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1 A statistical indicator for dynamic stability known as the Y indicator is used to gauge the stability and hence detect ap-
12 proaching tipping points of simulation data from a reduced 5-box model of the North-Atlantic Meridional Overturning
13 Circulation (AMOC) exposed to a time dependent hosing function. The hosing function simulates the influx of fresh
14 water due to the melting of the Greenland ice sheet and increased precipitation in the North Atlantic. The Y indicator is
15 designed to detect changes in the memory properties of the dynamics, and is based on fitting ARMA (auto-regressive
16 moving-average) models in a sliding window approach to time series data. An increase in memory properties is inter-
17 preted as a sign of dynamical instability. The performance of the indicator is tested on time series subject to different
18 types of tipping, namely bifurcation-induced, noise-induced and rate-induced tipping. The numerical analysis show
10 that the indicator indeed responds to the different types of induced instabilities. Finally, the indicator is applied to two
20 AMOC time series from a full complexity Earth systems model (CESM2). Compared with the doubling CO, scenario,
21 the quadrupling CO; scenario results in stronger dynamical instability of the AMOC during its weakening phase.
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A statistical indicator for dynamic stability is applied to sz
simulation data from an ocean circulation model. The in- s
dicator assesses the stability of the time series data and 4
gives indication of approaching tipping points. Three dif- so
ferent types of tipping, defined by their causing mecha- s:
nism, are explored. In addition, the indicator’s reactions:
to the application of colored, as opposed to white, noise is s
assessed. Finally, the indicator is compared to other statis- sa
tical early warning indicators. 55
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I. INTRODUCTION 59

60

Tipping points, or critical transitions, are sudden, drastic e
changes in a system resulting from initial small perturbations. sz
The study of tipping points is of particular interest to climate 63
scientists and ecologists, as several theoretical studies high- es
light such tipping for an assortment of climatic and ecological es
systems, and observations also indicate that abrupt changes e
are, indeed, common in nature!. 67
Ashwin et al.? classified tipping points according to the es
causing mechanism, yielding three classes of tipping points. s
Bifurcation-induced tipping, or B-tipping, occurs when a7e
steady change in a parameter past a threshold induces a7
sudden qualitative change in the system’s behaviour. Noise- 72
induced tipping, or N-tipping, occurs when short-timescale 73
internal variability causes the system to transition between 74

different co-existing attracting states. Finally, rate-induced 7s
76
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tipping, or R-tipping, occurs when the system fails to track
a continuously changing attractor and hence abruptly leaves
the attractor.

Of these three, rate-induced tipping is certainly the least stud-
ied, however as demonstrated by Scheffer er al. 3 Wieczorek
et al.* and more recently O’Keeffe and Wieczorek?, it is
an important tipping mechanism that cannot be explained
through classical bifurcation theory. Indeed, when the system
is unable to track a continuously available quasi-stable state
due to the system parameters changing too quickly, it might
shift to another available equilibrium state without crossing a
bifurcation boundary. There are a few methods available for
estimating what exactly "too quickly" means, see Wieczorek
and Perrymann6, Ashwin, Perrymann, and Wieczorek 7,
Vanselow, Wieczorek, and Feudel® and O’Keeffe and Wiec-
zorek>, but they depend strongly on the time-dependent
parameter function; in particular its asymptotic properties.
Finding generalizable methods for determining the rate of the
parameter drift that induces tipping, will be of great interest
going forward. Another issue of great practical importance is
the question of how to obtain early warnings for such tipping
points, in particular if classical methods for stability analysis
also remain valid in the regime of rapid parameter changes.
Ritchie and Sieber® showed that for rate-induced tipping,
the most commonly used early-warning indicators, namely
increase in variance and increase in autocorrelation, occur
not when the equilibrium drift is fastest but with a delay.
This suggests that these indicators might not be able to detect
tipping before it has already occurred, although their analysis
does give indication that the theory behind these indicators,
the so-called "critical slowing down", may still hold for
rate-induced tipping.

In this paper, we study an indicator for dynamic stability,
from now on referred to as the Y indicator, initially proposed
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The Y indicator for Early Warning

by Faranda et al.'°. The Y indicator uses auto-regressives
moving-average or ARMA(p,q) models to estimate how closeiso
a system is to an equilibrium. It is based on the observatiomna:
that the dynamics of an observable arising from a potentiallyiaz
complex system very close to a stable equilibrium will appeatiss
like a random walk with a tendency to be attracted to s
well-defined equilibrium. When discretized, such dynamicsas
can be well represented by an ARMA(1,0) process. Wheras
approaching a transition, however, the system may experiencear
a critical slowing down and diverging memory propertiesaias
The trajectory of the observable hence experiences newaass
timescales, which can be detected even with a limited datasetiso
through an increase in the necessary memory lags of fittedis:
ARMA(p.q) models'!. The Y indicator thus defines a distancesz
from the limiting random walk-like behaviour as a way tass
assess the dynamical stability properties of an observableasa
The indicator was applied to atmospheric boundary layetss
data by Nevo et al. '? and Kaiser et al. 1> and to atmospheriase
circulation data by Faranda and Defrance '4. They successsr
fully demonstrated the indicator’s ability to both gauge thess
stability of a time series and detect tipping points. Howeverzse
the indicator requires some additional testing, in particulatnieo
concerning its performance for rate-induced tipping, whiche:
thus far has not been explored. It should be noted that severaks:
different early warning indicators based on ARMA modelsies
have been proposed. In fact, in Faranda, Dubrulle, andiea
Pons ! the authors propose the sum of the p and q orders ofies
the model, as well as the sum of the model coefficients asiee
potential indicators. The sum of the order parameters themner
gives an estimate for the memory lag of the process, whileies
the sum of the model coefficients gives the persistence of thises
memory lag. 170
To further test the indicator, we have chosen the globakz
oceanic 3-box model studied by Alkhayuon et al. '3, whichir
in turn is based upon the 5-box model of Wood et al. '®17s
The model represents a simplified Atlantic Meridionakza
Overturning Circulation (AMOC), which transports warnuzs
surface water from the tropics to North America and Europejze
resulting in a milder climate in these regions than what wouldi7z
otherwise be expected. Since the current is density drivenars
a large influx of freshwater due to the melting of land icee
or increased precipitation in the North Atlantic, would beiso
expected to result in a reduction in the AMOC flow strengthas:
The question of whether the AMOC could undergo a sudderns:
transition from a high flow strength state (the "on" state) tawss
a state with weak or no overturning (the "off" state), is stilkea
debated. The latest assessment report of the Internationakss
Panel for Climate Change (IPCC ARG6) concludes that thess
AMOC strength will very likely decline in the future, butsz
states with medium confidence that an abrupt collapse will notss
occur in the next century'”. Simple box models, like the oness
presented in this paper, show bi-stability, while more realisticoo
models like the global atmosphere-ocean general circulation

models (AOGCMs) are largely mono-stable, implying that®*
they do not exhibit the abrupt transition to an "off"-state**
so characteristic of the simpler models. However, there is®
limited evidence that the more complex models may be too”

stable (Weijer et al. '®, Hofmann and Rahmsdorf!® and Liu'®®
196

3

4

2

et al.??), in particular that they mis-represent the direction
of AMOC-induced freshwater transport across the southern
boundary of the Atlantic (Liu et al. 20 Huisman et al. 2!,
Liu, Liu, and Bradyzz, Hawkins et al. 23). Liu et al.?®
demonstrated that by introducing a flux-correction term into
the National Center for Atmospheric Research (NCAR)
Community Climate System Model version 3 (CCSM3), they
could make the formerly mono-stable system bi-stable.

In addition, it has been suggested that paleoclimate data is
consistent with abrupt changes in the surface temperature in
the North Atlantic region in the past, as might be expected
with a collapse of the AMOC. Boers>* applied a statistical
early warning indicator on Earth System Model (ESM)
outputs, and found significant early-warning signals in eight
independent AMOC indices. This was interpreted as a
sign that the AMOC is not only a bistable system, but one
approaching a critical transition.

Previously, the potential collapse of the AMOC has largely
been attributed to the crossing of a bifurcation boundary in
the bi-stable system. However, more recent analysis, see in
particular Lohman and Ditlevsen 2>, demonstrate the possi-
bility of tipping before the bifurcation boundary is reached
through the mechanism of rate-induced tipping. In addition,
Lohman and Ditlevsen> demonstrate that due to the chaotic
nature of complex systems a well-defined critical rate, i.e., the
rate of parameter change at which the system tips, cannot be
obtained, which in turn severely limits our ability to predict
the long-term behavior of the system. They conclude that due
to this added level of uncertainty, it is possible that the safe
operating space with regard to future emissions of CO, might
be smaller than previously thought. This suggests that proper
evaluation of the probability of rate-induced tipping in the
different tipping elements of the Earth System is of utmost
importance in assessing the likelihood of dramatic future
changes.

Regardless of whether the AMOC in actuality is bi-stable or
mono-stable, the reduced 5-box model of Alkhayuon et al. 15
is the perfect test case for the Y indicator as it exhibits both
bifurcation-induced and rate-induced tipping, provided a time
dependent hosing function is applied. The hosing function
represents the influx of fresh water into the ocean due to
increased precipitation and melting of land and sea ice in
the North Atlantic region. Alkhayuon ef al.'> provide an
extensive analysis of the tipping mechanisms present in the
model. Armed with such a well studied theoretical model, we
will be able to systematically study the indicator’s ability to
not only detect bifurcation-induced and noise-induced, but
also rate-induced tipping. We will additionally assess the
indicator’s ability to deal with colored noise, something that
is known to cause issues for other early warning indicators,
like the increase in variance and auto-correlation®*,

In reality, the ocean system has many more degrees of
freedom than those included in the box models, and ulti-
mately a mixture of different processes is likely to trigger
tipping, if occurring. The Coupled Model Intercomparison
Project (CMIP6), with the Community Earth System Model
(CESM2)?®, provides an alternative AMOC model with



197

198

199

200

201

210

219

220

221

222

223

236

237

238

239

240

The Y indicator for Early Warning

many more degrees of freedom. Two scenarios where theuas
atmospheric CO, concentration is abruptly increased wilkso
be considered, providing monthly outputs of geographicaks:
density differences on which the Y indicator will be appliedas:
In these model scenarios, the abrupt change in CO; isss
followed by a response of the Earth system, and after 2-3

decades, freshwater eventually circulates in the sub-polaf™
gyre?’. This response hence offers similarities with the

hosing experiments done in the box models. While the two,
scenarios are insufficient to assess the potential bistabil-
ity of the AMOC, the Y indicator will be used to assess the2 -
dynamical stability of the AMOC during its weakening phase.

Il. THE Y-INDICATOR FOR EARLY-WARNING SIGNALS -

263
264
In what follows, we will briefly outline the method used to,es
determine the stability of the time series data. Further details,qq
can be found in Faranda et al. '°, Faranda and Defrance 4
Nevo et al. 12 and Kaiser et al. 13
The method relies on an accurate representation of a coms,,,
plex dynamical system close to a metastable state by a ran-
dom walk-like behavior with a tendency to be attracted to the, |
metastable state. Changes in the system’s stability are then__
characterized as statistically significant deviations from that_
local behavior, indicating that the system currently does not__
reside close to a metastable state. Indeed, the local dynam—
ics of a continuous-time random dynamical system (i.e., a_,
stochastic differential equation) near a metastable state come __
close to the dynamics of a stochastic spring (i.e., an Ornstein—,__
Uhlenbeck process), whose discrete-time observations are
well approximated by an ARMA (1,0) process. Here, ARMA
denotes the space of autoregressive moving-average models579
with the numbers in parentheses denoting the order of the
model. A time series x(¢), t € Z, is an ARMA(p,q) process
if it is stationary and can be written as

73

81
282
P q 283
x(t)=v+Y ox—i+ Y Owi_;+w (1psa

i=1 Jj=1 285

286

with constant v, coefficients ¢;, 6; and {w,} being white noises,
with positive variance 62 (see Brockwell and Davis ?® for aress
introductory text). In addition, constraints are imposed on thexso
coefficients ¢; and 6; to ensure that the process in (1) is sta-zso
tionary and satisfies the invertibility condition. Intuitively, theso:
variables p and ¢ say something about the memory lag of thes:
process, while the prefactors ¢; and 6; relate to the persistencess
of said memory lag. One expects that the higher the values foroea
q and p, the longer the system, once perturbed from its equi-es
librium state, would need to return to equilibrium. It is thisos
intuitive notion that the statistical indicator denoted Y takesor
advantage of. Indeed, when approaching a critical transitiores
the response of the system to perturbations can become in-oee
creasingly long (referred to as a critical slow down), and thisseo
translates into diverging memory properties of the statisticakos
signal. Hence, an ARMA(p,q) model will require higher or=so=
ders to incorporate the memory effects. By fitting the modekos

(1) repeatedly to a time series data set for varying values of p
and g, one can, through application of an appropriate informa-
tion criterion, obtain the values of p and ¢ that best represent
the time series data. For this purpose, we choose the Bayesian
information criterion, BIC:

BIC = —2InL(B) +1n(t)(p+g+1) )

where B denotes the maximum likelihood estimator of § =
(v,01,...,0p,01,...,6,), which is obtained by maximising
the likelihood function L associated with the ARMA(p,q)
model (1) for a given time series; see Brockwell and Davis 28
for details. The best fitting ARMA(p,q) model is then deter-
mined as the one that minimizes the BIC. The second term in
equation (2) punishes complex models with high p and g val-
ues, and is the reason why we prefer to use the BIC over other
criteria, such as the perhaps more familiar Akaike Information
Criterion. Here, T denotes the number of discrete points in the
time series to which the ARMA model is fitted. We refer to ©
as the window length.

Finally, the stability indicator is defined as

— [BIC(p,q) —BIC(P,CI)|>

3)

Y(p,q:7)=1 —CXP( -

where p and ¢ indicate the order of what we refer to as the
theorized base model. This is the ARMA(p,q) model, charac-
terized by a specific value of ¢ = g and p = p, to which the
chosen best fit is compared. The Y-indicator takes on values
between 0 and 1, where lower values imply a higher degree
of stability. The intuition behind using the difference in BIC
values between the chosen "best" model and a base model is
that this quantity assesses just how much better the model with
the lower BIC value approximates the fitted data compared to
the other. The significance threshold for deviations in the BIC
values between an ARMA(p,q) and the base model, simply
denoted as |ABIC|, is |JABIC| > 2. The differences in BIC val-
ues can be directly related to the Bayes Factor, see Preacher
and Merkle 2%, which is another way of quantifying the likeli-
hood of one model over another.

For the data sets analysed by Faranda et al. '°, it was de-
termined that the appropriate base model is the ARMA(1,0)
model, i.e., p =1 and § = 0, which can be viewed as a
time discretized Langevin process. In later work by Nevo
et al.'> and Kaiser et al. '3 the authors continued to rely
on ARMA(1,0) as the base model. While Faranda et al. '*
used a statistical argument to justify the choice of the base
model, Nevo et al. '? and Kaiser et al. 13 argued, as already
noted above, that the dynamics near a stable state can be ap-
proximated as that of a stochastic spring, further strengthen-
ing the case for ARMA(1,0) as the general choice of base
model. However, due to the additional well-posedness con-
straints on the autoregressive and moving-average coefficients
¢; and 0; in (1), depending on the treatment of constraints by
the fitting routine one can have cases where the BIC value
of the ARMA(1,0) process is smaller than the corresponding
value for the chosen ARMA(p,q) model. In these cases the
ARMAC(1,0) process is rejected as the best fit, despite having
the lowest BIC value, due to violating the stationarity or in-
vertibility conditions required for a numerically well behaved
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fit. Thus, in this scenario it becomes unclear how to determinessa
the ’distance’ between the states. To overcome this issue wesss
have chosen to modify the Y indicator to allow for a secondss
base state, namely the ARMA(0,0) model. This model is justs-
white noise, possibly with a drift, and is guaranteed to sat-sss
isfy all the auxiliary conditions for the obvious reasons thatse
there are no coefficients available to violate them. We con-=eo
sider ARMA(0,0) as a special case of ARMA(1,0) in whiclse:
¢1 = 0. The use of the ARMA(1,0) process as a base modeks2
was partly justified by the image of a particle trapped in a po-=ses
tential well, where a restoring force keeps the particle oscil=sea
lating around the equilibrium. The justification for includingss
ARMA(0,0) as a potential base model follows a similar argu-ses
ment, except that in this case the noise amplitude is too lowser
compared to the width of the potential well to feel the restor=ses

ing force. To use both base models, we first introduce 360
370

and 372
373

ABIC (p,q) :=BIC(1,0) — BIC(p,q) (55

With this, the modified Y-Indicator for the extended basese
model class can be written as 377

ABIC ABIC

T(Paq;f):l—exp< mln{| 0(]7 g)‘ | ](p q)}>379
380

81
In addition, it must be specified that in the cases where the,,,

constrained fitting failed for the ARMA(1,0) model so that,,
ABIC, (p,q) may be negative, ABICy(p,q) is automatically,,,
chosen in practise. For obvious reasons, there cannot be a,,
case where ABICy(p,q) is itself negative.

386

387
Furthermore, following Faranda, Dubrulle, and Pons 1 We, .,

define the order, €, and persistence, %, of an ARMA(p,q)

389
process as 100

0=p+q, 7

392

P q
%:ZI@HZI%L 8y

394

where ¢; and 6; denote the autoregressive and movrng- o
average coefﬁcrents respectively. While the order relates .
to the memory lag of the process, the persistence relates t0

the persistence of said memory lag, hence the name. When L
approaching a tipping point, one would expect one out of two
things to happen: either both the persistence and the order "
increase significantly, due to the increased memory of the o
process, or the order remains constant, and the persrstence

approaches the value of the order &, indicating a loss of o
stationarity. According to Faranda, Dubrulle, and Pons ' ,the ™
latter alternative corresponds to a case in which the potentral

landscape of the system does not change considerably when

approaching the transition. 406
This observation strengthens the case for the modified 1*°7
indicator in contrast to excluding windows of the time series

where ABIC| (p, q) is negative, as these periods are indicativesos
of an instability resulting from the loss of stationarity of thesos

ARMA(1,0) process.

To apply the method to a time series data set, one first
has to ensure stationarity of the data. This can be done in
two ways, depending on the nature of the time series. In
some cases, it is sufficient to split the time series into small
enough intervals, so that within each interval the time series
is approximately stationary. To check for stationarity one
runs a Kwiatkowski—Phillips—Schmidt—Shin (KPSS) tests on
the intervals. This way, one also obtains an upper bound on
the length of the intervals; see Kaiser et al. 13 The other
option is to not assume stationarity from the outset, and
instead allow for application of a differencing routine to the
separate intervals, achieving stationarity that way. In that
case, a KPSS test is run on each interval, and if the interval
is found to not be stationary, differencing is applied. This
process is then repeated until stationarity is achieved. The
KPSS test is to be preferred over the unit root test due to the
danger of over-differencing (Hyndman and Khandakar3°).
As we wish to study rate induced tipping phenomena, which
yields highly non-stationary time series even for very small
interval lengths, the latter method is to be preferred. By this
choice we go from an ARMA to an ARIMA model, in which
the I stands for "integrated" in reference to the differencing
routine used to ensure the stationarity of the time series.
Provided one can select sufficiently long time series intervals
where the process is approximately stationary, one can fit
ARMA(p,q) models to available observations during these
intervals, and through the Y indicator obtain an estimate for
how close any given interval is to an equilibrium state. To
determine the best fit, we use the auto.arima function found
in the FORECAST R package, setting BIC as the information
criterion used for model selection. Since we will not assume
stationarity of the time series, auto.arima first determines the
correct differencing order before continuing with the fitting
procedure; the details of said procedure can be found in
Hyndman and Khandakar3°.

It is clear that the method is strongly dependent upon the size
of the intervals, which we will refer to as the window length,
7. This is not only due to the inclusion of the 1/7 factor in
the exponential, but also due to the inherent 7-dependence of
BIC(p,q) and BIC(1,0). In fact, the rationale for including
the 1/7 factor in the definition of Y is to attempt to remove
or reduce this dependence. From equation (2) one might
conclude that the correct scaling would be 1/In(7), as
opposed to 1/7. However, we do not only want to remove the
dependence on 7, but also include the significance threshold
for ABIC, such that the T value of any point where ABIC is
below 2 is suppressed relative to other points.

I1l.  APPLICATION TO THE GLOBAL OCEANIC 3-BOX
MODEL

To determine the validity of the Y-indicator as a measure
of stability, as well as its ability to detect different types of
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FIG. 1: Sketch of the 5-box model for the Atlantic 423

Meridional Overturning Circulation (AMOC). Here, a light 424

gray coloring is used to denote the two boxes whose salinitiess

do not change, as well as all the arrows indicating terms  aze

which do not appear in the equations describing the dynamics:z;
of the 3-box model. Adapted from Alkhayuon et al. 1°.
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FIG. 2: Schematic illustration of the piece-wise linear hosing*2®
function used to simulate the influx of fresh water. Adapted
from Alkhayuon ez al. 3.
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FIG. 3: Bifurcation diagram for Sy, for the 3-box model of
the AMOC. The dashed line denotes the unstable equilibrium’ *
branch. The red diamond denotes the location of the ~ *
hopf-bifurcation.

tipping points, we start by applying the method to the global
oceanic 3-box model discussed by Alkhayuon ef al.'>. The
3-box model of Alkhayuon et al. 3 is a simplification of the
5-box model of Wood et al. !¢ in which the salinity of the
Southern Ocean (S) and the Bottom waters (B) is assumed to
be approximately constant. The model thus consists of 5 sep-
arate boxes, of which only 3 boxes, namely the North Atlantic
(N), Tropical Atlantic (T) and Indo-Pacific (IP) boxes have
varying salinities S. A schematic illustration of the model is
shown in Figure 1. See Alkhayuon et al. > or Wood et al. '
for a detailed exposition of the box model. We note that the
parameters of the box model are tuned using the full complex-
ity FAMOUS AOGCM model, with varying levels of CO;.
The parameters used in this paper are for the case 2xCO, as
compared to pre-industrial times.

We denote salinity by S;, the volume by V; and the fluxes by
F;, where i € {N,T,S,IP, B} denotes the respective boxes.
Let I" denote the AMOC flow defined by

r=»24 a(TS—TO)'i‘le(SN_SS) )

The model approximates a buoyancy-driven flow, with a trans-
port proportional to the density difference between the boxes,
assuming a linearized equation of state. The evolution equa-
tions for the salinities Sy and S are
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Vy dS
71"7;" =T(S7 — Sn) + Ky (S7 — Sy) — 100FySo (10)
Vr dS
TTCT;T =T[ySs+ (1 —9)Sip — S7] + Ks(Ss — St) + Kn (Sy — S1) — 100F7-S) (11)
forI' > 0, and
Vy dS
YNTIN = |[|(Sg — Sn) + Kn (St — Sy) — 100FySo (12)
Vr dS
YTdTT = |[|(Sy — S7) + Ks(Ss — S1) + Kn (Sy — S1) — 100F7-Sp (13)

for I' < 0, where Sp and Sy are regarded as fixed parameterszs
and Y = 3.15 x 107, which converts the time unit from sec-

onds to years. Sy is a reference salinity, and K; are coefficients7e
associated with the gyre strengths. We note that all the salinity

values are given as perturbations from a background state, see*””
Appendix A of Alkhayuon ef al. 1 for details on the transfor47
mation. Since the total salinity is assumed to be conserved?”®
the salinity of the Indo-Pacific (IP) box, S;p, can be computed®°

from Sy and S7. 481
The values of the assorted parameters can be found in Table 142
and Table 2. 483

The fluxes, Fy and Fr, are linear functions of the hosing func#*
tion H (¢) which simulates the influx of fresh water. In the case*®®
of 2xCO; the fluxes are (see Wood et al. 19) 486

Fy = 0.486 x 105+ H (1) 0.1311 x 10° 14y

488
Fr =—0.997 x 10® + H(r) 0.6961 x 10° (15pse

where all fluxes are given in units of Sverdrup (Sv). ae0

The values for the case of 1xCO, can be found in Table 5 of***
Alkhayuon et al. 1°. a02

Figure 3 shows the bifurcation diagram for Sy; for Sy
we refer to Alkhayuon et al.'> The bifurcation diagram'®*

for the flow strength I' is qualitatively similar, since alf*®

other parameters in Eq. 9 are kept constant. The diagrani'®®

clearly shows that this is a bi-stable system with two stable’”

equilibrium branches connected by an unstable branch®®®
499

The upper equilibrium branch looses stability, not at the

saddle-node bifurcation, but rather due to a Hopf-bifurcation,*
indicated by a red diamond in the diagram. Thus, part of the’*

upper equilibrium branch, denoted in black, is in fact unstable >

503

To simulate the influx of fresh water we apply a time™
dependent, piece-wise linear hosing function, H(t) (se€™

Figure 2), to equations (10)-(13). Here 808

507

Hy t<0, 508
Ho+a(t) t€][0,Ts|, 509
H(t) = { Hperr t —Trise € [0, Tper] , (165*
Hpert - B (t) r— Trise - Tpert S [01 Tfall] 9 ::
Hy t 2 Trise + Tpers + Traur 513

where o/(¢) and (¢) are linear functions ensuring continuity™*
of H(t). If we define the rise and fall rates, as o

o |Hperr_H0‘ _ |Hpert_H0|

Frise = —————— and  rpy =
Trise / Tran

516

( 1 7)517
518

[
then

(X([) = ryiset  and ﬁ(t) = rfall (t — Trise — pert) (18)
As demonstrated by Alkhayuon et al.'>, whether the sys-
tem undergoes a transition from one stable state to the other,
is dependent not only on the value of Hp,,;, but on the rise
and fall rates, 7 and 77, as well as the perturbation time
Tpers. In particular, they demonstrate that even when Hp,,, is
above the bifurcation value that destabilizes the upper equilib-
rium branch, the system may still return to this equilibrium,
provided Ty, is short enough; a process which they termed
avoided B-tipping. In addition, they showed that if 7)., is too
short, the system will not tip, but return to the initial equilib-
rium branch.

In what follows, we will apply the T indicator as described
in the previous section to time series data generated by the 3-
box model. We will separately study time series undergoing
rate-, noise- and bifurcation-induced tipping, while attempt-
ing to assess the indicator’s ability to gauge the stability of the
time series as it approaches the tipping point. Before proceed-
ing, we should clarify one point regarding noise-induced tip-
ping, and what is meant by an early warning indicator in this
context. Noise-induced tipping is inherently unpredictable,
and hence one might conclude that any attempt at predicting
such transitions is doomed to fail based on a single time se-
ries. In contrast, assuming the underlying model is known,
one could use ensembles of realizations to estimate the like-
lihood of noise-induced transitions. Examples of these sta-
tistical approaches are discussed in Thompson and Sieber3!.
Although one cannot expect to develop an early warning indi-
cator for these types of transitions, one should at the very least
be able to tell, from time series data, once such a transition has
occurred, i.e., when the unstable equilibrium branch has been
crossed and the system is approaching a different equilibrium.
The objective should then be to develop an indicator that is
able to identify this induced instability as soon as possible af-
ter the transition.

Finally, we note that, while it is possible to extend ARMA
fitting to multivalued time series data, we have chosen to not
go down that route, and instead only apply the indicator to a
single time series for the salinity values from the North At-
lantic basin, Sy. The reason for choosing Sy over St is that
within the 3-box model, the equilibrium branches of Sy are
that much further apart, making the transitions easier to see.
Such a simplification might at first glance seem rather con-
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FIG. 4: Bifurcation-induced tipping, color coded according
to the value of Y with window length, T = 350. The gray
lines denote the equilibrium branches, with the dashed line
corresponding to the unstable branch. We clearly see several
brightly colored points corresponding to a high values of T,
which should be indicative of a high degree of instability and
an approaching tipping point.
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FIG. 5: Y as a function of time for a time series of Sy
undergoing B-tipping.

trived, however we argue that, as the goal of any indicator is
to be used on real-world time series data in which the connec-
tion to other time series is largely unknown, it is reasonable
to only concentrate on one time series, despite the underlying
system being multidimensional.

A. Bifurcation-induced Tipping

To induce B-tipping in the 3-box model, we graduallysss
change H (¢) according to equation (16), with Hy = 0, Hperr =sao
0.5, Ti5e = 1000. This corresponds to an increase in the fresh-sso
water fluxes Fr and Fy, corresponding to the flux into thess:
tropical and North Atlantic boxes, by approximately 34% ands:
13%, respectively. This, in turn, corresponds to roughly a 0.1-ss3
0.2 Sv increase, in line with freshwater "hosing" experimentssa
of the North Atlantic’?. We let Tpers g0 to infinity, such thakss
H (t) never returns to its initial value. As H(t) changes, Sysse
follows the upper equilibrium branch as sketched in Figuress
3, until it reaches the hopf-bifurcation (around H = 0.4), akss
which point the upper equilibrium branch becomes unstablesse
and Sy starts approaching the lower equilibrium branch. Weseo
choose a window length of 350 points corresponding to aboute:
70 years. 562
Figure 4 shows the time series of Sy color coded according tases
the value of T, with brighter colors corresponding to highesea
values of Y and hence a greater degree of instability. Figure Ses
shows T as a function of time, with clear peaks correspondingses
to brightly colored points in Figure 4. 567
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FIG. 6: Bifurcation induced tipping of Sy (), color coded
according to the value of the best-fit ARMA model orders (a)
q and (b) p (scatter plot). The line plots additionally show the

same values for g and p as functions of time in (a) and (b),

respectively.
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FIG. 7: Plot of the persistence # (Eq. 8) as a function of
time for a time series of Sy undergoing B-tipping.

It should be noted that low amplitude white noise is also ap-
plied to facilitate ARIMA model fitting. The noise intensity is
kept small enough to avoid noise-induced tipping.

Figures 4 and 5 clearly indicate that there are several points
on the time series as it approaches the transition, which are
deemed to have a high degree of instability. We further note
that, although the result is not shown here, the high T val-
ues in Figures 4 and 5 correspond to intervals for which
ABIC, (p,q) is negative, indicating that, as discussed previ-
ously, the ARMA(1,0) model would, when only considering
BIC values, be the better fit, but it violates the auxiliary con-
ditions, indicating a loss of stationarity. Hence, at these points
ARMA(1,0) is excluded as a possible model, implying that
ARMA(0,0) is the chosen base model.

In addition, we look at the order of the best-fit ARMA model,
namely the ¢ and p values, as well as the persistence, to gain
further insight into the stability properties of the time series.
Figure 6 shows the time series of Sy color coded according to
the values of ¢ and p. When comparing with Figure 4, this
seems to indicate that the high values of Y appearing before
the transition are primarily associated with an increase in the



AIP

f//_. Publishing

573

574

575

576

577

584

585

586

587

588

590

The Y indicator for Early Warning

01 P AN
/ 0.8
00 R W W o
=
3 /
—01 f’ 0¥
rllﬂhn—ﬁbdﬁn" 02
—02{ A V v
0.0
0 250 500 750 1000 1250 1500 1750 2000
t

(a)

1.0

S 0.1
0.8 v /’ \’H\NM"W\
06 0.0

) =
>
0.4 -0.1 o
o.
A ,M W -0.2
0.0
0 250 500

750 1000 1250 1500 1750 2000
t

N

(b)

FIG. 8: (a) Noise-induced tipping, color coded according to
the value of Y. The gray lines denote the equilibria, with the
dashed line denoting the unstable equilibrium branch.
Transition from the lower to the upper equilibrium branch for
H = —0.25, T = 350. (b) Plot of Y as a function of time.
Note how the peaks correspond to the brightly colored points
in (a).

g-values. This is not unexpected, as it is primarily the change

in the properties of the noise which is expected to give ar’”
indication of an approaching transition. Figure 7 shows the’™”
persistence plotted as a function of time z. We see a clear in~°
crease in the persistence directly preceding the tipping poinf®®
around ¢ = 1000. oo
We make a final comment regarding Figure 6 and its relation®*
to our choice of ARMA(1,0) and ARMA(0,0) as base models***
In Faranda ef al. ' this choice was guided by the fact that for*®
the time series under consideration the order, i.e. p+ g, of thé
intervals was clustered around 1, and as the authors explicitly*®
excluded pure moving-average processes, they concluded thaf®®
ARMA(1,0) was the appropriate base model. However, from™”
Figure 6 we see that for the time series currently under con=*
sideration, the order is clustered around 0. This observation™®
further strengthens the case for using ARMA(0,0) as an ad~*°
ditional base model. We hypothesize that the dominance of ™
ARMA(0,0) is related to the low degree of noise in the sys***
tem, which makes the restoring force that returns the systen®**
to equilibrium less prominent, hence obscuring tendency of**

the random-walk to be attracted to a metastable state. e1s

6

8

8

616
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B. Noise-induced Tipping 10
620
To induce N-tipping, we fix the hosing parameter H ands:
apply additive white noise to all the equations equally. Thes22
noise term is added equally to (10)-(13), with the same noiseszs
amplitude in all cases. We look at transitions from the uppesza
branch to the lower branch and vice versa. In either caseszs
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FIG. 9: (a) Noise-induced tipping, color coded according to
the value of Y. The gray lines denote the equilibria, with the
dashed line denoting the unstable equilibrium branch.
Transition from the upper to the lower equilibrium branch for
H =0.24, T =200. (b) Plot of Y as a function of time. Note
how the peaks correspond to the brightly colored points in

(a).

it is convenient to choose a value for H that is close to the
bifurcation point, as the probability of transitioning is much
higher in these regions, and hence one does not need high
amplitude noise to induce transitions between the branches.
Figures 8 and 9 show two time series undergoing noise in-
duced tipping, one going from the lower to the upper branch,
while the other going the other way around. In the first case
H = —0.25, while in the second H = 0.24. The amplitude
of the additive white noise is the same in both cases. For the
window length 7, we have chosen a length of 350 and 200
points, corresponding to about 70 and 41 years, respectively.
The window length is chosen so that it is at most half as long
as the transition time, which is taken to be the time for the
system to arrive at the other equilibrium once it has crossed
the unstable branch. Of course, when dealing with simulation
data such as this, we have the advantage of knowing where
the stable and unstable branches are, which is an advantage
that anyone dealing with real-world data does not have. In
principle one could use the clustering methods proposed by
Kaiser ef al. '3 to approximate the window length, although
this method also requires that one knows how many clusters,
i.e., equilibrium states, one should look for. The clustering
method works particularly well for noise induced transitions,
as one can repeatedly induce transitions back and forth, to
gain an ensemble of transitions, yielding a higher degree of
accuracy.

In previous works, the choice of 7 has largely been guided by
a desire to ensure the stationarity of the time series intervals.
However, as we are not requiring the individual time series
segments to be stationary a priori, we are permitted to use
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FIG. 11: Noise-induced tipping of Sy (¢) for H = 0.24, es3
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much longer time series intervals. In the world of ARIMA

fitting a time series of length above 200 points would gen-°®
erally be considered a very long series, however, we should

keep in mind that the sampling frequency of our simulatedses
data is quite high; in fact, there are 5 points per time unit (i.e.s7o
year), yielding a total of 10000 points for the 2000 years ofz:
simulations. An interval consisting of 200 points correspondsszz
to around 40 years, which is not an unreasonably long timeszs
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FIG. 12: Rate-induced tipping of Sy, color coded according

to the value of Y. The moving equilibria are plotted in gray,

with the dashed line denoting the unstable branch. Compare

this figure to Figure 14a, which shows the same time series,
but color coded according to the value of g.

interval for the dynamics of the AMOC. When fitting an
ARIMA model to a time series, one wishes to avoid too long
time series to avoid including events from the past that no
longer have any relevance for the future. This, and not the
inherent inaccuracy of the fit itself, is the primary reason for
limiting the length of a time series.

Returning to Figures 8 and 9, we note that there are a
few brightly colored points indicating a high degree of insta-
bility. There are for example, in both cases, several points in
the middle of the gap between the two stable branches, indi-
cated by solid gray lines in the figure. This is consistent with
the results of Kaiser et al. 3. In addition, for the transition
from the lower to the upper branch, Figure 8, there are several
brightly colored points just after the system has reached the
upper equilibrium branch. Although it is not so clear in the
figure due to the presence of noise, any time Sy returns to
the upper equilibrium branch it initially overshoots and then
oscillates around the equilibrium value with continuously
decreasing amplitude (see Figure 13 for a clearer example
of this behavior). This is probably due to the presence of an
unstable limit cycle, and the aforementioned sub-critical hopf
bifurcation. Hence, we see it as an encouraging sign that the
indicator seems to be able to identify these points as well. We
further note that, although the result is not shown, the high
T value points in figure 8 and 9 correspond to points where
ABIC(p,q) is negative, as was the case for the B-tipping
example in the previous section.

Looking at the p and g values in Figures 10 and 11, it is clear
that high values of Y correspond to high values of g, while
the connection between p and T remains uncertain. However,
we note that the high Y values appearing around the transition
correspond to high values of both p and ¢, and consequently
also of persistence (result not shown).

C. Rate-induced Tipping

To induce R-tipping we fix H),; below the bifurcation
value, ensuring that both equilibria still exist and are stable,
and vary Tyqy. We set Ty, = 100 and T).r, = 400, while
Hperr = 0.37. This corresponds to an increase in the freshwa-
ter fluxes Fr and Fy, corresponding to the flux into the tropical
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FIG. 13: Sy as a function of time, color coded according to
the value of Y for Ty, = 280. With these parameter values,
the system does not tip, but returns to the upper equilibrium
branch after some time. Note that the system initially
overshoots the stable branch upon return. This is probably
due to the presence of the unstable limit cycle. The
equilibrium branches are plotted in gray, with the dashed line
denoting the unstable branch.
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FIG. 14: Rate-induced tipping of Sy(¢), color coded
according to the value of (a) g and (b) p. The value for g and
p are also plotted as functions of time in (a) and (b),
respectively.

689
and North Atlantic boxes, by approximately 25% and 10%, re-soo
spectively. Next, we observe that for T, = 280 the systemse:
returns to the upper equilibrium branch, while for T4 = 32042
the system transitions to the lower branch. The transitiomses
happens even though the bifurcation boundary has not beemsea
crossed. Again, we note that some additive white noise hases
been applied to allow for ARIMA fitting. 606
Figure 12 shows a time series undergoing rate-induced tip-ser
ping, with the color coding corresponding to the values of Yses
Again, we have chosen 7 = 350 points, corresponding to 7(see
years. We see several brightly colored points, indicating aoo
high degree of instability, before the system transitions. Thesero:
points occur initially as the system approaches the unstablero:
branch (between approximately ¢ = 350 and ¢ = 500). Theseros
points do not appear for the time series that does not tip, Fig-oa
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FIG. 15: Sy as a function of time, color coded according to
the value of (a) g and (b) p , for T, = 280. For these
parameter values, the system does not tip, but returns to the
initial equilibrium after some time ¢. For clarity, p and g are
also plotted as functions of time in (a) and (b), respectively. It
is instructive to compare these plots to Figure 13.
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FIG. 16: Persistence of a time series undergoing rate-induced
tipping, plotted as a function of time. The underlying series
is the time series shown in Figure 12. We see several high
persistence values, corresponding with a high value for the
order, g + p (compare with Figure 14), appearing before the
potential tipping point around ¢ = 500.

ure 13, despite the fact that within this time interval, the two
time series are virtually identical, and could therefore be an
indication of an approaching tipping point. However, again
looking at Figure 13 we see some brightly colored points, cor-
responding to large T, in the interval # = 600 to r = 750, and it
is unclear what approaching instability these points would be
indicative of, and thus might be regarded as false signals.
Looking at Figure 14, it becomes clear that the high values of
T found in Figure 12 correspond to high values of g, while a
comparison with Figure 16, gives the same indication for the
persistence. In other words, high values of Y primarily corre-
spond to high values of persistence and q.

From Figure 13, we can also see how the indicator correctly
identifies the unstable limit cycle, which we have argued
causes the overshoot when returning to the upper equilibrium
branch. Figure 15 shows the same time series as in Figure 13,
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color coded according to the values of ¢ and p. While high
values of ¢ seem to be associated with increased instability,
the high values of p primarily occur as the system returns to
the equilibrium. We would therefore suggest that high val-
ues of the autoregressive order, p, should be interpreted as an
indication that the system is following a moving equilibrium
branch. Comparing Figures 16 and 14a it becomes clear that
the points with high ¢ value around ¢ = 1000, correspond to
particularly high values of persistence, even when compared
to other points of similar order. We also note that, as in the
previous two tipping scenarios, the high Y values, or equiva-
lently high p values,

We end this section with a brief comment on the rate-induced,
tipping example presented in this section. In this example the o
system is, as it undergoes rate-induced tipping, approaching a7 o
bifurcation boundary. It would be instructive to study a case in,__
which this is not the case to ensure that the detected instabil-
ity is not merely due to the approaching bifurcation boundary,
However, as one would need to look at different model exam- . oo
ples than those presented here, this is outside the scope of the

current work.
768

769

770
IV. COMPARISON WITH OTHER EARLY WARNING 7
INDICATORS

772
As briefly alluded to in the introduction, it is well estab-

lished that bifurcation-induced tipping is generally preceded

by an increase in lag 1 autocorrelation and variance (Lentorf™®
et al.33, Dakos er al.?* , Boers?*). The intuition behind

this is that as the system approaches a bifurcation point, .
the potential well flattens out, reducing the speed at which

the system recovers from a perturbation, so called "critical

slowing down", which should manifest as an increase in thezs
variance and autocorrelation of the time series. However, therze
variance and autocorrelation might also increase for otherz-
reasons, in particular if the properties of the noise changeszzs
What happens to the autocorrelation and variance when therze
system approaches a rate-induced tipping point is thus farso
unclear, although it is conceivable that the "critical slowings:
down" hypothesis still holds for this type of tipping, seers:
Ritchie and Sieber?. Obviously, it does not hold true for timerss
series undergoing purely noise induced tipping, as there is norea
change in the potential well. However, the autocorrelatiorvss
and variance of the time series will dramatically change asse
the system crosses the unstable equilibrium branch and enterse-
a different potential well. 788
In what follows, we will compare these classical indicatorsse
to the Y indicator for rate-induced and bifurcation-induced:eo
tipping in the AMOC 3-box model. It is instructive to juste:
look at the part of the time series prior to the transition, asea
in general one wishes to be able to detect early signs of therea
transition before it happens. For the time series undergoinges
bifurcation-induced tipping (Figure 4) we chose a segmentos
consisting of the points between approximately ¢ = 200 andrer
t = 1100. For the time series undergoing rate-induced tippinges
(Figure 13), we choose a segment consisting of the points be-ee
tween ¢t = 200 and ¢t = 700. This segment is in all probabilitysoo
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FIG. 17: Autocorrelation, Variance and Y plotted as
functions of time for a time series undergoing B-tipping. The
increase in the variance as one approaches the tipping point is

clear, while the increase in autocorrelation is less clear.

too long, meaning that it also contains the transition itself, as
opposed to only points prior to the transition. However, this
is the inherent difficulty with rate induced tipping; there is
currently no way to analytically determine when the transition
happens, and one largely has to guess. Based on Figures 12
and 13, one could potentially conclude that the tipping point
is found somewhere between ¢t = 400 and r = 600, but this is
pure guess work. For this reason we have included points up
until # = 700.

Given a set of measurements Y;,Y,,---
variance is defined as

,Yy the sample

2 1

5\ 2
o = (Y;—Y) (19)

™=

i=1

while the lag k autocorrelation is given by

1 N—k N
= Z (Y —7) (20)
where Y denotes the sample mean of the series Y,Y3,---,Yy

(see for example chapter 2 of Box, Jenkins, and Reinsel 3.
Although time does not enter explicitly in the formulas, it is
assumed that the measurements are taken at regular intervals.

When computing the variance and autocorrelation it is
essential that the signal is properly detrended; otherwise any
trend will immediately obscure the relevant dynamics. As
for the Y indicator, one generally employs a rolling window
approach, with an appropriately chosen window length 7.
Lenton ef al. 33 demonstrated that detrending can be done
within each time window, as opposed to on the whole time
series at once, without significantly changing the result. We
have chosen this same approach, using linear detrending, as
opposed to quadratic or higher order detrending methods, to
remove the trend. The window length 7 was set to 350 points,
corresponding to 70 years.

Figures 17 and 18 show the autocorrelation, variance and
T plotted as functions of time. The peaks in Y preceding
the transition are clear, as is the increase in variance and
autocorrelation, at least in the case of R-tipping, provided
the tipping point is approximately at ¢+ = 450. For B-tipping,
there appears to be a clear increase in the variance preceding
the tipping point, provided the tipping point happens around
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FIG. 18: Autocorrelation, Variance and Y plotted as
functions of time for a time series undergoing R-tipping.
Assuming that the tipping point is around t=450, one can

clearly see an increase in both autocorrelation and variance
prior to the tipping point.
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FIG. 19: Time series with colored noise but no tipping
points, color coded according to the value of Y.

t = 850 (see Figure 4 for comparison). The expected increase
in autocorrelation is, however, less clear.
It is possible that the high degree of autocorrelation in the
3-box model, as observed in Figures 17 and 18 is correlated
to the frequent failure of the ARMA(1,0) model, whereby
failure we mean that the autoregressive coefficent, sometimes
referred to as the ARI coefficient, violates the stationarity
condition, and resulting in ARMA(1,0) being excluded as a
possible candidate model.
As already noted, the upper equilibrium branch does not
lose stability due to a saddle node bifurcation, but rather
loses stability due to a sub-critical Hopf bifurcation. It
is possible that classical indicators are struggling to picke:
up on this. Furthermore, the noise amplitude is kept lows2?
to avoid noise-induced tipping, which might make it dif23
ficult for the indicators to pick up on changes in the dynamics.
824
The autocorrelation and variance of a time series can in-
crease for reasons that have nothing to do with an approaching®*®
tipping point. Hence, we wish to see how the Y indicator re**®
827
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FIG. 20: Autocorrelation, Variance and Y plotted as

. . . . . . 836
functions of time for a time series with colored noise but no

. . . . . . . 837
tipping points. All three indicators show a dramatic increase,

838

falsely suggesting an upcoming tipping point.
839
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FIG. 21: Time series with colored noise and no tipping
points, corresponding to equation (21), color coded
according to the value of (a) g and (b) p.
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FIG. 22: The values of p and ¢ for the colored noise time
series, averaged with a window length of 50 points,
corresponding to 25 non-dimensional time units.

sponds to colored noise, whose variance and autocorrelation
increases with time ¢. To this end, we construct an artificial
time series of the form
dx

i 5x+&(1) 21
where & (r) is autocorrelated colored noise. &(¢) is in effect
modelled as an ARMA(1,0) process whose AR1 coefficient
increases linearly in time. In addition, the variance of this
process also increases linearly in time. This is equivalent to
the example presented in Boers 2*. Applying the Y indicator
to this time series yields the result shown in Figure 19. Figure
20 shows a comparison between the autocorrelation, variance
and value of Y for the same time series. All three indicators
show a dramatic increase, despite there being no approaching
tipping point. However, looking at the plot of the time series
when color coded according to the values of p and ¢, Figure
21, a curious pattern emerges: the increase in T is largely
associated with increased p value. Looking at Figure 22
the trend becomes even clearer: here we have computed the
rolling average of the p and ¢ values with a window length
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of 50 points corresponding to 25 non-dimensional time units.
We see that while the average value of g goes towards zero
for large t, the average value of p settles around one. The
general trend is independent of the choice of window length,
provided the window length is between 30 and 300 points.
This behavior is unlike what was observed for the 3-box
model. The high values of Y were associated with a high value
of g. We thus argue that high values of ¢ were associated
with increased instability, while high values of p were more
indicative of the system following a moving equilibrium.
Thus, one would, through the distinction between g and p
values, potentially have a way of distinguishing the effect of
colored noise from real early warning signals. However, it
is conceivable that the result for the artificial colored noise
time series is a consequence of how we have constructed the

colored noise, so further studies on this are warranted. 802
893

Finally, we note that the constructed colored noise time®*
series is a very artificial example of colored noise, as thé™®
noise amplitude increases by a probably unrealistic amount;*®
and when applied to any reasonable time series it would®®
899

obscure the dynamics altogether. This is to say that although
we can likely assume that the noise in real-world data i
autocorrelated, it will be much more subtle, and not result in’**

equally high values of Y. oo

203
204
V. APPLICATION TO SIMULATION DATA FROM CESMZ*®
906

So far, we have only applied the dynamic stability indica—:::
tor to data from a very simplified model. The actual ocean,
has many more degrees of freedom and the response could, |
be quite different. Nevertheless, it is of interest to see how,
the indicator responds when applied to such a system. To this ,
end, we employ data from the earth systems model CESM2, .
under two climate scenarios: one in which the atmospheric, ,
CO; concentration is abruptly doubled and another in which,
it is abruptly quadrupled. Both simulations were initialized,
using a pre-industrial control run (piControl) and then run for, ,
500 years. The CO, was then increased, at r = 6000 months,
The data was saved at monthly intervals and the seasonal cy-
cle was removed prior to the analysis. Such an abrupt change,
in CO; represents an extreme forcing, and contrasts with the
ramped-up hosing employed with the idealized model. How- ,,
ever, the oceanic response is not instantaneous, but requires 2- .
3 decades for freshwater to circulate in the model’s sub-polar,

924
gyre?’. We consider this more hereafter. 035

A. Abrupt 4 x CO, ::
929

The time series of a monthly-mean density difference, §p s30
and AMOC strength, Wapyoc, are shown in Figure 23 for thes:
case of abrupt 4 x CO;. The density difference, a measure dy-os:
namically linked to the AMOC strength (Madan et al.?"), isss
calculated from the difference in surface densities averaged iresa
boxes to the north and south of the North Atlantic Currentoss

The surface density is calculated using the thermodynamicss

13
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FIG. 23: CESM2 model with abrupt 4 x CO,, where the
monthly density difference (blue) is plotted together with the
maximum AMOC flow strength (red). Note that the CO, was

increased at t=6000 months.

equation of state of seawater as per UNESCO 1983 Report?®.
The AMOC strength is calculated as the monthly maxima of
meridional overturning stream function between 20°N-60°N
and below 450 m depth.

Shortly after the quadrupling of CO,, there is an abrupt tran-
sition followed by a dramatic increase in the variance. We
will apply the indicator to the density difference time series,
although one could of course apply the same analysis to the
AMOC strength.

We choose a window length of 250 data points, corresponding
to exactly 20 years of monthly data. Figure 24 shows the den-
sity difference, 8p, color coded according to the values of Y.
We only display the part of the time series close to the tran-
sition, as this is of primary interest. The point at which the
CO2 concentration is abruptly increased, at t = 6000 months,
is indicated by a dashed line.

The increase in 1 during the early part of the AMOC weak-
ening process is apparent. Note in particular the three sharp
peaks shortly after time t=6000. Figure 25 again shows the
time series, now color coded according to the values of ¢ and
p. The latter are also plotted for further clarification. From
this plot, it becomes clear that the most common fit prior to the
transition is the ARMA(1,0) process, which aligns with the
observations of Faranda et al. 1. After the weakening phase,
the value of p is generally an order higher, presumably related
to the dramatic increase in the variance. The three sharp peaks
in the plot of Y appearing around time ¢ = 6300 correspond to
high values of g. The gradual increase in Y preceding these
peaks is presumably due to the increase in the persistence (not
shown). The g component exhibits peaks prior to ¢ = 6000,
when the forcing is applied and these are reflected in small
peaks in Y. These are obviously not connected to the AMOC
weakening. Following the initial weakening phase, the value
for Y remains high, probably a result of the increase in the p
value. However, the values of Y do not go above 0.4 which
is considerably smaller than the values found for the 3-box
model. In addition, from our previous discussion on the re-
sponse of the T indicator to colored noise, it is conceivable
that the increase in Y observed from in the CESM?2 data is pri-
marily caused by changes in the noise amplitude, and not as a
consequence of inherent instability of the underlying dynam-
ics.

Furthermore we note that, although the result is not explic-
itly shown, for the CESM2 data ABIC; is always smaller than
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FIG. 24: Time series of monthly density changes for abrupt
4 x COy, color coded according to the value of Y. The
window length is 250 points, corresponding to exactly 20
years. The dashed line indicates the point when the CO2
concentration abruptly changes.
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FIG. 25: Time series of monthly density changes for abrupt ses

4 x COy, color coded according to the value of (a) g and (b) se7

p. The value for g and p are also plotted as functions of timeoees
in (a) and (b), respectively. 960

970

971

972

ABICy, and the ABIC; values are at no point negative, im-7s
plying that the autoregressive coefficient in the ARMA(1,0»7a
model always satisfy the stationarity constraints. This differszs
from what was observed in the 3-box model and is presum-eze
ably related to the difference in the observed T values. 077
However, we emphasize that it is not clear if one in actualityezs
can compare values of Y between datasets. For the autocor-ze
relation and the variance it is typically assumed that it is theso
change within the dataset that is significant, rather than the ab-s:
solute numerical values. 982
For completeness, we have included a comparison between Yoes
and two other statistical early warning indicators, namely au-ssa
tocorrelation and variance. This is shown in Figure 26. Irpss
all cases, the window length is 250 points, corresponding toes
approximately 20 years. All three indicators show a clear in-er
crease shortly after time t = 6000. oen
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FIG. 26: Autocorrelation, variance and Y plotted as functions
of time for the case of abrupt 4 x CO,.
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FIG. 27: CESM2 model with abrupt 2 x CO,, where the
monthly density difference (blue) is plotted together with the
maximum AMOC flow strength (red).

B. Abrupt 2 x CO,

The time series of the monthly density difference, §p, and

AMOC strength, Wapoc, in the case of abrupt 2 x CO, is
shown in Figure 27. Again, we only apply the indicator to the
density difference data, and choose the same window length
as in the case of abrupt 4 x CO,. Figure 28 shows an ex-
cerpt of the density difference time series close to the initial
weakening, as well as a plot of the Y values. A weakening is
clearly seen in the model’s own AMOC measure, and is also
accurately captured with the measure based on the density dif-
ference across the Gulf Stream (Fig. 27).
The first thing to note is how small the Y values are compared
to what we have seen previously; on the order of 1072, It
should, however, be noted that the ABIC values are well above
the significance threshold?®. Figure 29 shows the density dif-
ference time series color coded according to the value of ¢ and
p. From this, we again see that prior to the increase in CO,,
the most common fit is the ARMA(1,0) process, while after
the initial weakening phase the p values show a clear increase.
The g value, on the other hand, does not exceed 2, indicating a
very low degree of memory in the noise term. Since we have
by now clearly demonstrated a correlation with the value of
T and the value of ¢, this should provide an explanation as
to why we see such low values of Y. From this analysis, one
would conclude the system does not appear to be approaching
a tipping point. Indeed, the measure suggests that the weak-
ening in the overturning in this case with reduced forcing is
not associated with a loss of dynamical stability. Once more
we have, as shown in Figure 30, included a comparison with
other early warning indicators. The autocorrelation and vari-
ance show a dramatic increase around time t=6000, which cor-
responds to the appearance of the cluster of sharp peaks in the
time series plot for Y.
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FIG. 28: Monthly density changes, 8p, for abrupt 2 x CO, 1008
(blue) and the value of T (green) plotted as functions of timeos
The dashed line indicates the point when the CO, 1010
concentration abruptly changes. 1011
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FIG. 29: Time series of monthly density changes for abruptioss
2 x CO», color coded according to the value of (a) g and (b)osa
p. The value for ¢ and p are also plotted as functions of timgoss
in (a) and (b), respectively. 1036

1038

VI. DISCUSSION 1039
1040

1041
In summary, we analysed an indicator for dynamical,,

stability based on ARMA modelling as a way to detecf,,
transitions in complex systems. A detected need for higher,,
order terms in the ARMA model fitted to moving windows of .
a timeseries is related to diverging memory properties, which
are expected to arise when approaching a transition to a newy,,,
equilibrium state. The rationale behind this indicator is thag,,

1049
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FIG. 30: Autocorrelation, variance and T plotted as functionsps?
of time for the case of abrupt 2 x CO, 1058
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it uses a broad family of linear statistical models that can be
fitted even on short time series and which have proven their
utility in many contexts (see Brockwell and Davis?®). That
the underlying models do not require long time series is an
advantage when employing a sliding window approach on
limited data sets. The method generalizes classical metrics of
instability, and allows one to extract more global dynamical
information from the time series data.

The indicator was tested on time series data from a 3-box
model of the AMOC, where three categories of critical
transitions, namely B-, N-, and R-tipping, were explored. In
all cases the transition is identified by the indicator, albeit it
is not always easy to interpret the signal. In the rate-induced
tipping scenario a comparison between the avoided tipping
and the tipping cases shows a response of the indicator prior
to the transition only in the tipping case although the time
series are nearly identical at this stage. The indicator also
successfully identifies the unstable limit cycle when returning
to the upper equilibrium branch. We similarly see fairly clear
signals in the bifurcation-induced tipping scenario prior to the
transition. For the case of noise-induced tipping, the signal is
less clear, obscured by the high amplitude noise. However,
when going from the lower to the upper equilibrium branch
the indicator signals an increased degree of instability in
accordance with the presence of the unstable limit cycle.

The primary drawback of the Y indicator is that it is
computationally quite expensive, at least compared to the
autocorrelation and variance, and that, due to its complexity,
the results can be harder to interpret. We therefore suggest
that the indicator should be applied with care, and preferably
in combinations with other measures of instability, like the
increase in the order, p + ¢, and the persistence. Although
the current scaling with 7, see equation (3), seems to yield
reasonable results, it is certainly possible that another scaling
would be preferred. It is also possible that this is problem-
dependent. This uncertainty regarding the correct scaling
is certainly a drawback, but we argue that this problem can
largely be circumvented by including an examination of the
persistence and order values. However, it would still be
advantageous to have an indicator whose values were to have
a clear meaning in terms of the stability of the system, and
it is not clear if the Y indicator as it stands achieves this,
partly due to the aforementioned issue with the choice of
the correct scaling. Although we have attempted to make
some comparison to other early warning indicators, like the
increase in autocorrelation and variance, we are not claiming
that the Y indicator is in any way better than these other
indicators, rather that it can act as a complementary approach,
as it can allow one to extract more information from time
series data. For example, we have suggested, that it might be
helpful in identifying the effects of colored noise, something
the other indicators struggle with.

Furthermore, we note that it is conceivable that one
would wish to exclude white noise and pure moving-average,
MAC(1), processes when doing the fitting, as was done in the
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earlier studies by Faranda et al. '°. In such a scenario thea
modified definition of the Y indicator would of course neus
longer be valid, as the ARMA(0,0) process is excluded, and
thus cannot be used as a base model. In this case one might
argue that the points where A;BIC are negative should eithey;,,
be ignored completely, or one should assume that the best fit
is in fact the ARMA(1,0) process and the algorithm is belng -
too strict it its enforcement of the auxiliary conditions on
the fitting parameters. This would of course lead to dlfferent »
results than what has been presented here, and is an optlon o
worth considering.

When considering a full complexity AMOC model aisiz
arising from a global climate model (CESM2) many more:2s
degrees of freedom are involved. This has two consequenceg224
firstly, the pure categories of tipping cannot really be expecteﬂ‘zz
anymore and secondly, the tipping behaviour might dlsappealr127
altogether as the added degrees of freedom may stabilize thg s
system.
When applied to the CESM2 data, the results were mixed?3°
The measure exhibited a significant increase in T under th1131
more severe 4xCO, forcing but much less variability W1t}p133
the weaker 2xCO, forcing. Hence the measure only registersisa
larger changes in AMOC as associated with dynamically uress
stable behavior. Indeed, it is possible that the model AMOE 3¢
experiences a continuously shifting steady state, rather thaf 3:
making a transition between two distinct states as in low139
dimensional models. The results from the doubling COgpao
experiment seems to support this hypothesis. Other membersts:
of the CMIP6 ensemble exhibiting very different AMOC“‘2
weakening from the same forcing, with some declining by e
only 15% and others falling by 80%?’, and this suggests s
continuum of different responses.
While the results for 4xCO, suggest a loss of dynamical4?
stability during the AMOC weakening phase, concluding oh”:
the tipping behaviour would require a more in depth analys1§150
along the lines done in Hawkins et al. ?*; in this paper thes,
bi-stability is clearly demonstrated by exploring a range ofisz
hosing experiments. Although we are confident that the 52
indicator can be used to assess the stability of such compleX”*
systems, as was already demonstrated in previous works by156
Nevo et al.'?, concluding on the ability to detect criticahss
transitions would require a full analysis of the hysteresisss
behaviour of the system. 1189
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