
UNIVERSITETET I OSLO
Institutt for informatikk

Revising the User
Interface of
NEMAN

Master thesis

Suleiman H. Jama

August 1, 2007

Preface

This thesis is the final part of my Master Degree at the University of Oslo
Department of Informatics. The thesis has been carried out under the su-
pervision of Professor Thomas Plagemann and Phd. student Matija Pužar
(Author of NEMAN) for the Distributed Multimedia Systems (DMMS) re-
search group, the thesis itself is part of the Ad-hoc Infoware project.

In this thesis we revise the graphical user interface (GUI) of the network
emulator NEMAN. We discover that this interface has both technical issues
and might also introduce copyright violation.

Based on these facts we have designed and developed, with the C++ pro-
gramming language and the Qt framework, a GPL licensed enhanced user
interface, which consists of both a graphical and a command line interface.
We have performed several analyses on both the old GUI and the new inter-
face in order to compare the performance.

Acknowledgements

First and foremost I want to thank my supervisors, Professor Thomas Plage-
mann and Matija Pužar, for their valuable time, guidance and feedback on
both the technical and the theoretical aspects of this thesis.

I am also grateful to the PhD and Master students who contributed to this
thesis, by participating in the questionnaires.

I would also like to thank my friends Tatjana Andersen, Tonje Klykken,
Ahmed Mohammed and Pål Grønsund for reading the report and providing
suggestions.

Finally I want to thank my wife Anab Ibrahim and the rest of my family for
supporting me throughout this thesis.

3

4

Contents

1 Introduction 1
1.1 Motivation and Problem Description 2
1.2 Claims . 4
1.3 Method and Approach . 5
1.4 Reader’s Guide . 5

2 Background 7
2.1 Mobile Ad-hoc Networks . 7

2.1.1 MANET Testing Approaches 8
2.2 Network Emulators and Simulators 11

2.2.1 OMNet++ and Tkenv 12
2.2.2 NS-2 and Nam . 13
2.2.3 MobiEmu . 16
2.2.4 NEMAN . 17

2.3 Toolkits and Programming Languages 24
2.3.1 Qt . 25
2.3.2 Tcl/Tk . 26
2.3.3 Java and The Swing Toolkit 27
2.3.4 GTK+ . 29
2.3.5 Toolkit Marks . 29

2.4 Introducing Qt . 30
2.4.1 Signals and Slots . 30
2.4.2 Qt Designer . 31
2.4.3 GraphicsView and GraphicsScene 32

i

2.5 Summary . 33

3 Design 35
3.1 Requirement Analyses . 36
3.2 Empirical Evaluation of NEMAN interface Version 0.5 37
3.3 Object-oriented Design Approach 41
3.4 Summary . 47

4 Implementation 49
4.1 The Graphical Interface . 49

4.1.1 Parsing Scenario File’s 50
4.1.2 Node structure . 55
4.1.3 Animation . 56
4.1.4 The Structure of The GUI 57

4.2 The Command line Interface 62
4.3 Summary . 65

5 Evaluation 67
5.1 Performance Analyses of NEMAN GUI version 0.5 and 1.0 . . 68

5.1.1 Timing GUI version 0.5 68
5.1.2 Timing Interface version 1.0 69
5.1.3 Results . 70

5.2 Results from The End User Questionnaire 79
5.3 Summary . 83

6 Conclusion 85
6.1 Contribution . 85
6.2 Future Work . 86

A The Header Files 89
A.1 GuiInit.h . 89
A.2 Common.h . 90
A.3 GuiControll.h . 92
A.4 Command.h . 93

ii

A.5 Node.h . 94
A.6 Preference.h . 96

B Questionnaires 97
B.1 User Experience Questionnaire 97
B.2 End User Questionnaire . 97

Bibliography 97

iii

List of Figures

2.1 MANET protocol test approaches, according to [11]. 11
2.2 The Network Animator Nam 13
2.3 GUI of MobiEmu used in NEMAN as version 0.5 15
2.4 The NEMAN Architecture according to [20] 17
2.5 NEMAN evaluation from [12]. 18
2.6 Example code on signal and slot mechanism 30
2.7 Signal and slot connections . 31
2.8 Example on creating a graphic scene 32

3.1 Question 1, on user experience 38
3.2 Question 2, on learning threshold 38
3.3 Question 3, on visual performance 39
3.4 Question 4, on work experience 40
3.5 Use case for Graphical interface 43
3.6 State chart diagram for graphical interface 43
3.7 Use case for command line interface 45
3.8 State chart diagram for command line interface 46

4.1 class diagram 1 . 51
4.2 NS-2 based scenario information 52
4.3 Mkdist based scenario information 52
4.4 Retrieving node X and Y coordinate 52
4.5 Retrieving time, node ID and speed 53
4.6 Retrieving link status . 53
4.7 Retrieving link status for moving nodes 54

iv

4.8 Steps from scenario files to UDP packet 54
4.9 The Node class constructor . 56
4.10 The animation scheme . 57
4.11 Program flow . 58
4.12 Program flow continued . 59
4.13 NEMAN interface GUI 1.0 60
4.14 Topology Manager preference 61
4.15 Command line options . 62
4.16 Command line run with no arguments 63
4.17 Repeating emulation in command line 63
4.18 Communication with the topology manager 64

5.1 Measuring load time: graph 1 71
5.2 Measuring load time: graph 2 73
5.3 Measuring load time: graph 3 75
5.4 Result on prepare: graph 1 . 76
5.5 Result on prepare: graph 2 . 77
5.6 Result on prepare: graph 3 . 78
5.7 Question 1, on user experience 79
5.8 Question 2, on learning threshold 80
5.9 Question 3, on visual performance 81
5.10 Question 4, on work experience 82

B.1 User questionnaire on NEMAN Interface 0.5 98
B.2 End user questionnaire on NEMAN Interface 1.0 99

v

List of Tables

2.1 Small scenario with 3 nodes 22
2.2 Toolkit Criteria. 24
2.3 Toolkit marks . 30

3.1 Requirement table for GUI . 42
3.2 Requirement table for CMD 44

5.1 Loading scenarios examine 1 71
5.2 Loading scenarios examine 2 72
5.3 Loading scenario files, examine 3 74
5.4 Preparing scenario files examine: 1 75
5.5 Preparing scenario files: examine 2 76
5.6 Preparing scenario files: examine 3 78
5.7 Average loading time . 83
5.8 Average prepare time . 83

vi

Chapter 1

Introduction

Mobile Ad-hoc Networks also known as MANETs (the term "Ad-hoc" is
Latin and stands for "for this purpose") are wireless and infrastructure less
networks that are setup and configured for a particular purpose. During the
recent years MANETs became popular subject for research because laptops
and even smaller devices such as mobile phones and PDAs are equipped with
wireless network interfaces. Devices in a MANET communicate with each
other over wireless channels, without any centralized control.

MANETs are highly unstable and dynamic networks in terms of nodes moving
randomly, which cause network partitioning (frequent topology change) and
at unpredictable time [23]. Network partitioning occurs because the random
moving nodes with a high or low degree of mobility and in a dense or scattered
area are disconnected. This also affects the communication in a MANET.

There is no infrastructure in a MANET, communication is done from one
node to another within the same radio range, or packets are routed via other
nodes until they reach the destination. MANETs have their own routing
protocols designed specifically for them. With the help of these routing
protocols, a route in the network is discovered; this is done by broadcasting
to other nodes within the radio transmission range of the sender.

The available network resources and connectivity are also affected. Further-

1

more, the devices in a MANET are very heterogeneous consisting of Laptops,
PDAs and even Mobile Phones with different capabilities to store and forward
data packets.

Development and especially evaluation of MANET protocol solutions in the
real world are consuming time and resources. However the protocol and ap-
plications running over MANETs require sufficient testing both in the real
world and in network simulators or emulators. The benefit of using simula-
tors and emulators exceeds in many cases real world testing and saves the
developers time and money. Even though real world testing is the ultimate
way of testing protocols in a mobile device, when considering the real world
hindrance for radio transmission and other obstacles that may cause packet
delay, packet collision, hidden node problem etc. Simulation of the lower
network layers can model all these known problems under a controlled en-
vironment, with repeated parameters the results obtained from a simulation
can be very close to a real world testing.

1.1 Motivation and Problem Description

In this thesis, we study a network emulator called NEMAN [20] developed
for the Ad-hoc Infoware project, the goal of this project is to develop a set
of services for information access and sharing in MANETs. This includes de-
velopment of middleware services for MANETs with the focus on emergency
and rescue operations[9].

NEMAN is developed with the purpose of being cost efficient and at the
same time scalable enough to emulate large scale wireless mobile networks
on a single physical machine. NEMAN is divided into the core, which is
the Topology Manager and a Graphical User Interface (GUI) which is the
controlling interface. The GUI has not been designed from scratch along
with the Topology Manager, instead the GUI of the MobiEmu project [23]
has been modified to be used with NEMAN.

2

The GUI, which is from another research group, has introduced technical
problems related to runtime performance, and could also, introduces copy-
right related issues. The main issue of runtime performance is related to
the fact that the GUI is written in Tcl/Tk, which is a interpreted script-
ing language widely used in development of simulator interfaces. Interpreted
languages tend to be slower in performance in comparison to compiled lan-
guages. This GUI is the bottleneck on the size of scenarios used in the
emulation. A scenario file describes events that take place in the emulation.
Such events are the nodes’ movements, link changes, duration of the test and
communication between the nodes. When we say that it is the bottleneck
on the size of the scenario, it means that the visual performance of the GUI
is affected by how many nodes the scenario contains, their mobility speed
and frequent link change. Each node in the GUI is a graphical object that
is drawn when it moves, when this node is within communication range of
another node, a graphical object that represent the link status between those
nodes are also drawn.

However, this performance issue only affects the visual experience, and not
the network communication. The user performing an emulation will expe-
rience that there are delays in loading the scenario file into memory, and
while drawing graphical objects that are used to show the communication
link status among the nodes. This depends on the length of the scenario in
time, how many nodes used and if there are often link changes among the
nodes.

The GUI is not licensed to GPL1; it is only authorized to be used if the
author is credited. A copyright violation might occur if a modification is
done to the source code, and then published. However, it is unclear and
the author never responded to our questions regarding these issues. A GPL
licensed GUI would allow us to modify and distribute it under the conditions
of the GPL, without apprehending any copyright violation . Based on the

1GNU stands for General Public License and the most widespread such license is the
GNU General Public

3

mentioned problems, this thesis focuses on how the GUI can be improved by
either modifying the existing code or developing a new GUI with a compiled
programming language.

We decided to avoid using the Tcl/Tk language, and instead decided to de-
velop a new GUI with the C++ programming language, and the Qt toolkit
as the chosen framework. This toolkit is a cross platform graphical toolkit
for GUI development.

NEMAN has to our knowledge no other user interface other than the modified
GUI from the MobiEmu project. We conclude that an independent GPL-
based license and fast GUI is needed. Furthermore, feedback from the users
and the author of NEMAN show that a command line version of the GUI is
also required.

1.2 Claims

In order for MANET researchers to do their work efficiently and with a
high degree of reliability we have in this thesis, designed and developed an
enhanced user interface for the network emulator NEMAN. This interface
consists of two parts, a graphical interface which provides the same function-
alities as the earlier GUI, but with additional features and a command line
interface which is easily accessible and provides quick emulation setup.

Throughout this thesis, we call our interface which consists of a GUI and
a command line for NEMAN Interface 1.0, while the original GUI is called
NEMAN Interface 0.5. We have indentified the bottleneck in the visual per-
formance of NEMAN Interface 0.5, and have carried out several benchmark
tests on both applications in order to compare them.

In our comparison we have discovered significant difference in performance
between the interfaces, and our NEMAN Interface 1.0 is much faster in both
loading a scenario file and also in drawing of communication links between
the nodes.

4

We claim to have developed:

• A much faster GUI in NEMAN Interface 1.0 than NEMAN Interface
0.5

• A GUI that includes the same functionalities as the GUI in NEMAN
Interface 0.5 including additional features

• A command line interface, which is flexible and provides the ability to
do customized emulation experiments

1.3 Method and Approach

The work of this thesis is divided into a theoretical and a practical part.

The theory part consists of literature study with the mixture of books and
research papers in topics covering MANETs and network simulators and em-
ulators and user interfaces. We have also evaluated the toolkits and pro-
gramming languages used in the development of the new interface. In the
second part we studied the Qt framework, which is the chosen toolkit, while
designing and developing a prototype.

This approach has helped us to gain the theoretical knowledge of the research
area and to become familiar with the Qt library early in the process of this
thesis. The implementation of NEMAN Interface 1.0 and writing of this
paper along with all the results have been carried out in parallel.

1.4 Reader’s Guide

The structure of this thesis is divided into 5 chapters.

• Chapter 2, here we introduce the theoretical background on MANETs,
and related Network simulators and emulators with high standard graph-
ical interfaces. We also compare the studied toolkits with Qt.

5

• Chapter 3, here we outline the design criteria and requirements to
develop the new interface, along with analyses on feedback from the
questionnaire on user experience of NEMAN Interface 0.5. We also take
the NS-2 Nam and OMNet++ user interfaces into consideration, to see
the possibility and benefit of porting these interfaces into NEMAN.

• Chapter 4, here we present our implemented solution of NEMAN
interface version 1.0 based on the design outlined in Chapter 3. We
present our implementation in two parts the graphical solution and the
command line solution.

• Chapter 5, the implemented interface is critically analyzed and eval-
uated, and compared with version 0.5.

• Chapter 6, finally we give an overall summary and discussion about
the whole process also noting the things that can be improved. Com-
ments from the end user questionnaire is presented in Section 6.2

6

Chapter 2

Background

2.1 Mobile Ad-hoc Networks

A Mobile Ad-hoc Network also called MANET is an autonomous system of
mobile nodes connected by wireless links, with each node operating both as
end-node and as a router to forward packets. The nodes are free to move
randomly and organize themselves arbitrarily. This allows a dynamically
changing topology, but at unpredictable times. In dynamically changing
topology the wireless links can be both bidirectional and unidirectional.

Compared with wired networks when it comes to speed, Manet’s physical
bitrates operate typically between 1 Mbit/s and up to high rate 108 Mbit/s
(802.11n) which is slower than 100-1GB on wired networks. However this
bottleneck is not caused by the MANET itself being bandwidth constrained,
but rather the outside network, e.g., ADSL lines operates at maximum of 8
Mbit/s throughputs, which is much slower than the wireless network which
it is connected to. Most devices in a MANET rely on batteries as an energy
source, thus they are energy constrained devices, and energy conservation is
needed. A MANET may operate in isolation or may have gateways to a fixed
network.

The earliest MANETs were called packet radio networks, and were developed

7

for military purpose by DARPA in the early 1970’s. Later SRI International
Design and BBN Technologies built and experimented with these earliest sys-
tems. MANETs where part of the motivation of the original Internet Protocol
suite. Over the years many MANET routing protocols have been suggested,
among them we find two protocols which the IETF MANET group is work-
ing to standardize. These are accepted as experimental RFCs (Request For
Comments, in order to be adapted as internet standard).

• The Ad-hoc On-Demand Distance Vector (AODV) which is a reactive
protocol.

• The Optimized Link State Routing (OLSR) which is a proactive pro-
tocol.

Protocols which are reactive try to setup a route on demand, the sender re-
quest to establish a route to the node it want to communicate with. Proactive
protocols aims to let all the nodes in the network know topology change of
the network, this results in an overhead of routing traffic, but no delay in
communication. MANETs have many application areas such as emergency
situations like natural or human-induced disasters, military conflicts, emer-
gency medical situations etc.

Now that we have seen what MANETs are, and how they work, the protocols
which operate on MANETs needs to be developed, debugged and tested in
environments which can produce the same behavior as MANETs. Whether
this behavior is a real MANET, software simulation or emulation, we explain
in the next Section.

2.1.1 MANET Testing Approaches

To develop, test and debug new protocols, network emulators and simulators
are widely used. Simulators and emulators allow us to have repeated tests
that are realistically close to real world test beds. This means that, the ex-
ecuted protocol produces the same results as it would have done in a real

8

world test bed. Network simulators, such as NS-2 [4], provide the necessary
tools to conduct customized simulation experiments. However, the provided
functionalities by the supported modules in network simulators are merely
logical operations rather than real implementations. A modification of the
protocol implementation in network simulators is necessary before being de-
ployed to a target network. With emulators we avoid this, since network
emulation includes execution of real network protocol implementation code,
in a controllable and reproducible laboratory network environment [23].

MANETs can be tested within three different approaches, but first let us
explain what test bed is: Test bed is the framework used to conduct scientific
tests to test, compare and evaluate protocols and algorithms in the real world.

• Real world as MANET Test bed Real World Test bed is a test
approach that involves usage of equipment and tools to measure and
carry out tests on the computer program under development. The pro-
gram is usually designed for the equipments and tools used. Normally
in a Real World MANET test bed, people carry around the devices,
which are running a MANET protocol under test.

Real World test bed might be the ideal testing approach, since the
environment consist of obstacles, buildings, landscapes which can in-
terfere with the MANET, and eventually the implementation must be
carried out in a real world test bed before the release of the product.
It is however expensive, especially when it comes to testing networks
consisting of hundreds of nodes where equal number of participants
and equipments are needed. Not to mention that it is difficult to do
repeated tests where the same parameters apply, due to random events
in the scenario [7]. For real scenario as testbed we conclude that it
is neither scalable nor reproducible, though it is theoretically the best
test environment for its realism [23].

• Simulation as MANET Test bed where software applications are
used to model the behavior of a MANET. Simulators can produce a

9

controllable and repeatable test bed environment. As mentioned in Sec-
tion 2.1.1, the protocol and algorithm modules are computer-modeled
instead of real implementation, which is why designers have to im-
plement the protocols twice, once for simulation and once again for
deployment [11].

As shown in Figure 2.1, all layers in a simulation are done in software,
and are used to describe the simulation of the specific wireless issue
and the modeling of the wireless channel. In a simulation it is cheaper
to model the behavior of MANETs than with real world simulation.
This gives a detailed model of lower layer’s behavior, but code needs to
be completely rewritten in order to be used on actual physical devices
[20].

• Emulation as MANET Test bed is capable of testing real imple-
mentation of routing algorithms, and protocol stacks. Emulators allow
computer software to run on another platform other than the one for
which the software was intended for, this is also known as Virtual Ma-
chines (VM). Emulation allows the test bed to be cost efficient and
present a trade-off between real test beds and simulators, providing a
virtual wireless network at the lowest layers, and yet allowing real code
to be run in the higher layers. A protocol solution developed for an
emulator only needs minor changes when porting to the devices or plat-
form the software is intended for. This reduces the amount of resource
in matter of manpower that either develops the system or carries out
sequences of field testing.

Before we begin to look closely at these approaches we need to clarify the
difference between emulators and simulators and the terms simulation and
emulation.

Simulation is used in this thesis to indicate the process of using computer
software to model the wireless network, without interacting with network
processes. Emulation is the process of simulating a system with the usage of

10

a network emulator that is running on real processes. With both emulation
and simulation we are interested in modeling the accuracy of our protocols,
but emulation provides the emulated process to interact with real processes,
in the same way the final release of the protocol is intended to behave on a
device.

Figure 2.1: MANET protocol test approaches, according to [11].

2.2 Network Emulators and Simulators

As we have understood simulators and emulators provide the necessary abil-
ity and test bed environment for applications and protocols designed for
MANETs. However, there exist many simulators and emulators with dif-
ferent capability and properties. In order to develop a high standard user
interface for NEMAN, we study the interfaces of related simulators and em-
ulators.
The simulators and emulators we have studied, which are NS-2, MobiEmu,
GlomoSim, J-sim and OMNet++, have high quality graphical user interfaces,
but developers behind these projects have had extended resource and time
to develop and maintain them. To expect that we can develop a user inter-
face which can compete with the user interface of e.g OMNet++ [5] during
the short time this thesis is given is highly unlikely. An interface which is
designed in a good way can continue to be maintained, and with the ability
to be extensible, new features can be added over time.

11

In Gokturk et al. [10] we find that given the high rate of progress in net-
working research, there is considerable pressure on the resources that net-
work researchers can set aside, for implementing models that are as similar
as possible to deployable format for the protocols which is under develop-
ment. Without an architecture that ensures to isolate the models among
themselves, such lack of resources leads to "quick-hacks" style of program-
ming. When these implementations are disseminated among the research
community they become part of the simulators, which makes the simulator
code hard to manage over time. NS-2 which is explained in Section 2.2.1
is an example to this kind of process, while the OMNet++ kernel is a class
library, and you can write your components like any other library, without
modifiying OMNet++ source code anywhere. This enforces reusability and
in contrary NS-2 is more monolithic to add modules into it, where you have
to modify the source code in several places.

To conduct our development of the user interface without falling into the
problems mentioned above, we select to study the provided interface of NS-
2, OMNet++ and MobiEmu.

2.2.1 OMNet++ and Tkenv

Although OMNet++ is fully object-oriented and component based simulator,
we are interested in how the user interface of this simulator works. NS-2 have
Tcl script based models, while OMNet++ uses NED based which is editable
with the GNED graphical tool. However the current graphical interface of
NEMAN also uses Tcl models. The GUI of OMNet++ Tkenv is an interactive
execution environment. Tkenv supports examination during execution, and
is good debugging tool. Even though it does not support packet flow, or
animation like Nam does.

After all OMNet++ simulator has high quality and is gaining wide spread
acceptance in the research communities, however we are only interested in the
user interface it provides and the possibility of porting it to NEMAN. Since

12

the Tkenv does not support processing of Tcl based models, and animation,
we cannot claim that the GUI of OMNet++, Tkenv is a good candidate for
NEMAN.

2.2.2 NS-2 and Nam

Figure 2.2: The Network Animator Nam

The Network simulator NS-2 is a widely accepted discrete event Network
simulator, actively used for wired and wireless Network simulation [16].
NS-2 provides good support for TCP, routing and multicast protocols simu-
lation over local and satellite networks and several Ad-hoc routing protocols.
NS-2 is written in C++ and Object Tcl (OTcl), it is provided with a GUI
called Nam (Network Animator), Nam is Tcl/Tk based animation tool for
viewing network simulation traces and real world packet traces [3].
As we can see Nam in Figure 2.2, shows animation of TCP based scenario,

13

Nam is also capable doing packet animation. Further in the Figure we can
see the options this GUI offers, such as start simulation, stop, pause and
steps which can move forth and back in the animation. Nam is also provided
with an editor, that configures or creates scenarios, it can be done with drag
and drop fashion, instead of writing the whole scenario.

Nam is a good candidate as a graphical interface for NEMAN, because it is
capable of processing Tcl models and it provides a good simulation animator.
Even though NS-2 script models (which are whole simulation specification
such as topology star, ring etc. Agents which is the protocols and nodes link
information) and Nam, trace files are not the same, Nam can only run the
trace files which describes node movements and packet routing information.
The trace file is itself generated out of the NS-2 script model. This means
Nam is not used to control the simulation parameters in NS-2; it is rather
used to develop the script models and run the trace files.

Nam’s design theory is to be able to read large animation data set and also
to be extensible so that it can be used with different network visualization
situations. To avoid slowness and at the same time handle large animation
data sets, Nam keeps as little as possible of information in memory, and
event commands are kept in the trace file and re-read from the file whenever
necessary.

We found out that to port NS-2 graphical interface Nam into NEMAN would
take substantial amount of changes on both NEMAN, to provide the neces-
sary interface and communication channels, and Nam would also have to be
adapted in many places. We also note that, NEMAN requires a GUI to run
the emulation with, not only a GUI that shows the animation of a specific
scenario. It is also preferable to avoid introducing another GUI which is
implemented with interpreted language.

14

Figure 2.3: GUI of MobiEmu used in NEMAN as version 0.5

15

2.2.3 MobiEmu

In Wei Li et al. [23] an inexpensive and flexible MANET emulator called
MobiEmu is introduced, this emulator is capable of testing Ad-hoc Networks
of virtually any scale. The system uses a fixed network of n Linux machines
to emulate a MANET of n nodes, thus it is a distributed controlled emulation
test bed.

Connectivity changes are indicated by a central server, which also displays
the actual network topology. MobiEmu also facilitates the use of User Mode
Linux (UML), which allows to run several virtual node instances on a single
physical machine [14]. The GUI of this emulator as previously mentioned is
adapted into NEMAN, and works as the controlling interface for NEMAN.
As already indicated in [23] it is a known problem to the authors of Mo-
biEmu that the disadvantage of using Tcl/Tk based GUI in their emulator
is in speed performance. The graph update can sometimes lag1 behind the
emulation time if large number of nodes and links are displayed. This can be
compensated by either using a faster computer or reducing the smoothness
value, which is an option in the GUI provided to adjust how smooth the
drawing should be.

Figure 2.3 shows the GUI of MobiEmu and NEMAN, there has been done
modifications to it, in order to work with NEMAN. Also new functionalities
are added such as simulation of physical layer models, start and stop routing
daemons, ability to scale (zoom in and out) and to set start node. More
about the GUI is explained in Section 2.2.4, in the GUI Section.

In Section 2.2.4 we take a close look into the NEMAN architecture in light
of NS-2 and MobiEmu’s architecture and user interface.

1lag is a symptom where result of an action appears later than expected, lag is symptom
of latency in computer networks

16

2.2.4 NEMAN

Figure 2.4: The NEMAN Architecture according to [20]

NEMAN is a monolithic based Network Emulator for Mobile Ad-hoc Net-
works. This means that the emulation setup consist of a single physical
machine which holds all virtual nodes, and at least one communication layer
is real implementation [13]. NEMAN allows emulation of a whole wireless
network on a single Linux machine [19].

With Linux kernel patch sts_2.4.19.patch NEMAN is able to connect vir-
tual network devices (TAP-devices are available in the Linux kernel and
provide low level Ethernet tunneling [20]) according to the information given
to the topology manager [14], and allows user level processes to hook to them
as any other network interface through standard network sockets, with the
SO_BINDTODEVICE socket option. The topology manager can be hocked

17

to real processes with the special socket option (SO_BINDTODEVICE) this
allows us to a run real user process on a virtual tap-device and will not in-
terfere with packets sent to other processes. Since everything is running on
a single physical machine. This allows us to test middleware protocols or
application layer processes.

Figure 2.5: NEMAN evaluation from [12].

NEMAN is devided into two parts: The Topology Manager and The GUI.

Topology Manager

The topology manager, also called "TopoMan", is the core of NEMAN and
runs on a network machine as a server waiting for instructions. TopoMan
listens to control channel on UDP port 3685 for commands sent by the GUI,
the commands will be explained in section 2.2.2. In Jonhsen [12] several
features are added to NEMAN such as collision detection, random packet
loss and gray-zone simulations. Johnsen also evaluated NEMAN shown in
Figure 2.5 based on the criteria outlined in [14].

18

The GUI

In the GUI the user controls the emulation parameters, and its main task is to
send topology information to TopoMan, while animation displays the nodes
movements and link changes. The animation is just for user’s visualization
and indicates nodes movement and communication capability. The GUI does
not compute the link change between nodes or speed or movement, it reads
static information defined in the scenario file and forwards the state of each
node according to the timestamps, to TopoMan, which computes changes for
the tap-devices.

The GUI is responsible for enabling the needed number of tap-devices before
emulation is started, and when it ends, the GUI must disable tap-devices that
are not used. This is because several users can be running different scenarios
on the same topology manager, therefore sharing all the tap-devices. For
that reason we should avoid to enable or disable tap-devices that are used
by other people, the GUI controls this by sending UDP command packets to
TopoMan which either disables or enables the tap-devices used.

The below statements are valid commands to TopoMan according to the
README file in the NEMAN archive [19]

• simphy <0|1> <0|1> <0|1> Turns on or off physical simulation pa-
rameters (Collision detection, gray-zones and Random packet loss sim-
ulation)

• reset <FIRST> <NUM> resets links between <NUM> nodes starting
from node. This is done every time the user wants to start an emulation,
to reset the tap-devices from a previous emulation.

• enable <FIRST> <NUM> After the devices are reset, we can turn on
tap-devices from FIRST to NUM, in order to be used in an emulation.

• link <node1> <node2> <1|2|n> When the emulation is running, and
link information or change has been read from the scenario file, this

19

command sends link status between node1 and node2 where link status
1 means within communication range, 2 means within broadcast range
and everything above are out of range.

• disable <FIRST> <NUM> When the emulation has finished the tap-
devices are turned off, from FIRST to NUM.

• route <cmd> <node1> <node2> <gw> sets the route (cmd=1) be-
tween <node1> and <node2> through the gateway node <gw>. The
parameter <gw> is omitted if the route is being deleted (cmd=0).

• hopbyhop <FIRST> <NUM> <0|1> switches the hop-by-hop option
(0=off, 1=on) for <NUM> nodes starting from node <FIRST>. The
default is 1 since this is what we usually do want, but can be turned
off for some nodes if needed.

• hops <node1> <node2> gives you the route (all the hops) between
the two nodes, according to the information it got from the routing
daemons.

Route, hop-by-hop and hops are not integrated in the GUI, and is therefore
not to be considered.

Below we describe the functionalities NEMAN interface 0.5 provides.

1. Open scenario files: which open a scenario file and parse the con-
tents, and puts the nodes on their start position.

2. Prepare: shows communication and broadcast link between nodes,
this is used to show which nodes that are connected to each other
without starting the emulation.

3. Pause: pauses the emulation.

4. Restart emulation: restarts the emulation.

5. Routing on: turns on routing daemon, this starts the used routing
protocol which is the Optimized Link State Routing protocol (OLSR).

20

6. Routing off: turns off routing daemon.

7. Exit: safely exits the application and kills started process such as
udprecv, used to receive UDP packets from TopoMan.

8. Loop: Restarts the scenario when it finishes and loops forever.

9. Preview: Runs a scenario without sending any topology information
to TopoMan, is used to test scenario without emulating it.

10. Links: Shows or hides links.

11. Range: shows or hides ranges.

12. Physical layer: Turns on or off following physical layer simulations
Collision detection, gray-zone and random packet loss.

The spin boxes speed, smoothness and scaling is provided to adjust the vi-
sualization of the scene while start node allows the user to share tap-devices
with other users which is doing emulation on the same topology manager.
For example an agreement with another user which is specifying not to use
the first 0-99 tap-devices. Thus start node for this user should be 100.

Table 2.1 describes the steps which the GUI sends UDP packets to TopoMan
in a short scenario file consisting of 3 nodes.

In order to understand why the visual appearance on NEMAN interface 0.5
is lagging, and how we can do improvements to gain more efficiency. We
need to investigate the tools and programming language which the GUI is
built upon, and understand the root cause of performance reduction. This
comparison study is done in Chapter 5.

The programming language which the GUI of NEMAN is written in is Tcl/Tk,
and was originally written for the MobiEmu [23] emulator, and modifications
has been done to it to adapt it to NEMAN. The GUI source code consist of
one Tcl/Tk source file named "‘iemul"’ and two C source files UDPSend.c
and UDPReceive.C.

21

Time Command Nodes
reset 0 2
enable 0 2

0.0 link 0 1 1
21.0 link 0 2 2
36.0 link 1 2 2
47.0 link 0 2 1
47.0 link 0 1 1
64.0 link 0 2 2
65.0 link 1 2 2
76.0 link 1 2 1
86.0 link 0 2 1

disable 0 2

Table 2.1: Small scenario with 3 nodes.

Scenario Files

The user loads a desired scenario file for the emulation. The scenario file
is a list of time stamped location and movement definitions for all nodes.
Currently the GUI accepts two types of file formats, the native ns2 format
and an extended version generated with the mkdist2 tool.

The scenario file contains initial coordinates for each node, the position of
each node is given with three coordinates X,Y and Z. The scenario example
below is the same scenario as explained in Table 2.1, the Z value set to 0.0
indicates we only have a two dimensional scene. The distance between a pair
of nodes is given by "setdest" and the value 16777215 is used to indicate that
the node is out of reach. The wireless range for transmitters is set to 250
units for this scenario.

$god_ set-dist 0 1 1

2mkdist is a perl script that takes an ns-2 scenario file as input and changes it to use
the chosen steps as distance values [12].

22

In the statement above 1 means the two nodes are within 250 transmission
range limit. A distance value larger than 2 (broadcast range which is used
to simulate gray-zones) also means that the node are out of reach.

$node_(0) set X_ 378.182715892472

$node_(0) set Y_ 93.525072225800

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 344.861227462892

$node_(1) set Y_ 66.120219816745

$node_(1) set Z_ 0.000000000000

$node_(2) set X_ 103.168148357176

$node_(2) set Y_ 357.655624447909

$node_(2) set Z_ 0.000000000000

The lines above state the initial coordinates for each node in the scenario.

$ns_ at 0.0 "$node_(0) setdest 397.600517 377.506390 8.747347"

$ns_ at 0.0 "$node_(1) setdest 333.501292 213.787203 2.962066"

$ns_ at 33.0 "$node_(0) setdest 334.649698 88.546541 6.429074"

$ns_ at 42.0 "$node_(2) setdest 171.948357 348.823958 7.106497"

$ns_ at 50.0 "$node_(1) setdest 333.501292 213.787203 0.000000"

$god_ set-dist 0 1 1

$god_ set-dist 0 2 10

$god_ set-dist 1 2 10

$ns_ at 21.0 "$god_ set-dist 0 2 2"

$ns_ at 36.0 "$god_ set-dist 1 2 2"

$ns_ at 47.0 "$god_ set-dist 0 2 1"

$ns_ at 47.0 "$god_ set-dist 1 2 1"

All statements with

$ns_ at [time]

show events that occur at given timestamps e.g. after 33.0 seconds node 1
($node_(0) is actually node 1 and mapped to tap-device 1 when scenario

23

begins) moves to the specified coordinates. The $god_ setdist statement
says that the distance between a pair of nodes changes, 1 means that the
nodes are within direct communication range, 2 means as mentioned earlier
that the nodes are within broadcast range, thus we can simulate gray-zone
effects.

2.3 Toolkits and Programming Languages

Besides the toolkit used for NEMAN Interface 0.5, we have studied GTK+,
Swing and Qt, to find a suitable toolkit for the new GUI. We then compare
Qt with the other toolkits, to show the reason for choosing Qt. The criteria
for choosing a toolkit is based on the statements in Table 2.2.

Table 2.2: Toolkit Criteria.
1 Compiled Language
2 Platform Independent
3 Object-Oriented
4 Good Documentation
5 Licensing
6 Personal choice

• Compiled Language In order to avoid the slowness of interpreted lan-
guage; we need to program the new GUI with a fast compiled language,
such as C++.

• Platform Independent Cross-platform software is popular, and to
include users from different platforms to use our GUI, we need to look
for a toolkit that supports cross-platform software. Since the topology
manager of NEMAN is running on a Linux machine, and the GUI must
run on a different computer, there are no problems if the GUI is run
from a Windows or Mac based computer.

• Object-Oriented this concept allows reuse of code, and maintainabil-
ity and abstract design. We are interested in such approach that allows

24

easy understanding and structuring of the code.

• Good Documentation the toolkit we are looking for must have good
quality documentation, with this we mean, documentation of all li-
braries the toolkit provides.

• Licensing this is an important criteria, and we are looking for GPL
licensed toolkit.

• Personal choice matters when considering the time limit of this the-
sis, toolkits that fulfill the other criteria and have equal properties, can
be chosen based on personal experience. However we are clearly em-
phasizing compiled language, platform independent, object oriented,
and licensing before personal choice.

2.3.1 Qt

Qt is a fully object-oriented and cross-platform application development
toolkit created by the Norwegian company Trolltech. Qt includes C++ class
library and tools. Qt toolkit utilizes the high performance which the C++
programming language offers. This is a necessity when one of the main goals
of this thesis is to develop a GUI with better performance than NEMAN
Interface 0.5. Qt code, which is cross-platform, only needs to be recompiled
once in other platforms in order to work.

Qt provides single-source portability across Microsoft Windows, Mac OS X,
Linux, all major commercial Unix variants, and embedded Linux. It is fully
object-oriented, extensible, and allows true component programming.
In contrary to GTK+, we have had previous experience with Qt which is
an advantage that cuts down the time and effort spent on searching for a
suitable toolkit.

One of the advantageous sides of Qt, is the online documentation website
which provides examples and documentation for each class and its properties

25

in the Qt library. We are already familiar with Qt’s API section in Python,
which is basically the same API only read in the context of the programming
language used. Another good reason for choosing Qt was because of the
newly released feature of QGraphicsView framework in Qt 4.2.1 (which is
used in this thesis). This framework is an enhanced replacement for the
QCanvas3 module which was previously provided for Qt 3, with a refined set
of features.

The framework enables responsive handling of large numbers of canvas items
through the use of space-partitioning scheme4. The QGraphicsView module’s
performance is utilized when handling large numbers of static objects with
the binary space-partitioning Tree BSP indexing. With BSP Tree moving
or adding objects on the graphic scene are done in logarithmic time. Thus
for moving objects we gain performance speed by not indexing the BSP this
gives us constant time on operations like moving or adding an object to the
graphical scene.

2.3.2 Tcl/Tk

Tcl (Tool Command Language) is a scripting (Interpreted) language like Perl
but extensible and with cleaner syntax and ease of use. Tk is an extension
developed by the creator of Tcl and is used for creating scripts that interact
with users through windows. Tcl can be used as a Unix shell and Tk was
originally developed to create windows for the X windows enviroment [24].

As we have already described NEMAN Interface 0.5 is written in Tcl/Tk, and
due to the runtime slowness of interpreted languages, as matter of course we
do not want to implement the new interface in a similar language. However,
we must understand this language in order to determine the lack in speed per-
formance. Tcl/Tk is also studied because several popular network simulators

3QCanvas is a Qt class that provide 2D area that can contain graphical items
4space-partitioning scheme is a mathematical process of dividing a space into none

overlapping regions, binary space-partitioning BSP is one of the most common forms of
space-partitioning

26

and emulators interfaces are implemented with Tcl/Tk, those are as earlier
mentioned NS-2’s Nam, MobiEmu/NEMAN Interface 0.5 and OMNet++’s
Tkenv.

Computer languages that are interpreted, executes, or performs instructions
by a program called an interpreter. These languages are often faster to
develop with programs, compared with their counterparts which are compiled
languages. Due to their flexibility to run command by command, also in shell
mode (most interpreted languages provide the ability to run in shell mode,
where the programmer types command and receives result instantly).

However when it comes to efficiency as mentioned interpreted languages are
slower in runtime than compiled languages, because the interpreter must
analyze each statement in the program before it performs the desired ac-
tion, whereas the compiled code just performs the action, in fact compiled
languages are in cases 10 times faster than interpreted languages.

Tcl is mostly used for rapidly prototyping, scripted applications and GUI,
thus Tcl is not meant for software applications that require heavy computa-
tions and fast responsiveness, such as animation based programs. Usability
studies in [8] show that users in general do not care about whether a long
running task takes several minutes, but they do care when the program does
not show an immediate reaction when e.g. a button is clicked. Further, the
studies shows that the limit of what a user accepts before the program is
considered to be unresponsive can be 0.7 seconds. As we understand Tcl
is highly dynamic and flexible language that enables quickly development of
prototypes and programs, that do not require fast processing of huge amount
of data, such includes graphical objects or animation.

2.3.3 Java and The Swing Toolkit

Java is cross-platform compiled programming language, which at the same
time is semi-interpreted by the Java Virtual Machine (JVM), JVM is an
emulator where the compiled code is byte code. This byte code is not directly

27

executed by the CPU, but by JVM. JVM is again executed by the CPU,
thus a java byte code program does not take place in hardware, as with real
compiled languages such as C/C++, but in slower software emulation.

Runtime-efficiency

Prechelt [18] carried out an empirical comparison of 7 programming lan-
guages. One of Prechelts interesting remark is that the runtime of a Java
program runs at least 1.22 as long as a C/C++ program, and that the average
runtime of Java programs is even longer.

In memory management Java and for instance C++ have different approaches,
in C++ memory management must be done explicitly by the programmer,
in order to avoid memory leak. Java has a different approach since it is
provided with a garbage collection, which automatically deallocates memory
that is not needed anymore by the program, this is very convenient but the
trade offs are greater memory consumption and slower runtime speed [8].

Swing

Java comes with a graphical user interface tool called Swing, Swing partially
depends on AWT (Abstract Windowing Toolkit) when it comes to handling
events and executing primitive drawings operations, AWT is the original GUI
toolkit for Java. Most of the Swing toolkit is implemented in Java itself, due
to the runtime problems mentioned about Java, Swing programs are slow
when performing computation and to draw and handle user interfaces. The
Swing toolkit supports development of sophisticated user interfaces, but code
is often several hundreds of lines more to create small programs, compared
with other toolkits such as Qt. The reason is because Swing enforces the
use of Mode-View-Controller (MVC) architecture, and Qt also supports this
architecture but the user is not enforced this approach.

28

2.3.4 GTK+

GTK+ is a widely popular widget toolkit for the X window system for creat-
ing graphical user interfaces. GTK+ was originally developed for the GNU
Image Manipulation Program (GIMP) ??.

GTK+ which is implemented in C is not object-oriented in the way we are
familiar with the object-oriented concept in e.g. C++ or Java. Although it
provides GLib Object systems which is an implementation of object-oriented
framework for C. GTK only provides a C API, but if C++ is preferred one
must use GNOME platform bindings (gtkmm) bindings which is an object-
oriented add-on to support C++.
GTK+ also offer a GUI layout design tool called Glade Interface Designer,
Glade produces XML files. To our knowledge GTK/GTK+ is a powerful
(in computation, since the compiled C programming language is used) and
widely used toolkit. However, we have chosen not to use GTK+ for reasons
which are both technical as stated in our criteria Table 2.2 and of personal
choice. The cross-platform approach is not as convenient as with e.g. Qt
where you only need to recompile the source code in other platforms in order
to work there. Personal choice is regarding the authors experience with
GTK+, which is limited.

2.3.5 Toolkit Marks

Now that we have shown the different selected toolkits, we give them marks
that show their ability according to our criteria tabell 2.2

Based on our marks of the toolkits in Table 2.3 we can see that both Qt
and Swing, meet with our criteria. However due to the runtime inefficiency
problems in Java programs, Qt which is C++ based and highly efficient in
runtime, we have selected Qt as our chosen toolkit to implement the NEMAN
Interface version 1.0.

29

Table 2.3: Marking toolkits
GTK+ Tcl/Tk Qt Swing

Compiled Language X X X
Platform Independent X X

Object-Oriented X X
Good Documentation X X X

GPL Licensing X X X X
Personal Experience X X X

2.4 Introducing Qt

Since Qt is the chosen toolkit to develop the new interface with, a short
introduction of Qt along with used classes and the Qt designer is given.

2.4.1 Signals and Slots

Signal and slot mechanism is a central feature of Qt which is used for com-
munication between objects, e.g. in GUI programming. If a button widget
exitButton wants to interact with another widget myWidget, the exitBut-
ton emits a signal to myWidget when a particular event occurs; myWidget
provides a slot which is a function that is called in response to a particular
signal. Qt widgets have many predefined slots, but it is common to add slots
so that you can handle the signals you are interested in. All classes that in-
herit from QObject or one of its subclasses e.g. QWidget can contain signals
and slots. The signal slot mechanism is explained with code in Figure 2.6.

Figure 2.6: Example code on signal and slot mechanism

In Figure 2.6 when the user clicks the exitButton the object emits signal

30

clicked and myWidget provides the slot close() for that particular signal. As

Figure 2.7: Signal and slot connections

we can see in Figure 2.7 objects can have one signal connected to multiple
slots in as many objects as wanted.

2.4.2 Qt Designer

Qt designer is a helpful and essential GUI layout and forms builder tool which
is part of the Qt toolkit. Designer makes it easy to visualize user interfaces;
the work with the design of the GUI components and the code is separated.
Designer creates XML user interface files, and later the Qt user interface
compiler (uic) generates C++ source code header files. Additionally user
interface compiler for PyQt (Python based Qt) which is among the program-
ming languages that have bindings for Qt, can also process. Each widget
added to the form would be handled as an object with its own properties.
To access and alter the form that e.g. is a main window or dialog window,
one must subclass either QMainWindow or QDialog. Sub classing is used to
either extend the functionality of the form by creating your own class, based
upon a form created with Qt Designer.

31

2.4.3 GraphicsView and GraphicsScene

The QGraphicsView framework has been introduced into Qt 4.2 and was
released shortly after the work on this thesis began. This framework is the
successor of the previous QCanvas modules provided in Qt3, it includes more
improvements and refined set of features. QGraphicsView class provides
widgets for displaying contents of a QGraphicsScene, which is a class to
visualize a scene. This scene can then contain all types of Canvas objects; in
Figure 2.8 we visualize our scene by constructing a QGraphicsView object
and pass the address of the scene to QGraphicsView constructor.

Figure 2.8: Example on creating a graphic scene

Then the scene provides a surface to manage 2D graphical items; the QGraph-
icsItem class provides foundation for creating our customized item objects.
These items include shapes such as line, ellipse, text or custom pixmap (pic-
ture).

With these classes we are able to create a visual scene where we can load
graphical 2D items which represent the nodes in a scenario. We calculate the
coordinates and movements in each node by reading the X and Y coordinates
and while the nodes are moving in the scene we update their position by
finding the QGraphicsItem::pos.x() and QGraphicsItem::pos.y() positions.
The QGraphicsView framework has a huge effect on both the visual look and
feel and visual performance, the framework has extensive documentation in
[21].

32

2.5 Summary

In this chapter, we have outlined the research area and the motivation behind
this thesis. We have further studied NEMAN Interface 0.5, and found inter-
esting remarks on the performance issue in the MobiEmu project [23]. In our
search for a good GUI candidate we also closely inspected popular simulators
and emulators such as NS-2 and OMNet++, t o see the possibility of porting
such GUI into NEMAN.

We also gained more insight into the topology manager of NEMAN (Topo-
Man) and the interface it provides for socket communication with any user
interface. We have also studied the structure of different scenario files such
as the NS-2 formatted and the mkdist formatted, in order to develop an
interface which can handle both file formats. In our comparison studie be-
tween the toolkits we found Qt as the most suitable toolkit which fulfills the
criteria.

33

34

Chapter 3

Design

A Graphical User Interface (GUI) is simply the means by which an applica-
tion communicates with the user, and the user with the application through
manipulation of graphical objects. GUI provides humans to interact with
the computer, through the use of windows, icons and menus. GUIs stand
in sharp contrast to command line interfaces, which only use text and are
accessed solely by a keyboard [2]. GUI came into existence because the first
interactive user interfaces to computers were not graphical; they were text-
and-keyboard oriented [1]. These interfaces also exist today as an alternative
to GUI and consist of commands that are memorized and computer responses
that are brief.

The advantage of a GUI is to make the usage of software or computer oper-
ations more intuitive, and easy to learn even for novice users, because of the
graphical representation of the commands which are to be executed.

A GUI gives the possibility to change window size, colors of the text and
font size. In additional a GUI present commands, options or data to the
user on the appropriate application display and to organize information in
a meaningful way to make it user friendly [17]. This opportunity has con-
tributed to allow people in different physical conditions to use computers.
Command line based interface requires more effort from average users, but
advanced users such as system administrators or Unix users think it is more

35

convenient and powerful.

In this Chapter, we describe the design of NEMAN Interface version 1.0, by
utilizing object-oriented analysis and design features. Object-oriented ap-
proach gives us the ability to reuse code, and thus makes the maintainability
if the program much easier. Furthermore, we perform analyses on a ques-
tionnaire about the user experience on NEMAN Interface 0.5 in Section 3.1
and 3.2. In Section 3.2.1 we design NEMAN Interface 1.0 with the use case
diagrams and explain in details about the functionalities with state chart
diagrams.

3.1 Requirement Analyses

Requirements specification phase in this thesis started early with model-
ing the problem domain, the two most important specification techniques
in object-oriented analysis are use case diagrams and class diagrams [15].
A typical specification document also describes other requirements such as
performance, look and feel, usability, maintainability and security, which are
important task to take into consideration. Since NEMAN users pose the
requirements for the NEMAN Interface 1.0, a questionnaire about require-
ments is carried out. This questionnaire gives us valuable information about
how to proceed in the development process. By interpreting the question-
naire we are able to design a GUI which is capable of meeting the needs of
the users; however it is not sufficient enough to be called accurate statistical
survey due to the number of participants who are limited to few PhD’s, and
Master students.

We selected the participants on criteria’s based on their experience on NE-
MAN usage. Some of the participants had few weeks of experience, while
others use NEMAN on daily bases, with this in mind, we should be aware
that some of the participants might not know about the problems we are
investigating at all.

36

The questions were given to analyze and gather information about the users
experience and their view about the functionalities in the NEMAN Inter-
face 0.5, regarding where in the emulation steps they experienced undesired
disability in visual performance, and additionally features they want to be
added to the NEMAN Interface 1.0. Some of the participants did not an-
swer questions they did not have sufficient knowledge for, we can see that
participants answering to the different questions are manifold.

3.2 Empirical Evaluation of NEMAN interface
Version 0.5

• Question 1: How is your experience with the usage of the
current GUI? Possible answers:

1. -Intuitive

2. -Good

3. -Difficult

4. -Very Difficult

5. -Dont’ know

In Figure 3.1 which shows results from question 1: 3 people reported that
the GUI is intuitive to use, while the other 3 reported that it is good to use
and one person did not know. This shows that most participants agreed that
NEMAN Interface 0.5 is easy to use, due to the minimalistic way the GUI
is designed. We are also interested to adopt the same minimalistic design
approach for the NEMAN Interface 1.0.

• Question 2: How fast is the learning threshold of the GUI?
Possible answers:

1. -Very fast

2. -Fast

37

Figure 3.1: Question 1, on user experience

3. -Slow

4. -Very slow

5. -Dont’ know

Figure 3.2: Question 2, on learning threshold

Figure 3.2 shows results from question 2: 3 people reported that the learning

38

threshold in NEMAN Interface 0.5 is fast due to the few options in the GUI,
hence the user can quickly adapt to it. 1 person reported that the learning
threshold is slow, explaining that the GUI is difficult to understand, while
one person did not know.

• Question 3: Are you satisfied with the visual performance of
the GUI? Possible answers:

1. -Yes

2. -No

3. -Dont’ know

Figure 3.3: Question 3, on visual performance

Figure 3.3 which shows results from question 3: Here 3 people reported
that they are not satisfied with the visual performance. The 2 people who
answered "don’t know" are master students with few weeks of experience with
NEMAN. This clearly shows that they have not experienced the performance
lag due to their emulation setup which mainly consisted of few nodes. One
person reported that he or she is satisfied with the visual performance.

39

• Question 4: Are you able to do your work efficient with the
current GUI? Possible answers:

1. -Yes

2. -No

3. -Dont’ know

Figure 3.4: Question 4, on work experience

Figure 3.4 shows the final results from question 4: 3 people reported that
they are able to do their work efficiently with NEMAN Interface 0.5, on the
other hand 3 people disagreed and one person had no opinion. The reason
for this result can be caused by the participants only working with few nodes
in their scenario files, the udpsend program is as mentioned used to commu-
nicate link changes to the TopoMan, when big scenario files are loaded, with
e.g. 100 nodes, udpsend’s CPU consumption increases. The resources are
consumed because the kernel has to load the executable of udpsend, loading
the program from disk also takes time and loading all shared libraries and
the program itself into memory also takes time. When this is done for 100
nodes that are frequently changing link, performance lag is .

40

In conclusion to the answers reported back on the questions. NEMAN In-
terface 0.5 is intuitive and good to use, the learning threshold is quite fast,
but there are visual performance lag reported mainly by those who emulate
with big scenario files consisting of many nodes. Thus they are not able to
do their work efficiently, on the other hand those who emulate with small
scenario files, which consists of nodes ranging from 3-50 are capable of doing
their work efficiently without visual performance lag.

In addition to the questions represented in the histograms, the participants
were also given four none multiple choice questions. Answers to those ques-
tions where considered when removing functionalities from the NEMAN In-
terface 0.5 and adding new ones.

• Which functionalities would you remove from the current GUI?

• Which functionalities would you add to a NEMAN Interface 1.0?

• Which functionalities in the current GUI do you use mostly?

• Which functionalities in the current GUI do you use seldom?

3.3 Object-oriented Design Approach

The use cases show the intended behavior of NEMAN interface version 1.0,
and are derived from analysis of user’s feedback, and also inspired by the
behavior of the NEMAN Interface 0.5. We are trying to keep as much as
possible of the functionalities of NEMAN Interface 0.5, to simplify the user’s
transition to NEMAN Interface 1.0, keeping the look and feel of NEMAN
Interface 0.5.

Tables 3.1 and 3.2 explain in more detail the dependencies between the use
case diagram shown in Figure 3.5 for the graphical interface, and the com-
mand line interface in Figure 3.7.

State charts diagrams in general demonstrate what action objects perform
when they receive an event. As we can see the state chart diagrams in Figure

41

3.6 and Figure 3.8 describing the determination of how objects react to events
in parts of the main events in the application.

Table 3.1: Requirement assignment to actors and use cases for the GUI

Requirement Actor Use case
The user runs the GUI of NEMAN NEMAN user Display configure GUI
The user choose to load a scenario file NEMAN user Load scenario file
The user may choose to change starting
node

NEMAN user Change start node

The user may choose to turn on/off rout-
ing daemons

NEMAN user Turn on or off routing

The user may choose to set physical layer
simulation

NEMAN user set physical layer simulation

The user may choose to preview emulation NEMAN user Preview emulation
The user may choose to loop the emulation NEMAN user Loop emulation
The user starts the emulation NEMAN user Start emulation
The user may choose to exit the GUI NEMAN user Exit

Table 3.1 shows the requirement assignment to actors for the GUI, and their
corresponding use cases. The actors are NEMAN users. As we can see, a
NEMAN user is interacting with the GUI, and has the opportunity to do
several configuration steps.

Use cases shows the functional requirements of the system we are developing
in a more intuitive method. The requirement assignment from Table 3.1 are
displayed visually as use cases in Figure 3.5. As we can see the user is in the
middle and the arrows correspond to actions performed.

The state chart diagram in Figure 3.6 describes the functions that are called
when a certain action is performed. The state chart shows the steps in
the emulation, from when a scenario file is loaded and the events that can
happen during that time, for instance when the emulation is stopped, the
scenario file is reloaded and the nodes go back to their initial starting point on
the scene. When the emulation finishes without user intervention, it enters
finished mode. At this point the user can restart the emulation, load a new
scenario file or exit.

42

Figure 3.5: Use case for Graphical interface

Figure 3.6: State chart diagram for graphical interface

43

Table 3.2: Assignment of requirements to actors and use cases for command
line interface

Requirement Actor Use case
The user sends no command parameters NEMAN user Default
Default parameters is set and emulation
started

NEMAN user Start emulation

The user choose to set command line pa-
rameters

NEMAN user Set command line parameter

The user may choose to turn on/off rout-
ing daemons

NEMAN user Turn on or off routing

The user choose to configure server NEMAN user change server addr, port and
message port

The user may choose to set physical layer
simulation

NEMAN user set physical layer simulation

The user may choose to preview emulation NEMAN user Preview emulation
The user may choose to loop the emulation NEMAN user Loop emulation
The user may choose to repeat the emula-
tion

NEMAN user Repeat emulation

The user may choose to cut of time NEMAN user Cut of time
The emulation starts NEMAN user Start emulation
The user may choose to exit NEMAN user Exit with Ctrl-c signal

Table 3.2 shows us the use cases that are for the command line interface
when actor starts emulation. Later procedures automatically react to certain
event in the emulation, e.g. the user which is called NEMAN user, might
start command line based emulation without giving any arguments to the
interface. This entails into the start of an emulation with default parameters
such as start node is by default set to 1, speed is set to 1, loop is set to
0, repeat is set to 0 and so on. For the topology manager values such as
the server address, server port, message port and routing port are read from
server.ini file.

Figure 3.7 is the Table 3.2 described a bit more with use case diagram, show-
ing the options the user have, and the steps an emulation in the command
line interface might be performed.

As we explained in Table 3.2 this state chart diagram shows, in a more

44

Figure 3.7: Use case for command line interface

45

Figure 3.8: State chart diagram for command line interface

detailed way the functions that are called when emulation is started without
arguments. As we can see if the interface is run with no arguments after
scenario file is given, default values is given and the emulation runs normally
with no change in start node, speed or etc. However, if we give arguments
to the interface and those arguments are e.g. loop the emulation. Then
loop emulation calls open scenario which again calls start emulation, when
emulation finishes, finish emulation is called and loop is again called, this
continues until the user interferes. The same also happens for the repeat
functionality, except that the number of times the emulation should repeat
is given, when it has repeat the emulation given number of times, finish
emulation calls exit.

46

3.4 Summary

In this chapter we inquired the requirement analysis and carried out question-
naire to collect information from the users of NEMAN. Those who partici-
pated in the questionnaire had different levels of experience with the NEMAN
interface version 0.5. That is why we have different answers on questions re-
garding the visual performance issue. The participants came up with many
new ideas for new features; we have thus carefully studied those features
which can be implemented in NEMAN Interface 1.0. The features we did
not had sufficient time to develop, are described in the Section in Chapter
6.2.

Furthermore, based on the questionnaire an object-oriented design, which in-
volves use case diagrams and state chart diagrams. The state chart diagrams
helped us to describe actions that are performed when an object receives an
event. We have separated the design of the GUI part of the interface and
the command line part, in spite of both interfaces being one and the same
software application. The use cases determine the usage of the GUI (version
1.0) which is to be implemented, even though much of the functionality is
inspired by NEMAN Interface 0.5. However we have taken this approach so
that the users can have an easy transition from NEMAN Interface 0.5 to 1.0.

47

48

Chapter 4

Implementation

In this chapter, we describe the implementation of the new Graphical and
command line interface for NEMAN. We have chosen to implement the GUI
in the C++ programming language, previously described in Section 2.3, be-
cause of its flexibility to interact with low level interfaces such as sockets,
which the Tcl/Tk programming language of NEMAN Interface 0.5 is not di-
rectly capable of. Instead the applications udpsend.c and udpreceive.c are
used.

This implementation is done to guarantee object-oriented development, al-
lowing inheritance of the existing classes which simplifies the developers work
if new components need to be added to the interface in the future.

We to explain the implementation of the graphical part of NEMAN Interface
1.0 in Section 4.1 and in Section 4.2 we describe the command line imple-
mentation. Examples of both the interfaces in action are also described.

4.1 The Graphical Interface

In this section, we explain the process of how the Graphical interface is imple-
mented, with respect to our design outlined in Chapter 3. When considering
the design of the GUI we want to implement an intuitive and minimalistic

49

GUI. We are able to do this by using both self explaining icons and popup
balloon messages that describe the buttons. Also the icons improve the look
and feel of the GUI, compared with NEMAN Interface 0.5, which does not
use icons, but instead plain white buttons with black text. We provide with
both the graphical and command line interface a progress bar which is used
to show the progress of loading a scenario file and the progress of the total
emulation time. NEMAN Interface 0.5 only provides progress bar the total
emulation time. Before we begin to explain in detail the implementation
of the graphical part, the reader should be aware of that the GUI and the
command line in NEMAN Interface 1.0 are one and the same application,
but run with different arguments.

4.1.1 Parsing Scenario File’s

Like the old GUI a user starts emulation by loading a scenario file to be
displayed. The scenario file is parsed with QRegExp Qt’s which is regular
expression class and the retrieved data is stored into appropriate data struc-
tures which are QVectors and QMap which are both similar to standard C++
std::vector and std::map. The scenario file contains information about each
node in the scene, their X and Y positions, speed and link status. When
emulation is started a QTimer timer object is also started, this timer can
run fast or slow according to the speed given. The timer invokes what is to
be done for each timestamp in the scenario.

We will now take a look into the steps the scenario file is read and how the
data is collected beginning from the top of a scenario file and down.

As earlier mentioned there are two types of scenario file formats: the NS-2
based and the mkdist filtered files. The difference is found at the top of the
NS-2 scenario files, and at the bottom on mkdist scenario files, Figure 4.2
shows the NS-2 signature information.

while Figure 4.3 shows signature information on bottom of mkdist based

50

Figure 4.1: class diagram 1

51

Figure 4.2: Information signature on NS-2 based scenario file

scenario file.

Figure 4.3: Information signature on Mkdist based scenario file informaton

Mkdist based scenario file introduce data_range and broadcast_range that
are used to indicate the range in meter of the communication and broadcast
radio range. In the GUI two circles are drawn, with the node in the cen-
ter. Since NS-2 scenario files do not include this information, we instead use
default circles with 250.00m for communication range and 300.00m for broad-
cast range. These values are used because communication range of 250m is
widely used transmission range for wireless network simulations [22]. This
also depends on the program used to generate the scenario file; our program
setdest uses 250m as the range of wireless transmitters. Therefore a distance
value which is 1 is within 250m range, and a distance value equal to 2 has
300m as distance value.

Figure 4.4: Retrieving the nodes X and Y coordinate values

Further in the scenario file we continue to process the information about each
node. The code in Figure 4.4 shows how we retrieve the X and Y values, and
store them into myVector which is of QVector data structure, myVector is
used later when we position the nodes on the graphical scene. The comment

52

in the code is used to show the line in the scenario file which is parsed with
regular expression.

For now the X and Y values contain the position where the nodes are located
in the 2D space of the scene. In the scenario we also need to retrieve the X
and Y values for a moving node. This is shown in Figure 4.5 we first store
the time value, in a QVector of real, then the node’s unique ID the positions
and the speed velocity are also stored in QVectors. The comment in the code
can also be read like this: at time 3.0 node 1 is moving toward X = 866.09
and Y = 753.02 with speed 0.751.

Figure 4.5: Time values, node ID’s, coordinates and speed values are re-
trieved

Figure 4.6: Link range value between two nodes is retrieved.

Figure 4.6 shows the link status for the nodes before they begin to move
around. Here we collect the first and second node and the link status they
share. When prepare emulation is either prepared or started these links are
drawn.

53

Figure 4.7: Here we retrieve link changes

Figure 4.7 then shows the link status at a certain time in the emulation. In
this example after 41.32 seconds node 2 and 3 have link status 2. In destTime
we save timestamps for each node, and in destNode1 and destNode2 we save
the nodes.

Figure 4.8: Steps from scenario files to UDP packet

Figure 4.8 gives an indication of the process when link status information is
read from scenario file. The first step shows part of the scenario file where
we have 3 link changes at the same time. In the second step we can see the

54

information transformed into graphical objects of the nodes and the links,
which is much easier to understand than reading the scenario file. The dark
green line is communication link, while the light green line is broadcast link
between the nodes. In the third step, we show code to explain how the
information about each link change is sent as a UDP packet to the topology
manager. The data (in the code) is e.g. is set to "link 0 2 2".

4.1.2 Node structure

An item which is a QGraphicsItem pointer is the visual concept of a node
in the scene, we use the terms item as the specific pixmap representation of
the node, while node itself is the whole object and all its members. A node
object consists of these visual members on the scene:

• The node pixmap (image of penguin, PDA, or a laptop)

• Node ID

• Broadcast circle

• Communication circle

• One or more links to neighbour nodes

The node class provides a node object which has the QGraphicsItem item
pointer for representation of the node in the scene each item has a pixmap
which can be chosen to be either the popular penguin image, or a PDA or
a laptop image which is provided for convenience. A broadcast and commu-
nication range if the scenario requires so. Each Node has a list of neighbor
nodes and a list of outgoing lines (either communication or broadcast links)
these lists are updated each time a node comes within range of another node,
it is further explained how this is done in Section 4.3.3.

When a node pointer is constructed immediately after the scenario has been
processed these values are read from the scenario file and given to the node
constructor:

55

Figure 4.9: The Node class constructor

Figure 4.9 shows the class Node’s constructor. The nodeId is the unique
id of each node painted in the middle, it is set by number of nodes read
from the scenario and the user can change the start node in the spin box
field. The dataRange and brRange are used to check if the scenario includes
drawing of communication and broadcast ranges. The scenX and scenY are
the X and Y coordinates of that node according to the scene. The node
class is responsible for positioning each node in the scene, updating each
movement and drawing the communication and broadcast lines for each node,
the animation techniques used to animate the nodes movements is further
explained in Section 4.1.3.

4.1.3 Animation

QGraphicsItemAnimation class provides the animation support for QGraph-
icsItem, it is used together with a QTimeLine. We connect a slot to the
signal valueChanged, which is emitted by the QTimeLine, and we do the
needed updates on the moving nodes for each time this signal is emitted. For
instance when nodes are moving around we must update the link coordinates
between the moving nodes, since the links are only attached to the owner
node on one end, but an update of the position to the node on the other end
is necessary.

Figure 4.10 shows how we setup a timeline and an animation object to ani-
mate the movement of our nodes. The setPosAt function sets the position of
an item in a given step value. The setUpdateInterval corresponds to a rate
of 25 updates per second, further we set the curve shape of the timeline, in
linear curve shape the value grows linearly (e.g., if the duration is 1000 ms,
the value at time 500 ms is 0.5). The loopCount function basically keeps

56

Figure 4.10: A short explanation of the animation scheme

track of how many times the animation should be looped, a loop count of 0,
will loop the animation in definitely.

4.1.4 The Structure of The GUI

We take a close look into the structure of the GUI, and the features it pro-
vides. In Figure 4.11, the GUI and Command line versions are deriving the
Common functionalities in emulation from class Common. The Figure shows
the basic flow of the application in both mods.

In Figure 4.12, we can see the continuation of the application flow, note that
not all of the states in the application are shown in the figure, but only
distinctive functions. As with the NEMAN Interface 0.5, we have provided
the same functionalities in Figure 4.13 we can see a clean new look with the
same options as version 0.5 but with several new features, such as the ability
to fit all nodes in the scenario into the visual part of the scene.

In NEMAN Interface 0.5, the scale option is used to zoom in and out in the
scene, although not all the nodes in the scenario are visible on the scene. The
ability to change preferences on the server the topology manager is running
on, these preferences are server address, server port, message port and routing
port as shown in Figure 4.14. This option saves the user preferences in a file
called <server.ini> in order to open the same preference for the user, when
the interface restarted.

57

Figure 4.11: Program flow

58

Figure 4.12: Program flow continued

59

Figure 4.13: NEMAN interface GUI 1.0

60

Figure 4.14: NEMAN interface GUI version 1.0, topology manager preference

61

4.2 The Command line Interface

So far we have seen the implementation of the graphical part of our inter-
face; here we describe the command line interface. This interface has been
introduced as an alternative way to perform emulations. Command line
based emulation can be carried out with minimal efforts without running
any graphical servers. Much of the architecture behind the command line
interface has been already introduced, as we can see in Figure 4.11 and 4.12,
part of the code written for the graphical interface which does not involve
graphical elements is reused.

Figure 4.15: The command line options

Figure 4.15 shows the command line arguments the interface provides, this
is the help option, displayed whenever the user enters wrong arguments to
the interface.

Figure 4.16 shows an emulation running with the command line interface, as
we can see testscen1 is the scenario file given, a percentage based progress
bar shows the loading of the scenario, and in the line after we can see how
much time was spent on loading. After that we can see that the emulation
has started to run and the values given to the interface are displayed either
user given or default set values for steps like, start node, speed and etc. The
length of this emulation in seconds is also given followed by a progress bar

62

Figure 4.16: The command line running default

displaying the progress of the emulation.

Figure 4.17: The command line repeating the emulation

Figure 4.17 shows an emulation with several arguments given, as we can see
this emulation is repeated 2 times with the -r option, speed is also set to -s
10, the chosen physical layers to simulate is collision detection and random
packet loss, while gray-zone simulation is disabled. The routing protocol is
also started with -R start.

Figure 4.18 shows the topology manager receiving UDP packets from either
the command line or the graphical interface when emulation is executed. The
payload of the packet is partially readable, commands such as reset, enable
and link are visible. With the usage of networking tools such as tethereal

63

Figure 4.18: Topology Manager, listening on control channel 3685

and tcpdump, we obtained results confirming that our interface is capable of
communicating with the topology manager on control channel 3685.

64

4.3 Summary

In this chapter we have explained the implementation of the graphical and
command line interfaces. We have shown with examples how a scenario file,
which is either NS-2 based or mkdist filtered are processed by the interface
with the QRegExp class. Each step on how we store the information from
the scenario files and into the appropriate data structures are also shown.

Furthermore, we have explained how the link changes are read and sent as
UDP packets to the topology manager. We explained what a node is and
what members it consists of. The Node class is responsible of maintaining
each node coordinate and to draw, change or delete links. The Node class
also provides the animation schemes.

The command line interface is also separately explained, it has much in
common with the GUI. It is designed to offer the same functionalities as the
GUI, but it is also much more flexible to carry out customized experiments.
Such includes the possibility to be used with scripting programs.

During the implementation we have tested the interface using tethereal and
tcpdump to confirm the network communication with the topology manager.

65

66

Chapter 5

Evaluation

In this chapter, we compare our NEMAN Interface 1.0 with NEMAN Inter-
face 0.5. We confirm our theory and technical experience which stated that
NEMAN Interface 0.5 is the bottleneck in the NEMAN emulation environ-
ment.

We have done this by benchmarking both interfaces on several scenario files
with difference on sizes (file size in KB/Mb), node numbers, time and size of
the 2D scene. In our comparison we are interested in knowing the following
for both interfaces:

• The time it takes to load scenario files, and

• the time it takes to draw the links, when prepare or start is clicked.

These two factors determine the level of lag the GUI is exposed to. In the
tests we use line count which indicates the number of lines on the scenario
file that are processed. We use line count because both NEMAN Interfaces
are processing each line with regular expression, thus we are interested in
knowing how fast they perform the processing of each line.

67

5.1 Performance Analyses of NEMANGUI ver-
sion 0.5 and 1.0

We perform benchmark tests on the same functionalities in both interfaces.
These are as mentioned functions that initiate the loading of scenario files
and the drawing of the graphical representation of the communication links
among the nodes. We carry out these tests on a Dell Optiplex GX280 with
Intel Pentium 4 2.80GHZ CPU and 1GB of physical memory; the computer
is running Suse Linux 10.0 operating system.

5.1.1 Timing GUI version 0.5

In order to measure the performance of the specified functions in the Tcl/Tk
based GUI, we use the built in clock clicks timing procedure. It returns a
high-resolution time value as a system-dependent integer value. The unit
value is the highest resolution available on the system such as CPU cycle
counter [6]. The code below states how we measure the elapsed time.

#we declare a global timer variable.

global timer t0

##iemul code, line: 1367

set t0 [clock clicks -millisec] #start the clock

process_scen_file $fd #function that loads the scenario file

puts "[expr ([clock clicks -millisec]-$t0)/1000.] sec"

As we can see we are measuring the function process_scen_file, this is the
function used to load and process scenario files. We start the timer and
perform the measurements; afterwards we read the time it took.

The code below shows measurements of how fast links are drawn on the event
based function "emu_engage", we create our own function that measures

68

emu_engage because it is implemented to be called from called from an
event based function as shown in line 965 in the iemul source file.

##iemul code, line: 920

proc measurelinks {} {

set t1 [clock clicks -millisec]

emu_engage

puts "[expr ([clock clicks -millisec]-$t1)/1000.] prepare sec"

}

measurelinks is called where emu_engage used to be called from

##iemul code, line: 965

button $t1Frame.engage -text "Prepare" -command "measurelinks"

Now we have setup the ability to time the specified functions, and further
we continue with our benchmark.

5.1.2 Timing Interface version 1.0

In NEMAN Interface 1.0 we also measure the same functions, but this time
with the use of the Qt library, we measure loading for both the graphical and
command line interface, in order to compare their performance with each
other as well. We use the QTime class in the Qt library; this class provides
clock time functions. QTime reads the current time from the system clock
and measure a span of elapsed time. The accuracy of QTime depends on the
accuracy of the underlying operating system.

The code shown below explains how we measure the loading time of the GUI
and the command line of NEMAN Interface 1.0. We create a QTime object
mtime, and start the time, then we call the function which performs the
loading of a scenario file, and at the end we show the elapsed time of this

69

function.

void GuiControll::open_scenfile()

{

QTime mtime;

double t0;

mtime.start();

t0 = mtime.elapsed();

//processing a scenario file

std::cout<<"time: load:"<<(mtime.elapsed()-t0)/1000.0<<"sec"<<std::endl;

}

The code stated below which is more or less the same code as shown above,
is only used to measure the time it takes for the links to be drawn when
prepare or start button is triggered (only the GUI performs this task).

void GuiControll::prepare()

{

QTime mtime;

mtime.start();

double t0 = mtime.elapsed();

setReachable();

std::cout<<"time: prepare:"<<(mtime.elapsed()-t0)/1000<<"sec"<<std::endl;

}

5.1.3 Results

This section describes the data we use to conduct our tests with, and the
results we obtain. The tests are divided into two groups of each three tables
that contain the benchmark data for loading and preparing scenario files,
followed by the results showed in graphs.

We begin to test the loading performance for both NEMAN Interfaces; in
NEMAN Interface 1.0 we also test the command line loading performance.

70

Table 5.1: Loading scenarios files, examine 1
Scenario filename Nodes Scenario length in sec. Scene

t1-2000 100 not set 1000 x 1000
t1-4000 100 not set 1000 x 1000
t1-6000 100 1.9 1000 x 1000
t1-8000 100 9.4 1000 x 1000
t1-10000 100 17.5 1000 x 1000

The table contains the name of the scenario files used, prefixed1 with length
in number of lines, the number of nodes, the length of the scenario and size
of the graphical scene. Some of the scenario files have time not set; this
is because we have shortened some of the scenario files in order to have
increasing size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2000 3000 4000 5000 6000 7000 8000 9000 10000

Lo
ad

 T
im

e
in

 s
ec

Line counts in scenario file

NEMAN GUI version 1.0
NEMAN GUI version 0.5

NEMAN CMD version 1.0

Figure 5.1: Measuring load time on NEMAN Interface 1.0 and NEMAN
Interface 0.5, with scenario files on different sizes

1The source code and all test samples can be found in
http://folk.uio.no/suleimaj/master, or in the CD provided in Appendix C

71

In the Figure 5.1 which is based on the dataset given in Table 5.1 we see
an interesting initial value for NEMAN Interface 0.5, when line count is less
than 3000 it is actually faster than our solution and is due to the shortness of
the scenario file. As we also can see when it reaches 3000 lines the processing
time grows higher than with NEMAN Interface 1.0.

As the Line count grows, the loading time also continues to grow. In the
graphical part of NEMAN Interface 1.0 we have a linear rise in loading time;
the command line in NEMAN Interface 1.0 also follows the same pattern,
except that it is quite faster. This is because the command line skips the
processing of graphical objects, which reduces the time.

Table 5.2: Loading scenarios files, examine 2
Scenario filename Nodes Scenario length in sec. Scene

testScen_61 5 50 500 x 400
testScen_219 10 100 500 x 400
testScen_4415 50 200 500 x 400
testScen_31121 100 500 500 x 400
testScen_42576 200 1000 500 x 400

72

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Lo
ad

 T
im

e
in

 s
ec

Line counts in scenario file

NEMAN GUI version 1.0
NEMAN GUI version 0.5

NEMAN CMD version 1.0

Figure 5.2: Measuring load speed, with the size of scenarios ranging from 61
upto 45000 lines

73

In Table 5.2 we use scenario files ranging from 61 lines to 42000 in each file,
and number of nodes from 5 up to 200 (number of nodes affects the size of
the file).

In Figure 5.2 we see in the beginning that NEMAN Interface 0.5 is a bit
slower than previous graph, we also notice that after reaching the 5000 lines
it enters a steep rise. We have conducted the tests several times on the same
scenario file in order to achieve the same results, but we have encountered
problems to achieve that with NEMAN Interface 0.5, while NEMAN Inter-
face 1.0 has given the same results in repeated tests. We compensated this
problem by restarting NEMAN Interface 0.5 on each test, this gives us fresh
data structures, and the results were closely corresponding to each other af-
terwards. For instance when we run the scenario t3-70000 on first test we
achieved loading time of 13.66 seconds, when the same scenario was again
loaded the time reached 24.76. However if we restarted the GUI and run
the same test we achieved a loading time of 13.54, this shows us that we are
forced to restart the GUI for every time we conduct a measurement.

Table 5.3: Loading scenarios files, examine 3
Scenario filename Nodes Scenario length in sec. Scene

t3-17500 100 57.2 1000 x 1000
t2-35000 100 185.2 1000 x 1000
t3-52500 100 321.2 1000 x 1000
t3-70000 100 463.1 1000 x 1000

In our final test result for the loading part, we increment the size of each
file with 17500 lines as shown in Figure 5.3, this affects the loading time of
NEMAN Interface 0.5, and Figure 5.3 follows same loading time pattern as
Figure 5.2.

Table 5.1.3 is showing that we are using small scenario files of 1000 lines
up to 5000, however the number of nodes are 100 and the scene is big. This
causes, as shown in Figure 5.4, a significant difference in prepare time between
NEMAN Interface 1.0 and 0.5 in loading time. NEMAN Interface 1.0 prepare
time is almost no noticeable and range between 0.016 seconds and at most

74

 0

 2

 4

 6

 8

 10

 12

 14

 10000 20000 30000 40000 50000 60000 70000

Lo
ad

 T
im

e
in

 s
ec

Line counts in scenario file

NEMAN GUI version 1.0
NEMAN GUI version 0.5

NEMAN CMD version 1.0

Figure 5.3: Measuring load speed, with the size of scenarios ranging from
17500 upto 70000 lines

Scenario filename Nodes Scenario length in sec. Scene
t3-prepare-1000 100 not set 1000 x 1000
t2-prepare-2000 100 not set 1000 x 1000
t3-prepare-3000 100 not set 1000 x 1000
t3-prepare-4000 100 not set 1000 x 1000
t3-prepare-5000 100 not set 1000 x 1000

Table 5.4: Result on prepare examine 1, udpsend is called

0.099 seconds, while NEMAN Interface 0.5 range between 1.694 seconds and
with slowest prepare time of 9.645 seconds. As we mentioned in Chapter 2,
the limit delay a user accepts is 0.7 seconds, before considering the program
as unresponsive.

We have however found the real bottleneck, and it is caused by as we earlier
mentioned udpsend, a C program with the purpose to send commands to the
topology manager. Udpsend is called every time a link is established between

75

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

P
re

pa
re

 T
im

e
in

 s
ec

Line count in scenario file

NEMAN GUI version 1.0
NEMAN GUI version 0.5

Figure 5.4: Measuring how fast links are drawn when prepare button is
clicked on scenarios with different size: udpsend is called on each link that
is drawn

two nodes. This overhead can be avoided by implementing socket commu-
nication with the topology manager in the Tcl/Tk code, Tcl only supports
TCP socket communication, and however there are extension packets that
also support UDP socket programming.

Scenario filename Nodes Scenario length in sec. Scene
t3-prepare-1000 100 not set 1000 x 1000
t2-prepare-2000 100 not set 1000 x 1000
t3-prepare-3000 100 not set 1000 x 1000
t3-prepare-4000 100 not set 1000 x 1000
t3-prepare-5000 100 not set 1000 x 1000

Table 5.5: Preparing scenarios files, examine 2

In Table 5.1.3 we are starting with small scenario files of 1000 lines, the
scenario files contain 100 nodes each, in a 1000 x 1000 scene. In Figure
5.5 we can see a much faster prepare time for NEMAN Interface 0.5 with

76

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

P
re

pa
re

 T
im

e
in

 s
ec

Line count in scenario file

NEMAN GUI version 1.0
NEMAN GUI version 0.5

Figure 5.5: Result on prepare examine 2, when udpsend is not called

0.3 seconds when line counts are 1500 and 0.418 as the slowest prepare time.
Even though NEMAN Interface 1.0 is still faster, with the same prepare time
values as previous test. We have gained 9.277 seconds when we avoid to use
udpsend by commenting the following line in the source code of NEMAN
Interface 0.5:

##iemul code, line: 321

#send_command "link $node1 $node2 $distance"

The commented line used to call the udpsend program, and by commenting
it we have gained as Figure 5.5 shows 9.277 seconds faster in visual per-
formance. Although there is no communication of link status sent to the
topology manager. Although we are interested in finding and mitigating the
performance lag on the visual appearance. As already suggested the socket
communication in NEMAN Interface 0.5 should be integrated with the ap-
plication itself, instead of using external programs.

77

Scenario filename Nodes Scenario length in sec. Scene
prepare_17182_nodes 100 49.9 1000 x 1000
prepare_56922_nodes 200 49.9 1000 x 1000
prepare_84573_nodes 300 22.5 1000 x 1000

Table 5.6: Preparing scenarios files, examine 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 20000 30000 40000 50000 60000 70000 80000 90000

P
re

pa
re

 T
im

e
in

 s
ec

Line count in scenario file

NEMAN GUI version 1.0
NEMAN GUI version 0.5

Figure 5.6: Result on examine 3, when udpsend is not called

In Table 5.1.3 we have increased the number nodes from 100 nodes up to 300
nodes, size of the scenario files are ranging from 17000 and up to 84000 lines.
During this test we are also testing the prepare time of NEMAN Interface
0.5 without udpsend. The results as we can see looks even more promising
for NEMAN Interface 0.5 with 0.409 seconds prepare time in the beginning
of the test and at the end 3.455 seconds. Clearly NEMAN Interface 1.0 is
2.509 seconds faster. This is not as significant as with earlier tests where
udpsend was used in NEMAN Interface 0.5.

78

5.2 Results from The End User Questionnaire

We have carried out an end user questionnaire on user experience of NEMAN
Interface 1.0. In the same way we did when we evaluated NEMAN Interface
0.5 in order to get feedback from the users of NEMAN.

• How is your experience with the usage of this application?
possible answers :

1. -Intuitive

2. -Good

3. -Difficult

4. -Very difficult

Figure 5.7: Question 1, on user experience

As we can see from Figure 5.7, 4 people answered that the interface is intuitive
while a person answered that it is good. This is due to the minimalistic
approach. When explaining their choices, the participants answered that
even though some of the icons are not intuitive but they have popup help
balloons explaining the meaning of each button. Other participants answered
that it resembles the other GUI but more intuitive.

79

• How fast is the learning threshold? possible answers :

1. -Very fast

2. -Fast

3. -Slow

4. -Very slow

Figure 5.8: Question 2, on learning threshold

In Figure 5.8, 2 people answered the interface is very fast to work with, while
4 people answered it is fast. The participants also explained with, that the
GUI is straightforward and that it is easy to find all functions instantly.

• Are you satisfied with the visual performance of the GUI?
possible answers :

1. -Yes

2. -No

3. -Don’t know

In Figure 5.9 5 people answered that they are satisfied with the visual per-
formance, while one person is not satisfied with the visual performance. The

80

Figure 5.9: Question 3, on visual performance

author of NEMAN has discovered that when 100 nodes are emulated, the
timer is not able to follow up with the drawing. We noticed this problem
late in the development phase and we are presently working to fix this prob-
lem.

• Are you able to do your work efficient with the application?
possible answers :

1. -Yes

2. -No

3. -Don’t know

Regarding the answers on Figure 5.10, 4 people are able to do their work
efficient with NEMAN Interface 1.0, while 1 person regard it as not efficient
and the last person has no opinion on this question. The author of NEMAN
also found few other bugs regarding the fit in view option which needs few ad-
justments. When considering the command line interface all the participants
are pleased with it and no one experienced problems with it.

81

Figure 5.10: Question 4, on work experience

82

5.3 Summary

In our benchmark comparison of NEMAN interfaces, we have observed that
our solution is quite faster in all the tests, we have discovered that NEMAN
Interface 0.5 is faster when loading small scenario files, but differences are
in milliseconds which are not noticeable for the users. However when big
scenario files ranging from 17000 lines and up to 70000 lines are used in
emulation, the user will notice the slow loading in NEMAN Interface 0.5.
The winner of the loading tests, with fastest loading times is the command
line interface.

Load examine NEMAN Interface 0.5 NEMAN Interface 1.0
examine 1 0.965 0.778
examine 2 8.595 5.425
examine 3 3.089 1.875

Table 5.7: Average loading time for both interfaces

In Table 5.3 we can see the average loading time for the both NEMAN
Interfaces.

We have discovered the bottleneck issue when the nodes are prepared or
started in a scenario, the fact that udpsend which is an external program
that is called every time a link change has happened in the scenario, have
great effect on downgrading the performance of NEMAN Interface 0.5.

In Table 5.3 we can see the average results on the preparing time in seconds
from the test examines we have carried out. Considering these facts we have
achieved our goal of implementing a fast GUI and command line interface
for NEMAN.

Prepare examine NEMAN Interface 0.5 NEMAN Interface 1.0
examine 1 5.518 0.0576
examine 2 0.352 0.0576
examine 3 1.82 0.486

Table 5.8: Average prepare time for both interfaces

83

84

Chapter 6

Conclusion

In this thesis, we have designed and developed an enhanced user interface,
which consists of a GUI and a command line interface for NEMAN. This
interface is developed due to the performance lag and the possible license
issues that can be caused by the previous GUI of NEMAN.

In this Chapter, we will shortly summarize the work we have carried out in
Section 6.1 and in Section 6.2, we present suggestions for improvements.

6.1 Contribution

Mobile Ad-hoc Networks are widely evolving, with the help of emulation tools
as test bed for MANETs, researchers are capable of conducting customized
emulation experiments to test and debug new protocol solutions. During our
research we discovered that the GUI of the Network emulator NEMAN lags
in its visual performance.

We have thus designed and developed a new user interface called NEMAN
Interface 1.0. This interface, which is developed with Qt and the C++ pro-
gramming language, outperforms NEMAN Interface 0.5 and also provides
several new features.

We have noted that NEMAN Interface 0.5 which is Tcl/Tk based, is using a

85

C program to send each link change in emulation to the topology manager,
and causing a great overhead.

In our evaluation experiments we conducted benchmark tests to compare
both interfaces on two aspects: which was the loading time and the preparing
time on several scenario files with differences on size, nodes, time length and
area size. The results obtained from this test showed that our new interface
is significantly faster in loading and preparing time.

During the evaluation stage we also carried out a questionnaire regarding
the end users experience on the new interface. Most of the users accepted
NEMAN Interface 1.0, as an intuitive tool and also with good performance.
The participants of these questionnaires were also given the opportunity to
include new ideas and features which are described in Section 6.2.

6.2 Future Work

Due to the short time this thesis was given, there were limited possibilities for
making more improvements within the new GUI. New ideas to improve and
to add new features were constantly emerging, but, we can say that we have
achieved our goals to complete most of the wanted features. Nevertheless
there are always possibilities to do more improvements, but with the good
documentation and object-oriented approach, we have provided an interface
which is flexible to be maintained over time. As mentioned in Chapter 5, we
are currently working to improve the ability to show the timer according to
how fast the nodes are drawn.

The researcher’s feedback regarding comments and suggestions for additional
functionalities are the opportunity to:

1. Move a specific node on the scene.

2. Create scenario files from the GUI.

3. Click on a node and send message to another node.

86

4. List a buffer of the 10 last used scenario files.

These suggestions are functionalities provided for convenience and are worth
investigating in the future.

87

88

Appendix A

The Header Files

A.1 GuiInit.h

1 #ifndef GUIINIT_H
2 #define GUIINIT_H
3

4 #include "Preference.h"
5 #include "GuiControll.h"
6 #include "ui_neman_gui.h"
7 #include <QResource>
8 #include <QObject>
9 #include <QGraphicsView>
10 #include <QGraphicsScene>
11

12 class GuiControll;
13 /∗∗
14 ∗ @Author Suleiman H. Jama
15 ∗
16 ∗ @version NEMAN GUI 1.0
17 ∗
18 ∗ we set up the graphicsview, scene, and slot connections for
19 ∗ buttons and widgets.
20 ∗ A GuiControll object is created.
21 Documentation of this class is found in http://folk.uio.no/suleimaj/master
22 ∗/
23

24 class enhancedGui : public QMainWindow, public Ui::neman_gui
25 {

89

26 Q_OBJECT
27 public:
28 enhancedGui();
29 QGraphicsScene ∗scene;
30 GuiControll ∗guiSim;
31 Preference ∗topoManPreferences;
32

33 private slots:
34 void quit_neman();
35 void topomanPreferencedialog();
36

37 };
38 //allows us to access gui objects (pointers) from other classes
39 extern enhancedGui ∗guiObject;
40

41 #endif //GUI_INIT_H

A.2 Common.h

1 #ifndef COMMON_H
2 #define COMMON_H
3 #include <QObject>
4 #include <QImageReader>
5 #include <QDebug>
6 #include <QAction>
7 #include <QMessageBox>
8 #include <QSettings>
9 #include <QRegExp>
10 #include <iostream>
11 #include <QFileDialog>
12 #include <QVector>
13 #include <QGraphicsScene>
14 #include <QtAlgorithms>
15 #include <QMap>
16 #include <QTimer>
17 #include <QTime>
18 #include <QTimeLine>
19 #include <QUdpSocket>
20

21 #define LINK "link␣"
22 #define ENABLE "enable␣"
23 #define SIMPHY "simphy␣"
24 /∗∗

90

25 ∗ @Author Suleiman H. Jama
26 ∗
27 ∗ @version NEMAN GUI 1.0
28 ∗
29 ∗ This class is the superclass for emulation and provides the base
30 ∗ for either GUI based emulation or command line based emulation.
31 ∗ Both GuiControll and Command classes inherit from this class.
32 Documentation of this class is found in http://folk.uio.no/suleimaj/master
33 ∗/
34 class Common : public QObject
35 {
36 Q_OBJECT
37 public:
38

39 Common(QObject ∗parent);
40 Common();
41

42 QStringList readIniFile();// returns server addr, portnumber and messageport
43 void enableLinks(int startNode, int numNodes);
44 void resetLinks(int startNode, int numNodes);
45 void disableLinks(int startNode, int numNodes);
46 void sendMessage(int startingNode);
47 void createNewServerIni();
48

49 QUdpSocket ∗topomanSock;
50 QVector <double> time, msgTime, posX, posY, speed, destTime, myVector;
51 QVector <int> destNode1, destNode2, destReachable, nodeNr, node1, node2,
52 reachable, msgId, msgPort;
53 QVector <QString> message, tapToIp, tapFromIp;
54

55 QString serverAddr;
56 int startNode, repeat, serverPort,messagePort, routingPort;
57 int ms, numNodes,iPos, jPos , msgIndex, sliderValue;
58 double cutoffTime, maxTime, timerLength, timerVal, displayTime, pause,
59 max_speed,
60 scenMax_x, scenMax_y, posXorY, comRange, brRange;
61 bool startRunning, timeOrDest, stoped,isPause, isScenFile;
62 QTimer ∗timer;
63 QTime ∗elapsedTime;
64 QSettings settings;
65

66 };
67 #endif

91

A.3 GuiControll.h

1 #ifndef PARSER_H
2 #define PARSER_H
3 #include "Common.h"
4 #include "GuiInit.h"
5 #include "Node.h"
6

7 #define LINK "link␣"
8 #define ENABLE "enable␣"
9 #define SIMPHY "simphy␣"
10

11 using namespace std;
12 class Common;
13 class enhancedGui;
14 class Node;
15 /∗∗
16 ∗ @Author Suleiman H. Jama
17 ∗
18 ∗ @version NEMAN GUI 1.0
19 ∗
20 ∗
21 ∗ All GUI related computation are done in this class.
22 ∗ This class provides the parsing of the scenario files
23 ∗ Creates node objects which is then put on the scene.
24 ∗ Further all events are controlled from this class.
25 Documentation of this class is found in http://folk.uio.no/suleimaj/master
26 ∗/
27 class GuiControll : public Common
28 {
29 Q_OBJECT
30 public:
31 GuiControll(QGraphicsScene ∗scene);
32 ~GuiControll();
33 QGraphicsScene ∗scene;
34 void prepareNodes();
35 void setReachable();
36 void moveCurrent();
37 void finishEmulation();
38 void clearScenario();
39 void simphyStatusfromTopoman();
40

41 double speeds[11];

92

42 QMap<int, Node ∗> mapNodes;
43 QString fileName;
44 bool prepareCalled, started;
45 bool doNotSend;
46 typedef QPair<int , int> Link;
47 typedef QMap<Link, QGraphicsLineItem∗> LinkMap;
48 LinkMap links;
49

50 public slots:
51 void open_scenfile();
52 void prepare();
53 void startEmulation();
54 void manageLinks();
55 void timeincr();
56 void sliderIncr();
57 void showTime();
58 void physicalLayerSim();
59 void hideOrShowRanges();
60 void hideOrShowLinks();
61 void fitIn();
62 void pauseEmulation();
63 void stopAndLoopEmulation();
64 void stopRestartEmulation();
65 void changeIcon();
66 void processPendingDatagrams();
67 void routingOn();
68 void routingOff();
69 };
70

71 #endif //PARSER_H

A.4 Command.h

1 #ifndef COMMAND_H
2 #define COMMAND_H
3 #include "Common.h"
4 #include <iomanip>
5 class Common;
6 /∗∗
7 ∗ @Author Suleiman H. Jama
8 ∗
9 ∗ @version NEMAN GUI 1.0
10 ∗

93

11 ∗ This class provides the necessary functions for
12 ∗ a simulation without GUI but command line driven.
13 Documentation of this class is found in http://folk.uio.no/suleimaj/master
14 ∗/
15 class Command : public Common
16 {
17 Q_OBJECT
18 public:
19

20 Command(QStringList list);
21 void open_scenfile(QString fileName);
22

23 private:
24

25 void startEmulation();
26 void sendLinkUpdates();//same as manageLinks in Scen_Parser
27 void finishEmulation();
28 void physicalLayerSim();
29 void routingOn();
30 void routingOff();
31 int progressIndex, startNode, repeat, serverPort,messagePort, physC,
32 physG, physR, speedArg, progress, dotValue;
33

34 QString serverAddr, routing;
35 QStringList list;
36 bool loop;
37

38 private slots:
39 void timerIncr();
40

41 };
42 #endif

A.5 Node.h

1 #ifndef NODE_H
2 #define NODE_H
3

4 #include "GuiInit.h"
5 #include <QGraphicsTextItem>
6 #include <QGraphicsItemAnimation>
7 #include <QTimeLine>
8 #include <iostream>

94

9 #include <QGraphicsLineItem>
10 #include <math.h>
11 class enhancedGui;
12 /∗∗
13 ∗ @Author Suleiman H. Jama
14 ∗
15 ∗ @version NEMAN GUI 1.0
16 ∗
17 ∗ This class provides all properties for a node to be animated.
18 ∗ Documentation of this class is found in http://folk.uio.no/suleimaj/master
19 ∗/
20 class Node : public QObject
21 {
22 Q_OBJECT
23 public:
24 Node(QObject ∗parent, QGraphicsScene ∗scene, int nodeId,
25 double dataRange,double brRange, double scenX, double scenY);
26 ~Node();
27 QGraphicsLineItem ∗drawComLine(Node ∗neighbour, int status);
28

29 void moveNodes(qreal deltaX, qreal deltaY, double speed);
30 void moveNodesRestart();
31 void undrawRange();
32 void drawRange();
33 void showLinks();
34 void hideLinks();
35 void changeLinkColor(int status, QGraphicsLineItem ∗line);
36 QGraphicsEllipseItem ∗comRange;
37 QGraphicsEllipseItem ∗broadcastRange;
38 QGraphicsScene ∗scene;
39 QGraphicsPixmapItem ∗item;
40 QGraphicsLineItem ∗com_line;
41 QGraphicsLineItem ∗br_line;
42 QTimeLine ∗moveTimeLine;
43 QTimeLine ∗timeLine;
44 Node ∗neighbour;
45 QMap<QString, QString> iconMap;
46 QList<Node ∗> neighbourList;
47 QList<QGraphicsLineItem ∗> com_line_list;
48 qreal lastposX, lastposY;
49 double lastspeed;
50 double loc_x;
51 double loc_y;

95

52 double speed, animTime;
53 int nodeId;
54 int timeIncr;
55 private:
56

57 QGraphicsItemAnimation ∗anim;
58

59 public slots:
60 void updateComlinks();
61

62 };
63

64 #endif

A.6 Preference.h

1 #ifndef PREFERENCE__H
2 #define PREFERENCE__H
3 #include <QObject>
4 #include "ui_preferenceWidget.h"
5 #include "Common.h"
6

7 class Common;
8 /∗∗
9 ∗ @Author Suleiman H. Jama
10 ∗
11 ∗ @version NEMAN GUI 1.0
12 ∗
13 ∗ This class sets up the dialog window for serverAddr/port
14 messagePort preferences.
15 Documentation of this class is found in http://folk.uio.no/suleimaj/master
16 ∗/
17 class Preference : public QDialog, public Ui::preference
18 {
19 Q_OBJECT
20 public:
21 Preference();
22

23 public slots:
24 void writeToIniFile();
25 };
26

27 #endif

96

Appendix B

Questionnaires

B.1 User Experience Questionnaire

B.2 End User Questionnaire

97

Figure B.1: User questionnaire on NEMAN Interface 0.5

98

Figure B.2: End user questionnaire on NEMAN Interface 1.0

99

Bibliography

[1] http://searchvb.techtarget.com/sDefinition/0,290660,sid8_gci213989,00.html.
last visited: May. 2007.

[2] Gui definition. http://www.bellevuelinux.org/gui.html. last visited: May. 2006.

[3] Nam network animator for: Ns-2. http://www.isi.edu/nsnam/nam. last visited:
July. 2006.

[4] The network simulator: Ns-2. http://www.isi.edu/nsnam/ns. last visited: July.
2006.

[5] Omnet++ discrete event simulation system. http://www.omnetpp.org. last
visited: July. 2007.

[6] Tcl built-in commands - clock manual page. http://www.tcl.tk/man/tcl8.4/
TclCmd/clock.htm#M5. last visited: June. 2007.

[7] Einar Bjerve. Transparent gateways between olsr networks, master thesis.
University of Oslo, department of Informatics, 8th May 2006.

[8] Matthias Kalle Dalheimer. Qt vs. java a comparison of qt and java for
largescale, industrialstrength gui development. Klarälvdalens Datakonsult AB
kalle@klaralvdalens-datakonsult.se.

[9] "Ovidiu Valentin Drugan, Thomas Plagemann, and Ellen Munthe-Kaas".
"building resource aware middleware services over manet for rescue and emer-
gency applications". University of Oslo, Department of Informatics, P.O. Box
1080, 0316 OSlo, Norway. "citeseer.ist.psu.edu/732585.html".

[10] "Erek Göktürk, Matija Pužar, and M. Naci Akkøk". "distributing NEMAN
network emulator using MICA component architecture". In "Fernando Barros,
Claudia Frydman, Norbert Giambiasi, and Bernard Zeigler", editors, "Pro-
ceedings of the AI, Simulation and Planning in High Autonomy Systems (AIS),
and Conceptual Modeling and Simulation (CMS) Conference (AIS-CMS 2007)
(co-located with the International Modeling and Simulation Multiconference
(IMSM 2007))", pages "199–205". SCS, "February" "2007".

100

[11] Weirong Jiang and Chao Zhang. A portable real-time emulator for testing
multi-radio manets. In IPDPS, 2006.

[12] Jan Erik Johnsen. Improving the physical and mac layer models of neman,
24th May 2006.

[13] Matthias Kropff, Tronje Krop, Matthias Hollick, Parag S. Mogre, and Ralf
Steinmetz. A Survey on RealWorld and Emulation Testbeds for Mobile Ad hoc
Networks. In Proceedings of 2nd IEEE International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Commu-
nities (TRIDENTCOM 2006), March 2006.

[14] Matthias Kropff, Tronje Krop, Matthias Hollick, Parag S. Mogre, and Ralf
Steinmetz. Living document a survey of real-world and emulation testbed for
mobile ad-hoc networks. Multimedia Communications lab (KOM) Technische
Universitat Darmstadt, February 7, 2006.

[15] Leszek A. Maciaszek. Requirement Analysis and System Design. Addison
Wesley; 1st edition (April 13, 2001), 2001.

[16] D. Mahrenholz and S. Ivanov. Daniel mahrenholz and svilen ivanov. real-
time network emulation with ns-2. In Proceedings of DS-RT’04, Budapest,
Hungary, October 2004., 2004. citeseer.ist.psu.edu/mahrenholz04realtime.html.

[17] Aaron Marcus, Nick Smilonich, and Lynne Thompson. The cross-gui hand-
book for multiple user interface design. Addison-Wesley, 1995.

[18] Lutz Prechelt. An empirical comparison of seven programming languages.
volume 33, pages 23–29, Los Alamitos CA USA, 2000. IEEE Computer Society.

[19] Matija Puzar. Neman readme file, in the neman archive. last visited: May
2007.

[20] Matija Puzar and Thomas Plagemann. NEMAN: a network emulator for mo-
bile ad-hoc networks. Telecommunications, 2005. ConTEL 2005. Proceedings
of the 8th International Conference on Volume 1, June 15-17, 2005 Page(s):155
- 161, 2005.

[21] Trolltech. The qgraphicsview framework. http://doc.trolltech.com/4.2/
qgraphicsview.html. last visited: July. 2007.

[22] Cristian Tuduce and Thomas Grosst. A mobility model based on wlan traces
and its validation. In INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communication Societies. pages 664-674, Mar. 2005.

[23] Yongguang Zhang and Wei Li. An integrated environment for testing mobile
ad-hoc networks. pages 104–111, 2002. http://doi.acm.org/10.1145/513800.
513813.

101

[24] J. Adrian Zimmer. Tcl/Tk for Programmers, with Solved Exercises that Work
with Unix and Windows. pub-IEEE, pub-IEEE:adr, "1998".

102

