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Abstract

This thesis addresses the following question: What can be better ways of realizing network simula-
tors and emulators? This question presents a moving target, since the meaning of “better” changes
with changes in requirements due to rapid advancements in networking technology. As a result,
this thesis is oriented towards identification of the design parameter space for constructing network
simulators and emulators, with special focus on the software related challenges.

Network simulators and emulators have become major tools in experimental networking re-
search because of several reasons, including the higher costs of experimenting on real networks. A
simulation or an emulation-based experiment involves activities that can be categorized into the
experimental design level or software level. While the experimental design level includes activities
such as the identification of the system under test and construction of its model, the software level
involves activities that relate to the construction of a simulator or an emulator as a software entity.
At the software level, network simulators and emulators frequently require the network researcher
to write the code for implementing the model elements used in the simulation. Since network
researchers are not necessarily also experts in software, network simulators and emulators must have
solid and simple software architectures that are designed to ease this burden of implementation.

Working towards formulating better ways of realizing network simulators and emulators ne-
cessitates a solid background about the available solutions in the field. Thus, this thesis presents
surveys on network simulation and emulation, as well as a stance on the terminology on simulation,
emulation, and testbeds.

In this thesis, a component-based approach is chosen as our approach to building simulators
and emulators. The rationale for this choice is explained in detail, primarily for guiding further
studies on software architectures for simulators and emulators. One of our main motivators in
using components is to use the component-based structure of networks as perceived by network
professionals, as a leverage in increasing the usability of simulators and decreasing their learning
costs.

There are many design decisions involved in formulating a component-based approach. Making
such decisions require a good understanding of the component concept and its use in software
development, which we facilitate by covering some selected issues in component-based software
engineering, and by presenting a survey of major component-based approaches with a special focus
on their component models. This also helps us place the component-based architecture we have
developed within the context of component-based software engineering. Furthermore, the design
decisions involved in the development of our approach are documented thoroughly, since these
decisions provide an idea about the range of decisions that need to be made in similar projects.

Our component-based approach is called MICA — The Minimalistic Component-Based Soft-

ware Architecture. MICA aims to be minimal and easy to use. At the same time, MICA pro-

XV



vides a detailed component model with several unique characteristics such as separation of worker
and constructor components, and having a single control flow model from the perspective of the
component developers, while being able to express multiprogramming, multitasking, and parallel
processing through the use of component containers. MICA also includes necessary constructs
for supporting transparent distribution of components. Furthermore, provided that certain condi-
tions are satisfied by a simulator that is built using MICA, MICA allows model replacement and
simulator interoperability at the software level.

We also describe two different component platforms that we implemented for the MICA com-
ponent model. One of these platforms provides a single thread of control, therefore it is best suited
for testing and debugging. Our other platform is built using the Parallel Virtual Machine (PVM)
middleware, and it supports the whole range of control flow options defined in the component
model.

We have also implemented a network emulator built using MICA, which is called DINEMO.
DINEMO is a refactoring and extension of the NEMAN network emulator. It uses the TUN/TAP
virtual network interfaces for hosting real applications distributed on multiple hosts in a simulated
network. DINEMO acts as a proof-of-concept for MICA.



Chapter 1

Introductory Overview

In this first chapter, we will present the subject of this thesis, and an overview of its contents. The
chapter will start with a discussion of what the guiding question for this thesis has been, and the
motivation for asking that question. Following that, we will describe the contents of the thesis in
the form of our contributions related to the research question. In the last section, we will briefly

discuss what the research methods employed in this thesis are.

1.1 The Research Question and Motivation

The goal of this thesis is to gain insight into the answer to the following question: “What can be
better ways of realizing network simulators and emulators?”

Why do we need to search for better ways of realizing network simulators and emulators? The
indicators that pointed towards such a need at the outset of this study, were the following:

* Constant complaining in the networking research community about the learning time that
is needed for using network simulators.

* Results reported in literature that lack a detailed list of model parameters. This observation
was also pointed out by Perrone et al. [142]. Lack of inclusion of model parameters showed
either a lack of understanding of how simulators work and the importance of the model
parameters on the results, or an ignorance about it. Given the time needed for mastering
network simulators and emulators, the attitude of the authors of these papers was probably a
combination of both.

e Cavin et al.’s results [35], which point to the fact that results from different network simula-

tors are hardly comparable.

* Our experience with NS-2 internals.

The question we have posed can be broken down into sub-questions. Such an analysis is needed
not only in order to pave way towards a solution, but also in order to understand the question itself.
We are going to organize our analysis of the question by focusing on three subjects: terminology,

roles and preferred characteristics, and realization.



1.1.1 Terminology

The first group of questions that can be derived from the research question, are questions about the
terminology: what exactly are those which we call simulation, emulation, simulator, emulator, and
testbed? What do they mean in the context of networking research? The main function of these
questions is setting the discourse.

The terminology is explored in Section 2.2. An important point turns out to be that whether a
surrogate system is to be regarded as a simulator, an emulator, or a testbed depends heavily on the
definition of the system under test in the experiment.

In Sections 2.5 and 2.6, simulation and emulation in the context of networking research are
explored. Particularly, Section 2.6 and Appendix B present a brief but thorough survey, which has
also been published in [73]. Furthermore, a revised version of [69] is included as Section 3.5,

where an exploration of problems specific to emulation style experiments is presented.

1.1.2 Roles and Preferred Characteristics

The “realizing network simulators and emulators” part in our main question refers to production of
simulators and emulators. Such production implicitly assumes the goal of producing “good” tools,
which brings the question “What are preferred characteristics for a simulator or an emulator?” Since
the attribute of being “good” is in the eye of the beholder, we looked into how the simulators and
emulators are used by the network researchers. A result of this investigation was identification of
two different roles: the experimenter, and the simulator or emulator developer. These two roles
are easily confusable, and in fact are confused in networking research. NS-2 code base stands as
a typical demonstration to such confusion. This subject is further discussed in Section 3.2, based

on [71].

1.1.3 Realization

The last component of the main question, which is the part we have mainly focused on, is about
“better ways of realizing”. For this purpose, we attempted to create a software architecture that

would have the following characteristics:

* Suggesting and supporting the easily confused developer-experimenter role division.

* Being minimalistic. By stripping the foundational layer to the bare fundamentals, it should
be possible to increase the availability of the architecture for various extensions, and for use

in re-factoring purposes.
* Supporting variety of different simulation and emulation techniques.

* Providing a composition and communication style, where submodels communicate in a way
that is similar to how networking devices communicate in real networks. Such similarity is
expected to reduce the learning time by leveraging the previous knowledge of the network
researchers.

The initial design of the architecture was published in [70] under the name AMINES-HLA.
The last form of the architecture, which is named as the Minimalistic Component-Based Software

2



Architecture (MICA), is presented in Chapter 4. In addition to the characteristics above, the MICA
architecture further supports simulation interoperability and model replacement, as demonstrated
in the scenarios presented in Sections 4.4.3 and 4.4.4. Earlier work on these scenarios were pub-
lished in [72].

In order to test and demonstrate the MICA architecture, a monolithic mobile ad-hoc network
emulator called NEMAN [149] was componentized on MICA and made distributable. The result-
ing emulator, called DINEMO, is presented in Chapter 5, and was published in [74]. Since our
objective in building DINEMO is mainly the demonstration and testing of MICA, we have focused
on the benefits provided through the use of MICA, and not on wide-scale promotion of DINEMO
as a network emulation system. Such an effort is considered to be out of the scope of this thesis,
since the synthesis of the MICA architecture required considerable resources for an understanding
of component-based software technology, a wide background survey of network simulation and
emulation, and the development of the component model for MICA and the platform implemen-
tations. Therefore the focus of this thesis has mainly been on the relationship between the software
engineering aspects of simulator development, and the domain of networking. An implementation
of a network simulator or emulator for wide-spread use, and promotion of DINEMO along with

its further development, are left as possible future work.

1.2 Overview of Contributions

Here we shortly describe the contributions of this thesis, categorized according to the main research
areas contributed.

1.2.1 Contributions to Experimental Networking Research

The contributions in the experimental networking area are the following:

* Through the short and pragmatic treatise of simulation, emulation, and testbeds, we provide
a clear stance about the terminology used in experimental research in networking. Especially,
we contribute by our discussion of what emulation is, and what makes emulation-based
experimentation different from testbed-based experimentation. (Section 2.2)

* We present a detailed survey of network emulators reported in literature, covering forty two
systems, and identify some more using which the survey can be extended. Through the
survey, the main approaches and techniques used in systems for emulation-based network
experimentation are identified. (Section 2.6 and Appendix B)

* We identify three different conceptual levels where the concept of components is being em-
ployed in the context of simulation and emulation systems: components of the system under
test, model components, and simulator components. Differentiation of these levels helps un-
derstanding what are referred to as components in various systems reported in the literature
and explains why the various works that claim to have a component-based approach appear

to be referring to unrelated conceptualizations of components. (Section 2.4.2)



* We identify and discuss problems of emulation-based experimentation and emulators, which
are not found in simulation-based experimentation and simulators used in experimental re-
search in networking. (Section 3.5)

* We analyze stakeholders in simulation and emulation-based experimental research in net-
working. As a result, we identify two major roles, experimenter and developer, with con-
flicting goals. The confusion of these roles lead to poor structure and manageability of the

simulator or emulator as a software product. (Section 3.2)

* We define a new software architecture that is specifically targeted towards realization of net-
work simulators and emulators (Chapter 4). This new software architecture

— supports the separation of experimenter and developer roles identified in the afore-
mentioned analysis of stakeholders in simulation and emulation-based experimental

research,

— introduces a component model that aims to align the use of the concept of components

at three different conceptual levels mentioned above,

— supports simulator interoperability, model replacement, model implementation reuse,
and run-time control over the run-time representation of the model being simulated

from outside of the simulator. (Section 4.4)

* We present a component-based, extensible, and distributable emulator that uses TUN/TAP
virtual interfaces, named DINEMO, for emulation-based experimentation where use of real

protocol stacks and programs over simulated networks is needed. (Chapter 5)

1.2.2 Contributions to Component-Based Software Engineering

The contributions in the component-based software engineering area are the following:
* A new component model (Chapter 4) that

— is minimal, in the sense that any element in the model is clearly targeted towards satis-

faction of a set of defined goals for the model, and redundancies are minimized,

— is detailed enough to be supported by multiple component platforms that are based on
different technologies, but which can still run the same components without the need

for re-compilation,

— provides transparent distribution from the point of view of developers of the compo-

nents of a certain type defined in the component model,

— provides a control flow model that explicitly includes multiprogramming, multitasking,

and parallel processing support.

* A stance on some terms that are sometimes used with vague meanings in the component-
based software engineering literature. This stance serves to provide clean definitions for the
terms component model, component platform, component-based architecture, and compo-
nent-based framework. (Section 2.3.3)



* A survey of major component-based approaches, including OMG’s CCM, JavaBeans, EJB,
COM, Fractal, and more, with a special focus on their component models. In addition, a
comparative presentation of the surveyed component models along with the model defined
in this thesis in terms of control flow, lifetime management, component communication,
and composition. (Appendix C and Section 6.1)

1.3 Research Method

This thesis is not intended to provide a definitive answer to the research question presented in
Section 1.1. The question is dynamic: the meaning of the definition of “better” eludes any static
definition, because the requirements of the experimental network research is changing rapidly with
the changing technology. Two good examples on how the changes in technology introduced new
requirements for the network simulators and emulators can be observed through the simulation
studies for huge networks such as the Internet, and simulation and emulation studies for mobile ad
hoc networks.

In this thesis, we take an “exploratory” stance towards the research question. Instead of setting
our goal as “the ultimate! final! best!” network simulator or emulator, we aim to understand how
simulators are built and can be built, from a software engineering perspective. This we do in order
to be able to build new simulators and emulators as requirements change due to new needs arising,.

Akkek’s PhD thesis [4] has a very good overview of research methods related to computer
science, covering both the ACM taxonomy of subject areas, and another categorization that is
based on a list of 14+2 subjects put together from works of Galliers and others.

With respect to ACM taxonomy of computer science, as presented in [4], the paradigm of this
thesis is design. In this thesis,

* the requirements for software engineering of network simulators and emulators are examined

in Chapters 2, and 3,

* anew component-based approach, called MICA, is specified and implemented as reported in
Chapter 4, building upon the wide overview of the component-based software engineering
approach presented in Chapter 2,

* and the new approach is tested by implementing a distributed network emulator, called
DINEMO, as reported in Chapter 5.

The research methods from the classification of 14+2 subjects in [4], that are relevant to this

thesis are the following:

“Surveys” approach involves searching for previous and relevant works in the literature. The sur-
veys in this thesis are presented in Appendix B, Appendix C, and partly in Section 2.6 and
Chapter 6.

“Subjective/argumentative research” is based upon opinion, speculation, et cetera, but is creative
and provides insight. It is useful for building a theory or understanding. This approach can
be observed in Chapter 2, and in the parts of Chapter 4 where we discuss the motivation and
requirements for the MICA software architecture.



“Engineering” is development of technology, which involves construction, and reconstruction of
g g p gy

systems. The Chapters 4 and 5 are most relevant to this approach.

“Grounded theory” approach lets relevant information or theory to “emerge” from studies and
observations, as opposed to organizing a theory at the outset. In this thesis, we have draw
upon our surveys to formulate the stances that are presented in Sections 2.2 and 2.3.3, and
the identification and separation of the different levels that the concept of component is used

in simulation, which is presented in Section 2.4.



Chapter 2

Background

In this chapter, we will provide some information and observations that form the background for
this thesis. We start by describing the research area, since it determines what subjects are related
to this thesis. Then, we will present our stance on simulation, emulation, and testbeds, which
forms a terminological anchor point for further discussions. In Section 2.3, we will cover some
issues related to component-based software. This section provides a background that is more or
less independent of specific component-based systems or development approaches in the literature.
Various component models that exist today are briefly discussed in Appendix C. In Section 2.4,
we have a look at how the component-based approach is perceived and used in the simulation
domain. Then we leave the component-based approaches aside for a moment to look into network
simulation in Section 2.5, and network emulation in Section 2.6. A more detailed survey on
network emulators and testbeds can be found in Appendix B. Finally, we look into component-

based network simulation and emulation in the last section.

2.1 The Research Area

The research area that subsumes the topic of this thesis is component-based engineering of network
simulators and emulators. This area lies in the intersection of two major research areas: simulation,
and software engineering.

Simulation is a large and interdisciplinary field, which involves modeling, mathematics and
statistics, and computing science. The simulation researcher needs modeling in order to represent
the phenomena to be simulated. Mathematics and statistics are needed for experiment design,
modeling, and in order to manage the uncertainties. Computing science provides the methods
for computing the outcome of the model for a set of given inputs. In addition, application of
simulation in some domain naturally necessitates a good understanding of the domain.

Networking is one such application domain where simulations are used frequently as one of the
major tools. The advent of large scale networks and wireless communications in the networking
domain have resulted in new challenges for research in simulation. At the modeling level, scalability
and multi-resolution modeling are issues of concern. Today, there are three major approaches
to network modeling: packet-level event based approach, flow based approach with event based
simulation or partial differential equation solvers, or hybrid approaches where packet-level and flow
based approaches are used together.

Emulation can be defined as using a simulator in an experimental setting where it has to interact
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with non-simulated entities that can be considered as part of the phenomena under study. Net-
work emulation is a popular experimentation technique in networking research, because it allows
researchers to test real protocol implementations, applications, or hosts in situations that might not
be possible or feasible to realize in the real networks.

The models of networks are constructed according to the architecture of some chosen network
simulator, and using the simulation semantics supported by this simulator. In other words, the
meta-model to be used by a network researcher in constructing the model to be simulated in his/her
studies, is determined and imposed by the simulator to be used. Many network researchers come
up with their own simulator for their experiments, in order to be able to control the complexity of
the meta-model used. This suggests that the complexity of the meta-models used by the existing
network simulators is prohibitively or discouragingly high. As a result, there exist today a high
number of experiment specific or researcher/research group specific network simulators.

While there is relatively more interest on the meta-model imposed by the network simulators,
there has been less work focusing on engineering the simulator’s code. The reason seems to be
the conflicting goals of stakeholder roles, namely experimenter and developer, in network simula-
tion: the network researcher focuses on realizing an experiment, not necessarily on implementing
better tools. Due to special needs of network simulation, where the models are generally to be
implemented by the network researcher, implementing better tools also involves providing ways of
implementing tools in a better way. The subject of this thesis from the networking point of view,
addresses this need for work that is focused on ways of implementing simulators in better ways, as
tools for the network researchers.

Since simulators are software, software engineering naturally arises as the discipline to look for
the answers to the question of what would be better ways of implementing simulators. What we
are especially interested in is how to implement simulators in a way that is easy to understand for
the network researchers, that easy composition of model implementations is supported, and that
is extensible to support different simulator implementation approaches or different meta-models.
Composition of the model to be simulated in terms of smaller models, which might be implemented
by different network researchers, provides the natural lines through which modularization of the
code can be realized. Additionally, if a simulator is to be used in an emulation experiment, there has
to be a representation of real entities in the stand-in for the system under test in the experiment.
These submodels and real entities carry the characteristics of a “component”, with regard to the
way this term is used in component-based software engineering. Therefore, a component-based
approach appears to be the most relevant approach for this thesis.

However, existing component-based approaches do not necessarily have the same set of goals as
we have in this thesis. The shortcomings of the existing approaches are related to complex services,
limited extensibility of control flow, and limited support for fine granularity. A survey of existing
component models is presented in Appendix C, and a comparison to our approach is presented in
Chapter 6.

While our focus in this thesis has been network simulators and emulators, we are aware that
the approach in this thesis might be applicable beyond this particular domain. However, such a
claim is avoided, since it might have made this thesis intractable. Further exploration of how the
approach in this thesis can be carried on to other domains for simulation applications, or when it

can be useful in developing applications other than simulators, is left as future work.



C. Computer Systems Organization
C.2. Computer Communication Networks
C.2.0. General: Experimental studies on all issues related to computer
communication networks fall under the potential application domain
of this thesis.
D. Software
D.2. Software Engineering
D.2.11.  Software Architectures: Includes domain specific architectures and
patterns
D.2.13.  Reusable Software: Includes reusable libraries
D.4. Operating Systems
D.4.7. Organization and Design: Includes distributed systems
I. Computing Methodologies
I.6.  Simulation and Modeling
1.6.3.  Applications: Since DINEMO is an application of simulation in the
emulation—based experimental research in networking
1.6.5. Model development: Includes modeling methodologies

1.6.7.  Simulation Support Systems: Includes environments
N J

Figure 2.1: Main subjects of this thesis according to 1998 ACM Computing Classification System.

D. Software
D.2. Software Engineering
D.2.2. Design Tools and Techniques: Includes modules and techniques, and
object—oriented design methods
D.2.3. Coding Tools and Techniques: Includes structured programming, and
object—oriented programming
D.2.12.  Interoperability: Includes distributed objects
D.4. Operating Systems
D.4.1. Process Management: Includes scheduling, and multiprogramming,

multitasking, and multiprocessing
. J

Figure 2.2: Additional subjects, which are also related to this thesis, but more remotely.

2.1.1 According to the 1998 ACM Computing Classification System

The main subjects in computer science that subsume the research question of this thesis, according
to the 1998 ACM Computing Classification System (CCS), are given in Figure 2.1. Additionally,
the subjects in Figure 2.2 also stand as related.

2.2 A Stance on Simulation, Emulation, and Testbeds

In this section, we will elaborate on simulation, emulation, and testbeds, in order to clarify our
stance on how we perceive these related but different concepts. This discussion serves to prepare
the grounds for the construction of our approach, and sets up the terminological space for our
research.



- Real - - Virtual -
System Under Test (SUT) Stand-in for the SUT (SIFSUT)

Figure 2.3: SUT and SIFSUT in simulation. The example system shown on the left is the SUT,
which is real, and the SIFSUT on the right is completely virtual.

2.2.1 Simulation

Simulation is an old and intriguing idea, even from a philosophical point of view. In essence,
simulation is the use of a surrogate system for obtaining information about the original system.
We will refer to the original system as the system under test (SUT), and the surrogate system as the
stand-in for the system under test (SIFSUT)! (see Figure 2.3). A simulator includes a SIFSUT, and
not necessarily but generally parts that act as the surrogate system for the context of the SUT in
situations of interest’.

Computer simulation is the use of a mathematical system built using computational methods as
the simulator in a simulation. When defined as such, the history of computer simulation actually
precedes the history of electronic computers. Before the electronic computers were built, there
were the so-called human-computers, the computing personnel who carried out computations and
algorithms by hand. Some of the work done by human-computers, can also be considered as
computer simulation.

The SIFSUT in computer simulation is a combination of two parts: the model of the SUT, and
methods to computationally process the model in order for the SIFSUT to be able to act sufliciently
similar to the SUT it stands for. We will frequently refer to the former simply as the model, and
the latter as the simulation management functionality (SMF). These two parts are glued by meza-
models, which describe how model structure and semantics relate different methods used as SME

"We will use “SUTs” and “SIFSUTs” to mean “systems under test” and “stand-ins for systems under test”, respec-
tively.

2A precise definition of system, the relationship of being a surrogate, and the epistemological status of the infor-
mation gathered through the virtual, are subjects of philosophical debate [27, 28, 59, 119, 167]. Note that since our
intention here is not one of providing a full fledged philosophical discussion, we will use the terms system, surrogate,
and information somewhat loosely.
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Considering this partitioning, the field of computer simulation focuses on the following tasks and

questions:

* How can the model be constructed? What methods of model construction would end up in
SIFSUTs that sufficiently reflect the SUT being modeled? The development and verification
of mathematical and knowledge engineering tool sets and theories for constructing models.
This focus is sometimes also referred to as conceprual modeling.

* Identification, abstraction, classification, and study of methods to computationally process
the models. Given a model, these methods are used in construction of the SIFSUT. For
example: the study of discrete-event systems, and ensuring causality in parallel discrete event
simulation (PDES).

In computer simulation, the term simulator is more frequently used for referring to software
environment that includes implementation of a set of methods for processing models. Coupled
with suitably expressed models, these environments become a SIFSUT, or a simulator as we have
defined previously. As the borders between models and the computational processes that work on
these models become somewhat blurred, this double meaning of the term simulator gets confusing.
In this thesis, we will try to avoid this dual usage by referring to such software environments as
simulation systems or simulation libraries.

A simulator library is a library of model implementations. Simulator libraries are also frequently
called model libraries, but we will prefer the former in order to stress that the representation of the
models is at the implementation level. At this level, each of these models can themselves be regarded
as a SIFSUT or a simulator.

The models in a simulator library share a meta-model or some meta-model characteristics, in
such a way that they can be composed into a simulator. By and large, the shared meta-model or
characteristics are not documented explicitly, but only expressed through a fixed SMF using which
the model implementations should be run.

A simulation system includes a fixed SMF implementation. Generally, simulation systems come
with a simulator library. In some cases, a simulation system is built by a simulator developer by
choosing and composing parts from a library for implementing the SME We will refer to such a
library as a simulation library. Regardless of whether a simulation system or a library is used, the
resulting simulator includes an SMF implementation that requires to be instructed by a script or a
small size program for building the model to be simulated from models in one or more simulator
libraries.

As it is apparent from its definition, the application field for simulation covers more or less
everything. Applicability is perhaps only limited by the feasibility of resource availability. In one
form or another, computer simulations are developed and used by all engineering fields, manage-
ment and finance, natural sciences, and teaching and training in diverse fields from aeronautics to
military to medicine. Therefore today, there is no shortage of simulation conferences, and most of

them include various fields of applications as track subjects.

2.2.2 Testbeds

Before we move on to discuss what emulation is, we should first define testbeds, since they lie on
the opposite end of the spectrum from the simulation.
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Reflexivity property:

SIFSUT is an instance
of SUT (with respect
to the experiment
description).

- Real - - Real -
System Under Test (SUT) Stand-in for the SUT (SIFSUT)

Figure 2.4: SUT and SIFSUT in testbeds. The example system shown on the left is the SUT, which
is real, and the SIFSUT on the right is also real and is a subsystem of the SUT.

The distinguishing property of a testbed is that it satisfies what we will call the reflexivity prop-
erty’: a testbed itself is a perfectly normal instance of the system that is under study (SUT) in a
particular experiment, which is used for meeting various experimental objectives such as collecting
data to be interpreted for obtaining indicative results about the SUT. The testbed might be a smaller
scale example of the same kind of system as the SUT, but it might not be an all-aspects-scaled-down
version of it. For example, a token ring network of five nodes can be used for developing an ap-
plication targeted for token ring networks. Then, the application would later be deployed onto a
token ring network of hundred nodes. Another simple example is shown in Figure 2.4.

In any testbed-based experiment, one should carefully evaluate in which dimensions the test
results can be regarded as indicative for the properties of the SUT. For example, scalability is one
of the dimensions testbeds are seldom useful for deriving indicative results about. Consider the
example introduced in the previous paragraph: using only five hosts, whether any protocols will
scale to networks of bigger size cannot be determined unless one can replicate the situations of
interest in the big target network using just five nodes.

Examples of testbeds in experimental networking research can be found in Appendix B.

2.2.3 FEmulation

In an emulation-based experimental setup, some of the entities in the SUT and its relevant con-
text are represented by surrogate systems, while at least one entity is used as real (see Figure 2.5).
Therefore, it is more likely in emulations than in simulations, that the level of abstraction will differ

between different parts of the experimental setup.

3Olivier Dalle was the one to put a name to this property when the author was explaining the concept to him in
private conversations.
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Using E as real:

» Eis used in the
SIFSUT as it appears
in SUT,

» E provides the same
functionality in
SIFSUT that it [
provides in SUT

- Real - - Virtual + Real -

System Under Test (SUT) Stand-in for the SUT (SIFSUT)

Figure 2.5: SUT and SIFSUT in emulation. The example system shown on the left is the SUT,
which is real, and the SIFSUT on the right is a combination of virtual and real.

Providing a philosophically sound definition of what it means to be used as real in the experi-
mental setup is not a straightforward task. Nevertheless, we will define the property of being used as
real as follows: in an experiment, an entity £ in the SUT or its relevant context is considered to be
used as real, if in the experimental setup

* E is used as it appears in the SUT or its context,

* E is in relation with the representations of only those entities it would be in relation with in
the SUT or its context,

* and E provides the same function it would provide in the SUT or its context.

The question to ask in order to find out whether an experimental setup is emulation-based or
testbed-based is this: what is simulated in this experimental setup? The answer depends not only
on the properties of the experimental setup, but also on the definition of the SUT and its context
in the particular experiment. The same setup might be considered as a testbed for one experiment,
and as an emulation for some other experiment. This creates a considerable confusion about the
difference between testbeds and emulation-based experimental setups.

It is now time to present our definition of emulator. Let S be a subset of the entities in the SUT
or its relevant context in an experiment. Furthermore, let S, be the set of entities in the SUT or its
context that interact with the entities in S. Then, a simulator that represent S in the experimental
setup is called an emulator if

* the entities in a non-empty subset F, of S, are used as real in the experimental setup,
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* the simulator is capable of interacting with the entities in E,. using the same modes of inter-
action that the entities in S would have used when interacting with them in the SUT or its
context.

This definition can be demonstrated using flight simulators as an example. The so called flight
simulators can be considered as emulators, if one defines an experiment that considers the pilot as
part of the SUT or its context. A flight simulator acts as the representation of the plane and its
surroundings. It interacts with the cockpit personnel using the same modes of interaction that they
would experience in a real situation, except for a few effects such as gravity. Therefore, for a suitably
defined experiment, a flight simulator is not a simulator but an emulator. This logic applies to
many other systems used for educational purposes such as in surgeon training.

Consider also the software applications that act as if they are a particular type of machine
or operating system. In fact, these are popularly called “emulators”. For example, there exists
“emulators” of Commodore Amiga, ZX-Spectrum, and Atari platforms, and for operating systems
like Palm Os.

Time is an interesting entity that is an important part of the SUT and its context in many
experiments. Executing in a way that synchronizes the real time (a.k.a. wall-clock time) with the
time in the simulated system (a.k.a. virtual time), is considered to be a characteristic property of
emulators by some researchers. Actually, time is only another part of the reality that in theory can be
simulated in an emulation-based experimental setup. A simple example is provided by the various
computer system emulators mentioned in the previous paragraph. In the SUTs of these emulators,
time is already abstracted as timing signals. Using this abstraction, these emulators can be made
to run slower or faster than real-time, while still carrying the properties of an emulator since they
continue to interact with (run) real programs.

2.3 Component-Based Software

Component, “software component” to be more precise, is an elusive concept. There are many
definitions in the literature, stressing many different characteristics attributed to components. In
fact, it is in itself an intriguing question why the concept of software components is an elusive one.
Is it simply because there is a considerable population of developers today, almost each of which has
a perspective of their own? But then, why is it so? Does this point to an immaturity in the field?

Perhaps, some of the answers lie in the fact that there exists a self-similarity relation between the
software and its components: a software component, which is a component of a software, is itself
a software. Continuing to think along this line, we arrive at two questions that must be studied
philosophically, or to be more precise ontologically: what is software, and what does it mean to
be a component? Hardware, which has traditionally been the complement of software, is now
being “coded” using languages not very different than those that are being used to code software.
Therefore, we appear to be navigating philosophically near-blind, given the relatively little amount
of work done or in progress towards understanding the ontological status of software itself. One
exemplary attempt at such a philosophical exploration is given by Weber [187], based on Mario
Bunge’s ontological approach [27, 28].

However blind we philosophically might be, the motivation behind organizing software as com-

ponents is a simple one. It is generally conceived that the products of the other “more mature” en-
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gineering disciplines are constructed out of more or less standardized components. Availability of
such a concept of components in the discipline provides the practitioners with a choice of focusing
either on studying component making, or on building systems by putting together available com-
ponents in systematic ways. Wide use of such components also creates a stable market for them,
which becomes a driving force for increased production and revenues in the discipline under certain
conditions.

It was as early as 1968 [122] when the idea of software components first found their way into
the literature. It appeared in the form of the metaphor of software ICs (Integrated Circuits), with a
special reference to systematicity. As a matter of fact, many ideas about components are also to be
found in the object-oriented programming approach, work on which started with the SIMULA 1
project in 1961 by Kristen Nygaard and Ole-Johan Dahl [131].

In the mid-80s, the object-oriented approach started to gain serious momentum. In addition
to C++, which is currently very popular, one of the important developments of that time was Ob-
jective C. In the context of his work on Objective C, Cox points to the different architectural layers
in which objects can be used, and compare these layers to gate, block, chip, and card level com-
ponents in electrical engineering [42]. Furthermore, although elements in all these layers provide
encapsulation, components become less tightly-coupled as one goes from gate level to card level.
Therefore, Cox concludes that although tightly coupled objects are necessary, there is a need for
another abstraction layer where the integration of a software system can be made using loosely
coupled “higher-level” objects.

Component-based approaches have become quite popular since mid-90s. Today, there exist
various different component models and platforms. A survey of these component models is pro-
vided in Appendix C, which presents a short overview of OMG’s CORBA Component Model,
Sun’s JavaBeans and Enterprise JavaBeans, Microsoft’s COM and .NET, Common Component Ar-
chitecture, Fractal Component Model, Autonomous Component Architecture, Mozilla’'s XPCOM,
Universal Network Objects, and some others.

In this section, we will shortly discuss some of the issues and concepts related to component-
based approach. It is not our intention to provide a comprehensive discussion of all issues related
to component-based approach. Instead, the subjects discussed below are chosen for their relevance
to this thesis.

2.3.1 Categorical Definition of Component: Characteristics

In this section, we will present a brief overview of different definitions provided for “component”
in the literature. One of the major resources for this section was the excellent book authored by
Clemens Szyperski [173], with contributions from Dominik Gruntz and Stephan Murer. Through-
out this book, Szyperski provides several definitions, drawing upon a set of characteristics he at-

tributes to the software components:

* being units of independent production, independent acquisition, and independent deploy-

ment,

* being units of composition that have contractually specified interfaces, and with all context

dependencies declared explicitly,

* being executable units which can be composed into a functioning system.
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Szyperski defines “component” categorically through these characteristics. In fact, he is not
alone in preferring a categorical definition: a declarative definition of “component” is usually
avoided. In Chapter 11 of his book [173], Szyperski quotes various definitions by others. These
definitions appear to be clustered near the two opposite ends of a spectrum, depending on what
properties they stress. At one end, the definitions focus more on implementation or architec-
tural organization of software using components, by referring to persistence, incoming and outgo-
ing interfaces, plug-and-play capability, coherence, coupling, and collaboration and interoperation
[20, 52, 80, 83, 89, 129, 133, 136]. In contrast, at the other end of the spectrum lie life-cycle
related concepts such as being prefabricated, being pretested, reuse, maintenance, deployment,
support, and independent development [52]4. Concerns that are orthogonal to this spectrum also
creep into the discussion, such as being business process aligned [83, 190].

From our perspective, the main characteristics of components appear to be the following:

Independent development: Components are independently developed, possibly by different de-
velopers. They are packed as prefabricated and pretested units of deployment. They are also
maintained and supported independently.

Independent deployment: Components are units of deployment: they cannot be partially de-
ployed. Furthermore, they are usually deployed by third party. Therefore, they have to be

self-contained.

Easy composability: Components are for composing. Such composition is likely to be realized in
the context of other components developed independently. Therefore components need to

be designed for late integration.

Coherence: Components are coherent units of software. They exist at a level of abstraction where

they “directly mean something to the deploying client” [173].

Explicit context dependencies: In order to be both composable and decoupled, components have
to define explicitly what they require from the deployment environment and other compo-
nents. Naturally, they also should declare what they provide. Such dependencies are made
explicit through contracts, which include “incoming” and “outgoing”, or “requires” and “pro-
vides” interface definitions. Contracts provide a mutual understanding among different de-
velopers, and among developers of components and those who do the deployment. For this
purpose, a contract should specify how a particular component can be deployed, how it can
be instantiated once deployed (and installed), and how the instances behave through the

advertised interfaces.

Up to this point, we have focused on the characteristics of components. In addition, one can
also investigate characteristics that emerge in systems due to being constructed using a component-
based approach. According to Szyperski, the component-based approaches in software engineering
aim to build systems that exhibit the system-level characteristic called independent extensibility: a
system is independently extensible, if it can cope with the late addition of extensions, which are
components to be plugged into the running system when needed, without requiring a global in-
tegrity check [172].

4Szyperski also cites a whitepaper by the Meta Group which was acquired by Gartner Inc. in 2005, Jed Harris as
quoted by Orfali et al. in [136], and a report by Ovum on distributed objects published in 1995.
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2.3.2 Components, Component Instances, and State

The relationship between the components and component instances can be compared to the rela-
tion between classes and objects in object-orientation. A component instance encapsulates a state,
and contributes to the functionality of the system it is composed into, by collaborating with other
component instances through the set of interfaces it provides, and interfaces of other component
instances that it uses. Component instances have their own identity, even when they can only be
instantiated following the singleton pattern [66] in a system. A component is a description of the
component instances, from which instantiation can be made. In general, similar to how object-
orientation is supported at run-time, the behavior defined in code in a component is shared either
as the source executable, or as memory fragments, among different instances of the component.

Meta-classes or templates in the object-oriented world provide potential metaphors for explain-
ing what it means for a component to have a state. We define component state as the state associated
with a component that determines the behavior and initial state of component instances created
from the component. Component state is not modifiable by the instances of a component, and
may even be inaccessible to them. A definition of state of a component instance can be easily
constructed using the similarity of component instances with objects in object-oriented approach.

These definitions relate to a characteristic attributed to components by Szyperski: having “no
(externally) observable state” ([173], pp. 36). We are not in full agreement that this is a characteris-
tic of components, as discussed in the brief critique of this characteristic in the Appendix A of this
thesis.

2.3.3 The Four Components of the Component-Based Approach to Software
Engineering
Component Model

A component model is a description of what it means to be a component. It defines what a compo-
nent is, how a component can interact with other components, what a component’s execution and
data flow characteristics can be, how components can be composed, and so on. This is the most
abstract level view of components: a component model is the model of components.

As an example, MICA, which is presented in this thesis in Chapter 4, describes a component
model that we propose to serve as part of software architectures for network simulators. In Ap-
pendix C, we discuss more about component-based approaches from the point of their component
models.

Our definition of the component model relates to the discussion of the concept by Heineman
and Council [80, 173]: a component model specifies the type of explicit context dependencies
components may have (interaction standards), and how a set of components can be composed
(composition standards). Therefore, a component model describes partly how a component is
constructed (not its production, but its structure).

Component Platform

A component platform is a computational environment on which components as defined by a
particular component model can be implemented and run. Sometimes, a component platform is

also referred to as a run-time infrastructure or environment. There may exist multiple component
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platform implementations for a component model. As component models provide different levels
of detail about what a component is and its interactions with its environment, different component
platforms for some component model may or may not be able to host a shared set of components.

CCM, CCA, Fractal, and MICA are examples where the component model is intentionally
defined and described separately from the component platform(s). The main reason for such a
separation is to allow component platforms that focus on different domains or that use different
technologies to appear. Other component models, such as JavaBeans, EJB, COM, or .NET, have
been developed as de facto standards by certain vendors, which also provide either the only or
the reference component platform implementations. As an example to the level of detail in the
component models, ACA leaves many design decisions to its component platform. Therefore,
although the intention was not backing ACA up with a single component platform, it has been
tightly coupled with the platform that was introduced with it. Fractal provides another example,
since it leaves the issue of control flow to platform implementations. MICA will be presented in
Chapter 4, and the other component models mentioned are shortly discussed in Appendix C.

Our definition of component platform agrees with Heineman and Council’s definition of “com-
ponent model implementation” as the dedicated set of executable software elements required to
support the execution of components that conform to the model ([173], pp. 204). Szyperski ap-
pears to be referring to the same concept, in his definition of component platform ([173], pp. 549):
“the foundation for component to be installed and execute on.”

Component-Based Architecture

Component-based architecture is the set of types of components, in terms of what is being mod-
eled, and the description of their relationships. Therefore, it identifies how the association will be
established between the relevant entities in the target domain of the software being engineered, and
components as defined by a chosen component model.

For example, if the software is an accounting system, the architectural elements may involve
the data entry points, databases, and various reporting tools. The architecture might detail the
elements, and how they are related, such as different kinds of account books which are part of the
database.

Component-Based Framework

A component-based framework is a collection of rules and specifications® that define the interac-
tion of components towards some clearly defined set of reusable design goals. A component-based
framework restricts and guides the implementation of a component-based architecture for a partic-
ular domain. It adds more details up to the point where the system can be realized by deploying
and instantiating suitable components on a chosen component platform.

In some component-based approaches, some services that are expected to be frequently used by
the components are provided to the components as libraries. While these services are not imple-
mented by other components in the system, they are nevertheless regarded as part of the framework.
For example in CCM or EJB, component context may provide the component with services that

are not necessarily provided by other components in the system.

5Such rules and specifications for a single component will be called its contract in the next section.
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In one component-based system, multiple component-based frameworks may coexist, and one
component may satisfy contracts from multiple frameworks. For example, one framework might be
defining event distribution services, while another might be defining semantics of some particular
kind of business transactions, and a component might be adhering to both. This style of combining
frameworks can be regarded as horizontal. In vertical combination however, a framework may be
implemented using other frameworks. This can even be established through composing compo-
nents using one or more frameworks in order to build a composite component (see Section 2.3.6),
which can be used in the implementation of a “higher-level” framework. Szyperski also points to
the combination of frameworks by stating that “component frameworks are themselves components
plugging into higher-tier component frameworks.” ([173], pp. 548)

2.3.4 Interfaces

Interfaces are reified entry or exit ports of component instances for data or control flow. Behind
these ports, there also exists a transportation system that carries data and control around. The
characteristics of the transportation system are necessarily a part of the interface mechanisms defined
in a component model.

There are many different ways of defining what interfaces are, and how they can be used by
component instances. Some possible configurations that can be supported in different component
models are shown in Figure 2.6.

Different categorizations of interfaces are being used in the community. One categorization
suggests that one can identify or design for “provides” vs. “requires” interfaces. While “provides” in-
terfaces specify how to access the services provided by the component instance, “requires” interfaces
specify what services the component instance requires in order to fulfill its function. It should be
noted that “provides” vs. “requires” categorization is based on intent of the designer, and does not
seem to have solid support at the programming language level. Furthermore, it is possible to con-
ceive designs that involve interfaces in which provided and required services are mixed. Provides and
requires interfaces also appear to suggest a bidirectional and request-reply type of communication,
which may necessitate more complex mechanisms in the transportation system.

“Incoming” vs. “outgoing” interfaces is another categorization. This categorization assumes
a unidirectional data or control flow. An interface is an incoming interface if data or control is
flowing towards the component instance. Otherwise it is an outgoing interface. A request-reply
type of communication can be implemented using one incoming-outgoing interface pair for each
side of the communication.

At the implementation level, two approaches to implementation of interfaces can be identified:
procedural and object interfaces ([173], pp. 50). Procedural interfaces are composed of static call-
points defined for a component or a component instance. Since procedural interfaces are static, a
component or a component instance cannot have more than a single instance of such an interface.
On the other hand, object interfaces can be dynamically created, destroyed, and passed on to other
component instances. Object interfaces are like ambassadors acting as instances of a particular
interface of a particular component instance.

Whether interfaces are used at both ends of the communication or not, and whether procedural
or object type interfaces are used, are component model design decisions. However, these decisions
determine the options available to the component platform developer in devising a method for
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Figure 2.6: Various different approaches to formulating interfaces in component models. In all
figures, initiating side is drawn on the right.

establishing the binding between the caller and the callee component instances in a way that keeps
their coupling to a minimum.

2.3.5 Contracts

Contracts are documents that constrain the apparent behavior of a component. They serve as the
agreement that the instances of a component should adhere to in their interactions with other com-
ponent instances. Contracts may prescribe both functional aspects, such as syntax and semantics of
an interface, and non-functional aspects, such as service level specifications. While the terms “con-
tract” and “interface” are sometimes used interchangeably, in fact contracts subsume the definition
of relevant interfaces. Especially, non-functional behaviors are not always explicitly represented in
interface designs, while they should be included in contracts.

It is this author’s opinion that contracts cannot be independent of component models. Never-
theless, contracts may strive to address several more-or-less compatible component models at the
same time.

Contracts can also be used to guide the choice about the component platform to be used in a
project, if more than one platforms are available to choose from. A design in terms of contracts
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that is prepared early in the project development, may help formulating the criteria for the compo-
nent platform choice. Such a set of contracts relates closely with the concept of component-based
frameworks.

Testing and Verification

The independent extensibility property of component-based systems, which was introduced in
Section 2.3.1, comes with its own problems. Since components are independently developed,
tested, and deployed, a system level analysis for global integrity check is not very feasible at the
time when the components are to be plugged into a running system. Even when the integration of
components is not done while a system is running, a system level analysis is costly. Therefore, it is
preferable to avoid such an analysis as much as possible.

If a component is not to be tested in the context of a system, what is it to be tested against? A
system design can be expressed in terms of contracts, which then need to be satisfied by component
instances at run-time. Therefore, contracts that a component is designed to satisfy provide the
requirements against which to verify the component.

However, testing and verification of a system composed of components does not so easily relate
to the verification of the individual components. In [109], Leino et al. focus on systems with high
level of data abstraction and information hiding, both of which naturally follow from independent
development, composability, and coherence characteristics of components. In their paper, they
define the property of “modular soundness” as the property that holds when separate verifications
of the individual modules of a program suffice to ensure the correctness of the program. They
point out that modular soundness is “surprisingly difficult to achieve”. Nevertheless, we believe
that contracts provide at least the criteria for unit testing, and may be useful in guiding integration

tests.

2.3.6 Composite Components

A set of interacting components can be regarded as a composite component. This presents an
orthogonal dimension to composition approaches that will be presented in the next section. In this

section, we look at different ways of forming composite components, and other related issues.

Aggregation
Aggregation is a simple clustering of component instances, where some of the interfaces of the

aggregated instances are exposed to the outside of the aggregation in order to appear as the aggre-

gation’s interfaces.

Containment

In contrast to aggregation, the interfaces of the component instances that take part in a containment
style composite component are not available to other component instances that are outside the
containment. A containment has its own set of interfaces. In the implementation of the services
it provides, a containment may use the contained components, but the contained components are
shielded from the outside.
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Shared Components

Sharing components between different composites is an idea that is relatively scarce. The only
example appears to be the Fractal architecture (see Section C.5). The use of shared components
can be viewed as a way to create an intuitive design pattern for representing connections between
composite components, where the connections have a considerable amount of associated behavior.
A good example is provided by Dalle [43, 44, 45], where he proposes representing the simulation
of the shared medium of communication in network simulations by using a shared component in
the composite components that represent the nodes in the simulated network.

Representing Composites in Flat Component Models

Composite components do not add to the representative power of a component model. Aggrega-
tions, containments, and shared components all have equivalent structures in flat models. However,
it must be noted that an analysis of the usefulness of such constructs in making the job of the de-
signer easier, is a subject we do not intend to address here.

Aggregations are very easy to represent as a set of component instances. The component in-
stances in the aggregation already have their interfaces exposed. However, an ambassador compo-
nent for the aggregation can be constructed for encapsulation purposes. This ambassador would
forward the traffic coming from outside the aggregation towards the proper interfaces in the aggre-
gated component instances, and the traffic originating from the aggregated component instances
towards the outside. A problem with this approach is that the ambassador component can be
perceived as a potential performance problem.

A containment can be represented using one logically outer component instance, which solely
controls the references to the logically contained component instances. This outer component for
the containment can again be referred to as the ambassador for the containment, following the
naming we have introduced for aggregations. The behavior of the containment, which is supposed
to be implemented by making use of the services provided by the contained components, can be
implemented in the ambassador. Since the behavior of the containment has to be implemented
somewhere, the addition of the ambassador component in containments cannot be considered as a
source of unnecessary performance penalties.

Finally, shared component instances can be viewed as component instances that break down the
encapsulation behind an ambassador component instance in a containment or an aggregation, by
being directly connected to component instances that take part in different composite components.

2.3.7 Composition

Szyperski identifies two methods for composing component instances into systems: context-based
and by wiring [173]. A component model is considered to be using context-based composition
if component instances are composed into the rest of the system by placing them in containers
that provide the execution environment and services the instances need. In this way, context-based
composition emphasizes the role of frameworks as the glue between the component instances.

In composition by wiring, either interfaces of component instances are connected to each other,
or component instances are provided with the information about which interfaces of which other
component instances they are going to use.
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Hybrid approaches are also possible, such as by wiring containers to other containers. The

Fractal architecture (see Section C.5) can be considered an example to this approach.

2.3.8 Component Reuse

Reuse is one of the main goals for the component-based approach to software engineering. How-
ever, contrary to what appears to have become an urban legend, having mere components is not
enough for effective reuse in and across different software systems. In [151], Ran discusses that
reusing non-trivial software components is not an easily achievable goal, and argues that compo-
nent reuse is only possible if it is a consequence of architecture reuse. Similarly, in the context of
definitions provided in Section 2.3.3, we will hypothesize that reuse of a component is possible only

* across two component-based frameworks that provide compatible contexts for the compo-
nent to be reused,

* across two component-based frameworks that are based on the same component model and

supported by compatible component platforms,

¢ and when the component-based architectures related to the two frameworks share compatible

associations between entities in a domain and the component model.

Type Systems

Type systems play an important role in expressing where a component can be reused. Three type
systems can be identified in component-based approaches: for components, for messages, events,
or data communicated between components, and for interfaces. These type systems do not neces-
sarily appear as separate systems from each other in component models, but they can be separated.
Identification of uses or usefulness of different constructs in type systems for these three different
classes of constructs, such as support for polymorphism or inheritance, will not be addressed in
this thesis. Interface definition languages, such as CORBA IDL, address the need for type systems
for communicated data and interfaces. Inheritance in components or interfaces is also addressed in
various different component models.

Versioning

Since components are independently developed and tested, their evolutions as software products
proceed independently. Therefore, versioning and effective use of versioning in reuse of compo-
nents also appear as problems worth investigating. Versioning can be applied not only for the
components, but also for interfaces, contracts, and even for messages exchanged between compo-
nent instances.

Complexity of the Component Selection Problem

Composing components is a tedious task, as evidenced by the general feeling in the software engi-
neering community. Therefore it is desirable to provide tools for assisting or preferably automatizing
this task. For this purpose, the problem of component selection and its complexity has been the

subject of various studies in the recent years, especially in the simulation domain.
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The component selection problem is defined as follows: given a set of components and a set
of objectives, determine whether a subset of K elements of the component set exists, such that the
components in this subset collectively meet all the objectives in the given set of objectives [12].
Results are reported in the literature that even in the case where an oracle exists which can provide
the information about whether an objective has been met by any component in a set of components,
the solution to this problem is NP-complete®. This has led to development of approximation
methods both in the simulation domain [61] and in other domains [168].

While the original component selection problem assumes black-box reuse of components, reuse
with adaptation has also been addressed. The difference in the problem formulation for the com-
ponent selection problem with adaptation is that components are allowed to be modified, and the
modification costs are also taken into account. Bartholet et al. report that reuse by adaptation also
turns out to be NP-complete [12].

2.3.9 Relationship Between Object-Oriented, Component-Based, and
Service-Oriented Approaches

The borders between object-oriented, component-based, and service-oriented approaches in soft-
ware engineering are somewhat thin. Component-based approaches are generally expressed in
a way that involves object-orientation, and service-oriented architectures appear as component-
based implementations of software systems, where component granularity is coarse. Furthermore,
these approaches must not be taken as exclusive approaches, but as complementary ones: object-
orientation is useful in implementing components or run-time infrastructures for component-based
or service-oriented systems, and services can themselves be implemented using object-oriented or
component-based techniques.

2.4 Component-Based Simulation

Any new approach in software engineering creates new hopes for a silver bullet. Component-
based software engineering did not fail to create high hopes, either. As it happened with object-
orientation, a long list of lucrative benefits have drawn attention from the simulation field. Nu-
merous studies that talk about organizing simulation models and their implementations as com-
ponents have been published. In this section, we will first have a look at the motivation in using
component-based approaches in simulation. Then, we will identify some component concepts used
in simulation, which should be distinguished.

2.4.1 Motivations

A characterization of various motivations reported in the literature can be observed from the con-
ceptual map in Figure 2.7. There appear to be three main motivations for using a component-based
approach in simulation: composability, reuse, and what we will call the simplicity/intuitiveness/less
effort argument.

SBartholet et al. cite Petty et al. for this result. For citation, see [12].
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Figure 2.7:  Various motivations for using a component-based approach in simulation. The key-
words in the dashed boxes appear as the central motivations.

Composability

Constructing simulators or models as compositions of components is a frequently reported motiva-
tion [29, 65, 84, 124, 148, 152, 160, 177]. Some authors point out that using visual composition
tools for composing components is a promising idea for increasing usability [65, 186]. Further-
more, component-based approaches are expected to be a useful tool for building distributed simula-
tors, or simulators that work in heterogeneous environments [124]. In addition, component-based
systems are regarded as more extensible [124, 177], which appears to relate to the independent

extensibility property of component-based systems (see Section 2.3.1).

Reuse

Reuse is one of the strongest expectations, and is presented as a motivation for using a component-
based approach [13, 29, 37, 38, 43, 45, 54, 65, 107, 145, 166, 170, 177, 183, 186]. Chen et al.
make the observation that there appear to be two levels of reuse in simulation: model-level reuse
through model replacement, and simulator-level reuse or interoperability [37].

Another theme related to reuse is the inadequacy of object-oriented approaches in satisfying
the needs [165, 177]. It is pointed out that binding between objects in object-orientation is too
strong [165, 177]. Components are expected to be loosely coupled [29], especially when considered
in comparison to objects in object-orientation [45]. In addition, components are perceived to have
the right granularity with respect to models in simulations [30], where the granularity of objects is
deemed too small [177]. Both Buss and Tyan also refer to components as being generic [29, 178].
Being generic appears to be a concept related to components being at such a granularity level that
it becomes easier to identify units that can be reused with adaptation.

As a side effect of reuse, some authors point out potential gains in testing, verification, and
validation [45, 145, 152, 170], drawing upon the fact that components are pre-tested units. In
fact, Szymanski goes almost as far as saying that the verification problem is solved [170]. How-

25



ever, potential gains in this aspect of reuse might be limited, due to difficulty in achieving modular
soundness (see Section 2.3.5). Carnahan et al. discuss how simulation specific characteristics that
are not always found in general software systems might be exploited in order to support compos-
ability and reuse in building simulators [32].

Simplicity/intuitiveness/less Effort

Simulation researchers appear to find component-based approaches natural and intuitive [37, 41].
Component-based approaches are considered to reflect the structural organization of the system to
be simulated [45], which contributes to their intuitiveness. Being intuitive, they are also expected
to be beneficial for teaching different strategies for simulator design [84].

Another motivation that is closely related to intuitiveness refers to component-based approaches
as being simpler and as requiring less effort [13, 38, 45, 65, 124, 148, 152, 186]. Component-
based approaches are perceived as able to divide systems into manageable smaller tasks [38], and
as necessitating less low-level coding [124]. Such a perception is apparently due to the coherence,
low-coupling, and independent development characteristics of components. In addition, use of
components is expected to lead to less effort being spent in testing and validation [45, 145, 152,
170], and to make it easier to apply “many software-engineering good practices” [45]. Finally, as
mentioned before, visual composition is expected to ease simulator construction by turning most
of the implementation into composition [65, 186].

2.4.2 Component Concept at Different Levels

Component is a very general concept that relates to the state of being composed. Therefore, com-
ponents can be observed in different activities involved in the construction of a simulator. Three

identifiable uses of components can be distinguished:

Components of the SUT refer to the separately identifiable entities in the SUT or its relevant
context in an experiment definition.

Model components refer to coherent, self-contained sub-models of the model of the SUT and its
relevant context.

Simulator components refer to the units of software implementation used for structuring the sim-
ulator. Simulator components are components in the component-based software engineering

sense.

It should be noted that implementation of the model components may or may not be based
on simulator components. Even if the model of the SUT and its context is composed of model
components and the simulator is built using simulator components, it does not necessarily hold that
there exists a one-to-one mapping between the model components and the simulator components.

The distinctions between these different uses of the component concept in simulation are not
always adhered to or observed in the literature. Especially in the network simulation domain,
emulation-based experimentation blurs the separation between the components of the SUT and the
simulator components. Model component and simulator component distinction is becoming more
identifiable, through increasing interest in model components level approaches such as DEVS [40,
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1971, and work on model level libraries [15, 166, 183]. Articles that mention the mapping between

model components and simulator components are rare [153].

Four components of component-based approach revisited

Since we have acknowledged that all these concepts are variations of components, one is tempted
to explore how they relate to the terminology discussed in Section 2.3.3: component model, com-
ponent platform, component-based architecture, and component-based framework. These terms
were defined for software components, which correspond to simulator components. Therefore they
apply without modification for the case of simulator components. Any possibility of using these
terms at the level of components of the SUT depends entirely on the domain. To be used at the

model components level, their meaning should be stretched a little:

Component model: The definition that was provided in Section 2.3.3 can be used. For example,
DEVS formulates components at the modeling level, thereby providing a component model.

Component platform: Sets of algorithms that describe how the components as defined in a com-
ponent model would work together, can be called a component platform. Again, DEVS can
be given as an example: there are different algorithms reported in the literature that describe
how components in DEVS can be simulated.

Component-based architecture: An explicit documentation of a particular ontological” approach
in modeling using a component model, can be called a model-level component-based ar-
chitecture. It would mainly deal with the mapping between things in the domain being

modeled, and the components in the component model being used.

Component-based framework: A model-level set of contracts that stands for a set of reusable
design goals. As an example, one may consider the model of a computer where the contracts
between different functional units are fixed, but different models of these functional units

might be employed.

Granularity and composition of simulator components

Simulator components level composition approaches can be put on a scale with respect to the gran-
ularity of the components being composed. In systems such as DIS, HLA, and the Dynamic Sim-
ulation Backplane (DSB) [155, 193], a composition has a coarse granularity, since the components
being composed are typically whole simulators. In systems with fine grained compositions, the
components are typically small models or sub-models, such as individual protocol implementations
in network simulators.

Composition styles used in component-based simulation systems or libraries appears to be de-
pendent on the granularity. For systems or libraries that provide fine grained compositions, the
main style of composition appear to be composition by wiring [9, 37, 65, 106, 107, 124, 163].
The so-called port-based design [49] can be regarded as just another formulation of composition
by wiring. On the other hand, composition style in the systems that use a coarse grained composi-

tion resemble more to context-based composition.

7In philosophical sense.
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2.5 Network Simulation

Network engineering and networking research involve non-trivial tasks such as protocol verification
and analysis, and examination of the interactions between various protocols. Using simulators to
experiment with virtually created scenarios is an important method that is being used frequently.
The perceived importance of simulation has increased in the last decade due to increased interest
in understanding large scale networks and building new ones, and due to new developments in
wireless network technologies.

In this section, a brief overview of network simulation will be presented. We will divide the
presentation of the related issues into three sections on model design and construction, techniques

and algorithms for executing models, and engineering of network simulators as software.

2.5.1 Model Design and Construction

Design and construction of models and sets of models is a subject in simulation that relate di-
rectly to the domain in which simulation is being applied. Therefore, it is also an integral part
of the research method of a networking researcher who uses simulation. It should be noted that
from the simulation perspective, model design and construction is also related to meta-models and
simulation world views, and various algorithms for executing models.

There appears to be three approaches used in modeling networks with regard to how the traffic
is modeled. One approach focuses on representing traffic similar to fluid flow. This approach
attempts to come up with a set of differential equations that are solved analytically or by simulation
in order to obtain the desired information. In the more popular approach today, all events occurring
related to the individual packets are represented in the simulator, leading to a very fine grained
traffic model. However, such fine grained models lead to performance problems since they create
too many events. In order to harness the benefits from both fluid flow and packet-level models,
hybrid modeling approaches that focus on coexistence of flows along with packets, are also being
researched [2, 98, 101].

In addition to the work on developing ways of modeling networks, there is also considerable
work on developing simulation frameworks, simulators, and model libraries. A simulation frame-
work for a particular domain provides the description of what family of models should be inter-
acting with which others, and in which patterns. That is, a framework is concretized by putting
models into the placeholders defined through the framework. In reference to the architectural
tiers discussed by Szyperski in [173], three approaches to development of simulation frameworks,
simulators, and model libraries can be distinguished:

* Implementing from scratch: x-Sim [22], NS [23], SIMMT-II [31], GENESIM [50], the
simulator by the University of Durham and Terrington Systems Ltd. [53], WIP-Sim [102],
DISDESNET [125], GTNetS [154], OMNeT++ [182], Nessi [184].

* Implementing as additional architectural tiers on existing general purpose simulators, simu-
lation libraries, or simulation frameworks: SWANS on JiST [10, 11], Libra on Ptolemy [39],
MaSSF on SSF [113, 114], IRLSim on Parsec [175], J-Sim on ACA [177, 178], ATM-TN
on SimKit and WarpKit [179], GloMoSim on Parsec [198].
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* Implementing as additional architectural tiers on existing network simulators: MNS on

NS [1], GEO on NS [96], GTSNetS on GTNetS [138], SensorSim on NS [140].

2.5.2 Techniques and Algorithms for Executing Models

Subjects of discussion on the issues related to techniques and algorithms for efficient execution of
models compare well to the well known division between time and space requirements of algo-
rithms.

The memory usage becomes a serious problem as the scale of the network to be simulated gets
bigger, since all events generated, packets in transit, and executable models including their state
information consume the memory [64]. Different approaches target this problem, such as reducing
the number of events [2, 154], and partitioning models for distribution onto multiple parallel
hosts [113, 132, 171].

Decreasing the running time needed for simulations of network models is another important
problem. Some benefits of decreasing the running time are:

¢ It would allow better utilization of researcher time.
* More experiments can be carried out, which might lead to more insight.
* More episodes can be executed, which would lead to better statistical results.

* Sometimes ability to decrease the running time might be the factor that makes an experiment
feasible to conduct, which is the case for simulation of large scale networks.

Work on more efficient event list implementations [139, 192, 194], reducing the number of
events [2, 154], and optimizations such as no-copy message passing between models and the sched-
uler [11] aim to improve the performance of network simulators, regardless of the simulator being
parallel, distributed, or monolithic.

Using parallel and distributed simulation [63, 125] is another popular way of attacking the
problem of decreasing running time. There exists both parallelization of already existing network
simulators such as NS [64, 111], and network simulators designed from the outset to be able to
run in a distributed manner [154]. However, as Perumalla et al.’s work shows, there is still work
that needs to be done in implementing these techniques in the run-time infrastructures (RTT), as
even small optimizations may decrease the RTT cost in event processing from 55% to 18% [143].
Whether and under which conditions parallelization of a model has a sufficiently high utility from
the point of view of the experimenter [127] is also an important factor in choosing simulators from
the experimenter’s point of view. This is also important from the network simulator developers’
point of view for identifying strategical targets, in terms of model size and distribution options
provided in the simulator.

2.5.3 Engineering of Network Simulators

On the engineering of network simulators’ software, there is not much discussion in the literature.
Usability of network simulators appears to be regarded as solved by providing visual interfaces or a

scripting interface [23] for configuration and scenario creation. Extensibility is generally associated
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SUT Experimental Setup

Figure 2.8: Example to using physical layer of the SIFSUT as a surrogate for the physical layer of
the SUT.

with being an object-oriented design or a modular-design. The architecture of network simulators
is perceived as being a layered one, where a simulation kernel forms the lower layer, and model

implementations form the upper one.

2.6 Network Emulation

We have published a survey on network emulators and testbeds in [73]. That survey has been
included in this thesis as Appendix B, with small revisions. Based on this survey, this section
provides an overview of techniques used in network emulators.

In some of the systems reported in the literature, identifying what is simulated is not trivial.
For these systems, what is simulated depends mostly on the definition of the SUT and its context
in the experiment [36, 144].

It is difficult to model the physical layer in networks accurately, and simulation of the physical
layer is computationally intensive. Using the real physical layer of the experimental setup as a
surrogate for the physical layer of the SUT [36, 108, 144, 181] is one of the approaches used
to address this problem in the case of wireless networks (see Figure 2.8). In this approach, the
wireless medium in the experimental setup is either used directly [36, 144], or by optionally adding
noise [108, 181]. When using the wireless medium of the experimental setup, the distances between
the nodes in the SUT or its context can be scaled down by attaching signal attenuators on the
antennas of the nodes used as real in the experimental setup [47, 95, 181]. As an alternative to
using the wireless medium in the experimental setup, some researchers have explored capturing and
feeding the radio signal by directly interfacing with the antennas of the wireless NICs of the nodes
that are used as real. The captured signals are processed or guided to create desired effects and
connectivity [93, 94, 95].

When the physical layer in the experimental setup is used as a surrogate for the physical layer
of the SUT and its context, there may be a need to address mobility as well depending on how the
SUT and its context is defined in the experiment. Methods used for simulating the mobility of the
nodes include using cars [120], using people to carry nodes around [115, 130], and mounting the
nodes on small mobile robots [47, 181].

Routing traffic from and to the hosts that are used as real in the experimental setup through
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Figure 2.9: Example to emulation by routing traffic from real hosts through a simulated network.
It is also possible in this approach to use multiple simulators running on different hosts, which
simulate different parts of the simulated network, as shown in the bottom part of the figure.

a simulated network is another emulation technique [57, 78, 100, 112, 118, 161, 162, 180] (see
Figure 2.9). In these studies, modification on the hosts used as real is typically very limited, such as
configuring them to route their packets through the simulated network. A more intrusive alternative
is placing traffic shapers between protocol stacks and network interfaces in the hosts providing
the traffic [81, 82, 117, 200, 201] (see Figure 2.10). While these traffic shapers may or may
not be controlled by a central server, this approach can be considered as distributing some of the
functionalities of the simulator to the hosts that are used “almost” as real.

An alternative to using traffic shapers in the kernel is using the universal TUN/TAP driver,
which provides virtual network interfaces. Using these interfaces, it becomes possible to use the
protocol stack implementation in the kernel and the applications working on top of them as real
(see Figure 2.11). Furthermore, a simulator running in the user-level can simulate the physical layer
and lower layer protocols [74, 99, 149, 185].

Another approach mainly focuses on using the protocol implementations in kernels as real.
Some studies pack protocol implementations from operating system kernels in a way that is usable
in the user-level [55, 86] on top of the kernel, or as a model in a simulator [19, 91]. Having
multiple copies of the protocol stack in a single kernel is also possible [196]. Similarly, there
also exist studies that uses multiple kernels or operating systems working concurrently on a base
operating system [56, 77, 92]. These approaches are graphically shown in Figure 2.12.
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Figure 2.10: Example to emulation by using traffic shapers.
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Figure 2.11: Example to emulation by using TUN/TAP virtual network interfaces.
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Figure 2.12: Different approaches in using protocol implementations as real in network emulators.

2.7 Component-Based Network Simulation and Emulation

Component-based approaches to simulation were previously discussed in Section 2.4. The three
different uses of the concept of components in the context of simulation presented in that section
can also be observed in the studies on network simulation and emulation.

In fact, networks are perceived as composed of network components, such as nodes, routers,
switches, links, and so on. The components of the SUT are readily identifiable to the network
researcher. This leads to the observation that composition of the model to be simulated from
models of the individual components of the SUT, would lead to an intuitive method for building
simulators or emulators for networks. Therefore, some of the network simulators that claim to be
component-based, such as those reported in [54], [75], [146], or [169]

* regard the component-based nature of the networks as their component model without fur-
ther elaboration,

* derive a component-based architecture for the target networks at the model level,

* implement a framework, which is not necessarily component-based, for the specific architec-
ture they have developed.

Since the component model is usually not explicit in these systems and no distinction is made
between the framework and the simulator, there usually does not exist a separate component plat-
form.
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In the rest of this section, four approaches to building network simulators will be shortly dis-
cussed: TeD, OMNeT++, OSA, and ACA. These four are chosen based on their relevance to this

thesis.

2.7.1 TeD

Bhatt et al. present the TeD as an object-oriented framework for implementing network simula-
tors. Their motivation is that the communicating logical processes that are managed by a parallel
simulation kernel are fairly low-level constructs for network researchers [18]. While introduced as
an object-oriented framework, TeD comes closer to being a component-based approach more than
many other network simulators which claim to be component-based. Bhatt et al. write that the
entities in TeD are to correspond to models of “the physical and conceptual objects in the telecom-
munication domain”. Their description therefore points towards what have been named as “model

components” in Section 2.4. An entity in TeD contains four architectural constructs:

Deferred constants: Variables whose values can be set at configuration, but they remain constant

during a run.

State variables: Variables whose values form the state of the entity, which may change during a

run.
Processes: Behavior descriptions which are associated with event arrival, or time advances.

Components: Entities encapsulated by the outer entity. These so called components are used for
implementing the processes of the outer entity. In this sense, TeD supports containment style
composite components (see Section 2.3.6).

The specification of the control flow in TeD focuses on processes. Each process is associated
with its own computational context, typically a thread. The advancement of the logical time is
established using different forms of wait statements in the implementation of a process.

At the implementation level, a TeD entity is represented by its description in the TeD language.
Processes are written using a general purpose programming language (C++), and they are referred to
from the TeD description of the entity. The descriptions of the entities to be used in a simulator are
compiled using the TeD compiler, along with their process descriptions and a parallel simulation
library, in order to create a simulator. The resulting simulator is configured using a configuration
file, which describes the run-time composition of entities, and their initial configuration.

We said in this section that TeD comes close to being component-based. TeD certainly describes
a component model. It appears from the motivation presented for the entity abstraction that one of
the goals in TeD is to harness the benefits of alignment between components of the SUT and model
components (see Section 2.4). However, the argument they present in favor of layered architectures
for network simulators indicates that instead of aligning the model components with simulator
components as well, they aim to shield the network researcher from the simulator implementation
details by abstracting them behind a compilation phase. Therefore the component platform does
not exist as a separate software in TeD, but it is compiled into every simulator.
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2.7.2 OMNeT++

OMNEeT ++ is an open-source network simulation package designed by Andrds Varga [182]. OM-
NeT++’s design goals were influenced by his position on model building for network simulators:
“To enable large-scale simulation, simulation models need to be hierarchical, and should be built
from reusable components as much as possible”.

OMNeT ++ describes a component model that is mainly targeted for model components. The
components in OMNeT'++ are called modules, which are expected to be independently developed
by different researchers or developers.

The modules in OMNeT++ can communicate using either their interfaces, which are called
gates, or directly by calling methods of objects in their implementations. This second way of
communicating has the potential to introduce many direct dependencies, and can be considered as
an object-oriented trait. The gates are further divided into in and out gates, according to whether
data flows into or out of the module.

The composition style in OMNeT++ is composition by wiring. A specially designed configu-
ration language called NED is used for describing which components are to be instantiated, and
how the gates of the instantiated components are to be wired together. OMNeT ++ modules can be
combined to form composite components in an aggregation style. The composite module thus cre-
ated exposes a select set of gates of its aggregate modules as if they are its own gates. Non-composite
modules are called basic modules. Containment style composites are not directly supported, since
composite modules do not have behaviors of their own which can use the contained modules.

The modules in OMNeT ++ are not packed as self-contained binary units. They exist as a set of
C++ files, which are compiled into a simulator along with the simulation management functional-
ity (SME see Section 2.2.1). The SMF is provided as a class library, orthogonal to the component
model, similar to the case for TeD. There appear to be APIs available for implementing both mono-
lithic and distributed simulators.

There are two execution models supported by OMNeT'++ for the basic modules: co-routine
based, and run-to-completion on message reception. The co-routine based model is recognized by
Varga to consume more memory, since it requires one stack per module.

It appears that OMNeT++ either does not aim to be fully component-based at the model or
simulator components conceptual levels, or it fails to be so. The association of link characteristics
between two communicating entities in the network being modeled with properties attributed to
the connections set up between modules, breaks down a clean alignment between the components
of the SUT and model components. In this way, behavior is associated directly with the wiring
between the components, introducing implicit components into the component model. In addi-
tion, allowing direct calls between the modules increases the coupling and weakens the module
coherence, making it harder to recognize them as components.

Despite all its weaknesses, OMNeT++ is a good attempt in aligning all three uses of the concept
of components in building network simulators. Furthermore, it stands as an example to the fact
that such alignment is indeed considered to provide an intuitive tool for the network experimenters
who need to build network simulators.
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2.7.3 Open Simulation Architecture (OSA)

The Open Simulation Architecture (OSA) [43, 44, 45] is a component-based approach to discrete
event simulation using the Fractal component model (see Appendix C.5). While OSA is not only
for building network simulators, it will be included in this section since it is developed in relation
with a project targeting the networking domain.

The OSA adds onto the component model how the simulation management functionality
(SMF) will be served to the components in the simulator. OSA suggests using a shared object
hidden in the membrane of components for implementing the SME, and present the component
with an interface in its membrane. This object can also be made into a shared component since
Fractal allows componentization of component membranes. Another option is making this object
into a component that is shared between different composite components that act as model im-
plementations, but this is considered to lead to a design that mixes functional and non-functional
components.

As discussed in Section 2.3.6, the use of shared components in modeling and implementation
is an interesting subject. While it may turn out to be beneficial, further studies seems necessary for
understanding the potential benefits. An initial step in this direction can be found in [46].

2.7.4 Autonomous Component Architecture (ACA)

The motivation behind the Autonomous Component Architecture (ACA) [177, 178] is the classical
idea of building software using the integrated circuits (IC) as a metaphor, inspired by the success of
ICs in the electronics industry. ACA is used as the underlying architecture for the simulator J-Sim.

Components in ACA communicate by exchanging messages through their ports. These ports
are simple outgoing and incoming points for data. Components are composed by wiring their
incoming and outgoing ports. Such wiring is assumed to be done in a way that satisfies the contracts
between the components. The contract between two components whose ports are wired together is
expected to define the content of the data exchanged through their ports and what is to be expected
from the components when data is sent or received. While these assumptions are made, contracts
are not defined or managed by ACA.

In addition to wiring components together, it is also possible to compose components to form
composite components in ACA.

ACA component model leaves considerable amount of design decisions to the component plat-
form implementer. How naming of ports, and creation and deletion of components and connec-
tions are to be done, are all left to be determined by the component platforms for ACA. This have
lead to the fact that there is a single component platform implementation for ACA, to the best of
the author’s knowledge, and it is the one that is started by the researcher who have also formulated
the component model [177].

An interesting feature of ACA is how it handles the control flow. The main model of control
flow is called the independent execution model. In this model, when a component receives data
from a port, it immediately processes it in a new independent execution context, which in practice
means a process or more likely a thread. There is also support for a blocking send operation, where
the sending component is blocked until the receiving component finishes processing the data that

was sent.
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Chapter 3

Elaborating on Network Simulation and
Emulation

In Sections 2.4, 2.5, and 2.6, we have surveyed the tools, approaches, and techniques used in
network simulation and emulation. In this chapter, we further elaborate on network simulation
and emulation by presenting our observations. We start by having a look at where simulation
and emulation fits in developing networks and network applications. Then we present two roles
involved in simulation and emulation experiments, and argue that these roles have conflicting goals.
In Section 3.3, we have a closer at the process of one of the roles. We close the chapter by presenting
different approaches to integrating real entities with emulators, followed by the problems specific
to emulation that do not show up in simulators. An early version of Sections 3.1, 3.4, and 3.5 were

published in [69].

3.1 Simulation and Emulation in Development

The role of emulation-based experimentation for communicating systems, is one of bridging the
analytical or model level development stage with the actual real-life deployment of the system, in
order to help the transition between these two levels to happen in a smoother way. Although a very
useful tool for conceptual analysis, pure simulation studies might not always provide consistent and
relevant prediction or verification [35], or might miss important effects [130]. Therefore the whole
spectrum from pure simulation experiments up to real system test deployments seems necessary
for developing robust systems, and specifically for systematically managing cross-layer concerns in
MANET:.

Emulation-based experiments are not a replacement for simulations or controlled test system
deployments [62]. The emulation integrated development (see Figure 3.1) may start with the
simulation stage when the algorithms are available while the actual implementations or the tar-
get platforms are not. Enrichment of the simulation environment is advised to start as soon as
implementations of various components, of possibly limited functionality, become available [82].
The introduction of first implementations of the components of the SUT (see Section 2.4.2) into
the simulations is the point where the emulation-based experiments start. Emulation-based exper-
iments incorporate the whole spectrum from this point up to controlled test deployments of the

system.
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Figure 3.1: The emulation integrated development.

3.2 Parties Involved in Network Simulation and Emulation

Two different parties are involved in realizing simulation or emulation-based experiments about
networks: the experimenters, and the simulation system or library developers. Although these two
parties have different interests and goals, and follow different steps of actions before and during an
experiment, researchers typically assume both roles without paying much attention to the differ-
ences.

The commercial systems provide a much clearer separation between these two stakeholders,
since they depend on this double stakeholder structure to create a network simulation systems
and libraries market. The downside is that academic studies is hindered because the code and the
algorithms are usually not disclosed, or are protected under copyright.

We discuss in this section that the differences between these roles are significant, and the goals

of different parties seem to make it hard for one party to act in the other role as well.

3.2.1 Experimenters

The experimenters are the researchers who are interested in conducting experiments whose goal is
to understand the behavior of networks under particular situations and workloads.

An experimenter has two major goals with respect to the simulation or emulation-based ex-
periment. The first is the goal of minimum effort, which can be described as the wish to design,
implement, and run a suitable experiment with minimum resources, especially time. The other
goal is to build and realize the experiment in a manner that will produce meaningful data for the
analyses planned to be carried out. This second goal can be referred to as the goal of adequately
meaningful data.

We will have a look at the experimenter’s process in Section 3.3.

3.2.2 System and Library Developers

The other party to simulation or emulation-based experimentation about networks, is the develop-

ers of the simulation systems and libraries. These developers have the following as their goals:

* Provide a straightforward and easy to follow mapping between the concepts in the domain,
the elements of the metamodel used for modeling the target systems in the domain, and the
elements of the software architecture used for implementing the run-time representation of
the model in the simulator to be built.
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* Provide a simulator library (see Section 2.2.1) with implementations of basic models of con-
ventional network hardware and software. Such a library is provided to the experimenters to
use when building the model of the SUT and its context in their experiments. This allows
researchers to minimize their efforts to only implementing a limited set of models that is

directly related to their research.

* Design the software specifications of the simulation library or system for good performance,
and optimize the implementation and the interactions of basic models that are provided in
the simulator library.

* Keep it simple but adequate, and document the system well.
The system and library developers focus on the tasks described below for attaining these goals:

* Drepare base software specifications for the simulators to be built using the system or library,

in such a way that satisfies the first goal above.

* Decide on how the specifications can be mapped to programming constructs. This mapping
should preferably conserve the architectural organization of the possible systems of interest
in the domain, and reflect the style of the metamodel used in modeling.

* Design to provide clean interfaces to be used by experimenters when building and composing
submodels.

* Implement with clean and understandable code, and provide enough comments. It is prefer-
able to use an open-source approach, since the code is regarded as the most precise descrip-
tion of what the system does. Therefore, disclosing the source code supports the fourth goal
above.

3.3 Experimenter’s Process

In this section, we take a closer look at the tasks addressed by the experimenters in simulation and
emulation-based network experimentation. We will divide the process of the experimenter into
four phases as shown in Figure 3.2: preparation of the experiment description, preparation of the

experimental setup, executing the experiment, and post-execution analyses.

3.3.1 Preparation of the Experiment Description

The first step in any experiment is preparation of a description of what the experiment is about.
The experiment description should include the following:

Specification of the system under test (SUT):
The specification of the SUT involves drawing the boundaries of the system about which
conclusions will be drawn from the experiment. While it is a step that sometimes is not
deemed much important, or considered too “obvious” to spend time on, inaccurate or im-
precise specification of the SUT may lead to inapplicable results and conclusions drawn from
the data gathered in the experiment. This specification provides the description of what is to
be modeled for the purposes of the experiment.
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Figure 3.2: Summary of the experimenter’s process for simulation or emulation based network
experimentation.

Scenario of interest:
A scenario is a description of a particular situation of interest involving the SUT. The scenario
should include the initial conditions of the SUT, and the description of the workload the

SUT is subjected to in the situation of interest.

Analyses to be conducted:
Depending on the goals set forth for the experiment, analyses to be conducted should be
determined and documented. In addition, the statistical requirements or goals for the anal-
yses should be decided, and parameter and factor sets should be set up. Then, what data is
needed to be collected to conduct the analyses in accordance with the statistical requirements

can and should be determined.

3.3.2 Preparation of the Experimental Setup

Following the description of the experiment, the experimental setup can be prepared. This step in-
volves building the stand-in for the system under test (SIFSUT) to be run in episodes for collecting
data. The following should be addressed in preparation of the experimental setup:

Determination of entities to be used as real:
A decision should be made whether a pure simulation, or an emulation-based experiment
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will be conducted. If an emulation-based experiment is to be conducted, the entities in the
SUT or its context that will be used as real in the experimental setup should be decided.
Furthermore, how these real entities will be connected to the emulation capable simulator

should be addressed.

Choosing simulation approach/system/library:
The choice of simulation approach, and simulation system or library (see Section 2.2.1)
generally turns out to be an intertwined decision because simulation systems and libraries are
generally built for supporting a single approach. Furthermore, this choice also partly or fully
determine the metamodel that can be used for constructing the model for the simulated parts
of the experimental setup.

Preparing the model:
Once a metamodel to be used for constructing the model is determined, either by explicit
choice or by imposition by the choice of the simulation system or library, the model of the
simulated parts of the experimental setup should be prepared. In construction of the model,
the parameter and factor sets, and the data to be collected as specified in the experiment

description, should be taken into account.

Implementing the model:
The model of the necessary parts of the SUT should be built. This model may or may not be
composed of submodels. If the model will be composed from submodels, and if the chosen
simulation system or library comes with a simulator library (see Section 2.2.1), then it might
be possible that the whole model can be constructed by composing the models from this
library. However, it is usually the case that some models of interest are missing from the
simulator library, which then need to be implemented by experimenters in accordance with
the software specifications of the chosen simulation system or library. It should also be noted
that in addition to the SIFSUT, models that will exert workloads on the SIFSUT also need to
be implemented. Furthermore, initial conditions described in the scenario in the experiment

description should be mapped to initial conditions of the model implementations.

Implementing the simulation management functionality:
If a simulation library has been chosen instead of a simulation system, the simulation man-
agement functionality (SME see Section 2.2.1) should be built and configured. In that case,
it will be necessary to make additional decisions such as what kind of a scheduler is to be

used, or how the event propagation or routing mechanisms will be implemented.

Implementing the constructor of the run-time representation:
A mechanism, usually depending on the simulation system or library, for constructing, ini-
tializing, and running the run-time representation of the model and the SMF should be
implemented. This takes different forms in different systems, such as a small program, a
script, or a configuration file. For example, NS provides scripting language interfaces to de-
scribe how the run-time representation will be built, based on the hypothesis that scripting
languages are easier to understand and use. A script and the script interpreter in NS acts as

the constructor of the run-time representation as we define here.
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Implementing data collection techniques:
The data collection is one of the important issues in the implementation of the experimental
setup. Therefore how the data will be collected and where it will be logged should be carefully
designed.

3.3.3 Executing the Experiment

By execution of the experiment, we refer to running the prepared experimental setup in episodes.
The sets of factors for the parameters might be different in different episodes. If there are random
variables used in the model, or if there are effects caused by real entities that can be regarded as
outcomes of a random variable, then episodes that do not differ in factors might also be run just to
obtain bounds on statistical results.

The activities in each episode are the following:

Preparing for the Episode:
In the first phase of the episode, the simulator or simulators for the simulated parts of the ex-
perimental setup should be loaded, the real entities should be initialized, and the connection

between the real entities and the simulator or simulators should be set up.

Like almost all software, a simulator’s stored form and run-time representation are differ-
ent. Particularly, this implies that the model to be simulated exists in stored form as some
number of submodels and a description of how instances of these submodels are composed
at run-time to arrive at the actual executable model. Therefore before anything, a run-time
representation of the SMF and the executable model should be constructed using such stored
forms.

Executing the Episode:
When the run-time representation is set up, the executable model is run, and events related
to the analyses to be carried out are monitored and/or logged. The analyses that are carried
out during the execution are usually computationally light. These lightweight analyses might
serve to summarize the data for efficient logging. Another important motivation is to monitor
the experiment for interrupting the episode in a timely manner, in case there is a problem in

the scenario or how the scenario unfolds.

A position we take in this thesis is that the the run-time representation of the model should
not change during an episode. This relates to parts of the implementation of the simulator
or simulators that are being used, call them modules or components, and how they are con-
nected to each other. Changes in how these parts are interconnected, or creating/deleting
new parts or simulators introduce problems, such as lost events. Furthermore, we doubt that
such changes in the run-time structure of the simulators add any expressive power, or extend
the range of models that can be simulated. Any “appearing” or “disappearing” entity in the
SUT should be a part of the SIFSUT from the beginning of the episode, to be enabled or
disabled at a later stage.

Post-Episode Analyses:

The episode ends when some predefined event happens, which is usually a limit on the virtual
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Figure 3.3: Example to horizontal integration method.

time. Then the real entities should be disconnected from the simulators and the simulators

should be stopped.

At the end of the episode, additional analyses can be done. These post-episode analyses would
be the ones that require more resources than those that are feasible to conduct during the
episode. However, the goal of the post-episode analysis is not deriving the final conclusions

for the experiment, or formulating any results. Instead, the goals are the following:

* Finding out whether the experiment is progressing as planned. Otherwise, there might
be a need to go back and modify the experiment description or setup, which most
probably would render the data collected up to that point unusable.

* Summarizing the data collected in the episode, and integrating these summaries into
the cross-episode data sets.

3.3.4 Post-Execution Analyses

When all planned episodes are executed, or enough episodes are deemed executed with respect to
the goals set out in the experiment, resources can be used for more thorough analyses on the data
collected during the episodes.

3.4 Methods for Integrating Real Entities

Real entities from the SUT can be integrated with a simulator in various different ways. Two main
classes of integration methods can be identified: horizontal integration, and vertical integration.

In horizontal integration, a model for a specific layer functionality is replaced by the actual
implementation for that layer in a simulated network architecture (see Figure 3.3). This method is
more suitable when the entities from the SUT used as real can’t be duplicated in an efficient way,
or when there exists a shared resource, like a scarce target platform, which needs to be employed in
a time-sharing manner.

On the other hand, in vertical integration, the software used as real covers groups of consecutive
layers of the network architecture that are organized in a per node basis (see Figure 3.4). Typically,
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Figure 3.4: Example to vertical integration method. This architecture appears to be most typically
associated with network emulation experiments.

data-link layer or IP layer and upwards are used as real, whereas the lower layers are realized by a
simulator. This approach leads to an intuitive decomposition and distribution.

These two methods can be and usually are mixed, as exemplified by the some of the TUN/TAP
virtual network interface based emulators. In these systems, physical and data link layers are simu-
lated, some of the network protocol implementations in a single kernel are shared, and various real
applications work on top of the kernel. This presents an architecture of vertical emulation on top

of horizontal emulation, which works on top of simulated lower layers.

3.5 Emulation Specific Problems

In [69], we have presented a list of major potential problems in emulation-based experiments for
networks. In this section, we summarize and elaborate on the material that was previously presented
in that paper. It should be noted that we have mainly focused on software entities that are used
as real in the experimental setup in emulation-based experiments. Furthermore, the reader might
want to review how an emulator is defined for the purposes of this thesis, which was presented in
Section 2.2.3.

Some or all of data generated in an emulation-based experiment is causally dependent on the
simulated models. Therefore, although not included in this section, the problems about network
simulators also show up in emulation-based experiments.

3.5.1 Simulation-Emulation Boundary Problems

Running simulations along with real entities from the SUT or its context, creates potential for
problems stemming from the simulation-emulation boundary. The simulation-emulation boundary
can be defined as the total of all data and control transactions between the simulated models and the
real entities in an emulation-based experiment. For example, Ethernet frames in a vertical network
emulation in which the physical layer is simulated, are among the data transactions that crosses the

simulation-emulation boundary.
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One problem related to such data transactions is the lower precision and accuracy of the sim-
ulated models, which may lead to omission of or inaccuracies in some data that would normally
traverse the boundary in the SUT. The impact of such data on the behavior of the entities used as

real in the experimental setup should be managed in emulation-based experiments.

3.5.2 Problem of Physical Hosts in Synthetic Environment

In simulations, the models running in the emulator are designed to trace the states of an entity in
a virtual (a.k.a. synthetic) environment described in a scenario. The virtual environment itself is
composed out of models. Therefore the whole system is one that traces the steps of a totally virtual
world, in which space and time are not bound by physical world nor its laws. This in effect means
that the physical world, in which the state tracing is done, has no effect whatsoever on the behavior
of the entities in the virtual world whose states are traced by the models.

In the case of emulation-based networking experiments, real software entities frequently show
up as protocol implementations used as real. The performance and behavior of such real implemen-
tations are considerably affected by the availability of computational, storage, and other resources
on the physical host that they are running on. Therefore, while the SIFSUT is totally virtualized
in the case of simulations, it includes the physical hosts and the resources available on them as
non-virtualized parts in the case of emulation-based experiments. For this reason, without proper
management and virtualization of the physical hosts on which the real entities are executed, the
emulation-based experiments can not be regarded as providing fully synthetic environments in
which to test the SUT.

The main problem that comes with inclusion of physical hosts in the synthetic environment has
shown itself in the literature as the imposition of real-time constraints over the simulated models
in emulation experiments[56, 82, 93, 141]. However, especially when simulating large broadcast
mediums with complex physical characteristics, such as in mobile ad-hoc networks, the acuteness
of the trade-off between the accuracy and fidelity of the models and the computational resources
necessary for simulating them raises concerns[188]. The constraint of matching virtual time to
real time, creates a lack of an adequate amount of computational resources available for simulating
models. The remedy is sought in simplifying the models [126], thereby giving up on accuracy in
order to decrease the computational load of the model to make it conform to real-time constraints.
The justifications provided for such simplifications of the models, if any justification is provided
at all, usually draw upon the increased scalability as the motivation. However, these justifications
generally lack analytical or statistical analyses backing them. Very few papers even mention the
problem[82, 141]. An alternative solution for preventing imposition of real-time constraints on the
simulated models is the virtualization of the physical hosts themselves. The virtual machine, user
mode kernel, and micro-kernel based approaches can be interpreted as the first hints towards this
solution (see Section 2.6).

Yet another problem is related to the management of emulation-based experiments. For sim-
ulation experiment episodes, it is easy to provide managemental functionality such as pausing,
accounting for lag in one or more of the models, saving state, and restoring, because the simulation
control system has complete control over the virtual environment. As the current emulation control
systems lack complete control on the physical hosts as parts of the experimental setup, such man-
agemental functionality they provide is very limited in comparison to simulation control systems.
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This makes the emulation-based experimentation process relatively more brittle, thereby causing
more stress on the experimenter. The emulation control systems provide little help if anything that
was not accounted for from the outset happens during the execution phase of the experiment.

3.5.3 Problem of Transparency

When the real entities in an emulation-based experiment are software, we can define a scale out of
the amount of changes necessary to run these real implementations along with the emulator. We
will call such a scale the transparency of the emulator.

The transparency of an emulator should preferably be as high as possible, which is the same as
saying that changes in the software used as real should be kept to a minimum, and preferably be
none at all. Meanwhile, an application or a protocol should run alongside with the emulator as if it
were running on its target platform. To accomplish transparency while keeping the results accurate,
an emulator should account for many differences between the target platform and the physical
hosts on which the real software entities are executed. These differences stem from the amount of
resources available, resource contention and conflict characteristics, and different implementations
of abstractions at different levels, in particular in the operating system level abstractions. Providing

high transparency presents a considerable challenge in the design of emulators.

3.5.4 Emulation Overhead and Emulated Entity Multiplexing

Emulation-based experiments are actually performance analysis studies. In performance analysis,
data collection causes a well known problem called monitoring overhead problem [90]. The moni-
toring overhead problem is the result of using hardware and software probes which themselves have
effects on the system performance.

In simulation experiments, the monitoring overhead is not considered as an issue, since the
environment in which the models are simulated is assumed to be fully synthetic, as discussed in
Section 3.5.2. In a properly designed simulator, the monitoring probes are outside of the synthetic
environment and the conceptual model. Therefore, they can not cause any unwanted effects in the
events happening in the synthetic environment. However, in an emulation setting, the inclusion
of real entities brings the computational platforms they run on into the experiment environment,
again as discussed in Section 3.5.2. Therefore, the physical hosts become the gateway to monitoring
the status and behavior of the real entities, in effect bringing monitoring overhead effects into the
model being simulated.

It is not only the monitoring overhead that the real entities being situated on real physical hosts
causes. When observed from the point of view of one real entity, the rest of the SIFSUT, which
consists of the other real entities and the simulated components, may also be a source of overhead.
We will refer this kind of overhead as emulation overhead. The effects of emulation overhead depend
on how many physical hosts are participating in the experiment, and the distribution of execution
over these physical hosts.

In the case of monolithic systems, or in other words an emulation-based experimental setting
in-a-box, the emulation overhead may become one of the main factors preventing the system to
scale. Even for non-monolithic, distributed systems, it is very desirable to keep the number of
physical hosts in the experiment much lower than the number of real entities, or the nodes in the
networks described in the scenarios. This is established by multiplexing the real entities on physical
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hosts, for example by running more than one node of the network on one physical host. Such
multiplexing should be done with the effects well accounted for, since usually the real entities create
resource contentions and sometimes even conflicts. The most immediately noticeable resource
contention that limits the scalability happens over the CPU: Vahdat et al. [180] nicely shows how
the number of instructions an emulated node can compute per each byte it communicates, decreases
with increasing number of emulated nodes per physical host. Furthermore, this also has a limiting
effect on the aggregate throughput of all the nodes multiplexed on a host (see Figure 6 in [180]).

An initial estimation about the extent of the emulation overhead problem can be deduced
from results reported in literature on the performance of the emulators themselves. Herrscher and
Rotermel provide some data [82] from which it can be observed that their system induces around
8% difference between the specified bandwidth available to nodes in the emulation and their actual
throughput, without pushing the system for scalability. Jain discusses in his book on performance
analysis [90] that having around 10% effect on an observed variable affects the performance analysis
results considerably. Therefore Herrscher and Rotermel’s data can be interpreted as showing that
further studies are needed for systematic analysis of these effects, assessment of their significance,
and development of a methodology and a tool set in order for researchers conducting emulation-
based experiments to actively manage these effects.
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Chapter 4

MICA — A Software Architecture for
Network Simulators and Emulators

In this chapter, we are going to present our approach for building network simulators and emula-
tors, which we call the minimalistic component-based software architecture (MICA). We will begin
by shortly explaining why we have felt that a new architecture is needed, and why we have chosen
a component-based approach. Next, we will describe the component model of MICA, followed by
examples on how to use the component model at the software design level, and how it supports
simulator interoperability and model replacement for simulators that satisfies certain conditions.
We have implemented two different component platforms for this model: one that provides only
a single thread of control, and another one that implements the multitasking and multiprocessing
support in the model by using a middleware called PVM. These will be described in the last section.

4.1 Motivation for a New Architecture

There are many different simulators and emulators reported in the literature, as presented in Sec-
tions 2.5 and 2.6, and in Appendix B. Taking into account that every software has an architecture,
the question why we have decided to formulate yet another architecture needs to be addressed.

A very brief account of the initial efforts in this thesis would explain our motivation. What
lead to the development of MICA started with our work on identifying the problems of network
emulators, which was presented in Section 3.5. While working on this problem, we have observed
that it was a desired property for the network emulators to have an architecture sufficiently similar
to the nature of the network being modeled in the experiments conducted using them.

Our initial goal was to develop solutions for the problems we have identified, therefore we
looked for a simulation system or library to use. We started working on the NS simulator [23],
only to find out that its architecture is quite different than a network. Furthermore, its software
architecture is very diffuse in its code, which is split between the object-oriented extension of the
TCL scripting language (0TCL) and C++. In addition, we have observed that learning this system
is not very easy and quite time consuming, which appears to be a qualitative observation shared by
many in the networking community.

We then started looking into the architectures of other systems, and decided that they either do
not satisfy our view of what it means to be component-based, or fail in satisfying the properties we
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seek, which will be described in Section 4.3.1. We will explain in the next section our motivation

in insisting on a component-based approach for network simulators and emulators.

4.2 Motivation for Choosing a Component-Based Approach

It was previously discussed in Section 2.7 that networks are perceived as composed of network
components. Furthermore, we have identified in Section 2.4.2 the three conceptual levels where the
concept of components show up in simulation. We believe that an approach that ensures similarity
between the concepts of components in these three layers would appear to the experimenters as
intuitive, thereby reducing the learning load. Combining these observations, we hypothesize that
the modeling approaches and the software architecture of the simulators and emulators being built
should be aligned to the component-based nature of the networks. Therefore, both models for
network simulation, and network simulators and emulators should be organized as compositions of
components.

At the software implementation level, it has previously been discussed in Section 2.3 that a
component is a coherent and self-contained unit. In an unstructured system, the units are tightly
entangled, which makes separate analysis of individual units infeasible and necessitates a global
analysis [173]. Taking into account the discussion presented in Section 3.2 on the experimenter’s
goals and the limited available resources, it is clear that a time consuming global analysis is not fea-
sible, either. Therefore, the architectures for network simulators or emulators should be organized
as loosely coupled components that allows one to conduct analyses of units separately. It should be
noted that such analyses of units we are referring to, are about correctness of the implementation,
and not about model components level concerns such as accuracy or precision.

Another supporting argument for a component-based approach can be derived from the inde-
pendent extensibility property, which we have presented in Section 2.3.1 as a characteristic that
emerges in systems built using a component-based approach. Networks are composed of complex
units. However, experimenters do not have the resources to implement from scratch models for all
these complex units. Therefore, it is necessary and common practice that models of various units
are used by different people than those who have developed and implemented them. As a result,
independent extensibility appears as a characteristic provided by component-based approaches, and
desired in network simulators and emulators.

In Section 2.3.3, we have identified four elements in component-based approaches: component
models, component platforms, component-based architectures, and component-based frameworks.
In this thesis, the focus is on the component models and platforms, not on component-based
architectures and frameworks. The models and platforms have a strong influence on the alignment
of the components at the three levels discussed in Section 2.4.2.

Focusing on component models and platforms, MICA provides the base part of software ar-
chitectures for network simulators and emulators. It is not complete as a software architecture:
simulation system or library developers need to extend MICA with suitable component-based ar-
chitectures and frameworks. We will present in Section 4.4 that this particular focus enables MICA
to provide the implementation level interoperability and model replacement in simulators and em-
ulators under certain conditions.
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4.3 Component Model

4.3.1 Desired Properties for The Component Model We Seek

We will start by describing the properties we decided to pursue in the component model we devel-
oped. These properties, each of which will be described further in this section, are:

* striving for completeness: structuring as much of a software system in terms of components

as possible,
* supporting components with variable granularity,
* being simple and minimal,
* separating worker and run-time management components,
* supporting transparent distribution of components,

¢ and using messaging for component communication, and preferring asynchronous messagin,
Y

over synchronous.

Striving for Completeness

One of the main trends behind the component-based approaches in general is the continuation of
the modularity-oriented thinking in software engineering. However, as mentioned in Section 2.3.3
in relation to frameworks, and as can be observed in some of the component models reviewed in
Appendix C, not every component model strives for complete partitioning of the system being
implemented into components and a component platform.

Benefits of a complete partitioning of a system can be identified as the following:

Ensuring a common basis:
Using the component model for a complete partitioning of the whole system ensures that
all resulting software modules share a common conceptual basis. A common basis applying
uniformly throughout the system ensures that sources of dependencies between parts of the
system are limited to those that are identifiable from the component model. Thereby a com-
mon basis can help both in integration testing and in understanding the units by eliminating
or limiting hidden dependencies. This would be important for network researchers who are

trying to understand and use components written by other developers.

Providing dual appearance for applications:
When a system is completely partitioned into components and a component platform, it can
be viewed as a simple set of components, too. Such dual appearance makes it possible to use
the component platform as a shared basis for interoperating two applications. In Section 4.4,
we will exemplify how this dual appearance can be used for simulator interoperability and
model replacement.

While we take the position that we should strive to have high completeness, ensuring absolute
completeness as defined above is not yet possible today. The main method of software reuse on
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today’s operating system architectures is still using shared libraries of functions. Through the use
of the functional libraries, various mechanisms defined in a component model can be rendered
ineffective or irrelevant, thereby leading to situations where the goals of the component model
being used are no longer satisfied. Therefore, how the operating system itself will be represented in
a component model should be determined, and the components should strictly adhere to accessing
the operating system through the mechanisms defined in the component model. One solution
to this problem is creating wrapper components for every library the system depends on. Such a
solution is easy to realize for a small number of dependencies, but can be tedious otherwise. To

summarize, absolute completeness is a hard to satisfy goal.

Supporting Variable Granularity

In a software system whose design adheres to the completeness property, components of varying
sizes might be needed. Being able to use components of varying sizes helps reusing components
from other systems, as well as designing as much of the coherent parts of the system as possible into
reusable components, small or large.

Designs composed of different component size distributions would have different requirements
from the component models. If we make a rough categorization of components as small and large
according to their sizes', two approaches are possible for managing these requirements. In one
approach, the component model can be designed to satisfy the union of requirements for both
small and large components. However, such an all encompassing set of requirements eludes a
precise formulation. As an alternative, which we follow in our approach also, one can focus on the
minimum necessary subset of the intersection of the requirements for small and large components.
Then different and changing requirements can be satisfied through additional architectural layers or
tiers that are built on the component model, and extend it. This approach is also in fine accordance
with the simplicity and minimality properties defined below.

The requirement for supporting variable granularity coincides also with the need for modeling

different networks or different parts of a network at varying levels of detail.

Being Simple and Minimal

The component model we are seeking should be simple enough to be usable by those whose ma-
jor focus is not mastering the design and engineering of component-based software. Our target
audience includes mainly network researchers. With regard to the discussion in Section 3.2, from
time to time these researchers assume the role of the simulator developer as well as being the exper-
imenter. Therefore, the model should empower the network researchers with the ability to reuse
software built by others, while not requiring them to become professional software engineers. For
this purpose, the component model should adhere to the KASAP principle: Keep it As Simple As
Possible?.

Minimality is our preferred method for ensuring simplicity. We would like a component model

that describes components and their interaction in a minimal way. For this purpose, there should

1\We acknowledge that this categorization is very rough, and size can be defined in various ways. However, our main
argument can be easily modified according to finer definitions.

>The word “kasap” means butcher in Turkish, which coincides nicely with our preference of addressing simplicity
through minimalism, where redundancies are chopped away as much as possible.
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be as little redundancy as possible among the constructs and mechanisms in the architecture. If
necessary, the redundant constructs and mechanisms can be realized as additional layers or tiers of
architecture to be built using the component model.

The guiding principles we use for reaching minimality, can be formulated more precisely with
two rules. First, exclusion of any construct or mechanism defined in the model must considerably
affect the ability to attain one or more of the desired properties we are defining in this section. Our
second rule for minimality is that any subset of constructs and mechanisms that can be implemented
using the remaining constructs and mechanisms, should be left outside architecture.

With regard to network simulators and emulators, properties of simplicity and minimality help
to ensure a steep learning curve for the component model and how to use the component platform
that supports the components. This is accomplished by keeping the number of constructs in the
model as low and the interactions between the constructs as simple as possible.

One particular decision that relates to the minimality property as defined here is whether to
provide support for composite components in the component model. As discussed previously in
Section 2.3.6, composite components have equivalents in flat component models. While the con-
cept of composite components might provide better productivity to the developers at the expense
of additional complexity that leads to longer learning time, they do not add to the representative
power of a component model. Therefore, the case about composite components fits nicely to the
second rule described above, and their exclusion from the component model does not hinder at-
tainment of any of the properties we require. Thus support for composite components is regarded
as a design tool issue, where a design tool may provide its user with an extended component model
that provides composite components, and automate the mapping of composite components that

have been built, into their flat model equivalents.

Separating Workers and Run-Time Management

The separation of workers and run-time management refers to our position that in the modu-
larization of a software system, the modules that construct and manage the run-time structure
of the system should be separated from the modules that implement the application logic. Our
position is a slight modification of, and follows as a specific case from a position taken by re-
searchers working on reconfigurable architectures. These researchers argue that separation of the
dynamic re-configuration behavior from the steady-state behavior is possible and desirable [5, 8].
In a component-based approach with completeness as one of its design premises, this distinction
can be realized in the final run-time structure of a system by using different components whose
instances assume these different roles.

In order to accomplish the task of construction of the run-time structure of a system, a compo-
nent requires access to certain functionality that needs to be provided by the component platform.

These functions include

* creating and deleting component instances,

* managing the set of computing resources used by the system, such as functions for allocating

or freeing processes or hOStS,

* distribution of component instances over computational resources,
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Table 4.1: Relationship between identification schemes and necessary functionality for construction
and management of the run-time structure of a component-based system.

Component IDs Component Computational
Instance IDs Resource IDs
Component X
instance creation
Component X
instance deletion
Setting up X
component wiring
Tearing down Depends on
component wiring existance of link ids
with system-wide
semantics
Associating X X
components with
resources
Managing X
resources

¢ and setting up or tearing down the wiring between the components.
gup g g p

Such functionality requires the component to be able to recognize and use various identification
and addressing schemes. Identifiers for components, component instances, and computational
resources are necessary. The relationship between these identifiers and the functionality they are
needed for is given in Table 4.1.

All these identifiers have the common property that in order to be useful, they need to have
system-wide semantics at run-time: regardless of by which component instances, and in what part
of their code an identifier of these types is used, all instances of the identifier should be pointing to
the same entity in the system. Storage of these identifiers is frequently a necessity, whether directly
as identifier instances, or as descriptions of what they are pointing to, which can be used with a
known registry to query for the identifier.

Although these identifiers are necessary, storing identifiers that have system-wide semantics at
run-time is a serious source of coupling. Such storage can be dynamic, such as by a component
instance saving the identifiers it learned at run-time, or static where some of the identifiers might
be integrated into the implementation of the component from which the instances are created.

Luckily, especially for our target domain of network simulators and emulators, construction of
the system is done by a limited number of components. The other components, which we can
refer to as workers, either do not need these functionalities, or they need them so infrequently that
requiring these services from other “more capable” components should not introduce unjustifiable
overheads. For the case of network simulators and emulators, dynamic re-configuration does not
seem to make these systems able to simulate a wider range of models. As a result, the problem of
couplings created by necessary use of identifiers with system-wide semantics can be confined to a
small set of components. This can be established by separating the types of components that can

construct and modify the run-time structure of a system, from the ones that actually carry out the
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model logic.

A relevant question is whether and how much does the separation of workers and constructors
conflict or support the simplicity and minimalism premises. In the component-based approaches,
the components are expected to be independently developed. This implies that a developers that
focus on development of an individual worker component might care for the context the com-
ponent will be instantiated into, but at the same time they are indifferent to by which entity the
instantiation is done. What resources a component instance requires from its instantiation context
presents a slightly different problem. However, along with how the services provided by the com-
ponent will be used, the description of required computing resources best fit into the contract that
a component declares to adhere to. Therefore, from the point of view of the developers of individ-
ual worker components, separation of workers and constructors indeed serve to achieve simplicity.
Minimality also follows from the unnecessity of including the functions described in this section to
the API between the component platform and worker component instances. For constructor com-
ponent instances, these functions are indispensable as we have explained, therefore such separation
of components does not introduce additional complexity in constructor components, either.

Separation of constructors and workers also relates to the separation of the roles of simulation
system and library developers, and experimenters, which were discussed in Section 3.2. Construc-
tor components would mainly be used by simulation system and library developers, while worker
components would simplify the model from the network researcher’s point of view.

Lastly, in reference to terminology used by Allen et al. [5], separation of constructors and work-
ers allows formulation of “pre-steady-state” re-configurations, as shall be exemplified in Section 4.4.
How dynamic re-configurations can be supported, and what and whether additional conditions are
necessary, is left as a future work.

Supporting Transparent Distribution

Ability to distribute the execution of the simulators and emulators onto more than one hosts is
desirable and necessary in simulation and emulation-based network experimentation. Therefore
the component model we are seeking should be able to allow component instances to be distributed
over multiple hosts.

In addition, we would like such distribution to be transparent to the developers of the individual
worker components. In our case, these developers are the network researchers developing their
models of interest that they cannot acquire from other sources. The distribution of component
instances is also related to a components computational resource requirements, and contextual
instantiation constrains such as being a singleton. However, as discussed previously, we regard these
as contractual issues. Therefore, it should be possible to implement a component without caring for
on which host and in what context the component will be instantiated, except for expressing such
concerns in the component’s required contracts, if necessary. In other terms, the component model
should formulate resource allocation to a worker component as a set of operations independent
from worker component’s implementation. This means distribution of the components onto a set

of hosts should be transparent to the worker components, and their developers.
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Preferring Asynchronous Messaging

There appear to be two main approaches to providing abstractions for component instance commu-
nication at the component model level: using sets of operations at the endpoints, which are called
interfaces, or using protocols defined in terms of messages along with simple message sending and
reception.

Our position on this choice for the component model we seek is the use of asynchronous
messaging based protocols for component communication, where protocols should be defined in
component contracts. The reasoning behind this choice is readily very nicely explained by Szyper-
ski in [173], pp. 155-156, and he even uses communication communities as the example for

explaining the related factors:

Sets of interfaces correspond to protocols. Instead of focusing on the required and
provided operations at endpoints, protocols focus on the valid sequences of messages
exchanged between these endpoints. It is always possible to rewrite protocol definition
into a composed contract over sets of appropriately defined interfaces. The reverse is
also true. When deciding which of these two dual approaches is best to take, a number

of factors need to be considered:

* Tiadition: Many communications communities prefer messages and protocols
while many computing communities prefer operations and interfaces. (This is
changing as both communities grow together under the influence of the Inter-
net.)

* Emphasis: Protocols emphasize messages between endpoints, while interfaces em-

phasize operations on endpoints that accept and return messages.

o Synchronous v. asynchronous communication models: Messages and protocols more
naturally describe asynchronous communication, while interfaces an operations
more naturally describe synchronous communication. (Asynchronous operations
on interfaces can be defined and synchronous constraints in protocols are also
possible.)

Although synchronous and asynchronous communication models would occur together in a
network simulator or emulator, it is possible to define synchronous constraints in protocols, as
Szymanski points out. Our position in this thesis is that tradition and emphasis as defined above
have significant consequences on how intuitive the simulator’s software architecture appears to the
network researchers, who have to develop their models adhering to that architecture. Therefore, a
component model that allows and prioritizes asynchronous messaging based component commu-

nications is preferred for our purposes.

4.3.2 Defining the MICA Component Model

We were not convinced that the component models surveyed in Appendix C satisfactorily supports
the properties we seck in a component model for network simulators and emulators. Therefore,
we designed a new component model as part of MICA. The differences between MICA and the
existing component models are discussed in Chapter 6.
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In this section, we describe the constructs in this component model. These constructs are

summarized in Table 4.2, and explained in further detail below.

Table 4.2: Summary of constructs in MICA.

| Construct | Short Explanation |

Execution Managers (EM) EMs represent independent computing resources.

Execution Units (EU) EUs represent pseudo-independent computing resources.

Unit Models (UM) Supertype of worker components (see Section 4.3.1).

Constructor Units (CU) Supertype of constructor components (see Section 4.3.1).

Instances (UMIs and CUIs) | Component instances of UM or CU components.

Links Unidirectional data pathways between component instances
over which component instances communicate.

Message Types A type system for messages need to be defined when develop-
ing component-based architectures on MICA.

Messages Messages are used for communication between component in-
stances.

Identifiers EMs, EUs, instances, and links have associated identifiers.

Unit Model (UM)

Unit model is the supertype of all worker components in our component model. The name “unit
model” was used since components of this supertype mainly corresponds to basic model implemen-
tations in network simulators and emulators.

As discussed in Section 4.3.1, the worker components need not have access to functionality
regarding construction and management of the run-time structure of the system. Therefore, in-
stances of UM type components are provided with services only for message reception, sending,

and message type registration.

Constructor Unit (CU)

With regard to the worker-constructor separation, and in contrast to the UM, constructor unit is
the supertype of all constructor components. Their instances have access to all functionality defined
to be provided by the component platforms for MICA.

Instances

Instances are component instances created from UM or CU components. The instances created
from UM components and CU components are called unit model instances (UMlIs) and con-
structor unit instances (CUIs) respectively. CUIs are the instances that can create or delete other
instances. The bootstrapping problem is addressed by requiring that a first CUI be created by the
component platform, and a first message to be sent to that CUI as if this message was sent by the
first CUI itself. Different component platforms may provide different methods for determining the
CU component to be instantiated as the first CUI, and the type of the first message to be sent to
it. Possible methods would be accepting human-readable form of their identifiers as command-line
parameters or reading them from some configuration file variables.
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Figure 4.1: Logical structure of an instance.

As shown in in Figure 4.1, an instance is internally composed of two parts: a part we call the
customized behavior (CB), and another called the base. The implementation of the base for the
instances are provided by the component platforms. The CB is to be supplied by the component
developer implementing the component’s behavior. Both parts of the instance communicate with
each other through the internal interfaces called the ambassadors. For those readers who are familiar
with the IEEE 1516 High Level Architecture (HLA), the ambassador-based design in our com-
ponent model is similar to the federate design in HLA, which is based on the RTT and Federate
ambassadors.

The instances use the base assigned to them for invoking services from the platform imple-
mentation they are running on. Services are provided to the CB of an instance through the base-
ambassador interface in defined in its base. Similarly, the base of an instance uses the instance’s
CB’s CB-ambassador for making callbacks to the CB. Because of the worker-constructor distinc-
tion, the sets of services and callbacks differ for UMIs and CUTIs, and so do the definitions of their
ambassadors. Therefore, unless the ambassadors of both types of instances are meant, the UMI
related ambassadors will be referred to with a UMI- prefix, as in UMI-base-ambassador and UMI-
CB-ambassador, whereas the CUI related ones will be referred to with a CUI- prefix. The services
and callbacks provided by these ambassadors are summarized in Tables 4.3, 4.4, 4.5, and 4.6. They
are described in more detail in Appendix D.

It should be pointed out that being instances of worker components, the UMIs are not provided
with any services that requires identifiers with system-wide semantics, as discussed in Section 4.3.1.
The only identifiers UMIs can use are link IDs, whose semantics are defined only with regard to the
UMI they are defined in, as will be discussed below. Therefore UMIs do not suffer from coupling
caused by storing identifiers that have system-wide semantics.

The control flow for the instances is defined by the CBs running to completion in response to
callbacks they receive through their CB ambassadors. The service requests from the base, which are
invoked by calling methods in the base-ambassador, do not cause any re-entrant callbacks to the
CB.

All instances can communicate by their CBs requesting a service from their bases to send a
message to an outgoing link (see below) with a given link ID. In addition to using links, CUIs can
also make use of the CUI IDs they already know, for sending messages directly to other CUIs. This
additional mechanism is provided since CUIs already have access to the instance IDs. However,
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Table 4.3: Services provided to CUIs through CUI base ambassadors.

|| Service ‘ Parameters | Short Definition ||
Create CUI CUI-CB type, Create a CUI with given CUI-CB type in the
where EU with id where.
Create UMI UMI-CB type, Create a UMI with given UMI-CB type in the
where EU with id where.
Replace UMI-CB | UMI-CB type, Replace the UMI-CB of UMI with id umi-id,
umi-id with a UMI-CB of type UMI-CB type.
Create EM EM descriptor Create an EM described by EM descriptor
Create EU where Create an EU in EM with id where
Delete CUI what Delete the CUI with id what
Delete UMI what Delete the UMI with id what
Delete EM what Delete the EM with id what
Delete EU what Delete the EU with id what
Link from, outlink, to, in- | Create a link with id out1link at originating in-
link, type stance with id from, ending at instance with id
to as link with id inlink, carrying messages of
type type
Unlink from, outlink, to, in- | Delete the link described by 4-tuple (from,

link

outlink, to, inlink)

Send Message to
Link

outlink, msg

Send the message msg to outgoing link described
with id outlink

Send Message to
CUI

target-cui, msg

Send the message msg to CUI with id
target-cui

Get EM List none Get the list of EMs set up in run-time

Get My Id none Returns the id of the CUI issuing this service
Register Message | msg-type Make message type msg-type available to the
Type calling instance

Table 4.4: Callbacks to be responded by CUI CBs through CUI CB ambassadors.

| Callback | Parameters | Short Definition |
CUI-Base cui-base-ambassador | The base part of the CUI given as parameter
Created cui-base-ambassador is ready to receive
service requests
Receive  Message | inlink, msg The message ms g was received from the incoming
From Inlink link described with id inlink
Receive  Message | sender, msg The message ms g was received from the CUI with
From CUI id sender
Table 4.5: Services provided to UMIs through UMI base ambassadors.
| Service | Parameters | Short Definition |
Send Message outlink, msg Send the message msg to outgoing link described
with id outlink
Register Message | msg-type Make message type msg-type available to the
Type calling instance
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Table 4.6: Callbacks to be responded by UMI CBs through UMI CB ambassadors.

Callback Parameters Short Definition
UMI-Base umi-base- The base part of the UMI given as parameter
Created ambassador umi-base-ambassador is ready to receive

service requests

Receive Message inlink, msg The message ms g was received from the incoming
link described with id inlink

a CUI is not allowed to send a message to a UMI using the UMI’s ID, since the mechanisms for
reception would be different, and the UMI would not be able to know where the message is coming

from.

Execution Unit (EU)

An execution unit (EU) is the abstract representation of a pseudo-independent computing resource.
An example to such resources are the processes running in a time-shared manner on a single pro-
cessor, managed by a multitasking capable operating system. Unlike components, EUs do not have
types. They can be created or destroyed by the component platform on request from a CUIL A
component platform would support creation of at least one EU. An EU is associated with a single
execution manager (EM) (see below) at the time of its creation, and its associated EM can not be
changed during the EU’s lifetime.

Each instance in the run-time structure of a system is associated with a single EU, while an EU
may be associated with multiple instances. For the sake of presentation, we will use the containment
metaphor, and refer to the instances associated with an EU as being contained in it. An instance is
associated with an EU at the time of the instance’s creation, and the associated EU of an instance
cannot be changed during its lifetime.

The main purpose of EUs, along with the EMs described below, is to allow construction of
various control flow patterns in a controlled way. We refer to the part of the component platform
that manages an EU as the £U controller for that EU. An EU controller receives messages arriving
to the instances it contains in an asynchronous manner. The messages are then dispatched one
by one to the instances in the EU, according to any precedence scheme that might be defined by
the component platform. Since the callbacks defined in the CB-ambassador interface are defined
to run until completion, the instances in an EU receive and process their messages in an exclusive
manner. Therefore, EUs provide a multiprogramming environment for the instances they contain.

The control flow relationships between the EMs, EUs, and instance are summarized in Figure 4.2.

Execution Manager (EM)

An execution manager (EM) represents an independent computing resource, such as individual
computers or processors. Like EUs, EMs do not have types. They can be created or destroyed
by CUIs, too. Naturally, what is being created or destroyed are not computers or processors, but
controllers on computers or processors that allow them to be used as resources in the run-time
structure of the system.

Continuing to use the containment metaphor in the sense it was used for EUs, an EM may
contain zero or more EUs. Instances that are contained in the EUs contained in a single EM run in
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time—shared
multitasking multiprocessing

multiprogramming
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Figure 4.2: An example demonstrating how the EMs, EUs, and instances makes it possible to
express multiprogramming, multitasking, and multiprogramming.

a time-shared manner, providing the means to express multitasking in our component model. In
contrast, instances that are contained in EUs contained in different EMs run in parallel. Thereby
our component model is also capable of expressing parallel processing relationships between the

instances.

Links

Links are unidirectional data flow pathways between instances. As the links are defined to be
unidirectional, every instance has two sets of links which will be referred to as the inlinks and
outlinks. Each link is identified by a five-tuple that consists of the following:

¢ the ID of the instance the link originates from,
¢ alink ID that is unique among the link IDs of the outgoing links of the originating instance,
¢ the ID of the instance that the link ends in,

e another link ID that is unique among the link IDs of the incoming links of the instance the
link ends in,

* and a message type.

Of the elements of this five-tuple, the pairs formed by the originating instance ID and the
outgoing link ID, and by the ending instance ID and the incoming link ID, uniquely identify a
link. Therefore from the perspective of a single instance, a link described by a defined link ID is a
point-to-point communication medium with a fixed message type. The CB of an instance directs
messages to an outlink using the outlink’s link ID, and receives the inlink’s link ID along with the
messages received from an inlink.
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The links can only be set up by CUISs, since their setup requires instance IDs. Instance IDs
have system-wide semantics, therefore the UMIs are shielded from them. The CB of a UMI is
only dependent on the link IDs, which have only semantics local to the UMI they are defined
in. In effect, this reduces coupling and helps to prevent hyper-spaghetti of dependencies between
instances.

The main purpose of including the message type in the link definition is that component plat-
forms can make effective use of this information in transparently handling the data flowing on
links that cross through the EU boundaries. This observation is based on our experience in the
development process for the component platforms for MICA.

Message Types

Our work on the component platforms we have developed for the early forms of the component
model indicated that an explicit type system for messages is needed. This is needed in order to
provide transparent serialization for messages and dynamic loading of libraries that contain imple-
mentations of message classes. In particular, the C++ type mechanism is not adequate by itself
for implementing object serialization. We consider C++ as an important language that should be
supported.

Our component model requires every instance to register the message types it will be using,
during the initialization of the instance.

Messages

The messages are serializable objects with associated message types. A component platform should
not serialize and deserialize messages when the sending and the receiving instances are in the same
EU. Message passing is non-blocking, that is sending a message does not block the sending instance.
A message sent eventually arrives at its destination, unless the destination is deleted. The only
guarantee on the message delivery order is that the messages sent by a sending instance arrives
at the intended receiver instance in the order they were sent. Such a restricted guarantee on the
order of delivery of messages is also used in the definition of the agent communication language

KQML [58].

Identifiers

Different types of identifiers are used in the MICA component model to address different entities.
Every EM, EU, instance, and link that is created at run-time have an associated identifier. The EM,
EU, and instance identifiers only appear in the service calls defined in the CUI-base-ambassador
and the callbacks defined in CUI-CB-ambassador. UMIs may handle them, such as by learning
about them from a CUI through communication, but they are not provided with any services or
callbacks that make use of these IDs. Link IDs have different semantics than the others, as explained
before when links were being discussed. Furthermore, there are also identifiers for computational
resources, components, and message types. These identifiers are more like descriptors, since they
also need to be available for use by humans.

The EM, EU, and instance identifiers are opaque: their implementations are component plat-
form dependent, and instances of these identifiers are created only through the component plat-
form. While EM IDs are implemented as opaque, each EM ID is associated with a computational
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resource ID, which is human readable. Such a human-readable form appears to be necessary since
the developers of CU components and the users of the systems using these components would
presumably need to be able to refer to the computational resources the components are to be dis-
tributed over.

In contrast to EM, EU, and instance IDs, the link IDs are not opaque: they can be cast to
and from a set of values to be determined by component platform implementations, such as the set
of natural numbers. Both CUIs and UMIs use link IDs to communicate through the links. The
reason why the link-ids are not opaque, is that the link-ids of the links would be used in describing
the behavior associated with an instance. Therefore they should be accessible to humans, such as
by being casted to integers.

The EM, EU, and instance identifiers are defined to support equality checks, cloning, and
serialization/deserialization. The serialize/deserialize operators are necessary for the instances to
be able to convert the opaque ids to a form transferable in messages. Link IDs do not need to
support serialization/deserialization, since they are not opaque. In addition to cloning and equality
operators, the link IDs should support a smaller-than operator to allow for range checks.

4.3.3 On Leaving Out Simulation of Time

Simulated world is virtual and so it is subject to arbitrary rules set forth in a model. One typical set
of rules relate to causal relationships between events, and the progression of time in the simulated
world.

Simulation models for causal relationships and time are typically provided in the APIs provided
by the simulation systems. There are various approaches being used in ensuring correct causal
relationships and synchronisation, but typically a monolithic or distributed scheduler is used. Since
these “schedulers” are implementing the concept of time as it appears in the virtual world, they are
in fact sub-models of the model being simulated.

As with any sub-model in a simulation, model implementations that are simulating causal re-
lationships and time should also be separated from software architectural concerns in a simulator.
With respect to a component-based approach, this can be formulated by saying that such models
should be provided as component-based frameworks that are to be used as an architectural tier in
implementation of simulators. Simulation of time and causal relationships should not be a part of
the component model, nor the component platforms. Therefore, MICA APIs do not contain any
time management or synchronisation related APIs, but it can be used with different component-
based frameworks implementing different time management and synchronisation methods, such as
parallel simulation techniques including optimistic ones.

Leaving time management and synchronisation out from the MICA component model raises
the question about how MICA can support component reuse in simulations. After all, time man-
agement is a typical dependency of a simulator component, and therefore MICA component model
appear to lack a crucial component for ensuring reuse. However, it was presented in Section 2.3.8
that component reuse is closely connected with component-based frameworks and architectures.
Therefore, providing only software architectural support for reuse at the component model level,
and leaving time management and synchronisation issues to component-based frameworks to be

used as additional architectural tiers is consistent with our reuse hypothesis presented in 2.3.8.
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4.4 Usage Examples

In this section, we are going to describe how the MICA component model can be used in simulator
development by looking at some hypothetical scenarios as examples. The concrete demonstration
of the architecture is the network emulator DINEMO, which will be described in the next chapter.
We will start with describing the elements of a simple network simulator design. Then we are
going to present a set of conditions for a simulator built using MICA, satisfaction of which enables
the model replacement and simulator interoperability scenarios.
An earlier form of these examples, which used a bootstrapping method that we have abandoned

in the evolution of the component model, was previously published in [72].

4.4.1 A Simple Simulator

The elements of a simple simulator are a CU component, a set of UM components, and a set of
message type implementations that are used by the instances of these components.

The role of the CU component is to define how the run-time structure of the simulator is to be
built. The instance of this CU component will have knowledge about which UM components to
instantiate and in what patterns they should be linked. This knowledge may be incorporated into
the code of the CU component, or its instance may be obtaining such information from outside
sources, such as from a configuration file. As the first instance being created by the component
platform, the CUI would then receive the start message. In response to this message, the CUI
creates the other component instances, and builds links among the component instances. Then it
starts the execution of the model implementations in some way, such as by sending a message to a

certain UMI. These steps of execution for a simple simulator are summarized in Figure 4.3.

Component Platform: -
Create the first CUI First CUI:
Initialize
Send the start message ) > Receive the start message

Find info on instances and connection topology to create
Create instances and links
Start execution of the model

Figure 4.3: Steps of execution for a simple simulator.

The set of UM components correspond to model implementations that can be instantiated in
building the stand-in for the system under test (SIFSUT).

As an example, consider a simple network simulator where the network model is partitioned
into the following submodels: the communication medium C, hypothetical protocols P, and
Py, where Py is a higher level protocol working on Py, a traffic generator 7, and a sink S.
The implementations of these models will constitute the set of UM components. In addition to
these models, there will be a single CU component for the simulator, which we will refer to as
CU. Furthermore, suppose that the scenario to be simulated involves two nodes connected to the
communication medium, where each node is composed of an instance of T" and an instance of S
connected to a Py, the Py connected to a Py, and the P;, connected to the C. The communication
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medium C' would be instantiated as a singleton. We will further assume that the simulation is
started by sending start messages of type t; to the traffic generators, and the CU expects s as its first

message. Then, the steps up to the start of execution of the simulation episode are as follows (see

also Figure 4.4):

1. The component platform is invoked with C'U as the component to create the first instance

from, and message type s as the first message to be sent.
2. The CUI is created from the CU.
3. The CUI receives a message of type s.

4. In response to s, the CUI creates the UM component instances and the links that define
their communication paths in accordance with the scenario.

5. It creates and sends ¢, messages to the traffic generators, in order to start the execution of the

episode.

At the end of the episode, a stop message may be sent to the UMIS, followed by their deletion
by the CUIL The component platform can then be stopped.

4.4.2 Some Conditions for Interoperability and Model Replacement

In Sections 4.4.3 and 4.4.4, two scenarios that demonstrate model replacement and simulator
interoperation will be described. For these scenarios to work, certain conditions should be satisfied
by the simulators that will be used. These conditions are presented in this section. A summary of
these conditions is shown in Figure 4.5.

The first condition to be satisfied is that the creation of the stand-in for the system under
test (SIFSUT), by instantiating UM components and setting up links, should fully precede the
execution of the episode. New instances or links must not be created during execution. Although
this condition appears to be quite restrictive, situations where the experimenter can not predict an
upper bound on the number of model instances, are rarely encountered in network simulations.

While it is possible to employ multiple instances of multiple CU components in the run-time
structure of a simulator, the first CUI to be created is an easily locatable single point of contact for
the whole simulator. As the second condition, we will require that this first CUI for the simulator
should support two services that can be invoked using messages sent to it. The first service should
construct the SIFSUT, and the second service should configure the individual UMIs, and start the
execution of the episode. We will refer to the messages for invoking these services as CONSTRUCT,
and INIT-AND-RUN messages.

The third condition is closely related to the second one: The first CUI should send first a
CONSTRUCT and then an INIT-AND-RUN message to itself when it receives the first message,
which is injected by the platform for bootstrapping. Other than sending these two messages, the
first CUI should not do anything in response to this first message. Instead, all relevant operations
should be triggered in response to these two messages only. This presents the only difference in the
sequence of events that happen prior to the start of execution of the episode, between the sequence
of events in the simple simulator discussed in the previous section and in a simulator that adheres
to the conditions in this section.
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Figure 4.4: The steps for the example simple simulator, with two nodes.

66




4 M\

1 Creation of SIFSUT should precede execution of the episode
s S
2 The first CUI should provide these services:
— CONSTRUCT: Prepare the run—time structure
— INIT-AND-RUN: Initialize instances and start episode execution
- <
3 n response to the first message, the first CUI should
— send CONSTRUCT and INIT-AND-RUN messages to itself
— not do anything else
N J
e ™
4 The first CUI should be able to provide
— a mapping between names that are based on roles to UMI IDs
— information on the connection topology of the UMIs
N J

Figure 4.5: Conditions that should be satisfied by a simulator for the simulator interoperability and
model replacement scenarios to work.

The fourth and last condition is that there must be a way to obtain the IDs of the UMIs created
in the run-time structure after the construction phase is carried out in response to a CONSTRUCT
message. This method should be based on symbolic names that relate UMIs to the role they play
in the simulation model. In addition, we will require that the first CUI should be able to reply
to queries for mapping these symbolic names to UMI IDs. The reason behind this requirement is
that for model replacement, one should first be able to locate the UMIs that implement the part of
the model that will be replaced. Simulator interoperability is similar, where again certain UMIs are
replaced and links are set up. This name to ID mapping can not be provided by any component
platform alone. While the platform can provide information about from which components the
component instances are created from, this is not enough for finding out about the role of a partic-
ular UMI in a simulation model. Information about such roles can rarely be deduced solely from
how the UMIs are connected to each other.

In addition to the symbolic name to UMI ID mapping, the first CUI may provide information
about the interconnection pattern of the UMIs. This might be necessary in some approaches to
model replacement for correctly accounting for the connections of the to-be-substituted set of UMIs

to the rest of the component instances in the run-time structure.

4.4.3 Example Scenario for Replacing Models

This scenario demonstrates two related situations in one scenario: replacement of simulator com-
ponents (see Section 2.4.2), which implement a part of the model being simulated by a simulator,
and forced use of a simulator in an emulation-based experimental setup. The scenario we present
in this section is illustrated in Figure 4.6.

Suppose that there is a simulator, which we will refer to as SIM, whose architecture is based on
MICA. Suppose further that there also exists a program and an associated protocol stack, which
have been virtualized on a particular machine architecture and operating system. We would like
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Figure 4.6: Summary of the model replacement scenario.
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to use this virtualized program and protocol stack (VPPS) as part of the stand-in for system under
test (SIFSUT) in an emulation-based experimental setup, using SIM as the emulator. The machine
architecture or the operating system the virtualization of the VPPS was made in, can be different
from the machine architecture or the operating system SIM was designed to run on. If they are
different, a distributed component platform for MICA that works on both machine architectures
and operating systems should be available.

A reminder of caution is necessary about forcing SIM to work as an emulator. Using simulators
in emulated settings is a source of potential problems not necessarily addressed in simulator designs,
as discussed in Section 3.5. While it is not our intention to discuss emulation related potential
problems with respect to this particular scenario, we will provide a single example: about time, we
note that either

* the simulator SIM must be capable of managing a virtual time that is synchronized to the

wall-clock time,

* or the VPPS must be capable of virtualizing the time as perceived by the program and pro-

tocol stack,

* or the experimental goals should not be affected by the inaccuracies that might be caused

because of time incoherence.

In order to integrate the VPPS with SIM, one must first define one or more UM components,
instances of which will logically encapsulate the VPPS in the run-time structure. These UMIs will
enable the VPPS to interact with the component instances in the run-time structure of SIM. For
the sake of simplicity, we will assume in this scenario that the VPPS will be represented by a single
UM component, which we will refer to as VPPS-UM component. When the VPPS is represented
by more than one UM components, it is possible that there will be a CU component for overseeing
the construction of these UMIs and the links between them. In that case, the situation will resemble
a bit more to the simulator interoperation scenario that will be described in the next section.

In order to integrate a VPPS-UM component instance (VPPS-UMI) into the run-time structure
of the model being simulated in SIM, we need to have a new CU component. This new CU
component would be instantiated to create the first CUI for the combined SIM and VPPS-UM
system, instead of the first CUT of SIM. If this new CU component is also implemented in a way
that it adheres to the conditions set out for simulators in the previous section, it becomes possible to
replace models in the combined SIM and VPPS-UM system using the same techniques described
for simulator SIM in this scenario.

The customized behavior (CB) of the new CU component should:

1. construct the run-time structure of simulator SIM,

2. find and replace the CB of certain UMIs with either the VPPS-UM component’s CB, which
will construct or invoke the virtualized program and protocol stack, or a UM component
CB which will forward messages back and forth between a VPPS-UMI and the rest of the
SIFSUT,

3. and construct additional UMIs and links that will transform or transfer messages to be passed
between the component instances in the SIM and VPPS-UMLI, if necessary.
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To accomplish the first task, the new first CUI will first create the first CUI of SIM. Then it
will send the first CUI of SIM a CONSTRUCT message. The first CUI of SIM knows about the
CONSTRUCT message since we assumed that it satisfies the conditions presented in the previous
section. In response to the CONSTRUCT message, the first CUI of SIM will construct the run-time
structure from its perspective. The only difference from the point of view of the first CUI of SIM,
is that it does not receive the first message sent by the component platform.

The new first CUI will then create the VPPS-UMI, using a CreateUmi service request. The
VPPS-UMI may construct the necessary environment related to virtualization of the program and
protocol stack at this point in execution, or it may defer such initialization until the simulation
model is initialized by the first CUI of SIM.

The third task that the new first CUI must do, is to find and modify the UMIs whose role
will be assumed by VPPS-UML. In order to find the IDs of the relevant UMIs, and how they are
connected to the other UMIs in the run-time representation of the model to be simulated, the first
CUI must query the first CUI of SIM. Supporting such queries has previously been described as
another condition SIM should satisfy.

Once the first CUI identifies the relevant UMIs, it issues Replace UMI-CB service requests
to replace the customized behavior on these UMIs, with behaviors that will take role in channeling
messages back and forth between the component instances in the run-time structure built by SIM,
and the VPPS-UMI.

An apparent alternative to using the Replace UMI-CB service request, is to delete the rele-
vant UMIs in the run-time structure, then creating new UMIs with necessary behavior, and finally
linking these new UMIs to the run-time representation of the simulation model in exactly the same
way as the deleted ones. The reason why this would not work is that information about UMIs’
identifiers can be stored in two places in a system built on MICA: in records kept by the compo-
nent platform of the links that are set up between the UMIs in the system, and in the CB’s of CUIs.
Although we update the information about the deleted UMIs when we link the newly created ones
in exactly the same way the deleted ones were linked, no assumptions were made that the first CUI
of SIM be the only CUI in SIM. Furthermore, we have no control over the data structures of any
CUIs except for the new first CUI instantiated from the CU component created specifically for
combining SIM and VPPS-UMIL.

Unless additional conditions are imposed on the first CUI of SIM for updating its and any
other CUIs data structures in case of such UMI replacements, the replacement strategy results in
invalidation of the deleted UMT’s identifier stored in CUIs. To prevent that, the new first CUI must
use the Replace UMI-CB service, as this service does not change the UMI-base of the UMI it is
invoked on. This means that the UMI identifier of the UMI that is updated to have a new behavior,
does not change. Thus no data structure kept by CUIs is invalidated. Furthermore, the Replace
UMI-CB service request does not even necessitate re-creation of the links connected to the UMI
the behavior of which is being replaced.

The fourth and last task the new first CUI must do is to establish the connection between
the VPPS-UMI and the UMIs whose behavior were replaced, if VPPS-UMI was not created as
replacing one of the UMIs. Depending on the design, this may involve simply linking VPPS-UMI
and the UMIs whose behaviors were replaced, or it may require creation of some number of other
UMIs which would adapt the behavior of the VPPS-UMI to the behavior expected from the UMIs

whose behaviors were replaced.
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Figure 4.7: An example to the problem setting for the interoperation scenario.

At this point, the run-time structure created by simulator SIM is extended with the VPPS-
UMYI, and it is ready to be run. The new first CUI sends the INIT-AND-RUN message to the
first CUI of SIM, and the episode runs. When the episode is finished, the new first CUI will have
to do necessary clean-up tasks for the UMIs that the first CUI of SIM is not aware of, such as the
VPPS-UMI and the UMIs that were used as adapters between the VPPS-UMI and the component
instances created by SIM.

4.4.4 Example Scenario for Simulator Interoperability

In our second scenario, we will discuss how two simulators, each of which is designed on MICA, can
be interoperated. We will not give a detailed step-by-step description as was done in the previous
section, but we will focus on differences from the previous scenario. The scenario described in this
section is illustrated in Figures 4.7 and 4.8.

Let us name the two simulators we have in this scenario as SIM-1 and SIM-2. In a normal
stand-alone execution, these simulators adhere to the conditions described in Section 4.4.2. We
need a new first CUI for the combined SIM-1 and SIM-2 system, as it was in the case in the model
replacement scenario in the previous section. This new CUI C of the combination will create the
first CUIs of SIM-1 and SIM-2, in the same way the first CUI in our previous scenario creates the
first CUI of SIM. C will request both CUIs of SIM-1 and SIM-2 to create the set of component
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Figure 4.8: Steps for interoperating two simulators.
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instances that constitute the stand-in for the system under test (SIFSUT) from their point of view.
When creation is complete, C will find and modify certain UMIs created by simulators SIM-1 and
SIM-2. Such modification will be done by replacing their customized behavior, again as discussed
in the previous section. C' will then create the necessary adapter UMIs, set up their links, and send
the INIT-AND-RUN messages to the CUIs of SIM-1 and SIM-2, starting the execution of the
episode.

Although the mechanism for interoperating two simulators at the level of component instances
in the run-time structure, can be described with relative ease, such interoperability is not the only
issue. The exact behaviors needed from the adapter UMIs, and how their connections should be
set up, is a problem whose solution depends on various design details of the simulators involved.
With regard to the levels the concept of components are used in simulation (see Section 2.4.2), the
scenarios we describe here demonstrate a part of a solution at the simulator components level. It
must be noted that this solution is not intended to simultaneously provide a solution at the model
components level as well, and the solution to that problem is out of our focus in this thesis.

4.5 Component Platforms for MICA

4.5.1 Design Goals and Decisions

We start our presentation of our component platform implementations for MICA by presenting the
design goals and various design decisions that have been influential. These design goals are closely
related to the desired properties for the component model, which were presented in Section 4.3.1.

Isolation of Instances

Ideally, the component instances making up a system should only be able to communicate among
themselves through the component platform. However, it is difficult to prevent component in-
stances from using various libraries to create alternative communication mechanisms that bypasses
the component platform.

Therefore a weaker form of isolation is set as a goal for the component platforms we have
implemented. In this weaker form, we only require that it should be difficult and discouraging
to implement components that refer to the symbols defined in other components. Therefore,
the components should not be able to easily call functions or access variables defined in other
components at run-time. Such direct symbolic references create dependencies buried deep into the
code of the components, thereby considerably increasing coupling, and complicating component

reuse.

Support for Small Size Components

It is not easy to provide a scale for component size. However, in reference to an intuitive use of the
concept of component size, it can be said that system designs composed of different component
size distributions would have different requirements from the component platforms. For example,
a system containing a large number of small size components would need a component platform

capable of providing low-overhead communications.
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We believe that the components used in network simulators and emulators can mostly be re-
garded as small size components. Therefore, we have been careful to employ communication tech-
niques that do not introduce unjustifiable overheads in our component platform implementations.
However, we have not attempted to optimize the implementations of the platforms for minimiza-
tion of these overheads, since we do not see optimization as a goal for our component platforms.
These platforms are implemented mainly to serve as proof of concept demonstrations for our com-

ponent model.

Costs of Management of the Run-Time Structure

Separation of workers and constructors has implications on how the efficiency concerns are to be
addressed in component platform implementations. In reference to our argument that the functions
for managing run-time structure of a system are needed only by a small subset of component
instances in the system, it should be safe to assume that these functions are invoked relatively
infrequently.

As a result, the implementations of these management functions should not be a major focus of
efficiency concerns. Therefore, we deem sensible increases in the cost of these functions as a result

of efficiency concerns related to worker components as tolerable.

Choice of Programming Language

The component model of MICA is programming language independent. For component platform
implementations, we have chosen to use C++. It is chosen because it is an object-oriented language,
while at the same time it natively supports C. C can be considered to be the foremost system
programming language, therefore it was perceived as necessary to support C in a network simulator
or emulator architecture. Using C code or code fragments might be beneficial in constructing
models from protocol implementations.

The C++ API for the MICA component model is included in this thesis as Appendix E. Both
of the component platforms we have developed, the single threaded one and the PVM based dis-
tributed one, share this C++ API. This allows component implementations written using this API

to be used with any of the two platforms.

On Using XML

There appear to be two alternatives for implementing messages and message types: using an object-
oriented approach, or using XML.

Using objects as messages has the potential risk of programmers making use of behavior defined
in the message class, in addition to the message data. This would result in increasing components’
dependencies on the message class implementations. Furthermore, developers can easily be tempted
to incorporate object references into the message objects. Objects pointed to by such references may
break down the system if they start to be shared between components. In addition, transparent
serialization is not easy to achieve, if not impossible, for message objects containing references to
arbitrary objects, in some environments such as that provided by the programming language C++.

Since what XML does is just describing data syntax, it does not introduce such a risks. Further-
more, the need for transparent serialization and deserialization can readily be addressed by using

schema descriptions.
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However, introducing XML into component platforms results in additional learning load not
only on the simulator developers, but more importantly on the model developers as well. In net-
work simulation, experimenters frequently act as model developers. Since one of the goals of MICA
is to provide as little extra load as possible on the experimenters, requiring them to learn XML was
considered an extra load, not justified enough even given the advantages.

In addition, it was considered that XML might introduce performance penalties, and may
prevent any no-copy mechanisms to be implemented. Further research is needed that address the
feasibility of using XML efficiently in MICA component platforms.

4.5.2 Single-Threaded Platform (RTI-st)

The initial design of the MICA was published in [70] under the name AMINES-HLA. The work
on the single threaded component platform, which we also refer shortly as RTI-st (Run-Time
Infrastructure — Single Threaded), started with that first version of the design. The RTI-st have

been updated as the architecture matured further with the inclusion of constructs for distribution,
such as EUs and EMs.

Control Flow: Meaning of Being Single Threaded

Single threaded means that there is only a single thread of control. In terms of the constructs in
the MICA component model, being single threaded means that there is a single EM that contains
a single EU, which contains all the component instances in the system. Therefore RTI-st supports
only multiprogramming.

While RTT-st is usable with many component-based system designs, there exist some systems
that cannot be run on RTT-st. One class of such systems form a subset of component-based designs
that employ the singleton component instantiation pattern. Components can be instantiated as
singletons in an EU, singletons in an EM, or as a system-wide singleton. When the design of
a system requires more than one instance of a component to be instantiated as an EU or EM
singleton, the system has to be distributed over multiple EUs or EMs. Therefore for running such
systems, RTT-st can not be used.

Even if the target deployment environment of a system that is being developed is distributed,
using RTI-st might be beneficial for testing and debugging. There are two reasons for this. First
reason is that in RTT-st, the sequence of events happening in the system is independent of the
relative running speeds of the hosts or processors, or the scheduling of processes by the hosting
operating system. The second reason is that when events that happen in the system are logged
along with system time in the RTI-st, the system time provides a complete ordering of message

processing.

Implementation of Identifiers

Implementation of the identifiers can be divided into three groups: descriptor style IDs, link IDs,
and opaque IDs.

The descriptor style IDs are computational resource IDs, component IDs, and message type
IDs. Of these, computational resource IDs are irrelevant to RTI-st, since the only computational

resource for the RTTI-st is the host and the process it is running in. The component IDs are imple-
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mented as simple strings, since they need to be readable by humans. Message type IDs also need
to be readable by humans, but additionally an equality operator is required for the message type
IDs, to be used in the CBs of instances for determining the type of incoming messages. Therefore
message type IDs appear in two different forms for two different uses: while they appear as sim-
ple strings for the purpose of message type registration by the CBs of instances, they are used as
opaque objects hidden behind the MessageType interface in the C++ API for the purpose of
type checking in the CB implementations.

While the link ID is implemented as a class in the RTI-st, direct use of instances of this class in
the customized behavior (CB) parts is allowed. New instances of the link ID class can be created
using the new operator, or by casting from an unsigned integer. Casting instances of the link ID
class back to an unsigned integer is also supported.

The opaque IDs, namely the EM, EU, and instance IDs, are exposed to the CBs of CU compo-
nents only as abstract classes. The implementation of these IDs are hidden behind these interfaces,
and the CBs of CUIs can only use pointers to the objects that implement them. While cloning
is supported by a method defined in these interfaces, the CBs can not use the operator new to
create new instances of these IDs. The factory pattern that is used for creation of EMs, EUs, and
instances, also serve to create new instances of EM, EU, and instance IDs.

While the CBs of CUIs are denied access to the implementation and contents of the opaque
IDs, they might need to communicate IDs with other CUIs. For such communication, serialization
and deserialization of the opaque IDs need to be supported. Serialization is presented to the CBs as
a normal method of the abstract classes implementing the opaque IDs. However for implementing

deserialization, a static method is defined in these abstract classes.

Implementation of Message Passing

Message passing is implemented as pointer shuffling. Therefore messages are never copied in the
RTT-st. Such a no-copy mechanism is in fine accordance with the goal of supporting small compo-
nents in an efficient manner.

However, no-copy mechanism also has a drawback. When sending a message, the resources for
a message are allocated by the sending instance’s customized behavior (CB), and the control of these
resources are then first transferred to the RTI-st via one of the message sending services, and then
from RTI-st to the receiving instance’s CB via one of the message reception callbacks. Naturally,
the receiver of a message may forward it if it chooses to, in which case the control of the resources
further changes hand. Reuse of resources allocated for a sent message is a potential source of defects

about which the developers of instance CBs need to be careful.

Implementation of EU Controller

The main module in the implementation of the RTI-st is the EU controller. It keeps track of which
instances can be activated, and controls the message dispatch.

Each instance has an associated FIFO queue for received messages. An instance can be in one
of two states, blocked or ready for activation, depending on whether there is at least one message
in its reception queue. The lists of blocked and ready instances are kept in the EU controller, and

updated according to new messages being sent by the instances.
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Instances that are ready for activation are activated in a round-robin fashion. When an instance
is activated, all messages in its reception queue at the time of activation are dispatched to it one by
one, by calling the appropriate callback function of the CB-ambassador of the instance.

Use of Dynamic Loading and Linking

Normally, the code of a process is loaded and the linker is run to bind symbols to memory addresses,
before the process starts executing. In dynamic loading and linking, pieces of code are loaded and
linked after the process starts, on request from the code executing in the process. The loaded pieces
of code are referred with different names in different systems, such as dynamically loaded libraries
(DLL), or dynamic shared objects (DSO). We will follow the naming in the GNU/Linux systems
and use DSO, since RTT-st is implemented on GNU/Linux. Detailed information about loading
and linking can be found in [51] and [110].

Component and message implementations are dynamically loaded in RTT-st. This way, com-
ponent and message implementations all exist as separate DSOs, all separately compiled. Packing
each component implementation into its own DSO, along with using opaque identifiers whose
implementations are hidden, makes it discouraging for the component developers to build two
components that depend on direct method call or direct variable accesses between their instances.
In the case of messages, the symbols in the class that implements a message are made known to
the components whose implementations make use of message objects of that class, through use of
a header file that declares the message class. Using DSOs ensure that implementation of a message
class comes from a single source. Otherwise, there exists a possibility that different implementations
of the message class, with identical interfaces, might be compiled into each component implemen-
tation.

It is acknowledged in the developer community that use of dynamic loading and linking along
with C++ becomes problematic if run-time type information (RTTI) or exceptions that traverse
DSO boundaries are used. Furthermore, different C++ compilers uses different application binary
interface definitions (ABIs), which in particular means that symbol name mangling and exception
handling are not portable at the binary level between binaries produced by different compilers.

In fact, one of the reasons for inclusion of the discussion of a type system for messages into the
MICA component model have been the difficulty in using RT'TT with dynamic loading. The main
and immediate need in the MICA component model is a set of types along with a suitably defined
equality operator. Such a need is easily addressed by implementing a basic type information system
instead of using RTTI, where all messages have a method that reports its type. In this way, the costs
associated with RTTT are also avoided.

Throwing exceptions is a useful method for expressing control flow in the case of errors. In
the implementation of RTI-st, they could have been used, and indeed tried, in defining the error
conditions for the methods in the C++ API. However, calls to methods defined in the C++ API
crosses DSO boundaries quite frequently. Therefore, in order to avoid the problem about throwing
exceptions across these boundaries, error conditions had to be represented by return values instead
of exceptions thrown. This aspect of the C++ API for MICA, can be contrasted to the federate APIs
in IEEE’s HLA standard, where exceptions are used.

Symbol name mangling has a simple solution: avoid the C++ compiler’s symbol naming scheme.
C++ compilers support definition of C style symbols, which appear in the compiled DSOs as
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unmangled. This solution works well for finding the factory functions in the DSOs. However, in
order for the component platform to be able to call methods in the classes defined in the DSOs that
contain component and message implementations, the DSOs and the EU controller that is used for
loading them should be compiled with the same compiler, or compatible compilers. However, it
would be possible to use component instances compiled using different compilers, by placing them
into different EUs that are compiled with the same compiler as the components.

The exact sequence of events that take place during dynamic loading of message and component
implementations will be described in Section 4.5.4, along with how messages and components are
implemented by developers.

Invoking the Platform

A system built on the RTT-st is started by invoking the RTI-st at the command line, and providing
it with the component identifier for the first CU component to be instantiated, and the string form
of the message type identifier of the first message to be sent to it. The first CUI receives this first
message as if it is sent by itself, targeted to its own instance identifier. The available command line
options for the RTT-st are given in Table 4.7.

Table 4.7: Command line options for RTT-st.

Short Form | Long Form Explanation
-1 ——log= File name for the log file, where the messages
<FILE NAME> from the RTT-st itself will be logged.
-v ——loglevel= Logging level for the messages from the RTT-st
<LEVEL> itself. Can be one of ALL, TRACE, DEBUG,
INFO, WARN, ERROR, FATAL, OFF.
-0 ——object-dir= Directory which holds the component and
<DIRECTORY> message implementations.
-c ——first-cui= The component identifier of a CU component
<COMPONENT ID> to be instantiated as the first CUI in the sys-
tem.
-m ——first-msg= The string form of the message type identifier
<MESSAGE TYPE ID> which determines the type of the first message
to be sent to the first CUL
-h ——help Print help on command line options and exit.

Execution of RTI-st ends when there are no more messages in any of the receive queues of the
instances in the run-time environment.

Unimplemented Parts of the Component Model

The Replace UMI-CB service is currently not implemented in the RTI-st. The implementation
of this service is straightforward, and it was not regarded as immediately necessary for testing the
component model.

Since the RTTI-st is single threaded, it does not allow new EMs or EUs to be created, nor the
single EM and EU be destroyed. Therefore the respective service requests returns with an error to

the caller.
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4.5.3 PVM-Based, Distributed Platform (RTI-PVM)
Parallel Virtual Machine (PVM)

Parallel Virtual Machine (PVM) [68] is a messaging based middleware for distributed scientific
computing. The first version of PVM was developed in 1989, therefore there exists a significant
community using it. PVM supports various platforms, including multiprocessor ones.

Our work on a distributed component platform started with a design that is built directly on
the socket API. Then, because of the reasons discussed below, we have abandoned direct use of

socket API and started using PVM.

Motivation for Choice of PVM

There are two primary reasons for choosing the PVM for the first distributed component platform
implementation for MICA: PVM has some entities that can be mapped more or less directly to
the entities in the MICA component model, and some of the functionality for implementing the
component platform can be obtained as services from PVM libraries. We will shortly mention the
relevant features of PVM in this section, leaving a slightly more detailed explanation of how they
are used in implementation of constructs in MICA to the sections that follow.

One of the entities in the PVM that can be mapped onto MICA component model constructs
is the pvmd daemon that runs on all of the hosts participating in the parallel virtual machine. The
pvmd daemons, along with the processes they spawn on the hosts, provides us with a natural way
of expressing the EM and EU constructs in the MICA component model. PVM also provides
identifiers for the hosts and processes spawned, which provides support in implementing EM and
EU identifiers.

Another useful feature of PVM for our purposes is that PVM provides ready-made well tested
message passing primitives that can work across different computer architectures and networks,
which we can use to implement component communication.

Furthermore, while we have not used them in this implementation, PVM also provides features
such as debugging and resource managing tasks, which can be used to further develop component
platforms that provide better support for debugging and that addresses load balancing issues for
network simulators. Therefore using PVM provides room for improvement of the component
platform using its advanced features.

Before deciding on PVM, we also had a look at the Message Passing Interface (MPI), which is
also a popular middleware for scientific computing. Our impression have been that the MPI library
is more complex. Mapping MICA component model constructs onto PVM appeared straight-
forward, and we did not see any reason to choose a library that appears more complex for an
implementation that is to serve as proof of concept. An MPI based component platform can be
implemented as future work.

Implementation of EMs

Use of the pvmd daemon is the source of the host abstraction in PVM. The host abstraction maps
nicely to the EM construct in the MICA component model. While this provides a straightfor-
ward implementation for a component platform implementation for clusters of single processor
machines, which has been our main focus for this implementation, the problem of multiprocessor
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machines needs more work. Running multiple pvmd daemons on a single host, which is possible
but not straightforward in PVM, may provide the solution for supporting multiprocessor machines.

EM creation and deletion is currently not supported. Instead, all hosts that will participate in
the virtual machine, all of which will become an EM, are added using the command line tool called
pvm, which is used in PVM for launching and monitoring hosts and tasks. The RTI-PVM is then
started as a task under PVM using pvm. The CUIs in the system can get the list of IDs of EMs
present in the system using the Get EM List service. This choice is not based on impossibility
of implementing EM creation and deletion in RTI-PVM, since PVM allows tasks running in the
virtual machine to create and delete hosts, in which case the PVM uses the rexec service to run
pvmd remotely. Rather, it was chosen to take this approach because this implementation allows us
to test the applicability of the component model using minimum development time.

Implementation of EUs

In PVM, one of the pvmd daemon’s tasks is to spawn new processes. The executable of RTI-PVM
is the process we use as the process being spawned. Such a process serves as the EU controller for
an EU in the system, and hosts the components by dynamically loading them.

The structure of this EU controller is an extension of our single threaded component platform
implementation, RTI-st. The extensions include communicating service requests and messages

with other EUs, a different instance registry management mechanism, and a new EU registry.

Implementation of Identifiers

PVM provides unique host and task ids in the virtual machine, which we have used in the imple-
mentation of EM and EU identifiers for RTI-PVM.

The ID of an instance is assigned by the EU controller in which the instance is created. It is
built using the task ID, which also contains the host ID, and an instance specific part locally created
by the EU controller. Therefore, guaranteeing the uniqueness of instance IDs reduces to simply
ensuring that the local instance IDs given by an EU controller are unique among the instances in
that EU.

Implementation of instance IDs in this way influences how the instance creation service works
when creating component instances in EUs other than the EU that hosts the CUI which invoked
the instance creation service. Since the instance ID of the new instance is to be learned from the
remote EU, the instance creation service cannot return to the calling CUI CB until instance creation
is complete at the remote EU. In a distributed environment, this is relatively costly. Furthermore,
this cost does not incur only for the CUI that requested the instance creation service. All other
component instances that share the same EU with that CUI will also be blocked, since component
instances in an EU are multiprogrammed. This effect should be taken into account when deciding
how the components of a system are to be distributed onto multiple EUs. A similar blocking
method is also used for creation of links, where the service needs to be able to report as error when
the link with the given link ID is already is in use.

Implementation of Message Passing

PVM provides non-blocking, reliable message sending, and blocking or non-blocking message re-

ception with messages buffered at the receiver.
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In RTI-PVM, message passing involves serialization and deserialization of the messages sent
between instances in different EUs. The serialization and deserialization code is considered as part
of the implementation of the message, therefore they are packed into a DSO (dynamic shared
object). This allows us to confine the implementation of a function working on a specific message
type into one piece of shared code, instead of having implementations of these functions compiled
into various DSOs that include implementations of components that make use of this type of
messages. These functions are used by the RTI-PVM, along with the registered message-types for
links and knowledge about the links setup, to determine when a message should be serialized for
transfer, to serialize it, and to deserialize and construct the proper message object from the serial
form in order to put it into the receivers message queue.

When messages are sent between two instance in the same EU, the messages are never copied

nor serialized/deserialized, but passed simply as pointers.

Invoking the Platform

A system built on RTI-PVM is started differently than the RTI-st. The easiest way to start the
system is to do it through the pvm program. When pvm is started, it starts the local pvmd daemon,
and waits for further commands. Then, using the add command, the hosts can be added to the
virtual machine. These hosts will appear as EMs in the RTT-PVM. Finally, the RTI-PVM executable
is run using the pvm’s spawn command. As in RTTI-st, the RTI-PVM should be provided with
the CU component ID from which the first instance will be created, and the message type ID for
the first message to be sent to this first instance. The command line options for the RTI-PVM are
the same as the options supported for RTI-st, which were given in Table 4.7.

The distributed execution of the RTI-PVM can be stopped by using the pvm’s kill command
with any of the tasks running on the virtual machine. The task that is killed communicates the
shutdown status to all the other tasks that belong to the same RTI-PVM execution, which then exit
together with the killed task.

Not-Implemented Services and Further Improvements

The services that are not currently implemented in the RTI-PVM are replacement of the CB of a
UM, creation and deletion of EMs, and deletion of EUs. Implementation of all these services are
straightforward, given time. Furthermore, they are not critical for our goal of building proof of
purpose simulators on RTI-PVM, since EMs are created by using the pvm tool, deletion of EMs
and EUs are not necessary for simulators with static run-time structure, and the replacement of the
CB of a UMLI is not a service normally employed in the CUI of a simulator.

4.5.4 Implementing a System on RTI-st and RTI-PVM

Implementing a system on the RTI-st and the RTI-PVM involves implementing messages and
components. In this section, the steps to be followed by the developers are described in more detail.

Implementing Messages

The relevant classes in the C++ API that are used for implementing messages are the Message and
the MessageType pure abstract classes. The purpose of the MessageType class was presented
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previously in Section 4.5.2.

While there is a type system defined in the MICA component model for messages, there is also a
need for a parallel object-oriented type system for the messages in the C++ environment. Therefore,
all messages are implemented as subclasses of the Message abstract class in the C++ API. This
interface ensures that all message implementations provide the methods for querying the type of
the message, serialization, and deserialization.

In order to implement a new message type, the developer starts by creating a C++ header and
a source file. In the header file, a new class that inherits from the Message abstract class in the
C++ APl is declared. This header is to be used by the developers of the components that send or
receive messages of this type, in compiling the DSOs for the components. The implementation of

the declared class goes into the source file, where the following points need to be observed:

* A function that carries the string form of the message type ID as its name should be defined
with C linkage, using the modifier extern "C". This function should take no arguments,
and return a pointer to a new object created from the message class being implemented, as a
pointer to the superclass Message.

* A global variable whose name is formed by adding _mid to the string form of the mes-
sage type ID should be declared. This variable should be a pointer to an object of type
MessageType.

* The method mfGetMessageType that is inherited from the superclass (classMessage)
should be implemented to return the pointer stored in the variable described in the previous
item, as the value of its output parameter.

* The serialization and deserialization methods inherited from the superclass (class Message)

should be defined.

In addition to these, good design requires the data fields in the message type to be declared
private, and accessor/modifier methods to be used. When all implementation is done, the source
file of the message is compiled to create a new DSO (dynamic shared object). A single DSO
contains the implementation of a single message type.

Message implementations are loaded when component instances register the message types they
are going to be using during their execution. When a DSO that includes a message implementation
is loaded, the component platform creates a new object from the MessageType class, represent-
ing the unique type of the message, and store it into the variable mentioned above in the second
item.

The function in the first item above is a factory function for messages to be created by the
platform. In the case of RTT-st, this factory function is only used for the first message to be sent to
the first CUI. In addition to creation of the first message, it is also used in transparent deserialization
of messages an EU receives from other EUs in the distributed component platform implementation.

The mfGetMessageType addresses the need for finding the type of a message object. Al-
though various alternatives exists for implementing this functionality, our solution takes only one
method pointer per message class, only one message type object per message class, and costs only
a simple function call. Message type checking is a frequent operation in the component-based
systems implemented using the MICA component model.
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Implementing Components

Implementation of components from a developers point of view is similar to implementing mes-
sages. However, unlike the case in implementing messages, the component implementers are not
required to provide any header files. All there is to a component implementation lies in a single
DSO, and a single DSO includes a single component.

For a component, the following should be addressed in its source files:

* A global function that is named the same as the string form of the component identifier
should be declared with no parameters, and with the return type of UmiCbAmbassador or
CuiCbAmbassador depending on whether the component is a UM or CU, respectively.
This function should be declared to be extern "C", which prevents its symbol from

appearing in mangled form in the final DSO created for the component.

* Implementation of a class, which we may call a customized behavior (CB) class, that imple-

ments one of the interfaces mentioned above, and provides the behavior of the component.

The rules of conduct to which the objects created from a CB class should adhere, can most
easily be descried by looking at the methods of a CB class and their intended function:

Constructor: The constructor of a CB object is expected to initialize the object’s member variables,
and other objects in its implementation if there are any. The component platform can not

be used yet, since the object does not know how to access the services.

mf<Instance Type>BaseCreated(): This function is inherited from the ambassador being sub-
typed. Depending on whether the instance being created is an instance of an UM or a CU
component, the function is named mfCuiBaseCreated, or mfUmiBaseCreated.
The platform implementation calls this method in order to inform the instance about the
address of the base object it is associated with, from which it will obtain services from. Typi-
cally, this method is where the CB object will register the message types that it will be using.

mfReceiveMessage(): This method, which is also inherited from the ambassador being subtyped,
is called by the platform for informing about an incoming message. Whenever this method
is called, the instance is expected to process the message, free the resources allocated for the
message object, and return to the platform. This is where the behavior of the component is
implemented. There is a single form of this method for the CB classes of UM components
since they receive messages only from links. In contrast, there are two overloaded forms
for the CB classes of CU components: one for receiving from links, and one for receiving
messages sent using CUI IDs.

Destructor: The destructor should clean up the object’s variables. While the base is still operational
when the destructor is called, shutting down the CB of an instance by sending it a shutdown
message before deleting it would be a cleaner design, instead of doing some cleanup using
services from the platform in the destructor of the CB object, such as deleting other instances.

When a CUI requests the creation of a new instance, our component platform implementations
check whether the DSO that includes the implementation of the component is already loaded. If
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not, the platform requests loading of the DSO from the file whose name is obtained by adding
“s0” to the component ID. Then it searches for the component ID as a symbol in the loaded
DSO, and creates the CB for the new instance. When the CB object is created, it is coupled with
a new instance base, and the CB is informed about the ambassador of the base it is associated with,
completing the creation of the component instance. In the current versions of our component
platforms, loaded DSOs are not unloaded, even if all instances of the component in the DSO are
deleted from the run-time structure of the system. This is not critical to testing the component

model, therefore it is left as future work.

More on Using The Same Components Under Both RTI-st and RTI-PVM

Since RTTI-st and RTI-PVM support different control flow constructs, this section addresses how
and to what extent the same components can be used under both platform implementations.
With respect to message sending and reception, control flow is fixed from the point of view
of a single component: it receives a message, runs until it completes processing of the message,
and hands the control back to the platform implementation by returning from the message recep-
tion callback function. In addition, a component instance is given only limited guarantees about
message sending, as was described in Section 4.3.2 where we introduced messages. Since UM com-
ponents are only capable of message sending or reception, their implementation is independent of
the control flow constructs supported by any component platform. Naturally, for a UM component
that will be used under different component platforms, it should be taken into account that all the
requirements in the contracts of the component should continue to be satisfied. Such requirements
may include statements that restrict placement of the instances created from the UM component in
certain configurations with respect to EUs, EMs, and other components (i.e. being a singleton in
an EU). The same argument about message sending applies in the case of CU components as well.
However, message sending and reception are not the only services provided to CU components.
Through EM, EU, and component instance creation services, a set of CU instances in a system

decide the following:

* A partitioning of the set of all component instances in the system. Component instances
from different sets S; and S; of this partition run in a parallel manner. Each such set is

associated with an EM in the system.

* Dartitions of each of the sets .S; in the previous item, into .S, so that the component in-
stances in different sets S; ,, and 5; ,, will be run in a preemptively multitasked manner. The
component instances in one of the sets S; ; will process their messages by taking turns, and

running their processing to its completion.

It is likely that component instance distribution as described above will preferably be different
under the single threaded and the distributed platforms. Therefore, while CU components can
run without any changes under both of our platforms due to the fact that the APIs remain the
same, their implementation should also be able to adapt to changes in the availability of support
for various control flow constructs in the component platform.

It should also be noted that while the control flow stays the same when observed from the

point of view of a single component, the control flow of the whole system may change when
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different platforms are used, or even across different runs on the same platform if there is some

non-determinism involved in the platform implementation.
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Chapter 5

DINEMO

DINEMO, whose name actually comes from a slightly distorted form of Distributed NEMAN, is
the result of refactoring and extending the NEMAN emulator for mobile ad-hoc networks [149,
150].

The main objective of our work on DINEMO is to observe usability of the MICA compo-
nent model in development. Therefore, DINEMO serves as a proof of concept demonstration for
MICA. In addition, our work also has the following objectives that are from the point of view that
DINEMO is a network emulator:

Reusing experience: NEMAN is developed within the research group that the author has been
working in. Therefore considerable experience on the emulation approach employed in NE-
MAN existed within the research group. We wanted to organize this experience in loosely-
coupled components which can be recomposed into different combinations. This will allow
to fast prototype ideas on emulators of different designs and capabilities for various experi-
ments.

Distributing NEMAN: As will be presented in Section 5.1, all the computational load of a net-
work is put onto one single PC in NEMAN. Although this has the advantage of decreasing
the costs of experimenting, it also causes limited resources to be available for the programs
running on virtual nodes, or for the computing intensive tasks such as realistic physical layer
simulation. Refactoring on MICA provides an implementation of the emulation approach
in NEMAN that is easily distributable.

Alternative models and extensions: The component model of MICA provides ease of replace-
ment of model implementations used in the emulation approach in NEMAN.

The design of DINEMO was published in [74]. The material in this section is an extended and
updated form of what was presented in that paper.

5.1 NEMAN

NEMAN (Network Emulator for Mobile Ad-Hoc Networks) [149, 150] is a network emulator
that aims to provide a low cost, scalable, and portable experimentation platform for mobile ad-hoc
network protocol and middleware development. NEMAN aims to require little initial effort in
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terms of installation and learning. While being kept simple, NEMAN can simulate networks with
many nodes on a single PC using the TUN/TAP universal network driver.

NEMAN:s architecture is divided into three collaborating parts: user processes, topology man-
ager, and the graphical user interface (GUI) (see Figure 5.1). The topology manager and the GUI
run in the user privilege level on Linux. However, superuser privileges are needed for configuring
the TAP virtual network interfaces, and either processes need to be given the capability to use the
SO_BINDTODEVICE option, or they should be run with superuser privileges.

0> "
GUI
feedback
channel
control
channel
Topology
Manager
tap2 | | tap3 |(...)| tap0
monitoring
channel
Processes monitoring,

logging

Figure 5.1: Architecture of NEMAN, taken from [150].

The applications that will be run on the network emulated by NEMAN hook to the virtual
network devices. A TAP interface acts as a network interface, but it is connected to an associated
file descriptor as its other end. Any frame passed to the TAP interface by the network protocol stack
in the kernel appears as Ethernet frame data on the associated file descriptor, and any data written
as an Ethernet frame is made available to the operating system network protocol stack through the
TAP interface. Normally, Linux kernel ignores frames coming to one of its interfaces from another
one of its interfaces, therefore a small patch called “send-to-self patch” is applied.

The programs choose the specific network interface they will use by making use of the option
SO_BINDTODEVICE in the socket API. A group of processes, including for example a routing
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daemon, hooked to a device in this manner represent the applications running on a virtual node in
the simulated network.

NEMAN’s network simulation is limited to the physical, data link, and the routing part of the
network layer. More detailed physical layer simulation is a relatively new addition to NEMAN,
which will not be discussed in this section.

5.1.1 Simulating Link-Level Connectivity

The link-level simulation is handled via collaboration between the GUI and the topology manager.
Every frame that is written to any of the TAP interfaces is read by the topology manager, and
switched between the TAP interfaces according to the connectivity information that is in effect at
the moment. The connectivity information is fed to the topology manager by the GUI through a
control socket. The GUI reads this information from an NS-2 style TCL script. One TAP interface,
tap0, is used as a monitoring channel where all the traffic in the whole network can be monitored
using a packet sniffer.

5.1.2 Simulating Routing

The routing part of the network layer is also simulated by NEMAN, as routing protocols would not
normally set routes for the addresses of interfaces on the same kernel, which happens to be the case
in NEMAN. Therefore, NEMAN bypasses the kernel routing tables, and uses the olsrd.org OLSR
routing protocol daemon hooked to the TAP interfaces. The topology manager then simulates hop-
by-hop packet forwarding by sending a copy of the packet with properly updated MAC address to
every node that the packet should have traversed before reaching its destination.

The reader with some knowledge of routing will notice that this behavior of routing in NEMAN
is not exactly the same with what happens on real networks. A small example (taken from [74])
would help demonstrating how packets are handled in NEMAN.

Suppose we have four nodes in a mobile network, and call them Ny, N, N3, and Ny. Further
assume that they are in such a configuration that N; can communicate with N3, but not with N3
or Ny, Ny with Ny and N3 but not Ny, N3 with N3 and NV, but not Ny, and Ny with only Nj.

What happens in ARP protocol and routing normally in such a mobile network when Ny tries
to communicate with Ny is shown in Figure 5.2. First, IVq notices that it does not have the MAC
address of the next hop when sending a packet to /Ny, and broadcasts at layer 2 an ARP request
asking for the MAC address of Ny or the next hop to N, (Fig. 5.2, 1). Nj receives the request and
replies with its own MAC address (2). Receiving the reply, N; sends a packet destined to Ny’s IP
address, in a frame destined to Ny’s MAC address (3). Ny replaces the MAC address in the frame
with the next hop’s, N3’s MAC address and send forward the frame (4). N3 does the same, and the
packet arrives at Ny, its destination at layer 3 (5).

When the same communication happens under NEMAN where different TAP interfaces run-
ning on one Linux kernel acting as the nodes, a slightly different sequence of events happen, as
shown in Figure 5.3. Again it starts with V7 noticing that it does not have the MAC address of the
next hop, therefore it sends an ARP request (Fig. 5.3, 1). The ARP request is intercepted by the
topology manager in NEMAN (2), and it replies by constructing an ARP request on behalf of the
next hop (3,4), but it returns the MAC address of destination Ny, instead of No, which is the next
hop. Receiving the ARP reply, Ny sends its packet with destination as Ny’s IP, encapsulated in a
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Figure 5.2: Normal operation of the ARP protocol.

frame with destination as Ny’s MAC (5). This frame is also intercepted by NEMAN (6). NEMAN
consults the global routing table it has constructed from the outputs of routing daemons running
on all nodes, finds out which nodes lie on the route between Ny and Ny, and sends a copy of the
frame to each node on the route (IV3, N3, and N,), properly updating the MAC addresses of the
frames sent to appear as if the packet has been following the route between Ny and Ny (7).

The reason for the necessity of handling routing in NEMAN is that all TAP interfaces share the
same kernel routing table. It is not possible, up to the best of the author’s knowledge, to make in
a simple way multiple routing protocols running on a single kernel to update this shared table in
such a way so that kernel would route a packet arriving to one of its interfaces from another one of
its interfaces, to the next hop which is also one of its interfaces.

On the other hand, the reason for handling ARP in NEMAN is that kernel replies from all
its interfaces in reply to an ARP request that comes to one of its own interfaces, which results in
hundreds of ARP replies on a host that has hundreds of virtual nodes on it. Therefore passing ARP
requests back to the kernel results in unnecessary traffic.

While the way hop-by-hop routing and ARP work in NEMAN differs from the protocol de-
scribed in RFC 826, most of the programs on the nodes are still able to work as if they are a part of

s

tap &‘3\/4— Topoman
2

a mobile ad-hoc network.

Figure 5.3: Operation of the ARP protocol and routing under NEMAN.

5.2 Initial Design of DINEMO

Our initial design for the componentization of NEMAN involved four UM components:
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SelectHub-UM: A UM component whose instances act as a hub in an EU for managing the
select () system function call, in order to keep track of the activity on file descriptors on
behalf of the UMIs in the EU. As select () can be used as a blocking call, the call should

be made from only one component in an EU.

Tap-UM: A controller that creates/destroys a TAP interface using the TUN/TAP kernel driver, and
manages the data flowing through the TAP interface by collaborating with the SelectHub-
UMI in the EU it is created in.

ArpEmu-UM: This UM component was planned to reply to the ARP requests coming from the
Tap-UMIs in an EM, to circumvent the problem with the ARP implementation in the Linux

kernel mentioned in Section 5.1.2.

Topoman-UM: Topoman-UM component was planned to be the equivalent of topology manager
in NEMAN. It would provide the layer 1 and 2 simulation, hop-by-hop routing, as well as

communication with the GUI.

These UM components were planned to be created and destroyed by a CUIL One example of
planned run-time structure of components is shown in Figure 5.4. We have implemented the Tap-
UM, SelectHub-UM, and ArpEmu-UM, along with a UM component that simulates a broadcast
layer 1 and 2 communications as if every Tap-UMI is a node in a network on a broadcast medium,
and demonstrated with a CU component that constructs the run-time on a single EU. When
we started looking into distributing the TAP-UMIs on multiple EUs on different EMs, we have
discovered a problem with the design of the ARP and routing emulation.

EM EM

(EU

T/\‘
(Topoman )

- J

Figure 5.4: An example configuration of the simulator according to our initial design for

DINEMO. (SH: SelectHub, ARP: ArpEmu)

5.2.1 Problems with ARP and Routing in Distributing NEMAN

As described in Section 5.1.2, ARP protocol and routing are treated in a special way in NEMAN.
The ARP protocol has to be handled in a distributed version of NEMAN as well, since still the goal
is to multiplex multiple virtual nodes using multiple virtual network interfaces on the computers
running the distributed emulation. We have explored different alternatives for handling ARP in
such a distributed emulation, such as having an UMI for each node for handling the ARP requests
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issued by that node, having one ARP handler UMI for each computer for handling the ARP requests
among the nodes on that computer, or having a central ARP handler as part of Topoman-UMI.
The preferred solution for the problem of how we should componentize, was defined as the largest
coherent component that can be placed as close to the source of the requests as possible.

Since the ARP requests are destined to broadcast MAC addresses, it turns out that any of the
solutions above would necessitate the full list of IP>-MAC address pairs for all nodes in the simulated
environment, because the ARP handler either would have to be able to look up the MAC address
being inquired using the given IP and reply to all ARP requests, or the frame has to be broadcasted
at layer 2. If the frame is to be broadcasted, the frame should travel down the networking stack and
back to all the TAP interfaces that fall into the broadcast range of the node from which the request
was originated. As the kernel would reply on all its interfaces to an ARP request coming from one
of its own interfaces, in order to prevent hundreds of messages being created, the ARP handler has

to intercept ARP requests arriving from the topology manager, and return a reply telling its IP.

5.3 Final Design of DINEMO

The solution involving broadcasting described in the previous section about handling the ARP
protocol in distributing the NEMAN, is almost the ARP protocol as described in RFC 826. There-
fore we decided to explore further division of nodes into components, and distribute the topology
manager in NEMAN as much as possible.

For this purpose, we started looking into using 7UN interfaces instead of TAPs. The difference
between TUN and TAP interfaces is that TAP interfaces intercept frames at layer 2, while TUN
interfaces intercept packets at layer 3. This also means that the code in the kernel about routing and
ARP handling is in effect when using TAPs, whereas TUN interfaces intercept IP packets before
they get to these parts of the kernel.

Keeping kernel’s involvement limited can be considered both as an advantage and a disad-
vantage. The disadvantage stems from the fact that additional code for simulated equivalents of
routing, ARP, and data-link layer code in kernel are needed, in addition to physical layer simula-
tion. However, as this provides greater control over the code simulating these layers, the simulator
becomes more configurable and extensible.

The design for DINEMO includes the following UM components:

Tun-UM: The Tun-UM is the counterpart of Tap-UM described in Section 5.2. It creates/destroys

a TUN virtual network interface, and manages the data flow.

Router-UM: Router-UM components simulate the routing functionality in the network layer,
possibly by interacting with a routing daemon they invoke and manage, or by receiving
commands from other components about next-hops to other nodes or networks. This second
method is used for compatibility with NEMAN, since NEMAN receives route updates from

a control socket listening to a certain port.

ARP-UM: ARP-UM component simulates RFC 826 compliant ARP protocol handling for a sin-
gle node. It is capable of all ARP functionality, therefore it can both initiate ARP requests
and produce replies, and it has its own ARP cache.
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DLL-UM: DLL-UM components implement different data-link layer protocols. Designing DLL
functionality as a UMI provides us with the means to replace the DLL implementation
without changes to other instances.

PhySim-UM: PhySim-UM components implement physical layer simulation. Instances created
from the PhySim-UM components can be expected to be the most computation intensive
component instances in simulators. Therefore PhySim-UM components can further be di-
vided into a set of components whose instances will be distributed over multiple comput-
ing resources. For compatibility with NEMAN, a PhySim-UM component has been devel-
oped that is capable of receiving the physical connection status from the GUI through the
DINEMO’s CU component.

SelectHub-UM: The SelectHub-UM component, which was implemented for our initial design

and described in section 5.2, was reused here.

In addition to these UMlIs, a DINEMO-CU component is developed. This CU component
reads a configuration file, and creates the run-time structure accordingly. During the execution of
an episode, it handles the communication through the control socket, for example with the GUIL.
The commands received through the control socket are dispatched to the relevant UMIs.

The design of DINEMO is in essence a component-based framework. The component im-
plementations that have been developed are exemplary, and can be replaced with other simulator
components that adhere to the same contracts. Details of the contracts of these components are
given in Appendix F.

An example configuration for this TUN based approach is given in Figure 5.5. The Figure also
shows how some of the UM components developed earlier for the TAP-based version can be reused
in combination with the TUN-based simulator UMIs. For the case where there is at most a single
TAP virtual interface in the kernel of any host used in the experimental setup, the combination is
fairly easy: a DLL-UMI is connected between a Tap-UMI and the PhySim-UMLI. In this case, the
kernel’s ARP and routing routines would work as intended. However, although it was reported as
possible to put multiple TAP interfaces onto a single host using an ARP handler UM component

in [74], we have discovered new problems with this approach that needs more work to be solved.

5.3.1 Running DINEMO

DINEMO is invoked by giving the DINEMO-CU as the first CU component to be instantiated by
the component platform, and sending it a start message. The DINEMO-CUI reads a configuration
file named dinemo . cnf.

In the first line of this configuration file three integers are expected: the total number n of
nodes to be created, the number m of EMs in the list that follows in the configuration file, and the
index (starting from 1) of the EM in the list on which the PhySim-UMI will be created, which is a
singleton in the system in the current design of DINEMO. Then, the list of EMs are given in the
following m lines, each line containing a computational resource 1D, which is the string form of
the EM ID, and the number of nodes to be created on the EM.

The run-time structure is created by the DINEMO-CUI according to the information con-
tained in this configuration file. In the current version, the execution is finished by sending a
terminate signal to one of the EMs in the component platform.
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Figure 5.5: An example configuration of a DINEMO simulator, along with some Tap-UMIs reused
in separate EMs. (SH: SelectHub, Rtr: Router, Phy: Physical Layer Simulator)

94



Chapter 6

Comparison to Related Work

6.1 MICA and Other Component Architectures

In this section, a side-by-side comparison of MICA with other component-based approaches pre-
sented in Appendix C and ACA is presented. While some of these architectures are widely used, it
should be noted that except for ACA, these approaches are not targeted towards network simulators,
or simulators in general. A comparative summary is provided in Table 6.1.

Differently from Appendix C where the architectures are presented one by one, the presenta-
tion below provides focused summaries organized along the following dimensions: control flow,
lifetime management, component communication, and composition style. In addition, a summary
of MICA's features along these dimensions is also presented. It must be noted that MICA provides
a component model, and implementations of component platforms for any of the architectures
presented in Appendix C may be considered for use in implementing component platforms for
MICA. Such platform implementations are possible as long as the constructs in the MICA compo-
nent model can be meaningfully mapped to constructs in these architectures.

6.1.1 Control Flow

How control flow is established among different components or component instances is an im-
portant issue that has influence on performance and manageability of code, since badly managed
concurrency can become a source of hard to find defects.

Different architectures have different approaches to control flow:

XPCOM: Mozilla XPCOM [176] focuses on systems where the component instances share a sin-
gle application thread. Therefore, it does not directly specify control flow. In the applica-
tion thread, XPCOM relies on the observer pattern to deliver the Gecko (the environment)
generated events, upon which component instances are activated. In addition, component
instances may invoke methods in other component instances interfaces directly.

Fractal: Fractal Component Model [25] does not specify how control flow is managed. Control
flow related issues are considered to be a problem to be solved by the implementers of the

abstract concept of “component membranes” that encapsulate components in the run-time.
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Table 6.1: Comparative summary of MICA and other component models.

(discouraged).

Component OMG’s CORBA JavaBeans EJB coM MICA
ccM
Model
Component *Basic Bean “Stateless, COM Class *Unit Model
Extended stateful session .
types “Entity -Constructor Unit
*Message driven
(stateless)
Interface types +Facets — *Java interfaces | A bit complex. Immutable set of | | inks bound to addresses
Recepticles -Listener Roughly: methods '
*Event Sources pattern using *Java interfaces local to components
- Sinks Java reflection “CORBA
-Attributes -Attributes (attributes)
Composition Context-based By wiring Context-based By wiring By wiring
style
Control flow *Serialize Orthogonal Serialize. Apartment 'cooperative muItitasking
*Multithread Reentrancy is model, virtual . . e
optional threads time-shared multitasking,

*and multiprocessing

Communication *Function calls *Function calls *Function calls *Function calls 'Messages (asynchronous)
thod *Events *Events (*-cast) *Messages *Asynchronous
methoas calls (since W2K)
i i i CORBA RMI RMI, RMI over Transparent

?;ztﬁglobrl;tlon 0P, CORDA Transparent

Language APls Java Java None (binary) APIs (currently only C++)

dependency

Component various Java RTE Java RTE + Windows XYZ, Various platforms possible.
platforms, by container Macintosh, Unix

Platform various vendors implementations Currently: RTI-st, RTI-PVM

They use DSOs.

UNO: Universal Network Objects (UNO) [16, 26, 159] control flow model is expressed using dif-

ferent interface method invocation styles: direct, spawning, asynchronous, or synchronous.
Direct calls are blocking. On the other hand, spawning calls are non-blocking and thread cre-
ating. Asynchronous calls are non-blocking and sequentially ordered, with each non-blocking
call also thread creating. Synchronous calls are blocking, but their return is synchronized to
end of all previous non-blocking sequentially ordered calls. Remote invocation options are

limited to blocking and one-way non-blocking styles.

CCA: Since blocking, procedure-call like control flow maps almost directly to the virtual method

table based method invocation mechanism in object-oriented languages, it is considered to
be very efficient for component instances that are hosted in the same process. As Common
Component Architecture (CCA) [17] declares performance as being in their focus, commu-
nication among components in the same process is established in this way. For components
in different processes or different hosts, various services are expected to be provided using
separate interfaces that are to be implemented by the component platforms (frameworks in

CCA terminology).

ACA: In the Autonomous Component Architecture (ACA) (see Section 2.7.4), each message re-

ceived by a component is processed by creating a separate execution context. There is also
support for blocking style method calls, which blocks the caller until the message sent is
processed by the receiver.

CCM: OMG’s CORBA Component Model (CCM) [135] specifies two threading models: “serial-

ize” and “multithread”. In the serialize model, the container of the component protects the
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component from multiple simultaneous accesses. In contrast, the component is responsible

for taking care of such simultaneous invocations all by itself in the multithread model.

JavaBeans: Concurrency is considered to be orthogonal to the JavaBeans. Control flow is left to

be designed by the developers using various Java libraries.

EJB: The context of an Enterprise JavaBeans (EJB) bean serializes all invocations to the bean’s
methods. Re-entrancy is allowed only when an EJB bean is explicitly declared to be re-
entrant.

COM: The Microsofts Component Object Model (COM) uses what is called the apartment
model. In this model, COM objects are placed in two types of apartments: single threaded
apartments (STA), and multiple threaded apartments (MTA). An STA provides a single
thread for one or more COM objects, and there can be multiple STAs per process. In con-
trast, an MTA allows multiple threads for multiple COM objects, but only a single MTA is

allowed per process.

.NET: .NET does not provide a component model, but it provides some constructs using which
component platforms for various component models can be developed. Therefore .NET

does not specify control flow issues for component models.

In the MICA, the model of control flow for all components is uniform: a component instance is
activated only on reception of a message, and runs to completion for processing the message when
activated. When a message will be passed on to a component instance, is in the discretion of the
component platform the component instance is running on.

The control flow model may be fixed from a single component’s perspective, but concurrency
can be managed at the level of composition. MICA provides two container entities: Execution
Units (EU) and Execution Managers (EM). These provide three different models of concurrency:
multiprogramming (a.k.a. co-operative multitasking), multitasking (a.k.a. time-shared multitask-
ing), and parallel processing. The component instances in an EU are multi-programmed: at an
instant only one component instance is allowed to process a message. Component instances in
different EUs in a single EM are multi-tasked, and execute their messages in a time-shared manner.
Component instances in EUs in different EMs process their messages in parallel.

Fixing the control flow from a component’s perspective provides an easy model for the com-
ponent developer, and delegates the resource management responsibility to the composer of the

system.

6.1.2 Lifetime Management

Lifetime management concerns how the component instances are created and deleted. In different
architectures covered in Appendix C, two major methods for component creation can be observed:
functional and declarative. In the functional methods, again two methods are apparent: usual object
generation, such as in JavaBeans, or use of a library that provides functions for creation and deletion
of component instances, such as in XPCOM, COM, .NET (if one considers assembly loading as
component creation), CCA, Fractal, and UNO. CCM also has support for a functional approach

though the use of the component home in a factory design pattern. The declarative approach is
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used with container-based architectures, such as CCM and EJB, which allow declarative attributes
being associated with components. In this approach, various lifetime policies define the lifetime of
a component, based on some communication and persistence abstractions such as session, message,
or entity. For component deletion, either a function is provided, or collective garbage collection
with reference counting on the interfaces is used, or it is left to the pre-determined policies invoked
through some declared attributes.

Among the different architectures presented, ACA is the only one that specifies neither how
component creation nor deletion is to be done, leaving such issues to the component platform.

MICA follows the functional approach and provides component creation and deletion through
a method. However, differently from all the architectures above, MICA provides component cre-
ation and deletion functionality only to components of the Constructor Unit (CU) type. This
way, separation between model building and simulator construction is reinforced. Confinement at
the architectural level of instance creation and deletion to instances of a certain component type is
unique to MICA.

6.1.3 Component Communication

In this section, we will discuss how component instances find out about destination component
instances to communicate to, and what communication mechanisms are available in various com-
ponent models. It should be noted that finding out about destination component instances is also

related to lifetime issues (creation/deletion of communication paths) and composition method.

XPCOM: XPCOM provides an event mechanism, in addition to direct invocation of interface
methods. Events are sent to named topics (channels). In order to receive events, a component
instance must declare an nsIObserver interface, and register this interface using a global
function using the name of the topic. Therefore, in order to communicate, components have

to agree off-line on a set of topic names.

In order to discover interfaces when using direct invocation of interface methods, a global
function is used to find the service manager, which in turn is used to query the required
interface by interface name, contract name, or interface ID.

CCM: CCM also supports both method invocations, and events. The facets are the interfaces
through which methods of a component can be invoked. There exists a mapping of facets to
CORBA object interfaces using a fixed naming scheme. Therefore clients can discover and in-
voke methods through CORBA mechanisms implemented by the ORB. If an object reference
from a component is available, a client can also use the CORBA::Object::get_component
method in order to convert the object reference to a reference to the component that handles
the object. The client can then navigate the available interfaces through the component’s

equivalent interface.

Event sources in CCM can be connected in a 1-1 (emitters) or 1-n manner (publishers).
Receivers of events (event sinks) cannot distinguish or choose between event sources, without

help of additional mechanisms.

JavaBeans: JavaBeans beans can communicate by producing and consuming events, as well as in-
voking methods directly in order to modify properties, which may in turn produce “change
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of value” events. Event distribution uses the listener pattern, in which event listener beans
register a listener object at the event source, and the event source calls the registered event lis-
teners’ methods in the case of the event happening. JavaBeans does not provide any method
to distribute information about availability of event producers or other beans. Such a mech-
anism has to be coded into the system developed or various libraries should be employed.
This approach appears more like constituting a framework than being a part of a component

model level approach.

EJB: How EJB beans communicate, and how they find out about other EJB beans, are determined
by the services they require from their containers. Therefore the communication is left out
from the model, to be implemented through use of various libraries (packages).

COM: COM uses invocation of methods in interfaces. Different forms of communication might

also be used through various libraries available on the Windows platform.

NET: .NET has direct support for events based on the observer pattern, on the level of objects.
How objects find out references to other objects is not fixed, but it is possible to locate assem-
blies, which include classes, through a registry. Other than this object-level event support,
various libraries available on the Windows platform can also be used.

CCA: For in-process communication, CCA components use direct invocation of methods in in-
terfaces (ports). Various services that are expected to be made available by the component
platform (framework in CCA terminology), are used for invoking methods of remote com-

ponents.

A component uses the services object it is associated with, in order to declare the name of

interfaces (ports) it needs, and to obtain or release references to these interfaces.

Fractal: Fractal components use direct invocation of interface methods. The BindingController
interface allows a component instance to expose methods for connecting to other compo-
nent instances’ “server” interfaces. Introspection can be used to obtain names of interfaces a
component provides. Distribution of knowledge about existence of components is left to be

determined by the component platform or implemented in the system being developed.

ACA: ACA component instances send messages only through the component platform. Names
of component instances and their ports are represented in a tree structure according to par-
ent/child relationships among component instances. Root of this tree is the component
platform itself. Component instances can navigate this tree in order to find other com-
ponent instances. A component would have to know how the components are named (a
naming scheme), and how the components in the application are organized, in order to find
a component port they will send a message to. How exactly the message is sent is left to be
determined by the component platform implementation.

UNO: UNO uses direct invocation of interface methods. A component uses the service manager
to obtain a service, which is a set of interfaces, then uses introspection to find out about the

interfaces in the service.

929



Communication in MICA is done using 1-1 links between incoming and outgoing links of
component instances. A component is built using assumptions about what type of data is expected
from an incoming link, and when. A component developer should thoroughly document such
assumptions, which would form part of the contract between the instances of the component, and
other component instances. Such a contract would also specify what type of data is produced and
when, on the outgoing links of a component instance.

The messages are mediated by the component platforms for MICA. Furthermore, messages
are not immediately passed to the receiver, but queued for reception. Therefore, MICA’s message
passing resembles 1-1 event producer-consumer implementations, using a single event reception
method that is expected to distinguish between different events using the extra information (the
link ID) provided by the platform in addition to the message. COM provide similar interfaces,
called delegate interfaces, that has a single method that logically distinguishes method invocations
using additional information provided.

Different from various component models covered, MICA provides only this unicast event-
like mechanism for components that are to be used for implementing the application logic (Unit
Model Instances — UMIs). This is because MICA is designed to be a minimalistic, and multicast
and broadcast communications can be provided by additional components that would form a new
architectural tier implemented using MICA.

A component instance that is sending a message uses the address of the outgoing link, which
is local to the sending component. Receiving component instances can distinguish the incoming
link a message was received from, based on the address of the incoming link, which local to the
receiving component instance.

For construction of links, the identifiers of the component instances are needed, which are
pieces of information with system-wide semantics. Unconstrained use of such information with
system-wide semantics has the potential to make components in the systems tightly coupled, thus
such information is confined to instances of Constructor Unit (CU) components in MICA. Since
CU component instances (CUIs) are allowed to make use of such IDs, they are allowed to use CUI
ids to communicate with other CUIs as well. Instance IDs cannot be used for communication with
the UMIs, since they have no proper way of receiving such messages. Such confinement of link
creation and deletion to the instances of a particular component type, which are expected to be

used in less numbers in applications, is again unique to MICA.

6.1.4 Composition

Methods of composition seem to have a correlation with the domains of application: the com-
ponent architectures that target the enterprise computing market, namely CCM, EJB, and .NET,
supports mainly context-based composition. The form of composition for the other architectures
covered in this thesis, namely XPCOM, JavaBeans, COM, Fractal, ACA, and UNO, is compo-
sition by wiring. In fact, Fractal takes a middle position: the concept of membranes that serve
as containers for composite components provide the means to implement context-based composi-
tion, while components are also composed by wiring their gates together, including the composite
components.

MICA follows a very strict form of composition by wiring. When a component instance re-
ceives a message through an incoming link, it receives the message and the link identifier through a
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single callback function. Similarly, when sending a message, it uses a single function in its BaseAm-
bassador, providing it with the link identifier of the outgoing link to send the message to. Messages
sent to links that are not connected are silently dropped, so that a component instance may continue
working even when all its links are not connected. Of course, it might not have been anticipated
by the developers that an instance of their component will find itself working in an environment
where the receiver of one or more of its links are missing. Such a situation would most probably
point to an error in construction or management of the run-time structure of the system.

In addition, and differently from all other architectures, the ability to form connections be-
tween incoming links and outgoing links of component instances is provided only to instances of
Constructor Unit components in MICA.

6.2 MICA and Other Component-Based Approaches to
Network Simulation

After the comparison presented in the last section between MICA and various component models,
in this section we will compare MICA to the component-based approaches to network simulation,
which have been reviewed in Section 2.7, namely TeD, OMNeT++, and OSA. Comparison with
ACA have already been covered in the previous section.

It is easy to point out the similarities between MICA and these approaches: they have a notion
of component, and the composition approach involves composition by wiring. Like MICA, TeD
and OMNeT ++ also explicitly take the position of attempting to align components of the SUT and
the model components, as defined in Section 2.4.

It must also be noted that when the differences are analyzed, it appears that providing an im-
plementation of the approaches in TeD and OSA using MICA should be possible. This is also
partly true for OMNeT++: the fact that OMNeT++ allows direct method invocations between

components, cannot be easily mapped on to MICA.

6.2.1 MICA and TeD
MICA and TeD differ in the following aspects:

Control flow: MICA’s control flow approach was described previously in Section 6.1.1. In TeD, all
behaviors in an entity have an associated thread. Considering that TeD’s composite entities
with their containment style composition can be implemented using multiple components in
MICA, with an ambassador component logically encapsulating the contained components,
MICA allows more control flow options to the simulator developers in terms of control flow.

Component packaging: This is actually an issue about the component platforms. In the com-
ponent platforms implemented for MICA, the components and messages are packed as dy-
namically loaded shared libraries (DSOs), which exist and compiled independently from the
component platform. In TeD, a component exists as a set of C++ source files and a TeD file,

which are compiled using a special compiler into a simulator.

Setup of run-time: In MICA, setup of the run-time, that is the creation of components and their
wiring, is accomplished through instances of components of a special kind, the Constructor
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Unit components. In TeD, the setup functionality is built into the simulation library that
is compiled into the simulators. This library creates instances of entities and connects them

according to the descriptions provided in a configuration file.

Component platform and SMF: In MICA, the component platforms exist as separate executa-
bles, and the simulation management functionality (SMF) is implemented as sets of compo-
nents. A MICA component can be used with multiple different MICA component platforms,
provided that they share the APIs, as exemplified by our two implementations presented in
this thesis. In TeD, the component platform and SMF exists as a library. They are used

through a special compiler, and compiled into the simulator.

Composite components: MICA does not allow composite components, while TeD allows com-
posite components in containment style. As discussed in Section 2.3.6, such composite

components can be mapped to sets of components in MICA.

6.2.2 MICA and OMNeT++
The differences between OMNeT ++ and MICA are summarized below. How most of the following

issues are addressed in MICA was presented in the previous section when discussing MICA and
TeD, therefore we will present only the OMNeT++’s approaches here, and point to differences

when they are not immediately apparent.

Control flow: OMNeT++ provides two control flow options to modules, which is the name used
for components in OMNeT++: components can run uninterrupted until they finish process-
ing an incoming message, or they are implemented as a co-routine. The run-to-completion
scheme is similar to MICA component design, however OMNeT ++ lacks the additional con-
trol flow options available to the simulator developers in MICA. The co-routine based model
requires a separate stack per component. It appears possible to implement co-routine based
execution on MICA components, without any need to change MICA’s design. However, this

is not addressed in this thesis.

Component packaging: Like TeD, components exist in OMNeT'++ also as a set of C++ files,

which are compiled into the simulator.

Setup of run-time: The simulation library uses a configuration file written using the NED lan-
guage, which is specially designed for this purpose, in order to create the instances of the
components (modules) compiled into the simulator, and their wiring in the run-time.

Component platform and SMF: Both the component platform and the simulation management
functionality (SMF) exist as an object-oriented library to be compiled into the simulator,

along with the available modules.

Composite components: OMNeT++ supports aggregation style composite components. Under
MICA, flat forms of composite components can be used, as discussed in Section 2.3.6.

Communication between components: Communication between the component instances in
MICA is strictly limited to messages sent or received using inlinks and outlinks. While
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OMNeT ++ defines gates and connections, which more or less correspond to links in MICA,
it also allows direct method invocations between the objects in the implementation of differ-
ent components (modules). This presents an obstacle to finding an easy way of expressing
OMNeT++’s component model in MICA.

6.2.3 MICA and OSA

The OSA is built on the Fractal component model, therefore most of the issues with respect to
which we have compared TeD and OMNeT++ to MICA have already been covered in Section 6.1.
One remaining issue is how the simulation management functionality is implemented in OSA.
MICA takes the position that SMF should be implemented as a set of components, which are
not different in essence from those used to implement the models. In OSA, the preferred place
to implement the SMF is in the component membrane. The module that implements the SME
which may be an object, can be shared between component membranes of different components.
Since Fractal allows componentized component membranes, exposing interfaces of a component
that implements the SMF and that is shared between component membrane implementations of
different components is also considered to be a possibility. Yet another option is to implement the
SMEF as a shared component.

Both the membrane based and the shared component based methods can be expressed in
MICA’s component model. The membrane serves as the encapsulator for a single component
instance, or component instances in case of containment style composite component formation.
In either case, the membrane has its own set of behaviors, which means that its status can eas-
ily be upgraded to a normal component. This naturally leads to the flat-model equivalent of the
containment-style composite components, where the set of contained components are abstracted
behind a logically encapsulating component. The simulator interface which is implemented in the
membrane of a component in OSA, then can be mapped to such encapsulating components in the
flat component model of MICA.

Shared components are components that are regarded to be contained in more than one com-
posite component. When mapped to a flat component model, these shared components become
normal components whose connections to other components do not necessarily go through the log-
ically encapsulating components of the sets of components that from the equivalents of composite
components.

Therefore, it appears that the approaches taken in OSA and MICA about implementation of
SMEF are not the same due to use of composites or contexts (membranes) in Fractal. However, they
are not incompatible either, given a transformation from Fractal’s component model which allows
composites, to the the MICAs component model which is flat.

6.3 DINEMO and Other Network Emulators

The primary motivation for implementing DINEMO was demonstration of the feasibility of the
MICA approach, not just implementing another network emulator. Nevertheless, we are going to
compare DINEMO to other TUN/TAP virtual network interface based emulators known to us:
NCTUns, and EmuNet.

A detailed comparison with NEMAN is considered unnecessary, since the ideas in DINEMO
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are based on NEMAN. DINEMO has a more modular code organization with respect to NEMAN,
due to its use of MICA. Some models that are available in NEMAN are yet missing in DINEMO,
such as more detailed physical layer simulation, and some models in DINEMO are not available in
NEMAN, such as a more accurate ARP simulation.

6.3.1 DINEMO and NCTUns

NCTUns is a simulator, which can also be used in some emulation-based experiments where the real
implementation of the protocol stack in a UNIX-like operating system is needed to be used [185].
The operating system should support creation of TUN virtual network interfaces. The structure
of NCTUns is very similar to NEMAN, but while NCTUns uses TUN interfaces that intercept
packets between the network and data-link layers, NEMAN uses TAP interfaces that intercept
frames after the data-link layer.

DINEMO also uses the TUN virtual network interfaces. There are two main differences be-
tween DINEMO and NCTUns:

DINEMO is component-based: The DINEMO is based on MICA, therefore it is component-
based, and its model implementations are organized as loosely coupled components. The
structure of the code of the simulator in NCTUns does not appear to be a major focus for its

developers, and it is not component-based.

DINEMO supports distribution: The PVM based distributed component platform that is devel-
oped for MICA allows distribution of DINEMO in a way that is transparent to the model
developers. The experimenter, through a configuration file, decides which machines will con-
tribute to the emulation, and how many virtual nodes will be multiplexed on each. NCTUns,

on the other hand, does not provide a distributed simulator'.

6.3.2 DINEMO and EmuNET

EmuNET is another network emulator that uses the TUN virtual network interfaces [99]. An
instance of the emulator is run as a process for each virtual node to be created, which reads the
packets intercepted by the virtual interface, simulates the connection characteristics between the
virtual node associated with it and the target virtual node of the packet, and routes them to other
EmuNET processes in the same or other physical hosts. It also receives packets sent by other
EmuNET processes and forwards them to the virtual TUN interface it is associated with. Therefore,
an emulation-based experiment can be distributed onto multiple physical hosts using EmuNET.
The main differences between DINEMO and EmuNET are as follows:

DINEMO is component-based: As already mentioned in the previous section, DINEMO is built
on MICA, and thus it is component-based. EmuNET is implemented in plain C, using
multiple threads. The code structure does not appear to be of major concern.

DINEMO allows more flexible model composition: EmuNET focuses on the aggregated effects
such as bit-rate limitation and packet loss, below the level of the network layer. There is no

"However, note that Wang et al. present the NCTUns simulator as distributed, drawing onto the fact that a remote
GUI driven control program can start multiple copies of their monolithic simulator for different simulation runs.
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further detailing of models in the simulator. However, in DINEMO, the layers below the
network layer are implemented using a set of components that implement different proto-
cols. This allows different protocol implementations at different detail levels to be built for
DINEMO. Furthermore, the component-based code organization of DINEMO would even
allow replacement of detailed protocol components with more abstract ones. The structure
of model composition is very flexible in DINEMO, due to MICA.
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Chapter 7

Possible Future Directions

7.1 On Deepening Understanding about the Subject Areas

There is always more work to do in understanding a subject area and its relations with related
subjects. As the survey parts of this thesis show, the subject areas related this thesis are quite big,
and there are a lot to understand.

Understanding component-based software technology is key to understanding some of the new
technologies such as service-oriented computing, which has become very popular in the enterprise
computing domain in the recent years. Section 2.3 very briefly summarizes some related issues in
component-based software engineering. By extending the discussions and descriptions, Section 2.3
can be extended up to a lecture module, or a full size book on component-based software technol-
ogy.

Due to its popularity, it is also worth looking into service-oriented computing more closely.
Exploring the relationship between the component-based and service-oriented approaches, espe-
cially with a focus on the potential benefits and drawbacks of using service-oriented approaches for
engineering simulators and emulators, is a study we wish to see the results of.

Survey in Appendix C can be extended in various ways. The most obvious way would be to
find other component-based approaches and discussing their component models. An equivalently
valuable way is extending the discussion of the component models along the lines of any new issues
formulated as a result of understanding the component-based technology better. Furthermore, as
can also be observed from our survey, a list of techniques and characteristics that can form a sound
basis in order to make it possible to conduct comparative studies on component-based approaches,
is yet to be formulated.

Another interesting question is whether there are enough questions, challenges, tools, and tech-
niques that can be put together in order to pave way towards a new discipline which can be called
“simulator engineering”. Given a model to be simulated, a practitioner of this discipline would fo-
cus on engineering and building simulators that simulates the model effectively, and in accordance
with various experiment-specific requirements.

The survey on component-based approach to simulation, which is presented in Section 2.4,
can be further developed. This survey has lead to the identification of three conceptual levels in
which the term “component” is applied in different ontological contexts. Unfortunately, such useful
classifications can rarely be identified up front, before a survey is conducted. Therefore based on
Section 2.4, further work can take this identification and apply it back onto the available literature
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for a more structured survey.

The survey on network emulators and testbeds, which is presented in Appendix B, can also be
extended. A good starting point would be adding the emulators already identified in Section B.4.

Further work directions regarding the problems specific to emulation presented in Section 3.5
can also be formulated. Such a study requires further surveys to precisely identify what kinds of
experiments can be effected from which of the emulation specific problems, as a first step. Then,
a synthesis of the common characteristics of these experiments that lead to these problems, can
be used in designing and conducting new experiments that aim to measure the effects of these

problems. Finally, guidelines for avoiding them should be formulated.

7.2 On MICA

7.2.1 Component Model

The component model in MICA is currently stable and usable, as demonstrated by our component
platform implementations and our work on the emulator DINEMO. Nevertheless, some extensions
are still possible.

It appears beneficial to take a closer look at what the contracts for components in MICA should
include, and how these contracts can be documented. Whether more complex type systems for
messages are necessary or useful, is another issue that is related to the contracts, and should also be
addressed.

Versioning is another question that can be looked into as future work. Versioning becomes
especially important in component-based systems where components serve as units of loading,
which have been the case for the platform implementations of MICA. If a component A uses two
other components B and C, both of which depend on two different versions of a component
D, then it should be possible to load the different versions of D side-by-side into the run-time
environment.

MICA component model has been developed with the goal of addressing the needs of network
simulators and emulators. However, it may prove useful in other simulation domains as well, in
which the run-time structure of the components in the simulated part of the stand-in for the system
under test (SIFSUT) does not change once the episode is started. Exploring usefulness of MICA in
domains other than network simulation and emulation also remains as future work.

Yet another subject that needs more work is formulating how systems based on MICA can
interoperate with systems based on other component models. Such a work would be beneficial in
paving the way towards interoperating a simulator built on MICA and a simulator built on some
other component model, such as J-Sim which is built on ACA.

7.2.2 Component Platforms

Our PVM-based component platform (RTI-PVM) is the first prototype distributed component
platform implemented for the MICA component model. Therefore, its implementation has pro-
vided considerable feedback for the component model, and it had to evolve in order to conform to
changes being made in the model. Therefore, it currently needs a new major revision. However,

since component model is stable now, the new major revision can be designed to allow optimiza-
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tions. This is possibly the most “near future” work, along with adding support for creation and
deletion of EMs by the CU components, deletion of EUs, and addressing the problem of an extra
copy being made in the implementation of message passing because of some missing PVM features
in the PVM library we have been using.

Another point for further development involves working across computers with different archi-
tectures. We have not yet tested the RTI-PVM in such a context. Although PVM works across
different architectures, some minor issues related to data formats have to be checked in the RTI-
PVM before it can be deemed usable across platforms with different architectures.

While we have deliberately stayed away from XML for the reasons discussed in Section 4.5.1,
the XML document object model (DOM) might be explored for providing support for XML in
the object based messaging scheme in our component platform implementations. The two message
description methods may even exist side-by-side at run-time, using a customizable message imple-
mentation that can handle DOM. Such exploration of using DOM also remains as possible future
work.

About using dynamic linking and loading, it would be beneficial to take a closer look at symbol
hiding and other mechanisms, which might prove useful for supporting and enforcing isolation be-
tween component implementations in better ways. In relation to this, another interesting question
is whether it is possible to implement component platforms that uses dynamic linking and loading,
in a way that allows different compilers to be used for compiling different components and the
platform implementation.

Lastly, many more component platforms that use different technologies can be built. Among
different alternatives, an MPI based component platform, and a component platform that works
on Microsoft’s Windows operating systems might be interesting. A Java API along with a compo-
nent platform written in Java can also be developed. To allow for components working on different
component platform implementations to interoperate, an inter-platform communication protocol
should be designed. Finally, high performance component platforms that are optimized for partic-
ular machine architectures such as shared memory multiprocessor machines, would be interesting
to develop.

7.2.3 Tools

It is possible to define sets of tools that might come in handy when building systems using MICA.
One set of tools, which can be developed as a result of further research on use of contracts in MICA,
would consist of tools for contract management. Such tools would help component developers to
write contracts for their components, and system builders to find out which components can be
composed with which others in order to construct the system.

Other tools that can be created include tools for supporting the design and implementation
phases. For example, one subject that might be further researched is support for different design-
level views of the system, which in the end would be mapped onto MICA constructs. Such a tool
can be used to present a design environment to the designer in which constructs that are not found
in MICA, such as different flavors of composite components, can be used in designs. Tools for
implementation, on the other hand, may provide support to the component developers through
a development environment, for helping with the tasks needed to be carried out in creation of
component and message implementations.
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7.2.4 Useful Component-Based Frameworks and Libraries

In addition to supporting simulator interoperability between simulators built using MICA, MICA
can also be used as an environment for interoperating simulators that are not built using MICA
or for using different simulators that are not built using MICA as part of a new simulator that
is being developed using MICA. In order to realize this, wrappers for different simulators should
be written, which might represent the simulator in the MICA run-time environment as a single
component instance, or a set of component instances that correspond to models or virtual entities
in the simulator that is being wrapped.

It is possible to define various useful component-based frameworks for simulators that will be
built using MICA. One such class of frameworks that we would like to address as future work is
frameworks for modeling virtual time, or in other words implementing time management services.
Since simulation of virtual time is not regarded as part of MICA, different approaches can be devel-
oped as component frameworks. Availability of multiple frameworks implementing different time
management techniques would make it possible to study coexistence of different time management
techniques in a simulator. Another related study would involve looking into whether co-existence
of multi-programmed, multi-tasked, and parallel running component instances in the run-time
structure of a system impedes with or facilitates the implementation of time management services.

Another useful component-based framework would be one that supports effective high band-
width data gathering and 1/O support, which would be used for implementing logging in network
simulators, for example.

At the component level, building support on UM components for co-routine based component
implementations would make it more easier to implement simulators for models built using the

process-oriented world-view.

7.3 Simulators and Emulators

The foremost goal of our work on DINEMO was to provide a proof-of-concept example about the
usability of the MICA component model in development of a network simulator. DINEMO is
in essence a component-based framework, and our focus has been on making a simulator design
using the MICA. The components developed for DINEMO are examplary, and they serve as a
proof-of-concept showing that simulators are implementable using this component-based frame-
work. Therefore, while performance tests are required for any simulator that has been built, the
performance of the examplary component implementations has not been our foremost concern.
However, developing new and “production level” components, and conducting performance tests
on such components, are among the most easily foreseeable subjects for future work.

More future work subjects can be formulated that can follow our work on DINEMO. Promot-
ing DINEMO for use by various researchers is important, in order to be able to collect feedback
on both DINEMO, and MICA. There are also some problems to be addressed in the methods
employed in DINEMO, such as finding a solution that allows using multiple TAP virtual inter-
faces on a single host, and implementing a no-copy message passing solution for the components
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implemented for DINEMO'.

Naturally, another easily identifiable future work direction is building more simulators and
emulators using MICA, that support different techniques for simulation and integration of entities
used as real. As more simulators become available, it would also become possible to formulate
more questions and identify more problems about simulator interoperation, model replacement,
and model reuse.

"The problem mentioned here is not about message passing in the component platform, which is no-copy if com-
municating instances are on the same EU. This problem is about processing network packets in the component in-
stances in an episode, which implement protocols or layers.
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Chapter 8

Concluding Remarks

At the end of this thesis, it would be most proper to go back, and pay a second visit to the question
that has driven the studies behind it: “what can be better ways of realizing network simulators and
emulators?” As pointed out at the start of the thesis, a definite and complete answer to this question
is a blurry and moving target.

In seeking partial answers to this question, we first broke it down into its parts, and attempted
to find out about what the question really asked. In doing so, we had to formulate our own stances
on simulation, emulation, and testbed based experimentation, and we had to present our view on
a selected set of issues in component-based software engineering to serve as anchor points for the
rest of the study. A lesson learned is that such anchor points rarely come as early in the preparation
of the thesis as one would hope for. Therefore, understanding is a constant turmoil in formulating
a template to fit to the variety of works in a subject area, and breaking down and rebuilding your
template as works or concepts that do not fit in the template become so numerous that one can
no longer ignore them as outstanders. In fact, contrasting this to the theory presented in one of
the major works in the philosophy of science, the theory of paradigms in Thomas Kuhn’s “The
Structure of Scientific Revolutions” [105], this constant turmoil should be regarded as nothing but
constantly building and replacing personal paradigms. Chapters 2 and 3, Appendices B and C, and
partly the Chapter 6 are products of this process.

The background study in this thesis has been intentionally conducted as extensively as possible.
Although this has made the text of this thesis relatively long, we consider that the background
study in this thesis constitutes a major part of the thesis. The reason is that component-based
development of network simulators and emulators involves multiple disciplines in computer science
and engineering. A firm understanding in each subject involved, and construction of relationships
between the different motivations, goals, attitudes, and approaches takes a considerable part of any
multi-disciplinary study.

In relation to the background studies, we would like to make a remark about the survey in Ap-
pendix C. Although we are not the first to introduce the terms “component model”, “component
platform”, “component-based architecture”, and “component-based framework”, the systems avail-
able in the market today appear to have been designed without much regard for the separation of
the concerns being referred to by these terms. Therefore, although we have named Appendix C as
“Survey of Available Component Models”, one can rarely find a direct description of their compo-
nent models in the documentations available. Therefore, one can also regard that survey as a survey

of component-based approaches, systems, and infrastructures that appear to be the most popular
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ones as of the writing of this thesis, with an attempt to put special emphasis on their component
models.

Our Minimalistic Component-Based Architecture (MICA) is a software architecture which
aims to appear intuitive and simple, yet expressive and useful for implementing the simulators
and emulators that are needed by the network researchers in conducting their experiments. Our
choice of a component-based approach was motivated by the following:

* Use components in order to avoid a costly global analysis, and use coherent, self-contained
units that can be analyzed separately.

* Provide independent extensibility.

* Provide the base part of a software architecture by focusing on the component model and the
platforms, that should be extended by implementing functional units.

MICA provides the developers with the necessary structures to build coherent, self-contained
units. It provides support for separate analysis of components though keeping the coupling between
the component low. In addition, our component platforms help by providing an environment
where the components are packed separately.

In our component model and the component platforms that support it, the connection topol-
ogy among the component instances can be modified at run-time. From such modification, the
instances of worker components do not get affected at all. However, instances of constructor com-
ponents, which manage the run-time structure, can be sensitive to the changes in the run-time
connection topology. Therefore, MICA cannot provide independent extensibility by its own, but
does support it if the constructor components in a system are also implemented with independent
extensibility in mind.

With regard to the third motivation, MICA demonstrates that the component model and com-
ponent platform concerns can be separated from component-based architecture, component-based
framework, and application concerns. Applications can be built on MICA by providing a construc-
tor component whose instance creates and composes instances of worker and constructor compo-
nents available to the component platform.

With regard to the preferred characteristics for the component model we seek, presented in
Section 4.3.1, MICA stands as follows:

* Striving for completeness: In a MICA-based system, the system is composed of the compo-
nent platform and a set of components. No object oriented or procedural code is needed for
startup. Run-time structure, which is composed of component instances and communica-
tion links between them, is also constructed and managed by instances of a special type of
components, called Constructor Unit components. However, due to non-component-based
nature of contemporary operating systems, component instances may still need to get ser-
vices by invoking procedural APIs, which prevents MICA-based systems from completely
satisfying the completeness property.

* Supporting components with variable granularity: MICA provides the minimum require-
ment for both small and large components, by providing asynchronous message sending,
and component instantiation on remote hosts. In addition, message passing is 1-1, therefore

it does not necessitate any complex channel management or data routing,
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* Being simple and minimal: MICA aims to be simple. However, simplicity is relative, and a
large user base is needed to measure the observed simplicity of the architecture. We aimed
to ensure simplicity through minimizing the architecture, and the rules guiding our design
decisions towards a minimal architecture were presented in Section 4.3.1. MICA includes 13
constructs in the component model. The APIs provide 16 services to constructor component
instances, and only 2 services to worker component instances. Compared to the functionality
it provides, and taking into account that control flow options are also explicit in MICA

component model, we believe that these numbers are relatively small.

* Separating worker and run-time management components: In MICA, Unit Model type com-
ponents correspond to worker components, and Constructor Unit components correspond

to constructor components.

* Supporting transparent distribution of components: MICA supports distribution of com-
ponents, in a way that is transparent to the worker components. Constructor components
cannot be made independent of the distribution of component instances. The reason is that
they are provided with services for managing the configuration of the component instances
at run-time, which necessitates that they can have and may use information about the distri-

bution of component instances.

* Using messaging for component communication, and preferring asynchronous messaging
over synchronous: MICA uses messages for communication, and provides asynchronous

messaging between component instances.

As discussed in more detail in Sections 6.1 and 6.2, the design decisions involved in MICA do
not fully overlap with any major component-based approach in software engineering, or any of the
component-based approaches to simulation that has been surveyed. Therefore, MICA is presented
as the only component model that is designed with particular emphasis on the set of characteristics
mentioned above.

One of the goals in this thesis have been a thorough presentation of the design choices in for-
mulation of the MICA component model and implementation of the component platforms. In
retrospect, it had been one of the major sources of the author’s confusion and surprise throughout
the development process of both the component model and the component platforms, that despite
MICA defines a minimalistic component model with a very small number of entities, still a con-
siderable number of design decisions had to be made. The discussions provided in this thesis can
be used by other future attempts in building other component-based models for simulation and
emulation, and even for other domains. In time, such design decision documents would enable
researchers to construct the design space for component-based infrastructures for simulators and
emulators, and to identify the fundamental and supplementary sets of techniques that span this
space.

It should also be noted that after seeing the amount of design decisions involved, we have
become quite intrigued that the answer might be positive to the question of whether there are
enough questions and challenges for establishing a sub-discipline of software engineering, which
one might call “simulator engineering”.

The network emulator DINEMO has been just a demonstrative tool for the purposes of this

thesis. Therefore, it is still in its infancy. In time, it may or may not become widely used. Thart it
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becomes widely used is not only dependent on its sound component-based architecture that is built
on the MICA component model, but more so on the models available for it, the demand for the
TUN/TAP based emulation technique used in its implementation, and its proper promotion and
support in the networking research community. Although one may claim that the benefits of MICA
cannot be observed before a simulator or an emulator, such as DINEMO, becomes widely used,
it should be taken into account that such promotion can not easily be fitted into the limited time
available for a doctoral thesis. This is especially so for this thesis since the research areas that form
the background of this thesis are quite large, inadequately organized, and they had to be surveyed

separately which was quite time consuming,
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Appendix A

Critique of Szyperski’s No-Observable-State

Characteristic

Szyperski maintains having “no (externally) observable state” as one of the characteristics of com-
ponents ([173], pp. 36). This no-observable-state characteristic appear to address several things at
once. Below we present a critique of this characteristic, drawing upon the definitions provided in
Section 2.3.2.

Szyperski’s motivation in supporting the no-observable-state characteristic appears to be related
with supporting another proposition: a component should not be distinguishable from copies of its
own. Any state that is not related to a component’s functionality can be considered an exception,
such as the serial number of the component. From this proposition, he deduces that it does not
make sense to have multiple copies of a component in the same operating system process since these
would be indistinguishable, and provides the example of a database server with a database. He states
that although the database server and the database might be seen as a module with state, the static
database server program is a component, and the database is a supported instance — a database
“object”. Although we agree with his identification of the database server program as a component,
we identify the database along with the database server program as a component instance, not a
supported object or a module.

As we have introduced a differentiation between components and component instances in Sec-
tion 2.3.2, the no-observable-state argument should be reviewed for both of them.

By our definition, a component instance clearly may have its own internal state. We agree that
direct exposition of the internal state of a component instance is generally a breach of encapsulation,
thus it should be avoided in the design of the component. However, if some states and their
transitions are clearly defined in a components contract, any of its instances should be able to
expose these states, which may or may not map to the instance’s internal state in a one-to-one
manner. Therefore, a component instance may expose its state.

We will regard two component instances C; and C5 of component C' as different component
instances if they carry different internal states at any point in their lifetime. At any time when C4
and C5 have the same internal state, they would appear as copies. However, they still would have
to be distinguishable from each other.

As a result of these two arguments, no-observable-state argument does not seem to hold for
component instances with respect to our perspective.

In the case of components, an analysis of the no-observable-state argument leads to a compo-
nent identity discussion. The questions are whether it is possible to have a component with two
different states in one system (or process as Szyperski puts it), and whether each state along with
a component should be regarded as a different component. Our answer to the first question is af-
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firmative, with the definition of component state introduced in Section 2.3.2. With respect to the
second question, we prefer to refer to two deployments of one component in a system, since taking
them as two different components lead to a discussion of whether they are really different compo-
nents or not. Regardless of whether they are different components or different deployments, they
should be identifiable for the purpose of instantiation. If one chooses to refer to them as different
deployments, then such identification can also be considered as exposition of state.
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Appendix B

Survey of Network Emulators and Testbeds

As discussed in Section 2.2.3, network emulation is characterized by use of real parts from the
system under test (SUT) and its context in the stand-in for the system under test (SIFSUT) in the
experimental setup. In an emulation-based experiment in the networking domain, the SUT is the
network that is being studied in the experiment.

We should point out that discussions about network emulation that can be found in the litera-
ture agrees with our stance, in that it is generally recognized that emulation involves real elements
used along with simulators. However, additional properties are usually required. For example,
Guruprasad et al. present running in real time also as a defining property of emulators [78]. As
discussed at the end of Section 2.2.3, we do not agree that this should be taken as a defining
property. Nicol et al. also take running in real time as a defining property [128]. They further
classify emulators used for networking research into network emulators and real-time simulators,
based on whether time-stepped (a.k.a. time-based) or event-driven approach to time management
is used for the simulation in the SIFSUT. Although we agree that time-stepped and event-driven
approaches have their own set of advantages and disadvantages when used in an emulation-based
experimental setup, which justifies differentiating between the two, their naming is quite confusing:
both network emulators and real-time simulators as they define, end up used in emulation-based
experimental setups.

In the survey below, which have been published as a part of [73], we will start with the very
few systems that we consider as testbeds according to our stance. Then we will look at the emu-
lation systems reported in the literature, starting from systems that have mostly real elements, and
then move more or less gradually towards systems that are mostly simulated. This division is not
introduced as a proper categorization, but just to make the presentation a bit more tidy: it is easier
to discuss what is being simulated for the mostly real emulation systems, and what is being used as
real for the mostly simulated ones.

B.1 Network Testbeds

Systems that satisfy the reflexivity property presented in Section 2.2.2, which we have regarded as
a defining property for testbeds, are very rare. Ionescu et al. describe NIST*net2, which provides
network resources available to the researchers [88]. It is built by connecting dedicated networks
in four institutions in Canada. CREATE-NET is a network installation in a rural part of Italy
in the autonomous province of Trento [33]. It has both wired and wireless parts. The goal of
CREATE-NET is providing a network where researchers can experiment with networked commu-
nities. Another testbed is MIT RON (Resilient Overlay Network) [7]. It is a set of hosts distributed
over the Internet (36 in 31 different cites as reported in [7]), available to the researchers to use by
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acquiring an account. It is similar to PlanetLab, however it is not open to everyone, therefore
security is not actively addressed. All hosts run a normal FreeBSD installation.

B.2 Network Emulation — Mostly Real Systems

In certain emulation environments reported in the literature, almost nothing is explicitly simulated.
Therefore being considered as a testbed or an emulation environment depends on the definition of
the SUT in a given experiment to be conducted using these systems. MIT Roofnet is a good exam-
ple, where real changing conditions for the wireless channel between the nodes distributed on the
roofs of some buildings near the MIT campus is used for testing routing in wireless networks [36].
PlanetLab is very similar to MIT RON in the sense that it is made up of some number of hosts
distributed over various sites all over the world. However, the definition of the concept of slides
makes the hosts as defined in an experiment somewhat virtual. This fact prevents its categorization
as a testbed according to our stance [144].

In the CMU DSR experiment [120], Maltz et al. use the changes of the topology due to mo-
bility of the nodes that are mounted on cars in the campus, as a surrogate for topology changes
due to mobility in mobile ad hoc networks (MANETs). In Ad hoc Protocol Evaluation testbed
(APE), which is not a testbed according to our definition but an emulation, the style in CMU DSR
in simulating topology and mobility is taken one step further and the movements of the people
carrying laptops are explicitly choreographed and controlled [115, 130].

There is a good reason why the emulations related to wireless networks mentioned up to this
point are trying to use real physical conditions as surrogates for the physical conditions in the
SUT and its context: the physical channel is difficult and computationally intensive to simulate
accurately. However, it turns out that there is also a need for simulating the physical channel
using the physical conditions in the emulation in a more accurate and controlled way. In the
Illinois Wireless Wind Tunnel (iWWT), an anechoic chamber is set up, which provides isolation
of the experiment environment from the outside RF interference, at the same time providing an
anechoic enclosure [181]. The topology is then scaled down by adjusting the transmitting power
of the devices that are put into the iWWT. Since the anechoic chamber is designed to be free
of unwanted REF, the background noise is added using other transmitters in accordance with the
requirements of the experiment. Similar methods for creation of wireless channel effects are also
used in ORBIT [137, 108, 67]. However, the positions of the nodes are fixed in ORBIT on a
20x20 matrix, while in iWWT the researchers use small mobile robots.

MINT (Miniaturized Wireless Network Testbed), which is again not a testbed according to
our definition of the term, is another system that uses miniaturization, or scaling down, in order
to make use of physical radio communications in emulating MANETs. In MiNT, radio signal
attenuators are attached to wireless devices, thereby reducing their transmission range [47]. The
nodes are mounted on small mobile robots that are remotely controlled, as in iWWT. An interesting
property of the MiNT is that it is reported to work with NS [23], in such a way that the physical
layer is simulated using MiNT. However in that case, MiNT becomes a complete simulator, and
ceases to have any entities used as real unless the SUT or its context involves mobile robots with
signal attenuators attached.

In addition to iWWT and MiNT, other researchers have looked into using attenuators for
controlling the wireless channel effects, too. Kaba and Reichle work with unmodified computers
and network interface cards (NICs), and attempt to build an environment where the wireless signal
propagation is either attenuated, or guided through cables between the communicating NICs [95].
Judd and Steenkiste capture the signals at the antenna, and uses an FPGA based digital signal
processor to attenuate signals between the transmitting station and the receiving stations [93, 94].
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Their method makes it more possible to repeat wireless physical layer effects across simulation runs,
while still using unmodified NICs.

Another focus in building systems to be used for emulation-based experiments is the experiment
control mechanisms that would allow multiple researchers to share the resources available. This
problem has been targeted in many different systems, such as ORBIT, PlanetLab, and MIT RON.
Some of the projects aim only for providing a set of resources for experimenters to build their own
emulation-based experimental setup, such as Embedded Wireless Modules (EWM) [156], or the
UCLA HNT [174].

B.3 Network Emulation — Mostly Simulated Systems

Some protocols have complex implementations, which makes re-implementing them in a simulator
prone to errors and not very accurate. For this reason, various researchers have taken the real
protocol implementations in open source operating systems, and packed them in a way that they
can be incorporated in simulators. In ENTRAPID, network stack from the FreeBSD is packed
in a way that works in the user level, so that the protocol developers can experiment with their
own protocols incorporated into the stack without requiring superuser priviledges [86]. However,
the processes running on the simulated nodes need slight modification. The topology and the
physical layer in ENTRAPID are simulated. Ely et al. have also worked on the same problem, and
they have converted the FreeBSD 3.3 protocol stack to work as a library in the user space [55].
Zec and Mikuc modify the protocol stack of 4.4BSD operating system in order to allow multiple
independent instances of the stack to exist in the kernel, connected via simulated links [196].
Jansen and McGregor have packed network protocol stacks in Linux, FreeBSD, and OpenBSD as
shared libraries, and implemented an NS agent that is capable of using these stacks [91]. They
call their approach the Network Simulation Cradle, and say that their approach can be used with
other simulators as well. Bless and Doll use OMNeT++ [182] instead of NS, and incorporate the
TCP/IP stack from FreeBSD as a simple model' in OMNeT++ [19]. They address the problem
of synchronizing the kernel timers that are used by the protocol stack with the virtual time in
OMNeT ++. Furthermore, the function calls to the socket library are represented by messages to
be received by the simple model they have developed. Bavier et al. use a different approach, where
they implement Click modular routers in slices on PlanetLab hosts, and construct the the stand-in
for the network that is the subject of the experiment as an overlay on PlanetLab [14].

In some of the systems that allow use of implementations of protocols as real, it is more dif-
ficult to decide whether the experimental setup built using these systems are emulation-based, or
pure simulation-based. The reason is that these systems use unusual protocol implementations,
but at the same time it is pointed out that they can in fact be used in real systems as well. The
JEmu system builds on a four layer protocol stack for MANETSs [60]. At the lowest layer in JEmu,
which corresponds to the radio communications, the frames are forwarded to a physical layer sim-
ulator running on a different host. In [97], Karrer et al. incorporate into NS protocols that are
implemented as Click protocol graphs used by the Click modular router [103].

Using real hosts whose traffic is routed through virtual networks appears as another identifiable
method. The emulation extension of NS is a typical example [57]. NS is monolithic, but since NS
emulation extension simulates whole networks, it is possible to partition the SUT and its context
into different networks and assign them to a set of simulators running on different hosts, as done
in EmuLab [78]. While NS is monolithic, there are also distributed simulators used in emulation-
based experimental setups, such as IP-TNE. IP-TNE is built on IP-TN, which uses CCTKit that

YA simple model is a component type in OMNeT++ which is not a composite.
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implements the Critical Channel Traversing (CCT) algorithm for parallel discrete event simula-
tion [161, 162, 100]. In [21], Bradford et al. discuss different methods for reading packets from
and writing packets to real networks for network emulators such as IP-TNE. Another system that
uses a discrete event based simulator is RINSE [112], which is built on iSSF (formerly known as
DaSSF). RINSE uses what Liljenstam et al. call “multiresolution modeling”: background traffic
is simulated using fluid models that require less resources to simulate, while the traffic of interest
—the foreground traffic— is simulated at the packet level. The target application area of RINSE is
network attack preparedness exercises, and therefore it includes some models that are not normally
found in other network simulators, such as CPU models. In ModelNet, the environment is divided
into two sets of hosts called core nodes and edge nodes [180]. The network that is the subject of the
experiment is modeled as a set of pipes, which are assigned to the core nodes. The core nodes then
cooperate to subject the traffic to the bandwidth, congestion constraints, latency, and loss profile of
the target network topology. The edge nodes are the real hosts whose traffic is routed through the
virtual network. While ModelNet is targeted for wired IP networks, MobiNet is an extension of
the same approach but it targets MANETs [118]. In addition, MobiNet allows for multiplexing of
virtual nodes on the edge nodes.

Another popular approach is the use of traffic shapers, which are placed between the protocol
stack and the network device driver in a kernel. This way, the protocol stack and the programs
running on top of it are used as real, while the rest of the network is simulated. For example,
in NET Shaper, flow parameters such as bandwidth and delay are controlled by a user-space pro-
gram [82, 81]. A similar approach is followed in EMPOWER [200], which targets wired IP net-
works, and EMWIN [201], which is based on EMPOWER but it targets MANETs. At the extreme
case of traffic shaping, it is possible to simulate the presence of the connection between the nodes
in a network with only the existence and non-existence of links. As an example, MNE (Mobile
Network Emulator) is a distributed system which abstracts away physical layer effects and mobility
behind topological changes simulated by IPTABLES based packet filtering controlled from a central
controller [117].

An alternative to placing traffic shaper modules in the kernel is the use of the universal TUN/-
TAP driver, which is designed for implementing tunneling using user level programs. The emulators
NCTUns [185], EmuNet [99], and DINEMO [74] use the TUN virtual network interfaces, which
intercept packets after the IP protocol implementation. NEMAN [149] is a similar system, but it
uses the TAP virtual network interfaces, which intercepts frames before they are handled to the net-
work driver to be sent to the network. Of these systems, NCTUns and NEMAN are monolithic,
while EmuNet and DINEMO are capable of being distributed. In all of these systems, the protocol
layers above and including IP, along with the programs communicating over the network, are used
as real. Considered from software engineering perspective, DINEMO has the added advantage of
being supported by a component model and multiple component platform implementations.

With the developments that allow multiple operating systems to run on one base operating
system, another approach has recently become possible. User Mode Linux (UML) provides a Linux
that runs in the user mode. UML has been used for implementing virtual nodes that are then
connected by a network simulated below the network driver layer. vBET [92], which targets wired
networks, and the system developed by Guffens and Bastin [77], which targets MANETS, are ex-
amples to using UML. Using micro-kernel based approaches has also been explored, as exemplified
by the work by Engel et al. [56], which targets wireless networks.

While it may not be feasible for MANETs or wired networks, simulation of all hardware in-
cluding the CPU so that unmodified programs can be run, appears to be a feasible technique for
emulation-based experiments for sensor networks. ATEMU is one such system that allows differ-
ent hardware configurations [147]. MEADOWS VMN (Virtual Mote Network) allows multiple
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virtual motes per real host that is participating in the emulation [116]. The virtual motes can tun
TinyOS, and TinyDB or other applications on top, while hardware of the mote, and sensor and
wireless channels are simulated in MEADOWS VMN.

Another original direction is explored by Haeberlen et al. in their system called Monarch [79].
In Monarch, the idea is to use the latency observed at the moment between the host on which the
virtual sender and the virtual receiver resides, and a remote host on the Internet. For this purpose,
for every packet the virtual sender wants to send, Monarch captures it and sends a probe packet
of the same size to a remote host associated with the virtual receiver. When a reply is received,
the virtual receiver is allowed to receive the packet. In the direction from virtual receiver to virtual
sender, Monarch passes the packets without delay. This way, both the sender and the receiver
observes the round-trip-time obtained from the probe packet. Their approach targets transport
layer studies only, and can be used with unmodified implementations of transport layer protocols
in the Linux kernel.

B.4 More Emulators

The survey presented here is the most encompassing one reported in the literature in terms of
number of systems covered, to the best of the author’s knowledge at the time of writing. How-
ever, no claim is made that it covers every emulation system or testbed. Examples of systems that
can be added to this survey include Netbed [189], ONE [6], MobiEmu [199], NIST Net [34],
MASSIVE [121], hitbox [3], Delayline [87], SensorSim [140], W-NINE [141], Dummynet [157],
ENDE [195], REAL, NEST, PacketStorm, UMLSim, RAMON, TOSSIM, EMStar, and possibly

some others.

B.5 Other Surveys

This survey focuses mainly on the techniques used for building emulators for various kinds of
networks. Other surveys exist in the literature, such as that by Kropff et al. [104], which focuses on
MANETs. A small-scale comparative survey also appears in [47].
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Appendix C

Survey of Available Component Models

Brad J. Cox makes the following observation in the preface to the second edition of his book
“Object-Oriented Programming: An Evolutionary Approach” [42]:

And everyone is asking “What could such different technologies possibly have in com-
mon? Do they have anything in common? What does “object-oriented” really mean?”

Today, the same quote seem to apply to tools, environments, and programming languages for
developing component-based software. In this section, a few of the major component-based ap-
proaches are presented, with special focus on their component models.

C.1 CORBA Component Model (CCM)

OMG is a non-profit open consortium with more than 450 members (as of January 2007), whose
aim is to provide standards that allow interoperable open systems. The Common Object Re-
quest Broker Architecture (CORBA) is the OMG’s object-based systems architecture [134]. Since
CORBA 3.0, the OMG suite of standards also include a component model built on CORBA,
which is called the CORBA Component Model (CCM).

Since CCM is closely related with CORBA, a very brief overview of CORBA will be presented
before we start describing CCM. The overall architecture of CORBA is shown in Figure C.1. A
client is defined as that which has access to an object’s reference, and which invokes operations
on that object. Dynamic Invocation Interface (DII) and the Interface Definition Language (IDL)
stubs provide the points of access to services provided by various objects defined on the Object
Request Broker (ORB). While the IDL stubs are created by the ORB using the IDL descriptions
of object interfaces, the DII is used by clients for dynamic construction of object invocations. The
ORB core provides the basic representation of objects, and manages and marshalls/unmarshalls
the communication requests. The ORB interface includes a few services that is common to all
ORB implementations. The majority of the services are provided through the object adapters. It is
expected that different object adapter implementations may target a wide range of object granular-
ities, lifetimes, policies, and implementation styles. The IDL skeletons and the Dynamic Skeleton
Interface (DSI) allows the object adapters to locate the code that implement particular function-
ality of defined objects. Like DII and IDL stubs, the IDL skeletons are compiled from static IDL
descriptions of interfaces of objects, and DSI is used in order to create skeletons that may make use
of dynamic knowledge, such as parameter type information.

The CORBA 3.0 defines an object adapter which is called the Portable Object Adapter (POA).
POA is expected to be supported by most CORBA products, with the exception of those that target
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Figure C.1: Abstract architecture of CORBA. Appears as Figure 2-2 in [134].

applications that would require radically different services. POA have replaced its predecessor, the
Basic Object Adapter (BOA). The reason why BOA is replaced is because it did not standardize
some services that are later found to be useful, which has lead to vendor specific extensions being
developed that undermined interoperability.

POA details the CORBA object model by introducing new abstractions such as server, POA
objects, managers, and servants. The abstract architecture of POA is shown in Figure C.2.

A server is defined to be a computational context in which the implementation of an object
exists. A client is similarly defined to be the computational context from which an object is invoked.
Object references are created and exported by servers, to be used by clients.

Servers are composed of POAs, and some special objects. Every POA has an associated POA
manager object, and hosts some number of servants. These servants implement a set of services for
objects. The mapping between objects and servants is quite flexible: a servant may implement a
particular service for a specific set of objects, or for all objects of some type. Furthermore, it is not
necessary for all servants that implement an object to reside in the same POA, or server. Servants
may be created statically by some initialization code, or dynamically on demand by defining a ser-
vant manager object associated with a POA. Similarly, necessary POAs can be created dynamically
on demand by defining an adapter activator object. Policies, such as those related to transactions or
security, are set using policy objects associated with POAs.

While multi-threading is optional, CORBA specification defines the thread models for the
POA in case multi-threading is used. There are three thread models that can be set through a policy
object associated with a POA:

Single Thread Model: All POAs are individually single threaded. Note that different servants in
different POAs may be implementing particular methods of an object, therefore an object
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mighe still be distributed over multiple threads. Distinct POAs might be running concur-
rently.

ORB Controlled Model: ORB/POA controls the use of threads, not the developer of the objects.

Main Thread Model: A set of POAs, designated as the “main-thread POAs” activate their servants
in a sequential manner, regardless of whether these POAs are in the same thread/process/host
or not.

In any of the three thread models above, further use and control of threads used in implement-
ing the servants in a single POA is left to the developers.

Starting with CORBA 3.0, OMG included a component model called the CORBA Compo-
nent Model (CCM) into its range of specifications [135]. CCM extends upon CORBA IDL and
the interface repository metamodel, and the corresponding implementation framework is designed
to be compatible with POA.

There are two levels of components in CCM: basic and extended. The difference between the
two levels is mainly based on the different kinds of interaction points, which are called ports, that
can be defined for them. While basic components are limited to attributes, extended components
may use so called facets, recepticles, event sources and sinks, as well as attributes. The motivation
for introducing the concept of basic components is to ease integration with Java Enterprise Java
Beans.

There are five different kinds of ports in CCM:

Facets are distinct and named interfaces provided by the component for the clients.

Receptacles are named points of connection for accepting references to facets.
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Event sources are categorized into two: publishers and emitters. In the case of publishers, multi-
ple subscribers can receive events created by a publisher, and a channel is dedicated to one
publisher component. In contrast, emitters are connected to the consumers of their events in
a one-to-one manner, while in the CCM specification, it is defined as possible for multiple
emitters to share a channel.

Event sinks represent the consumers of events produced by event sources. They cannot distinguish
or choose between available event sources, including whether they are publishers or emitters.

Attributes are named values exposed through accessor and mutator operations.

Component instances of a component type are hosted in one or more component homes, which
also provide the equivalent of static members for the component type. Primary keys, which serve
as unique ids for component instances, are defined with respect to component homes.

An interesting point, which is related to the design of the MICA component model that is
presented in Chapter 4, is that CCM recognizes the need for an explicit configuration phase,
and includes optional support for it. The component life cycle can be divided into two mu-
tually exclusive phases, called the configuration and the operation phases, through use of the
configuration_complete operation defined in CCM for components. However, CCM
specification notes that in practice, configuring distributed object assembly proves very difficult.
The primary reason appears to be the subtle ordering dependencies that are difficult to discover and
enforce.

Composition is done in a context-based manner in CCM. Components are hosted in containers
which provide them with an execution context. The container’s context provides the services to the
component that the component needs in order to function.

CCM defines two threading models to specify control flow: “serialize” and “multithread”. The
serialize threading policy denotes that the component is not designed to be thread-safe, therefore the
container should prevent simultaneous access to the component by multiple threads. A component
that is specified to be multithread is capable of handling multiple simultaneous accesses without
the help of its container.

C.2 Component Models in Java Suite
Szyperski identifies five component models in Sun’s Java suite [173]:

Applets are lightweight components used for augmenting web pages at the client side. They can
be composed by placing them on the same web page, and then using the class AppletContext
from one applet instance to find another applet instance by name.

Servlets are lightweight components used for augmenting web pages at the server side. They can
be implemented using the Java language, or as Java Server Pages (JSP).

JavaBeans specification focuses on components that are composed by wiring. JavaBeans beans are
targeted mainly at the client side.

Enterprise Java Beans (EJB) specification focuses on components that are supported and com-
posed through container-integrated services using declared attributes and deployment de-
scriptors.

Application client components are unrestricted applications at the client side, which have access
to a Java Naming and Directory Interface service that provides enterprise naming context.

144



Of these component models, JavaBeans and the Enterprise JavaBeans (E]JB) are the most rele-
vant models to this thesis.

JavaBeans beans are component types. They are customized and connected, saved and instanti-
ated to create component instances, which will be referred to as bean instances. JavaBeans beans can
distinguish whether they are being used at run time or design time, and can adjust their appearance
and functionality dynamically. JavaBeans bean instances, which are customized and connected at
design or deployment time, are saved for reloading at the time of application execution.

JavaBeans support a two different ways of communication: beans can communicate by produc-
ing and consuming events, which provide an implicit invocation scheme, or by modifying proper-
ties of the receiver bean through directly invoking its methods. Events can be communicated in a
unicast, n-cast, or multicasting manner. Events are objects, which are preferably immutable. The
event passing mechanism between JavaBeans bean instances makes use of the listener pattern, where
a set of event consumers register instances of an event listener class with an event producer.

JavaBeans bean properties can be of arbitrary types. These properties are accessed through getter
and setter methods, whose names follow a certain pattern and therefore they can easily be discovered
using Java’s introspection. In addition, changes in the value of a property can be configured to create
"change of property" events.

Since events are the main method of communication between JavaBeans bean instances, com-
position of bean instances is done by wiring them together using a listener pattern. Therefore the
composition in JavaBeans is done in composition by wiring style (see Section 2.3.7).

From a control flow perspective, concurrency is considered orthogonal to JavaBeans. Thread
execution may follow an event to the listener as a result of calling the receiver’s event reception
method. This creates a source of potential deadlock, if there are locks that are shared by the event
producer bean instance and one or more consumer bean instances.

Containment and services protocol generalizes the JavaBeans model. This protocol allows log-
ically nesting of JavaBeans bean instances, and the container bean instance can assume various
services in the Java API for controlling or extending these services. This protocol appears to be a
limited support for a kind of EJB style containers.

JavaBeans are packed and distributed in Java Archive (JAR) files. These ZIP archives include the
class files, and in addition they may include various resources, and serialized form of some objects
to be used as the prototype JavaBeans bean instance for creating new instances by copying it at load
or run time. A JAR file may pack more than one JavaBeans beans.

Although they share “JavaBeans” in their names, Enterprise JavaBeans (EJB) provide a different
model than JavaBeans, especially in terms of composition. EJB bean instances and homes are placed
in containers that provide a context. The context provides services to the EJB bean instances,
and it is only the context the EJB bean is supposed to obtain services from. A home roughly
corresponds to class level, static methods for an EJB bean (type). EJB beans are packed with
what is called a deployment descriptor in their JAR files. The deployment descriptors describe the
needs and requirements of the EJB bean instance from its context at run time. Composition of
the EJB bean instances is done at deployment by creating a context that satisfies the EJB bean’s
deployment descriptor. Therefore the EJB beans are composed in context-based composition style
(see Section 2.3.7).

The EJB containers serialize all invocations to the EJB bean instance it is encapsulating. Thread
creation by the EJB bean instance is not allowed. Containers also protect bean instances from re-
entrant calls, with the exception of entity type EJB beans that explicitly declare that they can handle
re-entrancy. Faults in EJB bean instances are also isolated by their containers, by invalidating and
destroying the encapsulated EJB bean instance if it throws an uncaught exception.
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There are four different types of EJB beans: stateless session, stateful session, entity, and
message-driven beans. Message-driven beans probably are the ones that come most closer to MICA
components. They are associated with a single message queue, which receive from multiple message
producers. When the container needs to activate the bean instance to process an incoming message,
it calls the bean instance’s onMessage method. Message-driven bean instances are stateless: no
state is kept across messages being processed.

Distributed computing support in Java is provided through either Remote Method Invocation
(RMI), RMI over CORBA IIOP protocol, or CORBA, and relies heavily on the Java object seri-
alization service. Distributed computing support in EJB containers builds on RMI and RMI over

IIOP.

C.3 Microsoft Way: COM and .NET

Component Object Model (COM) is a component model developed by Microsoft [191, 76]. It is
the foundation of various technologies available on Microsoft’s Windows platforms, such as COM+,
Distributed COM (DCOM) [85], Object Linking and Embedding (OLE), and ActiveX. In addi-
tion to Microsoft’s Windows series operating systems, COM support is also available for Apple
Macintosh and various flavors of UNIX.

COM is a binary model. Unlike JavaBeans, it is not bound to a specific language, and unlike
CORBA, it does not standardize any bindings to specific languages. Therefore it is referred to as
being programming language-independent.

In COM, a component type is called a COM class, and a component instance is called a
COM object. A COM class is some code that provides implementation of a set of immutable
interfaces, and a COM object is some state with identity. There are various senses in which objects
are used in object-oriented programming languages, and the COM way of using these terms does
not necessarily coincide with all object-oriented programming languages. For example, COM style
is closer to multiple interface inheritance in Java, different from implementation inheritance in
C++, while it can be considered in some ways similar to the use of abstract classes in C++, and in
fact COM objects can be implemented using multiple objects in these languages. Furthermore,
COM objects need not even be coded in an object-oriented programming language at all.

An interface is actually a single pointer to a list of pointers to methods defined in the interface.
This table is called a vtable, following its similarity to the virtual method tables in object oriented
languages. Clients use COM objects through the references to the interfaces, which are simple
pointers that point to the interface. There are no public state variables in a COM object. However,
getter and setter methods along with some naming conventions are used in various frameworks
built on COM to provide what is generally referred to as “properties.” Interfaces are distinguished
by Globally Unique Identifiers (GUID) that are associated with their type and version information.

All COM objects have an interface called TUnknown, and all interfaces of a COM object sup-
port three methods: QueryInterface, AddRef, and Release. The QueryInterface
method together with the TUnknown provides a client the ability to navigate through a COM
object’s interfaces. The AddRef and Release methods allow for per interface reference count-
ing, which is used for collaborative garbage collection along with some rules for when to add and
remove references, and how to break cyclic dependencies.

COM provides transparent inter-process and remote interoperability between COM objects.
This is achieved by in-process proxy COM objects and stubs. This means that all COM interface
references and invocations of these interfaces occur in-process. COM infrastructure transparently
handles inter-process communication and network related issues.

COM uses class factories along with a library called Component Object Library (COL) in order
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to create new COM objects and to address the bootstrap problem. The class factories are themselves
normal COM classes, but they produce instances of some COM class. Every COM class has an
associated class identifier (CLSID), which is passed to the COL when requesting creation of a
COM instance from that class. If COL is used to instantiate a class, it looks up the class in the
registration database, which is called the system registry. Depending on whether the server for the
COM class being instantiated is registered as in-process or out-of-process, and whether it is on the
same machine or on a remote one, the server is launched by either loading a dynamic link library
(DLL) when the server is in-process, or by loading an executable on the local or a remote machine
and creating proxy and stub COM objects.

COM defines two methods for reuse: containment and aggregation. In containment, only the
container COM object has a reference to the contained COM object, and the container COM
object uses the contained COM object as any client would in implementing its own interfaces.
The containment relation is only logical: the relationship between the outer and the inner COM
objects is created by the inner COM object’s reference being encapsulated by the outer COM
object. Otherwise, there are no special mechanisms supporting containment.

However, aggregation requires special support by COM, therefore the relationship between the
inner and outer COM objects in an aggregation is not only logical. In aggregation, the outer COM
object exposes the interfaces of the inner COM object (or objects), therefore allowing clients of
the outer COM object to invoke inner COM object’s (or objects’) interfaces directly. This creates
subtleties with the interface navigation mechanism, and creates a cyclic reference which should be
handled for reference counting based garbage collection.

Unlike JavaBeans (see Section C.2), control flow and threading is not considered to be orthog-
onal to the COM objects in COM. COM uses a control flow model based on the “Apartment”
abstraction in order to express the relationships between COM objects and threads [123, 164]. In
this model, COM objects are placed in apartments. According to whether a COM class is im-
plemented in a way that its COM objects will be thread-safe, and what kind of an apartment the
COM object that requested the creation is in, various rules govern in which apartment the new
COM object will be created in. There are two different flavors of apartments:

Single-threaded Apartment (STA):

The thread that created the apartment is the only source of control flow for the objects
placed in that apartment. This means that any communication originating from an object
in another apartment is synchronized through the associated thread. For example, in the
Microsoft Windows environment, the message infrastructure of the user interface is used by
creating an invisible window for each such thread. The thread then polls this message queue
in order to get messages and dispatch them to the COM objects in its STA. A process may
contain multiple STAs.

Multi-threaded Apartment (MTA):

A multi-threaded apartment contains COM objects for which control flow is provided
through one or more threads. Unlike threads associated with MTAs, calls to the COM
objects contained in the MTA are not synchronized by threads. Therefore, while the MTA
model is simpler in appearance compared to the STA model, the developers need to be careful
to implement necessary synchronization methods themselves. This can lead to more efficient
use of resources, but at the same time it can be a source of subtle defects. There can be at
most one MTA in a process.

A thread associated with an apartment, whether it is an STA or an MTA, cannot be associated
with another one.
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COM objects normally communicate by procedure calls. Therefore any message-based ab-
straction has to be implemented on this procedure call structure. While COM was originally
supporting only synchronous procedure calls, asynchronous call support was added to COM us-
ing asynchronous RPC services introduced with Windows 2000 [158]. This mechanism simplifies
implementation of some mechanisms that traditionally require multiple threads.

As mentioned before, there are related technologies that are complementary to or making use of
COM, mainly on the Windows platforms. DCOM extends the COM model with interoperation
between remote objects. To support discovery and activation of remote COM objects, it introduces
a distributed registry of objects, local part of which is called the service control manager (SCM).

Object Linking and Embedding (OLE) is a framework built on COM that provides a compo-
nent-based document structure. OLE documents can be more than just “documents”: they may
be applications such as web-based applications. ActiveX is based on OLE and provides lightweight,
client-side component-based document architecture for the web.

While COM has been the foundation for various technologies originated from Microsoft, their
relatively new technology .NET takes a different form. .NET is a collection of libraries and Appli-
cation Programming Interfaces (API) that is built on the Common Language Specification (CLS).
CLS somewhat resembles the Java Virtual Machine (JVM), and abstracts away the machine specific
details of a host by defining a virtual machine. However, while JVM is tightly coupled with the
Java programming language, CLS is designed to be higher-level programming language indepen-
dent, thus there exists various programming language implementations such as Microsoft’s Visual
Basic .NET, C#, and Managed C++.

Being component-based is not a goal .NET platform is trying to achieve. .NET allows in-
teroperation with COM, and unless there are complex data types that have to be translated or
marshalled, this interoperation is reported to be computationally cheap. In addition to the COM
interoperability, NET includes a System.ComponentModel module, which includes definitions of
the interface IComponent and the class Component. These definitions provide the type-system
basis for developing component models that use context-based composition. Combined with the
packaging and deployment units of .NET called “assemblies”, the customizable metadata based de-
ployment and Just in Time (JIT) compilation the platform aims to provide, the synchronous and
asynchronous messaging support, transactions support, and the event based communication which
has direct support in CLS through delegates and the observer pattern [66], NET can be used to
create component-based systems in a way that provides more options and freedom to the develop-
ers. However, it should be noted that more freedom is not always what one asks when developing
software: more freedom means more decisions, which leads to a heavier development burden. To
give an example, .NET control flow is totally orthogonal to components, and require the developers
to design the control flow and threading in their system by using the provided thread classes and
supported synchronization primitives. While this allows for a considerably large design space and
maximizes the domain to which the NET platform can potentially be applied, control flow design
is a tricky business which can become the source of chameleon-like hard-to catch defects.

C.4 Common Component Architecture (CCA)

There is a feeling in the scientific community that the three most well-known component and object
interoperability models, namely Microsoft’s COM (Section C.3), OMG’s CORBA and CORBA
CCM (Section C.1), and Sun’s JavaBeans and EJB (Section C.2), put the goal of addressing the
complexity of software systems in front of the performance issues. While this approach is cor-
rect for most software projects, and especially in the business and enterprise computing domains,
performance is the most important concern in the scientific computing domain. With this moti-
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vation, Common Component Architecture (CCA) forum was launched in 1998 in order to better
understand the requirements for using the component-based methods in scientific computing [17].

CCA is the CCA forum’s component architecture that targets the high performance computing
domain. It aims to provide support for single program multiple data (SPMD) or multiple pro-
gram multiple data (MPMD) style architectures, heterogeneity in languages and platforms, local
and remote components, easy integration, high-performance with minimum communication and
synchronization overheads, and an open and simple specification since the target audience consists
of scientists, not computing professionals.

The CCA architecturally resembles CORBA to some degree. A component is a computational
entity that communicates through its interfaces using a framework, which provides the run-time in-
frastructure for the components. A framework provides a unique object to each component through
which the component receives services from, and exposes its interfaces through. All interfaces are
defined using the Scientific Interface Definition Language (SIDL), which has support for scientific
data types.

The interfaces of a component, which are called ports, can be declared as “provides” or “uses”
ports, through which a component may provide or receive various services. The framework (which
is a component platform in our terminology) connects the provides ports to uses ports, and al-
lows dynamic reconfiguration of the topology of connections between the components in a system
during execution.

While the framework provides a dedicated Services object to a component, a component
is required to provide a Component interface. The Component interface has only a single
method, which is used to inform the component of the Services object assigned to it by the
framework.

The framework provides different service ports, such as ConnectionEventService,
BuilderService, and ComponentRepository. The BuilderService allows for
formation of composite components. It also allows any component to programmatically control
the lifecycle operations on components, such as creating, destroying, and connecting.

CCA does not specify anything about control flow. It appears that control flow derives from
procedure calls for components in the same process. For remote components, the framework is
expected to provide the communication services through various ports.

C.5 Fractal Component Model

The Fractal Component Model (FCM) [25] is a project of the ObjectWeb consortium. Confor-
mance to the FCM is defined through various levels, and many requirements in the FCM specifi-
cation are optional.

In FCM, components can be composite, and may provide various levels of services. The lowest
level components in the FCM, which are called base components, provide services through in-
vocation of their methods. On one level higher, components may provide introspection, thereby
letting other components to discover their interfaces, and therefore the services they provide. On
the highest level, a component may provide an interface for other components to inspect or modify
its sub-components and their interconnection structure.

In addition, FCM specifies how the component instantiation will be done. For this purpose
FCM uses factory components, and in order to solve the bootstrapping problem, it requires a
generic factory component to be made available by frameworks.

FCM does not providing specifications about control flow, concurrent/sequential execution, or
about threading.
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C.6 Mozilla XPCOM

Mozilla XPCOM is the plug-in component model and platform that is also used in the now pop-
ular Firefox web browser. XPCOM stands for “Cross Platform Component Object Model” [176],
and Gecko is a free software web browser layout engine. Gecko SDK is a collection of tools and
libraries that features the XPCOM component framework. XPCOM is a framework and a plat-
form for component software development. It aims to enable run-time assembly of components
developed and built independently from each other. It separates implementation of a component
from its interface. In addition, XPCOM provides tools and libraries for loading and manipula-
tion of components (component management), services for writing modular cross-platform code,
versioning support, file abstraction, object message passing, and memory management. The com-
ponents are in the form of small, reusable binary libraries, such as DLLs on Microsoft Windows
and dynamic shared objects (DSO) on Unix, which can include one or more components. When
more than one components are packed in a binary library, it is referred to as a module. XPCOM
employs programming by contract approach, using interfaces defined as abstract subclasses of a root
interface class. The interfaces are reference counted, and a component is expected to delete itself
when the reference counts of its interfaces reach zero, meaning that there are no more clients left
using the component. All interfaces, contracts, and components have ids. Component creation is
supported through the component’s factory interface. Interfaces are defined in XPIDL, a variant
of OMG’s CORBA Interface Definition Language. Type libraries that provide binary implemen-
tations of interfaces for languages other than C++ can be compiled from XPIDL (this is called
XPConnect). XPCOM also differentiates components, which are instantiated on use, and services,
which are components created in singleton design pattern [66].

C.7 Universal Network Objects (UNO)

Universal Network Objects (UNO) [26] is the architecture that forms the basis for StarOffice,
OpenOfhice.org, and the Sun ONE Webtop. UNO is also available separately from these products.
UNO provides interoperability between components written in different languages, and between
components in different processes or hosts. One of the main motivations in creating UNO is the
inadequate support for exceptions in other component models. As a model, UNO is similar to a
blend of simplified COM and CORBA.

Interfaces in UNO are specified using the UNOIDL, which is an IDL that slightly differs from
OMG’s IDL and Microsoft’s MIDL in various issues on inheritance and exceptions. Interfaces
of components may contain methods and attributes. UNO requires all interfaces to have three
mandatory methods, with similar semantics to their COM counterparts: querylnterface, acquire,
and release. With acquire and release, a collaborative garbage collection is implemented using
reference counting. As with COM, there exists special rules to break cyclic references. The query-
Interface method is used for querying for a certain interface by its name. UNO supports COM
style aggregation, where all interfaces of the components that form the aggregation appears as the
interfaces of one “master” or “outer” component.

In addition to interfaces, UNO also supports properties. Three types of properties are defined:
simple, bound, or constrained. Simple properties can only be observed or modified, bound proper-
ties can notify a set of listeners on value change, and changes in constrained properties are vetoable
by a set of listeners.

A service in UNO is defined to be a list of mandatory interfaces and their relations. Such a ser-
vice definition is to serve as an abstract specification for components. Services does not exclusively
describe a component: one component may implement multiple services.
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Names of services can be used to request creation of a component that provides that service,
without caring for which implemented component is actually being instantiated. One such service
that exits in every UNO run-time environment is the “servicemanager”. The component that
realizes component instantiation is the one that implements the “servicemanager” service, and it is
created by UNO run-time at startup. In addition to service names, it is also possible to use the
name of a component to create an instance of a particular component.

Every service is required to implement interfaces XServicelnfo and XTypeProvider. The name of
the component, and the supported service names can be obtained from the XServicelnfo interface.
The XTypeProvider interface resembles the IUnknown interface in COM, and provides the list of
all interfaces of the component that implements a service.

Interoperation of components in different processes or hosts is supported through the use of
a construct called “bridge”. Resolving interface references is done using a special method in an
interface provided by the environment. Through the resolved interface, a component may invoke
methods implemented by a remote component. The bridge implements a proxy that intercepts the
method invocation, and forwards it using a UNO specific protocol.

Control flow is defined through four different types of method calls [16]:

Direct call: Blocks the caller, invokes the method using the same thread the method was called
from, then returns to caller and the caller continues.

Spawning call: The method is invoked in a new thread. Caller is not blocked.

Asynchronous call: Same as a spawning call, with the addition that all asynchronous calls by a
caller is executed sequentially, and in the order they are called. For a given thread, there is at
most one other thread that is executing an asynchronous call originating from it at any time.

Synchronous call: A synchronous call is handled like a direct call, but it does not return control
to caller until all its asynchronous calls have returned.

When the component whose methods are being invoked is remote, the control flow options
available are much more limited. Only synchronous and one-way communications are supported,
in which the caller is blocked until callee returns, or the caller does not block, respectively. In fact,
one-way communications is disabled by default, and does not seem to be preferred (see Section

3.3.1in [159]).

C.8 Some Other Component Models

Here we look at some other component models that provide different and interesting constructs. As
should be noted, the list presented in this appendix is not meant to be exhaustive of all component
models that can be found in the literature.

Dennis et al. describe a component architecture (model) that is called GridCCM [48], which
is built on OMG’s CCM, and is targeted for Grid computing. In this model, they define what
is called parallel components, which host multiple SPMD components. The calls to a parallel
component are intercepted at the client side, by adding a software layer between the ORB and the
client through compilation of the client with a specially provided compiler. These calls are replaced
by multiple calls to the components that the parallel component hosts.

Briot and Meurisse describe their component model called MALEVA agent component model,
which is targeted for implementing behaviors of agents in agent-based simulations [24]. MAL-
EVA components communicate using ports. The components are composed by wiring their ports
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together, however they do not discuss how wiring is established in their paper. The ports are catego-
rized into control and data ports in order to separate control flow from data flow. Every component
have exactly two control ports: in and out. When a component receives a control signal from its
control input port, it executes the behavior corresponding to the signal received, and sends out the
signal on the control output port.
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Appendix D
MICA Services and Callbacks
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Cui-Base-Ambassador
Create CUI

SYNOPSIS

Service name: Create CUI

Parameters(in): CUI-CB type (cui-cb-type), Id of EU to create CUI in (in-eu-id) (op-
tional)

Parameters(out): Id of new CUI created (id-new-cui)

Exceptions: CUI-CB type not known, EU-id invalid.

DESCRIPTION

Create a new CUI in the EU with given id in-eu-1id. The CUI will be composed of the CUI-
Base, which will be created from its implementation in the component platform implementation
being used, and the CUI customized behavior which will be instantiated using the type information
given as parameter cui-cb-type.

The parameter in-eu-id is optional. If not provided, the new CUI will be created in the
EU of the CUI requesting this service.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The component platform must be able to locate the compo-
nent code implementing the given CUI-CB type. The EU with id in-eu-id, if provided, must
exist prior to this service request.

POSTCONDITION

A new CUI with customized behavior of given type is created. The CUI is created either in
the EU with the given id, or if an EU id wasnt given, in the EU that the CUI which issued
this service request is in. The newly created CUI receives the CUI-Base Created callback,
before this service request returns to caller. Therefore the CUI-id 1d-new-cui returned is usable
immediately after this service request.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service reports an exception

¢ if the EU-id in-eu-id is no longer valid, for example if the EU-id have been invalidated
by deletion of the EU,

¢ if the customized behavior code cannot be located by the component platform from the given

CUI-CB type.
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Cui-Base-Ambassador
Create EM

SYNOPSIS

Service name: Create EM
Parameters(in): EM descriptor (em-desc)
Parameters(out): Id of new EM created (id-new-em)

Exceptions: EM descriptor problem.

DESCRIPTION

Create a new Execution Manager.

This service is used for creating a new execution manager (EM) on a computational resource
described by the given descriptor em-desc. The descriptor is component platform dependent.
For example, the resource can be a host which will be part of the execution of a distributed compo-
nent platform, and the descriptor can be the DNS name of the host. Other usage is possible, such
as for identifying processors on a multiprocessor computer.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The EM descriptors is the computational resource identifier.
It is human-readable, and the reason is that the distribution should be controllable by the users.
The given descriptor em-desc must refer to a computational resource identifier that can be lo-
cated by the component platform. Exact specifications of how this is to work is left to component
platform implementations.

POSTCONDITION

An EM-id that refers to the EM described by given description em-desc, is created. The
created EM is initialized so that it will be able to host new EUs. The returned EM-id can be used
to create new EUs with Create EU service call, as soon as this service request returns to caller.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

* if the given EM descriptor is not usable by the component platform being used.
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Cui-Base-Ambassador
Create EU

SYNOPSIS

Service name: Create EU
Parameters(in): Id of EM to create EU in (in-em-1id) (optional)
Parameters(out): Id of new EU created (id-new-eu)

Exceptions: EM-id invalid.

DESCRIPTION

This service is used to create a new Execution Unit (EU) in the given execution manager (EM)
withid in-em-id. If in-em-1id is not provided, the new EU is created in the EM that contains
the EU that contains the CUI that requested this service.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The EM with id in-em-id, if provided, must exist prior
to this service request.

POSTCONDITION

A new EU is created. The EU is created either in the EM with the given id, or if an EM id
wasn't given, in the EM that the CUI which issued this service request is in. The created EU is
initialized so that it will be able to host new UMIs and CUIs. The returned EU-id can be used to
create new UMIs and CUIs with Create CUI and Create UMI service calls, as soon as this
service request returns to caller.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

* if the EM-id in-em-1id is no longer valid, for example if the EM-id have been invalidated
by deletion of the EM.
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Cui-Base-Ambassador
Create UMI

SYNOPSIS

Service name: Create UMI

Parameters(in): UMI-CB type (umi-cb-type), Id of EU to create UMI in (in-eu-id) (op-
tional)

Parameters(out): Id of new UMI created (id-new-umi)

Exceptions: UMI-CB type not known, EU-id invalid.

DESCRIPTION

Create a new UMI in the EU with given id in-eu-id. The UMI will be composed of a UMI-
Base, which will be created from its implementation in the component platform implementation
being used, and the UMI customized behavior which will be instantiated using the type information
given as parameter umi-cb-type.

The parameter in-eu-id is optional. If not provided, the new UMI will be created in the
EU of the UMI requesting this service.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The component platform must be able to locate the compo-
nent code implementing the given UMI-CB type. The EU with id in-eu-1id, if provided, must
exist prior to this service request.

POSTCONDITION

A new UMI with customized behavior of given type is created. The UMI is created either
in the EU with the given id, or if an EU id wasnt given, in the EU that the CUI which issued
this service request is in. The newly created UMI receives the UMI-Base Created callback,
before this service request returns to caller. Therefore the UMI-id 1id-new-umi returned is usable
immediately after this service request.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service reports an exception

¢ if the EU-id in-eu-id is no longer valid, for example if the EU-id have been invalidated
by deletion of the EU,

¢ if the customized behavior code cannot be located by the component platform from the given

UMI-CB type.
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Cui-Base-Ambassador
Delete CUI

SYNOPSIS

Service name: Delete CUI
Parameters(in): Id of CUI to be deleted (cui-to-delete).
Parameters(out): None.

Exceptions: None.

DESCRIPTION

Delete the CUI with id cui-to-delete. The links that originate from and end in this CUI
are also deleted. Any message in transit over these links will be silently dropped. Any messages in
transit that are sent using the CUI-id cui-to-delete are also silently dropped.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The CUI-id must not be the id of the CUI issuing this ser-
vice request.

POSTCONDITION

The CUI with given CUI-id cui-to-delete is no longer in the run-time, and the destruc-
tion routine of its customized behavior, if there is any, has run to completion. Furthermore, all
its links have been deleted. All calls that potentially return an exception when given CUI-ids for
non-existent CUIs, do return exceptions for the CUI-id cui-to-delete immediately after this
call returns. The CUI being deleted may receive and process further messages before this service
request returns to caller, since the component platform may need time to ensure safe deletion of
the CUI, or because communication delays may be present.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform implemen-
tation, this service does not return an exception. An exception is not returned in case the CUI-id
cui-to-delete is not valid, since it already indicates that the postcondition of this service is
satisfied.
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Cui-Base-Ambassador
Delete EM

SYNOPSIS

Service name: Delete EM
Parameters(in): Id of EM to be deleted (em-to-delete).
Parameters(out): None.

Exceptions: None.

DESCRIPTION

Delete the execution manager (EM) with id em-to-delete. All the execution units (EUs)
that the deleted EM contains are also deleted. This also results in deletion of all the component
instances in these EUs, and any link that has these deleted instances as one or both of its ends.
Any messages in transit over these links will be silently dropped. Any messages in transit that were
sent using the CUI-ids of any CUIs contained in the EUs that are being deleted, are also silently
dropped.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback.

POSTCONDITION

The EM with given EM-id em-to-delete is no longer in the run-time, and any cleanup
about it is performed. Furthermore, all the EUs, all the instances contained by these EUs, and
all links connecting those instances to any other instance in the run-time have also been deleted.
All calls that potentially return an exception when given EM-ids for non-existent EMs, do return
exceptions for the EM-id em-to-delete immediately after this call returns. The instances
in the EUs in the EM being deleted may receive and process further messages before this service
request returns to caller, since the component platform may need time to ensure safe deletion of
the EM, or because communication delays may be present.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform implemen-
tation, this service does not return an exception. An exception is not returned in case the EM-id
em-to-delete is not valid, since it already indicates that the postcondition of this service is
satisfied.
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Cui-Base-Ambassador
Delete EU

SYNOPSIS

Service name: Delete EU
Parameters(in): Id of EU to be deleted (eu-to-delete).
Parameters(out): None.

Exceptions: None.

DESCRIPTION

Delete the execution unit (EU) with id eu-to-delete. All the component instances in the
EU being deleted are also deleted, along with any link that has these deleted instances as one or
both of its ends. Any messages in transit over these links will be silently dropped. Any messages in
transit that were sent using the CUI-ids of any CUIs contained in the EU that is being deleted, are
also silently dropped.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback.

POSTCONDITION

The EU with given EU-id eu-to-delete is no longer in the run-time, and any cleanup
about it is performed. Furthermore, all the instances contained by the EUs, and all links connecting
those instances to any other instance in the run-time have also been deleted. All calls that potentially
return an exception when given EU-ids for non-existent EUs, do return exceptions for the EU-id
eu-to-delete immediately after this call returns. The instances in the EU being deleted may
receive and process further messages before this service request returns to caller, since the component
platform may need time to ensure safe deletion of the EU, or because communication delays may
be present.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform implemen-
tation, this service does not return an exception. An exception is not returned in case the EU-id
eu-to-delete is not valid, since it already indicates that the postcondition of this service is
satisfied.
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Cui-Base-Ambassador
Delete UMI

SYNOPSIS

Service name: Delete UMI
Parameters(in): Id of UMI to be deleted (umi-to-delete).
Parameters(out): None.

Exceptions: None.

DESCRIPTION

Delete the UMI with id umi-to-delete. The links that originate from and end in this
UMI are also deleted. Any message in transit over these links will be silently dropped.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback.

POSTCONDITION

The UMI with given UMI-id cui-to-delete is no longer in the run-time, and the de-
struction routine of its customized behavior, if there is any, has run to completion. Furthermore,
all its links have been deleted. All calls that potentially return an exception when given UMI-ids for
non-existent UMIs, do return exceptions for the UMI-id umi-to-delete immediately after
this call returns. The UMI being deleted may receive and process further messages before this ser-
vice request returns to caller, since the component platform may need time to ensure safe deletion
of the UMI, or because communication delays may be present.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform implemen-
tation, this service does not return an exception. An exception is not returned in case the EM-id
em-to-delete is not valid, since it already indicates that the postcondition of this service is
satisfied.
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Cui-Base-Ambassador
Get EM List

SYNOPSIS

Service name: Get EM List
Parameters(in): None.
Parameters(out): List of descriptors and ids of EMs present in the run-time.

Exceptions: None.

DESCRIPTION

Returns the list of EM-ids of the EMs that are present at the run-time. The computational
resource descriptors can be obtained by querying these EM-ids.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback.

POSTCONDITION

A list of descriptions and EM-ids of all the EMs present in the run-time at the time of this
service request is returned.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service does not report any exceptions.
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Cui-Base-Ambassador

Get My Id

SYNOPSIS

Service name: Get My Id
Parameters(in): None.
Parameters(out): Id of the CUI issuing this service request my-id.

Exceptions: None.

DESCRIPTION

Return the id of the CUI that requested this service.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback.

POSTCONDITION

The instance id of the CUI making this service request is returned in the out-parameter my-id.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service does not report any exceptions.
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Cui-Base-Ambassador
Link

SYNOPSIS

Service name: Link

Parameters(in): Id of instance the link originates from (from-id), the link id to describe the link
at the originating instance (outlink-id), id of the instance the link ends in (to-id),
the link id to describe the link at the ending instance (inlink-id), type of messages to be
transferred on the link (message-type)

Parameters(out): None.

Exceptions: from-id or to-id is not valid, link already is in use, outlink or inlink is
not valid, message type message-type cannot be located.

DESCRIPTION

This method creates a link between the two given component instances, with given inlink and
outlink ids.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The instances with ids from-id and to-id must exist prior
to this service request. The link ids outlink-id and inlink-id should not have previously
been associated with another link. The component platform must be able to locate the necessary
definitions or implementation for the given message type (nessage-type).

POSTCONDITION

The link described by the 5-tuple (from-id, outlink, to-id, inlink,
message-type) is set up. Immediately after this service returns to the caller, the instance with
id from-1id can use the service requests Send Message to Linkor Send Message de-
pending on whether it is a CUI or a UMI. Furthermore, any further service requests for Link
that involves (from-id, outlink) or (to-id, inlink) pairs would fail with respective ex-
ceptions.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception:

* if any of the instance ids from-id or to-id are no longer valid, for example if any of
these instance ids have been invalidated by deletion of the instances they refer to,

e if the pair (from-id, outlink) or (to-id, inlink) have previously been used in a
Link service request,
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e if any of the link ids outlink or inlink is not a valid link id,

* if the component platform is not able to locate the definition or implementation of the given
message type message-type.
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Cui-Base-Ambassador
Register Message Type

SYNOPSIS

Service name: Register Message Type
Parameters(in): Message type descriptor msg-type.
Parameters(out): Message type identifier for given message type descriptor msg-type-id

Exceptions: Message type described by msg-type is not known.

DESCRIPTION

Register a message type that will be used by the CUI requesting this service, and return to it a
message type id object msg-type-id. This method must be called for each message type that the
CUI will be using. Such registrations might be used by some component platform implementations
in order to load the implementations of the message types.

For the messages received from a link, this message type id object can be used for checking the
type of the message. Such checks might be omitted by some component platform implementations
for performance reasons, especially for the case of links that do not cross EM or EU boundaries.

For the messages received that were sent using a CUI-id, this message type id is more useful
since the response behavior would presumably depend on the type of the message received.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The component platform should be able to locate the imple-
mentation of the message type described by msg-type.

POSTCONDITION

The message type information is located and made ready by the component platform, for the
instance making this service request to be able create and use messages of this type. A message type
identifiermsg-type-id is returned to be used by the instance for subsequent use, such as testing
types of messages received.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

¢ if the component platform is unable to locate information about the message type description
of which is given via parameter msg-type.
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Cui-Base-Ambassador
Replace UMI-CB

SYNOPSIS

Service name: Replace UMI-CB

Parameters(in): Type of new UMI-CB (umi-cb-type), Id of UMI (umi-id) to replace the
CB of

Parameters(out): None.

Exceptions: UMI-CB type not known, UMI-id invalid.

DESCRIPTION

Replace the customized behavior object of the UMI with given id umi-id, without changing
its UMI-id. This method allows mechanisms to be developed for simulator interoperability, and
just-before-run model replacements.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The component platform must be able to locate the compo-
nent code implementing the given UMI-CB type umi-cb-type. The Create UMI service
request that created the given UMI with id umi-id, which was not necessarily invoked by the
CUI instance invoking this service request, must have successfully completed its execution prior to
this service request.

POSTCONDITION

The customized behavior of the UMI with given id umi-id is deleted. A new CB of given
type umi-cb-type is created and associated with the base of the UMI with given id umi-id.
The newly created UMI-CB receives UMI-Base Created callback before this service request
reports completion. The links previously set up for the UMI with given id umi-id are kept intact.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service reports an exception

e if the UMI-id umi-id is no longer valid, for example if the UMI-id have been invalidated
by deletion of the UMI,

* if the customized behavior code cannot be located by the component platform from the given

UMI-CB type.
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Cui-Base-Ambassador
Send Message to CUI

SYNOPSIS

Service name: Send Message to CUI
Parameters(in): Id of the CUI to send the message to (target-id), the message msg to send.
Parameters(out): None.

Exceptions: CUI with id target-id does not exist.

DESCRIPTION

Send a message to another CUI, without having a link set up. This method is provided in order
to prevent temporary or infrequently used links being set up between CUIs in a system. Since CUIs
are capable of using CUI-ids, they can use such ids to exchange messages using this method.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The instance with id target-id must exist prior to this
service request. The message type of message msg should have previously been registered by the
CUI issuing this service request, by a Register Message Type service request.

POSTCONDITION

The message is accepted for delivery to the instance with id target-id, and it will arrive
eventually, with a Receive Message from CUI callback. The message msg is going to
arrive at the other end of the link before any messages subject to subsequent calls to this service
request with the same instance id target-id. The instance making this service request has no
control over the message msg once this call returns. This would mean that freeing the resources
allocated to the message, if necessary, is the responsibility of the receiver.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

* if the instance id target-id is no longer valid, for example if the instance id has been
invalidated by deletion of the instance.
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Cui-Base-Ambassador
Send Message to Link

SYNOPSIS
Service name: Send Message to Link

Parameters(in): A link id outlink that describes the link to send the message out to, the message
msg to send

Parameters(out): None.

Exceptions: Link does not exist, message type mismatch.

DESCRIPTION

Send a message to an outlink. The message is received by the instance at the ending side of the
link, with the inlink-id that was set when the link was set up.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The link id outlink should have been used in a previous
successful Link service request along with the id of the CUI making this service call as the origi-
nating instance, as the link id that describes the link at the originating instance side. The message
msg should be of message type given in the same Link service call just mentioned. The message
type of message msg should have previously been registered by the CUI issuing this service request,
by aRegister Message Type service request.

POSTCONDITION

The message is accepted for delivery to the other end of the link, and it will arrive eventually,
with a Receive Message or Receive Message from Link callbacks at the instance
whose id was used to describe the ending instance in the Link service call that set up the link.
The message msg is going to arrive at the other end of the link before any messages subject to
subsequent calls to this service request in this CUI with the same link id out1link. The instance
making this service request has no control over the message msg once this call returns. This would
mean that freeing the resources allocated to the message, if necessary, is the responsibility of the
receiver.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

¢ if the link id out1link and instance id of the instance issuing this service call haven’t previ-
ously been used in a successful Link service request as the originating instance id (from-id
parameter in Link), and link id that describes the link at the originating side (outlink
parameter in Link).
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* if the message type of the message msg is not of type registered when the link was created
with a Link service request.
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Cui-Base-Ambassador

Unlink

SYNOPSIS

Service name: Unlink

Parameters(in): The id of the instance the link originates from (from-id), the link id to describe
the link at the originating instance (outlink-id), the id of the instance the link ends in
(to-1id), and the link id to describe the link at the ending instance (inlink-id)

Parameters(out): None.

Exceptions: Link does not exist.

DESCRIPTION

This method deletes a link between two instances.

While both the pair <from-id, outlink-id> and the pair <to-id, inlink-id>
uniquely identify the link, this method requires both pairs to be provided. The reason is to catch
race conditions or information inconsistencies among CUIs in a system, where the link is already
deleted and replaced by another link. The message type of the link is ignored, since it is considered
to be unlikely that a link would be replaced by a new link that differs only in its message type.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
CUI-Base Created callback. The instances with ids from-id and to-id must exist prior
to this service request. The instance ids from-id and to-id, and the link ids outlink-id
and inlink-id should have previously been associated with each other through a Link service
request that succeeded.

POSTCONDITION

The link described by the 4-tuple (from-id, outlink, to-id, inlink) is deleted.
Immediately after this service returns to the caller, a Send Message to Link or Send
Message service request by the instance with id from-id would fail with an exception. An-
other link might already been set up by other instances (though it probably would be unlikely) that
involve the pair (to-id, inlink), before this service request returns control to its caller.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

o if the link described by the 4-tuple (from-id, outlink, to-id, inlink) does not
exist, probably because cither the instance with id from-id or to-1id, or the link itself is
previously deleted.
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Umi-Base-Ambassador

Register Message Type

SYNOPSIS

Service name: Register Message Type
Parameters(in): Message type descriptor msg-type.
Parameters(out): Message type identifier for given message type descriptor msg-type-id

Exceptions: Message type described by msg-type is not known.

DESCRIPTION

Register a message type that will be used by the UMI requesting this service, and return to it a
message type id object msg-type-id. This method must be called for each message type that the
UMI will be using. Such registrations might be used by some component platform implementations
in order to load the implementations of the message types.

Message type id that is received by the UMI, can be used for checking the type of messages
received from the links. Such checks might be omitted by some component platform implementa-
tions for performance reasons, especially for the case of links that do not cross EM or EU bound-
aries.

PRECONDITION

The CUI making this service call must have received, but not necessarily completed, the
UMI-Base Created callback. The component platform should be able to locate information
about the message type described by msg-type.

POSTCONDITION

The message type information described by the message type descriptor msg-type is located
and made ready by the component platform, for the instance making this service request to be able
create and use messages of this type. A message type identifier msg-type-id is returned to be
used by the instance for subsequent use, such as testing types of messages received.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

* if the component platform is unable to locate information about the message type description
of which is given via parameter msg-type.
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Umi-Base-Ambassador

Send Message

SYNOPSIS
Service name: Send Message

Parameters(in): A link id outlink that describes the link to send the message out to, the message
msg to send.

Parameters(out): None.

Exceptions: Link does not exist, message type mismatch.

DESCRIPTION

Send a message to an outlink. The message is received by the instance at the ending side of the
link, with the inlink-id that was set when the link was set up.

PRECONDITION

The UMI making this service call must have received, but not necessarily completed, the
UMI-Base Created callback. The link id outlink should have been used by a CUI in
a previous successful Link service request along with the id of the UMI making this service call
as the originating instance, as the link id that describes the link at the originating instance side.
The message msg should be of message type given in the same Link service call just mentioned.
The message type of message msg should have previously been registered by the UMI issuing this
service request, by a Register Message Type service request.

POSTCONDITION

The message is accepted for delivery to the other end of the link, and it will arrive eventually,
with a Receive Message or Receive Message from Link callbacks at the instance
whose id was used to describe the ending instance in the Link service call that set up the link.
The message msg is going to arrive at the other end of the link before any messages subject to
subsequent calls to this service request in this UMI with the same link id outlink. The instance
making this service request has no control over the message msg once this call returns. This would
mean that freeing the resources allocated to the message, if necessary, is the responsibility of the
receiver.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this service only reports an exception

¢ if the link id out1link and instance id of the instance issuing this service call haven’t previ-
ously been used by a CUI in a successful Link service request as the originating instance id
(from-id parameter in Link), and link id that describes the link at the originating side
(outlink parameter in Link).
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* if the message type of the message msg is not of type registered when the link was created
with a Link service request.
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Cui-CB-Ambassador
CUI-Base Created

SYNOPSIS

Service name: CUI-Base Created
Parameters(in): CUI-Base ambassador cui-base-amb
Parameters(out): None.

Exceptions: None.

DESCRIPTION

Callback indicating that this CUI-CB is now associated with a CUI-Base.

This method is called by the component platform in order to inform the CUI customized
behavior (CB) object about the CUI-Base object it is associated with.

This method is a good place to put the message registration calls.

PRECONDITION

The CUI-Base ambassador assigned to the customized behavior part of the instance is ready to
accept service requests.

POSTCONDITION

The customized behavior part of the CUI know how to reach the CUI-Base assigned to it, using
the CUI-base ambassador cui-base-amb.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this callback should not return an exception.
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Cui-CB-Ambassador
Receive Message From CUI

SYNOPSIS

Service name: Receive Message From CUI

Parameters(in): The CUI id of the CUI that sent the message (sender-id), the message that
is received (msg)

Parameters(out): None.

Exceptions: None.

DESCRIPTION

Process a received message, which was sent using a CUI-id.

This method is called by the component platform in order to let the CUI customized behavior
(CB) object to process a received message, which was sent using a CUI-id (not over a link). This
CUI-CB processes the message, and returns from this method in order to give control back to the
component platform, for other component instances in the same EU to receive messages they have
received (if any).

PRECONDITION

The instance that will receive this callback should have registered the type of the message msg
via issuing a Register Message Type service request. This also implies that it should at
least must have completed its CUT-Base Created callback.

POSTCONDITION

Control of any resources related to the message msg is transferred to the customized behavior
part of the instance receiving this callback.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this callback should not return an exception.
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Cui-CB-Ambassador

Receive Message From Inlink

SYNOPSIS

Service name: Receive Message From Inlink

Parameters(in): The link id of the incoming link the message was received from (inlink), the
message that is received (msg)

Parameters(out): None.

Exceptions: None.

DESCRIPTION

Process a received message.

This method is called by the component platform in order to let the CUI customized behav-
ior (CB) object to process a received message. This CUI-CB processes the message, and returns
from this method in order to give control back to the component platform, for other component
instances in the same EU to receive messages they have received (if any).

PRECONDITION

The instance that will receive this callback should have registered the type of the message msg
via issuing a Register Message Type service request. This also implies that it should at
least must have completed its CUI-Base Created callback. The CUI id of this receiving
instance should have been used in a previous call to a Link service request call, along with the link
id inlink as the describing the receiving end of a link.

POSTCONDITION

Control of any resources related to the message msg is transferred to the customized behavior
part of the instance receiving this callback.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this callback should not return an exception.
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Umi-CB-Ambassador

Receive Message

SYNOPSIS

Service name: Receive Message

Parameters(in): The link id of the incoming link the message was received from (inlink), the
message that is received (msg)

Parameters(out): None.

Exceptions: None.

DESCRIPTION

Process a received message.

This method is called by the component platform in order to let the UMI customized behav-
ior (CB) object to process a received message. This UMI-CB processes the message, and returns
from this method in order to give control back to the component platform, for other component
instances in the same EU to receive messages they have received (if any).

PRECONDITION

The instance that will receive this callback should have registered the type of the message msg
via issuing a Register Message Type service request. This also implies that it should at
least must have completed its UMI-Base Created callback. The UMI id of this receiving
instance should have been used in a previous call to a Link service request call, along with the link
id inlink as the describing the receiving end of a link.

POSTCONDITION

Control of any resources related to the message msg is transferred to the customized behavior
part of the instance receiving this callback.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this callback should not return an exception.
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Umi-CB-Ambassador
UMI-Base Created

SYNOPSIS

Service name: UMI-Base Created
Parameters(in): UMI-Base ambassador umi-base-amb
Parameters(out): None.

Exceptions: None.

DESCRIPTION

Callback indicating that this UMI-CB is now associated with a UMI-Base.

This method is called by the component platform in order to inform the UMI customized
behavior (CB) object about the UMI-Base object it is associated with.

This method is a good place to put the message registration calls.

PRECONDITION

The UMI-Base ambassador assigned to the customized behavior part of the instance is ready to
accept service requests.

POSTCONDITION

The customized behavior part of the UMI know how to reach the UMI-Base assigned to it,
using the UMI-base ambassador umi-base-amb.

EXCEPTIONS

Aside from any unexpected exceptions to be determined by the component platform imple-
mentation, this callback should not return an exception.
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Appendix E

C++ Application Programming Interface for
MICA
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CUI Base Ambassador

class CuiBaseAmbassador {
public:
virtual Exception=x
mfSendMessageToLink (const LinkId &outlink,
Message* msg) throw() = 0;
virtual Exception=x
mfSendMessageToCui(const Cuild xtarget,
Message* msg) throw() = 0;
virtual Exceptionx mfCreateUmi(Umild*x idOfNewUmi,
const charx umicbtype,
const Euldx where = 0)
throw () = 0;
virtual Exception* mfCreateCui(Cuild*x idOfNewCui,
const charx cuicbtype,

const Euldx where = 0)
throw () = 0;
virtual Exception* mfDeleteUmi(Umild* uid) throw() = 0;
virtual Exceptionx mfDeleteCui(Cuild* cid) throw() = 0;
virtual Exception* mfLink(const Instanceld xfrom,
const LinkId &outlink ,
const Instanceld x*to,
const LinkId &inlink ,
const MessageTypex mt)
throw () = 0;
virtual Exception* mfUnlink(const Instanceld xfrom,
const LinkId &outlink,
const Instanceld xto,
const Linkld &inlink)
throw () = 0;
virtual Exceptionx mfGetMyld(const Cuild*x idOfThisCui)
const throw() = 0;

virtual Exception* mfCreateEm (Emld+x idOfCreatedEm ,
const charx descriptor)
throw () = 0;
virtual Exception* mfCreateEu(Euld*x idOfCreatedEu ,
const EmId* emid = 0)
throw () = 0;
virtual Exception* mfDeleteEm (EmId*« emid) throw() = 0;
virtual Exceptionx mfDeleteEu(Euld* euid) throw() = 0;
virtual Exceptionx mfGetEmList(unsigned intx numOfEms,
EmlId * * * emList) const
throw () = 0;
virtual Exception=x
mfRegisterMessageType (const MessageType*x mt,
const charx messageType)
throw () = 0;
virtual -CuiBaseAmbassador() throw ();
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Vs /1 end of class CuiBaseAmbassador
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CUI CB Ambassador

class CuiCBAmbassador {
public:
virtual void mfCuiBaseCreated (CuiBaseAmbassador* cba)
throw () = 0;
virtual void mfReceiveMessage (const LinkId &inlink ,
Message * msg)
throw () = 0;
virtual void mfReceiveMessage (Cuild =+from,
Message x msg)
throw () = 0;
virtual -CuiCBAmbassador () throw();
Vs /) end of class CuiCBAmbassador
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EM Identifier

class Emld {

public:
virtual ~EmId() throw();
virtual bool operator ==(const Emld &rhs)
const throw() = 0;
virtual Exception* mfClone (EmId*+ newld)
const throw() = 0;
virtual Exception* mfGetEmDescriptor (charxx desc)
const throw() = 0;
virtual Exceptionx mfSerialize (charxx data,
unsigned intx size)
const throw() = 0;
virtual Exceptionx mfSerialize (charx data)
const throw() = 0;
static void msfSerializationSize (unsigned intx size)
throw ();
static void msfDeserializeld (EmId+«x id, const charx data)
throw ();
protected:
private:
Vs /1 end of class Emld
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EU Identifier

class Euld
public:

virtual
virtual

const
virtual

const
virtual

const
virtual
const
static v
throw (
static v
throw (
protected
private:

Vs /] end

{

~Euld () throw();

bool operator ==(const Euld &rhs)

throw() = 0;

Exception* mfClone (Euld** newld)

throw () = 0;

Exception* mfSerialize (charxx data,
unsigned intx size)

throw () = 0;

Exceptionx mfSerialize (charx data)

throw () = 0;

oid msfSerializationSize (unsigned intx size)

)s

oid msfDeserializeld (Euld** id, const charx data)
)s

of class Euld
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Exception

class Exception {
public:
enum ExceptionType {
EXC_LINK_ALREADY_IN_USE,
EXC_LINK_NOT_FOUND,
EXC_EM_DESCRIPTION_PROBLEM,
EXC_SERVICE_REQ_FAIL,
EXC_ID_NO_LONGER_VALID };

Exception (const ExceptionType& type) throw();
Exception (const ExceptionType& type, const charx msg)
throw ();
Exception (const Exception& e) throw();
virtual -Exception () throw();
virtual void mfGetMsg(char+x msg) const throw();
virtual void mfGetType(ExceptionTypex type)
const throw ();
protected:
private:
const ExceptionType mType;
charx mMsg;
Vs /1 end of class Exception
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Instance Identifier

class Cuild : public Instanceld {

public:

virtual ~Cuild () throw ();

virtual bool operator ==(const Cuild &rhs)
const throw() = 0;

virtual Exception* mfClone(Cuild*+ newld)
const throw() = 0;

virtual Exceptionx mfSerialize (charxx data,
unsigned intx size)

const throw() = 0;

virtual Exceptionx mfSerialize (charx data)
const throw() = 0;

static void msfSerializationSize (unsigned intx size)
throw ();

static void msfDeserializeld (Cuild*x id,

const charx data)

throw ();

protected:

private:

}s // end of class Cuild
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Link Identifier

class LinkId {

public:

LinkId (const unsigned int &id) throw();
LinkId (const LinkId &lid) throw();

operator unsigned int () const throw();

LinkId& operator = (const Linkld &rval) throw();
bool operator < (const LinkId &rval) const throw();
protected:

private:

Vs // end of class Linkld
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Message

class Message {
public:
virtual -Message () throw();
virtual void mfGetMessageType(const MessageTypexx type)

throw () = 0;
virtual void mfSerialize (charxx data, unsigned intx size)
throw () = 0;

virtual void mfDeserialize (const charx data,
const unsigned int size)
throw () = 0;
protected :
private:
}s /) end of class Message
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Message Type Identifier
(Object Form)

class MessageType {
public:
virtual -~MessageType();

virtual bool operator ==(const MessageType& mt)
const throw() = 0;
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UMI Base Ambassador

class UmiBaseAmbassador {
public:
virtual -~-UmiBaseAmbassador () throw ();
virtual Exception* mfSendMessage (const LinkId &outlink ,
Message x msg)
throw () = 0;
virtual Exception=x
mfRegisterMessageType (const MessageTypex+ mt,
const charx messageType)
throw () = 0;
protected:
private:

}s // end of class UmiBaseAmbassador
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UMI CB Ambassador

class UmiCBAmbassador {
public:
virtual ~-UmiCBAmbassador () throw();
virtual void mfUmiBaseCreated(UmiBaseAmbassador xuba)
throw () = 0;
virtual void mfReceiveMessage (const LinkId &inlink,
Message  msg)
throw () = 0;
protected:

private:
Vs /) end of class UmiCBAmbassador
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UMI Identifier

class Umild : public Instanceld {

public:

virtual ~-Umild() throw ();

virtual bool operator ==(const Umild &rhs)
const throw() = 0;

virtual Exception* mfClone (Umild*+ newld)
const throw() = 0;

virtual Exceptionx mfSerialize (charxx data,
unsigned intx size)

const throw() = 0;

virtual Exceptionx mfSerialize (charx data)
const throw() = 0;

static void msfSerializationSize (unsigned intx size)
throw ();

static void msfDeserializeld (Umild+x id, const charx data)
throw ();

protected:

private:

}s // end of class Umild
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Appendix F

Contracts of DINEMO Components
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TUN UM Component

Description

Instances of TUN UM components create a TUN virtual network interface, and control the
data flowing through it. This component uses a Select Hub UM component to wait for events
about the file descriptor associated with the TUN interface. On deletion of the CB part, the
destructor of this component destroys the TUN interface it created.

Message Types

Start Message (startmsg):
Upon reception of a start message, the component instance creates a new TUN interface,
and registers the file descriptor for catching read events by sending an shfdstatemsg to
the Select Hub UMI it is connected to.

IP Packet Message (ippacketmsg):
An IP packet message is created in response to a packet received from the TUN interface
through the associated file descriptor, and sent out to the component instance connected on
outlink 2. If an IP packet message is received from inlink 2, the IP packet in the message is
sent out to the TUN interface.

Select Hub State Message (shfdstatemsg):
Select hub state messages are used for registering the file descriptor with the Select Hub UMI,
for receiving events that signify more data is available on the file descriptor for reading.

Select Hub Event Message (shfdeventmsg):
Select hub event messages are sent by the Select Hub UMI, when there is more data to be
read through the file descriptor, which is the one associated with the TUN interface in the
case of a TUN UM component instance.

Connection Map — Inlinks

0 (startmsg):
Inlink 0 is the link the start message is expected to arrive from. Most probably it would be
connected to the first CUI of the simulator.

1 (shfdeventmsg):
Inlink 1 should be connected to a Select Hub UMI. Inlink 1 and outlink 1 should form a
control and event reception pair for a single file descriptor at the Select Hub UMI side.

2 (ippacketmsg):
The IP packets to be sent out to the TUN interface are expected to arrive from inlink 2.
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Connection Map — Outlinks

1 (shfdstatemsg):
Outlink 1 should be connected to a Select Hub UMI. Inlink 1 and outlink 1 should form a
control and event reception pair for a single file descriptor at the Select Hub UMI side.

2 (ippacketmsg):
The IP packets received from the TUN interface are sent as IP packet messages to whomever
is connected at the other end of outlink 2.

197



TAP UM Component

Description

Instances of TAP UM components create a TAP virtual network interface, and control the data
flowing through it. This component uses a Select Hub UM component to wait for events about
the file descriptor associated with the TAP interface. On deletion of the CB part, the destructor of
this component destroys the TAP interface it created.

Message Types

Start Message (startmsg):
Upon reception of a start message, the component instance creates a new TAP interface, and
registers the file descriptor for catching read events by sending an shfdstatemsg to the
Select Hub UMI it is connected to.

Ethernet Frame Message (ethernetframemsg):
An Ethernet frame message contains an Ethernet frame. An Ethernet frame message is created
in response to a frame received from the TAP interface through the associated file descrip-
tor, and sent out to the component instance connected on outlink 2. If an Ethernet frame
message is received from inlink 2, the Ethernet frame in the message is sent out to the TAP
interface.

Select Hub State Message (shfdstatemsg):
Select hub state messages are used for registering the file descriptor with the Select Hub UMI,
for receiving events that signify more data is available on the file descriptor for reading.

Select Hub Event Message (shfdeventmsg):
Select hub event messages are sent by the Select Hub UMI, when there is more data to be
read through the file descriptor, which is the one associated with the TAP interface in the
case of a TAP UM component instance.

Connection Map — Inlinks

0 (startmsg):
Inlink 0 is the link the start message is expected to arrive from. Most probably it would be
connected to the first CUT of the simulator.

1 (shfdeventmsg):
Inlink 1 should be connected to a Select Hub UMI. Inlink 1 and outlink 1 should form a
control and event reception pair for a single file descriptor at the Select Hub UMI side.

2 (ethernetframemsg):
The Ethernet frames to be sent out to the TAP interface are expected to arrive from inlink 2
in Ethernet frame messages.

198



Connection Map — Outlinks

1 (shfdstatemsg):
Outlink 1 should be connected to a Select Hub UMI. Inlink 1 and outlink 1 should form a
control and event reception pair for a single file descriptor at the Select Hub UMI side.

2 (ethernetframemsg):
The Ethernet frames received from the TAP interface are sent as IP packet messages to
whomever is connected at the other end of outlink 2.
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Router UM Component

Description

Instances of Router UM components simulate the routing functionality in the network layer.
In the direction of higher level protocols to lower layers, a Router UMI finds the IP address infor-
mation of the next hop and puts it together with the IP packet. In the other direction, the Router
passes the IP packet to the upper layers if the IP address is the address of the node, or sends it
downwards to be sent to its next hop.

Message Types

IP Packet Message (ippacketmsg):
IP packet messages contain the data related to a single IP packet.

IP Packet With Next Hop Message (ippktwnexthopmsg):
These messages contain an IP packet, along with the IP address of the next hop the IP packet
should be sent to.

Route Configuration Message (routeconfigmsg):
These messages contain a target IP address, along with the IP address of the next hop for
packets to be sent to that target IP address. A route configuration message is used for modi-
fying the routing table, either for adding a route or deleting it.

Connection Map — Inlinks

0:
Inlink O is reserved for configuration messages for the Router UMI.

1 (ippacketmsg):
Inlink 1 is to be connected to the upper layer protocols in the simulated node, typically a
TUN UMI. When an IP packet is received from inlink 1, the Router UMI decides the IP
address of the next hop the packet should be sent, and sends the IP packet and next hop IP
address pair to outlink 1.

2 (ippacketmsg):
Inlink 2 is to be connected to the lower layer protocols in the simulated node, typically
an ARP UMI. When an IP packet is received from inlink 2, the Router UMI first checks
whether the destination IP of the packet is the IP address of the simulated node. If the
packet is destined for the simulated node, the IP packet message is sent out on outlink 2 for
the upper layer protocols. If the destination IP is different, it is forwarded to its next hop by
producing an ippktwnexthopmsg message on outlink 1.

3 (routeconfigmsg):
Messages that request addition or deletion of routes are expected on inlink 3.
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Connection Map — Outlinks

1 (ippktwnexthopmsg):
Outlink 1 is to be connected to the lower layer protocols in the simulated node, typically an
ARP UMI. The IP packets to be sent out to the simulated network, and their next hop IP
addresses are output on this outlink.

2 (ippacketmsg):
Outlink 2 is to be connected to the upper layer protocols in the simulated node, typically
a TUN UML The IP packets that are destined to the simulated node are output on this
outlink.
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ARP UM Component

Description

Instances of ARP UM components convert the next hop IP address of an IP packet being sent
to the network by their simulated node, generate an Ethernet frame destined to the MAC address
associated with the next hop IP address, and sends the Ethernet frame to the lower layers. They
also generate ARP queries, and reply incoming queries from the simulated network.

Message Types

IP Packet Message (ippacketmsg):
IP packet messages contain the data related to a single IP packet.

IP Packet With Next Hop Message (ippktwnexthopmsg):
These messages contain an IP packet, along with the IP address of the next hop the IP packet
should be sent to.

Ethernet Frame Message (ethernetframemsg):
An Ethernet frame message contains an Ethernet frame.

Connection Map — Inlinks

0:
Inlink 0 is reserved for configuration messages for the ARP UML

1 (ippktwnexthopmsg):

Inlink 1 is to be connected to the upper layer protocols in the simulated node, typically a
Router UMI. When an IP packet along with the IP address of its next hop is received in an
ippktwnexthopmsg message, the ARP UMI attempts to find the MAC address of the
next hop IP address. If the address is found, the IP packet is put in an Ethernet frame as
payload, and the Ethernet frame is sent to the simulated network with the next hops MAC
address as its destination. If the MAC address of the next hop is not known to the ARP
UMY, it drops the packet and takes necessary steps for finding the MAC address of the next
hop from its IP.

2 (ethernetframemsg):
Inlink 2 is to be connected to the lower layer protocols in the simulated node, typically a
DLL UML If the payload of the Ethernet frame is not related to ARP, then it is passed to the

upper layers as an IP packet, by outputting to the outlink 2.
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Connection Map — Outlinks

1 (ethernetframemsg):
Outlink 1 is to be connected to the lower layer protocols in the simulated node, typically a
DLL UMI. Any Ethernet frames to be sent out to the simulated network are output on this
outlink.

2 (ippacketmsg):
Outlink 2 is to be connected to the upper layer protocols in the simulated node, typically a
Router UMI. The IP packets that are destined to the simulated node, and that are not related
to ARP, are output on this outlink.
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DLL UM Component

Description

Instances of DLL UM components convert the Ethernet frame they receive from upper layers
into a series of bits to be passed to the physical layer simulator. Upon reception, they check if the
destination MAC address is the MAC address of their simulated node or the broadcast address, and
pass or block the frame accordingly.

Message Types

Ethernet Frame Message (ethernetframemsg):
An Ethernet frame message contains an Ethernet frame.

Physical Signal Message (physignalmsg):
A physical signal message contains a series of bits, which are meant to be the output of the
data link layer to the physical layer.

Connection Map — Inlinks

0:
Inlink 0 is reserved for configuration messages for the DLL UMI.

1 (ethernetframemsg):
Inlink 1 is to be connected to the upper layer protocols in the simulated node, typically an
ARP UMI. When an ethernetframemsg is received, the corresponding physical signal
is output to outlink 1.

2 (physignalmsg):
Inlink 2 is to be connected to the physical layer simulation. When a physignalmsg, an
Ethernet frame is constructed from the signal received, the MAC address is checked to see
if it is the MAC address of the simulated node the DLL UMI is in, or if it is the broadcast
MAC address, then the Ethernet frame is passed on to upper layers by outputting on outlink
2.

Connection Map — Outlinks

1 (physignalmsg):
Outlink 1 is to be connected to the physical layer simulator. The bits output to the physical
layer are sent out to this link.

2 (ethernetframemsg):
Outlink 2 is to be connected to the upper layer protocols in the simulated node, typically an
ARP UMI. The Ethernet frames received from the physical layer with destination address of
the simulated node the DLL UMI is in, or that are broadcasted, are sent out to this link.
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Physical Simulator
UM Component

Description

Instances of Physical Simulator UM components simulate the physical layer in the network.
They distribute the transmitted signals, be it on a wire or over wireless, to the receivers that receive

the signals.

Message Types

Physical Signal Message (physignalmsg):
A physical signal message contains a series of bits transmitted by a transmitter.

Connection Map — Inlinks

0:

Inlink 0 is reserved for configuration messages for the physical simulator UML

]t > 0 (physignalmsg):
Each inlink ¢ is connected to a transmitter that produces messages of type physignalmsg.
Typically this inlink is connected to a DLL UMI. In the case of a transceiver, inlink ¢ and
outlink 7 is used as a pair that is connected to the transmit and receive links of the transceiver.

Connection Map — Outlinks

i|i > 0 (physignalmsg):
Each outlink ¢ is connected to a receiver that receives messages of type physignalmsg.
Typically this outlink is connected to a DLL UMI. In the case of a transceiver, inlink ¢ and
outlink  is used as a pair that is connected to the transmit and receive links of the transceiver.
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Select Hub UM Component

Description

Instances of Select Hub UM components serve the other component instances who wish to
wait for events about file descriptors. They may or may not work in a blocking manner, depending
on the timeout value which indicates the maximum time they might block waiting for events.

Upon checking the file descriptors for any events, a Select Hub UMI sends a message to an
outlink which is supposed to be connected to one of its inlinks. The reception of this self message
causes a new check on the file descriptors. This effectively implements a continuous loop, while
at the same time allows the component platform to activate other UMIs for them to process their
messages.

Instantiation Constraints

A Select Hub UMI would typically be a singleton in its EU. Alternative designs are not impos-
sible, but hard to manage.

Checking events in file descriptors when the self message is received, might result in, depending
on the activation policy of the EU controller, a direct relationship between the number of messages
waiting in the reception queues of the instances and the interval between two checks on the file
descriptors.

Message Types

Select Hub Control Message (selecthubcontrolmsg):
Select hub control message tells the Select Hub UMI to start or stop watching for events on
the file descriptors, and the timeout value for determining at most how much time can be
spent blocked waiting for events. They are also used by a Select Hub UMI to communicate
that it has stopped, possibly due to an error.

Select Hub Self Message (selecthubselfmsg):
The self message indicates the Select Hub UMI that it is time to check the file descriptors for
events again.

Select Hub File Descriptor State Message (shfdstatemsg):
A message of this type contains the request to start or stop watching for a file descriptor for
events that signify that data is available for reading, that there is room is available for writing,
or that an exception have happened.

Select Hub File Descriptor Event Message (shfdeventmsg):
A message of this type informs that one or more events that have been waited for in a file
descriptor being watched, due to a previously received shfdstatemsg, have happened. It
includes the type of the events, as well as the file descriptor.
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Connection Map — Inlinks

0 (selecthubcontrolmsg):
Inlink 0 is connected to the instance who will start, stop, or configure the Select Hub UMI.
This is typically the first CUL

1 (selecthubselfmsg):
Inlink 1 is connected to outlink 1 of the same Select Hub UMI. This is used for creating a
loop that does not block processing in the whole EU.

i|i > 1 (shfdstatemsg):
Each inlink ¢ is connected to a UMI that wants to watch for events in one or more file
descriptors. When an event happens in a file descriptor which have been watched due to an
shfdstatemsg received from inlink ¢, an shfdeventmsg is produced on outlink 3.

Connection Map — Outlinks

0 (selecthubcontrolmsg):
Outlink 0 is connected to the instance who would want to be informed if Select Hub UMI
stops as a result of an error.

1 (selecthubselfmsg):
Outlink 1 is connected to inlink 1 of the same Select Hub UMI. This is used for creating a
loop that does not block processing in the whole EU.

i|i > 1 (shfdeventmsg):
Each outlink ¢ is connected to a UMI that wants to receive events being watched for on some
file descriptors. When an event happens in a file descriptor which have been watched due to
an shfdstatemsg received from inlink 4, an shfdeventmsg is produced on outlink
i.
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50, 67, 73, 93, 107
SME 10, 11, 35, 36, 41, 42, 102, 103
SPMD, 149, 151
SSE, 28
stakeholder, 8
surrogate, 2, 10-12, 30, 136
SUT, 2, 7, 10-14, 26, 30, 3945, 135-137
stand in for the —, see SIFSUT
SWANS, 28

system under test, see SUT

TAPD 4, 31, 44, 87-93, 103, 104, 110, 115, 138

TCL, 49, 89

TeD, 33-35, 101-103

testbed, 2, 3, 9, 11-13, 30, 108, 113, 135, 136
reflexivity property, 11, 135

time, 14, 34, 43, 69, 135, 137
virtual —, 34, 42, 69, 110, 137
wall-clock —, 69

TinyDB, 138

TinyOS, 138

TOSSIM, 139

transparency, 46

TUN, 4, 31, 44, 87, 92, 93, 103, 104, 115, 138

UCLA HNT, 137

UM, 57, 64, 69, 83, 90-93, 110
UM]I, 57, 58, 60-65, 67, 69-71, 81, 91-93, 100
UML, see User Mode Linux
UMLSim, 139

Unit Model, see UM

Unit Model Instance, see UMI
Universal Network Objects, see UNO
UNO, 15, 95, 97, 99, 100, 150
UNOIDL, 150

User Mode Linux, 138

vBET, 138
version, 23, 108, 146, 150
virtual, 136
— mote, 138
— node, 87, 88, 91, 104, 138
— multiplexing, 137
— time, see time
Visual Basic, 148

W-NINE, 139
WarpKit, 28



WIP-Sim, 28

x-Sim, 28

XML, 74, 75, 109

XPCOM, 15, 95, 97, 98, 100, 150
XPIDL, 150
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