
Quality of Service in Interconnection
Networks

Doctoral Dissertation
by

Sven-Arne Reinemo

Submitted to
the Faculty of Mathematics and Natural Sciences

at the University of Oslo in partial fulfillment
of the requirements for the degree Doctor Scientiarum

11th September 2007

© Sven-Arne Reinemo, 2007

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
Nr. 650

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

This work is licensed under the Creative Commons Attribution-No
Derivative Works 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS, Oslo, 2007.

Produced in co-operation with Unipub AS.
The thesis is produced by Unipub AS merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)

“You may grow old and trembling in your anatomies, you may lie
awake at night listening to the disorder of your veins, you may
miss your only love, you may see the world about you devastated
by evil lunatics, or know your honour trampled in the sewers of
baser minds. There is only one thing for it then – to learn. Learn
why the world wags and what wags it. That is the only thing which
the mind can never exhaust, never alienate, never be tortured by,
never fear or distrust, and never dream of regretting. Learning
is the only thing for you. Look what a lot of things there are to
learn.”

T.H. White,
The Once and Future King

Putnam Adult, 1958

III

Abstract

Interconnection networks were traditionally confined to multiprocessors where
low latency and high bandwidth were necessary for interprocessor communi-
cation. But in the last decade interconnection networks have become crucial
in other application areas such as storage area networks and high performance
computing clusters. This development has led to an increased interest in sup-
porting quality of service in interconnection networks driven by the wish to
converge cluster storage, cluster communication, and cluster management in
one single network. In this thesis we propose and study a set of mechanisms
to achieve this in existing interconnection technologies. We introduce two
new topology agnostic routing algorithms, a service differentiation scheme
for the InfiniBand Architecture, and several admission control schemes.

V

Acknowledgement

First and foremost I would like to thank my primary supervisor Tor Skeie for
guidance and inspiration throughout the four years of thesis work. I would
also like to thank my secondary supervisor Olav Lysne for valuable feedback
and support during this period, and for granting me a Ph.D. scholarship at
Simula Research Laboratory. Furthermore, I would like to thank the co-
authors of the papers that this thesis is founded on: Jose Duato, Jose Flich,
Andres Mej́ıa, Frank Olaf Sem-Jacobsen, Thomas Sødring, Ingebjørg Thelin
Theiss, and Ola Tørudbakken.

Many thanks also go to the people in the Condor project for making
countless hours of simulations so much easier to handle, to the people in
the J-Sim project for creating a great simulation platform, and to the Free
Software Foundation for creating many of the tools I have used constantly for
the last four years. I also wish to thank my former and current co-workers at
the Department for Networks and Distributed System for a pleasant working
environment and for some after work happy hours.

Finally, I would like to thank my family for their support during these
years.

VII

Contents

List of Figures XIV

List of Tables XV

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Published Works . 3
1.4 Thesis Outline . 4

2 Background 5
2.1 Interconnection Networks . 5

2.1.1 Topologies . 6
2.1.2 Switching . 8
2.1.3 Routing . 10
2.1.4 Selected Algorithms . 15

2.2 Quality of Service . 17
2.2.1 Service Differentiation 19
2.2.2 Congestion Control . 21
2.2.3 Admission Control . 23

2.3 Research Methods . 23
2.3.1 Prototyping . 23
2.3.2 Analytics . 24
2.3.3 Simulation . 24

3 Routing Algorithms 27
3.1 Routing in Ethernet . 27

3.1.1 Xon/Xoff Flow-Control 28
3.1.2 Ethernet Flow-Control 29
3.1.3 Switch Organisation 31
3.1.4 Buffer Organisation . 32

IX

X CONTENTS

3.1.5 Performance Evaluation 32
3.2 Segment-Based Routing . 37

3.2.1 Segmentation Algorithm 39
3.2.2 Segment-Based Routing in Ethernet 43
3.2.3 Performance Evaluation 44

3.3 Layered Routing . 49
3.3.1 Layered Shortest-Path Routing 51
3.3.2 Ethernet Flow-Control Granularity 53
3.3.3 Layered Routing in Ethernet 54
3.3.4 Layered Routing and QoS 55
3.3.5 Performance Evaluation 57
3.3.6 Layered Routing in the InfiniBand Architecture 60

3.4 Contributions and Related Work 60
3.5 Critique . 62
3.6 Further Work . 63

4 Service Differentiation 65
4.1 Differentiated Services . 65
4.2 QoS in InfiniBand . 66

4.2.1 QoS Mechanisms . 66
4.2.2 Switch architecture . 68
4.2.3 Routing . 69

4.3 Performance Evaluation . 69
4.3.1 Throughput . 70
4.3.2 Robustness . 70
4.3.3 Latency . 71
4.3.4 Jitter . 73

4.4 Contributions and Related Work 75
4.5 Critique . 76
4.6 Further Work . 77

5 Admission Control Algorithms 79
5.1 Avoiding Saturation . 80
5.2 Centralised Admission Control 80

5.2.1 Calibrated Load Admission Control 80
5.2.2 Link by Link Admission Control 81

5.3 Decentralised Admission Control 82
5.3.1 Measurement Based Admission Control 82
5.3.2 Probe Based Admission Control 83

5.4 Performance Evaluation . 84
5.4.1 Class Level QoS . 85

CONTENTS XI

5.4.2 Flow Level QoS . 90
5.5 Contributions and Related Work 96
5.6 Critique . 97
5.7 Further Work . 97

6 Conclusion 99
6.1 Routing . 99
6.2 Service Differentiation . 100
6.3 Admission Control . 100
6.4 Future work . 101

Bibliography 102

A Papers 113
A.1 Routing Algorithms . 113

A.1.1 Ethernet as a Lossless Deadlock Free System Area Net-
work . 113

A.1.2 Layered Routing in Irregular Networks 113
A.1.3 Segment-Based Routing: An Efficient Fault-Tolerant

Routing Algorithm for Meshes and Tori 114
A.1.4 Effective Shortest Path Routing for Gigabit Ethernet . 114
A.1.5 Boosting Ethernet Performance by Segment-Based Rout-

ing . 114
A.2 Service Differentiation . 115

A.2.1 Applying the DiffServ Model in Cut-through Networks 115
A.2.2 An Overview of QoS Capabilities in InfiniBand, Ad-

vanced Switching Interconnect, and Ethernet 115
A.3 Admission Control Algorithms 115

A.3.1 Admission Control for DiffServ based Quality of Ser-
vice in Cut-through Networks 115

A.3.2 Achieving Flow Level QoS in Cut-through Networks
through Admission Control and DiffServ 116

List of Figures

2.1 Direct network topologies. 7
2.2 Multistage interconnection network topologies. 8
2.3 Latency for store and forward switching versus virtual cut-

through switching and wormhole routing. 10
2.4 Virtual channel flow-control. 11
2.5 A simple network and its dependency graph. 12
2.6 Resource reservation with RSVP. 20
2.7 Forward explicit congestion notification. 22

3.1 MAC control frame format. 30
3.2 Switch Architecture. 32
3.3 Throughput. 34
3.4 Latency. 37
3.5 Segments and routing restrictions. 38
3.6 Segment types. 39
3.7 Main procedure for searching segments. 41
3.8 Example of computing routing segments. 42
3.9 Throughput and latency for regular topologies with uniform

traffic. 45
3.10 Throughput and latency for regular topologies with pairwise

traffic. 46
3.11 Throughput and latency for irregular topologies with uniform

traffic. 48
3.12 Throughput and latency for irregular topologies with pairwise

traffic. 50
3.13 Required number of layers. 53
3.14 Ethernet frame formats. 56
3.15 Throughput and latency. 58

4.1 Switch architecture. 68
4.2 Throughput for a network with thirty-two switches. 71

XIII

XIV LIST OF FIGURES

4.3 Latency for a network with thirty-two switches. 72
4.4 Latency histograms per hop for SL1 traffic at high load. 74

5.1 Throughput. 86
5.2 Average latency. 88
5.3 Latency distribution for SL1 packets at with three hops. . . . 89
5.4 Average class throughput. 91
5.5 Average flow packet rate. 92
5.6 Average flow latency. 94
5.7 Maximum flow jitter. 95

List of Tables

3.1 Minimum buffer requirements for Gigabit Ethernet flow-control. 31

4.1 The service levels used in all simulations. 70

XV

Chapter 1

Introduction

Interconnection networks have traditionally been used for multiprocessors
where low latency and high bandwidth communication was necessary for
interprocessor communication. This is still true, but in the last decade inter-
connection networks have become crucial in other application areas such as
storage area networks, high performance computing clusters, embedded sys-
tems, switching fabrics inside switches and routers, and as on-chip networks
connecting modules on a single chip.

Compared to conventional networks, interconnection networks can be
characterised as short range, low latency, and high bandwidth networks.
Moreover, they differ from other networks in that they are loss-less in the
sense that packet loss never happens as a result of congestion, but only as a
result of link transmission errors. Hence the available link bandwidth is used
effectively as retransmissions are seldom necessary. Loss-less operation does,
however, introduce other problems peculiar to interconnection networks, such
as deadlock and back-pressure. These issues must be handled correctly in or-
der to route packets and deliver quality of service (QoS), which is what we
study in this thesis.

1.1 Motivation

The two most important performance metrics for interconnection networks
are throughput and latency. High throughput, i.e. the number of bits per
second that a network can handle, is necessary for quickly moving data in
the network. While low latency, i.e. the difference in enter and exit time
for a packet crossing the network, is necessary for fast access and messaging
between nodes. Both these aspects have been studied for over two decades in
the context of routing algorithms [1, 2]. Routing algorithms is also the first

1

2 Introduction

of three topics that we will study in this thesis, since the routing algorithm
is the most important function in any interconnection network. Routing
algorithms come in many flavours with different requirements of the network
architecture and with different restrictions on what topologies they can be
used with. The routing algorithm is also important for QoS since it has a
major impact on latency and throughput, and on how well we are able to
utilise the resources in the network.

QoS has, until recent years, received little attention in the context of in-
terconnection networks. But as the application domain for interconnection
networks has grown in the last decade so has the need for QoS research.
The concept of QoS strives to guarantee that the applications communica-
tion needs are fulfilled. One of the simplest forms of QoS found in most
interconnection networks is the differentiation that happens between control
packets and data packets. Technologies such as Ethernet [3], the InfiniBand
Architecture (IBA) [4], and the Advanced Switching Interconnect (ASI) [5]
all enforce the rule that control traffic always preempts data traffic. This
strict priority of control frames is deemed necessary for correct operation
of the network. Furthermore, as the amount of control traffic is negligible
it has very little impact on the over all performance. The differentiation of
control traffic and data traffic can be further generalised to other services and
applications, such service differentiation is the second topic in this thesis.

Our third topic is admission control. Admission control is a general con-
cept for controlling the operation point of a network in order to avoid sat-
uration. The level of saturation that is acceptable depends on the service.
Services only relaying on throughput will operate well even beyond the sat-
uration point, while latency sensitive applications will suffer as the network
reach and go beyond the saturation point.

The overall goal of QoS is to serve different applications according to their
different needs. How, and at what granularity level QoS is used is important
for how well the network is able to match the requirements of the applica-
tion. The challenge is to balance the achievable QoS and the complexity
of the network protocols and network hardware. Making the correct choice
enables us to combine high volume data transfer and low latency messaging
concurrently in the same network architecture.

1.2 Contributions

In this thesis we present a set of mechanisms to provide QoS in interconnec-
tion networks. The main goal of these mechanisms are to fulfil the vision
of a converged interconnection network where I/O, message passing, and

1.3 Published Works 3

management traffic can co-exist in a single network without one reducing
the performance of the other. The primary contributions in this thesis are
within the field of routing, service differentiation, and admission control in
interconnection networks.

We suggest two new routing algorithms, Layered shortest-path routing [6]
(LASH) and Segment-based routing [7] (SR). LASH is a deterministic and
topology independent routing algorithm which requires virtual channels. The
main advantage of LASH is that it guarantees shortest path routing while only
using a modest number of virtual channels. Furthermore, it can be tweaked
to be both source-adaptive and switch-adaptive. SR is also a deterministic
and topology independent routing algorithm, but without the need for vir-
tual channels. SR does not guarantee shortest path routing, but as it does
not require virtual channels it is applicable to a wider range of network tech-
nologies. The main strengths of SR is its locality independence property that
gives us a large degree of freedom when enforcing routing restrictions. This
freedom also makes it possible to exploit the regularity present in regular and
semi-regular topologies.

In service differentiation we propose how to use the virtual channel mech-
anism in IBA (or similar technologies) for QoS purposes. More specifically,
we suggest how the Differentiated services [8] approach can be applied to
IBA. We also show how relative differentiation can be used to give band-
width guarantees and improve latency and jitter.

Finally, we propose three (and evaluate four) admission control schemes,
which can be combined with service differentiation to give statistical guar-
antees. We show this for centralised and distributed admission control and
evaluate these mechanisms at class and flow granularity.

1.3 Published Works

The core results of this thesis have been published or are under review for
publication as listed in the bibliography. For convenience these papers are
also listed separately in Appendix A, where a brief description of the authors
contributions are given.

The results discussed in Chapter 3 are published in [6, 7, 9, 10, 11]. Chap-
ter 4 is covered by [12, 13], and Chapter 5 is covered in [14, 15]. The work
in [7, 10] is the result of a collaboration with researchers at the Departamento
de Informática de Sistemas y Computadores1 (DISCA) at the University of
Valencia, Spain. The other papers have all been written in collaboration with

1http://www.disca.upv.es/

4 Introduction

researchers in the ICON2 project at Simula Research Laboratory as reflected
by the author list.

1.4 Thesis Outline

Chapter 2 contains some background information about interconnection net-
works in general. This is recommended reading for those unfamiliar with
interconnection networks, while other readers can safely skip this chapter.
Chapter 3 describes, formalises, and evaluates the suggested routing algo-
rithms LASH and SR. In Chapter 4 we describe a service differentiation
scheme for IBA and similar technologies, which we evaluate in combination
with LASH routing. In Chapter 5 we suggest and discuss several approaches
to admission control, which we evaluate in combination with the mechanisms
from Chapter 3 and 4. Finally, in Chapter 6 we conclude and give some sug-
gestions for further work.

2http://www.simula.no/departments/networks/projects/ICONPRO

Chapter 2

Background

In this chapter we present some basic concepts in interconnection networks to
make it easier to follow the discussion later. We introduce some general topics
of interconnection networks in Section 2.1, which is followed by a presentation
of Quality of Service (QoS) in Section 2.2. In Section 2.3 we discuss some of
the research methods common in the field including the method used in this
thesis.

2.1 Interconnection Networks

The building blocks of interconnection networks are hosts, switches, and
links. Hosts produce and consume network traffic, while switches forward
traffic from one point to another. Network nodes (i.e. switches and hosts) are
interconnected through point-to-point links. This makes it possible for hosts
to communicate with each other through one or more switches. Switched
networks stand in contrast to bus-based networks where hosts are connected
to each other through a shared link, referred to as a bus. Bus-based networks
are inferior to switched networks because the bandwidth of a bus is inversely
proportional to the number of hosts, which scales poorly when the number of
hosts increase. In a switched network the scalability depends on how many
hosts we connect to a switch and how switches are interconnected. We will
only be concerned with switched networks in this thesis.

The fundamental part of any interconnect is the topology. A topology
describes how nodes are connected together and is critical for performance.
The fundamental part of any switch is its switching mechanism, that is, how
are packets moved between ports through the switch. The main impact of the
switching technique is on latency. Finally, in order to move packets around
the network we need a routing algorithm. A routing algorithm describes

5

6 Background

how we compute the path a packet travels to get from source to destination.
The choice of routing algorithm has a major impact on both latency and
throughput.

2.1.1 Topologies

A topology describes the conceptual layout of a network and how the nodes
in the network are connected. It is the topology that ultimately determines
the set of paths a packet can take between two nodes in a network, while
the routing algorithm selects a subset of these paths according to certain
criteria. The choice of topology depends on the application domain, cost,
and packaging restrictions.

Topologies are divided into direct and indirect networks [1, 2]. Direct
networks refers to topologies where every node in the network contains both
a switch and a host. I.e. each node produces, consumes, and routes network
traffic. This way each node can reach every other node in the network by
going through one or more nodes. In an indirect network hosts and switches
are separate units connected to each other through a link. A switch can
be connected to other switches, other hosts, or a combination of hosts and
switches. A direct network can always be converted to an indirect network
by separating the host and the switch, and then connect them through a
link. This makes the distinction somewhat mute [2]. It does, however, make
more sense if we view a direct network as a network where every switch is
associated with a host, and an indirect network as a network where only a
subset of the switches is associated with a host. Using this definition, two of
the most common direct networks are the torus and the mesh, more formally
called the k-ary n-cube and the k-ary n-mesh. Both these belong to a class of
topologies refereed to as strictly orthogonal. In a strictly orthogonal topology
every node has at least one link in each dimension, a fact that makes routing
in these networks simple [1].

The mesh is described by the number of dimensions and the number of
nodes in each dimension. Figure 2.1(a) shows a 3-ary 3-mesh, formally we
say that an n-dimensional mesh has k0 × k1 × . . . × kn−2 × kn−1 nodes with
ki nodes in dimension i, where ki ≥ 2 and 0 ≤ i ≤ n [1]. For a 3-dimensional
mesh with a different number of nodes in each dimension we explicitly give
the size of each dimension, e.g. a 2,3,4-ary 3-mesh is a 3-dimensional mesh
with two nodes in dimension y, three nodes in dimension z, and four nodes
in dimension x [2]. The mesh has been used in multi-computers such as the
MIT M-Machine, which use a 3-dimensional mesh [16].

The torus, also referred to as a k-ary n-cube, is show in Figure 2.1(b).
In the k-ary n-cube all nodes have the same number of connections and the

2.1 Interconnection Networks 7

(a) A 3-ary 3-mesh. (b) A 3-ary 2-cube.

Figure 2.1: Direct network topologies.

number of nodes in each dimension are the same. To get the same number
of connections to each node, wrap-over connections are added at the edge
nodes. A k-ary n-cube has kn nodes. Figure 2.1(b) shows a 3-ary 2-cube.
The torus has been used in machines such as the Cray T3D [17] and the Blue
Gene/L [18].

Indirect networks also comes in several forms, but the most popular cate-
gory is multistage interconnection networks (MINs). MINs consists of a set of
stages where hosts are only connected to the terminal stage, and connected
to each other through a set of switching stages. The Clos network described
by Charles Clos at Bell Labs in 1952 [19] is an example of a MIN. Figure
2.2(a) shows a 16-way Clos network, the number 16 refers to the number
of hosts connected to the terminal stage. A Clos network consists of three
or more stages where only the switches in the first and last stage are con-
nected to hosts. The switches in the other stages are only connected to
switches in the stages before and after itself. Clos networks are categorised
as either rearrangeable non-blocking or strictly non-blocking. A rearrange-
able non-blocking network is a network where it is possible to find a way
from a free input to a free output by rearranging the existing connections,
while in a strict non-blocking network it is possible to find a way from a free
input to a free output without modifying the existing connections. Figure
2.2(a) shows a rearranging non-blocking Clos. A strict non-blocking switch
requires more switches in the centre stage and fewer hosts connected to the
terminal stage as shown i Figure 2.2(b). Clos networks have been used in

8 Background

(a) A rearrangeable non-
blocking 16 way Clos.

(b) A strict non-blocking 16
way Clos.

Figure 2.2: Multistage interconnection network topologies.

the GF11 supercomputer from IBM [20] and have also been widely proposed
as an architecture for ATM switches [21, 22, 23]. Other types of MINs are
the Butterfly, the Benes, the Omega, and the Fat Tree [1]. Depending on the
topology, MINs can be simple to route as deadlock cannot occur.

Another class of indirect networks in widespread use is irregular networks.
An irregular network is without any well defined structure, it consists of a
set of randomly connected switches and hosts. Most local area networks are
irregular networks, and so are most networks of workstations. Moreover, a
regular network becomes irregular whenever a switch or link in the network
fails. Irregular networks present the greatest challenge for routing as no
assumptions can be made about the topology.

In the following chapters we will limit our discussion and performance
evaluation to irregular and orthogonal networks. But, as all our work is
topology agnostic it is compatible with any topology.

2.1.2 Switching

A switching technique describes how packets are moved from an input link,
through a switch, and to an output link, how packets are buffered and what
happens if the necessary resources are busy. We describe the three most
common switching techniques below.

Store and forward (SAF) [1] switching is a traditional switching technique
used in early multi-computer networks and local area networks, it is also used
in most Ethernet switches. SAF switching works by first receiving a complete
packet in a buffer, then examining the header, and finally forwarding the

2.1 Interconnection Networks 9

packet out on the correct link. This happens for each switch a packet passes
through and it makes it possible to check for and remove corrupt packets at
every hop. The drawback is that it increases latency since each packet must
be completely received by the switch before it can be routed and forwarded
to its destination link. Thus, the latency is proportional to the number of
hops in a path. SAF switching also puts a constraint on the maximum packet
length since a complete packet must be able to fit in the buffer space of a
switch. I.e. if we want to support larger packets we need larger buffers.

Virtual cut-through (VCT) [24] switching is a solution to the latency
problem appearing in SAF switching. Instead of transmitting a complete
packet, each packet is split into a number of smaller units called flits. The
first flit contains the packet header and is used to make the routing decision,
while the rest of the flits belonging to the packet follow the same path as
the header flit through the network. If the header flit has to be buffered due
to a busy output link the rest of the flits will be buffered behind it in the
current buffer. In other words, the routing decision is made as soon as the
header of the packet is received and if the necessary resources are available
the rest of the packet is not buffered but forwarded directly to the destination
link. If the necessary resources are busy the packet are buffered in the switch
just as with SAF switching. Since we don’t have to do any buffering when
resources are available latency is reduced compared to SAF switching. But
for the worst case where a packet is blocked at every switch VCT switching is
equal to SAF switching with regards to latency. VCT switching still has the
drawback that the maximum packet length depends on buffer size because
we must be able to buffer a complete packet when a required resource is
unavailable. Furthermore, per hop removal of corrupt packets is no longer
possible because we do not receive the whole packet before it is forwarded.
The InfiniBand Architecture [4] and the Advanced Switching Interconnect [5]
use VCT switching.

Wormhole routing (WR) [25] removes the dependency between maximum
packet length and buffer size found in SAF and VCT switching. As with VCT
switching we use flits, but when the header flit is blocked it is buffered at the
current switch together with some of the flits following it. When the buffer in
the current switch is full the remaining flits are buffered in the switches along
the established path all the way to the source. At the source the flow-control
halts the transmission of data until the necessary resources are available. The
buffered packet now spreads like a worm through the network thus the name
Wormhole routing. WR yields the same resource gain as VCT, in addition it
allows for unlimited packet size as we have removed the dependency between
packet size and buffer size. Unfortunately, WR is more prone to deadlock
than SAF and VCT switching as the distribution of a packet as a worm

10 Background

Time

Node

H

H

H

H

H

H

H

H

WR latency

SAF latency
0

1

2

3

0

1

2

3

Figure 2.3: Latency for store and forward switching versus virtual cut-through

switching and wormhole routing.

through the network grabs hold of more resources giving higher deadlock
probability (see Section 2.1.3). Wormhole routing was used in the STC104
Asynchronous Packet Switch [26].

Figure 2.3 compares the latency of VCT/WR and SAF switching. We
see that the start of a packet might be entering node 3 before the end of the
packet has left node 0 when we use VCT/WR. While with SAF switching we
have only reached node 1.

2.1.3 Routing

So far we have seen how the choice of topology puts the ultimate limits
on network connectivity, while the choice of switching mechanism puts a
lower bound on latency. With these limitations we must construct a routing
algorithm that makes the best possible use of resources. The routing function
decides which output link to send a packet to based on the information in the
packet header. Obviously, we want the routing function to yield the highest
possible throughput and lowest possible latency. Less obvious is the fact
that our routing algorithm has to be deadlock free. Furthermore, in order
to ensure efficient use of bandwidth and avoid retransmissions we want loss-
less transmission of packets. We discuss the use of flow-control in order to
support loss-less operation below, then we introduce the issue of deadlock,

2.1 Interconnection Networks 11

D
D

D
D

D
D

D
D

D
D

D

C
C

C
C

VC0
VC1
VC2

Cycle

Ph
ys

ic
al

 li
nk

In
te

rfa
ce

C = CreditsD = Data

C
R

EC
V

SE
N

D

VC = Virtual channel

D

Figure 2.4: Virtual channel flow-control.

before we introduce some well know routing schemes. Finally, we consider
some aspects important for low latency and high throughput routing.

Virtual Channel Flow-Control

Most interconnection technologies are loss-less networks, where packet loss
only happens as a result of link transmission errors and hence the available
link bandwidth is used effectively as retransmissions are seldom necessary.
This does, however, introduce the problem of deadlock that we will discuss
in the next section.

In order to avoid packet loss due to buffer overflows, most interconnection
networks uses a point-to-point credit-based flow-control scheme. In such a
scheme, the downstream side of a link keeps track of the available buffer re-
sources (credits) by decreasing a credit counter whenever buffer space is allo-
cated and increasing the credit counter whenever buffer space is de-allocated.
Similarly, the upstream node keeps track of the available credits (i.e. the
number of bytes it is allowed to send) and decreases this amount whenever
it sends a packet. Whenever credits arrive from the downstream node it in-
creases the amount of available credits. A packet is never sent downstream
unless there is room for it. At regular intervals the downstream node details
credit availability to the upstream node. The update interval depends on the
load, high loads increase the frequency of updates, while low loads reduce
the frequency.

As a further improvement flow-control can be performed per virtual chan-
nel (VC) [27]. The concept of VCs allows a physical link to be split into
several virtual links, each with its own buffering and flow-control resources.
Figure 2.4 shows an example of per VC credit-based flow-control where VC0
runs out of credits after cycle 1 (depicted by a bold D) and is unable to
transmit until credit arrives in cycle 9 (depicted by a bold C). As the other
lanes have sufficient credit they are unaffected and are able to use the slot

12 Background

C1

C0C2

N

N N

0

12

(a) A network with
nodes Ni and links
Ci.

C0

C1C2

(b) Dependency
graph for the net-
work in (a).

Figure 2.5: A simple network and its dependency graph.

that VC0 would otherwise use. Transmission resumes for VC0 when credit
arrives. VCs improve network throughput [27] and also makes it possible to
build virtual networks on top of a physical topology. These virtual networks,
or layers, can be used for various purposes such as efficient routing, dead-
lock avoidance, fault-tolerance and service differentiation [6, 12, 28]. We will
discuss the use of VCs in the context of deadlock free routing and service
differentiation in Chapter 3 and 4 respectively.

Deadlock

When designing a routing algorithm for interconnection networks one of the
base criteria is that it must be deadlock free. A deadlock occurs when a
packet gets blocked forever because of a resource conflict in the network. The
resources can be buffers or links in the network where a conflict occurs when
a packet holding one resource is allowed to request another. This happens
when loss-less flow-control is used because a packet is not forwarded until
the receiver is ready to accept it. Figure 2.5(a) shows a simple unidirectional
network with nodes Ni and links Ci. If node N0 sends to N2, N1 sends to
N0, and N2 sends to N1 all at the same time, a deadlock occurs. This is
because the packet from N0 to N2 holds link C0 while it waits for C1 at
N1 which is busy. This propagates to the rest of the nodes since there is a
circular dependency between the links in the network. To decide if a network
has a deadlock we can construct the dependency graph as in Figure 2.5(b).
To construct the graph we draw a vertex for each link (or resource) in the

2.1 Interconnection Networks 13

network and a directed edge from link Ci to Cj if Ci depends on Cj. It has
been shown that a network is free from deadlock if its dependency graph is
acyclic [29]. This is an important result for deadlock avoidance, the details
can be found in Chapter 3 of [1].

In practise, the above means that deadlocks can occur in networks where
the topology contains loops and loss-less flow-control is used. In particular,
when a set of packets is stalled because all paths toward the destinations
are blocked by another packet in the set, forming cyclic dependencies be-
tween channel (buffer) resources due to flow-control. This behaviour stands
in contrast to the Internet and conventional Ethernet, where packets are lost
whenever a packet buffer overflows, which means that deadlock cannot occur.

To avoid deadlocks we could choose to avoid topologies with loops alto-
gether or we could choose to just drop packets whenever a buffer overflow
occurs. Ethernet actually does both through its routing algorithm, the Span-
ning tree protocol (STP) [30] and its (initial) lack of flow-control. The STP
reduces any topology to a tree by disabling links until no cycles are left.
This removes the deadlock potential, but it also removes a lot of bandwidth.
Efficient topologies such as k-ary n-mesh and k-ary n-cubes contain lots of
loops, and if we remove links the available bandwidth decrease. Thus, this is
not a very efficient approach.

Three more advanced approaches to handle deadlock are prevention, re-
covery, and avoidance [1]. The deadlock prevention strategy prevents dead-
locks by reserving all necessary resources before communications starts. If
this reservation is not possible then the communication fails. This is the
approach used in circuit switching. Deadlock prevention is also possible by
using routing algorithms that reserve resources in an order such that conflicts
will not happen. In deadlock recovery we do not reserve resources in advance,
but grant any resource request. Since this allows for deadlocks to occur we
need a way to detect it when it happens (usually by using timers where a
timeout denounces a deadlock) and resolve the resource conflict. Since resolv-
ing the resource conflicts can be time consuming, deadlock recovery is only
used when the probability of a deadlock is low. Finally, the most common
way to eliminate deadlock is called deadlock avoidance. In this case resources
are reserved and released as the packet travels through the network, but a
reservation is only granted if it is safe to do so in a global perspective. I.e.
we somehow need to know the global state of the network to be able to grant
a reservation. In practise this is handled by the routing algorithm by making
sure that no cycles exist in the routing table.

14 Background

Classification

Routing algorithms can be classified according to two main criteria, flexi-
bility and applicability. Flexibility refers to path selection and applicability
refers to the class of topologies where the algorithm can be applied. With
regards to flexibility we describe an algorithm as either deterministic, obliv-
ious, or adaptive. A deterministic algorithm will always select the same
path between a given source/destination pair. This removes the overhead
of packet reordering at the destination, but might lead to lower network
utilisation. Oblivious algorithms allow packets to use several paths between
a given source/destination pair, but the path must be selected randomly
without any knowledge of current network load. As this allows for out of
order delivery the destination must handle packet reordering. The use of
several paths improve network usage, but as current network conditions are
not considered overloaded paths cannot be avoided. With adaptive routing
we are allowed to select between several paths for a given source/destination
pair and we are allowed to make this decision based on network feedback.
Furthermore, for both oblivious and adaptive routing it is possible to select
between different paths at both the source, as just described, and at every
switch along the path between the source and destination. This is referred to
as source-adaptivity and switch-adaptivity, and is support in layered routing
as presented in Section 3.3. This degree of choice further improves network
utilisation and makes it possible to avoid hot-spots. The main drawback
of this increased flexibility is increased complexity in the design of network
equipment and out-of-order packet delivery.

When classifying routing algorithms according to applicability the two
main categories are topology dependent and topology agnostic algorithms.
Topology agnostic algorithms make no assumptions about the topology and
may be used with any type of topology including irregular networks, while
topology dependent algorithms make certain assumptions about the topol-
ogy and exploit this to improve performance. Historically, topology agnostic
routing algorithms have lagged behind topology dependent algorithms with
regards to performance, but recent proposals to a large extent match the
performance of topology dependent routing strategies [31, 32]. Topology de-
pendent algorithms has another important advantage, they are simple both
in the algorithm and in implementation. This is especially true for routing
algorithms designed for orthogonal networks as they are mathematically well
defined, making it easy to perform deadlock free routing. A well know exam-
ple is dimension order routing which can be used in meshes, tori, and hyper-
cubes [33]. It works by crossing dimensions in strictly increasing or decreasing
order. E.g. in a 2-D mesh we would first route along the x-dimension until we

2.1 Interconnection Networks 15

reach the correct x-coordinate, then we would route along the y-dimension
until we reach the destination (the algorithm is slightly more complex for tori
due to wrap-around links). As the topology is well defined it is possible for
the source to calculate the exact number of hops in each dimension. Then
each switch only have to reduce the hop count by one for each hop, and
change dimension whenever the hop count for the current dimension reaches
zero. This allows for shortest-path routing as well as simple implementa-
tion. Moreover, it scales very well since the routing table can be expressed
in a mathematical function. The drawback of such algorithms is that they
require a strict regularity, making it necessary to maintain regularity when
increasing network size and making it difficult to handle situations where
network components fail since faults make the network irregular. Because
of these drawbacks, topology agnostic routing algorithms are the preferred
choice whenever the performance difference is negligible.

Performance

The performance of a routing algorithm depends on, in addition to the facts
already discussed, the use of shortest-paths and a balanced use of network
resources. Shortest-path routing means that we always select the path that
gives the shortest number of hops between any source/destination pair, which
reduce latency and improve throughput as we use the least amount of re-
sources possible. By balanced, we mean that the routing algorithm evenly
distributes traffic across then network when a uniformly distributed commu-
nications pattern is applied. Some algorithms, such as UpDown routing, are
unbalanced since they rely on a spanning tree and the root of the spanning
tree becomes a network hot-spot [34].

2.1.4 Selected Algorithms

This section contains an overview of the routing algorithms used in simula-
tions and evaluations in this thesis.

Spanning Tree Protocol

The defalt routing algorithm for Ethernet switches is the Spanning tree pro-
tocol (STP), which is defined in IEEE Standard 802.1D [35]. It was designed
to guarantee connectivity while preventing loops in the network. This is
accomplished by turning any topology into a tree as described below.

In an Ethernet network every switch has an instance of the STP running
and ready to perform the following operations: (i) Elect, among all switches,

16 Background

the switch with the lowest identifier as the root of the spanning tree. (ii)
Build the spanning tree by negotiating the deactivation of switch ports. In
this step loops are avoided by allowing only one switch to forward frames
from the direction of the root on to a given link. Thus, only one switch
forwards packets to this branch and the switches lower down in the tree. (iii)
Listen for changes in the topology (maintenance mode). When step (i) and
(ii) are complete all switches listen for topology changes, and whenever a
change is detected a new round of negotiations begins.

The main drawback of the STP is that we end up with a lot of unused
links and therefore waste away resources. For local area networks this is
not a severe problem, but in high performance computing clusters we need
efficient topologies and we want to use every link available to achieve the best
performance possible. In this scenario the STP is no longer a valid solution.
As STP is the default routing algorithm in Ethernet switches we will use this
as a reference when considering routing performance in Ethernet.

UpDown Routing

One of the most well known topology agnostic routing algorithms is UpDown
(UD) [36]. UD can be used with any topology and it does not require VCs.
This makes it suitable for a wide range of network technologies, including
Ethernet. UD is a spanning three based routing algorithm that works in two
steps. First it creates a breadth-first spanning tree of the topology to be used.
Next it assigns either an up or down direction to each link in the topology.
For host-to-switch links the up end is the switch end, and for switch-to-switch
links the up end is the end closest to the spanning tree root. Now packets
can be routed deadlock free as long as we follow the UD rule [36]: “a packet
may never traverse a link in the up direction after having traversed one in the
down direction”. A deadlock free routing table can now be constructed and
forwarded to every switch in the network. We will use UD as a benchmark
when considering the performance in irregular topologies.

Dimension Order Routing

For topology dependent routing one of the simplest and most popular options
is dimension-order routing [33]. This algorithm is applicable to meshes, tori,
and hypercubes, and works by crossing dimensions in strictly increasing (or
decreasing) order. E.g. in a 2-D mesh we would first route along the x-
dimension until we reach the correct x-coordinate, then we would route along
the y-dimension until we reach the destination. We will use dimension-order
routing as a benchmark when considering performance in regular topologies.

2.2 Quality of Service 17

Turn Based Tree Prohibition

Tree Based Turn Prohibition (TBTP) [37] is an algorithm based on turn
prohibitions that guarantees that the number of prohibited turns is bounded
to 50% regardless of the topology. This stands in contrast to UD where the
maximum number of turn prohibitions depends on the topology, without any
guaranteed upper bound.

TBTP works by first constructing a spanning tree from the topology.
Then, in the second step, a potential set of prohibited and allowed turns are
constructed for each switch Si. The prohibited turns are all the turns around
Si except for turns between links in the spanning tree. Also, turns starting
in Si and following a link not in the spanning tree are permitted. As turns
in the spanning tree are never prohibited, the connectivity of the network is
preserved. In the third step, we select the switch Sm with the maximum dif-
ference between the number of allowed and the number of prohibited turns.
It can be shown that there always exists at least one switch where the num-
ber of allowed turns is greater than or equal to the number of prohibited
turns [37]. In the fourth step all the forbidden turns for the selected node
Si are added to the set of all forbidden turns. Finally, we delete all links
connected to Si except for the links that are part of the spanning tree. The
process is then repeated for the remaining set of nodes. The algorithm ter-
minates when all the links not part of the spanning tree are deleted, then the
set of all prohibited turns contains the prohibited turns for the topology in
question.

A deadlock free routing table can now be constructed by only using turns
considered legal according to the above calculation. TBTP has recently been
suggested as an alternative to STP in future Ethernet equipment [37]. We will
therefore use TBTP as a benchmark for our Ethernet performance studies.

2.2 Quality of Service

Research in interconnection networks has traditionally paid little attention
to QoS, while the Internet community has done a great deal of research
on this topic. We try to exploit the results from the Internet community
in order to support QoS in interconnection networks. It is, however, not
possible to directly apply methods developed for the Internet and other lossy
networks to interconnection networks. This is primarily due to the difference
in operation between lossy networks and interconnetion networks when a link
becomes saturated. In lossy networks, such as the Internet, a saturated link
leads to packet loss for all flows using that link, but no other links or flows in

18 Background

the network are affected. For interconnection networks the opposite happens.
No packets are lost, but the saturation quickly spreads across the network
reducing the overall performance for all links and flows including flows not
using the link that is the source of congestion. This phenomenon is called a
congestion tree and occurs because we use link level flow-control as described
in Section 2.1.3. Therefore, it is necessary to carefully study existing results
from the Internet community in the context of interconnection networks.

When discussing QoS in interconnection networks there are three prop-
erties of significant importance, throughput, latency and packet loss. The
granularity of the object on which these metrics are applied are: single data
streams, classes of traffic, and all network traffic. As most interconnection
technologies use flow-control there is a strict guarantee of no packet loss that
is valid for all data traffic. Ethernet can be viewed as an exception to this,
which will be discussed in Section 3.1. With regard to latency and bandwidth,
a combination of mechanisms are often defined, ranging from strict guaran-
tees for single streams [38] via relative guarantees for classes of traffic [14] to
no guarantees/over provisioning.

The capabilities that influence the technologies’ ability to leverage QoS
guarantees and differentiated treatment of traffic fall into four categories:
flow-control, congestion control, traffic differentiation, and admission control.
While the three former are usually embedded in a technology, the forth one
is not.

Flow-control, as discussed in Section 2.1.3, aims to reduce or eliminate
packet loss that is a result of contention and overflowing receive-buffers in
switches, but its use can result in congestion in one part of the network
spreading to other parts as link transfers slow-down or are temporarily halted.
Congestion control aims to prevent or react to the onset of congestion, re-
ducing or controlling its effect on overall throughput in the network. Traffic
differentiation applies differential treatment to traffic in order to provide cer-
tain guarantees to particular streams. A complex application, e.g. a video
server, deals with a multitude of traffic types, each with different require-
ments to timely delivery. One type of traffic may be sensitive to delay, but
without strict bandwidth requirements. E.g. network control and manage-
ment traffic. Other types of traffic may have strict bandwidth requirements,
whereas the latency requirements are relaxed. Finally, admission control is
the general concept of controlling the operation point of a network to avoid
saturation. This is achieved by making all new flows a subject of admission
control before any transmission can occur. The QoS capabilities proposed in
this thesis belong to the service differentiation and admission control cate-
gory.

2.2 Quality of Service 19

2.2.1 Service Differentiation

Service differentiation is the unequal treatment of traffic based on a certain
property. The granularity of differentiation ranges from no differentiation (i.e.
best effort) at one extreme to flow level differentiation at the other extreme.
In the middle we have class level differentiation, which is the strategy we
will be discussing in Chapter 4. The Internet community, which is the sole
proponent of the best effort strategy, has also standardised both a scheme
for flow level and class level differentiation, respectively IntServ [39] and
DiffServ [8]. The IntServ scheme differentiates on a per flow basis, therefore
it is possible to get a very good match between requested and achieved QoS.
The drawback is that the switch design becomes more complex and less
scalable, because it requires per flow signalling and that state information
for every single flow is kept in every hop from source to destination. This
problem lead to the specification of DiffServ, which use the class of service
paradigm. Following the DiffServ philosophy no core switch should hold
status information about passing-through traffic neither should there be any
explicit signalling on a per flow basis to these components. The switches are
assumed to perform traffic discrimination only based on a QoS tag included
in the packet header - all packets carrying the same QoS code will get equal
treatment.

We have already discussed VC flow-control, which is also a key feature for
supporting DiffServ in interconnects. The independent buffers dedicated to
each VC in combination with mechanisms for differentiation between chan-
nels makes it possible to implement service classes. Certain VCs may be
assigned a low priority, and then we assign all low priority traffic to that
channel. Other traffic may require strict latency and jitter guarantees, which
can be achieved by assigning another channel for this traffic. Basically, this
becomes DiffServ implemented with VCs as suggested by Pelissier in [40].
The number of classes depends on the application and the number of VCs
available. We will discuss this concept further in Chapter 4.

Integrated Services

The Integrated Services Architecture (IntServ) was one of the first proposed
mechanisms to expand the service model of the Internet with QoS [39]. It
was specified by the Internet Engineering Task Force1 (IETF) and is an
architecture that must be used in combination with a resource reservation
mechanism (see below) to be fully functional. IntServ adds QoS by expanding
the existing best effort class with other service classes labelled guaranteed

1http://www.ietf.org/

20 Background

PATH

PATH
PATH

RESV

RESV

RESV
Computer A Computer B

Ethernet

Switch

Ethernet

Switch

Figure 2.6: Resource reservation with RSVP.

services and controlled-load services, which corresponds to real-time traffic
and elastic real-time traffic. To differentiate between these service classes
IntServ uses flow specific information to map a flow to one of the service
classes. This mapping is done by the resource reservation protocol when the
initial connection is set up and all the information mapping a flow to a certain
service class is contained in the routers along the path between source and
destination. A major problem with this approach is that there will be a lot of
such flow specification information to maintain when we are looking on core
routers in the Internet. This limits the scalability of the IntServ mechanism.

Resource Reservation Protocol

To handle the resource reservation requirements introduced by IntServ the
IETF created the Resource reservation protocol (RSVP) [41]. With RSVP
we can request that the network reserves a certain amount of resources for our
connection from source to destination when the connection is set up. RSVP
was first used with IntServ, but has since then been used (and extended) as
a signalling protocol for several different QoS mechanisms [39, 41, 42, 43].

The purpose of RSVP is to reserve resources by setting up and main-
taining soft state information in all the routers along a certain path in the
network. Via RSVP an application can request that a certain amount of
resources reserved, as shown in Figure 2.6. Here host A wants to make a
reserved connection to host B and starts by sending a PATH message that
includes a unique ID and information about the resources it needs. As the
PATH message travels towards host B the necessary soft state information
is created in the intermediate nodes. When host B receives the PATH mes-
sages it responds with a RESV messages if it accepts the message. As the
RESV message follows the reverse path back to host A resources are al-
located all the way back to the sender. The reservation now consists of
soft-state information set up and maintained by RSVP in all the nodes along
the source/destination path.

2.2 Quality of Service 21

Differentiated Services

The Differentiated Services Architecture (DiffServ) [8] is another mechanism
to provide QoS in the Internet. It does not need a reservation stage, but it
can be combined with RSVP or other mechanisms to improve functionality.
Compared to IntServ the DiffServ solution is fundamentally different. One
of the key differences is that DiffServ does not give absolute guarantees, but
gives guarantees relative to other service classes specified. In other words
a “better” service class will always give higher performance than a “worse”
service class, but this might not always be good enough to satisfy the needs
of the application.

DiffServ us a stateless core approach to providing QoS, i.e. the core
switches does not contain any per-flow state. Therefore, the scalability prob-
lems of IntServ is not present in DiffServ. Instead DiffServ exploits a feature
in version 4 of the Internet Protocol (IPv4) [8]. It uses a field in the IPv4
header called Type of Service2 to label packets with the service class it be-
longs to. This is often referred to as the DiffServ code point (DSCP) in
DiffServ terminology. As packets travel through the network the DSCP is
used to differentiate the treatment of packets belonging to different service
classes. At the network edge packets from different flows are aggregated in
service classes based on a set of classifiers. In the core of the network packets
are forwarded according to the per-hop behaviour specified for the DSCP
that the packet belongs to.

2.2.2 Congestion Control

As flow-control is a mechanism to avoid packet loss due to buffer overflows,
congestion control is a mechanism to aid switches and links in the network
from becoming overloaded and depleting their credit supplies. When con-
gestion develops, a depletion of credit supplies starts and the queues begin
to fill up. This process spreads upstream through the network and results
in the creation and growth of congestion trees which eventually terminate at
the end-nodes. Obviously, this is a bad situation for a network as the growth
of congestion trees can quickly preclude transmission of other flows, in the
same virtual lane, that are not even destined towards the congested area.

The phenomenon causing spread of congestion to parts of the network that
do not contribute to the congestion is called head-of-line blocking. Head-of-
line blocking occurs, for instance, when the head of a FIFO queue is stalled
due to heavy traffic. Then the head of the queue is rightly stalled because
it is headed for a congested destination, but the packets behind that is not

2When used with IPv6 it uses the corresponding IPv6 field called Traffic Class.

22 Background

Switch A

Flow 1

Flow 2

DST

Flow 3
u

SRC

S
R

C

D
S

T

D
S

T

SRC

Congested egress link

Switch B

Switch C
FECN

DST sees FECN
was set and sends

this information
back to SRC

Switch A

Flow 1

Flow 2

DST

Flow 3
u

SRC

S
R

C

D
S

T

D
S

T

SRC

Congested egress link

Switch B

Switch C
FECNFECN

DST sees FECN
was set and sends

this information
back to SRC

Figure 2.7: Forward explicit congestion notification.

headed for a congested destination is unjustly stalled. When we use loss-less
flow-control this problem becomes even worse as the effect of back-pressure
creates congestion trees upstream from the point of congestion.

Two common mechanisms to control congestion are Forward Explicit
Congestion Notification (FECN) and Backward Explicit Congestion Noti-
fication (BECN). FECN is used to inform a packet’s destination that it was
subjected to congestion when traversing the network. This is achieved by
setting a FECN flag in the packets header. This flag is observed by the des-
tination, which can then signal the source about congestion, either by send-
ing a congestion notification packet or, when acknowledgements are used,
by setting the congestion flag in the next acknowledgement for the packet
in question. See Figure 2.7 for an illustration of FECN. In this figure the
link from Switch A to Switch B is oversubscribed. The FECN flag is set at
this point and when the destination sees a packet that has this flag set, it
sends the FECN status to the source. BECN is similar, but it shortens the
feedback loop by going straight from the point of congestion to the source
without the need for first going to the destination.

Several other schemes for congestion control exists and this field has re-
ceived increased attention in recent years, but we will not delve further into
the topic of congestion control in this thesis.

2.3 Research Methods 23

2.2.3 Admission Control

The purpose of an admission control (AC) algorithm is to control the oper-
ation point of a network in order to avoid saturation. This level of control
is commonly attained by using either rate control or call admission control
(CAC). CAC can be compared to the telephone system where there is always
a risk of the line being busy if the load is high (call blocking), the lines are
considered busy because adding any more calls to the network would reduce
the quality all over. At the other end of the spectre we have rate control,
which slowly reduce the rate for all clients as the number of clients grow.
This allows for more people to participate at the cost of lower performance,
and might be acceptable for services such as file transfer and web surfing, but
disastrous for sensitive services such as voice over IP, video conferencing, and
massive multi-player online games. Rate control is often used in combination
with over-provisioning, the most prominent example being the Internet.

AC can be classified as two opposites, centralised versus distributed AC.
There are drawbacks and advantages of both that we will discuss in Chapter
5. Where we study four different CAC schemes that differ in the way they
collect information about the current network condition and how they make
the admission decision.

2.3 Research Methods

When conducting research in communication networks it is common to either
study an existing system or to create a new system. When we study exist-
ing systems our main tasks are to make measurements and to analyse the
collected data. Data are collected in order to improve our knowledge about
the system or to understand a certain phenomenon. When we create a new
system we have two common options, we can either build a real life prototype
or we can build a model. If we choose to build a model, we again have two
choices. We can either make an analytical model or a simulation model (or
both) [44]. How we conduct research depends on how we decide to build our
model. Below we briefly discuss some advantages and disadvantages of these
three options.

2.3.1 Prototyping

The main benefit of using prototypes is that it can be considered equal to per-
forming measurements on a real system. Unfortunately, prototypes are costly
and time consuming as they require the implementation of both hardware and
software. Furthermore, if the first version of a prototype is incorrect, the cost

24 Background

of building a second version is still expensive as new hardware have to be cre-
ated. Secondly, it does not scale well. I.e. if we want to study large networks
the cost of building a large number of prototypes is prohibitive. Thirdly, it
takes a lot of manpower as experts in several fields are required. E.g. to
build switching hardware we need people with experience from hardware de-
sign and embedded programming, as well as experts on switch architecture
and algorithms.

Since the process of prototyping is so expensive and time consuming it
is often the last step in a research process, performed after a combination of
simulation and analytical work has been proven successful. Then, a prototype
often serves as the final step in the verification of a new idea. In the context of
this thesis prototyping was never an option due the time and cost constraints.

2.3.2 Analytics

Since prototyping is expensive and time consuming the use of analytical
modelling is often preferred, especially for an initial study. The major benefit
is that results can quickly be achieved if the case is simple and existing
methods from queueing theory [45, 46] or network calculus [47] can be applied.
But as the model gets more advanced, analytical modelling becomes complex.
This makes it necessary to simplify and reduce the complexity of the model,
which might reduce its value and correctness. For this reason, analytical
modelling is often reserved for special cases and to prove certain limited
aspects of the system under study. It can also be combined with simulations
to verify certain observations acquired from simulations.

In the context of this thesis analytics has received little or no focus due
to the complex nature of the systems studied and the lack of well developed
analytical methods.

2.3.3 Simulation

Simulation represents the most flexible and available method for modelling
new systems, and it is the method that we have relied on in this thesis. Sev-
eral software packages for network simulations exist and many of them are
available for free, such as J-Sim [48], OMNet++ [49], and NS2. Of com-
mercial packages OpNet [50] and QualNet are examples targeting network
simulation. Simulations are often used on its own, but can also be combined
with analytical methods to further strengthen certain aspects. By using sim-
ulations we have a large degree of freedom in creating our models and we
avoid any risk of disrupting running systems or processes. Furthermore, re-
sults can be quickly obtained if the necessary models are already available.

2.3 Research Methods 25

And when the source code is available new models can easily be created based
on the code of existing models.

The main problems with simulation lies in deciding the necessary level of
detail and verification of the simulation results. If the level of detail is too
high our results might be affected by design issues unrelated to the issues we
actually want to study. And it can make simulations so resource demanding
that processing power becomes the bottleneck. On the other hand, if the
level of detail is too low we might end up over simplifying the problem and
missing out on essential problems. Finally, the problem of verification can be
major drawback of simulations as the model is often too complex to verify
by analytical means and too expensive to verify with a prototype. The result
being that we build another, independent simulator to verify the same system.

Simulation setup

The simulations results presented in this thesis were performed on two dif-
ferent simulators, one Ethernet simulator and one InfiniBand simulator. The
Ethernet simulator is based on the J-Sim framework[48], while the InfiniBand
simulator was written in-house at Simula Research Laboratory. Both sim-
ulators operate at the link layer of the relevant technologies, which include
individual packet buffering and arbitration in the switches.

When doing simulations the network goes through the tree phases: stabil-
isation, measurement, and drain. In the stabilisation phase no measurements
are done since we are waiting for the network to enter a steady-state. When
steady-state is reached the measurements phase starts and continues for a
given number of cycles. During the measurement phase all packets entering
the network are tagged, and when the tagged packets reach their destination
statistics are collected. When the measurement phase is over the tagging of
packets ends and we enter the drain phase. During the drain phase statis-
tics for the packets remaining in the network are collected, and when all the
tagged packets has left the network the simulation is over.

During simulations the throughput is gradually increased until we are
beyond the saturation point of the network. This way we can identify the
saturation point of the network and study the stability of the network when
in saturation. In an unstable network the throughput will drop when we try
to send more traffic than the network can handle, while in a stable network
throughput remains at the saturation point.

Statistics are collected for throughput and latency. Throughput is calcu-
lated as the average number of packets received by a destination during a
given number of cycles. This is called accepted traffic, while the actual num-
ber of packets that a host tries to send is called offered traffic. For regular

26 Background

topologies the accepted traffic is calculated as the average of four measure-
ments on one regular topology. For irregular topologies the accepted traffic is
calculated as the average of 16 measurements, one for each of sixteen different
irregular topologies. The set of irregular topologies remains the same for all
simulations. Latency is measure as the time a packet spends in the network
without any end-node queueing time. The calculation of average latency
corresponds to the calculation of average throughput described above.

Chapter 3

Routing Algorithms

The routing algorithm is a core function in any interconnect. It describes
how we compute the path a packet travels to get from source to destination.
As described in Section 2.1.3 the routing algorithm has a major impact on
both latency and throughput. Moreover, it has to be deadlock free in order
to support a network with link level flow-control. Designing a routing al-
gorithm that minimises latency, maximises throughput, and is deadlock free
is difficult. Not only because they often conflict with each other, but also
because the design is constrained by the features available in the target tech-
nology. In this chapter we will study the routing and flow-control used in
conventional Ethernet [3], and we will propose two new algorithms that can
be used to improve Ethernet performance in high performance computing.

In Section 3.1 we present and evaluate the routing and flow-control used
in conventional Ethernet. Then in section 3.2 we propose and evaluate the
Segment-based routing (SR) algorithm in comparison to the Spanning tree
protocol (STP). In section 3.3 we propose and evaluate a second algorithm
called Layered shortest-path routing (LASH). LASH is not directly compat-
ible with Ethernet, but with some minor changes to Ethernet flow-control
they can be combined.

3.1 Routing in Ethernet

The way conventional Ethernet operates differs in two aspects from dedicated
interconnection networks. Firstly, interconnection networks are loss-less and
only drop frames when bit errors occur. Conventional Ethernet drops frames
whenever congestion occurs. Secondly, these networks use mechanisms that
avoid deadlock situations while still using all available links. The problem
of deadlock does not exist in Ethernet because of its routing algorithm and

27

28 Routing Algorithms

because it originally only supported lossy operation. But flow-control was
added to Ethernet in 1997 [51], and when we introduce flow-control and
do not drop frames the possibility for deadlock appears in topologies with
loops [1, 2]. Ethernet does, however, still avoid deadlock by using the STP
to calculate routing tables. The STP turns any topology into a tree by
disabling links until all loops are removed. It is a simple solution that avoids
the problem of deadlock, but with one major drawback. When disabling
links we waste resources, and for interconnection networks we want efficient
topologies and we want to use every link to achieve the best performance
possible. In this context the STP is not a good solution.

Our objective in this section is to show how to obtain a loss-less dead-
lock free network with the best possible performance, while adhering to the
current Ethernet standard and using off-the-shelf Ethernet equipment. We
achieve this (i) by introducing flow-control in all network nodes and (ii) by
replacing the STP. Flow-control makes the network loss-less and replacing
the routing algorithm avoids deadlock without disabling links. This makes it
possible to leverage the performance that regular topologies such as meshes,
tori, clos etc. offers. We also study the effect flow-control has on higher layer
protocols, in this case TCP.

3.1.1 Xon/Xoff Flow-Control

To avoid packet loss we need a way to inform the upstream nodes about our
buffer situation. In Xon/Xoff flow-control this is done by simple Xon/Xoff
messages. When the downstream node has available buffer space it sends an
Xon message to the upstream node telling it to start sending frames if any
are available. As the transmission proceeds and the downstream node runs
out of buffer space it sends an Xoff message telling the upstream node to halt
frame transmission. For this scheme to work we must make sure that these
messages are sent in a timely manner. When the downstream node sends an
Xoff message it must do it at a point in time where it has enough space to
buffer the frames received while it waits for the Xoff message to take effect.
There will be a delay between the transmission and the activation of the Xoff

message due to a propagation and processing delay. According to [2] the
buffer requirements and trigger values can be calculated as follows1:

F ≥ Fon +
trtb

Lf

≥ Foff +
trtb

Lf

≥
2trtb

Lf

(3.1)

1The formula shown is for frames while the original is for flits. The end result is the
same as mentioned in [2] Sect. 13.3 page 245.

3.1 Routing in Ethernet 29

Here F is the total buffer space, Fon the number of buffers triggering the
on message, Foff the number of buffers triggering the off message, trt the
propagation and processing delay for a frame, b the link bandwidth, and Lf

the frame size. The minimum number of buffers needed to allow full speed
operation is 2trtb. We need trtb bytes to make sure we have buffers available to
receive data sent after the off message was sent, but before it was received and
processed at the other end. We need another trtb bytes to make sure we have
data to send while we wait for an on message to be received and processed at
the other end. If we want to further reduce the number of Xon/Xoff messages
sent at the cost of more buffers, we can increase the number of buffers used
for F , Fon and Foff according to the formula.

3.1.2 Ethernet Flow-Control

When flow-control was added to Ethernet the concept of control frames was
introduced for the first time in Ethernet technology. Currently, there is only
one flow-control scheme specified and this is an Xon/Xoff approach similar
to the one described in the previous section. Here a pause frame is used to
communicate the Xon/Xoff messages. A pause frame is a special instance
of the control frame shown in Figure 3.1 [51]. According to the standard a
pause frame must have the MAC control op-code set to 0x0001 and a MAC
control parameter consisting of a two byte field called the pause time. The
pause time P means the time the upstream node must wait before sending
the next frame. This time is measured in 512 bit-time increments, where the
bit-time B is the time it takes to send a single bit. For Gigabit Ethernet
B equals 1 ns which gives P a range of 0–33.6 ms in 512 ns increments. A
pause time P with a value of zero equals an Xon message and overrides any
earlier pause times. A P between 1 and 255 equals an Xoff message lasting
P × 512 bit-times. As time passes the pause time will eventually expire, this
is a safety measure to avoid permanently pausing a link if the Xon message
should be lost. If the situation persists, however, we must refresh the pause
by sending another pause frame.

The exact algorithm for triggering the pause frame mechanism is unspec-
ified, and it is up to the individual vendors to find their own solution. We
use a threshold function to trigger the transmission of pause frames and a
timer to check if the pause should be refreshed. This timer is a countdown to
the expiration of the last pause frame transmitted. If the timer reaches zero
and the current port is still congested, we have to resend the pause frame
telling the upstream node to extend its pause time. The threshold function
is tightly connected to the minimum buffer space we need to avoid dropping
frames and to keep the link running at full speed as described in (3.1). With

30 Routing Algorithms

Figure 3.1: MAC control frame format.

the numbers from Table 3.1 we get the following buffer requirements when
we replace trtb

Lf

, Fon and Foff with 4566 bytes:

F ≥ 2 × 4566 (3.2)

These 4566 bytes consist of the following fields from Table 3.1 [51]: Frame
on transit is a frame that has just been flushed for transmission when flow-
control has been activated on the sender side. This frame must be completed
before we can send the pause frame. Frame on receive is a frame that has
just been flushed for transmission when we have decoded the pause frame on
the receiver side. We must finish transmission of this frame before we pause
the link. Pause frame and pause frame decode is the time it takes to send
and decode a pause frame respectively. The propagation delay is the delay
over ten meters of unshielded twisted pair for Gigabit Ethernet. In total this
becomes 3270 bytes, but we only buffer complete frames so we round this
upwards to three maximum-length Ethernet frames which equals 4566 bytes.
Thus, the minimum buffer space necessary for full speed operation becomes:

F ≥ 9132 bytes (3.3)

As we try to minimise buffer space we set Fon = Foff . This gives us a
total of 9132 bytes for each port and a pause frame trigger at 4566 bytes.

The granularity of Ethernet flow-control is per port, thus the upstream
node can be told to stop frame transmission when the downstream node

3.1 Routing in Ethernet 31

Allotment Bits

Frame on transit 12,336
Frame on receive 12,176
Pause frame 512
Pause frame decode 1024
Propagation delay (10m UTP) 114

Table 3.1: Minimum buffer requirements for Gigabit Ethernet flow-control.

runs out of buffer space without affecting traffic on any other ports. The
effect of increasing and decreasing flow-control granularity is studied in [52].
The main conclusion being that increasing flow-control granularity to act
on source/destination pairs further improves performance. Additionally, per
port flow-control is incompatible with Ethernet’s priority mechanism, this
will be further discussed in Section 3.3.3. In the rest of this section we
assume port based flow-control as this is the granularity that is supported
by the Ethernet standard.

3.1.3 Switch Organisation

We have modelled our switch as a shared memory architecture. A shared
memory architecture was chosen because it reduces the effect of head of line
blocking, while in a crossbar approach this must be dealt with specifically.
Shared memory is also the most deployed switch architecture in current Eth-
ernet equipment [30].

Our switch model is shown in Figure 3.2. It has a shared memory used
to exchange frames between ports, and each port have a dedicated lookup
engine to allow for distributed address lookup. The output port lookup is
completed before the frame is stored in shared memory, but it would also be
possible to store the frame before or in parallel with the lookup. Then the
frame could be updated with the output port information when the lookup
is complete. On the output side each output port has a FIFO queue for
outgoing frames. This queue is implemented as a pointer table with pointers
to the corresponding frames in the shared memory. When an output queue
is ready to transmit a frame it follows the pointer at the front of the queue,
transmits the frame, and releases the memory previously occupied by the
frame. In order delivery is ensured by using links among packets received
through the same input port.

32 Routing Algorithms

Figure 3.2: Switch Architecture.

3.1.4 Buffer Organisation

To combine our shared memory architecture with flow control we have divided
our memory in global and local partitions. The global partition is common
for all ports (global memory), while the local partition (local memory) is
dedicated to a single port (Figure 3.2). The global memory is where frames
are stored when there is no severe congestion in the switch. If short term
congestion occurs the amount of global memory will be able to handle this
without activating flow control, i.e. global memory is not subject to flow
control. In case of long term congestion the global memory will be filled by
frames destined for the congested port. As this happens additional frames
destined for the congested port must use the local memory that belongs to
the input port of the frame. Furthermore, as the local memory fills up flow
control will be activated on this port. This scheme allows ports without
frames destined for a congested port to continue operation as normal. To
a certain extent it also removes head of line blocking from the ports with
frames destined for a congested port, but as the local memory is filled no
more progress can be made on this port until congestion resolves. This could
be avoided if we, for each input port, had a local memory for each output
port.

Flow control is triggered by the use of local memory as described in
Section 3.1.2. When the local memory is filled a threshold function triggers
the transmission of pause frames according to (3.3).

3.1.5 Performance Evaluation

Our evaluation consists of three routing schemes on regular and irregular
topologies with the major performance properties being throughput, latency
and frame loss. We also consider TCP throughput and latency as a means to
evaluate the effect of flow-control on reliable transport protocols. We have

3.1 Routing in Ethernet 33

studied the performance of the STP, UpDown routing (UD), and Dimension
order routing (DOR), which where all described in Section 2.1.4. STP is
the default routing algorithm supported in Ethernet switches, while UD and
DOR are well know algorithms from the field of interconnection networks.

We present packet level simulations for a set of regular and irregular
topologies. All simulation results have been obtained with an Ethernet simu-
lator developed with the J-Sim framework [48]. We simulate a shared memory
Ethernet switch with support for 802.3x flow control and 1 Gbit/s Ethernet
links. Each switch has five ports where one is connected to a computing node
and up to four are connected to other switches. Our traffic model consists of
uniform traffic, and a peak rate packet arrival process. The average bit rate
is increased in steps from 10 to 1000 Mbit/s (1% - 100% load). The packet
size is fixed at 1522 bytes which is the maximum Ethernet frame size.

Throughput

We simulated the STP and UD routing on a set of irregular topologies, while
for regular topologies we simulated UD and DOR on a 8x4 torus and a 8x4
mesh respectively. We have also studied TCP performance in combination
with UD routing, DOR and flow-control. TCP in combination with STP
was left out due to the poor performance of STP. The results for irregular
topologies are presented in Figure 3.3(a) and 3.3(b). The x-axis show the
amount of traffic that each node is trying to send in Mbit/s, the left y-axis
shows the average per node receive rate in Mbit/s, and the right y-axis shows
the link layer frame loss in Mbit/s. The link layer frame loss when TCP is
used is left out as it is negligible due to TCP’s built in congestion avoidance
mechanism. It is in the order of tens of kilobytes while for a datagram service
it is several megabytes (Figure 3.3(a)).

Figure 3.3(a) shows us that UD enabled Ethernet achieves more than tree
times the throughput of conventional Ethernet when flow-control is disabled.
UD gives a per node throughput of 131 Mbit/s compared to 39 Mbit/s for
STP. These data rates, however, are only of theoretical interest since the
frame loss is so high. Figure 3.3(a) shows that an injection rate of 300
Mbit/s results in a 60% frame loss for UD and 88% frame loss for conventional
Ethernet. Few applications are usable under such conditions, something the
TCP results in Figure 3.3(b) shows. Here the achieved throughput when
running TCP over Ethernet without flow-control is only 55 Mbit/s, which
is less than half the throughput we measured on Ethernet with UD routing.
This decrease in throughput happens because TCP uses sliding windows and
retransmissions to achieve a reliable service with in order delivery of packets.
It is an example of the retransmission penalty that any application requiring

34 Routing Algorithms

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Offered traffic (Mbit/s)

R
ec

ei
ve

d
tr

af
fic

 (
M

bi
t/s

)

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

D
ro

pp
ed

 tr
af

fic
 (

M
bi

t/s
)

Up*/down* with flow control
Up*/down* without flow control
Dropped traffic up*/down*
STP with flow control
STP without flow control
Dropped traffic STP

(a) Irregular network with 32
switches.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Offered traffic (Mbit/s)

R
ec

ei
ve

d
tr

af
fic

 (
M

bi
t/s

)

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

Ethernet without flow control
TCP over Ethernet without flow control
TCP over Ethernet with flow control
Dropped traffic

D
ro

pp
ed

 tr
af

fic
 (

M
bi

t/s
)

(b) Irregular network with 32
switches.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Offered traffic (Mbit/s)

R
ec

ei
ve

d
tr

af
fic

 (
M

bi
t/s

)

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

Ethernet without flow control
TCP over Ethernet without flow control
TCP over Ethernet with flow control
Dropped traffic

D
ro

pp
ed

 tr
af

fic
 (

M
bi

t/s
)

(c) 8x4 torus.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Offered traffic (Mbit/s)

R
ec

ei
ve

d
tr

af
fic

 (
M

bi
t/s

)

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

Ethernet without flow control
TCP over Ethernet without flow control
TCP over Ethernet with flow control
Dropped traffic

D
ro

pp
ed

 tr
af

fic
 (

M
bi

t/s
)

(d) 8x4 mesh.

Figure 3.3: Throughput.

a reliable transport layer can run into when using Ethernet without flow-
control. Even if we are allowed to inject a lot of frames most of them are
wasted since they will probably be dropped and retransmitted. The benefits
of reducing retransmissions are larger than the benefits of blindly increasing
the injection rate as we shall see below.

To improve performance we enable flow-control. The new achieved through-
put, now with zero frame loss, is 65 Mbit/s for UD and 21 Mbit/s for STP
(Figure 3.3(a)). When the network saturates, the end nodes are throttled
since the switches in the network run out of buffer space. Throttling is
achieved by pausing links in the network as described in Section 3.1.2. When
more links in the network enters a paused state, the pause state propagates
to the end nodes and reduced the number of frames injected into the network.

3.1 Routing in Ethernet 35

The achieved throughput for TCP is now 65 Mbit/s compared to 55 Mbit/s
without flow-control (Figure 3.3(b)). Which shows that the introduction of
flow-control has improved TCP throughput by 18% even if throughput for
Ethernet with UD has been reduced from 131 Mbit/s to 65 Mbit/s (Figure
3.3(a)). TCP throughput is increased since we no longer drop frames, mean-
ing that the TCP congestion mechanism is never activated. Every frame we
inject arrives at its destination and there is never any retransmissions, which
leads to increased throughput from the applications point of view even if the
Ethernet injection rate has been reduced. With flow-control we inject less
frames, but every frame is useful. Without flow-control we inject a lot of
frames, but only a few of them reach the destination.

For regular topologies we obtain even better results when we introduce
flow-control. With TCP the throughput is about 50 Mbit/s on both the torus
and the mesh without flow-control. When we enable flow-control the TCP
throughput increase by 30 % to 65 Mbit/s on the torus and by 60 % to 80
Mbit/s for the mesh (Figure 3.3(c) and 3.3(d) respectively). Again we see an
increase in TCP performance even if the Ethernet injection rate is reduced.
The 8x4 torus with UD routing and no flow-control achieves a throughput of
160 Mbit/s, when we enable flow-control this is reduced to 65 Mbit/s (Figure
3.3(c)). For the 8x4 mesh with dimension-order routing throughput is slightly
lower with 130 Mbit/s and when flow control is enabled this is reduced to
80 Mbit/s (Figure 3.3(d)). It is easy to be seduced by these seemingly good
numbers for Ethernet without flow-control, but the truth is that the frame
loss and the resulting retransmission rate leads to very poor performance for
applications, something the TCP numbers confirms.

The large difference between the torus and the mesh is due to the dif-
ferent routing algorithms. The UD algorithm is unable to utilise the extra
connectivity that is present in the torus because it is vulnerable to congestion
around the root of the UD tree when flow control is enabled. This weakness
of the UD algorithm is studied in [34]. DOR on the other hand is tailored to
exploit the regularity of the mesh topology and handles the situation well.
The improvement in TCP follows from the reduction in packet loss as dis-
cussed earlier. In addition to the removal of frame loss TCP also benefits
from the improvement in the routing algorithm. DOR is known to be better
than UD routing, as can be seen in the differences between the torus and the
mesh (Figure 3.3(c) and 3.3(d)).

Latency

We present latency results for both Ethernet and TCP simulations to see how
they differ when flow-control is enabled and disabled. For irregular networks

36 Routing Algorithms

latency is increased with a factor of 2.5, from 1000μs to 2500μs, when flow-
control is enabled and STP is used (Figure 3.4(a)). For UD routing latency
is almost doubled from 700μs to 1300μs when flow-control is enabled. The
use of UD routing gives lower latency and higher throughput since it can use
all links in the network.

The increase in latency that we observe when flow-control is enabled is
expected, and is caused by the back pressure created by the pause frame
mechanism. When links are paused data frames must wait in buffers along
the path from source to destination, where they, in case of no flow-control,
would have been dropped. It is this waiting that causes the growth in latency.
The worst case scenario is that a frame will wait at every hop towards its
destination, resulting in a large increased in latency (See Section 4.3.4).

If we compare latency at the Ethernet and TCP level we see that there
is almost no difference when flow-control is enabled, and a large difference
when flow-control is disabled. When flow-control is enabled TCP latency is
only slightly higher than Ethernet latency because the only difference is the
protocol overhead in the end nodes2. When we disable flow-control we see
an increase in TCP latency compared to Ethernet latency. This increase is
caused packet loss. Packet loss triggers the TCP retransmission mechanisms
and this affects latency in the same way we saw it affect throughput in the
previous section. Thus, the introduction of flow-control increase throughput,
but at the cost of increased latency.

The behaviour for regular topologies is very similar to that of irregular
topologies. When we enable flow-control both the 8x4 torus and the 8x4 mesh
see a doubling of latency from 750μs to 1400μs (Figure 3.4(b) and 3.4(c)).
The results are very similar even though the torus has a higher connectivity
than the mesh. This is again due to DOR and its ability to exploit the
regularity of the mesh topology better than UD routing is able to exploit the
torus. When we consider TCP latency we see the same differences between
TCP and Ethernet latency as for irregular topologies.

For applications where low latency is important actions must be taken
in order to avoid saturation, since a saturated network increase latency. We
will discuss this in detail in Chapter 4 and 5.

3.2 Segment-Based Routing 37

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Offered traffic (Mbit/s)

A
ve

ra
ge

 la
te

nc
y

(μ
s)

Up*/down* Ethernet with flow control
Up*/down* TCP with flow control
Up*/down* Ethernet without flow control
Up*/down* TCP without flow control
STP Ethernet without flow control
STP TCP with flow control

(a) Irregular topologies.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Offered traffic (Mbit/s)

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

Ethernet with flow control
TCP with flow control
Ethernet without flow control
TCP without flow control

(b) 8x4 torus.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Offered traffic (Mbit/s)

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

Ethernet with flow control
TCP with flow control
Ethernet without flow control
TCP without flow control

(c) 8x4 mesh.

Figure 3.4: Latency.

3.2 Segment-Based Routing

In the previous section we saw how the poor performance of the SPT can
be improved by using the UD routing algorithm. While UD is able to im-
prove performance it still has one major drawback. It is vulnerable to hot-
spots around the root of the UpDown tree [34], which severely affects perfor-
mance. We now suggest the Segment-based routing (SR) algorithm, where
we have a larger degree of freedom when enforcing turn-restrictions compared
to UD and related algorithms such as FX [57] and L-turn [58]. Furthermore,

2The latency introduced by the protocol stack in the end node can be large. As we are
concentrating on the features of the network infrastructure the end node complexity has
not been studied in detail. For more information on this topic please refer to [53, 54, 55, 56].

38 Routing Algorithms

bidirectional

restriction
routing

up

ROOT

(a) Semi-regular
topology.

1

2

3

4

6

5

A

B

C

D

E

F

G
H

I

J
K

L

4

3 2

78

10

1214

13

11

9

1

15

(b) Segmented
topology.

6

5

A

B

C

D

E

F

G
H

I

J
K

L

4

3 2

78

10

1214

13

11

9

1

15

1

2

3

4

(c) A possible set of
restrictions.

Figure 3.5: Segments and routing restrictions.

hot-spot vulnerability is reduced as the routing paths are better distributed
throughout the network.

The key concept of the SR algorithm is the partitioning of a topology into
sub-nets, and sub-nets into segments. This allows us to place bidirectional
turn-restrictions locally within a segment. Segments are independent and we
can place turn-restrictions within a segment independently from other seg-
ments. Figure 3.5(a) shows a semi-regular topology with UD routing restric-
tions, which we will use as an example. A segment is defined as a list of inter-
connected switches and links, as shown in Figure 3.5(b). Here we have four
segments labelled 1−4, where segment 1 consists of the switches {A,B,C,D}
and the links {1, 2, 3, 4}. Segment 2 consists of switches {E,F,G,H} and the
links {5, 6, 7, 8, 9}, and so on for the rest of the segments. All network links
belong to one and only one routing segment (i.e. segments are disjoint), and
every routing segment, except the initial segment, starts and ends on a switch
already part of a computed segment. Furthermore, we group segments into
sub-nets. A sub-net is a set of switches and links (i.e. one or more segments)
that is connected to the rest of the network (other sub-nets) through only
one link (see Figure 3.6(b)).

When the complete topology is partitioned into segments we can add
routing restrictions. In Figure 3.5(c) we have enforced one routing restriction
in each of the four segments from Figure 3.5(b), these routing restrictions
guarantees deadlock-free routing and connectivity. In the first segment, the
placement of a routing restriction in any one of the four switches will result in
a deadlock-free routing algorithm for this segment. Moreover, as the second
segment starts and ends on switches already belonging to the first segment,
connectivity among the starting and ending switches is guaranteed through

3.2 Segment-Based Routing 39

. . .

regular segment

switches belong to
other segments

unitary segment. . .

starting switch

starting segment

(a) Segment types and locations for
routing restrictions.

bridge

cycle

starting switch
terminal switch

NS1
NS0

(b) Example of links connecting
sub-nets.

Figure 3.6: Segment types.

the first segment. Thus, we can place a turn restriction in the second segment,
breaking the cycle that can be found through the segment, without worrying
about connectivity.

The main challenge is to find the segments, as they are critical to guar-
antee deadlock-freedom, preserve connectivity, and gain performance.

3.2.1 Segmentation Algorithm

The complete algorithm3 is shown in Figure 3.7. It consists of the procedure
compute_segments, which searches for all segments. And the procedure
find, which tries to find a new segment starting in the switch received as
an argument. Throughout the execution of the algorithm, switches and links
can be in one of the following states:

• Not visited. Initially all switches and links are in the state not visited.
This is denoted by the variable .visited being false.

• Visited. A switch or link becomes visited once it is made part of an
already computed routing segment. This is denoted by the variable
.visited being true.

• Temporarily visited. During the process of computing a routing seg-
ment, a switch or link may change state to temporarily visited. Only

3The algorithm assumes that a packet will never enter and leave a switch through the
same link.

40 Routing Algorithms

switches and links not marked as visited may be marked as temporarily
visited. This is denoted by the variable .tvisited being true.

• Starting. A switch is marked as the starting switch if it is the first
switch in the first segment within a sub-net. This is denoted by the
variable .starting being true.

• Terminal. A switch is marked as terminal if, among all links, no new
segment is found. This is denoted by the variable .terminal being
true.

The compute_segments procedure (Figure 3.7) searches for all segments.
First, it chooses a random switch as the starting point of the first segment
in the first sub-net. Then the selected switch sw is marked as starting and
visited, and added to the first sub-net. Second, the find procedure is used to
find a segment starting in sw. Such a segment only exists if it is possible to
arrive back at sw through a set of switches and links not already visited. On
success, the find procedure updates all the switches and links belonging to
the new segment, i.e. all of them are marked as visited and as belonging to
the current sub-net. On fail, the find procedure leaves all links and switches
in their initial state. If the procedure fails, it means that there are no new
segments reachable from this switch, and the switch is marked as terminal.
Third, the procedure next_visited is used to search for a switch marked
as visited, belonging to the current sub-net, and with at least one link not
marked as visited. If such a switch is found it is used to search for new
segments as just described. Otherwise, the procedure next_not_visited

is used to search for a switch that is not marked as visited, not marked as
terminal, and attached to a terminal switch. If successful, a new sub-net is
started and a new segment is searched for from this switch. On failure, we
know that all switches have been searched and that all switches and links are
part of a segment and sub-net.

The procedure find is responsible for finding, from a given starting point,
a segment ending on a visited switch and made of switches and links not vis-
ited. During the search the current switch is marked as tvisited and is added
to the current segment segm. Next, a set of links attached to the current
switch is built (suitable links). This set only includes links not marked as
visited, nor as tvisited. If the set is empty, then there are no suitable links and
the find procedure has failed in finding a new segment. Otherwise, the links
in the set are considered in the order found. Order is important, since the
segments found may be different if the order of search is changed. When the
links are searched, they are first marked as tvisited, then added to the current
segment segm. Then the switch at the other end of the link is inspected. If

3.2 Segment-Based Routing 41

procedure compute segments()
var

s : segment list
sw : switch
c : integer # current sub-net
n : integer # current segment
end : boolean

begin

c = 0; n = 0
sw = random
sw.starting = true
sw.sub-net = c
sw.visited = true
s[n] = empty
end = false
repeat

if (find(sw,s[n],c))
n++

else

sw.terminal = true
sw = next visited()
if (sw == nil)
begin

sw = next not visited()
c++
sw.starting = true
sw.sub-net = c
sw.visited = true

end

if (sw == nil) end = true
until (end)

end procedure

procedure find(sw, segm, snet) : bool
var

nsw : switch
begin

sw.tvisited = true
segm = segm + sw
links = suitable links(sw)
if (links==nil) begin

sw.tvisited = false
segm = segm - sw
return false

end

for each link ln in links begin

ln.tvisited = true
segm = segm + ln
nsw = aTop[sw,ln]
if ((nsw.visited and nsw.sub-net =

snet) or

find(nsw, segm, snet)) begin

ln.visited = true
sw.visited = true
ln.tvisited = false
sw.tvisited = false
return true

end

else begin

ln.tvisited = false
segm = segm - ln

end

segm = segm - sw
sw.tvisited = false
return false

end procedure

Figure 3.7: Main procedure for searching segments.

this switch is marked as visited, or if a recursive call of the find procedure
from the neighbour switch returns true (i.e. such a switch is found at a later
stage), then a new segment has been found. If we are unable to find a new
segment we return with failure.

Figure 3.8 shows an example run of the algorithm. The topology is made
of twelve switches connected with fourteen links. We start by randomly
selecting a switch, which yields switch I. From switch I we find segment ns1

42 Routing Algorithms

SN0

SN0 SN0

SN0

ns1

ns1

ns1
ns1

ns1

ns1

ns1

SN1

SN1 SN1

SN1

SN1SN1

ns2

ns2

ns2
ns2

ns2
ns2 ns2

ns2

ns2

ns2

ns2ns2

ns3

SN2SN3
starting
switch

switch
terminal

I

H

D

GFE

A B C

J K L

0 1 2

3 4

5 6 7

1098

12 13

11

Figure 3.8: Example of computing routing segments.

consisting of the following links and switches: {I, 8, E, 5, F, 9, J, 12}. This is
the only segment that can be found from I since a segment should always
end in a visited switch. Next, we search for a switch marked as visited,
which includes {I, E, F, J}, and that has a link not visited, which reduces
the candidates to {F}. But, from F no new segment can be found, therefore,
the switch is marked as terminal. All switches in the segments computed so
far belong to the first sub-net (SN0). Next, we search for a switch not visited
and attached to a terminal switch. The unique solution is switch G. At this
step, a new sub-net is started (SN1), and G is marked as starting and visited.
From G a new segment is found: {G, 3, C, 2, D, 4, H, 11, L, 13, K, 10}. Next,
we search for a switch marked as visited and with one or more attached links
not visited, which results in {G,C,H}. G is searched and a new segment
containing only link 7 is found. Next, from C no new segment can be found
and the switch is marked as terminal.

We continue by inspecting B, as it is attached to a terminal switch and
not marked as visited, we decide that no new segment is found. Thus, it is
marked as terminal. Then we perform the same action on A. When finished,
three segments and four sub-nets are found, including four starting switches
and three terminal switches.

Through the previous steps we found three types of routing segments:

• Starting segment. This type of routing segment will start and end
on the same switch, thus forming a cycle. This routing segment will
probably be found every time a new sub-net is initiated.

• Regular segment. This type of routing segment will start on a link, will
contain at least one switch, and will end on a link.

• Unitary segment. This type of routing segment consists of only one
link.

3.2 Segment-Based Routing 43

In order to ensure deadlock-freedom and preserve connectivity, the routing
algorithm must enforce routing restrictions in each routing segment as shown
in Figure 3.6(a). In particular, for a starting segment, the cycle can be
broken by enforcing a bidirectional routing restriction on any switch except
the starting one as it could introduce a cycle between two sub-nets. For
regular segments cycles are broken by enforcing one bidirectional routing
restriction on any of the switches belonging to the segment. Finally, for
unitary segments, no traffic can be allowed to cross the link in order to avoid
deadlock. Thus, on one side of the link a bidirectional routing restriction
must be enforced between this link and every other link attached to this
switch.

3.2.2 Segment-Based Routing in Ethernet

The STP is embedded in all conventional Ethernet switches and it makes
the configuration of Ethernet equipment an effortless task. Every switch has
an instance of the algorithm running and ready to perform the following
operations: (a) Elect a root switch. The switch with the lowest identifier
is selected and becomes the root of the spanning tree. (b) Negotiate the
deactivation of ports in order to build a spanning tree. This process avoids
loops by making sure that only one switch is responsible for forwarding frames
from the direction of the root on to a given link. (c) Listen for changes in
the topology (maintenance mode). While in maintenance mode all switches
are listening for topology changes, and when a change is detected a new
round of negotiations begins. During the negotiation phase routing might be
inconsistent.

In order to replace STP with SR we will consider two approaches. The
first approach requires that the standard organisations embrace SR and that
the firmware in future Ethernet switches are shipped with SR embedded.
The second approach provides a less elegant solution, but with some effort it
can be used in current of-the-shelf equipment.

Clearly, the best way to embed SR into Ethernet is to replace STP by SR,
and deliver auto-configuration support at the same levels as STP currently
does. This requires the presence of the SR algorithm in all switches and
the support for the following four operations [30]: (i) Elect a master switch.
(ii) Collect topology information. (iii) Calculate SR tables. (iv) Distribute
routing tables. In step (i) the master switch is selected through negotiation
as with the root switch in step (a) above. After the master switch is selected,
it collects topology information (ii) from all other switches and creates a
complete image of the network. Then, it calculates (iii) and distributes (iv)

44 Routing Algorithms

routing tables to all switches. Whenever the topology changes, step (ii), (iii),
and (iv) have to be repeated. However, due to the segment-based approach of
SR the number of switches involved in reconfiguration will be reduced because
many changes can be handled locally within a segment. The challenge of this
approach is that we must convince the standard organisations to adopt SR.

Our second approach does not require any changes to conventional Ether-
net switches and relies on features available in all managed Ethernet switches.
A routing table for SR requires that the route look-up function is able to
consider both the destination address and the input port when selecting the
output port for the frame to be forwarded. A requirement that is met by
most Ethernet switches classified as managed switches. This makes it possi-
ble to precalculate and then distribute routing tables to the switches involved
by the use of the simple network management protocol. The necessary tools
must be written and the switches must operate in manual mode (i.e. STP
and auto-learning have to be disabled). And, if the topology changes new
routing tables will have to be uploaded. Clearly, this approach is somewhat
cumbersome as we have no auto-configuration, but the performance gains
are significant and can make it worthwhile in a high performance computing
context.

3.2.3 Performance Evaluation

We present packet level simulations for a set of regular and irregular topolo-
gies. All simulation results have been obtained with an Ethernet simulator
developed with the J-Sim framework [48]. We simulate a shared memory
Ethernet switch with support for 802.3x flow control and 1 Gbit/s Ethernet
links. Each switch has five ports where one is connected to a computing node
and up to four are connected to other switches. Our traffic model consists of
uniform and pairwise traffic patterns, and a peak rate packet arrival process.
The average bit rate is increased in steps from 10 to 1000 Mbit/s (1% - 100%
load). The packet size is fixed at 1522 bytes which is the maximum Ethernet
frame size.

Regular Topologies

We have studied three sets of regular topologies, an 8x8 torus, an 8x8 mesh,
and an 8x8 mesh with 5% link faults. The latter is interesting as it shows
the strength of SR when applied to semi-regular networks (regular topologies
with link failures). For each topology we have performed simulations for
uniform and pairwise traffic patterns.

3.2 Segment-Based Routing 45

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
(M

bi
t/s

)

Offered (Mbit/s)

SR
UD

TBTP
STP

(a) Throughput 8x8 mesh.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200
A

ve
ra

ge
 la

te
nc

y
(

 s
)

μ
Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(b) Latency 8x8 mesh.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(c) Throughput 8x8 torus.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(d) Latency 8x8 torus.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(e) Throughput 8x8 faulty mesh.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(f) Latency 8x8 faulty mesh.

Figure 3.9: Throughput and latency for regular topologies with uniform traffic.

46 Routing Algorithms

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(a) Throughput 8x8 mesh.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(b) Latency 8x8 mesh.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(c) Throughput 8x8 torus.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(d) Latency 8x8 torus.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(e) Throughput 8x8 faulty mesh.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(f) Latency 8x8 faulty mesh.

Figure 3.10: Throughput and latency for regular topologies with pairwise traffic.

3.2 Segment-Based Routing 47

The results from an 8x8 torus in Figure 3.9(c) show that SR outperforms
all alternatives when uniform traffic is used. UD, being second best, is out-
performed by a factor of 2.2. For the 8x8 mesh (Figure 3.9(a)) the trend
is maintained, but now SR only outperforms UD by a factor of 1.2. The
difference between SR and UD is reduced because there are less links for SR
to exploit. Never the less, UD is still affected by early saturation due to the
associated hot-spots close the root node. Finally, for a mesh with 5% link
faults (Figure 3.9(e)) SR outperforms UD by a factor of 2. Here, SR is able to
retain much of the regularity of a full 8x8 mesh even in the presence of faults,
while the alternatives suffer from a significant reduction in performance. In
general, STP and TBTP are unable to exploit the network since they do not
distribute routes evenly in the topology. Instead, they use the links of the
spanning tree, which quickly saturates.

Stability problems are visible for all algorithms, but in particularly for SR
with uniform traffic. Figure 3.9(c) shows that throughput is more than halved
when SR hits the saturation point. This is caused by unfair flow-control,
unfair in the sense that flows with a short path receives more bandwidth
than flows with long paths. A flow risks that its share of bandwidth is
reduced for each hop towards the destination, since the number of flows it
must share the bandwidth with might increase. UD and TBTP also suffer
from this phenomenon, but not as severely. This phenomenon can be avoided
by the use of virtual channels where packets in different channels do not
interfere with each other (see the results in Section 3.3.5) or by the use an
age aware flow-control where the packet that has spent the longest time in the
network is always selected for transmission [2]. This phenomenon, however, is
seldom seen in real life situations because it only occurs in a heavily saturated
network. A situation that is avoided whenever possible, usually by admission
control or over-provisioning.

Latency closely follows the pattern seen with throughput, as the network
reaches saturation latency rapidly increase. Improving latency will be studied
further in Chapter 4.

For pairwise traffic in Figure 3.10 we see similar results, but with an over-
all reduction in throughput as the pairs cause a non-uniform use of network
resources causing an early saturation of the network. Latency is also reduced
as there is less congestion in the network.

Irregular Topologies

For irregular networks we have studied random topologies with sixteen, thirty-
two, and sixty-four switches. The evaluation of different sized networks gives

48 Routing Algorithms

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(a) Throughput 16 switches.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(b) Latency 16 switches.

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200

SR

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

UD
TBTP
STP

(c) Throughput 32 switches.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(d) Latency 32 switches.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(e) Throughput 64 switches.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1000 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(f) Latency 64 switches.

Figure 3.11: Throughput and latency for irregular topologies with uniform

traffic.

3.3 Layered Routing 49

us an indication of the scalability of each algorithm, as well as a performance
evaluation on irregular networks. The switch with the lowest ID has been
selected as the starting point for SR, and the segments have been computed
using the shortest distance to already visited switches. When enforcing turn-
restrictions within a segment we have randomly selected the switch where we
enforce the turn-restriction, while source/destination paths have been calcu-
lated following the path balancing algorithm described in [59]. This method
minimises the deviation of link weight.

In Figure 3.11(a) we see that SR increases throughput by a factor of 1.5
compared to UD, while UD and TBTP are similar in performance. For thirty-
two switches (Figure 3.11(c)) the performance difference is 1.84 in favour of
SR compared to UD, and 2.4 in favour of SR compared to TBTP. So as the
network size grows the performance of UD is reduced compared to SR, for
TBTP it is even more so. For sixty-four switches (Figure 3.11(e)) the trend
continues, and SR now outperforms UD and TBTP with a factor of 2.0 and
3.2 respectively. SR both perform and scale better than the other alterna-
tives. This is due to the advantage of having an even distribution of traffic
across the network generated by its flexibility and locality independence when
enforcing turn-restrictions. This combination of a local (segment) and global
view of the network makes it possible to ensure better decisions when en-
forcing turn-restrictions compared to the global only perspective of UD and
TBTP. An aspect which becomes more important as the network size grows.

The stability has improved since there are fewer loops in an irregular
networks than in meshes and tori. Latency follows the pattern seen with
throughput as was the case with regular networks.

Again, the results are similar for pairwise traffic (Figure 3.12), but with
smaller differences due to the non-uniform use of the network.

The use of turn-prohibition algorithms (SR, UD, TBTP) improves per-
formance when compared with link-prohibition algorithms (STP), because
we do not disable links.

3.3 Layered Routing

As an alternative to routing algorithms based on turn-restriction such as SR,
we now suggest an algorithm, Layered shortest-path routing (LASH), that
depends on virtual channels. This algorithm requires more complex net-
work hardware, but the benefits are guaranteed shortest-path routing and
higher performance than turn-restriction based algorithms. It can be applied
to existing technologies such as the InfiniBand Architecture (IBA) [4] and

50 Routing Algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(a) Throughput 16 switches.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1000 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(b) Latency 16 switches.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

SR

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

UD
TBTP
STP

(c) Throughput 32 switches.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 600 800

Offered traffic (Mbit/s)
 1000 1200

SR
UD

TBTP
STP

(d) Latency 32 switches.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200

SR

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

UD
TBTP
STP

(e) Throughput 64 switches.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1000 1200

Offered traffic (Mbit/s)

SR
UD

TBTP
STP

(f) Latency 64 switches.

Figure 3.12: Throughput and latency for irregular topologies with pairwise

traffic.

3.3 Layered Routing 51

Advanced Switching Interconnect (ASI) [5], while Ethernet requires modifi-
cations in order to work. This will be clarified in Section 3.3.3.

Layered routing is a concept that uses virtual channels (see Section 2.1.3)
to avoid deadlock and guarantee shortest-path routing. The virtual channels
are divided into layers and network deadlocks are avoided by preventing
portions of traffic from using specific layers. This contrasts with SR, which
avoid deadlock by preventing data packets from using specific paths and
thereby restrict routing freedom (see Section 3.4). Our method increases the
performance of deterministic routing using only a limited number of virtual
channels. This makes it directly applicable to present-day technologies such
as IBA and ASI.

A general problem that arises in irregular networks is the combination
of deadlock avoidance and shortest-path routing. As a result, most existing
methods for shortest-path routing in irregular networks provide shortest-
paths only relative to some constraint. UD, SR, and TBTP are all examples
of this, in that they support shortest-paths only relative to the active con-
straints enforced on turns.

3.3.1 Layered Shortest-Path Routing

In this section, we describe how to use LASH for guaranteed shortest-path
routing in any topology. This is done by first identifying a routing function
R that finds one shortest physical path between every source and destina-
tion. Then we generate a traffic assignment function T that assigns the
source/destination pairs to different layers in such a way that freedom from
deadlock in each individual layer is guaranteed.

Below, we give an algorithm for mapping source/destination pairs onto
virtual layers. We assume that a network I, and a layering L of that network
is given. Furthermore, we assume that L has n layers, and that we have
an address assignment function A that assigns exactly one address to each
traffic node in I.

Step 1: Let T (〈s, a〉) = undefined for all source/address pairs, let Ri be
empty for all i such that 1 ≤ i ≤ n and let A(a) be undefined for all
addresses a.

Step 2: Take one source/destination pair 〈s, d〉 that has not yet been pro-
cessed. For an arbitrary shortest-path between this pair do the follow-
ing:

52 Routing Algorithms

Step 2.1: Find a new unused address a, and let A(a) = d. (For some
technologies this amounts to generating a source routing header
that contains all routing information; for others, such as IBA, it
amounts to assigning a new address to the destination.)

Step 2.2: Find an existing layer Li such that letting Ri be enriched
to support the path, and letting T (〈s, a〉) = {Li} will not close a
cycle of dependencies in the layered dependency graph of I. If one
exists, let T (〈s, a〉) = {Li}, otherwise leave T (〈s, a〉) unchanged.

Step 3: If there are source/destination pairs that have not yet been pro-
cessed, go to Step 2.

Step 4: (Optional balancing step) Find two existing layers Lj and Lk, and
a source/address pair 〈s, a〉 such that the following is true:

• there are more source/address pairs assigned to Lj than to Lk,

• T (〈s, a〉) = Lj,

• letting T (〈s, a〉) = Lk instead and updating Rj and Rk accordingly
will not create a cycle of dependencies.

Let T (〈s, a〉) = Lk instead and update Rj and Rk accordingly. Repeat
this step until no combination of Lj, Lk, and a source/address pair
〈s, a〉 with the given properties exists.

If the network contains fewer layers than are needed to provide shortest-
path routing, the algorithm fails by leaving the traffic assignment function
undefined for some source/address pairs. The method can, however, easily
be adapted in such a way that these pairs are assigned to a layer, but are
not routed according to their shortest-paths. This can be done either by
identifying non-shortest-paths that fit into some layer, or by assigning all of
these paths to a separate layer that is routed according to UpDown routing.

The complexity of the algorithm is given by the number of source/destination
pairs (N2) times the number of layers (n), times the complexity of checking
for cycles (N). Our tests show that this does not become a problem for
modern machines until the networks are quite large (256 switches or more).
For larger networks we can circumvent the problem by considering more than
one source/address pair at a time. In [60] it is demonstrated that such an
approach has only a minor effect on the number of virtual channels needed
for shortest-path routing.

3.3 Layered Routing 53

Need for virtual layers as the network size grows

(switches = n and links = 2n)

0

1

2

3

4

5

6

7

0 50 100 150

Number of switches

N
u

m
b

e
r

o
f

v
ir

tu
a
l
la

n
e
s

Average

Minimum

Maximum

Figure 3.13: Required number of layers.

Required number of layers

An important issue in the evaluation of LASH is the number of layers that
are necessary to grant shortest-path routing to every 〈s, d〉 pair. The required
number of layers depends on network size and connectivity, not on the number
of hosts. The number of hosts is only limited by the number of ports on each
switch.

If we have minimal connectivity so that the network has the shape of
a tree, one virtual layer suffices, because no cycle of dependencies can be
closed as long as all routing follows a shortest-path. Furthermore, networks
with maximal connectivity also need only one layer, because no packet will
traverse more than one link and then no channel dependencies can exist. But
most network topologies that are used in practise will fall somewhere between
these two extremes. For networks with 16, 32, 64, and 128 switches and any
connectivity, covering all 〈s, d〉 pairs (i.e. all switches) requires a maximum of
3, 3, 5, and 6 layers, respectively (Figure 3.13). The variance in the required
number of layers is small. For a set of one hundred random topologies the
difference between the most demanding and the least demanding topology
was never more than one layer.

3.3.2 Ethernet Flow-Control Granularity

Recall our discussion of Ethernet flow-control in Section 3.1.2, where we
briefly mention the incompatibility between Ethernet’s flow-control mecha-
nism and its priority mechanism. This is problematic for the use of LASH
in Ethernet switches because LASH requires virtual channels. Ethernet does

54 Routing Algorithms

not explicitly support virtual channels, but the IEEE 802.1Q standard in-
troduced priority tagging of Ethernet frames, where each frame can have a
priority from 0-7, and each priority has dedicated buffering resources. We
will exploit this priority mechanism as virtual channels. Figure 3.14(a) shows
the format of a IEEE 802.1Q compliant Ethernet frame. The three bits la-
belled priority are used to indicate the priority of a given frame. To enable
the concept of virtual channels we change the semantics of these three bits
from priority to virtual channel identifier, which allows for eight virtual chan-
nels. Thus, we have support for eight virtual channels and one of our two
requirements for LASH routing is satisfied.

Our second requirement is virtual channel flow-control, but Ethernet only
supports per port flow-control. This makes it impossible for flow control on
a per-priority basis. Not only does this limit the performance of the priority
scheme itself [52], but it makes it impossible to support virtual channels
in combination with flow-control. Since, when flow control is enabled, the
virtual channels no longer have independent buffering resources.

3.3.3 Layered Routing in Ethernet

In order to use LASH in Ethernet we need to change the granularity of
Ethernet flow-control. We suggest a simple change to the Ethernet flow
control mechanism to allow for per-priority flow-control.

The pause frame that relay the on/off message must include a field that
tells the receiver what priority it should pause. This can be done by either
changing the current MAC control frame or introduce a new one. Changing
the current frame format requires that the priority value is embedded in
the zero-padding following the pause time (Figure 3.14(b)). This makes it
possible to extract the priority constraint for a pause frame by reading the
first three bits after the pause time. Thus, per-priority aware switches will
be able to find per-priority information, while it will be ignored by other
switches. The introduction of a new control frame is quite similar, but now
we create a new OpCode to distinguish between pause frames. The new
pause frame will contain the same information in the same place, but with
a different OpCode (Figure 3.14(c)). In this case per-priority aware switches
will use the OpCode field to decide the type of flow-control received and it will
then scan for the necessary information accordingly. Per-port aware switches
will use pause frames with OpCode = 1 as before, while pause frames with
OpCode = 2 will be ignored. This change is currently considered in the IEEE
802.3ar Congestion Management Task Force, but in the context of congestion
control.

3.3 Layered Routing 55

Independent of the strategy chosen, the main change is the inclusion of
priority information in the pause frame that enables the concept of virtual
channel flow-control. The STP can now be replaced or extended (for back-
wards compatibility see the next section) by LASH. Such a replacement can
be either centralised or distributed. In a centralised approach all switches
will go through an election process where a master is selected based on iden-
tity or another property (e.g. it could be pre-configured). The master switch
builds and maintains a topology map based on the information collected from
all the other switches. The topology map is then used by the master switch
to calculate and distribute routing tables. In the distributed scheme a pro-
cess similar to link-state routing can be applied if we exchange the random
selection of layers in LASH with a deterministic method. In a distributed
approach every switch in the network builds and maintains a topology map
and independently calculates the routing table necessary to reach all other
destinations in the network. This approach avoids single point of failure and
it reduces the amount of control traffic in the network since only topology
information is passed between switches. Either way, self-management can be
similar to what we have in the STP today.

3.3.4 Layered Routing and QoS

As described in Section 3.3.1 LASH needs a modest number of layers, but
when combined with service differentiation the number of layers used is in-
creased. A network with thirty-two switches needs three layers for routing,
which leaves us with five layers for other purposes such as QoS. E.g. if we
have a network with thirty-two switches we can have a maximum of two
classes of service, using a total of six layers. Three of these layers are re-
quired for LASH routing, but as we need separate queues for each of the
classes of service we end up with a total of six layers. For large networks it
is possible to avoid the limit of eight layers by only using seven layers for
LASH and reserving one layer either for UD or TBTP (or even STP). Then
all paths that can not be routed deadlock free within one of the seven layers
can be routed according to UD or TBTP in the eight layer. This layer could
then be dedicated to best effort traffic. This removes the size constraint, but
it also reduces the performance compared to a network only using LASH.

Backwards Compatibility

To provide a convenient upgrade path LASH enabled switches should be
backwards compatible with older switches. This enables a gradual upgrade

56 Routing Algorithms

VLAN
Protocol

ID

Tag
Control

Info

Length/

Type

VLAN Protocol ID = 0x8100 VLAN Identifier

P
rio

rit
y

C
F

I =
 0

16b 12b1b3b

4B6B 2B 46 − 1500B6B 2B 2B

FCSDestination Address Source Address Data

(a) Data frame.

D
es

tin
at

io
n

Ad
dr

es
s

So
ur

ce
 A

dd
re

ss

T
yp

e
=

 0
x8

80
8

O
pC

od
e

=
0x

00
01

Pa
us

e
tim

e

6B 6B 2B 2B 2B

Fr
am

e
C

he
ck

 S
eq

ue
nc

e
4B

Ze
ro

 p
ad

di
ng

42
B

(b) Pause frame.

D
es

tin
at

io
n

Ad
dr

es
s

So
ur

ce
 A

dd
re

ss

T
yp

e
=

 0
x8

80
8

Pa
us

e
tim

e

6B 6B 2B 2B 2B

Pr
io

rit
y

1B

O
pC

od
e

=
0x

00
02

Fr
am

e
C

he
ck

 S
eq

ue
nc

e
4B

Ze
ro

 p
ad

di
ng

41
B

(c) New pause frame.

Figure 3.14: Ethernet frame formats.

of network equipment, where an island of LASH enabled switches can work
together with switches not supporting LASH. Backwards compatibility can
be achieved by requiring new switches to support both STP and LASH, and
dedicating virtual channel 0 to STP. How frames are routed will then be
determined by the type of switch the source and destination refers to. LASH
switches will route according to LASH for all LASH destinations within its
island, and according to STP for all other destinations. STP switches will
route according to STP for all destinations.

LASH capable switches (LASH switches) will recognise each other as
LASH switches, and STP capable switches (STP switches) as STP switches.
While STP switches will recognise both STP and LASH switches as STP
switches. A LASH routing domain consists of a set of connected LASH
switches forming a LASH island, but at the same time these switches are
part of a spanning tree of the complete topology together with the STP
switches.

Since all LASH switches use per-priority flow-control, while the STP

3.3 Layered Routing 57

switches use per-port flow-control we must make sure that the exchange
of pause frames between STP and LASH switches is done correctly. The
STP switches do not understand per-priority flow-control, and the LASH
switches only sends frames on virtual channel zero when connected to an
STP switch. Therefore, the priority field remains unused between LASH and
STP switches. But when a LASH switch propagates pause frames initiated
on a port connected to an STP switch to other LASH switches the virtual
channel identifier (priority field) should be set to zero to avoid interference
with the virtual channels used for LASH routing. This approach will, of
course, reduce the overall performance compared to a strictly LASH enabled
network, but allows for a gradual replacement of equipment.

If we want to combine LASH, STP and QoS, everything becomes more
complex. We must now map between the priorities used in the STP domain
and the LASH domain. In the STP domain we have from zero to eight priori-
ties, while in the LASH domain the number of priorities available depends on
the network size. In a network with thirty-two switches we need to dedicate
three priorities to LASH for each priority we want to use for QoS. Thus, we
end up with six priorities dedicated to LASH routing and two priorities ded-
icated to the STP. In the worst case we need to map eight priorities to these
two priorities, which can be done by mapping the first four to priority zero,
and the last four to priority one. The mapping from eight to two priorities
might seems coarse, but experience shows that two to four service classes are
often enough [30, 61].

3.3.5 Performance Evaluation

Again we present packet level simulations for a set of regular and irregular
topologies. And, as before, all simulation results have been obtained with an
Ethernet simulator developed with the J-Sim framework [48] as described in
Section 3.2.3. We simulate a shared memory Ethernet switch with support for
802.3x flow-control and 1 Gbit/s Ethernet links. Each switch has five ports,
where one is connected to a computing node and up to four are connected
to other switches. Our traffic model consists of uniform traffic patterns and
a peak rate packet arrival process. The average bit rate is increased in steps
from 10 to 1000 Mbit/s (1% - 100% load). The packet size is fixed at 1522
bytes, which is the maximum Ethernet frame size. The link length is ten
meters with a propagation delay of 1.14e-6 seconds, which corresponds to
Gigabit Ethernet over UTP. Each run simulates two seconds of real time
on each topology and the average throughput and latency is then calculated
from the observed results.

58 Routing Algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200

LASH

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

TBTP3VL
TBTP
STP

(a) Throughput for irregular

topologies with 32 switches.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600

A
ve

ra
ge

 la
te

nc
y

(
 s

)

 800

μ

 1000

Offered traffic (Mbit/s)
 1200

LASH
TBTP3VL

TBTP
STP

(b) Latency for irregular topolo-

gies with 32 switches.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

LASH

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

TBTP3VL
TBTP

(c) Throughput for 8x4 mesh.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1200

Offered traffic (Mbit/s)

LASH
TBTP3VL

TBTP

(d) Latency for 8x4 mesh.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

LASH

A
cc

ep
te

d
tr

af
fic

 (
M

bi
t/s

)

Offered traffic (Mbit/s)

TBTP3VL
TBTP

(e) Throughput for 8x4 torus.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000

A
ve

ra
ge

 la
te

nc
y

(
 s

)
μ

 1200

Offered traffic (Mbit/s)

LASH
TBTP3VL

TBTP

(f) Latency for 8x4 torus.

Figure 3.15: Throughput and latency.

3.3 Layered Routing 59

We compare the results for LASH with TBTP and STP, the latter is the
default routing algorithm for Ethernet and the former is a recent proposal
for Gigabit Ethernet. TBTP was presented in Section 2.1.4. In order to have
a fair comparison between LASH and TBTP we have included results for
TBTP where the algorithm is allowed to use the same number of channels
as LASH. This means that the network traffic is spread over several layers
instead of one. These results are labelled TBTPnVL in Figure 3.15, where n

is the number of layers used. Results for STP are included as a reference. All
results are for Ethernet where per virtual channel flow-control is available as
discussed in Section 3.3.3.

Throughput

Throughput results where generated for a 4x8 mesh, a 4x8 torus, and ir-
regular networks with sixteen (not shown) and thirty-two switches. Figure
3.15(a), 3.15(c) and 3.15(e) summarise the average throughput for the differ-
ent routing algorithms.

It is evident that LASH achieves the highest throughput, it outperforms
both TBTP and STP because all links are used, no turns are forbidden and
all frames are routed via shortest-paths. Thus, we see an average increase
in throughput of 16% compared to TBTP3VL for irregular networks (Figure
3.15(a)). For the 4x8 torus the increase is 25% (Figure 3.15(e)) and for the
4x8 mesh an immense 83% (Figure 3.15(c)). For TBTP3VL the improvement
over TBTP varies as the improvement yielded by adding more layers depends
on the topology. An improvement of 25% and 20% is achieved for irregular
networks and the torus respectively. On the 4x8 mesh the addition of more
layers does not benefit TBTP so the performance of TBTP and TBTP3VL
is similar. This shows that the addition of further layers gives TBTP some
room for improvement, but as the number of turns allowed and the available
paths are still the same the performance increase is limited.

LASH is stable and without any drop in performance when saturation is
reached. This is due to the use of virtual channels. This also benefits TBTP
when used with several channels, but as TBTP depends on a spanning tree
a drop in performance is seen.

Latency

The latency measurements show only end-to-end network delay without the
queueing time in the hosts. Figure 3.15(b), 3.15(d) and 3.15(f) shows the
average latency. As can been seems from the figures, LASH improves latency

60 Routing Algorithms

when compared to the other alternatives. In Figure 3.15(b) LASH has an
average latency of 450μs which is a 25% reduction compared to the 600μs
of TBTP3VL, and a 89% reduction of that of TBTP. For the torus latency
is reduced by 55% between LASH and TBTP3VL, and finally for the mesh
the reduction is 52%. No turn-prohibition in combination with shortest-path
routing are the reason for these improvements for LASH. For the TBTP3VL
the addition of more layers leads to a reduction in latency compared to only
one layer. This is due to less head of line blocking when several layers are
available for the same path.

3.3.6 Layered Routing in the InfiniBand Architecture

The concept of layers as described above maps directly to the virtual chan-
nel mechanisms supported in IBA (see Section 4.2) and ASI. Moreover, since
LASH only needs a limited number of virtual channels, even for large net-
work sizes, it is directly applicable to these technologies without the changes
required for Ethernet. The performance results for these technologies are sim-
ilair to the above results, but with regards to IBA it is possible to enhance
LASH to support oblivious routing [6].

In the LASH algorithm just described, we assumed a priori that only one
shortest-path was chosen. IBA does, however, allow for several paths to exist
between any pair of nodes by defining multiple addresses for each destination.
The routing table can then be set up so that each address follows a different
path to the same destination. This added freedom can be exploited within the
framework of layered routing by using source adaptivity, where all shortest-
paths are allowed and the choice between them is made by the source node.
In [6] we show that a source adaptive version of LASH, called MP-LASH,
improves performance compared to deterministic LASH when non-uniform
traffic patterns are used.

3.4 Contributions and Related Work

In this chapter we first studied the performance of Ethernet with regards
to routing and flow-control, then we proposed Segment-based routing, and
finally we proposed Layered shortest-path routing.

In Section 3.1 we reviewed how conventional use of Ethernet has severe
performance limitations, which we illustrated through the use of TCP as a
higher layer protocol. Furthermore, we showed how to improve performance

3.4 Contributions and Related Work 61

by activating flow-control and replacing the routing algorithm. The activa-
tion of flow-control turned Ethernet into a loss-less network where we avoided
triggering the TCP congestion control mechanism, while the replacement of
the STP allowed us to use any topology without having to worry about dead-
locks. Combined these changes gave a throughput increase of 60%. This
results shows the impact that link layer optimisations has on higher layer
protocols, and in the end for applications.

Others have studied the effect of Ethernet flow-control on TCP congestion
control and how TCP benefits from link layer flow-control, such as [52, 62, 63,
64]. Furthermore, W. Noureddine et al. have proposed several improvements
to the current mechanism by increasing the flow-control granularity from
port based to source/destination based [52, 65]. Common for all of the above
studies are that they only consider scenarios with one or two switches and
that they do not consider the deadlock problem.

In the Section 3.2 we proposed the Segment-based routing algorithm,
where the novelty resides in the introduction of a locality independence prop-
erty. This property adds a new dimension to the enforcment of routing
restrictions, and allows us to reduce the restrictions compared to current
turn-based algorithms. The concept of segments used in SR makes it possi-
ble to exploit the semi-regularity found in irregular topologies, such as meshes
and tori with faults. Our studies showed that SR increases performance com-
pared to other routing algortihms suggested for Ethernet. Furthermore, SR
is similar in performance to state-of-the-art turn-based algorithms such as
FX [57] when used in regular topologies, while it supersedes FX for irregular
topologies [7].

Several routing algorithms have been suggested for improving Ethernet,
such as SmartBridge [66], STAR [67], OSR [68], Viking [69], and VLAN-
Based Minimal Paths [70]. But all of these strategies have been designed for
lossy networks, without addressing the deadlock problem. Others, such as
L-turn [58], smart-routing [71], and TBTP [37] include deadlock avoidance,
but their performance is lower than that of SR and LASH. Finally, we have
a contribution from M. Karol et al., where they suggest a deadlock preven-
tion scheme for Ethernet using advanced buffer management [72]. This is
a novel approach, but with the drawback of changing the semantics of the
pause frame and adding extra housekeeping to the switches, which makes it
incompatible with current off-the-shelf Ethernet equipment. Furthermore, it
is unclear how this scheme would work with multiple priorities and it has not
been evaluated with regards to Ethernet.

In Section 3.3 we presented the concept of layered routing and the LASH
algorithm. In layered routing network resources are divided into layers and
deadlocks are avoided by preventing portions of traffic from using specific

62 Routing Algorithms

layers. This contrasts with the turn prohibition approaches such as SR that
avoid deadlock by preventing data packets from using specific paths and
thereby restricting routing freedom. Layered routing increases the perfor-
mance of deterministic and oblivious routing, and it needs only a limited
number of virtual channels even for large networks. This makes it directly
applicable to present-day technologies such as IBA and ASI. And, as shown
in Section 3.3.3, suitable for Ethernet with only a minor change to the Ether-
net flow-control protocol. Moreover, this proposal can serve as an alternative
to the solution proposed by the IEEE 802.1aq Shortest-Path Bridging task
force, which currently suggests a solution using multiple spanning trees, but
without any deadlock avoidance when lossless operation is used.

Several routing algorithms related to layered routing exist, including the
approach taken in the Avici Terabit Switch/Router [73], where separate vir-
tual networks (layers) are used for each destination port in a torus topology.
This approach will, however, require a high number of virtual channels for
large networks. It is therefore not suited for present-day technologies such as
IBA, ASI, and Ethernet. Other related work aims at increasing the switch
adaptivity, such as [74], where Linder and Harden achieved deadlock-free,
minimal, and adaptive layered routing using virtual channels for regular net-
works, in particular for k-ary n-cubes. This method does not, however, gen-
eralise easily to arbitrary topologies, and the need for virtual channels grows
exponentially with n. Yet another idea is to order the layers. Packets escape
from possible deadlocks in a higher layer by making a transition down to
a lower layer. If the lowest layer is deadlock-free, so will the entire system
be [75, 76, 77, 78, 79]. There are problems with all these approaches. Some
of them require extra functionality in the switches or the hosts that not all
technologies provide. Others aim at maximising adaptivity, which results in
out-of-order delivery. The extra protocol overhead involved in sorting the
packets at the destination is, in some cases unacceptable, and this is the
main reason why many technologies only use deterministic routing.

3.5 Critique

Th SR algorithm improves performance through a more flexible way of enforc-
ing turn-restrictions, but this flexibility makes it harder to find the optimal
solution since the solution space is so large. In Section 3.2.3 we also observed
that SR results in unstable operation when the network is saturated. This is
caused by unfair flow-control, but is nevertheless a weakness that can make
SR unsuitable for certain applications. Furthermore, the way we apply SR

3.6 Further Work 63

to Ethernet i Section 3.2.2 disables auto-configuration. This makes network
management harder.

LASH routing uses virtual channels for deadlock avoidance and shortest-
path routing, and as the network size increases so does the number of channels
required. This can be a problem with large networks, even if we have shown
that LASH only requires a moderate number of layers. Another problem
with the use of virtual channels is that they are, in many cases, intended for
other use such as QoS or traffic isolation, which reduce the number of layers
available for other purposes.

Finally, LASH is easily used in technologies such as IBA and ASI, but
Ethernet requires some changes as described in Section 3.3.3. These changes,
even if simple, must be adopted by the correct standardisation organisations,
which is hard to realise.

3.6 Further Work

The incompatibility between flow-control and priorities in Ethernet is an
issue that should be fixed. A possible fix has been proposed in Section 3.3.2
and in [52], but the standardisation organs and equipment vendors remain
to be convinced.

The SR algorithm might be improved in two ways. First, the way routing
restrictions are placed can be optimised according to some criteria, such as
throughput or load balancing. Second, the way segments are used can pos-
sibly be exploited for fault-tolerance. For LASH it is a challenge to combine
it with QoS in networks where virtual channels are scarce. It is also interest-
ing to see how well it scales, with regards to the number of virtual channels
required, for networks with thousands of switches.

For routing in general the field is well understood for both regular and
irregular topologies. The challenge for the future is to combine efficient rout-
ing with QoS and fault-tolerance, which is difficult since the virtual channels
required for these features are a scarce resource. Either other ways to solve
these problems must be found or the number of virtual channels available in
future technologies must be increased.

Chapter 4

Service Differentiation

When discussing Quality of service (QoS) in interconnection networks there
are three properties of significant importance, bandwidth, latency and packet
loss. Packet loss is avoided by using flow-control, which was discussed with
regards to Ethernet [3] in Chapter 3.1.2. In Chapter 3 we also discussed im-
provements in throughput and latency from the point of routing. The routing
algorithm does not, however, differentiate traffic, nor does it guarantee band-
width or latency. Thus, with regard to latency and bandwidth guarantees,
a combination of mechanisms are necessary, these are service differentiation
and admission control. In this chapter we will combine the LASH routing
algorithm from the previous chapter with a scheme for service differentiation
in order to reduce latency and improve throughput. In the next chapter we
will expand this with admission control.

In Section 4.1 we describe how Differentiated Services (DiffServ) [8] can
be applied to interconnection networks, in this case to the InfiniBand Ar-
chitecture (IBA) [4]. Then in Section 4.2 we give an overview of the QoS
mechanisms supported by IBA. This is followed by simulation results and an
evaluation of the proposed scheme in Section 4.3.

4.1 Differentiated Services

The Internet Engineering Task Force has provided the Internet community
with several QoS concepts and mechanisms. The best known are Integrated
Services [39], the Resource reservation protocol [41], and DiffServ [8] as de-
scribed in Section 2.2.1. We will apply the DiffServ philosophy to intercon-

65

66 Service Differentiation

nections networks through the use of the available QoS mechanisms found in
IBA.

DiffServ assumes no explicit reservation mechanism in the interior net-
work elements. QoS is here realised by giving data packets differentiated
treatment relative to QoS header information (see Section 2.2.1). Even if this
mechanism has been suggested with the Internet in mind, the concepts are
also valid for interconnection networks. Interconnection network technologies
such as IBA and Advanced Switching Interconnect (ASI) [5] support several
QoS features, while Ethernet [3] is more limited. The DiffServ concept can
be adapted to any of these technologies, but we focus on IBA as it has the
most complete feature set.

4.2 QoS in InfiniBand

IBA is a switch-based network architecture first standardised in 2000 [4]. It is
designed for high performance, high connectivity applications, and is suitable
for both internal and external interconnects. IBA has built in features to
support QoS, which makes it a strong candidate for system area networks
and for advanced applications in high performance computing. IBA consists
of the following four elements: Channel adaptors, Switches, Routers, and
Subnet managers. Channel adaptors are IBAs name for network interfaces
and are interconnected through IBA switches.

IBA networks are often referred to as subnets. A subnet is comparable
to a local area network. As two or more local area networks must be inter-
connected with a router so must two or more IBA subnets. An IBA subnet
requires at least one subnet manager, which is responsible for configuring
switches, routers and channel adaptors in the subnet. Whenever the network
changes (e.g. a links go down, a device is added, or a link is removed) the
subnet manager must reconfigure the network accordingly.

4.2.1 QoS Mechanisms

IBA supports four mechanisms for QoS: Service levels, virtual lanes (chan-
nels), virtual lane weighting, and virtual lane priorities.

A service level (SL) is a field in the packet header that denotes what type
of service a packet shall receive as it travels toward its destination. This
corresponds to the packet marking approach described in DiffServ and can
be used to implement per hop forwarding rules. IBA supports 16 SLs, but

4.2 QoS in InfiniBand 67

how to use these SLs is not specified.

To complement its sixteen SLs IBA also supports a maximum of sixteen
virtual lanes (VLs). VLs are logical channels on the same link, but with
separate buffers and flow control as described in Section 2.1.3. A minimum
of two VLs must be supported, VL0 must be supported as the default data
lane and VL15 must be supported for dedicated subnet management traffic.
The sixteen SLs are mapped to the corresponding VL by the SL number, i.e.
SL12 is mapped to VL12. If a direct SL to VL mapping is not possible the
SL will be degraded according to a SL to VL mapping table. In the worst
case only one data VL is supported and all SLs will be mapped to VL0.

Virtual Lane Weights and Priorities

Each VL can be configured with a weight and a priority, where the weight is
the proportion of link bandwidth this VL is allowed to use and the priority is
either high or low. If we include control lanes we get the following arbitration
hierarchy:

Level 1: Control lanes have the highest priority and will preempt anything
else.

Level 2: High priority lanes preempts low priority lanes, but to ensure for-
ward progress of low priority lanes a parameter called limit of high-
priority is used. The limit of high-priority is the maximum number of
packets that can be scheduled on a high priority lane before a packet
must be scheduled on a low priority lane — if there is one waiting.

Level 3: Arbitration between lanes with the same priority is done by a
weighted fair arbitration scheme. The weight assigned to a lane de-
cides the number of 64 byte blocks it is allowed to send when its turn
occurs. Lanes are scheduled in a round robin fashion.

When a lane is scheduled it is marked active and allowed to send up to
the number of blocks specified for the VL. The weight counter for the VL
is decreased for each packet sent and the lane is rescheduled as long as its
weight is larger than zero and no lane with higher priority has data to send.
When the weight reaches zero it is reset and the next lane that has data to
send is marked active.

68 Service Differentiation

LC

LC LC
in

p
u

t
q

u
eu

es
V

ir
tu

al
 c

h
an

n
el

s

V
ir

tu
al

 c
h

an
n

el
s

o
u

tp
u

t
q

u
eu

es

C
R

O
S

S
B

A
R

arbitration
and

Routing

in
p

u
t

ch
an

n
el

s
P

h
ys

ic
al

P
h

ys
ic

al
o

u
tp

u
t

ch
an

n
el

s

LC

VC = Virtual channel controllerLC = Link controller

VL

VL

Figure 4.1: Switch architecture.

4.2.2 Switch architecture

In our simulations we are modelling a switch with the above features. The
overall design is based on the canonical router architecture described in [1].
The architecture is flit based and uses virtual cut-through switching [24]. The
switching core consists of a crossbar where each link has dedicated access
and supports sixteen VLs (Figure 4.1). The VLs on the same link have
multiplexed access to the crossbar. Thus, there is flit level scheduling of
lanes over the crossbar, but there is no flit interleaving between lanes. For
each link, only one packet is allowed to traverse the crossbar at a time.

Each VL has its own buffer resources that consist of an input buffer large
enough to hold a packet and an output buffer large enough to hold two flits
in order to increase performance. VL arbitration is done at the input side to
select which VL is allowed to send next. Link arbitration at the output link
is done to select which input is the next to send to this output. Output link
arbitration is done in a round robin fashion.

There is always a one-to-one mapping of SL-to-VL and each VL is assigned
a SL at start-up without any possibility for change during operation. This
excludes run-time reconfiguration, but makes the scheme simpler and is in
line with the DiffServ philosophy. An alternative would be to dynamically
reconfigure the SL-to-VL mapping through a subnet manager as done in [80],
but this is incompatible with the DiffServ philosophy.

4.3 Performance Evaluation 69

4.2.3 Routing

As a routing algorithm we could use any algorithm compatible with Infini-
Band, but we have chosen to use LASH as presented in the previous chap-
ter. As IBA supports VLs we can directly apply LASH to this architecture,
whereas for Ethernet we had to make changes to the flow-control scheme.
Furthermore, LASH guarantees shortest-path routing, which is important
for QoS because it reduces latency.

The combination of LASH and service differentiation requires additional
layers compared to LASH with only a single service class. In a network with
thirty-two switches we need to dedicate three lanes to LASH for each class
of service. If we have five service classes, as we will use in our evaluation, we
need need a total of fifteen lanes (3 × 5).

4.3 Performance Evaluation

We now endeavour to provide QoS in InfiniBand or any similar cut-through
network by adhering to the DiffServ philosophy. We approach the problem
by studying the provision of QoS without any explicit admission control
mechanism. We start by carefully examining the sensitivity of different QoS
properties under various load and traffic mixture conditions, including the
effect of back-pressure as created by flow-control. These experiments give
valuable information regarding the QoS behaviour of cut-through networks
when used as a pure relative service model. Specifically we study (i) the
effect of using VLs with a weighted arbitration scheme to do throughput
differentiation, (ii) the robustness of a weighted arbitration scheme when VL
load and weight is unbalanced and (iii) the latency and jitter characteristics
of VLs with a weighted arbitration scheme.

We present results for topologies with thirty-two switches and 160 nodes,
with five nodes connected to each switch and a maximum of ten links per
switch. Traffic is modelled by a normal approximation of the Poisson distri-
bution and the address distribution is random pairs, where each source sends
to only one destination and no destination receives packets from more that
one source. The topology consists of sixteen randomly generated irregular
topologies. Simulations have also been performed on networks with eight and
sixteen switches with similar results.

The five different end nodes send traffic on five different service levels
(Table 4.1) where SL 1 and 2 are of the expedited forwarding (EF) class in
DiffServ terminology. SL 3 and 4 are of the assured forwarding (AF) class
and SL5 is best effort (BE) traffic.

70 Service Differentiation

SL DA Eq. Load BW UW Pri

1 EF 10 4 6 high
2 EF 15 6 1 high
3 AF 20 8 6 low
4 AF 25 10 1 low
5 BE 30 1 1 low

Table 4.1: The service levels used in all simulations.

4.3.1 Throughput

Our first results are from a balanced configuration under increasing load con-
ditions. In the balanced configuration the weighting of each SL is according
to the load on that SL, i.e. the SL with the highest load also has the highest
weight — except for SL5 which always has the lowest weight. This makes
the configuration vulnerable to changing load conditions where a mismatch
between applied load and VL weight will cause trouble.

Figure 4.2(a) shows the throughput of each SL as well as the total through-
put. As can be seen from the figure throughput is differentiated. Throughput
for all SLs is consistent with the weighting when the network is below sat-
uration since there is enough bandwidth for everyone. When the network
reaches saturation low priority SL throughput is reduced as high priority SLs
preempts low priority bandwidth, which is consistent with our configuration.

4.3.2 Robustness

We have considered a well-behaving configuration where we require VL weights
and SL load to be matched. This is not always the case so we have looked at
how an unbalanced configuration performs. In this configuration the weights
for SLs with the highest load have been swapped with the weights for SLs
with the lowest load. Figure 4.2(b) shows the throughput of all SLs as well as
the total throughput. From the figure we see that the performance is almost
identical to the previous configuration as long as the network is below satura-
tion. Only when the network reaches saturation does the mismatch between

1Balanced weight. With this configuration the proportion of applied load matches the

assigned SL weights.
0Unbalanced weight. With this configuration there is a mismatch between the applied

load and the assigned SL weights, i.e. the network is mis-configured.

4.3 Performance Evaluation 71

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5

3
x 104

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Total
SL1
SL2
SL3
SL4
SL5

low medium high

(a) Balanced weights.

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5

3
x 104

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Total
SL1
SL2
SL3
SL4
SL5

low medium high

(b) Unbalanced weights.

Figure 4.2: Throughput for a network with thirty-two switches.

weighting and load become visible. As long as we are below the saturation
level there is enough bandwidth for everyone and there is no problem fulfill-
ing demands, but when the network gets saturated the weighting takes effect
as we saw in the previous configuration. Only now the wrong SLs preempts
the bandwidth because of the mismatched weights. In Figure 4.2(b) this is
visible for SL4 which should be just above SL3, but is actually at the level
of SL5.

From this we can conclude that the weighting configuration is not crucial
in a network below saturation. It is crucial when the network is in satura-
tion, but in a QoS setting we want to avoid a saturated network. Thus the
weighting configuration can be considered robust in a non-saturated network
and the need for on the fly reconfiguration of the SL weights is not neces-
sary. This encourages over provisioning when possible, because when there
is enough bandwidth we do not need QoS. Unfortunately, over provisioning
only works when bandwidth is cheap, which is not the case in most HPC
scenarios. For such use we need to avoid saturation while still making effi-
cient use of the bandwidth available. Avoiding saturation can be done with
admission control as we will see in Chapter 5.

4.3.3 Latency

We have seen that we are able to differentiate traffic with regards to band-
width, we will now study the latency characteristics. Recall that we measure

72 Service Differentiation

0 2 4 6 8 10 12

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of packets offered

La
te

nc
y

(c
yc

le
s)

Total
SL1
SL2
SL3
SL4
SL5

low medium high

(a) Average latency.

0 50 100 150 200 250 300 350 400 450
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean = 108, stddev = 37, max = 415, min = 65, packets = 19690

mean

stddev

95% percentile

(b) Latency distribution for SL1

packets at low load.

0 50 100 150 200 250 300 350 400 450
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean = 115, stddev = 40, max = 400, min = 65, packets = 28493

mean

stddev

95% percentile

(c) Latency distribution for SL1

packets at medium load.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean

stddev

95% percentile

mean = 735, stddev = 933, max = 9672, min = 65, packets = 87523

(d) Latency distribution for SL1

packets at high load.

Figure 4.3: Latency for a network with thirty-two switches.

4.3 Performance Evaluation 73

latency from the time a packet enters the network until it leaves the network.
Queueing time in the transmitter is not included in the measured latency.
Figure 4.3(a) shows the average network latency for individual SLs and for
all traffic. The latency is low as long as the load is well below saturation,
but compared with Figure 4.2(a) we see that low priority SLs suffer from an
increase in latency at the same point as the throughput graph starts to level
out. The same effect can be seen for high priority SLs, but at a point closer
to saturation. The low priority SLs suffer when we are unable to linearly
increase throughput. At this point the high priority SLs takes away band-
width from the lightly weighted low priority SLs. They have used most of the
free bandwidth up to this point, but now the number of low priority packets
preempted by high priority packets increase and we see a rise in latency for
these SLs. When the network approaches saturation this also affects high
priority SLs. Because the network is highly loaded the number of packets
affected by the back-pressure mechanism increase, which cause delays and
increased overall latency. Again we see a need to keep the network below
saturation, preferably in the linear area of the throughput graph. This can,
as mentioned earlier, be achieved with a suitable admission control mech-
anism. For latency sensitive high priority traffic, admission control can be
used to keep the load at a level necessary to ensure low latency. Low priority
traffic can be admission controlled based on bandwidth requirements, while
best effort traffic can be left out of an admission control scheme since this
type of traffic only use leftover resources. We will study admission control in
Chapter 5.

4.3.4 Jitter

Let us now turn our attention to the jitter characteristics. Figure 4.3(b)
shows the latency distribution for SL1 traffic at the load level marked as low
in Figure 4.2(a) and 4.3(a). The mean, standard deviation and the 95 %
percentile are marked with a dashed line in the graph. The distance between
the mean mark and the standard deviation mark reflects the standard de-
viation. The histogram has a sharp peak and a short tail and the standard
deviation is low. The 95% percentile is 180 cycles so 95% of the packets has
a latency of 180 cycles or lower. For medium load, shown in Figure 4.3(c),
the situation is slightly worse. Here we have a low average latency and a 95%
percentile at 198 cycles. Moving on to high load level in Figure 4.3(d), things
are worse since we now have moved out of the linear area of the throughput
graph. The jitter potential is substantial with a inter-quartile range of 1262
cycles and the 95% percentile at 2356 cycles.

74 Service Differentiation

0 1000 2000 3000 4000 5000 6000 7000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean

stddev

95% percentile

mean = 664, stddev = 826, max = 6606, min = 77, packets = 31179

(a) 3 hops.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean

stddev

95% percentile

mean = 833, stddev = 928, max = 8840, min = 89, packets = 32758

(b) 4 hops.

Figure 4.4: Latency histograms per hop for SL1 traffic at high load.

To investigate the jitter issue further Figure 4.4 shows per hop latency
histograms for SL1 traffic at high load with three and four hops which where
the most frequent path lengths. The interesting part here is how much the
latency properties increase when the path length is increased with one hop.
The 95% percentile increases from 2262 cycles to 2410 cycles and the inter-
quartile range increases from 1125 cycles to 1478 cycles as well as substantial
increases for mean, standard deviation and maximum observed latency. The
same behaviour can be seen for other path lengths as long as there are a
substantial number of packets. This effect can be explained by the back-
pressure caused by the use of flow-control. When a packet somewhere in
the network is delayed by back-pressure the packet latency for this packet is
increased, but the latency for the following packets is also affected. Thus the
effect of back-pressure in a node propagates throughout the whole network
and introduces jitter. Moreover, this will result in an exponential increase
in the theoretical maximum latency. A simple equation to calculate the
maximum network latency in a network of switches with only one VL per
port and where the input buffer is one packet wide is as follows:

P =
n∑

sw=1

(Q − 2)sw (4.1)

Here P is the maximum number of packets we could end up waiting for,
Q is the number of links per switch and n is the number of switches in our
path. We ignore two of the links because one is the link we are entering on

4.4 Contributions and Related Work 75

and one is the link we are leaving on and they will not delay our packet. If
our packet pass through three switches A, B and C in that order, and each
switch has four ports. It will have to wait for two packets, one for each link,
in switch C. In switch B it will also have to wait for two packets, but both
of these packets will have to wait for two packets in switch C. In switch A
it will again have to wait for two packets and these two packets will have to
wait for two packets each in switch B, which will each have two wait for two
packets in switch C. Thus, we ends up with P = 14.

The equation for maximum network latency now becomes:

L = T × P (4.2)

Here L is the maximum network latency and T is the transmission speed
in cycles. As (4.1) grows exponentially this will have significant impact on
the jitter characteristics of the network. If we consider our network and a
packet with path length three (as in Figure 4.3.4) we get the following:

L = T × P = 32 × 584 = 18688 (4.3)

In our simulations the maximum observed latency for a path length of
three is 6606 cycles so we are far from the theoretical maximum. For a path
length of four the maximum observed latency is 8840 cycles while L is 149760
cycles. We assume that the large difference between theoretical and observed
latency can be explained by a very low probability for the theoretical worst
case to occur. But still, in order to avoid the actual increase in latency the
network load must be kept low.

4.4 Contributions and Related Work

In our study of a DiffServ inspired QoS concept for interconnection net-
works we have found that: (i) Throughput differentiation can be achieved by
weighting of VLs and by classifying VLs as either low or high priority. (ii)
The balance between VL weighting and VL load is not crucial when the net-
work is operating below the saturation point. (iii) Latency increase with load
and yields substantial jitter. Good jitter characteristics seems unobtainable
since the theoretical maximum latency grow exponentially, even if the mea-
sured maximum latency does not show exponential behaviour its growth rate
is substantial. From the application viewpoint these results shows that both
message passing applications and bulk transfer applications can coexist in
the same network without dedicated link resources. This level of service dif-
ferentiation could reduce cost and complexity in compute clusters as only one

76 Service Differentiation

network technology is required, as opposed to the approach where one net-
work technology is used for low latency message passing (e.g. Myrinet [81])
and another for bulk transfer (e.g. 10 Gigabit Ethernet [3]).

Recently we have seen several research contributions to this field. Jasper-
nite et. al. [82, 83] and Skeie et. al [53] discuss latency improvements for
switched Ethernet relative to IEEE Standard 802.1p, but they do not consider
flow-control. Many other contributions regarding Ethernet QoS also exists,
but common for them all are that they do not consider QoS in combination
with flow-control and deadlock avoidance schemes.

In [40] Pelissier gives an introduction to the set of QoS mechanisms of-
fered by InfiniBand and the support for DiffServ over IBA. In this approach
the presence of admission control is assumed,but no evaluation is given and
he suggests to implement admission control with RSVP, which is incompat-
ible with the DiffServ scheme. Alfaro et. al builds on Pelissier’s work and
present a strategy for computing the arbitration tables of IBA networks and
a methodology for weighting of virtual lanes using the arbitrator defined in
IBA [84]. The concept is evaluated through simulations assuming that only
priority traffic requests QoS. In [80] Alfaro et. al also include time sensitive
traffic, besides calculating the worst case latency through various types of
switching architectures. But this strategy has to recompute the IBA arbitra-
tor every time a new connection is accepted [80, 84], which is not compatible
with DiffServ and the concept of a stateless core network. Other QoS ef-
forts include The Multimedia Router [85, 86] and some earlier work in [87]
and [88], but none of these fits well with the DiffServ philosophy in the con-
text of interconnection networks.

4.5 Critique

The service differentiation scheme has been shown to work well for prioritis-
ing high priority low bandwidth flows over more bandwidth demanding low
priority flows. There remains, however, one major drawback. Deterministic
guarantees are not possible because there is no protection from saturating
the network. The absence of admission control means that we must rely on
over-provisioning in the high priority class to be able to deliver QoS. If the
high priority class becomes saturated its performance will degrade along with
the performance of all the lower priority classes.

4.6 Further Work 77

4.6 Further Work

Improving latency and the effect back-pressure has on latency is the main
challenge remaining. Avoiding saturation by the use of admission control is
one possibility that we will explore in the next chapter. Another possibility
is mechanisms for reducing the effect of head-of-line blocking on uncongested
flows. Some contributions targeting this has recently appeared [89, 90] with
very promising results.

As always, other topologies, traffic patterns, and other combinations of
service classes could be evaluated. E.g. hot-spots is one interesting scenario
that is missing, another is the use of adaptive routing. More advanced ways
of populating the IBA arbitration tables, such as multiple entries and large
versus small allocations could have given further insight.

A grand challenge remaining is the resource use when combining QoS,
routing and fault tolerance, which are all important features for future in-
terconnects. Since these features require many of the same resources, e.g.
virtual channels, they conflict with each other when all three are required
at the same time. To have enough resources to support QoS, layered rout-
ing, and fault tolerance is currently prohibitively expensive. Alternatives for
reducing the resource needs and for combining these mechanisms should be
sought.

Chapter 5

Admission Control Algorithms

In Chapter 4 we achieved a relative differentiation of network traffic based on
traffic classes. We showed how to differentiate between classes, but we where
unable to give quantitative guarantees since the amount of traffic allowed into
the network was unrestricted. In order to give soft guarantees with regards
to both bandwidth and latency we will now study several types of admission
control (AC) in combination with the service differentiation scheme from the
previous chapter.

Admission control is the general concept of controlling the operation point
of a network, at one extreme we have connection admission control (CAC)
and at the other extreme we have rate control. CAC resembles the telephone
system where there is always a risk of the busy signal (call blocking), because
the load is high. Rate control, on the other hand, slowly reduce the rate for
all callers as the number of callers grow. This allows for more people to
participate at the cost of lower performance. It is acceptable for services
such as file transfer and web surfing, but disastrous for services such as Voice
over IP and massive multiplayer online games. Rate control is often used in
combination with over-provisioning, when the risk of overloading the network
is low. The AC schemes that we propose in Section 5.2 and 5.3 are all
CAC schemes, but they differ in how they collect information about current
network conditions and the information available for making the AC decision.
We evaluate the proposed methods in Section 5.4.

79

80 Admission Control Algorithms

5.1 Avoiding Saturation

One of the main findings in Chapter 4 where that the balance between VL
weights and VL load is not crucial when the network is operating below the
saturation point. In general this sets the target load for AC, since as long as
we can ensure that the load of the various service classes are below saturation
we can also guarantee that each class get the bandwidth they request. The
target for AC is therefore the point where the amount of offered traffic is
equal to the amount of accepted traffic. The effective bandwidth at this
point will be used as a guideline for the Calibrated load and Link-by-link AC
schemes presented below.

Another finding in Chapter 4 was that latency below saturation was ac-
ceptable, but with significant jitter. This problem we challenge in Section
5.3.1 by using delay to make the admission decision instead of bandwidth.

5.2 Centralised Admission Control

In centralised AC there exist an entity that has knowledge of the current
network state. This entity can be used as the decision maker for AC. Below
we propose two schemes which follow this approach by using a bandwidth
broker (BB). The BB has knowledge about the amount of traffic entering the
network, but the details available to the BB are different for the two schemes.

5.2.1 Calibrated Load Admission Control

Calibrated load (CL) is a scheme relying on a BB that knows the total rate of
traffic entering the network. Our admission control parameter is the rate of
traffic that can be injected into the network while still operating the network
below saturation. When the rate of traffic entering the network reaches the
admission control parameter no more traffic will be admitted. The admission
control parameter must be decided by measurements on the network in order
to find the saturation point, ours is deduced from the simulations performed
in Chapter 4.

To separate high and low priority traffic we use two different rate param-
eters, one for the total high priority traffic and one for the total low priority
traffic. For high priority traffic this can be expressed as follows:

n∑
i=0

Li + P < CL (5.1)

5.2 Centralised Admission Control 81

Here CL is the calibrated load for outgoing traffic, Li is the load in node i

and P is the peak rate for the requesting flow. The flow is admitted if the
total load

∑n
i=0

Li plus the requested increase P is below the calibrated load
CL. Low priority traffic can be expressed similarly just substituting the high
priority values with low priority values. The strength of this scheme lies in
its simplicity, its weakness lies in its inaccuracy. It is inaccurate because it
does not take into account the distribution of flows in the network. E.g. it
is not suitable for handling hot spots.

5.2.2 Link by Link Admission Control

Our second scheme is the Link-by-link (LL) approach. Here the BB knows the
load on every link in the network and will consult the available bandwidth
on every link between the source and the destination before accepting or
rejecting a flow. Compared to the CL approach, this solution requires both
topology and route information about the network.

For the admission decision we adopt the simple sum approach as presented
in [91]. This algorithm states that a flow may be admitted if its peak rate
p plus the peak rate of the already admitted flows s is less than the link
bandwidth bw. Thus the requested flow will be admitted if the following
inequality is true [91]:

P + S < BW (5.2)

As for the CL method we deduce the effective bandwidth from the mea-
surements obtained in Chapter 4. Since we are dealing with service levels
where each SL has different bandwidth requirements it is natural to intro-
duce differentiation in (5.2). We achieve this by dividing the link bandwidth
into portions relative to the traffic load of the SLs, and include only the
bandwidth available to a specific service level BWsl as follows

P + Ssl < BWsl (5.3)

where

BWsl = BWlink ∗
Lsl

Ltotal

(5.4)

and Ssl is the sum of the admitted peak rates for this service level, BWlink

is the effective link bandwidth, Lsl is the fraction of bandwidth allowed for
this SL, and Ltotal is the total load.

82 Admission Control Algorithms

5.3 Decentralised Admission Control

In decentralised AC there is no single entity responsible for making the ad-
mission decision. Rather, a local decision is made whenever a new admission
request arrives. Below we will discuss two different variations of distributed
AC which we have adopted from the Internet world. The first one use mea-
surements while the second one use probes.

5.3.1 Measurement Based Admission Control

The measurement based approach, called Egress Based (EB) admission con-
trol is different from the other three schemes in that it uses latency as the
target for AC instead of throughput. The idea behind this approach is that by
targeting delay it should be possible to give more precises latency guarantees
as well as higher utilisation of the available bandwidth.

EB AC is a fully distributed AC scheme where the egress nodes are re-
sponsible for conducting the provisions. Basically, we adopt the Internet AC
concept presented by Cetikaya and Knightly in [92]. This method does not
assume any pre-knowledge of the network behaviour as is the case with our
previous solutions. Also different from the previous approaches is the use of a
delay bound as the primary AC parameter. For clarity we give a brief outline
of the algorithm below, a more detailed description can be found in [93].

The method is entirely measurement based and relies on the sending
node to time-stamping all transmitted packets. This enables egress nodes to
calculate two types of statistical data. First, by dividing time into time-slots
of length τ and counting the number of arriving packets, the egress nodes can
deduce the arrival rate of packets in a specific time-slot. By computing the
maximum arrival rate for increasingly longer time intervals we get a peak rate
arrival envelope R(t), where t = 0, ..., T time-slots. Second, by comparing
the originating time-stamp relative to the arrival time, the egress node can
calculate the transfer time of a packet. With this information the egress node
can estimate the time needed by the infrastructure to service the k following
packets; i.e. a consecutive stream of packets, where the next packet in the
service class enters the infrastructure before the previous packet has departed
the egress node. By doing this for larger and larger k sequences of packets
within a measuring interval of length Tτ and subsequently inverting this
function we achieve the service envelope S(t), giving the amount of packets
processed by the network in a given time interval t. Now repeating this M

times, the mean R(t) and the variance σ2(t) of R(t), and the mean S(t)
and variance Ψ2(t) of S(t) may be calculated. If a flow request has a peak

5.3 Decentralised Admission Control 83

rate P and a delay bound D it may be accepted if the peak rate P plus the
measured arrival rate R(t) is less than the service rate required for the delay
D,S(t + D) . This is expressed by the following equation:

tR(t) + Pt − S(t + D) + α
√

t2σ2(t) + Ψ2(t + D) < 0 (5.5)

for all interval lengths 0 ≤ t ≤ T . Additionally there is a stability criterion
that must be satisfied

lim
t→∞

R(t) + P < lim
t→∞

S(t)

t
(5.6)

According to [93] the right-hand side of (5.6) may, in a network using weighted
fair queueing, be replaced by the link capacity C. Then (5.6) may be rewrit-
ten as

lim
t→∞

R(t) + P < C (5.7)

which simply states that the mean arrival rate in the network’s lifetime plus
the peak rate of the flow never should exceed the link capacity of the network.

The EB scheme derives its knowledge of the network from measurements
of the traffic passing through the egress nodes. It is therefore difficult for the
egress nodes to have a complete picture of the load in the network, moreover
the packet latency is used to infer the network load utilising the fact that
increased network load will increase latency as well. From that viewpoint
it is difficult to give a service class bandwidth guarantees since it has no
concrete knowledge of the network load. The algorithm will admit as much
traffic as it can without breaking the delay bound, and the efficiency of the
algorithm is linked to its ability to limit service levels to operate within the
delay bounds.

5.3.2 Probe Based Admission Control

As an alternative to passively monitoring the network activity in the egress
nodes of the network, it is possible for the end nodes to take a more active
role in the admission decision. This can be done by actively sending probe
packets through the network from source to destination and monitor the
arrival of the probes at the egress of the network [94, 95]. If the size and
rate of the probes are designed correctly they should give the end-node the
opportunity to calculate how the new flow will be treated by the network.
Several probing schemes have been proposed in the literature, some of which
are described in [94, 95]. The approach in [95] require either that packets be

84 Admission Control Algorithms

dropped to indicate congestion or that congested packets be marked in the
switches in the network. Packet dropping is implausible in interconnection
networks such as the IBA and ASI since packets are not dropped, but flow-
controlled. Explicit marking of packets requires intelligence in the switches
and partly removes the point of end-point admission control.

In [94] Bianchi et.al. propose a probing scheme where the load is inferred
by measuring the jitter of the probes. This requires that the probes are
forwarded through the network with low priority to ensure that the probe
packets are unable to steal bandwidth from the already existing traffic in the
network while giving worst-case measurements of the network jitter and thus
guaranteeing that the traffic, when admitted, will get at least the service of
the probe packets. It does, however, introduce a chance for under utilisation.
We adopt and apply this scheme to IBA. And in our scenario it is natural
to let the probes be forwarded on one of the low priority SLs with a weight
equal to 1. The admission decision is based on the following equation:

Tmax − Tmin < J (5.8)

and

P = 0 (5.9)

Where T is the transmission time and P the number of packets rejected. For
each probe received the destination registers the packet’s transmission time,
i.e. the time the packet spends in the network. When an adequate amount
(6 probes for each flow was used in the evaluation) of probes have been sent
and received, the receiver calculates the jitter by subtracting the minimum
packet transmission time from the maximum packet transmission time. This
value is compared to the jitter requirements embedded in the probes and an
admission decision is sent back to the sender. If the perceived jitter is below
the upper bound given in the probe the flow is accepted, otherwise the flow
is rejected. Additionally if any of the probes are rejected by the sender due
to back-pressure the flow is also rejected.

5.4 Performance Evaluation

The performance evaluation consists of two parts, one where we consider
throughput and latency characteristics at the class level and another where
consider these characteristics at the flow level. Evaluation on the class level
corresponds to the level of detail where we did service differentiation in Chap-
ter 4. Therefore, we expect a close match between requested and achieved

5.4 Performance Evaluation 85

performance. At the flow level, however, there might be a mismatch between
how individual flows are treated compared to the aggregated results for the
class. This makes it necessary to study the flow level characteristics in order
to understand how individual flows within a class perform.

5.4.1 Class Level QoS

The class level QoS from Chapter 4 is now extended with AC. Admission
control is performed centrally or at the network edge so we are still in com-
pliance with the DiffServ philosophy, where complexity in the core of the
network is avoided.

In the previous section we described four AC schemes. We will evaluate
three of them through extensive simulation in this section, while the the
fourth will be evaluated in the next section.

Throughput

The purpose of AC is to keep network load below saturation, because below
this point we can guarantee that all SLs get the bandwidth they require. It
is, however, important to get as close to the saturation point as possible to
avoid wasting resources. For the evaluation we will use the same SLs as in
Chapter 4, where Table 4.1 reflects the percentage of link bandwidth that
each SL requires.

When a network enters saturation we are no longer able to give all ser-
vice classes the bandwidth they request. This is shown in Figure 5.1(a) for
a network without AC. Without AC we are no longer able to give all service
classes the bandwidth they require and high priority SLs take bandwidth
away from low priority SLs, i.e. the bandwidth differentiation is no longer
according to the percentages in Table 4.1. Let us now consider the perfor-
mance of the CL scheme. We see from Figure 5.1(b) that we are able to keep
the accepted traffic below the saturation point independently of the offered
load, which goes beyond the saturation point. But there is still a problem
with the differentiation, since as the load increases toward the high mark
the differentiation between SLs of the same priority is diminished. The CL
scheme is able to keep the load below saturation, but the information used
to make the admission decision is too coarse to maintain bandwidth differ-
entiation between SLs of the same priority, since it makes the decision based
on the total load for the network and not individual SL’s.

The LL scheme corrects the weakness found in the CL scheme by pro-
viding exact differentiation between SLs, as shown in Figure 5.1(c). The

86 Admission Control Algorithms

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5

3
x 104

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(a) No admission control.

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5
x 104

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(b) Calibrated load.

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5
x 104

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Total
SL1
SL2
SL3
SL4
SL5

low

medium high

(c) Link by link.

0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5

3
x 104

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(d) Egress measurements.

Figure 5.1: Throughput.

5.4 Performance Evaluation 87

achieved differentiation is now exactly as specified in Table 4.1, making it
possible to guarantee each SL the required bandwidth. Furthermore, the LL
scheme estimates the saturation point more precisely than CL, which im-
prove network utilisation since we operate it closer to the saturation point.
This improvement is a direct effect of the increased amount of information
that LL scheme has about the network state. Because it knows the load of
every link in the network it is able to make a decision based on the exact
load along the requested source/destination path.

Finally, we have the EB method, where we use required versus measured
latency to make the admission decision, instead of throughput. It is apparent
from Figure 5.1(d) that this method is unable to give bandwidth guarantees
and unable to keep the load below the saturation point. While the EB scheme
fails with regards to bandwidth it might be more successful for latency, which
we consider next.

Latency

Latency increase with the load, and latency figures close to the network lower
bound is only possible to achieve with a lightly loaded network, i.e. we can
improve latency by sacrificing bandwidth. But a major increase in latency
does not occur until we reach saturation, therefore it is possible to make a
compromise where we achieve close to saturation throughput and low latency.
This is what we are targeting in this section. Further improvement to latency
could be achieved by lowering the operation point of the network.

Figure 5.2(a) shows the average latency (in cycles) for both individual
SLs and total traffic without AC. Latency grows slowly at first, but when we
reach the medium mark, which signify saturation, latency rapidly increases.
Compared with the CL results in Figure 5.2(b) we see that the CL scheme is
able to improve latency, even if all it does is to keep the network load below
saturation. The average latency for all packets at the high mark is 1120
cycles without AC and 436 cycles with CL, a 61% reduction. Furthermore,
we have only minor differentiation difficulties compared to what we had for
throughput. We do, however, have problems with jitter, but we postpone
that discussion to the next section.

With the LL scheme we have no visible jitter at the class level (Figure
5.2(c)), which can be attributed to the precision of this scheme when it comes
to differentiation between SLs and its estimation of the saturation point. The
latency value for high load is 485 cycles, which is 10% above the CL latency at
this point. This shows us that the LL scheme is better than the CL scheme,
because it gives lower latency to SL 1-4 and higher latency to SL 5 (best

88 Admission Control Algorithms

0 2 4 6 8 10 12

x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of packets offered

La
te

nc
y

(c
yc

le
s)

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(a) No admission control.

0 2 4 6 8 10 12

x 104

0

100

200

300

400

500

600

700

800

900

Number of packets offered

La
te

nc
y

(c
yc

le
s)

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(b) Calibrated load.

0 2 4 6 8 10 12

x 104

0

200

400

600

800

1000

1200

Number of packets offered

La
te

nc
y

(c
yc

le
s)

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(c) Link by link.

0 2 4 6 8 10 12

x 104

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of packets offered

La
te

nc
y

(c
yc

le
s)

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(d) Egress measurements.

Figure 5.2: Average latency.

effort) — even if it has a higher average latency for all packets compared
to CL. The increase in the average latency for all traffic is caused by the
increase in throughput for SL5.

The EB scheme performed poorly for bandwidth, but gives decent results
for latency as can be seen in Figure 5.2(d). It is capable of giving the same
latency to SLs fairly independently of weight , e.g. SL 1 and 2. But it is
unable to satisfy the delay bound of 100 cycles given for SL 1 and 2, and 250
cycles given for SL 3 and 4. The measured latency at the high mark is 187
cycles for SL 1 and 316 cycles for SL 3. So even using a measurement based
method we are unable to give hard delay guarantees. The poor performance

5.4 Performance Evaluation 89

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean = 107, stddev = 35, max = 332, min = 77, packets = 10510

mean

stddev

95% percentile (187)

(a) No admission control (medium

load).

0 500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean

stddev

95% percentile (498)

mean = 194, stddev = 279, max = 2068, min = 77, packets = 12652

(b) Calibrated load (high load).

0 100 200 300 400 500 600 700 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean = 142, stddev = 87, max = 712, min = 77, packets = 13523

mean

stddev

95% percentile (297)

(c) Link by link (high load).

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

N
or

m
al

iz
ed

 fr
eq

ue
cy

Latency (cycles)

mean = 161, stddev = 110, max = 1190, min = 77, packets = 16863

mean

stddev

95% percentile (347)

(d) Egress measurements (high

load).

Figure 5.3: Latency distribution for SL1 packets at with three hops.

of the EB scheme can be ascribed to the use of delay as the primary AC
parameter, this results in the bandwidth requirements being ignored.

Jitter

The latency distribution for SL1 packets with a path length of three hops is
shown in Figure 5.3, this was the most frequent path length observed in our
simulations. In each figure the mean, the standard deviation and the 95 %

90 Admission Control Algorithms

percentile are marked with a dashed line. The distance between the mean
mark and the standard deviation mark reflects the standard deviation.

Figure 5.3(a) shows the latency distribution achieved without AC and
at medium mark in Figure 5.1(a). This is the behaviour we would like to
guarantee by limiting the operation with AC. Figure 5.3(b) shows the distri-
bution for the CL scheme at the high mark in Figure 5.1(b). The load here
is 20% higher than in the former. We see that the CL scheme has poor jit-
ter characteristics, something we already suspected from the latency plots in
Figure 5.2(b). The mean is 194 cycles, the standard deviation 279 cycles and
the 95% percentile is 498 cyles. Thus 95% of the packets have a latency of
498 cycles or below. The problem here is the high standard deviation, which
indicates unpredictable packet arrival times. The reason are as previously
describe for throughput.

The LL scheme has better jitter characteristics as can be seen from Figure
5.3(c). The histogram has a shorter tail compared to Figure 5.3(b), and a
mean of 142 cycles, a standard deviation of 87 cycles, and a 95% percentile
of 297 cycles. Thus, jitter is reduced by 40% for 95% of the packets. Fur-
thermore, the load for LL at this point is about 7% above the CL load so
lower jitter is achieved at a higher load.

The EB scheme, shown in Figure 5.3(d), falls between the CL and LL
scheme with a 95% percentile of 357 cycles, which is a 30% improvement
over CL. This is, however, achieved at a load 25% above the CL load. This
improvement is due the fact that the EB scheme does not consider throughput
when making the admission decision, while the CL scheme use a very coarse
estimate of available bandwidth when making the admission decision. Still,
even a delay bound scheme shows a limited ability to achieve good jitter
characteristics.

5.4.2 Flow Level QoS

We will now study the flow level characteristics of three admission control
schemes in combination with service differentiation. Two schemes, LL and
EB, are the ones that we studied in the previous section. The third, is a
probe based (PB) approach which replace the CL scheme because of its poor
performance. It is described in Section 5.3.2. Our goal is a QoS concept with
flow aware AC and flow negligent traffic classes. We will study throughput,
latency and jitter characteristics as we did in the previous section, but at the
flow level.

5.4 Performance Evaluation 91

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te Total

SL1
SL2
SL3
SL4
SL5

(a) No admission control.

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te Total

SL1
SL2
SL3
SL4
SL5

(b) Probe.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te Total

SL1
SL2
SL3
SL4
SL5

(c) Egress measurements.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te Total

SL1
SL2
SL3
SL4
SL5

(d) Link by link.

Figure 5.4: Average class throughput.

Throughput

Throughput results at the class level is presented in Figure 5.4, and through-
put results at the flow level is presented in Figure 5.5. As before, Figure
5.4(a) shows that without AC we are unable to give all service classes the re-
quested bandwidth due to saturation. Furthermore, the high priority classes
preempts the low priority classes, i.e. the bandwidth differentiation is no
longer according to the percentages in Table 4.1. This behaviour is reflected
at the flow level in Figure 5.5(a) where we see that the throughput per flow
decrease as the number of flows increase. The PB scheme in Figure 5.4(b)
performs similar to the LL scheme, the admission decision is precise and the

92 Admission Control Algorithms

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Offered packetrate

A
c
c
e
p
te

d
 p

a
c
k
e
tr

a
te

SL1
SL2
SL3
SL4
SL5

(a) No admission control.

0 0.5 1 1.5 2 2.5
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2
x 10

−4

Offered packetrate

A
c
c
e
p
te

d
 p

a
c
k
e
tr

a
te

SL1
SL2
SL3
SL4
SL5

(b) Probe.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Offered packetrate

A
c
c
e
p
te

d
 p

a
c
k
e
tr

a
te

SL1
SL2
SL3
SL4
SL5

(c) Egress measurements.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
3

4

5

6

7

8

9

10

11
x 10

−5

Offered packetrate

A
c
c
e
p
te

d
 p

a
c
k
e
tr

a
te

SL1
SL2
SL3
SL4
SL5

(d) Link by link.

Figure 5.5: Average flow packet rate.

5.4 Performance Evaluation 93

bandwidth differentiation is according to the requirements. For flow level
throughput in Figure 5.5(b) we see that flows in SL 1 - 4 get the requested
bandwidth, while SL5 gets less. Thus, we are able to give bandwidth guar-
antees with this scheme, at both the class and flow level, and we are able to
utilise the network resource well since we get close to the saturation point. We
have already seen that the EB scheme is unable to give bandwidth guarantees
at the class level. At the flow level all accepted flows receive the required
bandwidth (Figure 5.5(c)), but the number of flows accepted in each class is
not differentiated accordingly to the actual specifications. This can, again,
be ascribed to the use of delay as the AC parameter, which results in the
bandwidth requirements being ignored and that the number of flows accepted
in each class is not differentiated according to the actual requests.

The LL scheme worked well for classes, and works equally well for individ-
ual flows. At the flow level the PB approach is as good as the LL scheme. It
is able to give all flows the requested bandwidth at the cost of less bandwidth
available to best effort traffic in SL5.

Comparing Figure 5.5(b) and 5.5(d) in detail we observe that the PB
scheme gives slightly higher throughput to most classes. This is caused by
the slightly higher load applied in the PB scheme to balance the lack of
normal SL5 traffic.

Latency

Typically we want to have low latency for flows in high priority SLs, while
we accept higher latency for low priority SLs. For best effort traffic in SL5
we do not try to meet any latency requirements.

Figure 5.6(a) shows the average per flow latency (in cycles) for increasing
load values without AC. Compared with the results from PB in Figure 5.6(b)
we see that latency is improvement by one order of magnitude for high pri-
ority flows. The EB scheme in Figure 5.6(c) only slightly improves latency,
but the differentiation between flows in different SLs is better than for PB.
For high priority SLs latency levels out at 700 cycles, while latency for low
priority SLs levels out at 1000 cycles. For the PB scheme both high and low
priority SLs levels out at 100 cycles. The EB scheme is unable to achieve
latencies as low as the other schemes even if its using latency as the primary
AC parameter. The reason is the unpredictable latency characteristics in
cut-through networks, which we discussed in Section 4.3.4. Finally, the LL
scheme also improves latency by close to an order of magnitude in Figure
5.6(d). The strength of the LL scheme, that we have seen all along, is its
ability to differentiate between flows in different SLs. This can be attributed

94 Admission Control Algorithms

0 0.5 1 1.5 2 2.5
101

102

103

104

Total
SL1
SL2
SL3
SL4
SL5

Offered packetrate

La
te

nc
y

(c
yc

le
s)

(a) No admission control.

0 0.5 1 1.5 2 2.5
101

102

103

Total
SL1
SL2
SL3
SL4
SL5

Offered packetrate

La
te

nc
y

(c
yc

le
s)

(b) Probe.

0 0.5 1 1.5 2 2.5
101

102

103

104

Total
SL1
SL2
SL3
SL4
SL5

Offered packetrate

La
te

nc
y

(c
yc

le
s)

(c) Egress measurements.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
101

102

103

Total
SL1
SL2
SL3
SL4
SL5

Offered packetrate

La
te

nc
y

(c
yc

le
s)

(d) Link by link.

Figure 5.6: Average flow latency.

to its detailed knowledge of the network conditions.

Jitter

We have evaluated per flow jitter by plotting the maximum observed jitter
for all our schemes in Figure 5.7. The plots contain the maximum per flow
jitter observed throughout a simulation run.

Without AC the results show that there is substantial increase in jitter
for all flows even at very low load, this verifies what we have seen at the
class level. With the PB scheme jitter is reduced by one order of magnitude

5.4 Performance Evaluation 95

0 0.5 1 1.5 2 2.5
102

103

104

105

SL1
SL2
SL3
SL4
SL5

Offered packetrate

M
ax

im
um

 ji
tte

r
(c

yc
le

s)

(a) No admission control.

0 0.5 1 1.5 2 2.5
101

102

103

104

105

SL1
SL2
SL3
SL4
SL5

Offered packetrate

M
ax

im
um

 ji
tte

r
(c

yc
le

s)

(b) Probe.

0 0.5 1 1.5 2 2.5
101

102

103

104

105

SL1
SL2
SL3
SL4
SL5

Offered packetrate

M
ax

im
um

 ji
tte

r
(c

yc
le

s)

(c) Egress.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
102

103

104

105

SL1
SL2
SL3
SL4
SL5

Offered packetrate

M
ax

im
um

 ji
tte

r
(c

yc
le

s)

(d) Link by link.

Figure 5.7: Maximum flow jitter.

for high priority flows (Figure 5.7(b)), and slightly less for low priority flows.
This scheme use jitter for the admission decision, but we are still unable to
reduce jitter significantly as is is still in the order of 300 to 600 cycles. The
EB scheme yields a jitter of 12000 cycles regardless of priority (Figure 5.7(c)),
which is similar to the observed jitter without AC. This can be attributed to
focus on latency rather than jitter. Finally, for the LL mechanism in Figure
5.7(d), we see an improvement in overall jitter, but not as good as for the PB
scheme. This is caused by the fact that this scheme ignores latency and jitter
properties and only concentrates on throughput when making the admission
decision. Moreover, we can conclude that jitter is the most challenging at-

96 Admission Control Algorithms

tribute to control in cut-through networks due to backpressure.

5.5 Contributions and Related Work

We have suggest three AC schemes for interconnection networks. Our main
findings are as follows. First, bandwidth guarantees for a set of service classes
are achievable with the use of the Link-by-link and the Probe based schemes.
The Calibrated Load and the Egress Based methods are unable to achieve
any guarantees. Second, latency and jitter guarantees are hard to achieve
regardless of the method used. This is due to the nature of interconnec-
tion networks and the way back-pressure affects latency. Third, flow level
guarantees are possible by combining flow aware admission control with flow
negligent service differentiation. Fourth, each mechanism works best when
measured on the parameter used to make the admission decision.

These results are important in several ways. First, they are important as
a means to achieve QoS in interconnection networks and making it possible
to have low latency message passing applications and high throughput bulk
transfer applications share the same network without risk of interference.
Second, they are important to bridge QoS between traffic coming from the
Internet and entering a local cluster, e.g. when a compute cluster is a part of
a compute grid that is accessed through the Internet using IETF standards
such as DiffServ or IntServ. As these protocols are used for some applications
on the Internet we need ways to represent these QoS attributes on our cluster
to be able to serve the application according to its specified QoS.

Many ways of doing AC do exists in literature, but they almost exclu-
sively consider either ATM networks [96] or the Internet with TCP/IP type
networks [97]. And they do not consider loss-less communication and back-
pressure which are important issues in most interconnection networks. Fur-
thermore, these contributions can not be directly adopted by interconnection
networks since they exploit features and flaws of either ATM or TCP/IP.
E.g. the approach in [95] require either that packets be dropped to indicate
congestion or that congested packets be marked in the switches in the net-
work. Packet dropping is implausible in interconnection networks such as the
InfiniBand Architecture since packets are not dropped, but flow-controlled.
Furthermore, explicit marking of packets requires intelligence in the switches,
which defeats the whole purpose of end-point AC. Another scheme designed
for interconnection networks is presented in [98] by Yum et. al, that use hop
by hop bandwidth reservations and requires recomputations of a weighted
round robin scheduler at every hop towards the destination. This is incom-

5.6 Critique 97

patible with DiffServ and the stateless core philosophy, and requires addi-
tional support in the switches, which increase complexity.

5.6 Critique

For the centralised approach there are three problems. First, the BB is a
single point of failure, should it fail the AC becomes unavailable. This can
be levigated by the use of a backup unit, but at increased cost and complexity.
Second, for large networks the load on the BB can be very high resulting in
a lot of strain on the BB and slow response times for admission requests.
This can also make the BB expensive and increase the probability for failure.
Third, as the network size increase the information that the BB has about the
current network conditions are delayed compared to the actual conditions,
which might lead to inaccurate AC.

The distributed approach overcomes the fault-tolerance and scalability
problems of centralised AC, but introduce two other problems. First, it is
hard to estimate the current global network state since we only have local
information about the network. This makes it difficult to make accurate
decisions. Second, the network communication overhead might increase as
the AC entities must use network resources to make an admission decision.

5.7 Further Work

Common for all of the above methods are that they yield the best results when
measured on the same parameter that they use for the admission decision.
E.g. LL is gives the best results for bandwidth and use this as a parameter for
AC. PB use jitter to make its decision and gives the best results for jitter. So
in order to further improve AC a scheme that considers throughput, latency,
and jitter might be sought. The study could also be extended with other
traffic patterns, e.g. hot-spots, in order to understand the impact the traffic
pattern has on the AC algorithm used.

Further work includes the investigation of congestion control as a replace-
ment for AC, where we could use different congestion thresholds for different
service classes in order to tell the end-node that no more connections are
acceptable. Some results along these lines can be found in [99]. Another
challenge is to improve latency and jitter characteristics. This could possibly
be solved by methods that reduce head of line blocking, recent proposals
include [90].

Chapter 6

Conclusion

The contributions of this thesis are the evaluation of four and the proposal of
three admission control mechanisms, two routing algorithms, and one method
for service differentiation in interconnection networks.

6.1 Routing

We started by pointing at some of the weaknesses in the current Ethernet [3]
standard, as well as the performance benefits of loss-less operation for higher
level protocols. Motivated by these findings we proposed Segment-based rout-
ing (SR) and Layered shortest-path routing (LASH), two topology agnostic
routing algorithms for interconnection networks.

Segment-based routing is a versatile algorithm that guarantees deadlock
free routing and can be used with almost any type of interconnection tech-
nology. The novelty of SR resides in its locality independence property.
This property increases the number of ways a set of routing restrictions can
be distribute, which makes it possible to improve performance compared to
other turn-based algorithms. Furthermore, the concept of segments makes it
possible to exploit the semi-regularity found in irregular topologies, such as
meshes and tori with faults, to improve performance.

Layered shortest-path routing routing is an algorithm that guarantees
topology agnostic, deadlock free, shorts-path routing. Its novelty lies in
the idea of layered routing. Layered routing divides resources into layers,
and deadlocks are avoided by preventing portions of traffic from using spe-
cific layers. This contrasts with the turn-prohibition approach of SR where

99

100 Conclusion

deadlocks are avoided by preventing data packets from using specific paths,
which restricts routing freedom. For deterministic routing the performance of
LASH supersedes all known topology agnostic algorithms, while for oblivious
routing it is close to state-of-the-art. Layered shortest-path routing requires
virtual channels so it can not be used by all technologies, but the number
of layers required is modest. This makes it suitable for existing technologies
such as the InfiniBand Architecture [4] (IBA) and the Advanced Switching
Interconnect [5] (ASI). It can also be used with Ethernet by doing some minor
changes to the Ethernet flow-control mechanism.

6.2 Service Differentiation

In order to deliver service differentiation we adopted the Differentiated Ser-
vices [41] philosophy and applied it to IBA. It can also be used with ASI and
in Ethernet, but for Ethernet it cannot be combined with flow-control unless
the granularity of the flow-control mechanism is changed (as is now being
addressed by the IEEE 802.3ar Congestion Management Task Force).

We showed that throughput differentiation is possible by a combination
of weighted virtual lanes and classifying lanes as either high or low prior-
ity. These mechanisms where found necessary to give relative bandwidth
guarantees when the network is highly loaded, but on a network operating
below saturation they where of less importance. Moreover, we showed that
the theoretical worst-case latency grow exponentially because of flow-control.
Through simulations we found that, even if the observed latency did not show
exponential behaviour its growth rate where substantial as soon as the net-
work became saturated. This motivated the need for admission control to
reduce latency.

6.3 Admission Control

With service differentiation we where able to differentiate between classes,
but unable to give quantitative guarantees since we did not restrict the
amount of traffic allowed into the network. By introducing admission control
(AC) we where able to limit the network load. We have suggested three dif-
ferent AC algorithms and we have evaluated these three as well as a fourth
proposal originally intended for the Internet.

Each algorithm can be combined with a DiffServ based QoS scheme,
without increasing complexity in network switches. The Calibrated load

6.4 Future work 101

and Link-by-link schemes assume pre-knowledge of the network’s saturation
point and require a bandwidth broker. The Egress based method is based on
endpoint (egress) latency measurements to make a statistical assessment of
load. While the Probe based scheme uses a probe packet to check if there is
room for more flows in the network based on experienced jitter.

Our findings where that bandwidth guarantees for aggregated flows are
achievable with the Link-by-link and Probe schemes. While the Calibrated
load and Egress based methods are unable to guarantee bandwidth. Latency
and jitter is hard to handle for all schemes due the nature flow-control and the
way it introduces back-pressure. Strict AC can be used to improve latency,
but at the cost of lower throughput. Overall, the Probe and Link-by-link
schemes make it possible to give soft guarantees for throughput and latency,
while they are unable to give any guarantees for jitter.

6.4 Future work

Several of the topics discussed in this thesis deserve further study. The
algorithm used for segmentation in SR can probably be improved, especially
for irregular topologies. Moreover, a study of how to exploit segments for
fault-tolerance and local reconfiguration is a topic for future research.

When combining layered routing with QoS we quickly need more layers
than any existing technology supports. Therefore, how to reduce the number
of layers required, while retaining the routing and QoS functionality, is an
important question to answer. This also extends to the combination of QoS or
LASH or both, with fault-tolerance. I.e. how to design a scalable interconnect
that support high performance routing, QoS, and fault-tolerance remains a
challenge for the future.

Common for all the proposed AC schemes are that they yield the best
results when measured on the same parameter that they use to make the ad-
mission decision. So in order to further improve AC a scheme that considers
throughput, latency, and jitter might be sought. Furthermore, an investiga-
tion of congestion control as a replacement for AC remains. In this approach
we could use different congestion thresholds for different service classes in
order to tell the end-node that no more connections are acceptable.

Bibliography

[1] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection
Networks An Engineering Approach. Morgan Kaufmann, revised edition
edition, 2003.

[2] William J. Dally and Brian Towles. Principles and practices of inter-
connection networks. Morgan Kaufmann, 2004.

[3] IEEE Standards Association. IEEE Standard 802.3-2005 LAN/MAN
CSMA/CD Access Method, 2005.

[4] InfiniBand Trade Association. Infiniband architecture specification, 1.2
edition, October 2004.

[5] Advanced Switching Interconnect Special Interest Group. Advanced
Switching Core Architecture Specification, revision 1.1 edition, August
2004.

[6] O. Lysne, T. Skeie, S.-A. Reinemo, and I. Theiss. Layered routing in
irregular networks. IEEE Transactions on Parallel and Distributed Sys-
tems, 17(1):51–65, 2006.

[7] Andres Mej́ıa, José Flich, José Duato, Sven-Arne Reinemo, and Tor
Skeie. Segment-based routing: An efficient fault-tolerant routing algo-
rithm for meshes and tori. In In proccedings of the 20th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2006).
IEEE Computer Society, April 2006.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC
2475 Differentiated Services. IETF, December 1998.

[9] Sven-Arne Reinemo and Tor Skeie. Ethernet as a lossless deadlock free
system area network. In Yi Pan, Daoxu Chen, Minyi Guo, Jiannong
Cao, and Jack J. Dongarra, editors, Parallel and Distributed Processing

103

104 BIBLIOGRAPHY

and Applications: Third International Symposium, ISPA 2005, Nan-
jing, China, November 2-5, 2005. Proceedings, volume 3758 of Lecture
Notes in Computer Science, pages 901–914. Springer Berlin/Heidelberg,
October 2005.

[10] Sven-Arne Reinemo, Andres Mej́ıa, Tor Skeie, José Flich, and José Du-
ato. Boosting ethernet performance by segment-based routing. In To
appear in Proceedings of the 15th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing. Euromicro, IEEE
Computer Society, February 2007.

[11] Tor Skeie Sven-Arne Reinemo and Olav Lysne. Effective shortest path
routing for gigabit ethernet. In Submitted, 2006.

[12] Sven-Arne Reinemo, Tor Skeie, and Olav Lysne. Applying the diffserv
model in cut-through networks. In Proceedings of the 2003 International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications, pages 1089–1095, June 2003.

[13] Sven-Arne Reinemo, Tor Skeie, Thomas Sødring, Olav Lysne, and Ola
Tørudbakken. An overview of qos capabilities in infiniband, advanced
switching interconnect, and ethernet. IEEE Communication Magazine,
44(7), July 2006.

[14] Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, Tor Skeie, and Olav
Lysne. Admission control for diffserv based quality of service in cut-
through networks. In Timothy Mark Pinkston and Viktor K. Prasanna,
editors, High Performance Computing - HiPC 2003: 10th Interna-
tional Conference, Hyderabad, India, December 2003. Proceedings, vol-
ume 2913 of Lecture Notes in Computer Science, pages 118–129. Springer
Berlin/Heidelberg, December 2003.

[15] Frank Olaf Sem-Jacobsen, S. A. Reinemo, T. Skeie, and O. Lysne.
Achieving flow level qos in cut-through networks through admission con-
trol and diffserv. In Hamid R. Arabnia, editor, Proceedings of the 2004
International Conference on Parallel and Distributed Processing Tech-
niques and Applications, volume 3, pages 1084–1090, June 2004.

[16] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter,
Andrew Chang, Yevgeny Gurevich, and Whay S. Lee. The m-machine
multi-computer. In Proceedings of the 28th Annual International Sym-
posium on Microarchitecture, pages 146–156, 1995.

BIBLIOGRAPHY 105

[17] R.E. Kessler and J.L. Schwarzmeier. Cray t3d: a new dimension for
cray research. In Compcon Spring ’93, Digest of Papers, pages 176–182,
February 1993.

[18] N.R. Adiga, M.A. Blumrich, D. Chen, P. Coteus, A. Gara, M.E. Gi-
ampapa, P. Heidelberger, S. Singh, B.D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas. Blue gene/l torus interconnection network. IBM
Journal of Research and Development, 49, March 2005.

[19] Charles Clos. A study of non-blocking switching networks. The Bell
System Technical Journal, March 1953.

[20] J. Beetem, M. Denneau, and D. Weingarten. The gf11 supercomputer.
In Proc. 12th Annu. Int. Sym. Computer Architecture, pages 108 – 115,
June 1985.

[21] K. Hajikano, K. Murakami, E. Iwanbuchi, O. Isono, and T. Kobayashi.
Asynchronous transfer mode switching architecture for broadband isdn.
In Proc. IEEE ICC 88, pages 911–915, June 1988.

[22] Y. Sakurai, N. Ido, S. Gohara, and N. Endo. Large scale atm multistage
switching network with shared buffer memory switches. In Proc. ISS 90,
volume 4, pages 121–126, May 1990.

[23] H. Suzuki, H. Nagano, T. Suzuki, T. Takeuchi, and S. Iwasaki. Out-
put buffer switch architecture for asynchronous transfer mode. In Proc.
IEEE ICC 89, pages 99–103, June 1989.

[24] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer
communication switching technique. Computer Networks, 3(4):267–286,
September 1979.

[25] W. J. Dally and C. L. Seitz. The torus routing chip. J. Distributed
Computing, 1(3):187–196, 1986.

[26] SGS-Thomson Microelectronics. STC104 Asynchronous Packet Switch
- Data sheet, June 1996.

[27] William J. Dally. Virtual-channel flow control. IEEE Transactions on
Parallel and Distributed Systems, 3(2):194–205, March 1992.

[28] Ingebjørg Theiss and Olav Lysne. Froots - fault handling in up*/down*
routed networks with multiple roots. In Timothy Mark Pinkston and
Viktor K. Prasanna, editors, High Performance Computing - HiPC 2003:

106 BIBLIOGRAPHY

10th International Conference, Hyderabad, India, December 2003. Pro-
ceedings, volume 2913 of Lecture Notes in Computer Science, pages 106–
117. Springer Berlin/Heidelberg, December 2003.

[29] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multi-
processor interconnection networks. IEEE Transaction on Computers,
C-36(5):547–543, May 1987.

[30] R. Seifert. The Switch Book: The Complete Guide to LAN Switching
Technology. John Wiley & Sons, Inc., 2000.

[31] Jose Carlos Sancho, Antonio Robles, and Jose Duato. A flexible routing
scheme for networks of workstations. In ISHPC ’00: Proceedings of the
Third International Symposium on High Performance Computing, pages
260–267, London, UK, 2000. Springer-Verlag.

[32] T. Skeie, O. Lysne, J. Flich, P. Lopez, A. Robles, and J. Duato. Lash-
tor: A generic transition-oriented routing algorithm. In Proceedings of
the IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pages 595–604. IEEE Computer Society Press, 2004.

[33] Herbert Sullivan and T R Bashkow. A large scale, homogeneous,
fully distributed parallel machine, i. SIGARCH Comput. Archit. News,
5(7):105–117, 1977.

[34] Olav Lysne and Tor Skeie. Load balancing of irregular system area
networks through multiple roots. In Proceedings of the International
Conference on Communication in Computing, pages 165–171, June 2001.

[35] IEEE Standards Association. IEEE Standard 802.1D Media access con-
trol (MAC) bridges, 1998.

[36] Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray,
Roger M. Needham, and Thomas L. Rodeheffer. Autonet: a high-speed,
self-configuring local area network using point-to-point links. IEEE
Journal on Selected Areas in Communications, 9(8), October 1991.

[37] Francesco De Pellegrini, David Starobinski, Mark G. Karpovsky, and
Lev B. Levitin. Scalable cycle-breaking algorithms for gigabit ethernet
backbones. In INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, volume 4, pages
2175–2184, March 2004.

BIBLIOGRAPHY 107

[38] Francisco J. Alfaro, José L. Sanchez, and José Duato. Qos in infiniband
subnetworks. IEEE Transactions on Parallel and Distributed Systems,
15(9), September 2004.

[39] R. Braden, D. Clark, and S.Shenker. RFC 1633 Integrated Services.
IETF, June 1994.

[40] Providing quality of service over InfiniBand architecture fabrics, 2000.

[41] R. Braden et al. Resource ReSerVation Protocol (RSVP) – Version 1
Functional Specification. IETF, rfc2205 edition, September 1997.

[42] Lixia Zhang, Stephen Deering, and Deborah Estrin. RSVP: A new re-
source ReSerVation protocol. IEEE network, 7(5):8–?, September 1993.

[43] X. Xiao and L. M. Ni. Internet qos: A big picture. IEEE Network
Magazine, pages 8–19, March 1999.

[44] Jerry Banks, John S. Carson II, Barry L. Nelson, and David M. Nicol.
Discrete-Event System Simulation. Prentice Hall, 3 edition, 2000.

[45] W. L. Winston. Operations Research: Applications and Algorithms.
Wadsworth Publishing Co., Belmont, CA, 3 edition, 1997.

[46] D. Gross and C. Harris. Fundamentals of Queueing Theory. John Wiley,
New York, 3 edition, 1997.

[47] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: A theory
of deterministic queuing systems for the internet. In G. Goos, J. Hart-
manis, and J. van Leeuwen, editors, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume 2050 of Lecture
Notes in Computer Science. Springer Berlin/Heidelberg, January 2001.

[48] Hung ying Tyan. Design, Realization, and Evaluation of Component-
Based Compsitional Software Architecture for Network Simulation. PhD
thesis, Ohio State University, 2002.

[49] A. Varga. Using the omnet++ discrete event simulation system in edu-
cation. IEEE Transactions on Education, 42(4), November 1999.

[50] Xinjie Chang. Network simulations with opnet. In Simulation Confer-
ence Proceedings, pages 307–314, 1999.

[51] Rich Seifert. Gigabit Ethernet. Addison Wesley Pub Co., 1998.

108 BIBLIOGRAPHY

[52] W. Noureddine and F. Tobagi. Selective back-pressure in switched eth-
ernet lans. In Proceedings of GLOBECOMM, December 1999.

[53] T. Skeie, J. Johannessen, and Ø. Holmeide. The road to an end-to-
end deterministic ethernet. In Proceedings of 4th IEEE International
Workshop on Factory Communication Systems, August 2002.

[54] Helen Chen and Pete Wyckoff. Simulation studies of gigabit ethernet
versus myrinet using real application cores. In Communication, Archi-
tecture, and Applications for Network-Based Parallel Computing, pages
130–144, 2000.

[55] Giuseppe Ciaccio and Giovanni Chiola. Gamma and mpi/gamma on
gigabit ethernet. In Proceedings of the 7th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 129–136. Springer-Verlag, 2000.

[56] Giuseppe Ciaccio, Marco Ehlert, and Bettina Schnor. Exploiting gigabit
ethernet capacity for cluster applications. In Proceedings of the 27th
Annual IEEE Conference on Local Computer Networks (LCN’02), pages
669–679, November 2002.

[57] José Carlos Sancho, Antonio Robles, and José Duato. A flexible routing
scheme for networks of workstations. In M. Valero, K. Joe, M. Kit-
suregawa, and H. Tanaka, editors, High Performance Computing: Third
International Symposium, ISHPC 2000, Tokyo, Japan, October 16-18,
2000. Proceedings, volume 1940 of Lecture Notes in Computer Science,
pages 260–267. Springer Berlin / Heidelberg, October 2000.

[58] M.Koibuchi, A.Funahashi, A.Jourakua, , and H.Amano. L-turn routing:
an adaptive routing in irregular networks. In Proceedings of the 2001
International Conference on Parallel Processing, pages 383–392. IEEE
Computer Society, September 2001.

[59] Josè Flich, Pedro López, Manuel P. Malumbres, Josè Duato, and Tom
Rokicki. Combining in-transit buffers with optimized routing schemes
to boost the performance of networks with source routing. In M. Valero,
K. Joe, M. Kitsuregawa, and H. Tanaka, editors, High Performance
Computing: 3rd International Symposium, ISHPC 2000, Tokyo, Japan,
October 16-18, 2000. Proceedings, volume 1940 of Lecture Notes in Com-
puter Science, pages 300–309. Springer Berlin / Heidelberg, October
2000.

BIBLIOGRAPHY 109

[60] T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (lash) routing
in irregular system area networks. In Proceedings of Communication
Architecture for Clusters, 2002.

[61] IEEE Standards Association. IEEE Standard 802.17-2004, September
2004.

[62] Oliver Feuser and Andre Wenzel. On the effects of the ieee 802.3x flow
control in full-duplex ethernet lans. In Proceedings of the 24th Confer-
ence on Local Computer Networks, October 1999.

[63] Ren Jing-Fei and R. Landry. Flow control and congestion avoidance in
switched ethernet lans. In IEEE International Conference on Commu-
nications, volume 1, pages 508–512, June 1997.

[64] J. Wechta, Armin Eberlein, and F. Halsall. The interaction of the TCP
flow control procedure in end nodes on the proposed flow control mech-
anism for use in IEEE 802.3 switches. In HPN, pages 515–534, 1998.

[65] Wael Khalil Noureddine. Improving the performance of TCP applica-
tions using network-assisted methods. PhD thesis, Standford university,
June 2002.

[66] Thomas L. Rodeheffer, Chandramohan A. Thekkath, and Darrell C.
Anderson. Smartbridge: a scalable bridge architecture. SIGCOMM
Comput. Commun. Rev., 30(4):205–216, 2000.

[67] King-Shan Lui, Whay Chiou Lee, and Klara Nahrstedt. Star: a trans-
parent spanning tree bridge protocol with alternate routing. SIGCOMM
Comput. Commun. Rev., 32(3):33–46, 2002.

[68] Román Garćıa, José Duato, and José Serrano. A new transparent bridge
protocol for lan internetworking using topologies with active loops. In
ICPP ’98: Proceedings of the 1998 International Conference on Parallel
Processing, pages 295–303, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[69] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh. Viking: a multi-
spanning-tree ethernet architecture for metropolitan area and cluster
networks. In INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, volume 4, pages
2283–2294, March 2004.

110 BIBLIOGRAPHY

[70] Tomohiro Otsuka, Michihiro Koibuchi, Akiya Jouraku, and Hideharu
Amano. Vlan-based minimal paths in pc cluster with ethernet on mesh
and torus. In Wu chun Feng and José Duato, editors, Proceedings of the
2005 International Conference on Parallel Processing, pages 567–576.
IEEE Computer Society, June 2005.

[71] L. Cherkasova, V. Kotov, and T. Rokicki. Fibre channel fabrics: Eval-
uation and design. In Proceedings of the Twenty-Ninth Hawaii Interna-
tional Conference on System Sciences, volume 1, pages 53–62, January
1996.

[72] Mark Karol, S. Jamaloddin Golestani, and David Lee. Prevention
of deadlocks and livelocks in lossless backpressured packet networks.
IEEE/ACM Transactions on Networking, 11(6):923–934, December
2003.

[73] William James Dally. Scalable switching fabrics for internet routers.
Avici Systems, Inc., 1999. White paper.

[74] Daniel H. Linder and Jim C. Harden. An adaptive and fault tolerant
wormhole routing strategy for k-ary n-cubes. IEEE Trans. Comput.,
40(1):2–12, 1991.

[75] K. V. Anjan and Timothy Mark Pinkston. An efficient, fully adaptive
deadlock recovery scheme: Disha. SIGARCH Comput. Archit. News,
23(2):201–210, 1995.

[76] Josè Duato. A necessary and sufficient condition for deadlock-free adap-
tive routing in wormhole networks. IEEE Trans. Parallel Distrib. Syst.,
6(10):1055–1067, 1995.

[77] Josè Duato. A necessary and sufficient condition for deadlock-free rout-
ing in cut-through and store-and-forward networks. IEEE Trans. Par-
allel Distrib. Syst., 7(8):841–854, 1996.

[78] Josè Duato and Timothy Mark Pinkston. A general theory for deadlock-
free adaptive routing using a mixed set of resources. IEEE Trans. Par-
allel Distrib. Syst., 12(12):1219–1235, 2001.

[79] Ziqiang Liu and A. A. Chien. Hierarchical adaptive routing: a framework
for fully adaptive anddeadlock-free wormhole routing. In Proceedings of
the Sixth IEEE Symposium on Parallel and Distributed Processing 1994,
pages 688–695, October 1994.

BIBLIOGRAPHY 111

[80] F. J. Alfaro, J. L. Sanchez, J. Duato, and C. R. Das. A strategy to com-
pute the infiniband arbitration tables. In Proceedings of International
Parallel and Distributed Processing Symposium, April 2002.

[81] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W. K. Su. Myrinet – a gigabit-per-second lan. IEEE
MICRO, 1995.

[82] J. Jaspernite and P. Neumann. Switched ethernet for factory communi-
cation. In Proceedings of 8th IEEE International Conference on Emerg-
ing Technologies and Factory Automation, pages 205–212, October 2001.

[83] J. Jaspernite, P. Neumann, M. Theiss, and K. Watson. Determinis-
tic real-time communication with switched ethernet. In Proceedings of
4th IEEE International Workshop on Factory Communication Systems,
August 2002.

[84] F. J. Alfaro, J. L. Sanchez, and J. Duato. A strategy to manage time
sensitive traffic in infiniband. In Proceedings of Workshop on Commu-
nication Architecture for Clusters, April 2002.

[85] Jose Duato, Sudhakar Yalamanchili, Blanca Caminero, Damon S. Love,
and Francisco J. Quiles. MMR: A high-performance multimedia router
- architecture and design trade-offs. In HPCA, pages 300–309, 1999.

[86] B. Caminero, C. Carrion, F. J. Quiles, J. Duato, and S. Yalamanchili.
A solution for handling hybrid traffic in clustered environments: The
multimedia router mmr. In Proceedings of International Parallel and
Distributed Processing Symposium, April 2003.

[87] A. A. Chien and J. H. Kim. Approaches to quality of service in high-
performance networks. In Lecture Notes in Computer Science, volume
1417, 1998.

[88] M. Gerla, B. Kannan, B. Kwan, E. Leonardi, F. Neri, P. Palnati, and
S. Walton. Quality of service support in high-speed, wormhole routing
networks. In International Conference on Network Protocols, 1996.

[89] Venkata Krishnan and David Mayhew. A localized congestion control
mechanism for pci express advanced switching fabrics. In Proceedings of
the 12th Annual IEEE Symposium on High Performance Interconnects,
2004.

112 BIBLIOGRAPHY

[90] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo.
A new scalable and cost-effective congestion management strategy for
lossless multistage interconnection networks. In HPCA ’05: Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, pages 108–119, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[91] S. Jamin, S. Shenker, and Peter B. Danzig. Comparison of measurement-
based call admission control algorithms for controlled-load service. In
INFOCOM (3), pages 973–980, 1997.

[92] Coskun Cetinkaya and Edward W. Knightly. Egress admission control.
In INFOCOM (3), pages 1471–1480, 2000.

[93] J. Schlembach, A. Skoe, P. Yuan, and E. Knightly. Design and imple-
mentation of scalable admission control. QoS-IP, 2001:1–15, 2001.

[94] G. Bianchi, F. Borgonovo, A. Capone, L. Fratta, and C. Petrioli. End-
point ad-mission control with delay variation measurements for qos
in ip networks. ACM/SIGCOMM Computer Communications Review,
32(2):61–69, 2002.

[95] Lee Breslau, Edward W. Knightly, Scott Shenker, Ion Stoica, and Hui
Zhang. Endpoint admission control: Architectural issues and perfor-
mance. In Proceedings of the ACM SIGCOMM, pages 57–69, 2000.

[96] Kohei Shiomoto, Naoaki Yamanaka, and Tatsuro Takahashi. Overview
of measurement-based connection admission control methods in atm net-
works. IEEE Communications Surveys and Tutorials, 2(1):2–13, 1999.

[97] Edward W. Knightly and N. B. Shroff. Admission control for statistical
qos: theory and practice. IEEE Network, 13(2):20–29, 1999.

[98] K. H. Yum, E. J. Kim, C. R. Das, M. Yousif, and J. Duato. Inte-
grated admission and congestion control for qos support in clusters. In
Proceedings of IEEE International Conference on Cluster Computing,
pages 325–332, September 2002.

[99] Gary McAlpine, Manoj Wadekar, Tanmay Gupta, Alan Crouch, and
Don Newell. An architecture for congestion management in ethernet
clusters. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), 2005.

