, the European Union (EU) has
approved the General Data Protection Regulation (GDPR) [41] to strengthen and
impose data protection rules across the EU. This regulation requires controllers
that process personal data of individuals within EU and EEA, to process personal
information in a “lawful, fair, and transparent manner”. Article 6 and Article 9
of the regulation [41] provide the criteria for lawful processing, such as consent,
fulfillment of contractual obligation, compliance with a legal obligation etc. The
regulation (including several other data protection laws) recognises consent as
one of the lawful principles for legitimate processing, and Article 7 sets out the
conditions for the processing personal data when relying on consent.

The authors were partially supported by IoT-Sec (NRC) (https://its-wiki.no/wiki/IoTSec:
Home) and SCOTT (EU)(www.scott-project.eu).

139

https://doi.org/10.1007/978-3-030-50086-3_10
https://its-wiki.no/wiki/IoTSec:Home
https://its-wiki.no/wiki/IoTSec:Home
www.scott-project.eu

9. A formal framework for consent management

A data subject’s consent reflects his/her agreements in terms of the processing
of personal data. The regulation indicates that the consent must specifically be
given for the particular purpose of processing. It is also indicated in Recital 43
that the data subject should be given a free choice to accept or deny consent
for specific purposes, rather than having one consent for several purposes. In
particular our focus is on processing of personal data when consent is the legal
ground, i.e., processing is valid only if a data subject has given consent for
the specific purpose, otherwise processing of the personal data should cease.
Moreover, this can be extended to incorporate other applicable legal grounds,
such as vital interest, legitimate interest etc, but a discussion on this will be out
of scope of this work.

Furthermore, Article 15 of the regulation prescribes that the data subject
has Right of Access, which requires the data controllers to provide the data
subject with his/her personal data, the purposes of processing, the legal basis for
doing so, and other relevant information (see Article 15[41]). WP29 recommends
controllers to introduce tools, such as a privacy dashboards through which the
data subject can be informed and engaged regarding the processing of their
personal data [5]. The regulation also introduces an obligation for data controllers
to demonstrate compliance, i.e., accountability (see Article 5(2) [41]). These
requirements are likely to pose substantial administrative burden. This work is
an attempt to design a pragmatic solution to address these requirements, using a
formal approach. In particular, our framework covers certain aspects of privacy
principles (Article 5), lawfulness of processing (Article 6), privacy by design
(Article 25) and data subject access request (Article 15). Due to the nature of
these requirements and space constraints, we cover these requirements partially.

The privacy requirements in the data protection regulations are defined
informally, therefore, to avoid ambiguity the policy language equipped with a
formal semantics is essential [71]. It is essential that the policy terminology
establishes a clear link between the law and the program artifacts. For this, we
let privacy policies and consent specifications be expressed in terms of several
predefined names, reflecting standard terminology (allowing names to be added
as needed). It is necessary that the policy terminology used towards the data
subject is simple but with a formal connection to the underlying programming
elements. We have previously studied static aspects of privacy policies and static
checking of policy compliance from a formal point of view, a brief overview is
given in [109].

The aim of this work is to design a formal framework for consent management
where a data subject can change his/her privacy settings through predefined
interfaces, which could be part of a library system. The data subjects are
seen as external system users without knowledge of the underlying program.
Data subjects may interact with the system at runtime through a user-friendly
interface (e.g. a privacy dashboard), to view current privacy settings and update
these settings. To make a general solution, we consider a high-level modeling
language for distributed service-oriented systems, building on the paradigm of
active objects [61, 85]. The method for protecting access to personal data in this
setting comprises of: tagging the data with (subject, purpose) pairs; associating

140

Language setting

A ::= no | read | incr | write | rincr | wincr | full access rights
RD ::= purpose R+ [where Rel [andRel] ∗] purpose declaration
Rel ::= R+ < R+ sub-purpose declaration
P ::= I | o principals
P ::= (P,R,A) policies
C ::= pos(P,R,A) | neg(P,R,A) consented policies
Q ::= C∗ policy list

Figure 9.1: BNF syntax definition of the policy language. I ranges over interface
names, R over purpose names, and P over principal names. A principal is
given by an object or an interface (representing all objects of that interface).
Superscripts ∗ and + denote general and non-empty repetition, respectively.

a purpose to each method accessing personal data; storing consented policies of
a subject in a subject object; deriving an effective policy for the access from the
executing method and data tags; and comparing the effective policy with the
current consented policies to determine if it is a valid operation.

The main contribution of this research is a framework that consists of: (i) a
policy specification language; (ii) a formalization of runtime policy compliance;
(iii) predefined interfaces and classes for consent management; (iv) a run-time
system for dynamic checking of privacy compliance, with built-in generation of
runtime privacy tags when new personal data is created. We prove a notion of
runtime compliance with respect to the consented policies.

Paper outline. The rest of the paper is structured as follows. Section 9.2
presents the policy and consent specification language, a formalization of policy
compliance, and the core language. Section 9.3 introduces the functionality for
consent management. Section 9.4 presents tag generation, dynamic checking and
an operational semantics. Section 9.5 discusses related work, and Section 9.6
concludes the paper and discusses future work.

9.2 Language setting

In order to formalize the management and processing of personal information,
we introduce basic notions for privacy policies and consent in Section 9.2.1, and
introduce a small language for interface and class definitions in Section 9.2.2.

9.2.1 Policy and consent specification

Privacy policies are often described in natural language statements. To verify
formally that the program satisfies the privacy specification, the desired notions
of privacy need to be expressed explicitly. To formalize such policies, we define a
policy specification language. In our setting, a privacy policy is a statement that
expresses permitted use of the personal information by the declared program

141

9. A formal framework for consent management

purpose treatm, health_care where treatm < health_care

policy PDoc = (Doctor, treatm, rincr) // general policy
consent pos(PDoc) = (Doctor, health_care, write) // general positive consent
consent neg(PMyDoc) = (Dr.Hansen, treatm, full) // specific negative consent

Figure 9.2: Sample purpose and policy definitions. Here Dr.Hansen is a
principal object.

entities. In particular, a policy is given by triples that put restrictions on what
principals can access the personal data for specific purposes and access-rights.
That being the case, a policy P is given by a triple (P,R,A), where:

i) P describes a principle that can access personal information and is given
by an object representing a principal, or by an interface (representing all objects
supporting that interface). Interfaces are organized in an open-ended inheritance
hierarchy, letting I < J denote that principal I is a subinterface of J and letting
o < I if object o supports I. We let ≤ denote the transitive and reflexive
extension of <. As an example,

Specialist < Doctor < HealthWorker

ii) The purpose name R describe the specific purpose for which personal data can
be used. Such purpose names are organized in an open-ended directed acyclic
graph, reflecting specialization. For instance, the declaration

purpose spl_treatm, treatm where spl_treatm < treatm

makes spl_treatm more specialized purpose than treatm. If data is collected
for the purpose of spl_treatm then it cannot be used for treatm. However, if it
is collected for the purpose of treatm then it can be used for spl_treatm. We
let ≤ denote the transitive and reflexive extension of <, and let the predefined
purpose all be the least specialized purpose.

iii) Access rights A describe the permitted operations on personal data, and
are given by a lattice, with full and no as top and bottom and with a partial
ordering vA: read gives read access, write gives write access (without including
read access), incr allows addition of new information but neither read nor write
is included. The join of read and incr is abbreviated rincr, the join of write and
incr is abbreviated wincr, while the join of read and write is full.

The language syntax for policies is summarized in Fig. 9.1, where [] is used
as meta-parenthesis, and superscripts ∗ and + denote general and non-empty
repetition, respectively. Sample policies are given in Fig. 9.2.

Definition 21 (Policy Compliance). Policy compliance, v, is defined by

(P ′, R′, A′) v (P,R,A) ≡ P ′ ≤ P ∧R′ ≤ R ∧A′ vA A

142

Language setting

Thus, a policy P ′ complies with P if it has the same or smaller interface, the
same or more specialized purpose, and the same or weaker access rights.

In order to deal with both addition and removal of policies, we organize the
policies in a list of negative and positive policies, such that the newest and most
significant policy is last in the list. A positive consent has the form pos(P),
where P is a policy triple, meaning that access to personal data requiring p
is allowed. A negative consent has the form neg(P), meaning that access to
personal data requiring p is forbidden. The disjoint union of these two forms is
captured by the type Consent. Consented policies are organized in a Consent
list. We define compliance of policies with respect to such a list L by:

P v ε = false
P v (L; pos(P ′)) = if P v P ′ then true else P v L
P v (L;neg(P ′)) = if P v P ′ then false else P v L

where _;_ denotes list append. Thus positive or negative policies later in the list
(capturing newer ones) override policies earlier in the list (capturing older ones)
with smaller policy triples. This gives a simple way to upgrade and downgrade
consent, and with a uniform treatment of negative as well as positive consent.

9.2.2 A high-level language for active objects

In the setting of active objects, the objects are autonomous and execute in
parallel, communicating by so-called asynchronous method invocations. Object-
local data structure is defined by data types. Classes are defined by an imperative
language while data types and associated functions are defined by a functional
language. We assume interface abstraction, i.e., remote field access is illegal and
an object can only be accessed though an interface. This allows us to focus on
major challenges of modern architectures, without the complications of low-level
language constructs related to the shared-variable concurrency model.

A strongly typed language for active objects based on [61] is given in Fig. 9.3.
The programs we consider are defined by a sequence of declarations of interfaces
(containing method declarations), classes (containing class parameters, fields,
methods and class constructors), and data type definitions. Class parameters are
like fields, but with read-only access. A subclass inherits class parameters, fields,
and methods (and the class constructor) unless redefined. A method m may
have a cointerface Co given by the with clause, with Co, restricting callers to
objects supporting interface Co (this is checked statically and allows type-correct
call backs). Each method dealing with personal data must have an associated
purpose, given at the end of the method definition (:: R), if any, otherwise
the one declared for the method in the interface, if any, or otherwise the one
declared for the interface. Methods may declare local variables and end with
a return statement. We include standard statements such as skip, assignment
(:=), object creation (new), if- and while-statements, and we allow blocking calls
(v := o.m(e)) where o is the callee and e is the list of actual parameters, and

143

9. A formal framework for consent management

Pr ::= [T | RD | In | Cl]∗ program
T ::= typeN [T] =<type_expression> type definition
T ::= Int | Any | Bool | String | Void | List[T] |I | N interfaces and types
In ::= interface I [extends I+] {D∗}[:: R] interface declaration
Cl ::= class C ([T z]∗) class definition

[implements I+] [extends C] support, inheritance
{[T w [= ini]]∗ [B [::R]] fields and constructor
[[with I] M]∗} methods

D ::= op T m([T y]∗) [:: R] method signature
M ::= op T m([T y]∗) [B] [:: R] method definition
B ::= {[T x [= rhs];]∗ [s] [; return rhs]} method blocks
v ::= w | x assignable variable
e ::= v | y | z | this | caller | void | f(e) | (e) pure expressions
ini ::= e | new C(e) initial value of field
rhs ::= ini | e.m(e) right-hand sides
s ::= skip | s; s | v := rhs | v :+ e | e!m(e) | I!m(e) assignment and call

| if e then s [else s] fi | while e do s od if and while

Figure 9.3: BNF syntax of the core language, extended with purpose specifications
(::R). A field is denoted w, a local variable x, a method parameter y, a class
parameter z , type names N , expressions e, and expression lists e. The brackets in
[T] and [T] are ground symbols. Function symbols f range over pre-/programmer-
defined functions/constructors with prefix/mixfix notation.

interface PrivacySettings {
with User

op PolicyList seeMyPolicies() // the current policy list is sent to the user
op Bool addPolicy(Policy p) // add a new policy (return false if redundant)
op Bool remPolicy(Policy p) } // remove a policy (return false if redundant)

Figure 9.4: Interface declarations for subject’s privacy settings

asynchronous calls o!m(e) and broadcasts I!m(e) to all objects of interface I.
The incremental update v :+ e extends a list v with one or more elements e.

We consider pure expressions, including products (e1, e2, . . .), lists, and
function applications f(e) where f may be a defined function or a constructor
function (including ";" for lists and constants such as nil, void, 0, 1, 2, etc.). A
value is a variable-free expression with only constructor functions, such as the
list nil; 1; 2; 3.

144

Consent management

interface Sensitive{
with Subject

op Void requestMySensitiveData() // a subject (the caller) requests to see
} // all personal data in the sensitive object about her

interface Subject extends PrivacySettings, Sensitive, Principal {
with Sensitive

op Void receiveMySensitiveData(List[TaggedData] tl)
with User

op Void collectMyData() //initiate collection of personal data about the subject
op List[TaggedData] seeMyData() // the received info is sent to subject user

} :: all

Figure 9.5: Interface declarations for sensitive objects and data subjects.

9.3 Consent management

The policy settings of each data subject may change dynamically during runtime
in interaction with the external users. In order to handle this, we define a runtime
system where personal data values are tagged with specification of data subjects
and processing purposes The runtime system will check that every access to
personal data complies with the consented policies. Since there could be a huge
amount of personal information in a distributed system, it is essential that the
information in the tags is minimized. Our framework includes a general solution
for subjects to observe and change their privacy settings. We chose to let the
information about the consented policies be stored separately from the tags. The
tags are generated by the runtime system as explained in detail in Section 9.4.1.
The consented policy may change dynamically, in contrast to the information
in the tags, which do not change. By combining the core information in the
tags with the dynamically changing consent information, we are able to keep the
information in the tags relatively small.

We let interface Principal correspond to a system user, be it a person, an
organization, or other identifiable actor. Interface PrivacySettings (Fig. 9.4)
defines methods for accessing and resetting consented policies by the data subject,
while the subinterface Subject (Fig. 9.5) defines methods for consent management
including functionality for requesting and updating policy settings. For each
data subject there is an associated object (i.e., the subject object) supporting
PrivacySettings and Subject, and this object is used to manage the privacy
settings and policies in interaction with an external user (for instance through an
app on a mobile phone). The subject object will contain the consented policies
and is used when personal data about the data subject is accessed, in order to
check compliance with the consented policies as explained in the operational
semantics. In addition, it is used to manage the collection of personal data from
sensitive objects. Thus the class SUBJECT, supporting interface Subject, deals

145

9. A formal framework for consent management

with handling of consented policies and collection of personal data.
The interface PrivacySettings specifies the interface for updating consent

(Fig. 9.4). It includes methods for adding and removing consent by the user such
that after successful addition/removal of a policy P, that policy (or a smaller)
allows/denies access to personal data. There is also functionality for an user to
check her current policy settings, through method seeMyPolicies, which returns
all policies of that user.

Class PRIVACYSETTINGS in Fig. 9.6 implements PrivacySettings by storing
the consented policies in a field variable consented, which is a Consent list (i.e.,
list of consented policies). The add operation addPolicy(P) adds pos(P) at
the end of the consented list (unless P v consented holds already), and the
remove operation remPolicy(P) adds neg(P) at the end of the list (unless
P v consented gives false, in which case it is redundant). The consent list of a
subject S can be initialized with some initial policies, including (S, all, rincr)
for self access.

One may also remove redundant consented policies in the list when new
ones are added, using the following strategy: A positive policy pos(P) occurring
in a list L is redundant in the list if P v L′ holds where L′ is the list with
this occurrence removed. Similarly, a negative policy neg(P) occurring in L is
redundant if P v L′ gives false. In these cases L can replaced by L′ in order to
simplify future compliance tests by limiting the size of the consented list.

9.3.1 Data collection from sensitive objects to data subjects

In order to restrict processing of personal information, we define an interface
Sensitive, which will be the superinterface of all objects handling personal data.
The interfaces Subject and Sensitive in Fig. 9.5 define the functionality for
collection of personal information for subjects and define consent management.
Class SUBJECT in Fig. 9.7 gives an implementation. A call to the method
collectMyData on a subject object from the corresponding user will start a
process to collect all personal information about the subject. The broadcast
Sensitive!requestMySensitiveData() sends a requestMySensitiveData message
to all objects implementing Sensitive. A sensitive object may receive a
requestMySensitiveData request from a subject object (caller) and will then
react by collecting the personal data tagged with the subject and send it back
to the subject object through the method receiveMySensitiveData. This data
is then collected incrementally and stored in a (tagged) list, mydata, which
can be accessed by the corresponding user using seeMyData or seeData. This
class may be used as superclass of objects supporting Subject. The method
requestMySensitiveData is provided by, and implemented in, the runtime system
as explained in Section 9.4.2.

Interface Subject has all as declared purpose, and all methods in the interface
and class inherit this purpose. The access to personal information in SUBJECT
complies with the general policy (S, all, rincr) for a subject object S.

146

Runtime system

class PRIVACYSETTINGS (User user) implements PrivacySettings {
List[Consent] consented; // the current privacy policies
with User

op PolicyList seeMyPolicies()
{return (if caller = user then consented else nil fi)}

op Bool addPolicy(Policy p) { // add a new policy (return false if redundant)
Bool ok := (caller = user); if ok then
if p v consented then ok := false
else consented :+ pos(p) fi fi; return ok } // incremental update

op Bool remPolicy(Policy p){ // add a negative policy (return false if redundant)
Bool ok := (caller=user); if ok then
if p v consented then consented :+ neg(p)// incremental update
else ok := false fi fi; return ok }

...}

Figure 9.6: The implementation of privacy settings and policy changes.

class SUBJECT implements Subject // thereby also PrivacySettings
extends PRIVACYSETTINGS {

List[TaggedData] mydata; // personal data collected about subject
op Void receiveMySensitiveData(List[TaggedData] tl){

mydata :+ tl } // could also include info of caller, i.e., mydata :+ (caller,d)
with User

op Void collectMyData(){
if caller = user then

mydata := nil; // clear list
Sensitive!requestMySensitiveData() fi } //broadcast to all sensitive objects

op List[TaggedData] seeMyData(){
return (if caller = user then mydata else nil fi)}

}

Figure 9.7: The implementation of Subject.

9.4 Runtime system

The operational semantics of the considered language is given in Fig. 9.9.
Data values are tagged with set of pairs of subject and purpose. A runtime
configuration of an active object system is captured by a multiset of objects and
messages (using blank-space as the binary multiset union constructor). Each
object o is responsible for executing all method calls to o as well as self-calls. An
object has at most one active process, reflecting the remaining part of a method
execution. Objects have the form

o : ob(δ, s)

147

9. A formal framework for consent management

Alice objA objB
(SensitiveInfo)

objA.m() objB.m()

Principal? XPrincipal? Y

Figure 9.8: Call chain. Here Alice is the principal of the method execution on
objB.

where o is the object identity, δ is the current object state, and s is a sequence of
statements ending with a return, representing the remaining part of the active
process, or idle when there is no active process. The state of an object δ is
given by a twin mapping from variable names to tagged values, written (α|β),
where α is the state of the field variables w and class parameters cp (including
this), and β is the state of the local variables x and formal parameters y of
the current process. Look-up in a twin mapping, (α|β)[v], is simply given by
if v in β then β[v] else α[v], where in is used for testing domain membership.
The notation α[v 7→ e] denotes map update, and the notation (α|β)[v := e]
abbreviates if v in β then (α |β[v 7→ (α|β)[e]]) else (α[v 7→ (α|β)[e]] |β).

In addition, the operational semantics defines the system variables pcs and
nextId, which appear in the state of each object (in α). The “program counter
stack” pcs is used for storing the stack of tags on the conditions corresponding
to the nesting of enclosing if/while statements, and nextId is used for generating
unique identities for calls.

Furthermore, the self reference this is handled as an implicit class parameter,
while callId and caller appear as implicit method parameters, holding the identity
of a call and its caller, respectively.

Example. Consider some personal health data with the tag {(Alice, treatm)},
and assume the consented policies (. . . ; pos(Doctor, treatm, full)) in object
Alice. A Doctor can then read the data since there is a matching positive
policy with at least read access where Doctor is the principal and the purpose
of the current method is treatm or less. However, for the consented list
(. . . ; pos(Doctor, treatm, full);neg(Bob, treatm, read)), where Bob is a doctor
object, read access will be denied due to the presence of negative policy.

9.4.1 Runtime tagging of values

The runtime checking uses two special notions: The current purpose, denoted
Rcurrent, is the purpose of the enclosing method, which we assume is statically
specified, as in [109]. (Alternatively one could take the purpose defined in some
other way, for instance by data-flow graphs as in [11].) Secondly, we define
the current principal, denoted Pcurrent, as the first principal object found by
following the dynamic call chain from a method execution as illustrated in
Fig. 9.8 (ignoring non-principals such as objA).

148

Runtime system

The runtime evaluation of an expression e gives a tagged value c of form dl
with a tag l. In a method execution the evaluation of an expression e in a state
δ and with policy context pcs is denoted ∆[e], where the data value is evaluated
(as explained in the next subsection) ignoring tags, resulting in a ground term,
i.e., a term d with only constructor functions (g), and where the tag is given by
the tag function defined below: For tagged data values, the tag function is given
by tag(dl) = l, and for untagged values it is given by:

tag() = flatten(δ[pcs])
tag(g(S)) = {(S,Rcurrent)}∪ tag()
tag(g(c)) = tag(c), otherwise

tag(dl, c) = l ∪ tag(c)
tag(S, c) = {(S,Rcurrent)} ∪ tag(c)
tag(d, c) = tag(d) ∪ tag(c), otherwise

Note that the tag includes flatten(δ[pcs]), defined as the union of all tags in the
stack pcs. An untagged product (..., S, ...) will also include the tag (S,Rcurrent).
A pair (S, S′) will be tagged with {(S,Rcurrent), (S′, Rcurrent), f latten(δ[pcs])}.
An untagged constructor value g(S, c) is tagged like the product (S, c). When
a subject S occurs as an argument to a constructor term or product, the pair
(S,Rcurrent) is added to the tag set. Note that g(S), (S, S′), (S, c), and (c, S)
include (S,Rcurrent) in the tag set, but S and (S) do not, as a product must
have at least two arguments. A tag (S,R) is redundant in a tag set l, and may
be removed, if there is another tag (S,R′) in l such that R < R′. Non-personal
data will have an empty tag set. Policies are considered non-personal.

9.4.2 Runtime checking of privacy compliance

The runtime system keeps track of the current consented policy list for each
subject, specifying the policies for accessing personal data concerning the subject.
In the runtime system there is a mapping from subjects to policy lists

M : Subject→ PolicyList

given by M[S] == S.consented where each consented is maintained by the
runtime system. Note that even though remote field access is not possible within
the program syntax, this restriction does not apply to the runtime system.

The evaluation of expressions, ∆[e], is done depth-first, left-to-right. Thus
∆[f(e)] is [f(∆e]), ∆[if b then e else e′] is ∆[e] if ∆[b] is true and ∆[e′] if
∆[b] is false, and for a value c, ∆[c] is c. (Here b is a boolean expression.) For
a defined function f , ∆[f(c)] is obtained by the definition of f replacing the
formal parameters by the actual values c. We let the evaluation of a variable v
have a built-in compliance check of read access:

[v] = δ[v], if ∀(S,R)∈ tag(δ[v]) . (Pcurrent, R, read) vM[S]
[v] = error, otherwise

In the first line, the tag is defined by the tag function in Section 9.4.1. A policy
(S, all, rincr) is initially added to the consented list of each subject object S, to
allow the data subject to read and increment his/her own data.

149

9. A formal framework for consent management

For write access, we define a modified state update function ∆[v := c] so that
it includes the appropriate checks for assignments, and similarly for incremental
assignments. Note that there is no check on local variables since they form the
local work space, i.e., a method has always write access to the local variables.

[x := c] = δ[x := c],
[w := c] = δ[w := c], if ∀(S,R)∈ tag(c) . (Pcurrent, R,write) vM[S]
[w := c] = δ[w := error], otherwise

This definition is lifted to expressions e, letting [x := e] denote [x := ∆[e]].
Similarly, ∆[v : + c] requires (Pcurrent, R, incr) v M[S] for (S,R) ∈ tag(c).
Non-personal data can be accessed without restrictions since the tag is empty.

Implementation of method requestMySensitiveData is provided by the runtime
system by making the call caller !receiveMySensitiveData(tl) where tl is given
by ∆[w]/caller , i.e., the tagged values of fields with caller in the tag.

Runtime overhead. We have given a solution for compliance checking by a
runtime system formulated at a high-level of abstraction. We here discuss the
overhead in tagging and checking with this solution, and how it can be reduced.
By combining the core information in the tags with the dynamically changing
consent information, we are able to keep the information in the tags relatively
small, and moreover the tags are not changed when the consent is changed,
which is a crucial property. Thus the main overhead is in accessing the consented
list for the subjects in the tag. Note that the updates on each consent list is
atomic, so there is no need for critical regions nor object synchronization at the
runtime level. Thus a compliance check made by one object will not slow down
the other objects. This processing can easily be made more efficient by letting
each principal pull a copy of a subject’s consent setting when needed. However,
as this could lead to outdated consent information, one could use a version
number for each subject’s consent list, and let a principal check that it has the
latest version before applying its local copy of a consent list. A further method
of reducing overhead, would be to re-represent each consent list by means of a
mapping (from principal and purpose of a given subject to access right) thereby
the list traversal is reduced to direct look-up. This method has a cost whenever
a consent list is updated. A further discussion is beyond the scope of this paper.

9.4.3 Operational rules

Each rule in the operational semantics deals with only one object o, and
possibly messages, reflecting the nature of concurrent distributed active objects,
communicating asynchronously. Remote calls and replies are handled by message
passing. When a subconfiguration C can be rewritten to a C′, this means that the
whole configuration . . . C . . . can be rewritten to . . . C′ . . ., reflecting interleaving
semantics. The operational rules reflect small-step semantics. For instance, the
rule for skip is given by

o : ob(δ, skip; s) empty−−−−→ o : ob(δ, s)

150

Runtime system

assign : o : ob(δ, v := e; s)
empty−−−−→ o : ob([v := e], s)

if-true : o : ob(δ, if b then s1 else s2 fi; s)
empty−−−−→ o : ob(δ[pcs := push(pcs, l)], s1; pcs := pop(pcs); s)

if [b] = truel

if-false : o : ob(δ, if b then s1 else s2 fi; s)
empty−−−−→ o : ob(δ[pcs := push(pcs, l)], s2; pcs := pop(pcs); s)

if [b] = falsel

while : o : ob(δ, while b do s1 od; s)
−→ o : ob(δ, if b then s1; while b do s1 od fi; s)

new : o : ob(δ, v := new C(e); s)
o ↔ δ[nextOb].C(δ[e])−−−−−−−−−−−−−→ o : ob(δ[v := o′], s)

o′ : ob(δC [this 7→ o′, nextId 7→ initialFut(o′), cp 7→ [e]], initC)
where o′ = (fresh, C), with fresh a fresh reference relative to C

async. call : o : ob(δ, a!m(e); s)
o→[a].m([nextId,e])−−−−−−−−−−−−→ o : ob(δ[nextId := next(nextId)], s)

msg o→ [a].m([nextId, e])

sync. call : o : ob(δ, v := a.m(e); s)
o→[a].m([nextId,e])−−−−−−−−−−−−→ o : ob(δ, a!m(e); v := get δ[nextId]; s)

start : msg o′ → o.m(u, c) o : ob((α|β′), idle)
o′�o.m(u,c)−−−−−−−−→ o : ob((α|(β[caller 7→ o′, callId 7→ u, y 7→ [c], pcs 7→ nil])), s)

where (m, y, β, s) is the body of m in the class of this

return : o : ob(δ, return e)
δ[caller]←δ[this].(δ[callId],[e])−−−−−−−−−−−−−−−−−→ o : ob(δ, idle)

msg δ[caller]← δ[this].(δ[callId], [e])

query : msg o← o′.(u, c) o : ob(δ, v := get u ; s)
o�o′.(u,c)−−−−−−−→ o : ob(δ, v := c; s)

no-query : msg o← o′.(u, c) o : ob(δ, s)
o�o′.(u,c)−−−−−−−→ o : ob(δ, s)

if get u 6∈ s

Figure 9.9: Operational rules defining small-step semantics with privacy tags.
Unique future identities are ensured by initialFut, parameterized with the
parent and next.

151

9. A formal framework for consent management

saying that the execution of skip has no effect on the state δ of the object.
Each method call will have a unique identity u. A message has the form

msg o→ o′.m(u, c)

representing a call to m with o as caller, o′ callee, and c actual parameters, or

msg o← o′.(u, c)

representing a completion event where c is the returned value and u the identity
of the call. In addition, msg o→ I.m(u, c) denotes a broadcast to all I objects.

The semantics in Fig. 9.9 formalizes the notion of idleness, and generation
of objects and messages, including a rule (no-query) for garbage collection of
unused reply messages. Generation of identities for objects and method calls is
handled by underlying semantic functions and implicit attributes.

The operational semantics uses an additional query statement, get u, for
dealing with the termination of call statements. A synchronous call is treated
as an asynchronous call followed by a get query. The query get u is blocking
while waiting for the method response with identity u.

Assignment is handled by updating the state, requiring that there is read
access to any personal data (using ∆). An if-statement requires read access
to personal data in the condition and the resulting tag set l is pushed on the
policy stack pcs, ensuring that all evaluations in the taken branch implicitly
includes l in the tag set. A while loop is handled by expanding while b do s od
to if b then s; while b do s od fi upon execution of the while-statement.
Void methods return the value void. We assume all methods end in a return
statement, including class constructors, which end in return void (although
omitted in the examples). An assignment of the form v :+ e is treated as an
atomic operation at runtime. (When lists are implemented by linked lists, this
operation can be executed by a single pointer assignment, since the value of e is
not affected by other objects.) Semantically, v :+ e is the same as v := v + e,
and we do not show a special rule for it. This means that a consent update can
also be considered atomic. Furthermore, we assume that initial values given to
fields or local variables are expanded to assignments, as described earlier.

For simplicity, rules for broadcasting (similar to that for asynchronous calls)
and local synchronous calls (i.e., queries on local calls) are omitted, since such
calls do not pose additional privacy challenges. In the current semantics, a
query on a local call will lead to deadlock. The handling of local queries would
require addition of a stack in the object state in order to be able to push and
pop unfinished local method frames, for instance as in [61].

The theorem below ensures that every access to a data subject’s personal
information will comply with the consented policy.

Theorem 4 (Runtime compliance). After a policy is successfully removed, all
further variable accesses that need this policy will fail by giving a runtime error
until the policy, or a stronger one, is added again.

152

Related work

Proof. Consider an object state δ where (S,R) ∈ tag(δ[v]). Let policy p denote
(Pcurrent, R, read). We must prove that a runtime look-up of v in such a state
gives error after a policy p′ such that p v p′ is removed from the consented list
of S and before a policy p′′ such that p v p′′ is added to the consented list of S.

Every variable look-up is made through one of the operational rules, by means
of δ or ∆. By inspection of these rules, we observe that all program variables
are evaluated by ∆ apart from caller and this in rule Return, but here the pcs
stack is empty (since a return statement occurs last in a body), so evaluation by
δ in this case is the same as by ∆. It remains to show the theorem for variable
access through ∆, and for an access to v we must show that p 6v M[S].

By induction on the length of the execution we show that ∆[v] gives error
between the successful removal of p′ and addition of p′′ toM[S]. A successful
removal must perform the atomic operation consented :+ neg(p′) in S. Right
afterwards, neg(p′) is the last element inM[S] and therefore ∆[v] gives error.
If a consent neg(p′′′) is added, p vM[S] remains false. If a consent pos(p′′′) is
added, we may assume that p 6v p′′′ (otherwise p′′′ can be used as p′′ and there is
nothing to prove) and by the induction hypothesis p vM[S] remains false. �

9.5 Related work

This paper focuses on the intersection between compliance formalization and
programming languages. This line of work is relatively recent, featuring several
threads of active research such as policy specification, policy enforcement,
monitoring, privacy by design, language-based privacy, and role-based access
control.

The work presented in [70] provides a privacy management framework for the
definition of privacy agents (such as subject, controller) acting as representatives
of individuals. These privacy agents play a specific role as “representative” or
“proxy” of the user in order to manage personal data and ensure privacy-compliant
interactions among agents. We share with [70] the objective of privacy compliant
interactions, but we use an integrated style, i.e., including compliance checks
within objects and actors accessing personal data. In addition, we use the same
policy language for different actors and consented policies are maintained in
subject objects. Cunche et al. [79] present a generic information and consent
framework for IoT that allows the data subject to express privacy requirements
as well as receive the information and associated privacy policy. The privacy
policies for subjects and controllers are based on the PILOT semantics [91].
Privacy policies in [91] are more expressive than ours as they also encapsulate
contextual information, but the semantics of policy compliance is not discussed
in particular. We define fewer privacy requirements and focus on compliance
formalization. The approach followed in [79] makes use of dedicated privacy
agents, while we integrate the compliance checks in actor objects.

Sen et al. [102] demonstrate techniques for compliance checking in big data
systems. Privacy policies are specified using a policy specification language,
LEGALEASE, where policies can be expressed using allow and deny clauses to

153

9. A formal framework for consent management

permit and prohibit access. Policies can be expressed using nested allow-deny
rules. Policy clauses use data store, purpose, role, and data type attributes to
specify information flow restrictions. Then, a data inventory tool GROK maps
data types in code to high-level policy concepts, and the compliance checking then
reduces to a form of information flow analysis. This is similar to our approach
in [109] where we associate policy with the types carrying sensitive information,
but the difference is that the type-policy mapping is integrated in the language.
The policy specification language in [102] has some similarities with our work:
the semantics of policies is compositional and policies are expressed as lists of
positive and negative policies. However, for the sake of simplicity, we do not
consider nested-policies. All information flow restrictions (policy attributes) are
encoded as a lattice in [102], while in our setting that is not the case. However,
in [102] the concept lattice does not seem to distinguish with information about
other subjects, which we do and in addition we can generate tags at runtime
when new information (involving a subject or personal information) is created.

Yang et al. [119] propose a policy-agnostic programming model. Sensitive data
values are associated with policies and then the programmer may implement the
rest of the program in a policy agnostic manner. The language’s [120] runtime
system enforces these policies to ensure that only policy compliant values are
used in computations. In contrast, we use generalized polices for each subject
(including purpose) and minimize the information in the tags.

Other examples of language-based approaches relying on information-flow
control include the role-based approach in [81] and the purpose-based approach
in [53]. Myers and Liskov present a model of decentralized information flow
labels, where principals and labels are the essentials of the model [81]. Principals
are the entities that own, update and release (to other principals) information.
A label is a set of owner: reader policy pairs, where owner is the data owner
(i.e., subject in our approach), and reader is the principal that has read access to
this data. Programs and data are annotated with such labels, and information
flow restrictions are enforced by type checking. For an access to be valid, all the
policy requirements of the label should be enforced, which holds in our approach
as all the tags must comply with the consented policies. There are no generalized
policies, and the tags will take more space than in our case. In [53], Hayati and
Abadi describe an approach to model and verify aspects of privacy policies in
the Jif (Java Information Flow) programming language. Data collected for a
specific purpose is annotated with Jif principals and then the methods needed
for a specific purpose are also annotated with Jif principals. Explicitly declaring
purposes for data and methods ensures that the labeled data will be used only by
the methods with connected purposes. However, this representation of purpose
is not sufficient to guarantee that principals will perform actions compliant
with the declared purpose. In contrast, this can be checked at runtime in our
approach.

Basin et al. [11] propose an approach that relates a purpose with a business
process and use formal models of inter-process communication to demonstrate
GDPR compliance. Process collection is modeled as data-flow graphs which
depict the data collected and the data used by the processes. Then these

154

Conclusion

processes are associated with a data purpose and are used to algorithmically
generate data purpose statements, i.e., specifying which data is used for which
purpose and detect violation of data minimization. A main challenge tackled by
this work is to automatically generate compliant privacy policies from the model.
We share with this work an explicit specification of purpose. In [11], a purpose
is associated with a process, while in our approach a method accessing personal
information is tagged with a purpose and personal data is tagged with sets of
(subject, purpose) pairs. This tagging is useful in generating privacy policies to
check compliance.

9.6 Conclusion

We propose a consent management framework that allows a data subject to
communicate and update consent policies to the controller and to view all
personal data about her in the system along with the purposes for which they
are used. We have considered a core language for distributed active object
systems and formalized the notion of policy compliance and given an operational
semantics for the considered programming language. The runtime system ensures
that every access to personal data complies with the currently consented polices.

We have illustrated the feasibility of formalizing GDPR specific privacy
requirements, including privacy by design by providing explicit specifications
of purpose and policy constructs; lawfulness and transparency of processing
based on consented purposes; data subject access request by providing predefined
interfaces and classes to assist in providing the data subject with the personal
data and purposes for which it is being processed.

Our framework includes a general solution for subjects to observe and change
their privacy settings and for subjects to be informed about all personal data
stored about them. The solution consists of a set of predefined types for privacy
related concepts and a set of interfaces that forms the basis for interaction with
external users, a set of classes that is used in interaction with the runtime system,
and runtime checking of all access to personal data to ensure that it complies
with the current privacy settings. The same framework can be reused for another
language, as long as the assumption of interface abstraction is respected and as
long as the purpose of any method handling personal data is identified.

Future Work: The framework can be extended to accommodate for other
legal bases by having separate policy lists for each legal basis, and a logic to
chose from these bases as required. More information can be included in the tags
for a richer compliance check, for instance, the data creator can be recorded as
the current principal of the method instance creating the data. More information
can be included in the policy specification, for example restrictions on temporal
validity, data collectors, and data creators. Furthermore, we could add cases of
non-personal tag information as exceptions to the generated tags, for instance to
deal with encryption. We can easily add more fine-grained methods for selection
of policies/personal data in the interfaces/classes for privacy settings and data
collection (from sensitive objects), for instance using purpose and principal to

155

9. A formal framework for consent management

limit the selection.

Acknowledgements. The authors were partially supported by IoT-Sec (NRC)
and SCOTT (EU).

Authors’ addresses

Shukun Tokas University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
shukunt@uio.no

Olaf Owe University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
olaf@uio.no

156

mailto:shukunt@uio.no
mailto:olaf@uio.no

Bibliography

[1] Adams, R. and Schupp, S. “Constructing Independently Verifiable
Privacy-Compliant Type Systems for Message Passing Between Black-Box
Components”. In: Verified Software. Theories, Tools, and Experiments.
Springer, 2018, pp. 196–214.

[2] Agrawal, R. et al. “An XPath-based preference language for P3P”. In:
Proceedings of the 12th international conference on World Wide Web.
ACM. 2003, pp. 629–639.

[3] Anthonysamy, P. et al. “Inferring semantic mapping between policies and
code: the clue is in the language”. In: Intern. Symposium on Engineering
Secure Software and Systems. Springer. 2016, pp. 233–250.

[4] Arfelt, E., Basin, D., and Debois, S. “Monitoring the GDPR”. In: European
Symposium on Research in Computer Security. Springer. 2019, pp. 681–
699.

[5] Article 29 Working Party.Guidelines on Consent under Regulation 2016/679.
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=
623051. Accessed: 2020-02-05.

[6] Ashley, P. et al. “Enterprise privacy authorization language (EPAL)”. In:
IBM Research vol. 30 (2003), p. 31.

[7] Askarov, A. et al. “Termination-insensitive noninterference leaks more
than just a bit”. In: European symposium on research in computer security.
Springer. 2008, pp. 333–348.

[8] Austin, T. H. and Flanagan, C. “Efficient purely-dynamic information
flow analysis”. In: Proceedings of the ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security. 2009, pp. 113–124.

[9] Barth, A. et al. “Privacy and contextual integrity: framework and
applications”. In: 2006 IEEE Symposium on Security and Privacy
(S&P’06). May 2006, 15 pp.–198.

[10] Barth, A. “Design and analysis of privacy policies”. PhD thesis. Stanford
University, 2008.

[11] Basin, D., Debois, S., and Hildebrandt, T. “On purpose and by necessity:
compliance under the GDPR”. In: Proceedings of Financial Cryptography
and Data Security vol. 18 (2018), pp. 20–37.

[12] Basin, D. et al. “Runtime monitoring of metric first-order temporal
properties”. In: IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. 2008.

157

https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051

Bibliography

[13] Bennett, C. J. and Raab, C. D. The governance of privacy: Policy
instruments in global perspective. Routledge, 2017.

[14] Beringer, L. “End-to-end multilevel hybrid information flow control”. In:
Asian Symposium on Programming Languages and Systems. Springer.
2012, pp. 50–65.

[15] Besik, S. I. and Freytag, J.-C. “Ontology-Based Privacy Compliance
Checking for Clinical Workflows”. In: (2019).

[16] Boer, F. D. et al. “A survey of active object languages”. In: ACM
Computing Surveys vol. 50, no. 5 (2017), 76:1–76:39. url: http: / /doi .
acm.org/10.1145/3122848.

[17] Breaux, T. et al. An Introduction to privacy for technology professionals.
IAPP Publication, 2020.

[18] Breaux, T. D., Hibshi, H., and Rao, A. “Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy
requirements”. In: Requirements Engineering vol. 19, no. 3 (2014), pp. 281–
307.

[19] Broy, M. and Stølen, K. Specification and Development of Interactive
Systems. Monographs in Computer Science. 2001.

[20] Buiras, P., Vytiniotis, D., and Russo, A. “HLIO: Mixing static and
dynamic typing for information-flow control in Haskell”. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional
Programming. 2015, pp. 289–301.

[21] Cardelli, L. “Type systems”. In: ACM Computing Surveys (CSUR) vol. 28,
no. 1 (1996), pp. 263–264.

[22] Cavoukian, A. “Privacy by design: origins, meaning, and prospects for
assuring privacy and trust in the information era”. In: Privacy protection
measures and technologies in business organizations: aspects and standards.
IGI Global, 2012, pp. 170–208.

[23] Christey, S., Kenderdine, J. E., and et.al. Common weakness enumeration
(CWE version 2.9). ACM SIGAda Ada Letters, 2015.

[24] Clarke, R. Introduction to dataveillance and information privacy, and
definitions of terms (1999). http://www.rogerclarke.com/DV/Intro.html.
Accessed: 2020-08-29.

[25] Clarkson, M. R. and Schneider, F. B. “Hyperproperties”. In: Journal of
Computer Security vol. 18, no. 6 (2010), pp. 1157–1210.

[26] Colesky, M., Hoepman, J.-H., and Hillen, C. “A critical analysis of privacy
design strategies”. In: 2016 IEEE Security and Privacy Workshops (SPW).
IEEE. 2016, pp. 33–40.

[27] Cronk, J. “Strategic privacy by design”. In: Portsmouth, NH: International
Association of Privacy Professionals (2018).

158

http://doi.acm.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
http://www.rogerclarke.com/DV/Intro.html

Bibliography

[28] Dahl, O.-J. Object-oriented specifications, Research directions in object-
oriented programming. 1987.

[29] Dahl, O.-J. Verifiable Programming. 1992.
[30] Danezis, G. et al. “Privacy and Data Protection by Design-from policy

to engineering”. In: arXiv preprint arXiv:1501.03726 (2015).
[31] Darvas, Á., Hähnle, R., and Sands, D. “A theorem proving approach

to analysis of secure information flow”. In: International Conference on
Security in Pervasive Computing. Springer. 2005, pp. 193–209.

[32] Demurjian, S. A. et al. “Multi-Level Security in Healthcare Using a Lattice-
Based Access Control Model”. In: International Journal of Privacy and
Health Information Management (IJPHIM) vol. 7, no. 1 (2019), pp. 80–
102.

[33] Denning, D. E. and Denning, P. J. “Certification of programs for secure
information flow”. In: vol. 20, no. 7 (July 1977), pp. 504–513.

[34] Devriese, D. and Piessens, F. “Noninterference through secure multi-
execution”. In: IEEE Symposium on Security and Privacy. IEEE. 2010,
pp. 109–124.

[35] Din, C. C. and Owe, O. “A sound and complete reasoning system for
asynchronous communication with shared futures”. In: Journal of Logical
and Algebraic Methods in Programming vol. 83, no. 5-6 (2014), pp. 360–
383.

[36] Din, C. C. et al. “Observable behavior of distributed systems: Component
reasoning for concurrent objects”. In: The Journal of Logic and Algebraic
Programming vol. 81, no. 3 (2012), pp. 227–256.

[37] Dovland, J. et al. “Lazy behavioral subtyping”. In: International
Symposium on Formal Methods. Springer. 2008, pp. 52–67.

[38] Erlingsson, Ú. The inlined reference monitor approach to security policy
enforcement. Tech. rep. Cornell University, 2003.

[39] European Data Protection Supervisor. Data Protection. https://edps.
europa.eu/data-protection/data-protection_en. Accessed: 2020-08-24.

[40] European Parliament and Council of the European Union. Charter of
Fundamental Rights of the European Union. https : / /eur - lex .europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012P/TXT&from=EN.
Accessed: 2020-04-29. Official Journal of the European Union.

[41] European Parliament and Council of the European Union. The General
Data Protection Regulation (GDPR). https://eur-lex.europa.eu/eli/reg/
2016/679/oj. Accessed: 2019-11-24. Official Journal of the European
Union.

[42] Fernández-Alemán, J. L. et al. “Security and privacy in electronic
health records: A systematic literature review”. In: Journal of biomedical
informatics vol. 46, no. 3 (2013), pp. 541–562.

159

https://edps.europa.eu/data-protection/data-protection_en
https://edps.europa.eu/data-protection/data-protection_en
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012P/TXT&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012P/TXT&from=EN
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

Bibliography

[43] Ferrara, P. and Spoto, F. “Static analysis for GDPR compliance”. In:
Proceedings of the Second Italian Conference on Cyber Security, Milan,
Italy. (Milan, Italy, Feb. 6–9, 2018). CEUR Workshop Proceedings 2058.
Proceedings available online at http://ceur-ws.org/Vol-2058/paper-10.pdf.
Aachen, 2018. url: http://ceur-ws.org/Vol-2058/.

[44] Fischer-Hbner, S. and Berthold, S. “Privacy-enhancing technologies”. In:
Computer and Information Security Handbook. Elsevier, 2017, pp. 759–
778.

[45] Fischer-Hübner, S. IT-security and privacy: design and use of privacy-
enhancing security mechanisms. Springer-Verlag, 2001.

[46] Fisher, K., Launchbury, J., and Richards, R. “The HACMS program:
using formal methods to eliminate exploitable bugs”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences vol. 375, no. 2104 (2017), p. 20150401.

[47] Goguen, J. A. and Meseguer, J. “Unwinding and inference control”. In:
IEEE Symposium on Security and Privacy. 1984, pp. 75–75.

[48] Guernic, G. L. “Automata-Based Confidentiality Monitoring of Concur-
rent Programs”. In: Proceedings of. 2007, pp. 218–232.

[49] Gürses, S., Troncoso, C., and Diaz, C. “Engineering privacy by design
reloaded”. In: Amsterdam Privacy Conference. 2015, pp. 1–21.

[50] Hammer, C. “Experiences with PDG-based IFC”. In: International
Symposium on Engineering Secure Software and Systems. Springer. 2010,
pp. 44–60.

[51] Hammer, C. and Snelting, G. “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs”. In: International Journal of Information Security vol. 8, no. 6
(2009), pp. 399–422.

[52] Hansen, M. et al. Readiness Analysis for the Adoption and Evolution
of Privacy Enhancing Technologies: Methodology, Pilot Assessment, and
Continuity Plan. Tech. rep. Tech. rep., ENISA, 2015.

[53] Hayati, K. and Abadi, M. “Language-based enforcement of privacy
policies”. In: International Workshop on Privacy Enhancing Technologies.
Springer. 2004, pp. 302–313.

[54] Hedin, D., Bello, L., and Sabelfeld, A. “Information-flow security for
JavaScript and its APIs”. In: Journal of Computer Security vol. 24, no. 2
(2016), pp. 181–234. url: https://doi.org/10.3233/JCS-160544.

[55] Hedin, D. and Sabelfeld, A. “A Perspective on Information-Flow Control.”
In: Software Safety and Security - Tools for Analysis and Verification.
Vol. 33. NATO Science for Peace and Security Series - D: Information
and Communication Security. IOS Press, 2012, pp. 319–347.

[56] Heintze, N. and Riecke, J. G. “The SLam Calculus: Programming with
Secrecy and Integrity”. In: POPL’98. POPL’98. ACM, 1998, pp. 365–377.

160

http://ceur-ws.org/Vol-2058/paper-10.pdf
http://ceur-ws.org/Vol-2058/
https://doi.org/10.3233/JCS-160544

Bibliography

[57] Hewitt, C., Bishop, P., and Steiger, R. “A universal modular ACTOR
formalism for artificial intelligence”. In: Proceedings of the Third
International Joint Conference on Artificial Intelligence. IJCAI’73.
Stanford, USA: Morgan Kaufmann Publishers Inc., 1973, pp. 235–245.
url: http://dl.acm.org/citation.cfm?id=1624775.1624804.

[58] Hoare, C. A. R. Communicating Sequential Processes. International Series
in Computer Science. 1985.

[59] Hoepman, J.-H. “Privacy design strategies”. In: IFIP International
Information Security Conference. Springer. 2014, pp. 446–459.

[60] Johnsen, E. B. and Owe, O. “An Asynchronous Communication Model
for Distributed Concurrent Objects”. In: Software and Systems Modeling
vol. 6, no. 1 (2007), pp. 35–58.

[61] Johnsen, E. B. and Owe, O. “An asynchronous communication model for
distributed concurrent objects”. In: Software & Systems Modeling vol. 6,
no. 1 (2007), pp. 39–58.

[62] Johnsen, E. B., Owe, O., and Yu, I. C. “Creol: A type-safe object-oriented
model for distributed concurrent systems”. In: Theoretical Computer
Science vol. 365, no. 1-2 (2006), pp. 23–66.

[63] Johnsen, E. B. et al. “Intra-Object Versus Inter-Object: Concurrency and
Reasoning in Creol”. In: vol. 243 (July 2009), pp. 89–103.

[64] Joshi, R. and Leino, K. R. M. “A semantic approach to secure information
flow”. In: Science of Computer Programming vol. 37, no. 1-3 (2000),
pp. 113–138.

[65] Karami, F., Owe, O., and Ramezanifarkhani, T. “An evaluation of
interaction paradigms for active objects”. In: Journal of Logical and
Algebraic Methods in Programming vol. 103 (2019), pp. 154–183. url:
https://doi.org/10.1016/j.jlamp.2018.11.008.

[66] Kremenek, T. and Engler, D. “Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations”. In: International
Static Analysis Symposium. Springer. 2003, pp. 295–315.

[67] Krishnamurthi, S. “Programming Languages Application and Interpreta-
tion”. In: (2016). Accessed: 2020-10-24.

[68] Kumaraguru, P. et al. “A survey of privacy policy languages”. In:
Workshop on Usable IT Security Management (USM 07): Proceedings of
the 3rd Symposium on Usable Privacy and Security, ACM. 2007.

[69] Lampson, B. W. “Protection”. In: ACM SIGOPS Operating Systems
Review vol. 8, no. 1 (1974), pp. 18–24.

[70] Le Métayer, D. “A formal privacy management framework”. In: Interna-
tional Workshop on Formal Aspects in Security and Trust. Springer. 2008,
pp. 162–176.

161

http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doi.org/10.1016/j.jlamp.2018.11.008

Bibliography

[71] Le Métayer, D. “Formal methods as a link between software code and
legal rules”. In: International Conference on Software Engineering and
Formal Methods. Springer. 2011, pp. 3–18.

[72] Le Métayer, D. and Schmidt, D. “Structural operational semantics as a
basis for static program analysis”. In: ACM Computing Surveys (CSUR)
vol. 28, no. 2 (1996), pp. 340–343.

[73] Liu, J. et al. “Fabric: A platform for secure distributed computation
and storage”. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. 2009, pp. 321–334.

[74] Mantel, H. and Sudbrock, H. “Types vs. pdgs in information flow analysis”.
In: International Symposium on Logic-Based Program Synthesis and
Transformation. Springer. 2012, pp. 106–121.

[75] Marchiori, M. et al. “The platform for privacy preferences 1.0 (P3P1.0)
specification”. In: World Wide Web Consortium Recommendation REC-
P3P-20020416 (2002).

[76] Masoumzadeh, A. and Joshi, J. B. “PuRBAC: Purpose-aware role-based
access control”. In: OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems". Springer. 2008, pp. 1104–1121.

[77] medium.com. The single most important change in data privacy regulation
in 20 years: GDPR. https://medium.com/datadriveninvestor/ the-single-
most-important-change-in-data-privacy-regulat ion-in-20-years-gdpr-
b9026b9acfa9. Accessed: 2019-12-20.

[78] Miller, M. Robust Composition: Towards a Uni ed Approach to Access
Control and Concurrency Control. Johns Hopkins University, 2006.

[79] Morel, V., Cunche, M., and Le Métayer, D. “A Generic Information
and Consent Framework for the IoT”. In: 2019 18th IEEE International
Conference On Trust, Security And Privacy In Computing And Commu-
nications/13th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE). IEEE. 2019, pp. 366–373.

[80] Myers, A. C. “JFlow: Practical Mostly-Static Information Flow Control”.
In: pp. 228–241.

[81] Myers, A. C. and Liskov, B. “Protecting privacy using the decentralized
label model”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) vol. 9, no. 4 (2000), pp. 410–442.

[82] Ni, Q. et al. “Privacy-aware role-based access control”. In: ACM
Transactions on Information and System Security (TISSEC) vol. 13,
no. 3 (2010), p. 24.

[83] Nielson, F., Nielson, H. R., and Hankin, C. Principles of program analysis.
Springer, 2015.

[84] Nielson, F. and Nielson, H. R. “Type and Effect Systems”. In: Correct
System Design: Recent Insights and Advances. Springer, 1999, pp. 114–136.
url: https://doi.org/10.1007/3-540-48092-7_6.

162

https://medium.com/datadriveninvestor/
the-single-most-important-change-in-data-privacy-regulat
the-single-most-important-change-in-data-privacy-regulat
ion-in-20-years-gdpr-b9026b9acfa9
ion-in-20-years-gdpr-b9026b9acfa9
https://doi.org/10.1007/3-540-48092-7_6

Bibliography

[85] Nierstrasz, O. “A tour of Hybrid – A Language for Programming with
Active Objects”. In: Advances in Object-Oriented Software Engin. Prentice-
Hall, 1992, pp. 67–182.

[86] Notario, N. et al. “PRIPARE: integrating privacy best practices into a
privacy engineering methodology”. In: 2015 IEEE Security and Privacy
Workshops. IEEE. 2015, pp. 151–158.

[87] Open Web Application Security Project (OWASP) Top 10 2010 and 2013.
http://www.owasp.org/index.php. 2017.

[88] Owe, O. “Reasoning about inheritance and unrestricted reuse in object-
oriented concurrent systems”. In: International Conference on Integrated
Formal Methods. Springer. 2016, pp. 210–225.

[89] Owe, O. “Verifiable Programming of Object-Oriented and Distributed
Systems”. In: From Action Systems to Distributed Systems - The
Refinement Approach. Ed. by Petre, L. and Sekerinski, E. Chapman
and Hall/CRC, 2016, pp. 61–79. url: https://doi.org/10.1201/b20053-8.

[90] Owe, O. and Ramezanifarkhani, T. “Confidentiality of interactions in
concurrent object-oriented systems”. In: Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Springer, 2017, pp. 19–
34.

[91] Pardo, R. and Le Métayer, D. “Analysis of privacy policies to enhance
informed consent”. In: IFIP Annual Conference on Data and Applications
Security and Privacy. Springer. 2019, pp. 177–198.

[92] Plotkin, G. D. “Structural operational semantics”. In: Aarhus University,
Denmark (1981).

[93] Ramezanifarkhani, T., Owe, O., and Tokas, S. “A secrecy-preserving
language for distributed and object-oriented systems”. In: Journal of
Logical and Algebraic Methods in Programming vol. 99 (2018), pp. 1–25.
url: https://doi.org/10.1016/j.jlamp.2018.04.001.

[94] Ramezanifarkhani, T. and Razzazi, M. “Principles of Data Flow Integrity:
Specification and Enforcement.” In: Journal of Information Science and
Engineering vol. 31, no. 2 (2015), pp. 529–546.

[95] Russo, A. and Sabelfeld, A. “Dynamic vs. Static Flow-Sensitive Security
Analysis”. In: IEEE. 2010, pp. 186–199.

[96] Sabelfeld, A. and Myers, A. C. “Language-based information-flow
security”. In: IEEE Journal on Selected Areas in Communications vol. 21,
no. 1 (2003), pp. 5–19.

[97] Sabelfeld, A. and Russo, A. “From Dynamic to Static and Back: Riding the
Roller Coaster of Information-Flow Control Research”. In: Perspectives of
Systems Informatics. Ed. by Pnueli, A., Virbitskaite, I., and Voronkov, A.
Vol. 5947. Springer, 2010, pp. 352–365.

[98] Sandhu, R. S. et al. “Role-based access control models”. In: Computer
vol. 29, no. 2 (1996), pp. 38–47.

163

http://www.owasp.org/index.php
https://doi.org/10.1201/b20053-8
https://doi.org/10.1016/j.jlamp.2018.04.001

Bibliography

[99] Sayed, B. Protection against malicious JavaScript using hybrid flow-
sensitive information flow monitoring. University of Victoria, 2015.

[100] Schneider, G. “Is privacy by construction possible?” In: International
Symposium on Leveraging Applications of Formal Methods. Springer. 2018,
pp. 471–485.

[101] Sebesta, R. W. Concepts of programming languages. Boston: Pearson,
2012.

[102] Sen, S. et al. “Bootstrapping privacy compliance in big data systems”. In:
2014 IEEE Symposium on Security and Privacy. IEEE. 2014, pp. 327–342.

[103] Sieghart, P. Privacy and computers. Latimer New Dimensions, 1976.
[104] Simonet, V. The Flow Caml System. Software release. July 2003.
[105] Standard, O. Extensible access control markup language (XACML) version

2.0. 2005.
[106] Tokas, S. and Owe, O. A Formal Framework for Consent Management.

Proceedings available online at https://doi.org/10.23658/taltech.nwpt/
2019. Tallinn, Estonia, Nov. 2019.

[107] Tokas, S. and Owe, O. “A Formal Framework for Consent Management”.
In: International Conference on Formal Techniques for Distributed Objects,
Components, and Systems. Springer. 2020, pp. 169–186.

[108] Tokas, S., Owe, O., and Johansen, C. Code Diversification Mechanisms
for Internet of Things. Tech. rep. 35645. available online at https://www.
duo.uio.no/bitstream/handle/10852/75932/1/testmain.pdf. University of
Oslo, Department of Informatics, 2020.

[109] Tokas, S., Owe, O., and Ramezanifarkhani, T. “Language-Based Mech-
anisms for Privacy by Design”. In: Privacy and Identity Management
2019. IFIP Advances in Information and Communication Technology 576.
Springer. Brugg/Windisch, Switzerland, Aug., 2019, 2020, pp. 142–158.
url: https://doi.org/10.1007/978-3-030-42504-3_10.

[110] Tokas, S., Owe, O., and Ramezanifarkhani, T. “Static Checking of GDPR-
Related Privacy Compliance for Object-Oriented Distributed Systems”.
In: Journal of Logical and Algebraic Methods in Programming (2019).
under review.

[111] Tokas, S. and Ramezanifarkhani, T. Language-Based Support for GDPR-
Related Privacy Requirements. Proceedings available online at https :
//nwpt2018.ifi.uio.no/proceedings.pdf. Oslo, Norway, 2018.

[112] Tschantz, M. C. and Wing, J. M. “Formal Methods for privacy”. In:
International Symposium on Formal Methods. Springer. 2009, pp. 1–15.

[113] Tse, S. and Zdancewic, S. “Run-time principals in information-flow type
systems”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) vol. 30, no. 1 (2007), 6–es.

164

https://doi.org/10.23658/taltech.nwpt/2019
https://doi.org/10.23658/taltech.nwpt/2019
https://www.duo.uio.no/bitstream/handle/10852/75932/1/testmain.pdf
https://www.duo.uio.no/bitstream/handle/10852/75932/1/testmain.pdf
https://doi.org/10.1007/978-3-030-42504-3_10
https://nwpt2018.ifi.uio.no/proceedings.pdf
https://nwpt2018.ifi.uio.no/proceedings.pdf

Bibliography

[114] Ustaran, E. European Data Protection: Law and Practice. an IAPP
Publication, International Association of Privacy Professionals, 2018.

[115] Venkatakrishnan, V. N. et al. “Provably correct runtime enforcement of
non-interference properties”. In: International Conference on Information
and Communications Security. Springer. 2006, pp. 332–351.

[116] Volpano, D., Irvine, C., and Smith, G. “A sound type system for secure
flow analysis”. In: Journal of computer security vol. 4, no. 2-3 (1996),
pp. 167–187.

[117] Wardell, D. C. et al. “A method for revealing and addressing security
vulnerabilities in cyber-physical systems by modeling malicious agent
interactions with formal verification”. In: Procedia computer science vol. 95
(2016), pp. 24–31.

[118] Wing, J. M. “A symbiotic relationship between formal methods and secu-
rity”. In: Proceedings Computer Security, Dependability, and Assurance:
From Needs to Solutions (Cat. No. 98EX358). IEEE. 1998, pp. 26–38.

[119] Yang, J. et al. “Preventing information leaks with policy-agnostic
programming”. PhD thesis. Massachusetts Institute of Technology, 2015.

[120] Yang, J., Yessenov, K., and Solar-Lezama, A. “A language for automat-
ically enforcing privacy policies”. In: ACM SIGPLAN Notices vol. 47,
no. 1 (2012), pp. 85–96.

[121] Yang, N., Barringer, H., and Zhang, N. “A purpose-based access control
model”. In: Third International Symposium on Information Assurance
and Security. IEEE. 2007, pp. 143–148.

[122] Zheng, L. and Myers, A. C. “Dynamic security labels and noninterference”.
In: IFIP World Computer Congress, TC 1. Springer. 2004, pp. 27–40.

[123] Zheng, L. and Myers, A. C. “Dynamic security labels and static
information flow control”. In: International Journal of Information
Security vol. 6, no. 2 (2007), pp. 67–84. url: http : / / dx .doi .org /10 .
1007/s10207-007-0019-9.

165

http://dx.doi.org/10.1007/s10207-007-0019-9
http://dx.doi.org/10.1007/s10207-007-0019-9

	Preface
	Contents
	Introduction
	Motivation
	Research questions
	Methodology
	Outline

	GDPR related data protection principles and research focus in GDPR
	Personal data
	Data subject
	Data controller and data processor
	Privacy policy and privacy notice
	Our research focus in GDPR
	Principles relating to processing of personal data (Article 5)
	Lawfulness of processing (Article 6)
	Right of access by the data subject (Article 15)
	Data protection by design and by default (Article 25)

	Language-based approach to privacy specification and enforcement
	An imperative programming language
	Operational semantics
	Type and effect analysis
	Soundness
	Static enforcement
	Runtime enforcement

	Overview of the research papers
	Paper I : A secrecy-preserving language for distributed and object-oriented systems
	Paper II : Language-based mechanisms for privacy by design
	Paper III : Static checking of GDPR-related privacy compliance for object-oriented distributed systems
	Paper IV : A formal framework for consent management
	Additional papers

	Discussion
	Summary of the contributions
	Limitations and future work

	Papers
	A secrecy-preserving language for distributed and object-oriented systems
	Introduction
	Behavior of object-oriented distributed systems
	Interaction non-interference
	The SeCreol language
	Secrecy-type system
	Network level leakage
	Theoretical results
	Operational semantics
	Related work
	Conclusion

	Language-based mechanisms for privacy by design
	Introduction
	Language constructs for policy specification
	Embedding policy with program constructs
	An effect system for privacy
	Case study
	Related work
	Conclusion

	Static checking of GDPR-related privacy compliance for object-oriented distributed systems
	Introduction
	Relevance to the GDPR and research focus
	Formalization of static privacy policies and policy compliance
	An imperative programming language
	An effect system for privacy
	Awareness of subject
	Operational semantics
	Related work
	Conclusion

	A formal framework for consent management
	Introduction
	Language setting
	Consent management
	Runtime system
	Related work
	Conclusion

	Bibliography

