
UNIVERSITY OF OSLO
Department of Informatics

Three Dimensional
Data Acquisition
and The
Registration
Problem

Master thesis

Rasmus Fredrik
Bugge

1st August 2007

Contents

I Background Material 1

1 On 3D Scanners and 3D Data Acquisition 3

1.1 A historical note . 3

1.2 How does a 3D scanner work? 4

1.2.1 Interferometry . 6

1.2.2 Triangulation . 7

1.2.3 Imaging radars . 8

1.2.4 Other active scanners 9

1.2.5 Shape from silhouettes 9

1.2.6 Non-destructive contact scanners 9

1.2.7 Destructive slicing . 10

1.3 Technical specifications . 11

1.4 Applications and practical concerns 13

1.5 Related software . 14

1.6 Summary . 15

2 Konica Minolta VI-910 17

2.1 A non-contact scanner . 17

2.2 The scanning pipeline . 19

2.2.1 Calculating coordinates — an example 20

2.3 The Polygon Editing Tool . 24

2.3.1 Hardware settings . 25

2.3.2 Visualization . 25

2.3.3 Build functions . 25

2.3.4 Saving . 29

2.4 Summary . 32

3 Mathematical Preliminaries 33

3.1 Scalars . 33

3.2 Points and vectors . 33

3.2.1 Homogeneous coordinates 34

3.3 Matrices . 34

3.4 Transformations in R
3 . 34

i

ii CONTENTS

3.4.1 Rotation . 35
3.4.2 Translation . 36
3.4.3 Scaling . 36
3.4.4 Shearing . 37

3.5 Quaternions . 37
3.5.1 Representation and conversions 41

3.6 Centroid . 42
3.7 Curvature and related concepts 42

3.7.1 The Frénet frame . 42
3.7.2 The Principal frame . 43

3.8 Summary . 43

II The Problem 45

4 The Non-Elastic Registration Problem 47

4.1 A search for a precise formulation 47
4.1.1 Calling off the search 49

4.2 Several different approaches 49

III Registration Methods 51

5 A Closed-form Solution 53

5.1 Preparations . 53
5.2 Determining the translation 54
5.3 Determining the uniform scale 56
5.4 Determining the rotation . 57
5.5 Summary . 59

6 An Exhaustive Method 61

6.1 Geometric hashing . 61
6.1.1 Preprocessing . 62
6.1.2 Recognition . 64

6.2 Analysis of time complexity 65
6.3 Summary . 66

7 An Area-based Method 67

7.1 A similar approach . 67
7.2 A general outline . 68

7.2.1 Registration using approximants Aj 69
7.2.2 More approximations 70

7.3 Computing Aj ’s on demand 71
7.4 Computing Aj ’s using the d2-tree 74
7.5 Summary . 79

CONTENTS iii

8 A Feature-based Approach 81

8.1 A robust method . 82
8.1.1 The Integral Volume Descriptor 82
8.1.2 Picking feature points from P 83
8.1.3 Potential correspondences 84
8.1.4 Initializing correspondences 84
8.1.5 Determining the best correspondences 86

8.2 Summary . 86

9 Implementation 87

9.1 The d2-tree construction . 88
9.1.1 Input . 88
9.1.2 Data management . 88
9.1.3 Building the d2-tree . 89
9.1.4 Intersection testing . 90
9.1.5 Squared distance from a point to a triangle, in R

3 . . 90
9.1.6 Producing the last cubes in the tree 93
9.1.7 Sorting and sweeping 95
9.1.8 Fitting the approximants 96

9.2 Registration . 98
9.2.1 Matrix functions . 98
9.2.2 Point location . 100

9.3 A test case . 101

IV Summary 107

10 Discussion & Conclusions 109

10.1 Considerations on the running time 109
10.2 Convergence . 110
10.3 Improvements . 113

10.3.1 Change of basis . 114
10.3.2 Feature points . 116
10.3.3 Nonlinear least squares 117

iv CONTENTS

Acknowledgements

The last eighteen months of my master studies were truly exciting and in-
structive! For this I am indebted to my supervisor Professor Knut Mørken.
Thank you so much for insightful and motivating feedback and for tak-
ing a genuine interest in my work. I am also grateful to Professor Martin
Reimers who has willingly contributed with illuminating comments on the
fast sweeping method and made meaningful remarks on chapter 7.

I also address a word of thanks to Lars Mikalsen for introducing me to
some of the inner workings of the C++ standard template library and for al-
ways providing professional programming advices when they are needed.

Further, I would like to express my gratitude to my aunt Birgitte Skund-
berg, and to Anne Mette Mevik, for trying to improve my English. Your
involvement has meant a lot to me.

Last but not least, I would like to thank my dear Lizzie — for your
patience and unconditional, loving support.

July 2007 Rasmus Fredrik Bugge

v

vi

Introduction

The first half of this thesis is a brief survey of different scanners used for
the purpose of capturing “raw data” from a three dimensional (3D) object.
Such scanners are commonly referred to as 3D scanners. The data are mea-
surements that are needed in order to generate the points that make up
the foundation for all subsequent calculations. One of the main purposes
of the data acquisition could be to reconstruct an apparently three dimen-
sional, digital representation of the object in question.

With this knowledge, we may realize that the use of such apparatus
give rise to many interesting mathematical problems, one of which we will
study in depth starting at chapter 4. As the heading for that chapter sug-
gests, the main problem we consider is known as the registration problem.
When we have two images, i.e. visualizations of some sort, of the same ob-
ject taken at different viewpoints, or at different times, these will in general
not be in the same coordinate system. The problem is in essence, how to
bring the images together in a common coordinate system.

One can imagine several ways to represent a three dimensional object,
also there are several different three dimensional objects to be visualized.
Thus the registration problem can be stated in many different ways de-
pending on the context. We will consider the problem in the context of
scans of rigid body objects, captured by 3D scanners. This means that we
will study registration where the objects are not allowed to undergo de-
formations, i.e. we focus on non-elastic registration. Under the restrictions
that the objects in question are mainly allowed to undergo only rigid body
movements, i.e. rotations and translations, the problem is also referred to
as the Pose Estimation Problem or the Orthogonal Procrustes’ Problem1.

Consider next a brief sketch of what is in each of the chapters that fol-
lows.

1According to Greek mythology, Procrustes was a bandit with a bizarre conception of
hospitality. In his village, he ill-treated the bodies of unfortunate visitors to make them fit
a certain bed. Paradoxically, finding the appropriate shape preserving, rigid body transfor-
mation is sometimes referred to as the Orthogonal Procrustes Problem [45].

vii

A chapter overview

Chapter 1, On 3D Scanners and 3D Data Acquisition. In the first chap-
ter we hopefully give an account of most of the different types of 3D scan-
ners that are in use today. As the heading suggests, we will also try to give
a brief account of some of the techniques that such scanners use when they
gather 3D information. We will list some of the different areas where 3D
scanners are put to use, and at the end, we take a look into how today’s
software handles the information, acquired from a scan.

Chapter 2, Konica Minolta VI-910. In this chapter we take a deeper look
at a certain type of non-contact, 3D laser scanner currently in use at the
University of Oslo. The scanner in focus is Konica Minolta’s VI-910. Firstly,
the technical specifications of the scanner are accounted for, and then the
details are given, concerning how it operates.

A part of the standard Konica Minolta 3D scanner accessory is their
proprietary software program called The Polygon Editing Tool. So at the
end of the chapter, the main functions of The Polygon Editing Tool are ex-
plained in detail. Through this we will hopefully also get an intuitive feel
for the registration problem.

Chapter 3, Mathematical Preliminaries. Before we proceed into Part II
and III which are more mathematically involved, we need to agree upon
notation and give an overview of some central mathematical topics. This is
hopefully what is done in chapter 3 which concludes Part I of the text.

Chapter 4, The Non-Elastic Registration Problem. As implied in the
introduction, there are many problems related to post-processing of scan-
ner data. The main purpose of this chapter is to end up with a precise
formulation of the registration problem. Since this problem in general ap-
plies to a wide variety of cases, we need to restrict it somehow. Specifically,
we try to formulate the problem of aligning two sets of three dimensional
point cloud data allowing for only a restricted set of affine transformations.

Chapter 5, A Closed-form Solution. Chapter 5 marks the entry point of
Part III where we study several possible solutions to the registration prob-
lem. In this chapter we follow in the footsteps of Berthold K. P. Horn [26]
and use unit quaternions to obtain a closed form solution to the problem.

Chapter 6, An Exhaustive Method. The usual way to approach the reg-
istration problem is to seek the help of computers to employ an iterative
scheme in the search for the optimal solution parameters. Thus, we con-
tinue our study of solutions by taking a look at a numerical one, in chapter

viii

6. As we will see, we leave the point cloud setting introduced in chapter 4,
and try to register a special form of space curves.

Chapter 7, An Area-based Method. In this chapter we turn to look at
registration of point cloud data rather than curves. As will become evident,
the numerical solution we present here is very different from the previous.

Chapter 8, A Feature-based Approach. In this chapter we finish the
presentation of numerical solutions with a method which in a way com-
bine the ideas of the two former. Firstly, it is not as time consuming as
the numerical solution of chapter 6. Secondly, it makes not so strong as-
sumptions about the relative initial positions of the data as the numerical
solution of chapter 7.

Chapter 9, Implementation. A C++ implementation of the algorithm
outlined in chapter 7 has been made, and in this chapter we will go through
the implementation specific details. Chapter 9 concludes Part III of the text.

Chapter 10, Discussion & Conclusions. In the last chapter of the text
we share our thoughts on the registration algorithm outlined in chapter
7, in light of experimental results. We mention some of the experiences
which we have gained in the making of the program and point out possible
improvements.

ix

x

Part I

Background Material

1

Chapter 1

On 3D Scanners and 3D Data
Acquisition

As we recall from the introduction, we will start this part of the text by
studying different types of 3D scanners and scanning techniques. We will
give a brief description of the techniques employed by some of the most
commonly used scanners and see where they find application — covering
all 3D scanners would require more space than we have available. At the
end of the chapter, we give a short overview of some of the associated soft-
ware and we mention some typical software functions. We begin by con-
sidering a historical note on the development of the camera and the design
of 3D scanners.

1.1 A historical note

Capturing reality, or real-world objects, in a useful way, has been a great
challenge throughout the history; the first two dimensional pictures were
captured on a piece of paper as late as in the beginning of the 19th century.
However, the basic principles of the camera was described as early as 450
B.C. by Chinese philosophers. The need for a three dimensional “picture”
of real-world objects was met as late as in the early 1950s, by the Ferranti
company [45]. They developed one of the first successful coordinate mea-
suring machines; a probe which had to be in contact with a workpiece in
order to collect its coordinates. The probe was accurate but slow, and as it
had to be in contact with the workpiece, the workpiece could possibly get
damaged. For special fields with delicate objects to be scanned, this was a
big concern.

The need for a quicker and safer way to collect 3D data led to the use
of light. There are two considerations when dealing with light: What kind
of light should be emitted, and in what way? For one, the light source
can be made so that it emits one single beam, hitting the surface of the

3

4 On 3D Scanners and 3D Data Acquisition

object at one single point. When it comes to efficiency considerations, this
is not considered an improvement in comparison with the contact-probe.
An improvement would be to let the source emit a cone of such beams
hitting a larger area of the object at a time. However, this approach has
turned out to be difficult to implement, and the technique is seldom used.
Finally, one could construct the source in such a way that it would emit a
laser plane which would hit the object with one continuous stripe of light
at a time. This last method of scanning 3D objects has proved to be the one
which most manufacturers make use of today.

We have seen that there are many different approaches to the design of
a 3D scanner. This implies several different techniques for the purpose of
three dimensional data acquisition. We will in the following section try to
cover some of the most common out these.

1.2 How does a 3D scanner work?

There is no single answer to this question that is applicable to all 3D scan-
ners on the market. As we may have noticed, 3D scanners in general serve
different purposes, and therefore they differ in both functionality, weight
and size. So before clear answers can be stated, it is convenient to split
the collection of 3D scanners into at least two main groups; non-contact
and contact scanners. That is, they are placed into categories depending
on whether or not they are in contact with the surface of the object to be
scanned. Further, we note that scanners can also be classified as being ac-
tive or passive, depending on whether or not they emit radiation them-
selves. For a more complete overview of the types of 3D scanners in use
today, see figure 1.1 on the facing page due to Curless and Seitz [14].

As we can see from the overview, one of the two main groups of 3D
scanners is that which includes non-contact scanners. Moreover, the group
of non-contact scanners includes those scanners one can classify as optical.
The group of optical scanners makes up the largest subset of shape acquisi-
tioning systems and hence we will focus our attention on this type of scan-
ners. Generally, optical scanners emit some kind of structured light onto an
object. Then the reflected light pattern, whose shape is influenced by the
surface of the object, is collected by the scanner’s light receiving apparatus.
Eventually, 3D information is extracted by a digital signal processor.

As there are a couple of ways to structure light, there are at least a cou-
ple of different optical 3D digitizers; the ones emitting (coded) halogen
light, and the ones emitting light in a narrow beam, consisting of nearly
one single wavelength (i.e., a laser). Laser light is often preferred. This is
due to the facts that coherent light can be held in tight focus over a long
range, it can be made insensitive to ambient1 light, and it seldom has prob-

1Ambient light is light that comes from no particular light source.

1.2 How does a 3D scanner work? 5

Figure 1.1: An overview, or taxonomy, of three dimensional shape acquisi-
tioning systems.

6 On 3D Scanners and 3D Data Acquisition

lems with heat-dissipation (it does not lose energy to the surroundings)
[13].

Also what separates the optical scanners, is how the emitter is struc-
tured and what light receiving sensor they are equipped with. Recall that
scanners which emit a laser plane are the most common. Note that the
emitter can project one, or a multiple of such planes. Systems that emit a
single plane are often preferred, for one thing as no more steps are required
to decipher light reflections [13].

The different technologies for non-contact scanners require different ap-
proaches to the task of measuring distances. We will review briefly the
concepts of interferometry, triangulation, imaging radars and “shape from
silhouettes”.

The other main group of 3D scanners, contact scanners, includes both
destructive and non-destructive scanners. A common type of contact scan-
ners are the non-destructive mechanical scanners referred to as coordinate
measuring machines (CMMs). These scanners also make use of light, how-
ever the light only reaches the tip of the inspection equipment. We will
review how both the coordinate measuring machines and the destructive
scanners acquire distance information.

1.2.1 Interferometry

In this context, interferometry should be understood as the use of optical
interferometers which use the superposition (addition) of light waves to
measure distance [45]. When two laser light patterns are superimposed on
one another, an inference pattern is created. This pattern is a complex sig-
nal (with a precise mathematical representation) which can be low-passed
filtered to include only the frequency2 difference between the two initial
patterns, as well as some constant terms. Among the constant terms is the
phase difference3 between the two initial patterns. When the frequencies of
the two light pattern are the same, only the phase difference term remains,
and from this term distance measurements can be retrieved [7].

As can be seen in figure 1.1, there are two types of interferometry tech-
niques, moiré and holography. The technique described in the previous
paragraph refers to the moiré method. Holography, however, is also based
on low-pass filtering an interference pattern, and depth-values are also
computed from the phase difference of two superimposed light patterns.
However, it is the intensity signal of the added light patterns at the light
receiving element which is low-pass filtered [7].

2For electromagnetic waves, like laser light, frequency is defined as the ratio of the speed
of light to the wavelength.

3Imagine two particles, one on each of the light beams. The phase difference (measured
in radians) refers to the amount of which the two particles move out of step of each other
[45].

1.2 How does a 3D scanner work? 7

Figure 1.2: The shape of the triangle ABC is determined by the base dis-
tance (distance between the points B and C), and the angles at B and C.

1.2.2 Triangulation

Some 3D laser scanners follow a principle of measurement known as laser
triangulation, or simply triangulation. Such scanners are probably the most
commonly used 3D scanners.The laser-emitter, a spot on the object being
scanned and the light-receiving device or camera, make up a triangle and
thereby the name laser-triangulation. Three known quantities make it pos-
sible to calculate the coordinates of a point on a surface being scanned (see
figure 1.2):

1. The distance between the point B where the laser is emitted and the
camera lens, at C (the base distance),

2. the angle at the corner from where the laser is emitted,

3. the focal distance4.

The angle at the corner from where the laser is emitted, is controlled by a
signal processor. One can think of several ways to exploit trigonometric
results to calculate the point’s coordinates. We will review such a way in
the next chapter. Like the interferometry scanners, modern 3D laser scan-
ners can also acquire colour image data with the help of integrated digital
cameras.

Two types of optical detectors are most commonly used in laser scan-
ners that make use of triangulation: Position Sensitive Devices (PSDs) and
Charge Coupled Devices (CCDs). A PSD outputs electrical current from
two of its ends. When a spot is focused on the device, its output is a certain
amount of electrical current, proportional to the spot’s position on the de-
vice. The spot position is calculated by dividing the difference of the two
amounts by the sum of them. PSDs are able to handle data at high rate and
are not sensitive to the intensity distribution of the spot. A drawback with
these kinds of light-receiving devices is that they determine themselves,

4The focal length is the distance from the center of the lens to the point where beams of
parallel light (emitting from infinity), hitting the lens, are concentrated [45].

8 On 3D Scanners and 3D Data Acquisition

the center of the spot; if two spots are present, but overlapping, the device
calculates one center which represents them both.

A CCD is a rectangular silicon piece, which can be used to receive (up
to 70 per cent of) incoming light [45]. CCDs are digital in the sense that
they produce discrete proportions of voltage as output, proportional to the
amount of the light that hits them. A big advantage that comes with CCDs
is the opportunity to post-process a signal. In chapter 2, CCDs are further
discussed, since a CCD-camera is used in the 3D laser scanner we study
there.

We note from [7, 14] that scanner optics should be constructed accord-
ing to the Scheimpflug principle to ensure that the laser beam is in focus. The
Scheimpflug principle describes how a camera lens, or its light receiving
element, should be oriented (tilted) when the camera focuses on an object
that is not parallel to the light receiving element [45]. The principle states
that the plane of the light receiving element, the laser plane (the plane of
focus) and the vertical plane passing through the lens should all intersect
in a common line.

1.2.3 Imaging radars

Another type of active, optical scanners work by the principles of imag-
ing radars5. Radars emit electromagnetic radiation towards an object, and
record the round trip time t and power of the received radiation. The round
trip time is defined as the time it takes for a pulse to exit a scanner, hit an
object and return to the scanner. Thereby, the distance r to the object can be
recovered as

r =
ct

2
,

where c is the speed of light. The power of the received radiation depends
among other things on r, the object’s surface reflection coefficient and the
transmitter hardware.

A simple type of imaging radars called time-of-flight scanners gather
no other information than the distance r. They represent wide range and
low accuracy and are suitable for scanning larger objects. Contrary to what
is the case for 3D triangulation scanners, it can take several minutes for a
time-of-flight scanner to do a high-resolution scan.

Other kinds of imaging radars include scanners which modulate either
the frequency or amplitude of the emitted beam. Similar to the interfer-
ometry technique, the distance r to the object in question is calculated by
combining what is known about the frequency f and the phase difference
∆Φ of the outgoing and incoming light,

r =
c∆Φ

4πf
[7].

5RAdio Detection And Ranging [45].

1.2 How does a 3D scanner work? 9

Figure 1.3: A snap shot showing a pattern of structured halogen light on
the surface of a face. Courtesy of Christian Roquefort, director of sales and
marketing at InSpeck.

1.2.4 Other active scanners

As mentioned above, there are various ways to structure light. Some 3D
scanners have a functionality which is based on the projection of a coded
halogen light pattern onto the object to be scanned. The coded light is usu-
ally emitted by an LCD projector and is made up of parallel stripes with
different intensity. When the light hits the object, a striped pattern becomes
evident. Figure 1.3 is meant as an illustration of what this could look like.
From the deformation of the stripes on the object’s surface, depth-values
are extracted. A digitizer using coded light can acquire both distance and
colour image data in one scan. Information about colour is otherwise some-
thing one has to add and approximate using appropriate software.

1.2.5 Shape from silhouettes

Scanners that recover the shape of an object based on the object’s silhouette
are categorized as passive, non-contact scanners. They only detect reflected
ambient radiation, like visible light. The object is initially photographed
repeatedly in front of a well contrasted background and in the end the dif-
ferent silhouettes are merged to form the contours of the object.

As another example of passive scanners we mention stereoscopic scan-
ners. They utilize the slight differences which occur when two cameras
observe the same scene, to determine the distances to each point in the
scene.

1.2.6 Non-destructive contact scanners

The other main group of 3D digitizers, contact scanners, includes coordi-
nate measuring machines (CMMs) and hand-held, contact scanners. Coor-
dinate measuring machines move the tip, or probe, of a mechanical arm,
over the surface of the object to be scanned. Measurements are then con-

10 On 3D Scanners and 3D Data Acquisition

Figure 1.4: A schematic drawing of a coordinate measuring machine.

stantly transferred from the scanning equipment, back to a computer. See
figure 1.4 for a schematic drawing of a CMM according to [45].

Nowadays, high quality servo motors are employed to smoothly po-
sition the probe. The motors can move the mechanical arm in any of the
directions x, y, z, review figure 1.4. The tip of the mechanical arm is spring
loaded to give way when it hits a surface.

The hand-held contact scanners work much the same way as the coor-
dinate measuring machines. Their mechanical arms are jointed and thus
the tip can be moved in any directions and through most angles, by hand.
Each time a point is to be saved, a switch is pressed. The measurements
are transferred to a host computer for further computations, e.g. to make
interpolating curves for reconstructing the surfaces of the object.

1.2.7 Destructive slicing

The second group of contact scanners includes scanners that literally de-
stroy the workpieces. The technique of destructive slicing is also referred
to as cross sectional scanning. A cross sectional scanner is based upon the
ideas of a 2D scanner; the apparatus cuts off thin slices of an object, e.g.
from top to bottom, and returns an image of the two dimensional profile
which is exposed. The set of images which is retrieved can each be repre-
sented by points and the different layers of points can be brought together
to form a three dimensional point cloud.

The cross sectional scanning technique of [28] implies covering the ob-
ject to be scanned, with a hardener. This way, when an image of the object’s
cross section is sent to a connected PC, the cross section appears as a bright
area with a dark surrounding in the software’s graphical user interface. By
applying edge detection algorithms, the two dimensional images can be
converted to points. The scanning devices of CGI [28] can cut off from an

1.3 Technical specifications 11

Specs Non-contact scanners Contact scanners

From To From To

Scan range 0.50m 300m N/A N/A

Capture time 0.30s N/A 1 hour 3 hours

Accuracy (mm) ±4.00 · 10−3 ±40.0 ±1.30 · 10−2 ±4.30 · 10−1

Precision (mm) 8.00 · 10−4 3.00 · 102 1.27 · 10−2 N/A

Weight 1.00kg N/A 5kg N/A

Points per sec 1.00 · 104 1.90 · 106 N/A 0.50 · 106

Table 1.1: Table showing technical specifications for a collection of contact
and non-contact scanners. The data are collected from manufacturers like
Immersion [11], Konica [25], Faro [16], 3rdtech [1], InSpeck [27], Leica [20]
Breuckmann [21], nub3d [37], Steinbichler [39], Scantech [43] and CGI [28].

object, slices thinner than a 1
500 -fraction of a millimeter.

1.3 Technical specifications

We consider next how well 3D scanners perform. Hence, some technical
specifications for the main types of scanners mentioned in the discussion
above, are listed in table 1.1. The entry N/A indicates that the correspond-
ing specification for a given group of scanners has not been determined.
The reasons for this are discussed below.

As one can see, each specification is represented by a range of values to
reflect the effect of two causes: Firstly, the performance of a high-end scan-
ner working under optimal conditions6 are compared to the performance
of a low-end scanner working under poor conditions. Secondly, the devia-
tions are due to the fact that some scanners are built to scan details in, say a
cellular phone, whilst others are made to scan buildings. The specifications
are explained below.

1. Scan-range: This is the depth of field. According to the table, some
non-contact scanners can scan objects that are placed as near as 0.5
meters whilst others can scan objects placed as far away as 300 meters.
Scanners that can handle objects placed only half a meter away, usu-
ally reach no farther than a couple of meters. An object to be scanned
must be placed within the scan-range of the particular scanner to se-
cure proper measurements.

2. Capture time: This is the time spent performing one scan. It depends

6The conditions which affects the result the most are air temperature, humidity and
lighting.

12 On 3D Scanners and 3D Data Acquisition

for all scanners, on the size of the object and on what kind of accuracy
is required.

3. Accuracy: This is defined as the deviation of the measured position
of a point from the point’s true position.

4. Precision: This is the smallest change of distance which can be de-
tected.

5. Weight: The total weight of the scanning equipment.

We give some general notes on the entries in the table:

• A 3D optical scanner’s accessory can include different lenses to be
mounted on the camera in order to widen or narrow its field of view.
Further, the scan range entries for contact scanners are both N/A.
The nature of contact scanners implies that the object will always be
within scan range. It would make more sense to talk about the maxi-
mum size of the object when it comes to contact scanners. Again, this
vary a lot due to the many different areas of application.

• The capture time entry and the precision entry for contact scanners
should not be considered representable for contact scanners in gen-
eral. Few manufacturers have posted an estimate of this specification
and the numbers which are given in the table, represent a small selec-
tion of cross sectional scanners [28].

• In addition to what is already mentioned, accuracy depends on the
shininess of the object’s surface. Shiny surfaces lead to more diffuse
reflections. The accuracy of laser scanners is also limited by the phe-
nomenon of laser speckle, i.e. the mutual inference of coherent laser
beams [13]. Scanner systems will often make repeated measurements
in the same view direction and return the average of these measure-
ments in order to improve the accuracy [7].

• The precision of laser scanners is dependent on the embedded op-
tics which dictate the beam diameter. The diameter has to be smaller
than, or equal to a feature size in order to accurately measure it. The
beam diameter is at its smallest in the center of the scan-range, and
hence this is where we should expect the best performance with re-
gard to precision.

In addition to the specifications which are accounted for, a scanner’s
“repeatability” is sometimes listed. This is the scanner’s ability to repro-
duce a series of similar measurements of the exact same distance. However,
that kind of information has been difficult to retrieve.

As we have revealed how some 3D scanners work, a natural next step
is to see where they come into play.

1.4 Applications and practical concerns 13

1.4 Applications and practical concerns

From the tender start of being a device for inspection of military equip-
ment, 3D scanners have become a widely used apparatus in many different
areas7: Archeology, architecture, computer art, case studies, fashion and
footwear, industrial design, medicine, miscellaneous industries (especially
the car-, tool- and toy industry) and movies (both animated and live ac-
tion).

Optical 3D scanners are perfect for scanning archaeological workpieces.
The use of light means that you do not have to worry about wrecking in-
valuable historical artifacts. Optical digitizers also provide the high grade
of accuracy which is often needed in these kinds of scans.

High grade of accuracy is also what is needed by industrial designers.
Depending of course on what kind of product is invented or improved,
there is often a need for a precise digital representation of a workpiece for
standardizing, before mass production.

Another advantage of non-contact scanners is their ability to work a-
cross great distances. This ability is exploited when scanning within the
field of architecture. One example of a large-scale scan is the scanning of
the Statue of Liberty.8 Typically within architecture, the workpieces can
be as far away as one hundred meters but then the accuracy is at best ±6
millimeters per point.

There are many examples of the use of 3D scanners in case studies.
There is a consortium of six organizations which make up a European 3D
project, the VIHAP9 project [18], with the aim of conserving European art
treasures for the public. Among the fruits of the project is a 3D representa-
tion of the Pisa Cathedral.

In all the above applications, the objects to be scanned are three dimen-
sional. This means that they have to be scanned from different sides and an-
gles. A major challenge is how to cover all the sides of an object. Aside from
hand-held, mechanical scanners which of course work their way around an
object with ease, different manufacturers have come up with different solu-
tions to the multiple view problem. Some, like InSpeck [27], offer a multiple
digitizer environment to scan an object from up to three different angles at
the same time. Others have made rotating tables for objects (not too heavy)
to be placed upon. That way, when the digitizer has scanned one side of
an object, the table turns according to an angle determined by the supplied
software.

The multiple view problem is however, not the only task that software
needs to solve. In the following section we consider some of the other prob-
lems which needs to be solved and we list some of the market leaders on

7The list does not claim to be exhaustive.
8See http://www.arch.ttu.edu/digital%5Fliberty/.
9Virtual Heritage, (High Quality) 3D Acquisition and Presentation.

14 On 3D Scanners and 3D Data Acquisition

scanner software.

1.5 Related software

When the scanning phase is completed, and the raw data have been ac-
quired, software takes care of the “reconstruction” phase. That is, software
processes the initial data into geometry, often polygons. Most manufactur-
ers of scanners have developed their own software with limited function-
ality, which they ship together with their scanners.

There is nonetheless a myriad of different manufacturers who develop
useful software related to 3D scanning. A tiny selection of some of the
manufacturers (and their software product in parenthesis) includes INUS
Technology [44] (RapidForm), InnovMETRIX (PolyWorks), SensAble Tech-
nologies (FREEFORM Modeling Plus) and GeoMagic (GeoMagic Studio).
According to INUS’ website [44], RapidForm is the world’s best selling
3D modeling software. INUS’ software can handle point-clouds of up to
hundreds of millions of points. The software also removes points that are
generated due to bad scanner accuracy.

From the edited point-clouds, polygons (usually triangles) are com-
puted to form workpiece “skeletons”. Algorithms make sure that no poly-
gons with bad normals are generated and also they can also make sure that
holes are filled. Points are connected by curves and eventually surfaces are
generated. Splines, as linear combinations of B-splines provide good tools
for creating curves and surfaces. Their advantage is that they can be ma-
nipulated to form almost any shape you want, and they can be evaluated
using numerically stable algorithms.

Smooth surfaces can also be produced by applying different subdivi-
sion schemes (

√
3, Loop’s, Butterfly) which increase the number of poly-

gons. Finally, a texture can be applied to make the digital representation
“come alive”. The details of exactly how all these steps are implemented
are of course hidden in secret algorithms, but the software’s work flow is
something along these lines.

As outlined above, one often has to do several scans to capture the
whole of a three dimensional object. The partial scans are brought into a
common system of coordinates by the software and then they are regis-
tered or aligned to reproduce the overall shape of the object. INUS Tech-
nology, like most manufacturers of 3D modeling software, claim to have
come up with algorithms, securing the tightest fit between overlapping ar-
eas. By studying the geometry of the overlapping areas, the algorithms
merge them to produce a single polygonal model that includes all the sur-
faces seen during the digitizing process. The textures of the partials model
can also be merged to form a single texture for the merged model. The
result is a final, complete 3D model.

1.6 Summary 15

1.6 Summary

We have now accounted for many of the different types of 3D scanners
on the market and looked into how they work and where they come into
play. Also we have reviewed some of their technical specifications and we
have mentioned some of the operations that can be performed on scan-
ner data, by appropriate software. It is time to have a more detailed look
at one particular scanner. We choose to look at a scanner from the group
of non-contact, active, optical laser scanners, which are probably the most
wide spread. Thus in the next chapter we review the VI-910 from Konica
Minolta.

16 On 3D Scanners and 3D Data Acquisition

Chapter 2

Konica Minolta VI-910

In the previous chapter we had a look at 3D scanners and scanner software
in general. In this chapter we will have a more detailed look at a particular
3D laser scanner named VI-910. This way, we get to see exactly how spa-
tial coordinates can be calculated, and we get an overview of the functions
offered by a particular software, The Polygon Editing Tool.

2.1 A non-contact scanner

The Konica Minolta VI1-910 is a 3D laser scanner. The scanner emits a
class2 2 laser-plane, which is swept over the scanner’s field of view by a
galvanometer3 driven, rotating mirror. The plane occurs as a laser-stripe
on the object which is being scanned, and each stripe is reflected back to a
CCD (see section 1.2.2 and section 2.2) camera. The camera is situated just
above the laser emitter.

The VI-910 features a fairly light-weight body, approximately 11 kilo-
grams, which can stand alone or on a tripod. As it is portable, a nice op-
tional accessory is a 128MB compact flash memory card which makes it
possible to carry the scanner around and save data without having to bring
a computer along with it. However, it is designed for indoor use only and
to be used within a temperature range of ten to forty degrees Celsius.

The scanner comes with three exchangeable light-receiving lenses. As-
sociated with each lens, there is a view volume, and thus the view volume of
the camera can be manipulated. The view volume has the form of a square
pyramid lying on its side with its top cut off. The top points at the scanner.

1For countries outside Europe, VIVID-910 is the name.
2IEC(International Electrotechnical Commission) standard 60825-1: “It is presumed that

the human blink reflex will be sufficient to prevent damaging exposure, although prolonged
viewing may be dangerous” [45].

3An electromechanical transducer/energy-converter. It produces a limited rotational
movement in response to electric current flowing through a coil of wire spun around the
galvanometer which is surrounded by a magnet [45].

17

18 Konica Minolta VI-910

Figure 2.1: The Konica Minolta VI-910.

The size of the pyramid is defined by three values, i.e. the width and
length of its rectangular base, and its height. We must always make sure
that the object to be scanned is placed within the view volume of the camera
lens in use.

An object must not be placed any nearer the scanner than 0.6 meters
and not further away than 2.5 meters. We usually say that the scan range
is from 0.6 to 2.5 meters in front of the scanner. For best results, the object
should not be farther away than 1.2 meters.

Table 2.1 on the facing page shows how the view volume varies accord-
ing to what lens is in use, at the two extremities (0.6 and 2.5 meters) of the
scan range. The object to be scanned has to be inside the view volume de-
fined by the three values x-range, y-range and z-range. That is, the object
must be placed inside the imaginary pyramid centered straight in front of
the scanner, with base length equal to the value x-range, base width equal
to y-range and with height equal to z-range.

Further, it takes between 0.3 (in FAST mode) and 2.5 seconds (in FINE
mode) for the scanner to complete a scan, depending on what kind of
accuracy is desired. In FAST mode we will get lesser accuracy than in
FINE mode and also fewer points will be sampled off the object’s surface.
More specifically, in FAST-mode we typically get 77, 000 pixels at output,
whereas in FINE-mode we get four times as many (308, 000). In addition,
the VI-910 captures a 640× 480 colour image with twenty four bit per pixel
for storing colour information. It includes a SCSI II output interface for
external connections and a 5.7 inch LCD viewfinder. Figure 2.1 shows a
picture of the scanner.

2.2 The scanning pipeline 19

Lens \ Extremity at 0.6 meters: at 2.5 meters:

x-range: 111 mm x-range: 83 mm
TELE y-range: 83 mm y-range: 347 mm

z-range: 40 mm z-range: 500 mm

x-range: 198 mm x-range: 823 mm
MIDDLE y-range: 148 mm y-range: 618 mm

z-range: 70 mm z-range: 800 mm

at 2.0 meters:

x-range: 359 mm x-range: 1169 mm
WIDE y-range: 269 mm y-range: 897 mm

z-range: 110 mm z-range: 750 mm

Table 2.1: The range of input varies according to what lens is in use, and
how far, in front the scanner, an object is placed.

2.2 The scanning pipeline

As it has already been revealed what kind of scanner the VI-910 is, much
of the way it works has already been discussed. Some things are worth
repeating though, and some more details worth giving. We will see this as
we now consider the scanning pipeline.

The object to be scanned must be visible within the LCD viewfinder on
the back of the scanner. As we recall from the previous section, we can en-
large of diminish the view volume by changing the camera lens. The laser
plane will be swept over the object three consecutive times, from top to
bottom. A proportion of the reflected laser is received by the CCD camera.

The CCD is made up of a silicon piece which is segmented into an array
of light-sensitive cells or photosites (really capacitors), and a spot on an ob-
ject is stored at a certain selection of these cells. When hit by the reflected
laser, the cells charge up with an amount of electrical current proportional
to the light-intensity. The charge is accumulated in an amplifier which con-
verts it to voltage which in turn is digitized. The proprietary file format for
the digitized data is encrypted.

The exact position on the CCD at which a spot on the object is stored,
can be calculated down to a fraction of a pixel. One way is to sum up the
products of the pixel-number and its associated intensity, e.g. stored as an
eight bit word, and divide by the sum of the intensities. A high-end, 2-
dimensional CCD may contain 2048 × 2048 (almost 4.2 million) pieces of
light-intensity information.

In order for the VI-910 to retrieve surface point coordinates, the scan-
ner makes use of Konica’s Triangulation-light-block method. This method is
a special kind of active triangulation introduced in section 1.2.1. The laser
emitter, a point on the object which is being scanned and the scanner cam-

20 Konica Minolta VI-910

era, still make up the corners of a triangle. Also, the camera and the laser
emitter are situated straight on top of each other, thus they are on the same
axis. We will review in section 2.2.1 how the measurements can be carried
out by considering this particular configuration.

The digitized version of the light-intensity information is eventually
handled by the Polygon Editing Tool supplied by Konica Minolta. The soft-
ware calculates points in three dimensions relative to a three dimensional
right-handed Cartesian coordinate system. The center of the light receiving
lens is set as origin.

The example below should clarify what is done by the scanner when it
calculates the coordinates of a certain point in space. As Konica Minolta,
we apply a three dimensional right-handed Cartesian coordinate system
with its origin at the camera lens.

2.2.1 Calculating coordinates — an example

A note should be taken at this point, as we do not claim that the following
represents the way Konica Minolta have made their scanners calculate co-
ordinates. The details in their Triangulation light-block method have not
been possible to retrieve. A compact expression for a point’s coordinates
in the case of an active laser triangulation system like the VI-910 is given
in [7]. In the following calculations we give the details leading out to that
expression (using only symbols). More specifically, we will compute the
coordinates Sx, Sy and Sz of the point S in figure 2.2 on the next page.

Figure 2.2 illustrates a snapshot of what is typically at display both out-
side and inside the VI-910 when doing a scan. To enhance the visibility, the
different components have been enlarged and/or diminished.

The coordinates of many points4 on the surface of the side of the object
facing the scanner, are calculated in one scan. In figure 2.2 we see that the
laser plane hits a box, and the (Cartesian) coordinates of the point S, are
what we want to compute. It turns out that the coordinates are all negative:
The center of the coordinate system is located at the center of the lens. The
negative z axis extends forward in front of the scanner, the negative y axis
extends downwards and the negative x axis extends to the left.

We have not yet agreed upon a notation for such fundamental entities
as points, lines and angles. This will be done in chapter 3 as we from that
point on will be using these entities extensively. For this small example we
use an intuitive notation:

• Single capital letters, as S, T and F in figure 2.3 on page 22, mark
different points in space, and the point’s Cartesian coordinates are
denoted by indices, say Sx, Sy and Sz .

4Up to 308, 000 as we remember from the previous section.

2.2 The scanning pipeline 21

Figure 2.2: Drawing of a scan, with the laser plane as seen partly from the
side.

• The sign ∠ followed by three capital letters denotes angles between
line segments.

As stated in chapter 1, some known quantities make the distance calcu-
lations straightforward (see figure 2.3):

• The base distance (equals −My since My is negative),

• the angle ∠TMS,

• the focal distance −Fz ,

• the exact position of a spot on the CCD (Hx,Hy).

By similar triangles we see from figure 2.4 that

Sz

Sx
=

Fz

Hx

so

Sx =
SzHx

Fz
.

On the right side of the equal sign, only the quantity Sz is unknown. The
coordinate Fz equals the (negative) focal distance and Hx is the x compo-
nent of the spot on the CCD where the laser hits after being reflected off
from S. Since Sz is also one of the coordinates we are after, we will return
to the equation above when Sz is found.

22 Konica Minolta VI-910

Figure 2.3: A schematic drawing of figure 2.2 as seen from the side.

Figure 2.4: Yet a schematic drawing of figure 2.2, this time from above.

2.2 The scanning pipeline 23

Consider next what must be done to calculate the coordinate Sy = Ty.
We know the angle ∠TMS and an expression for this angle reads

tan ∠TMS =
Sz

My − Ty
.

From this we get that

Ty = My −
Sz

tan ∠TMS
= My − Sz cot ∠TMS.

So again we need to know the coordinate Sy. Note that My is known — it
equals the (negative) base distance5. In the expression for Ty, however, we
can replace the factor Sz by values that are known. By similar triangles, we
see from figure 2.3 that

Sz

Ty
=

Fz

Hy

so

Sz =
FzTy

Hy
.

Inserting this in the expression for Ty above, we get

Ty = My −
FzTy

Hy
cot ∠TMS

Ty +
FzTy

Hy
cot ∠TMS = My

Ty

(

1 +
Fz

Hy
cot ∠TMS

)

= My

Ty =
My

1 + Fz

Hy
cot ∠TMS

=
MyHy

Hy + Fz cot ∠TMS
.

All quantities on the right side of the equal sign are now known so Ty = Sy

is found. The quantity Hy is the vertical displacement on the light receiving
element (relative to the center point F) of the laser spot “corresponding” to
S.

We can now compute Sz from its expression above,

Sz =
Fz

Hy
Sy,

5The coordinate My is negative according to the position of the point M in the coordinate
system which is introduced, whereas distance is thought of as a positive quantity in this
context.

24 Konica Minolta VI-910

by inserting for Sy what we just found:

Sz =
Fz

Hy

MyHy

Hy + Fz cot ∠TMS

=
FzMy

Hy + Fz cot ∠TMS

.

It remains to determine the final expression for the Sx coordinate,

Sx =
Hx

Fz
Sz

=
Hx

Fz

FzMy

Hy + Fz cot ∠TMS

=
HxMy

Hy + Fz cot ∠TMS
.

These results can be written more compactly,

[Sx, Sy, Sz] =
My

Hy + Fz cot ∠TMS
[Hx, Hy, Fz].

which is in accordance with Besl’s expression [7]. This completes the calcu-
lations.

According to Konica [25], the coordinates of a point as measured by the
VI-910 deviate from the point’s true position by a few tenths of a millimeter
(in FINE mode). More precisely, if (x, y, z) is the point’s true position, then
the scanner’s measurements are found within the intervals (x±0.22mm, y±
0.16mm, z ± 0.10mm).

We should mention that the Scheimpflug principle introduced in sec-
tion 1.2.2 is not satisfied. This would imply moving the CCD back and
fourth along the z axis and rotating it about the x axis as the laser plane is
constantly in motion. However, the scanner has built-in auto focus func-
tionality ensuring that the object to be scanned will always be in focus, see
section 2.3.1.

2.3 The Polygon Editing Tool

The Polygon Editing Tool is software developed by Konica Minolta for ma-
nipulating scanner data. It is meant for installation on a Windows machine.
The Polygon Editing Tool can perform a variety of functions. Some func-
tions set the scanner parameters, while others are related to editing. We
will give a description of both types of functions.

2.3 The Polygon Editing Tool 25

2.3.1 Hardware settings

The software offers step scanning as well as single scanning. Step scanning
implies controlling a rotating table, and making it rotate through a set of
angles which we decide. The set of angles sum up to 360 so if we place
our scan-object on top of the turntable6 for a step-scan, the object will be
scanned from all sides.

As mentioned briefly at the end of section 2.2.1, we can make use of the
scanner’s auto focus functionality to make sure that the object in question,
will be in focus. Prior to a scan, we should always push the AF (auto focus)
button to make the scanner determine the distance from the camera lens
to the object. A picture of the object will be displayed together with the
distance measurement, so that we will be able to judge whether the distance
was rightfully determined. If the picture occurs blurry, we need to repeat
the procedure.

2.3.2 Visualization

There are several ways to display the data collected by the scanner. By
default, the mesh which is first at display is both rectangular and triangular
and shaded in green. However, we can choose to

• display all the vertices,

• display the normals of all the vertices,

• display the mesh in wire frame-mode,

• display a shaded mesh or

• display the mesh in texture-mapped mode.

The functions should be quite self-explanatory. For example, displaying
the mesh in texture mapped mode implies that a digital still image taken of
the object by the VI-910 is mapped to the surface of the mesh. This makes
it appear as a more true copy of the scanned object. We can choose to save
a certain view, say when all the vertex-normals are at display (as red line
segments), but the file format is again encrypted.

2.3.3 Build functions

According to the software, “building” include elaborate functionality such
as

6We need to set which type of turntable we use and to which of the host computer’s
COM-ports it is connected. At the University of Oslo the turntable is connected to the
COM1 port of its host computer. The turntable, or rather the control unit for the stepper
motor which dictates the turntable, is of type isel(RF-1).

26 Konica Minolta VI-910

• Registration

• Merging

• Triangulation

• Sub sampling

• Polygon-checking

• Filling of holes

• Mesh refinement and smoothing

The top of the list reads Registration. This is something we often want
to do, at least if we have scanned an object from different sides; registration
brings the scans into a common frame of reference. We defer to chapter
4 for a more thorough discussion on the subject. In The Polygon Editing
Tool, an initial registration can be done “manually” or automatically.

We sometimes want the software to do all the registration for us, that
is, we want the registration to be done automatically. Automatic registra-
tion requires that we have selected more than five hundred vertices. Most
likely, we have selected all the partial scans (at least if we want to align all
of them), and this includes usually a lot more than five hundred vertices.
Before the software can start the registration process, it asks us to choose
one of the partial scans as a base element. This scan will be used as a “ref-
erence” and is necessary for the registration-algorithm to work properly.

For a manual registration, we also need to choose a base element. Fur-
ther, the registration will be done pairwise with regard to the partial scans
so we also need to choose the scan with which we want to register the base
element. Hence, the two scans must at least be partially overlapping. The
functionality demands of us that we pick out three pairs of points from the
two scans — the two vertices which make up a pair must be at the same
(by eye) spot on the scans.

When the registration is done, an error estimate is displayed, and we
can choose to exit or repeat the process (to try to improve the result). The
software also offers fine registration which is a refinement of the initial reg-
istration, either if it was done manually or automatically.

Another useful function which should be mentioned is merging. Merg-
ing gathers several registered scans, or elements, into one element.

The next build function in the list above is triangulation which means
dividing large polygons into triangles. (Only rectangular and triangular
polygons are available with this software, see figure 2.5 on the next page).
A triangulation should be regular, or at least valid, to be convenient to han-
dle. Among other things, a regular triangulation should not have holes. In
figure 2.6 we see the result of triangulating the mesh from figure 2.5.

2.3 The Polygon Editing Tool 27

Figure 2.5: A segment of a polygon mesh representing a figure of the char-
acter Sméagol from the movie The Lord of the Rings. The segment shows
the two largest toes of Sméagol’s left foot as he sits on a river bank.

Figure 2.6: The polygon mesh representing the toes of Sméagol is now tri-
angulated.

28 Konica Minolta VI-910

Figure 2.7: The number of points making up the polygon mesh represent-
ing the toes of Sméagol is reduced. Since we have made an adaptive sub-
sample, points have been removed mainly from the flat areas of the foot.

At times we may wish to reduce the number of points in a mesh. With
The Polygon Editing Tool, we can do so either uniformly or adaptively.
Reducing the number of points uniformly, implies removing, say, every
other point from the mesh. That is, points are removed without regard
to surface curvature etcetera. Contrary to this, adaptive reduction implies
removing points only from flat areas where many points do not contribute
to the shape of the surface. In both cases we need to give as input to the
software, the number of points we want to keep. (The total number of
points before the subsample is taken, is displayed.) In figure 2.7 we have
adaptively reduced the number of points making up the triangulation in
figure 2.6.

We often want regular triangulations. For this, and for aesthetic rea-
sons, the software offers to fill holes in the mesh representing a scan. Holes
can be filled automatically or manually. If we want them to be filled auto-
matically, the system will search through the selected mesh for holes. If a
hole is found, its boundary points will be selected and highlighted in red.
Before the hole is filled, a “flatness” parameter needs to be set — it reflects
the curvature of the surface which will be used to fill the hole. Zero flatness
implies filling the hole with a completely flat surface, while flatness set to
100 implies filling the hole with as curved a surface as possible.

Then we need to choose which algorithm we want the software to use
for the process of filling the hole. There are three options:

1. We can choose to fill “by curvature”, this creates meshes.

2. We can fill the hole “by curvature” and replace facets. This creates
meshes and polygons on the boundary are possibly altered.

3. We can fill the hole by drawing straight lines between the nodes at
the boundary.

We can fill all the holes with the current settings, or we can fill one hole at
a time and possibly change the settings for each hole.

2.3 The Polygon Editing Tool 29

If we choose to fill holes manually, we have to locate the holes ourselves.
When a hole is found, we need to click on three successive vertices on the
boundary in a counter-clockwise manner, and a triangular polygon will be
created with the three selected vertices as corners.

Another useful function in the Build menu is the one that checks a se-
lected element for illegal polygons. The function goes by the same name,
Check Polygons. Illegal polygons in this context can be divided into five
different groups, depending on what “rule” they violate. The rules are:

• Intersection is not allowed other places than at the edges.

• Polygons must be convex. (No degeneration is allowed.)

• Polygons which share an edge must face the same way.

• Polygons must not be badly connected, i.e. they cannot share more
than three vertices or two non-edge vertices.

• A boundary vertex must be shared by exactly two boundary edges.

The software offers to count how many polygons that currently violate the
different rules. The vertices involved in these actions will be selected and
we can choose to delete them.

From the Build menu there is also an option to smooth points or el-
ements. This function regularizes surface point density through two at-
tributes: Weight and repetition. Setting the weight attribute to a num-
ber between zero and one adjusts the level of regularization of the surface
points density to somewhere between not regular at all, and strictly regular.
The repetition attribute can similarly be set to a value between one and ten
which dictates the level of smoothness of the selected points or elements.

The Build menu also includes functions such as Modify and Subdivi-
sion. When we choose to modify an element, the element is rebuilt by
deleting small polygons. The Subdivision function is quite the opposite
of Modify, as it rebuilds by dividing large polygons into smaller ones (tri-
angles). Before initiating the Modify routine we have to set a minimum
edge length or a minimum facet area. Edges, whose length does not exceed
the minimum edge length, will be deleted, as will polygons with areas that
does not exceed the minimum facet area.

2.3.4 Saving

When we are done editing, we want to save our work. The save function
is found under the File menu. We have to select a folder and a name for
the file in which the data will be saved. The format for the saved data is

30 Konica Minolta VI-910

encrypted. With that being said, the file is known to include the scan direc-
tion, parameters, classes etcetera. The file name extension for the encrypted
data is CDM7.

However the data can be exported to a known format. The software can
convert the digitized data into the VRML8 or STL9 format, to mention just
a couple. As one can see from the examples below, these formats make up
appropriate starting points for the work of most developers.

Between the first and last line of an ASCII STL file,

solid [name]
...
endsolid [name],

there is allocated space which stores the unit normal and vertices of each
triangle in a triangular mesh [45]:

triangle normal nx ny nz
outer loop

vertex v1x v1y v1z
vertex v2x v2y v2z
vertex v3x v3y v3z

endloop
end triangle

The VRML format is a text format and it comes in several versions.
From within The Polygon Editing Tool we can export a file from the en-
crypted format to both VRML version 1.0 and VRML version 2.0, see fig-
ure 2.8. We see from the example that the VRML format includes an array
of indices, the coordinates of the polygon’s vertices, and also additional
information about the mesh.

The particular file presented in figure 2.8 represents a mesh that con-
sists of one single triangle only; the coordIndex array contains only one
single line and three indices. However, the VRML format also stores rect-
angular mesh. The three indices are used to look up in the point array
where the triangle’s vertices are stored. Thus, the vertices of the triangle
are point[0] = (x1,y1,z1), point[1] = (x2,y2,z2) and point[2] =
(x3,y3,z3).

7The file name extension for data produced by the VI-910i is CDK.
8Virtual Reality Modeling Language, a standard file format for 3D graphics.
9A file format native to the format produced by a STereoLitography Computer-Aided

Design software created by an American company [45].

2.3 The Polygon Editing Tool 31

#VRML V2.0 utf8
Polygon Editing Tool
Object name : aTriangle
Collision{

collide FALSE
children [

Shape{
appearance

Appearance{
material
DEF _DefMar Material{
}

}
geometry
IndexedFaceSet{

coord
Coordinate{

point [
x1 y1 z1,
x2 y2 z2,
x3 y3 z3,

]
}
solid FALSE
creaseAngle 0.5
coordIndex [

0, 1, 2, -1,
]

}
}

]
}
Viewpoint{

position x y z
orientation 0 0 1 0
fieldOfView float

}

Figure 2.8: An example file written in the VRML 2.0 file format.

32 Konica Minolta VI-910

2.4 Summary

Throughout this chapter, we have studied a laser scanner in some detail
with a focus on its technical specifications and on the principles of distance
measurement which it follows. We will not discuss these topics in any more
detail. In the next chapter we will finish Part I of the text by hopefully
providing the tools needed to start working on the more mathematically
involved topics introduced in Part II.

Chapter 3

Mathematical Preliminaries

“The mathematics is not there till we put it there.”

Sir Arthur Eddington

Hopefully we have now gained some knowledge as to how 3D scanners
can gather range data, and in particular how this might be done by the
VI-910. Further, the review of The Polygon Editing Tool suggested some
typical operations related to scanner data. A natural next step would be
to examine in depth some of the more interesting ones of those operations.
But first, we need to agree upon notation and give an overview over some
mathematical topics which will play a central role in the remaining text.

3.1 Scalars

The term scalar refers to a quantity without direction. In the mathemati-
cal branch of linear algebra scalars are equivalent to real numbers and we
will denote them by lowercase letters, say, a, b and c. However, according
to what may be argued as tradition, we will denote angles by lowercase,
Greek letters, e.g. γ, β and α.

3.2 Points and vectors

Mathematically speaking, a point in R
3 can be regarded as a vector from

the origin in the frame of reference in which the point is given, up to the
point. This way, there are no fundamental differences between a point and
a vector. In the text, whenever we take this into account, we denote a vector
or point by boldface, lowercase letters, say p. Equivalently, we will also
represent a vector or a point in terms of its components, say [x, y, z]T for a
vector or point in R

3.

33

34 Mathematical Preliminaries

When we manipulate geometry, it is however sometimes convenient to
differentiate between the two; say, when we rotate a point, we often want
to distinguish it from the axis (vector) of the rotation. We can easily make
this distinction by using homogeneous coordinates.

3.2.1 Homogeneous coordinates

Using homogeneous coordinates, points and vectors in R
3 are represented

as four dimensional vectors. That is, they are represented as [x, y, z, w]T ,
where w = 1 for points and w = 0 for vectors. In the following, whenever
we use homogeneous representation, we will denote a point which lies in
R

3 by p1 = [x, y, z, 1]T and a vector by v0 = [x, y, z, 0]T . However, as we
will see in section 3.4.2 on page 36, introducing another dimension is not
the only reason for choosing homogeneous representation.

3.3 Matrices

We will quickly review how we recognize a matrix: In our setting, a ma-
trix is regarded as a collection of real numbers, ordered in a rectangular
fashion. We will denote a matrix by uppercase, boldface letters, say M. If
for example we have M ∈ R

p,q then the matrix M consists of p rows and q
columns of real numbers, i.e. pq real numbers.

3.4 Transformations in R
3

If we want to be able to do computations on the data given by a 3D scanner,
it is in the cards that we must be able to handle geometry in three dimen-
sions. One of the basic tools in that respect are transformations and more
precisely, matrix transformations. We will denote transformations by up-
percase Greek letters, say Π. Generally, a transformation is a formula or
rule that assigns to a given vector p in Euclidean space, a vector Π(p). If Π
is a matrix transformation, then Π(p) would imply the computation of Mp

for a matrix M.

As a matter of form we will list the four basic matrix transformations -
translation, rotation, scaling and shearing. However, our focus will be on
the former two, rotations and translations. They make up what is known as
rigid-body transformations, as they do not affect the shape of the geometry
of the given data. This is a desired property as we often want to use scanner
data to reconstruct real-world rigid objects. Further, we choose to use ho-
mogeneous representation. This augments the usual 3 × 3 transformation
matrices into size 4 × 4.

3.4 Transformations in R
3 35

3.4.1 Rotation

There are many ways to represent a rotation in 3-space [45]. For a general
rotation we must specify a fixed point, i.e. a point unaltered by the rotation,
an axis or vector about which we want to rotate and a rotation angle [5].
If we choose the origin in our frame of reference to be the fixed point of
our rotation, then any rotation can be represented in matrix form as the
product RxRyRz . The three rotation matrices Rx, Ry and Rz each represents
a rotation about one of the coordinate axes x, y or z,

Rx =









1 0 0 0
0 cos α − sinα 0
0 sin α cos α 0
0 0 0 1









,

Ry =









cos β 0 sinβ 0
0 1 0 0

− sinβ 0 cos β 0
0 0 0 1









,

Rz =









cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1









.

When specified this way, positive angles correspond to counter-clockwise
rotations. However, it is not trivial to decompose a general rotation into the
angles α, β and γ, see [5].

Our result above is in accordance with Euler’s Rotation Theorem which
states that any rotation in R

3 can be specified by three angles. The three
rotations represented give us the three rotation matrices and the product of
these three matrices specifies the overall rotation.

A useful observation about the three rotation matrices Rx, Ry and Rz is
that they are orthogonal, so for each of them, the columns are orthogonal
and they have unit length. We can extract the angle, say α of the rotation
about the x axis by observing

trace(Rx) = 2 + 2 cos α ⇒ α = arccos
trace(Rx) − 2

2

A nice way to regard a general rotation in a 3 dimensional space, is
given by [45]; here, rotation is regarded as an operator which fixes a 1 di-
mensional subspace and rotates the corresponding two dimensional sub-
space. The line or vector v0 which stays fixed, is called the fixed axis of the
rotation.

36 Mathematical Preliminaries

3.4.2 Translation

The translation operator translates, or moves, a point in space in the direc-
tion of some vector. The “size” of the displacement is equal to the length
of the vector. Thus, translation is by nature an additive operator. The point
p = [x, y, z]T is translated by the vector v = [xdisp, ydisp, zdisp]

T , to another
point p′ by the translation transformation: p′ = p + v = [x + xdisp, y +
ydisp, z +zdisp]

T . However, by using homogeneous representation we make
this transformation a multiplicative operator. What is more, we can concate-
nate, say a translation, a rotation and a scale operator in any order we want,
to suit a particular application ([29]). This is convenient when we try to ma-
nipulate geometry on computers which today often have graphics boards
with 4 × 4 matrix operations embedded in their circuitry.

We denote the translation matrix by

T =









1 0 0 xdisp

0 1 0 ydisp

0 0 1 zdisp

0 0 0 1









. (3.1)

Observe that translating a vector v0 = [vx, vy, vz, 0]T , has no “meaning” as
a vector only has an associated length and direction. Thus, when we use
our translation matrix which now is size 4 × 4 due to the homogeneous
representation, the product Tv0 should yield the same vector as a result:









1 0 0 xdisp

0 1 0 ydisp

0 0 1 zdisp

0 0 0 1

















vx

vy

vz

0









=









vx + 0 ∗ xdisp

vy + 0 ∗ ydisp

vz + 0 ∗ zdisp

1 ∗ 0









=









vx

vy

vz

0









.

In contrast, Tp1 with p1 = [px, py, pz, 1]T now being a point, gives us a new
point:









px + xdisp

py + ydisp

pz + zdisp

1









.

3.4.3 Scaling

The scaling operator scales an object along the three axes, relative to the
origin of the frame of reference which stays fixed. We can choose to either
enlarge or reduce the object in each of these directions. The scaling matrix
S has the form

S =









sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1









,

3.5 Quaternions 37

sx, sy, sz ∈ R.

3.4.4 Shearing

For completeness we we also describe the shear matrices. We can define six
shear matrices as each coordinate x, y and z in R

3 can by sheared by either
of the other two. To illustrate this, we denote the six shear matrices by Hxy,
Hxz , Hyx, Hyz , Hzx and Hzy, as is done in [3]. As an example we look at the
matrix Hzy(s), s ∈ R, which denotes a shearing of the z-coordinate by the y
coordinate:









1 0 0 0
0 1 0 0
0 s 1 0
0 0 0 1









.

Transformation of a point p1 = [x, y, z, 1]T through this shearing, would
yield a point r1 such that the z coordinate of r1 is the sum of the z coordinate
of p1 and s multiplied by the y-value of p1:

r1 = Hzy(s)p
1 = [x, y, z + sy, 1]T .

We observe that the scalar argument s to the shear matrix Hzy, is the
(3, 2) entry in Hzy. If we denote the x, y and z coordinates by 1, 2 and 3,
respectively, this observation holds in general.

3.5 Quaternions

On Wikipedia [45], one can read the following excerpt about quaternions
taken from the 1909 edition of Webster’s Unabridged Dictionary:

“The quotient of two vectors ... Such is the view of the inventor, Sir Wm. Rowan
Hamilton, and his disciple, Prof. P. G. Tait; but authorities are not yet quite agreed
as to what a quaternion is or ought to be.”

Today, more than one hundred years after the “invention” of quaternions,
it is agreed upon that a quaternion can be defined in the following way;

Definition 1 A quaternion, denoted q̂ is a four-vector resulting from adding the
imaginary components i, j and k to the real numbers such that i2 = j2 = k2 =
ijk = −1 and ij = −ji = k, jk = −kj = i and ki = −ik = j. In other words
q̂ = r + ai + bj + ck, with r, a, b, c ∈ R

From this it follows that the basis quaternions are 1, i, j and k. This we see,
is a natural generalization of the complex numbers which can be defined
as adding the component i to the reals, resulting in a two-vector.

38 Mathematical Preliminaries

In the same way that complex numbers can be useful to us as they give
a way of describing rotations in two dimensions, we will see that quater-
nions give a way of describing rotations in three dimensions. Indeed, the
algebra H of quaternions is four dimensional and therefore it can model
four dimensional rotations. But then H also includes all three dimensional
operations as a subset. Before we proceed by looking at how such an op-
erator might look like, we list some useful quaternion properties, some of
which we will make use of later.

Definition 2 Given two quaternions q̂1 = [r1, qT
1], q1 = [a1, b1, c1]

T , and q̂2 =
[r2, qT

2], q2 = [a2, b2, c2]
T , we define the following:

1. The quaternion conjugate q̂
∗
1 = [r1,−qT

1] = r1 − a1i − b1j − c1k.

2. The Grassman product q̂1q̂2 = r1r2 − q1 · q2 + r1q2 + r2q1 + (q1 × q2).
This is the (non-commutative) quaternion product.

3. The norm of, say q̂1, N(q̂1) =
√

q̂1q̂
∗
1.

4. The quaternion dot-product q̂1 · q̂2 = r1r2 + a1a2 + b1b2 + c1c2.

5. The quaternion cross product q̂1 × q̂2 = (b1c2 − c1b2)i + (c1a2 − a1c2)j +
(a1b2 − b1a2)k. This is also called the Grassman outer product.

Horn [26] gives a nice way of expressing the Grassman product in terms of
a real matrix with orthogonal columns and a quaternion. Using our nota-
tion from the definition above, q̂1q̂2 becomes









r1 −a1 −b1 −c1

a1 r1 −c1 b1

b1 c1 r1 −a1

c1 −b1 a1 r1









q̂T
2 . (3.2)

Equivalently, if we want to keep the four vector representation of q̂1, the
product q̂1q̂2 can be written as









r2 −a2 −b2 −c2

a2 r2 c2 −b2

b2 −c2 r2 a2

c2 b2 −a2 r2









q̂T
1 . (3.3)

These results can be seen by expanding the Grassman product given in the
definition and collecting the corresponding terms of the product. We will
make use of these expressions later.

Continuing our discussion, we are interested in arriving at an expres-
sion for how this four-vector entity can be used to describe the same oper-
ation as the 4× 4 rotation matrices reviewed in section 3.4.1. We follow the

3.5 Quaternions 39

outline given in [29, 45]: In two dimensions, rotation of a vector or point
v = [x, y]T through an angle φ can be expressed as a simple product of the
polar representation of v, reiθ, and the rotation operator eiφ. That is, the
point v′ which we rotate towards can be written as

v′ = reiθeiφ = rei(θ+φ),

or in matrix form
[

cos φ − sinφ
sinφ cos φ

] [

x
y

]

=

[

x cos φ − y sinφ
x sinφ + y cos φ

]

.

This suggests approaching the search for the wanted expression sim-
ply by trying to multiply a vector v ∈ R

3 with a quaternion q̂1, much the
same way as we do when we use rotation matrices. For multiplication be-
tween a vector in R

3 and a quaternion in R
4 to make sense, we treat v as a

quaternion whose real part is 0. That is, v is represented as the quaternion
p̂v = [0, vT]. Such an entity is referred to as a pure (imaginary) quaternion
[29, 45].

Using the definition of the quaternion product given above, we see that
q̂1p̂v, however, does not yield a vector as a result. That is, the real part of
the resulting quaternion is not zero, at least as long as the dot product-part
is not zero. If we change the order this will not help either, as this will not
alter the real part of the product.

Continuing the search, if we now introduce another quaternion q̂2 into
the equation, we have 3! = 6 possibilities for combining the three factors q̂1,
p̂v and q̂2 into a product. Four of these combinations, however, simplifies
to the case with one quaternion and one pure quaternion — this we know
will not work. So we need to keep the two quaternions apart, or in other
words, we need to keep the pure quaternion in the middle. This gives us
two possibilities, q̂1p̂vq̂2 and q̂2p̂vq̂1. We make no distinction between the
two quaternions q̂1 and q̂2, so we are left with only one possibility.

We now have two quaternions q̂1 = r1 + qT
1 , q̂2 = r2 + qT

2 and the pure
quaternion p̂v = 0 + vT . The real part of q̂1p̂vq̂2 is

−r2(q1 · v) − r1(v · q2) − (q1 × v) · q2,

which we want to be zero. As is shown by [29], this can be achieved
through two simple steps. First we let the real parts of q̂1 and q̂2 be equal.
We may then rewrite the expression, so that it reads

−r1(q1 + q2) · v + (q1 × q2) · v.

Thus the second step is obviously to set q2 equal to −q1. This follows since
then the sum in the first parenthesis will be zero, and q2 will be parallel to
q1 so q1 × q2 will be the zero vector.

40 Mathematical Preliminaries

This implies that q̂2 = r2 + qT
2 = r1 − qT

1 = q̂∗
1. So the triple quaternion

product
q̂1p̂vq̂∗

1 (3.4)

is an operator which takes a vector in R
3, into a vector in R

3.
To associate an angle θ with a quaternion, like we did explicitly with a

rotation matrix, Kuipers [29] makes use of unit quaternions. The norm of
such quaternions is equal to one, which implies that the Grassman product
of the quaternion and its conjugate is also equal to one. In other words, if
q̂u = [ru, qT

u] is a unit quaternion then q̂uq̂∗
u = 1, or

q̂uq̂∗
u = r2

u + qu · qu − ruqu + ruqu − qu × qu

= r2
u + qu · qu + 0

= r2
u + qu · qu

= 1.

We know from trigonometry that

cos2 θ + sin2 θ = 1

so we should have
cos2 θ = r2

u

sin2 θ = qu · qu.

As pointed out by [29], θ can be determined uniquely if we demand that
−π < θ < π. Now, for a unit vector u,

u =
qu√

qu · qu

,

we can write q̂u as ru + qT
u = cos θ + uT√qu · qu = cos θ + uT sin θ. Thus,

by using unit quaternions, we can add to our knowledge about the work of
the triple quaternion product q̂up̂vq̂∗

u, what is summarized in the following
theorem. Proof can be found in Kuipers [29].

Theorem 1 Let u be a unit vector and θ an angle such that −π < θ < π. Then
for any unit quaternion q̂u = cos θ + uT sin θ and for any vector v ∈ R

3, v

= [vx, vy, vz]
T , the action of the operator

q̂up̂
v
q̂
∗
u (3.5)

on p̂
v

where p̂
v

= [0, vT], may be interpreted geometrically as a rotation of the
vector v through an angle 2θ about u as the axis of rotation.

Further, a sequence of rotations corresponds to the multiplication of
quaternions [26]: Consider the rotation q̂u1

p̂q̂∗
u1

. If we apply a second rota-
tion represented by q̂u2

we get

q̂u2
(q̂u1

p̂q̂∗
u1

)q̂∗
u2

= (q̂u2
q̂u1

)p̂(q̂u2
q̂u1

)∗.

3.5 Quaternions 41

So in the case of two rotations, the overall rotation is represented by the
quaternion q̂u2

q̂u1

Quaternions may challenge our intuition; quaternion algebra tells us
that quaternion multiplication does not commute. That is, given two quater-
nions q̂ and p̂, q̂p̂ 6= p̂q̂. We now know, however, that unit quaternions can
be used to represent spatial rotations. So the fact that they do not commute
can be seen to reflect the fact that a composition of two rotations about two
distinct axes, also does not commute.

3.5.1 Representation and conversions

In numerical algorithms small errors often accumulate due to the nature of
the floating point representation. An advantage that comes with quater-
nion representation, as pointed out by [45], is that quaternions still rep-
resent a rotation after being normalized. Contrary to this, a matrix that
is slightly off needs not be orthogonal anymore and is therefore harder to
convert back to a proper orthogonal matrix.

However, compact and stable as a quaternion representation may be,
many computers today have built-in dedicated procedures for handling
matrix computations. With this in mind, it would be convenient to have at
hand a matrix representation for quaternions. Fortunately, such a represen-
tation exists.

Consider a unit quaternion q̂u = [r, a, b, c] and a point v represented by
a pure quaternion p̂v = 0 + vT . Using the matrix representations (3.2) and
(3.3) we can write the rotational operator q̂up̂vq̂∗

u as

(Qp̂v)q̂
∗
u = QT Qp̂v,

where

Q =









r −a −b −c
a r −c b
b c r −a
c −b a r









is a 4 × 4 matrix representation of q̂u. The lower right 3 × 3 orthogonal
submatrix of QT Q,





r2 + a2 − b2 − c2 2(ab − rc) 2(ac + rb)
2(ab + rc) r2 − a2 + b2 − c2 2(bc − ra)
2(ac − rb) 2(bc + ra) r2 − a2 − b2 + c2



 ,

is the usual rotation matrix R which rotates the point v into v′, i.e. v′ = Rv

[26].

Another conversion often needed, is computing a unit quaternion based
on the knowledge of the unit rotation axis v = [vx, vy, vz] and rotational

42 Mathematical Preliminaries

angle φ. The unit quaternion q̂u is then found as

q̂u =











cos φ
2

vx sin φ
2

vy sin φ
2

vz sin φ
2











.

3.6 Centroid

For future computations the centroid will prove to be a useful quantity.
According to [45] the centroid is defined in the following way:

Definition 3 The centroid or barycenter of an object X in an n-dimensional space
is the intersection of all hyperplanes that divide X into two parts of equal moment
about the hyperplane.

If now X =
{

x1
1, x1

2, ..., x1
nX

}

is a set of points, the informal definition of the
centroid c1

X of X as being the average of all points of X , will suffice for our
purpose. This gives us

c1
X =

1

nX

nX
∑

i=1

x1
i

where nX denotes the cardinality of set X .

3.7 Curvature and related concepts

According to [45], the curvature κ of a point p on a curve in R
2 equals

in magnitude, “the multiplicative inverse of the radius of a circle which
closely touches the curve at p”. For a point Λ(u) on a parametrized space
curve Λ : R → R

3, this leads to the expression

κ =
||Λ′(u) × Λ′′(u)||

||Λ′(u)||3
,

where × denotes the usual vector product.

3.7.1 The Frénet frame

In terms of the same parametrized space curve Λ introduced above, we de-
fine the Frénet frame at a point Λ(u) on the curve as the three orthonormal
vectors

t(u) =
Λ′(u)

||Λ′(u)|| (the tangent vector)

n(u) =
t′(u)

||t′(u)|| (the normal vector)

b(u) = t(u) × n(u) (the bi normal).

3.8 Summary 43

We will make use of this frame later in the text.

3.7.2 The Principal frame

At a point on a given surface, say the image of the function Φ : R
2 → R

3,
we also have what is called the principal frame or surface frame. The prin-
cipal frame is made up of the three orthonormal vectors n, e1 and e2 which
are the surface normal and the two principal directions, respectively. The
principal directions are the directions of the two tangent vectors associated
with the two (space) curves on the surface, with maximum and minimum
curvature passing through the given point. The maximum and minimum
curvature we denote κmax and κmin. Also, in both directions e1 and e2 we
have a principal radius of curvature; r1 and r2, respectively.

Consider a point p not on the surface Φ but in proximity to Φ. The point
p has what we will call a normal footpoint [33] on the surface. The normal
footpoint is a point y on the surface Φ such that

d(p, y) = min d(p, Φ). (3.6)

The function d(·, ·) denotes the distance function of the surface Φ. In other
words, the normal footpoint is the closest point on the surface from p.

For the identity (3.6) to be useful, we would need to specify the form of
the surface. If we knew that Φ was a triangulated surface, i.e. was made up
of a set T of n triangles, then the normal footpoint y would satisfy

d(p, y) = d(p, T) = min
i∈{1,...,n}

d(p, Ti)

for a triangle Ti ∈ T . Further, if a triangle Ti in T , i ∈ [1, 2, . . . , n], is thought
of in terms of its three cornerpoints, [vi,1, vi,2, vi,3], then

d(p, Ti) = ||vi,1 + s(vi,2 − vi,1) + t(vi,3 − vi,1) − p||

for weights s, t ∈ [0, 1], s + t ≤ 1, see [15].
In chapter 8, we will refer to the normal footprint of p on Φ. If S denotes

a decomposition of the surface Φ into points, then the normal footprint is
the closest point in S to y — the best approximation of y. If Φ is a tri-
angulated surface, the normal footprint is a corner point vi,j in the mesh,
i ∈ [1, 2, . . . , n] and j ∈ [1, 2, 3].

If the point p and the centers of the osculating circles at vi,j are on the
same side of the surface, the signed distance d(p, vi,j) is positive.

3.8 Summary

We summarize the notation which we will be using from this point on, in
table 3.1 on the next page.

44 Mathematical Preliminaries

scalars lowercase italic letters

angles lowercase Greek letters

vectors lowercase boldface letters

quaternions lowercase boldface letters with a hat

matrices uppercase boldface letters

sets uppercase italic letters

transformations uppercase Greek letters

vector product ×
dot product ·

Table 3.1: Summary of the notation used in this text.

In the next chapter, we will formulate a problem which is of great im-
portance when the goal is to retrieve a full 3D representation of a scanned
object; we hope to end up with a useful formulation of the registration prob-
lem. Preferably, the discussion will enable us to grasp more easily, the ideas
behind some of the solutions which are presented in the subsequent chap-
ters. As a wise person once said: “A problem well stated is a problem half
solved”.

Part II

The Problem

45

Chapter 4

The Non-Elastic Registration
Problem

“The definition of a good mathematical problem is the mathematics it generates
rather than the problem itself.”

Andrew Wiles

After having settled on a notation for some fundamental entities and
given an overview of some useful topics, we are ready to discuss the sig-
nificant shape-acquisitioning problem known as the registration problem. As
argued earlier, registration should be understood as the alignment of two
or more sets of representations of geometric data [8]. It was also stated
there that there are a menagerie of solutions, i.e. registration methods, to
this problem so naturally the problem are formulated in many different
ways. Consequently, we are forced to make some initial assumptions if we
want to state such a formulation.

When we have carried out a scan, clouds of points are usually what is
given us so we will focus on point cloud registration. Hence we will seek
a precise formulation of the problem of aligning sets of point cloud data in
three dimensions. Solutions to the registration problem can be generalized
to solve the case of m point sets, m > 2, but there are also methods which
are optimized for such cases where m > 2, see [12]. We will concentrate on
registration of only two sets of point cloud data. Moreover, as we scan rigid
objects, we will not allow for deformations. The transformation model will
thus be affine. In our discussion we follow the lines given in [8, 19, 17, 26].

4.1 A search for a precise formulation

As stated, we assume that two sets of points in R
3 are given, P = {pi}

nP

i=1
and S = {sj}nS

j=1, (here nP and nS denote the cardinality of the set P and

47

48 The Non-Elastic Registration Problem

S, respectively). Each of the sets of points is given in its own Cartesian co-
ordinate system, and we want to find a transformation between these two
systems so that the points are aligned. We will think of this transforma-
tion as an affine transformation, composed of a rotation, translation and a
uniform scaling.

As pointed out by [26], there are three degrees of freedom to both trans-
lation and rotation1 and one degree of freedom to uniform scaling. This
gives us a total of seven unknows since the translational and rotational
movements are independent of each other and also independent of the
scaling. Consequently, we need seven equations to determine the trans-
formation parameters — at least intuitively.

If we know the coordinates of three points in P and also their coordi-
nates in S then we can set up nine equations; each pair of measurements
(point pairs) gives us three equations, for a total of nine. We could thus dis-
regard two of the equations and determine the seven unknowns by solving
the remaining seven equations.

However, as measurements are not exact, we follow in the footsteps of
[26, 33, 17] among others, and hope to determine the seven unknows more
accurately by regarding more points. This way we admit that we probably
will not be able to find an exact mapping — we will try to minimize the
sum of the squared residuals between each pair of measurements. This
procedure is a well known mathematical optimization technique [45]. We
will also make up for possible outliers in the data by introducing weights,
wjs. The wjs will be set to a value between zero and one reflecting the
degree of reliability which we associate with the measurement in question.

Using homogeneous coordinates, we are looking for an affine transfor-
mation M on the form

s1
j = Mp1

j . (4.1)

Here, M is the matrix representation of the whole transformation. In our
context the geometric data have come from 3D scanning of some sort, and
thus the objects we consider are mostly rigid — we do not expect them to
undergo deformations such as, say, shearing. Consequently, the matrix M

can most often be decomposed into a translation T, a uniform scaling S and
a rotation R.

As stated, equation (4.1) will not be exact for each j, and the residual
errors ǫ0j are

ǫ0j = s1
j − Mp1

j , j = 1, . . . , nP . (4.2)

Thus, to sum up what we have said so far, we seek to minimize the sum
∑

wj

∣

∣

∣

∣ǫ0j
∣

∣

∣

∣

2

of squared distances between the points s1
j and Mp1

j by varying M.

1If we regard a rotation about an axis through the origin of the frame of reference.

4.2 Several different approaches 49

How do we know what the points s1
j and p1

j are? Often in point cloud
registration algorithms, the points which we seek to align are referred to
as corresponding points. Hence, point correspondences are something that
needs to be calculated in the initial stages of most registration algorithms.
A nice way to think of the point s1

j corresponding to p1
j is as the output of

a function
Γ : P → S,

applied to each p1
j . We have already described an easy way of finding the

output of Γ in section 2.3.3; there the corresponding points were simply
picked out manually using The Polygon Editing Tool. In chapter 8 we will
see an example of how corresponding points can be found by applying a
more complex routine.

4.1.1 Calling off the search

We want to find the minimum over M in the transformation applied to each
p1

j . Our complete registration problem can thus be expressed as

min
M

nP
∑

j=1

wj

∣

∣

∣

∣

∣

∣
Γ(p1

j) − Mp1
j

∣

∣

∣

∣

∣

∣

2
. (4.3)

The point Γ(p1
j) in S corresponding to p1

j is found using a suitable method.
According to [19], the Euclidean norm is the most commonly used measure
of the deviation error in registration problems.

A note should be taken at this point as we have stated the expression
for point cloud data. If the point clouds come from a scan, the points are
not a random collection, they are collected off an underlying surface. In
this case, as pointed out by [33], a point-to-plane error metric is more suit-
able as it is shown to converge much faster. However, when the two data
sets are far apart, the point-to-plane error metric fails to converge and the
point-to-point metric is preferred. As the point-to-point error metric works
reasonably well in both cases, that is the one we have used in our formula-
tion.

The effect of registration can be seen in figure 4.1 on the following page.
The left picture shows several scans prior to registration while the picture
to the right displays the same scans after they have been registered in the
Polygon Editing Tool as described in section 2.3. The points from each scan
have been connected by line segments to generate a mesh and then the
surface is shaded to enhance the visibility.

4.2 Several different approaches

The optimal transformation parameters can be found from both graphical
and numerical procedures. These are iterative in nature [26]. That is, an

50 The Non-Elastic Registration Problem

registration→

Figure 4.1: The figure to the left displays several scans as they appear in
the Polygon Editing Tool immediately after scanning. The figure to the
right displays the same scans after they have been subjects to both an initial
manual pairwise registration and fine automatic registration.

approximate solution is given as input and then the procedures refine the
approximation, step by step.

Registration methods are also often categorized as being either feature
based or area based [45]. Feature based registration implies finding a subset
of “characteristic” points, referred to as “features”, in one image, and trying
to track down for each of the features, the same type of points in another
image. The transformation which is sought after is then found as the one
which aligns the features. We will review a feature based method in chapter
8.

Area based registration implies alignment of shapes by some structural
analysis. As an example, the method of chapter 7 performs registration by
minimizing the distance between a point cloud and the surface from which
the point cloud is sampled.

In [19], numerical registration methods are classified according to how
they compute the transformation parameters: Some methods exploit the
fact that there are only a finite number of parameters which have to be set,
in order to define the optimal alignment. Such methods search exhaus-
tively for these parameters and consequently they are classified as “search
based” methods. We will review an example of a search based method
in chapter 6. Otherwise, registration methods often compute the transfor-
mation parameters using a least squares approach and these methods are
sometimes referred to as “direct” methods [45].

There have also been stated closed form solutions to the least squares
problem of recovering the transformation between two distinct coordinate
systems. One of these constitutes a natural follow-up of our discussion
above, and we will therefore take a closer look at it in the following chapter.

Part III

Registration Methods

51

Chapter 5

A Closed-form Solution

To be able to retrieve a closed form solution of the non-elastic registration
problem, we need to specify the transformation model: We seek the trans-
lation T, rotation R and uniform scaling S so that the sum

nP
∑

j=1

wj

∣

∣

∣

∣

∣

∣Γ(p1
j) − TSRp1

j

∣

∣

∣

∣

∣

∣

2
(5.1)

is minimized, by varying S, R and T. Thus, we allow for translation, uni-
form scaling and rotation.

According to [40], several closed form solutions of this problem exist; at
least four use unit quaternions, three use the singular value decomposition,
one makes use of the Polar decomposition and yet another utilizes dual
quaternions. It is noted that the solutions are all mathematically identical.
A study [32] of the accuracy of the solutions concludes that the difference
in accuracy between the methods is insignificant compared to machine pre-
cision [40].

5.1 Preparations

Guided by the results of [26] which offers one of the four solutions using
unit quaternions, we are going to see how a closed form solution of (5.1)
above can be retrieved. The nature of a closed form solution implies that
we must know a priori what the corresponding points are. Thus the work
of a function Γ must have been done in advance, and we can assume that
the point sets are ordered such that p1

1 is to be aligned with s1
1, p1

2 with s1
2

and so on. We can therefore reformulate (5.1) slightly, as

min
R,T,S

nP
∑

j=1

wj

∣

∣

∣

∣

∣

∣
s1
j − TSRp1

j

∣

∣

∣

∣

∣

∣

2
.

53

54 A Closed-form Solution

It will prove useful to regard the quaternion representation of the rotation
R (see section 3.5.1 on page 41).

For further computations we need the centroids c1
P and c1

S of the two
point sets. As we recall, these are just the means of the two point sets.
Since we have utilized weights, we need the weighted centroids,

ċ1
P =

∑nP

i=1 wip
1
i

∑nP

i=1 wi
and ċ1

S =

∑nS

i=1 wis
1
i

∑nS

i=1 wi
.

We now choose to move the origin in both sets to the weighted centroids of
the sets:

p0
i = p1

i − ċ1
P , i = 1, ..., nP

and

s0
i = s1

i − ċ1
S , i = 1, ..., nS .

This translation requires a reconsideration of the residual error (4.2),

ǫ0i = s1
i − TSRp1

i , i = 1, . . . , nP .

According to [26], the residuals can now be rewritten as

ǫi (R, T, S) =
(

s0
i − TSRp0

i

)

+
(

ċ1
S − SRċ1

P

)

=
(

s0
i − SRp0

i

)

+
(

ċ1
S − TSRċ1

P

)

=
(

s0
i − SRp0

i

)

−
(

TSRċ1
P − ċ1

S

)

.

We note that the index i runs from 1 to nP = nS = n. Using the usual
Euclidean norm ||·||2, the expression 5.1 on the preceding page becomes

min
R,T,S

n
∑

i=1

wi ||ǫi (R, T, S)||22 .

5.2 Determining the translation

We will first reveal what the translation must be. To simplify the expansion
of the last expression, we set v0

i = s0
i − SRp0

i and u0 = TSRċ1
P − ċ1

S . From

5.2 Determining the translation 55

this we get

n
∑

i=1

wi ||ǫi(R, T, S)||22 =
n

∑

i=1

wi

∣

∣

∣

∣v0
i − u0

∣

∣

∣

∣

2

2

=
n

∑

i=1

wi(v
0
i − u0) · (v0

i − u0)

=
n

∑

i=1

wi

(

v0
i · v0

i − 2v0
i · u0 + u0 · u0

)

=

n
∑

i=1

wi

∣

∣

∣

∣v0
i

∣

∣

∣

∣

2

2
− 2

n
∑

i=1

wiv
0
i · u0 +

n
∑

i=1

wi

∣

∣

∣

∣u0
∣

∣

∣

∣

=
n

∑

i=1

wi

∣

∣

∣

∣v0
i

∣

∣

∣

∣

2

2
− 2u0 ·

n
∑

i=1

wiv
0
i +

∣

∣

∣

∣u0
∣

∣

∣

∣

2

2

n
∑

i=1

wi.

If we substitute back again, we see that what we must minimize is

n
∑

i=1

wi

∣

∣

∣

∣s0
i − SRp0

i

∣

∣

∣

∣

2

2
−2(TSRċ1

P−ċ1
S)·

n
∑

i=1

wi(s
0
i−SRp0

i)+
∣

∣

∣

∣TSRċ1
P − ċ1

S

∣

∣

∣

∣

2

2

n
∑

i=1

wi.

Since the s0
i ’s are related to the centroid ċ1

S they sum up to zero;

n
∑

i=1

wis
0
i =

n
∑

i=1

wi(s
1
i − ċ1

S)

=
n

∑

i=1

wis
1
i −

n
∑

i=1

wi

(∑nS

i=1 wis
1
i

∑nS

i=1 wi

)

=
n

∑

i=1

wis
1
i −

n
∑

i=1

wis
1
i

= 0.

This also holds for the scaled and rotated p0
i ’s so the whole sum in the

middle is zero. Further, both of the remaining terms are nonnegative. And
as we in general do not have a perfect match, we can not require that the
first term be zero. We also observe that the first term does not depend on
the translation T. Hence we can minimize the total error by setting

TSRċ1
P − ċ1

S = 0,

and at the same time we reveal what the translation must be: The difference
of the weighted centroid of S and the rotated and scaled, weighted centroid
of P . This becomes more clear if we rearrange the terms,

ċ1
S = TSRċ1

P .

56 A Closed-form Solution

5.3 Determining the uniform scale

It remains to determine the scale and rotation, and from the discussion
above, our formulation of the problem can now be reduced to

min
n

∑

i=1

wi

∣

∣

∣

∣s0
i − SRp0

i

∣

∣

∣

∣

2

2
.

This expression is in accordance with the one of Horn’s [26]. Again, if the
error term is expanded we get

n
∑

i=1

wi

∣

∣

∣

∣s0
i − SRp0

i

∣

∣

∣

∣

2

2
=

n
∑

i=1

wi

∣

∣

∣

∣s0
i

∣

∣

∣

∣

2

2
− 2

n
∑

i=1

wis
0
i · SRp0

i +
n

∑

i=1

wi

∣

∣

∣

∣SRp0
i

∣

∣

∣

∣

2

2

=
n

∑

i=1

wi

∣

∣

∣

∣s0
i

∣

∣

∣

∣

2

2
− 2s

n
∑

i=1

wis
0
i · Rp0

i +
n

∑

i=1

wi

∣

∣

∣

∣Sp0
i

∣

∣

∣

∣

2

2

=
n

∑

i=1

wi

∣

∣

∣

∣s0
i

∣

∣

∣

∣

2

2
− 2s

n
∑

i=1

wis
0
i · Rp0

i +
n

∑

i=1

wi(sp0
i) · (sp0

i)

=
n

∑

i=1

wi

∣

∣

∣

∣s0
i

∣

∣

∣

∣

2

2
− 2s

n
∑

i=1

wis
0
i · Rp0

i + s2
n

∑

i=1

wi

∣

∣

∣

∣p0
i

∣

∣

∣

∣

2

(5.2)
since the scale is uniform, i.e.

S =









s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1









, s ∈ R

and since R is orthogonal, thus keeping the 2-norm of a vector unchanged.
The expression (5.2) which we want to minimize is easier handled if we

make use of the fact that the three sums are scalars, and thus denote them
as such, say a, b and c, respectively. Using a slightly different approach
than [26], we must find the minimum of

a − 2sb + s2c,

which can be regarded as a function Θ depending on s. The minimum is
found by solving the equation

∂

∂s
Θ(s) = 2sc − 2b = 0.

Thus the function Θ finds its minimum when

s =
b

c
,

5.4 Determining the rotation 57

that is, when

s =

∑n
i=1 wis

0
i · Rp0

i
∑n

i=1 wi

∣

∣

∣

∣p0
i

∣

∣

∣

∣

2 .

We note that we need to know the rotation, in order to compute the scale.

5.4 Determining the rotation

For determining the rotation, consider again the total error (5.2). This is
minimized if the sum in the middle is as large as possible since that sum is
subtracted from the rest of the expression, which are all positive terms. In
other words, the rotation must be chosen so that it maximizes

n
∑

i=1

wis
0
i · Rp0

i .

We said earlier that the rotation R is easier handled if we regard its
quaternion representation. Having a quaternion representing the rotation
comes in handy as quaternion representation has several advantages, see
section 3.5.1. Recall that we can represent the complete rotation of a point
pi in terms of a unit quaternion q̂u and that the rotational operator reads
q̂up̂pi

q̂∗
u, where p̂pi

= [0, px,i, py,i, pz,i] is the pure quaternion representing

pi = [px,i, py,i, pz,i].

Now we let q̂u represent the rotation of our vector p0
i , and let p̂pi

be its

pure quaternion representation. Also we obtain a pure quaternion repre-
sentation p̂si

of si = [sx,i, sy,i, sz,i], i.e. p̂si
= [0, sx,i, sy,i, sz,i]. From this we

see that we must maximize

n
∑

i=1

wi

(

q̂up̂pi
q̂∗

u

)

· p̂si
.

To be able to deal with this last expression, Horn [26] rewrites it:

n
∑

i=1

wi

(

q̂up̂pi

)

·
(

p̂si
q̂u

)

. (5.3)

For this, the following useful result is utilized: Given three arbitrary quater-
nions p̂, q̂ and r̂, the identity

(p̂q̂) · r̂ = p̂ · (r̂q̂∗)

is always valid. If we set p̂ = q̂up̂pi
, q̂ = q̂∗

u and r̂ = p̂si
we see that the

result follows.

58 A Closed-form Solution

Using (3.2) and (3.3), we can again rewrite (5.3) through a sequence of
steps. We first set

q̂up̂pi
=









0 −px,i −py,i −pz,i

px,i 0 pz,i −py,i

py,i −pz,i 0 px,i

pz,i py,i −px,i 0









q̂T
u

= q̂u









0 px,i py,i pz,i

−px,i 0 −pz,i py,i

−py,i pz,i 0 −px,i

−pz,i −py,i px,i 0









= q̂uPi

and then

p̂si
q̂u =









0 −sx,i −sy,i −sz,i

sx,i 0 −sz,i sy,i

sy,i sz,i 0 −sx,i

sz,i −sy,i sx,i 0









q̂T
u

= Siq̂
T
u .

This gives us the expression

n
∑

i=1

wi

(

q̂uPiSiq̂
T
u

)

which can be written even more compactly as

q̂u

(

n
∑

i=1

Ni

)

q̂T
u ,

where the columns one to four of Ni read

wi









px,isx,i + py,isy,i + pz,isz,i

py,isz,i − pz,isy,i

pz,isx,i − px,isz,i

px,isy,i − py,isx,i









,

wi









py,isz,i − pz,isy,i

px,isx,i − py,isy,i − pz,isz,i

px,isy,i + py,isx,i

pz,isx,i + px,isz,i









,

5.5 Summary 59

wi









pz,isx,i − px,isz,i

px,isy,i + py,isz,i

−px,isx,i + py,isy,i − pz,isz,i

py,isz,i + pz,isy,i









and

wi









px,isy,i − py,isx,i

pz,isx,i + px,isz,i

py,isz,i + pz,isy,i

−px,isx,i + py,isy,i − pz,isz,i









,

respectively. The sum of matrices (
∑n

i=1 Ni) we denote N. We thus have to
maximize the quadratic form

q̂uNq̂T
u ,

where N is a symmetric 4× 4 matrix, and q̂u is a four vector of unit length.
A result [30] from the theory of constrained optimization tells us that

the maximum value λm of the quadratic form

q̂uNq̂T
u

for q̂T
u q̂u = 1 is also the greatest eigenvalue of N. Thus the value λm occurs

when q̂u is a unit eigenvector of N corresponding to the eigenvalue λm.
So the quaternion we seek, and thus the rotation, is the unit eigenvector
corresponding to the greatest eigenvalue of N.

Computing the eigenvalues of N, and the corresponding eigenvectors
should be done by using appropriate numerical tools like MATLAB. If we
insisted on doing this computation by hand we would first have to find
the roots of the characteristic polynomial πN, which corresponds to solving
a fourth-order polynomial since N is 4 × 4. For this purpose, there are
formulas. Then we would have to solve a linear set of equations on the
form [N − λmI]x = 0, where x is the (unknown) eigenvector corresponding
to the largest eigenvalue of N and I is the 4 × 4 identity matrix.

5.5 Summary

We have settled a closed form solution to the pose estimation problem, but
with the help of computers we often employ an iterative scheme instead in
the search for the transformation parameters. Hence, in the following three
chapters we will review three iterative algorithms.

60 A Closed-form Solution

Chapter 6

An Exhaustive Method

We will now concentrate on numerical methods for solving the rigid reg-
istration problem, i.e. the matrix M can be decomposed into a translation
T and a rotation R. Numerical methods finds the six unknown parameters
that determine the rigid body transformation in an iterative scheme. This
way, the final solution is the result of refining several temporary solutions.
This is the usual practice when one tries to solve the registration problem.
However, the methods we present, differ somewhat in their construction;
while some apply an exhaustive search for the six unknown parameters,
others search for optimal point correspondences before they try to recover
the transformation parameters.

In this chapter we will go through a method for registration of a spe-
cial kind of curves, called crest lines. A rough, though somewhat intuitive
description of a crest line, states that it is a characteristic curve on the most
noticeable areas of a surface, such as borders of holes. A less intuitive but
more precise definition is given in [23]. The authors define a crest line as
“locations on a surface where the maximum surface principal curvature,
in absolute value, reaches a local maximum in the principal direction of
maximum curvature”.

The method utilizes a technique referred to as geometric hashing which
implies a brute force approach to the registration problem. We will review
the ideas behind geometric hashing in the next section. We often character-
ize methods which search exhaustively for the few six unknown parame-
ters as voting methods [19].

6.1 Geometric hashing

We will study the registration method of [23] which is based on the ideas of
geometric hashing. The method specifically registers crest lines from CT1

1Computed Tomography is a medical imaging technique; it is a way of developing a 3D
image of the inside of an object (often a part of a human body), from a series of 2D X-ray

61

62 An Exhaustive Method

scans.
The registration is rigid and analogous to a point cloud setting. How-

ever, the sets P and S introduced in chapter 4 should now be thought of
as collections of crest lines in a CT image (of a vertebra), rather than collec-
tions of points. Given a crest line in P , we seek the crest line in S which
shares the largest number of points with the crest line in P after a rigid
transformation has been applied.

Geometric hashing, reviewed in [46], is a technique for recognizing ob-
jects: Though not trivial for a computer, it is possible to recognize an object
when encountered in a “scene”, if a sample of this object has been previ-
ously stored in a database. Hashing is based on the indexing approach and
can be recognized as a two step process:

1. The first step is a preprocessing step where information about “mod-
els” is stored in a hash table data structure: In our setting, the crest
lines in S make up the models. We will store the sample points on
each crest line in S in a hash table, based on a set of parameters spe-
cific to each point.

2. The second step is the stage of recognition: We compute a set of pa-
rameters for each of the sample points at all the crest lines in P , as we
did for the sample points in S. For each point we use its parameters
as an index into the previously stored hash table. If a point from S
is encountered, we compute and store a rigid transformation. Each
computed transformation receives a vote.

The transformation that is ultimately applied to a crest line in P will be re-
covered after counting the number of votes for the stored transformations.
We pick the transformation with the most votes.

We have now settled what it is we want to register and what we want
to achieve with the registration. We have also sketched out the structure of
the registration algorithm and it is time to dive into the details. Before we
do that we advise the reader to go back and reread section 3.7 on page 42
since the terms from that section will be used repeatedly throughout the
rest of this chapter.

6.1.1 Preprocessing

First of all, extracting crest lines can be difficult and for proper registra-
tion we need to compute differentiable features of higher-order, such as
torsion. Thus, we approximate the crest lines, which can be noisy and
not suited for the aforementioned computations, with smooth continuous
spline-curves. This is treated thoroughly in [24]. In addition, the approxi-
mations are sampled and at each sample point we associate a Frénet frame,

images taken around a single axis of rotation [45].

6.1 Geometric hashing 63

see section 3.7 on page 42, and these frames are in essence what we align
when we compute the transformations.

In the preprocessing stage we go through all the crest lines in S succes-
sively. Our goal is to store them in such a way that when we are given a
crest line in P , we will be able to recognize its optimal match in S although
it has a different orientation. As stated, we will store the sample points on
each crest line in S based on a set of parameters that will not change under
rigid transformations. For each sample point, we compute a unique set of
parameters. A comparison of different invariant parameters is made in [24]
and the following three have shown to be stable2:

1. The angle α between the tangent vectors at two sampled points,

2. the translational offset t between the two tangent vectors at two sam-
pled points,

3. curvature of the curve.

In [23] five parameters are used in the registration experiments. The au-
thors take notice of the fact that the curves are extracted off a surface and
make use of the surface principal frame as well, see section 3.7 on page 42.
The Frénet frame and the surface principal frame should not be related as
is argued by [23], since some combinations of possible parameters are de-
pendent on each other. The five independent parameters mentioned in [23]
are: Curvature, curve torsion3(see [23] for an explicit expression of torsion),
geodesic torsion of the curve with respect to the surface, the angle between
the Frénet frame-normal and surface normal and the angle between the
Frénet frame tangent and the principal curvature direction e1.

We see that for the computation of α and t (see point one and two on
the previous page), we need to regard two points at a time. Or rather,
we regard two Frénet frames at a time. For this, we first select4 on each
curve a point referred to as a basis point. We will then compute the two
parameters α and t for each of the other points on the curve by comparing
their associated tangent vectors with the tangent vector at the basis point.
This procedure is repeated for every possible basis point on the curve, thus
resulting in storing each sample point, several times.

For each sampled point the parameters will serve as an index into a one-
dimensional hash table where the point will be stored. At the same location

2A parameter being stable has a special meaning in this setting: Say that the variance for
the parameter based on the parameter values at different points on a single curve is found
to be σ1. Further, we assume that the variance computed from the set of all corresponding
points on different curves is σ2. The parameter is then classified as stable if the ratio σ1

σ2

is
small.

3“The twisting of an object due to an applied torque, or moment of force”, [45].
4According to [23] selecting a basis point can be difficult - they suggest as a possibility

to use maxima of curvature.

64 An Exhaustive Method

in the hash table where the point is stored, we store additional information;
the basis point which was used to compute the point’s parameter values
and the “model” curve from which the point was sampled. We convert the
set of parameter values into a tuple of integer values and then the integers
are mapped5 to a single integer index.

6.1.2 Recognition

During the recognition stage we are given a curve in P and the set S of
“model” curves. We wish to match the curve from P with a curve in S
and to retrieve the rigid transformation between them. We vote for each
transformation we compute and eventually choose as the optimal transfor-
mation, the one with the most votes.

We first choose an arbitrary point on the curve in P as a basis point. For
all of the remaining points on the current curve, we can compute the same
parameters, three for each point, as we did in the preprocessing stage. We
then map the parameters to a single integer index as before and we use the
index to look up in the hash table. Each time we enter a cell in the hash
table where we have stored a point from a curve in S, we have a potential
match. We compute, store and cast a vote for the transformation between
them.

The rotational part R of the transformation between a pair of Frénet
frames at matching points p and s from curves in P and S, respectively, is
given by the matrix product

R = [t, n, b][̃t, ñ, b̃]T .

The vectors t̃, ñ and b̃ are the vectors of the Frénet frame at p. The vectors
t, n and b are the vectors of the Frénet frame at s.

The result follows from the fact that an arbitrary point up can be written

αt̃ + βñ + γb̃, α, β, γ ∈ R

in the Frénet frame at p. The coordinates of up relative to the Frénet frame

([α, β, γ]) can thus be computed as [̃t, ñ, b̃]T up (since the Frénet frame vec-
tors are orthonormal). We want the corresponding point of up in the Frénet
frame at s, say us, to have the same relative position as up in the Frénet
frame at p. In other words, we want

us = αt + βn + γb

or
us = [t, n, b][̃t, ñ, b̃]T up.

5By shifting bits in the binary representation of the integers and using the exclusive or
operator.

6.2 Analysis of time complexity 65

This implies that the rotation R that relates the two frames can be written
as

R = [t, n, b][̃t, ñ, b̃]T .

The translation t is computed as

t = s − Rp

given the coordinates of the points p and s in a common reference frame
[23].

A note should be taken from [23] regarding the computation of the
transformations. For this we pass on from [23], the notion of a six-dimen-
sional “accumulator” in which we store the transformations. The accumu-
lator will consist of cells into which the transformations are stored. Trans-
formations that define approximately the same motion will be stored in
neighbouring cells. Further, associated with each transformation there will
be an error interval. The idea is that if the error interval of a transformation
touches neighbouring cells, then we cast a vote to those cells (transforma-
tions) as well. (For a maximum of 26 additional votes).

The cells with a high number of votes, correspond to rigid transforma-
tions that will be refined for the purpose of computing a final transform.
For each cell with a high number of votes we retrieve the points from P
and S that hashed to this cell. Based on these matching points, we com-
pute the refined transformations. Finally we get the transformation we seek
by choosing the one out of the refined transformations which registers the
largest number of points.

6.2 Analysis of time complexity

For a complexity analysis of the algorithm, let

• n be the number of sampled points on a crest line approximation

• m be the number of models (curves in S)

• c represent the number of points needed to build a frame or basis; in
general, we need three non-collinear points to build a frame (three
orthonormal vectors), however, if we assume that there exist param-
eterizations of the curves in question then a (Frénet) frame can be
computed using only one point (cf. section 3.7 on page 42).

• h represent the complexity of processing a hash table bin

The preprocessing stage of geometric hashing is of order O(mnc+1), ac-
cording to the complexity analysis of [46]. If we assume that the curves in

66 An Exhaustive Method

question are parametrized, then c = 1 which means that the preprocessing
stage of the reviewed method has complexity O(mn2).

It is claimed in [23] that the recognition stage of their algorithm is worst
case O(mn2). That is, it runs in polynomial time. This should correspond
with the complexity analysis of [46] which says that the complexity of the
recognition phase in general, is O(hnc+1). Thus, in this context h is of order
O(m). In general, the factor h depends on the distribution of the indices; if
say, each point has its own hash table bin, then the access could be done in
constant time, O(1).

A commonly used registration algorithm known as the Iterative Clos-
est Point (ICP) algorithm (reviewed in chapter 7 on the next page) is men-
tioned here for comparison. As the name suggests, this procedure repeats
itself, say i times. Compared to its upper bound performance O(imn2), the
method of [23] performs well. Guéziec, Pennec and Ayache [23] also claim
that the recognition stage of their method has better lower bound perfor-
mance (O(n)) than the ICP algorithm (O(mn log n)).

6.3 Summary

Clearly, one of the advantages of an algorithm like this is that it is effi-
cient when one wants to perform registration of several views against a
database. The process does not depend on the size of the database which is
computed off-line and can be reused. However, the preprocessing stage is
rather costly — this holds in general for methods based on geometric hash-
ing. In fact, we claim that the expensive preprocessing makes methods like
this unsuited for registration of only two sets of 3D scanner data.

Chapter 7

An Area-based Method

We will continue our study of iterative procedures by looking at a method
which, depending on the application, can be far less expensive with regard
to execution time, than the previous one. This follows from the fact that it
classifies as a direct method; from the classification of registration methods
at the end of chapter 4, we deduce that the method computes the trans-
formation parameters in a least square sense. However, for the method to
come up with an optimal alignment, the initial displacement of the input
scans or data must be small. Thus, methods like the one we are about to
study, are suited for being included at the end of a registration method, to
trim the aligning.

7.1 A similar approach

Methods for pairwise registration most often use a form of, or even include,
the Iterative Closest Point algorithm1 (ICP) [8] to calculate the transforma-
tion needed to align the two geometric shapes [45]. The method of [33]
which we outline in this chapter has certain similarities with the ICP. The
ICP is therefore shown below.

According to its inventors, the ICP approximately registers a set of dig-
itized data representing a rigid object, with a precise idealized geometric
model (with known representation) of the same object. Also, it does so in
a finite number of iterations. The algorithm will converge towards a local
minimum of the sum of squared residuals, as has been proved in [8].

1The name Iterative Corresponding Points is suggested by [42].

67

68 An Area-based Method

The ICP Algorithm. Let a threshold value and two sets of geometric shapes P and S
with known representation be given as input. Also, assume that P ⊆ S. Decompose
P into a point set and denote this set by P0, set P ′ = P0.
do

1. for each point p1, p2, ..., pnP
in P ′, find nP

distinct points in S,

{s1,s2, . . . ,snP
}

such that si is the closest point in S to pi,
i=1,2,...,nP, and denote this set by S′.

2. determine a rigid transformation Ω between P0 and
S′.

3. apply the computed transformation to the points in
P0 and let P ′ := Ω(P0).

4. compute the error, e.g. as
∑

nP

i=1
||si − TRpi||2. Here TR

is the transformation matrix of Ω.

while error > threshold

We can see from the outline of the algorithm that when the computed
error falls below a preset threshold, the algorithm will terminate. The con-
vergence relies on the fact that the sequence of values representing the
(mean) squared error is non increasing and bounded below (by zero). If
the sequence at some stage was to increase, then the points S′ chosen at
that stage would not be closer to the points in P ′ than the points which
were chosen in the previous step of the algorithm. This will thus not be the
case since at each stage we choose only the closest points S′ to P ′.

7.2 A general outline

The registration method of Mitra et al. [33] which we are about to study
follow much the same line of thought as the ICP algorithm: They consider
the point cloud setting where the points in P and S are collected off a sur-
face. They assume in addition that P represents a subset of the data in S.
Through a number of iterations, they search for the best rigid transforma-
tion that aligns the two data sets.

We recognize this as the setting in chapter 4 and we may expect that the
problem will be similar to (4.3). However, Mitra et al. make use of the fact
that the points are not just some random samples; they try to minimize the
squared distance d(·, ·)2 between the points pi in P , and the (triangulated)
surface ΦS represented by the points in S. They will achieve this by apply-
ing a rigid transformation to the point set P . In other words, they try to

7.2 A general outline 69

minimize
nP
∑

j=1

d(TRpj , ΦS)2. (7.1)

Still, the matrix T represents translation and the matrix R represents rota-
tion. The squared distance function d(pj , ΦS)2 should be thought of as the
function which assigns to a point pj , the shortest distance from pj to ΦS ,
squared.

The point cloud P is put into the squared distance field of the surface ΦS

and by following a gradient descent search the points in P approach a posi-
tion corresponding to a local minimum of (7.1). The gradient descent search
is a local optimization procedure which approaches a local minimum of a
given function by taking steps proportional to the negative gradient of the
function evaluated at certain points.

We can try to visualize the effects that the gradient descent search has on
our point cloud setting: Think of the points in P as moving from their initial
position, taking equally (small) steps towards a final position, at which the
points are positioned so that equation (7.1) is minimized. In each interme-
diate position, we need to solve a linear system of equations to determine
the transformation parameters which brings us one step closer to a mini-
mum of (7.1).

7.2.1 Registration using approximants Aj

In addition to the parameters that define the rigid motion we also need to
define the distance metric d(·, ·). In earlier work different distance metrics
have been applied. It has been observed that a bad choice of distance metric
gives poor convergence. This holds in particular for methods that require
the input shapes to be close. If we look at the ICP algorithm, we may ar-
gue that it suggests a point to point distance metric. Registration methods
based on such metrics have more stable performance, but tend to provide
slower convergence when the point clouds are close.

Mitra et al. [33] address the issue of finding a good approximation to
the squared distance function between a point and a surface. From the dis-
cussion above we may see that a good approximant should imply fast (e.g.
quadratic) convergence when the point clouds are close and it should also
result in stable convergence when the point clouds are placed far apart. The
approximant provided by Mitra et al. is based on second order information
about the underlying surfaces from where the points are collected. It is also
valid locally in a neighbourhood around the point at which it is evaluated.
These are qualities which, according to the authors, ensure both stable and
fast convergence of the algorithm.

We will denote a local quadratic approximant by A which takes the

70 An Area-based Method

form
A(p1) = (p1)T Qp1, (7.2)

where p1 = [x, y, z, 1]T is a point in R
3 and Q is a 4 × 4 symmetric matrix

containing the (ten) coefficients of A. For each point pj we compute a cor-
responding local approximant. That is to say, the entries in Q depend on
pj . We indicate this by giving the index j to the matrix as well, Qj . Using

the approximation Aj(TRp1
j) =

(

TRp1
j

)T

Qj

(

TRp1
j

)

≈ d(TRpj , ΦS)2, the

function given in (7.1), which we want to minimize, now becomes

nP
∑

j=1

Aj .

7.2.2 More approximations

To determine the six unknown transformation parameters2 which make up
the rigid motion TR, we can set the partial derivatives of the sum (the error
function) above to zero. This gives us a non-linear system of equations. We
choose to approximate the rotation matrix R involved in the error function
to get a linear set of equations instead. That is, we use an approximation to
the product of the three rotation matrices Rx, Ry and Rz from section 3.4.1:

RzRyRx =









cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1

















cos β 0 sin β 0
0 1 0 0

− sin β 0 cos β 0
0 0 0 1

















1 0 0 0
0 cos α − sin α 0
0 sin α cos α 0
0 0 0 1









=









cos γ cos β − sin γ cos α + cos γ sin β sin α sin γ sin α + cos γ sin β cos α 0
sin γ cos β cos γ cos α + sin γ sin β sin α − cos γ sin α + sin γ sin β cos γ 0
− sin β cos β sin α cos β cos α 0

0 0 0 1









≈









1 −γ + βα γα + β 0
γ 1 + γβα −α + γβ 0
−β α 1 0
0 0 0 1









≈









1 −γ β 0
γ 1 −α 0
−β α 1 0
0 0 0 1









.

That is, we assume the angles are small so that cos α = cos β = cos γ ≈ 1,
sinα ≈ α, sinβ ≈ β and sin γ ≈ γ, and approximate the rotation RzRyRx

using the matrix








1 −γ β 0
γ 1 −α 0
−β α 1 0
0 0 0 1









.

This way we get the linear system of equations stated in [33].

2Three angles and three translational offsets.

7.3 Computing Aj ’s on demand 71

We see that the linearization is valid only for small rotational angles α, β
and γ. Thus we need to check whether or not the computed transformation
is a small step towards the local minimum. To check if the transformation
is sufficiently small, Mitra et al. suggest employing the Armijo rule3. Gen-
erally, the Armijo rule is a way of telling if, in an iterative search for a local
minimum of a function, we have a too large decrease in the function value
from one step to another.

If we detect that the computed transformation is too large, it is recom-
mended to take a fractional step. The fraction 1

n
is found via line search.

Typically, we start off with n = 1 and then decrease the fraction by multi-
plying it with a constant between 0 and 1. Mitra et al. suggests computing
a fractional rotation R′ by the methods of Alexa [4], and then compute the
fractional translation T′ as (R−I)−1(R′−I)T. Alexa suggests computing the

fractional step R′ as e
1

n
log R, but points out that his method is better suited

for general transformations (transformations including non-uniform scal-
ing). Alexa suggests employing Rodrigues’ formula when only rotations
and translations are involved. (We defer to chapter 9 for a discussion on
the matrix exponential and logarithm.)

If the Armijo condition is satisfied after applying a smaller transforma-
tion and in addition the computed sum is less than the given threshold
value, then we are done. On the other hand, if the sum is greater than the
threshold, we must repeat the procedure based on the points T′R′pj .

This completes the registration algorithm of Mitra et al. but we have
yet to describe the approximant to the squared distance function. (As we
recall, their concern was to develop a good approximant.) From its form
(7.2) we see that we must find the (ten) coefficients of Aj to uniquely de-
termine it and the authors have given two methods for finding them; an
“on-demand” method and a d2-tree method. We will study these methods
in the following sections.

7.3 Computing Aj ’s on demand

Before we start studying the “on-demand” method, we advise the reader to
go back and reread section 3.7 on page 42. We will go through the method
in brief — our focus will be on the d2-tree method which we have imple-
mented.

The on-demand method is based on computing the second order local
Taylor approximant of the squared distance function to a surface at a given
point in R

3. Finding the Taylor approximant turns out to be the biggest
challenge, but as soon as it is found it can be transformed to the global
coordinate system and play the role as our Aj .

3This is one of the two conditions that make up the Wolfe conditions common in the
field of optimization [45].

72 An Area-based Method

Given a point p with coordinates [xp, yp, zp] in the principal frame at its
normal footpoint, the Taylor approximant is found to be a weighted sum
of the three squared distance functions x2

p, y2
p and z2

p ; w1x
2
p +w2y

2
p + z2

p [41].
The three squared distance functions provide us with the squared distance
to the following entities at the normal footpoint of p:

• The principal plane containing the direction r1 of maximum curva-
ture,

• the principal plane containing the direction r2 of minimum curvature,

• the tangent plane.

Consequently, the on-demand method requires that we for every point
pj in P solve the following tasks:

1. Approximate the normal footpoint of pj with a point sj ∈ S.

2. Determine the principal frame r1,j , r2,j and nj at sj .

We also need to compute the principal radii of curvature r1 and r2 at sj —
the weights depend on them.

To approximate the normal footpoint of pj we build a nearest neighbour
structure for S. Arya et al. [6] show how this can be done with the help of
a balanced box decomposition tree data structure. This way, neighbour
queries boil down to a point location in the tree, followed by traversing
certain leaf cells.

Next, we find the principal frame at the normal footprint sj of pj . The
principal frame consists of the normal nj and the directions r1,j , r2,j of the
principal radii of curvature. For this we must first sample a set of k points,
{

[xi, yi, zi]
T
}k

i=1
, which are neighbours of sj . When ΦS is represented by

a triangulation, the neighbours of sj are found as the direct neighbours,
neighbours of the direct neighbours and so on. We will soon return to the
issue of how to estimate the number k.

Finding the normal can then be done in several ways. One way is to fit
a plane using sj and its closest neighbours and to compute the normal to
this plane. In [34] they fit such a plane in a total least square4 sense. The
sum of squares to be minimized depends on a quantity that turns out to be
an eigenvalue of the matrix C,

C =
k

∑

i=1









xi

yi

zi



 [xi, yi, zi] −





x
y
z



 [x, y, z]



 .

4According to Wikipedia [45], this an optimization technique which assumes that both
the observed values and the predicted values contain noise. This implies that the solution
to the usual least square problem Ax ≈ b, min ||Ax − b||2, is no longer the best possible
solution.

7.3 Computing Aj ’s on demand 73

Here, [x, y, z]T is the mean of the points
{

[xi, yi, zi]
T
}k

i=1
. To minimize the

sum of squares we need to compute the smallest eigenvalue of C. More-
over, the normal nj we seek5 is the eigenvector corresponding to the small-
est eigenvalue. We need at least as many neighbours k as the number of
unknown coefficients (four) in the plane equation.

The procedure [10, 34] for computing the directions r1,j , r2,j is based on
the truncated, second degree Taylor approximation T (x, y) of the surface
ΦS near sj . We express the surface near sj as a bivariate function f(x, y) =
T (x, y) + remainder, where T (x, y) is on the form T (x, y) = ax2 + bxy +
cy2 + dx + ey + f . Cazals et al. [10] show how to find the six coefficients a
through f from an ordinary least square fit,

k
∑

i=1

(T (xi, yi) − f(xi, yi))
2 , i = 1, . . . , k.

For this we again use the neighbouring points {[xi, yi, zi]}k
i=1 of sj , k > 5.

It is shown in [10] how the directions r1,j and r2,j of the principal radii
of curvature can be found from the coefficients of T (x, y): The vectors are
the eigenvectors of the matrix6 W,

W =
1

1 + d2 + e2 + d2e2 − de





de b
w
− (1 + e2)2a

w
de2c

w
− (1 + e2) b

w

de2a
w

− (1 + d2) b
w

de b
w
− (1 + d2)2c

w



 .

Here, the scalar w =
√

1 + d2 + e2.
In fact, we find the rest of the quantities we seek from the coefficients a

through e of T (x, y). The principal radii of curvature r1, r2 are computed
as

1

H +
√

H2 + K
and

1

H −
√

H2 + K
,

respectively, using the Gaussian curvature7 K and mean curvature H [33].
The curvatures H and K can in turn be computed from the coefficients a
through e as

K =
4ac − b2

(1 + d2 + e2)2
,

H =
a(1 + e2) − bde + c(1 + d2)

(1 + d2 + e2)2
.

While the reason for determining the principal frame at sj was to come
up with the coordinates [xp, yp, zp], the principal radii of curvature r1, r2 are

5For this approximation to be good, we must assume that the curvature around sj is
small and bounded [34].

6The matrix is the so-called Weingarten map of T (x, y).
7Although we have decided to use uppercase letters to denote sets, we follow conven-

tion in this case and denote the Gaussian and mean curvature by K and H , respectively.

74 An Area-based Method

needed to compute the weights:

wj =

{

l
l−rj

if l < 0, j = 1, 2

0 otherwise

The scalar l is the signed distance from pj to sj . The idea behind using
these weights, is to maintain a non-negative approximant. For instance, if
the signed distance is negative we see that the fraction l

l−rj
will be positive.

Mitra et al. transform the local approximant w1x
2
p + w2y

2
p + z2

p to the
global coordinate system such that it reads

w1(r1,j · (pj − sj))
2 + w2(r2,j · (pj − sj))

2 + (nj · (pj − sj))
2.

This expression is another way of writing A(pj). Hence the coefficients,
i.e. the entries of Qj , are given by expanding the expression.

7.4 Computing Aj ’s using the d
2-tree

The d2-tree method for finding the ten coefficients defining the Aj ’s is based
on an octree data structure. The octree data structure is as the name sug-
gests a tree data structure which partitions a three dimensional space re-
cursively by dividing it into eights cubes. Thus, interior to each cube there
will be a certain number of smaller cubes.

We will store in each cube Ci the squared distance d2
i from its lower left

corner point (xi, yi, zi) to the triangulation. Moreover, each cube will con-
tain a collection of such lower left corner points with an associated square
distance value. For each cube we will fit a quadratic trivariate function in
a least square sense using the datapoints (xi, yi, zi, d

2
i). The quadratic func-

tion is one of our approximants, say Ai.

Points pj from P are located somewhere inside a cube Cj in the d2-tree
and we can use the approximant Aj stored in Cj to get the approximated
squared distance value, i.e. Aj(pj). Consider next the details of this proce-
dure.

First we settle some notation by reviewing the initial stages of the al-
gorithm: We start off by enclosing the triangulated surface ΦS in a cube so
that we include the space where the point cloud P lies. This cube is referred
to as the root cube of the d2-tree. The root cube is then partitioned into eight
equally sized cubes; we will refer to this process as subdivision. Further, we
will refer to the cube which has been subdivided as a parent. Consequently,
we will refer to the eight sub-cubes (inside the parent) as children. These
two “generations” also represent the first two levels of our octree; level zero
(l0) and level one (l1), respectively. At this point, we say that l1 is the finest
level of the octree.

7.4 Computing Aj ’s using the d2-tree 75

As stated, we first make a parent out of the root cube. Then we make a
parent out of each of the children of the root cube. This gives us 73 cubes;
the root cube, its eight children and its 64 grandchildren. The subdividing
pattern then continues in the following way: We run through a list of the
triangles of the triangulated surface, and for each of them we go through
the 64 grandchildren of the root cube. Each time we detect that a triangle
intersects one of these cubes, we subdivide the cube (if it is not a parent
already) and also we subdivide each of its children. We must then traverse
the cube’s grandchildren and check for intersection between them and the
current triangle. As before, if the triangle hits anyone of them, then they
are also made grandparents if they are not already. We continue this way
until we reach the finest level.

The number of levels m + 1 should be chosen such that the size of the
cubes at this level “meets the precision requirements of the application”.
It is not stated what exactly those requirements are, but smaller cubes are
said to result in higher accuracy of the final fit. The parameter m is given
as input to the algorithm and, as we may have noticed8, it must be an even
number (greater than three). The final cluster of cubes makes up our octree.

The next step is to go through the cubes at level l2, l4, . . . , lm−2, and
subdivide all of those which are neighbours of grandparents. As before,
we subdivide a cube into its eight children and 64 grandchildren. Several
neighbourhood definitions can be used, the most intuitive may be the one
ring of direct neighbours. Generally, every cube has 26 direct neighbours;
six face neighbours, eight vertex neighbours and twelve edge neighbours.

The reason for the extensive use of subdivision is to produce a large
number of cubes at the same level. At the same time we obtain a cluster of
small cubes close to the triangulated surface ΦS . These are both desirable
effects in the next step were we apply the sweeping method of Zhao [47]:
For the cubes at level lm that are closest to ΦS , we will compute the exact
(squared) distance from their lower left corner point to ΦS . This informa-
tion will then be extended outwards to the remaining cubes of the octree
through Zhao’s sweeping method.

The Aj ’s can be found through least square fits of the distance values.
Ultimately we will compute and store in all cubes, approximations to the
squared distance function based on the (squared) distance values found in
their children. If there are not enough points (or no points at all) within a
cube to compute a robust approximation, we store in this cube the approxi-
mant of its parent.

Zhao’s sweeping method solves the so-called Eikonal equation

|∇u(x)| = f(x), x ∈ R
n (7.3)

8We always subdivide twice starting at l2. According to [31], it is an advantage to have
a large number of cubes since we will be applying a sweeping method later on.

76 An Area-based Method

with corresponding boundary conditions, numerically, on a rectangular
grid. In particular, the distance function d(·) satisfies the Eikonal equation

|∇d(x)| = 1,

with the boundary condition d(x) = 0 (when x ∈ ΦS).

As is the usual practice, the partial differential equation above is dis-
cretized at interior grid points (according to the Godunov upwind differ-
ence scheme). That is, we compute a numerical solution u at each grid point
(lower left corner point at a given level) and use this as an approximation
to the exact solution. In our case, the solution u represents the distance to
the triangulated surface for a given grid point. This value is updated only
if the value that we try to assign is less than the already stored value.

Each grid point has a maximum of six neighbours, and at each neigh-
bour we have stored a corresponding distance value. Initially, if the grid
point is at the boundary, then the distance value at this grid point is com-
puted exactly (For efficiency, these computations should be done during
the subdivision stage.). If it is not, then we store a large positive value —
this value will be updated later on.

In figure 7.1 on the next page, there are six grid neighbours next to the
grid point at the question mark. Moreover, at each of the six neighbours we
have stored a distance value, ux,1, ux,2, uy,1uy,2, uz,1 and uz,2, respectively.
If we set

ux,min = min(ux,1, ux,2),

uy,min = min(uy,1, uy,2),

uz,min = min(uz,1, uz,2)

then the difference scheme at the grid point next to the question mark reads

(u − ux,min)2+ + (u − uy,min)2+ + (u − uz,min)2+ = h2, (7.4)

where h is the grid size and

s+ =

{

0 if s ≤ 0
s otherwise

, s ∈ R.

Thus, the value u which we are after, i.e. the distance to the triangulated
surface at the given grid point, can be found by solving equation (7.4)
above.

Assume that ux,min ≤ uy,min ≤ uz,min, then Zhao provides an easy
way of finding u: First, solve (u − ux,min)2 = h2. From this we get that
u = h + ux,min. If u ≤ uy,min, then we are done. Otherwise, if u > uy,min

then we solve

(u − ux,min)2 + (u − uy,min)2 = h2

7.4 Computing Aj ’s using the d2-tree 77

Figure 7.1: We see a selection of grid points, the one next to the question
mark has six grid neighbours. At each of the grid neighbours we have
stored a value u representing the distance from the grid point to the trian-
gulated surface. We use these six values in the computation of the solution
at the grid point next to the question mark. The scalar h is the grid size
(which equals the length of the sides of the cubes whose lower left corner
points make up the grid grid).

with respect to u and keep the solution if u ≤ uz,min. Otherwise, if u >
uz,min then we solve

(u − ux,min)2 + (u − uy,min)2 + (u − uz,min)2 = h2.

However, the value for u found above is most likely not the distance
we are after. We must sweep the domain eight times and thus we need to
solve the equation above, eight times for each interior grid point. Accord-
ing to Zhao, 2n sweeping directions in n-space is sufficient for a solution as
accurate as the one we would obtain if we let the iteration converge. That
is, in 3-space we have eight sweep directions and therefore we sweep eight
times.

The eight directions correspond to eight ways of traversing a set of
three-tuples (the coordinates of the grid points). The directions, or how
we sort the cubes, are best explained graphically, see figure 7.2. Let the
lower left corner points of the cubes in the figure be our current grid. We
would then sort and traverse the points according to the following eight
lists containing the numbers of the cubes to which the points belong,

• 1, 2, 3, 4, 5, 6, 7, 8

• 2, 1, 4, 3, 6, 5, 8, 7

• 3, 4, 1, 2, 7, 8, 5, 6

• 4, 3, 2, 1, 8, 7, 6, 5

78 An Area-based Method

Figure 7.2: We see a small cluster of cubes.

• 5, 6, 7, 8, 1, 2, 3, 4

• 6, 5, 8, 7, 2, 1, 4, 3

• 7, 8, 5, 6, 3, 4, 1, 2

• 8, 7, 6, 5, 4, 3, 2, 1

Let us see how this method applies to our grids: When we have com-
puted exact distances for the lower left corner points of the cubes at the
finest level which intersect the triangulation, it makes sense to apply the
sweeping method of Zhao to this grid. Now we will be able to update the
large positive values stored at the remaining grid points.

Since the cubes are stored in an octree, sweeping within the different
levels can become rather slow. Hence, at each level we sort the grid points
in the eight sweeping directions before we sweep. We note that we only
need four lists to be able to traverse the grid points in the eight directions:
A list representing an ordering of the points, say 8, 7, 6, 5, 4, 3, 2, 1, can be
traversed backwards to yield the direction 1, 2, 3, 4, 5, 6, 7, 8.

When the sweeping method has been applied to the cubes at the finest
level lm, it is applied to the cubes at level lm−2, lm−4 and so on up to level
l2. At level lm−2, some of the cubes may have grandchildren and hence
their lower left corner point is also present at level lm. Thus the value of
the distance from their lower left corner point to the triangulated surface is
already computed. This means that we have already initialized a subset of

7.5 Summary 79

the grid points at level lm−2 and we can apply the sweeping method to the
corresponding grid. We continue this way up to level l2.

When the lower left corner point of all cubes at even levels have been
equipped with a distance value, we will be able to compute the quadratic
functions Aj . (However, we first need to square all the stored values.) We
have given the form of Aj above, but it will prove useful for later analysis
to rewrite it as

xT
j Ajxj + bT

j xj + k. (7.5)

We start with the root cube, and try to compute a least square fit of all
the squared distance values stored at the lower left corner points within the
cube. Since there may be many points within this cube, we do not expect an
adequate function to be found right away. If the approximant we compute
does not satisfy the precision requirement of the application, we repeat the
procedure for the root cube’s eight children. That is, we compute eight new
approximants Aj based on the points within each of the children of the root
cube. We continue to traverse down the tree in this way, till we end up with
an adequate approximant or till the least square fit fails.

There are some notes that should be taken regarding the last step of the
algorithm: We can speed up the computation of the approximant which we
try to store in the root cube by only including the points on level two, in the
least square fit. Also, as only non-negative approximants are useful in our
setting, we need to replace any negative eigenvalue of the matrix A in (7.5)
by zero: If D is the eigenvalue matrix of A and V its eigenvector matrix,
then we have

AV = VD.

If, say

D =





λ1 0 0
0 λ2 0
0 0 λ3





and λ2 < 0, we simply replace λ2 in D by 0 and define

A = VDV−1.

During registration, we find the approximants we seek by locating the
cube which surrounds a given point pj and extract the coefficients of the
approximant stored in the cube.

7.5 Summary

We have seen in this chapter how we can align two sets of geometric data
in an iterative scheme; without regard to which points are corresponding,
we try to reduce the distance between the shapes taking small steps in the

80 An Area-based Method

direction of the negative gradient of some error function. In the following
chapter we will study the third and final solution which instead tries to find
and align corresponding points. Thereby it is not as sensitive to the initial
positions of the input shapes as the method we have just studied. In fact,
the method can be applied regardless of what orientation the input shapes
may have.

Chapter 8

A Feature-based Approach

Last in our study of registration methods, we will examine a method which
like voting methods, makes no assumptions about the relative initial posi-
tions of the input scans. However like most local methods, it tries to solve
the problem of finding corresponding points in the input shapes prior to
the registration. The method was introduced in [19].

The problem formulation is almost identical to the initial formulation
of the registration problem from chapter 4. There it was stated that regis-
tration of two sets of point cloud data

P =
{

p1
j

}nP

j=1
and S =

{

Γ(p1
j)

}

is equivalent to minimizing the sum

nP
∑

j=1

wj

∣

∣

∣

∣

∣

∣Γ(p1
j) − Mp1

j

∣

∣

∣

∣

∣

∣

2

by varying M.

We will now see how this can be done efficiently by considering a subset
of points P ′ ⊆ P such that nP ′ ≪ nP . Moreover, the problem now is to
align two sets of geometric data using the sum

1

nP ′

nP ′
∑

i=1

nP ′
∑

j=1

(∣

∣

∣

∣

∣

∣
pi − pj

∣

∣

∣

∣

∣

∣
−

∣

∣

∣

∣

∣

∣
Γ(pi) − Γ(pj)

∣

∣

∣

∣

∣

∣

)

(8.1)

as a measure of how well this is achieved. This measure of deviation is
referred to as the distance root mean squared error. However, the formula-
tion does not define the function Γ nor does it say anything about how the
points in P ′ are found. We will hopefully tie up the loose ends shortly.

81

82 A Feature-based Approach

8.1 A robust method

As “usual”, the input to this procedure is two shapes of geometric data, P
and S, specified either as meshes or as point clouds. No assumptions are
made about their initial positions. The idea is to speed-up and make more
robust, the schemes introduced in Chapters 6 and 7 by assigning to each
point a geometric descriptor. A descriptor is a value which is computed
for each point in both sets, and which says something about the behaviour
of the surface in a neighbourhood around each point. High dimensional
descriptors are likely to be unique for a given point but can be costly to
compute. Low dimensional descriptors are often easy to compute but not
unique in general. The method we are about to study, use low level de-
scriptors due to their simplicity.

The input shapes are usually large and therefore it is common to restrict
the registration to a small set of feature points picked from the two shapes
based on the descriptor values. More precisely, the feature points are those
points that have rare descriptor values. This can, however, lead to a situa-
tion where we pick points from P and S that do not correspond well. The
registration method which we shall study, tries to avoid such problems.

For each of the feature points we search the entire model S for points
with similar (rare) descriptor values. If we relate this work to the function Γ
which was introduced in chapter 4, the function should (possibly compute
and) compare descriptor values.

The purpose of the approach is to avoid bad correspondences and in
addition, we will be able to align the shapes without making any assump-
tions about their relative initial positions. The final set of corresponding
points will be aligned and their positions can be refined by, say, the ICP
algorithm.

8.1.1 The Integral Volume Descriptor

Borrowing the notation from [19], the descriptor is equivalent to the vol-
ume Vr(pj) of the intersection between a ball with radius r centered at pj ,

Br(pj), and the interior (S) of the surface or mesh:

Vr(pj) =

∫

Br(pj)∩S

dx.

It turns out that the volume integral descriptor is also related to the mean
curvature H at pj ,

Vr(pj) =
2π

3
r3 − πH

4
r4 + O(r5).

The expression is obviously the volume of the half ball centered at pj cor-
rected to a term involving the mean curvature H at pj . This makes sense

8.1 A robust method 83

since if the surface is flat, i.e. the mean curvature is zero, then the descriptor
is exactly the volume of the half ball.

In the actual implementation, the descriptor is computed differently.
For this, the polygonal mesh is voxelized, i.e. converted into a volumetric
representation and thus discretized. This process is know as scan conver-
sion [36]. The “building blocks” in this representation are voxels, or vol-
umetric pixels. This way, the interior of the surface S and the balls are
represented and approximated by grids.

The integral volume descriptor can now be computed for each voxel
using a particular kind of an integral transform1 of the ball grid GB and
the grid GS representing S. Moreover, the value Vr(pj) of the volume de-
scriptor at pj is approximated by the value of the descriptor at the voxel c
containing pj ,

Vr(pj) ≈
∫

GB(τ)GS(c − τ)dτ.

Gelfand et al. [19] suggest to use the Fast Fourier transform to compute this
integral. The value of GS(c) is zero if the voxel c does not lie on or inside
the boundary, and one otherwise — GS(c) is a characteristic function.

Gelfand et al. [19] show that the geometric descriptor is robust to noise
and emphasize that it is invariant under rigid transformations. This is a
desirable property since this means that we will be able to reuse it after
applying interim transformations.

8.1.2 Picking feature points from P

As stated, the feature points of P are those that have uncommon descriptor
values among all the nP descriptor values computed. If we allow many
feature points, then we will gain accuracy but the running time of the algo-
rithm will be poor. And vice versa, if we allow only a few feature points,
then we will get a fast but less accurate algorithm. Gelfand et al. compute
a histogram of descriptor values and classify a point as a potential feature
point if it belongs to a bin in the histogram with less than nP

100 points in it.
Also, the method suggests defining a neighbourhood around a feature

point from where no other feature points are allowed to be picked. This
ensures that a large part of each shape is represented and also that points
from the same bins or close to each other are not both chosen as feature
points.

The robustness of the feature point selection is further improved by
computing several volume descriptors for each point pj according to a scal-
ing of the radius of the ball centered at pj . The set R of different ball radii

1In general, an integral transform takes on the form
∫ x2

x1

K(x, y)f(x)dx where K is a
bivariate function called the kernel and the function f is given as input. The output of the
transform is a new function depending on y. The integral transform used here is called a
convolution.

84 A Feature-based Approach

makes up k different values,

R = {r1, r2, ..., rk} , r1 < r2 < · · · < rk.

The smallest radius r1 is set to be ten times the voxel grid resolution, and rk

is set to a fraction of the diameter of the input shape. A feature point is cho-
sen as a point which fulfills the requirements of a feature point as described
above for at least two consecutive radii. The feature point’s coordinates are
stored together with the different volume descriptors Vri

, i = 1, ..., k. We
also store the radii for which the point was chosen as a feature point.

8.1.3 Potential correspondences

Let us assume that we have found n feature points
{

p̆j

}n

j=1
in P and we

want to find their corresponding points in S. First of all, for each point in S
we compute the volume descriptor but we do not pick feature points. We
only compute the set of different volume descriptors Vri

, i = 1, ..., k, for
each point in S. Then, for each feature point p̆j in P , we choose points si in
S which fulfill the requirement

|Vrmax(p̆j) − Vrmax(si)| < ε. (8.2)

Here rmax is the largest radius for which p̆j was chosen as a feature point

and ε is the variation of the descriptor values2. These points in S have
about the same descriptor values for r = rmax as pj .

We want to avoid picking points that lie close to each other. Thus we
group the sis into smaller sets in such a way that the points within each
set is a maximum distance of 2rc apart. We then select from each of these
smaller sets the point sj which minimizes

|Vrmax(p̆j) − Vrmax(sj)|.

That is, these points in S make up a yet smaller set of points C(p̆j) of cor-
respondences for p̆j .

8.1.4 Initializing correspondences

In order to decrease the set C(p̆j) further, Gelfand et al. [19] exploit the fact
that they only allow for rigid transformations. Thus, a good alignment im-
plies that the distance between two feature points in P should be approxi-
mately the same as the distance between their corresponding points. This
is why Gelfand et al. use as a measure of how well the shapes are aligned,

2It is unclear what variation the authors refer to. In their implementation Gelfand et
al. have set ε ≈ 0.75 ρ

rmax
where ρ is the voxel grid resolution.

8.1 A robust method 85

the distance root mean squared error (8.1). This move also eliminates a
potentially expensive correspondence search.

Gelfand et al. emphasize that for a feature point p̆j , its correct corre-
sponding point is found within a radius of rc — this follows from the clus-
tering above. Then from this reasoning, two feature points p̆j and p̆k and
their correspondences sj ∈ C(p̆j) and sk ∈ C(p̆k) must satisfy the inequal-
ity

∣

∣

∣
||p̆j − p̆k|| − ||sj − sk||

∣

∣

∣
< 2rc. (8.3)

We form correspondences for each distinct pair of feature points in P ′,

(p̆j , p̆k), j = 1, . . . , n − 1 k = j + 1, . . . , n,

by choosing a pair of corresponding points in S, sj ∈ C(p̆j) and sk ∈ C(p̆k)

so that the left hand side of (8.3) is minimized. This gives us a O(n2) set of
two-point correspondences.

We continue by combining two-point correspondences into four-point
correspondences: Given a pair of feature points in the set of two-point cor-
respondences, we pick a different pair of feature points so that the four
distinct feature points and their correspondences minimize the error term
(8.1). We remove from the first set of two-point correspondences, all cor-
respondences with the same endpoints as the new four-point correspon-
dences. We continue this way until the set of two-point correspondences is
empty. Usually this procedure stops at either eight- or sixteen-point corre-
spondences.

A rigid-body transform Ξ is then computed using the resulting eight-
or sixteen-point correspondence set such that the coordinate root mean
squared error is minimized:

√

√

√

√

1

nP ′

nP ′
∑

i=1

||si − Ξ(p̆i)||
2.

It is shown by Gelfand et al. that the distance root mean squared error (8.1)
is bounded above and below by the error metric3 above.

The transformation Xi is applied to all the feature points P ′. For each
of the feature points {p̆j} which do not yet have a correspondence, a point
s ∈ C(p̆j) is assigned so that s is closest to Ξ(p̆j). We also compute and
store for later comparison the error (8.1) using the feature points P ′ and
their current correspondences.

3It is useful to settle this relationship since it proves that we can use the error metric in
equation (8.1) instead of the coordinate mean squared error. Thereby, we can say something
about the quality of the alignment without computing the rigid body transformation.

86 A Feature-based Approach

8.1.5 Determining the best correspondences

At this point we have assigned a corresponding point to each of the feature
points of P . For some of the feature points we saw that their corresponding
points were just the closest point in S after the rigid transformation had
been applied to all of the feature points. We now want to find the best
corresponding point for all of the feature points. We assume that we have
found the best correspondence for k − 1 of the feature points, and we want
to find the best match for the kth feature point, p̆k.

For each of the m points si
k ∈ C(p̆k), i = 1, . . . , m, that potentially cor-

responds with p̆k, we need to check that

∣

∣

∣
||p̆j − p̆k|| − ||sj − si

k||
∣

∣

∣
< 2rc

holds for j = 1, . . . , k − 1. For each si
k that passes this test, we compute the

error (8.1). We only keep si
k if the error we get is lower than what we had

at the end of the section 8.1.4.
We assign in turn each si

k that are kept at this point as a corresponding
point to p̆k and start over again for the k + 1th feature point. Each time
all feature points are assigned correspondences, we compute the error (8.1)
again and compare it to the previous value. If the value is lower than what
we had we also compute the coordinate root mean square error. If this is
also smaller, we have a new set of correspondences. When every potential
correspondence is check this way, we are done.

8.2 Summary

We have seen in this chapter an example of a “global” registration method
— it makes no assumptions about the orientation of the two sets of ge-
ometric data that we want to align. Also, the shapes may only overlap
partially. We saw that in these situations, registration could nonetheless be
performed by introducing feature points and determining their correspon-
dences.

This completes our review of different solutions to the registration prob-
lem. We have covered four quite different approaches: One closed form so-
lution and three numerical algorithms. In the next chapter we will review
how the method from the previous chapter can be implemented. We will
be able to see by an example how a particular registration method behaves
in practice.

Chapter 9

Implementation

The C++ programming language has been used to implement the registra-
tion algorithm outlined in chapter 7. The algorithm was explained in detail
in that chapter, so in this chapter we will concentrate on how the different
tasks have been implemented.

Before we start, we quickly repeat how the problem was formulated:
We are given a point cloud P and a surface ΦS with known representation.
The points in P represent a subset of the surface Φ; typically, the surface
Φ is a complete, three dimensional representation of some object and the
point cloud P is a partial scan of the same object. The task is to minimize

|P |
∑

j

d(TRpj , ΦS)2 (9.1)

by varying the rigid body transformations T and R. In addition we use ap-
proximations to the squared distance function d2. Recall that for a given
point pj in P we locate its position in an octree — the d2-tree — and use
the approximant corresponding to this position to find the approximate
squared distance to ΦS . In other words, we make use of the approxima-

tion d(TRpj , ΦS)2 ≈ Aj(TRp1
j) =

(

TRp1
j

)T

Qj

(

TRp1
j

)

, so the function we

want to minimize is
|P |
∑

j=1

Aj .

The scheme is a two step process; first we need to construct the d2-tree
and store in it the Aj ’s. Then we need to do the registration, that is find
the optimal rigid transformation. We will go through the implementation
in the same order, focusing on the d2 tree construction first, then on the
registration.

87

88 Implementation

9.1 The d
2-tree construction

9.1.1 Input

A triangulation making up a complete 3D model of some object’s surface
should be given as input to the implementation of the d2-tree algorithm. In
addition, we must give as input the number of levels in the tree and the
error threshold. The threshold value indicates the amount of error which
is tolerated during the computations of the squared distance function ap-
proximations. High error thresholds make the method diverge [33].

9.1.2 Data management

The C++ programming language is an object oriented programming lan-
guage and this fact is exploited. From the outline of the algorithm in chap-
ter 7 we may conclude that we need three classes; an Octree class rep-
resenting cubes in the octree, a Point3D class for their lower left corner
points and a Triangle class. Thus these classes were created. We briefly
go through some of the details in the class constructions.

The input variables to the constructor of the OctreeNode class are the
length of the sides of the cube, the level into which the cube is “born”, the
coordinates of the cube’s lower left corner and the cube’s locational code.
We will explain the computation and use of locational codes later.

We store every cube (but the root cube) in its parent (as an OctreeNode
object in a standard template library vector of length eight — the cube is
stored together with its seven siblings). There is also a global, two dimen-
sional vector of pointers,

std::vector< std::vector<OctreeNode*> > octree

whose elements point to the OctreeNode objects. Let m be the number
of levels in the tree. Then the size of vector octree, i.e. octree.size(),
equals m + 1 and the size of each vector octree[i], i = 0, . . . , m, equals
the number of OctreeNode-objects on level i.

In each cube we store a Point3D object which represents the cube’s
lower left corner point. Input to the constructor of the Point3D class is
the point’s coordinates. In the Point3D objects which represent lower left
corner points of cubes at even levels, we also store the squared distance
between the point and the triangulation.

We also have another global vector of Point3D objects,

std::vector<Point3D> nodes

which represents the points of the triangulated model. Input to the con-
structor of the Triangle class is thus the integer indices p1,p2 and p3
into the nodes vector.

9.1 The d2-tree construction 89

From the above it is already revealed that it was made use of two of
the C++ standard template library’s built-in containers, list and vector. In
addition, the Template Numerical Toolkit [38] was used. The toolkit pro-
vides interfaces of objects, such as arrays, useful in scientific computing.
The reason for introducing a second set of containers is that the Template
Numerical Toolkit is utilized by the JAMA/C++ library which is used later
on for solving linear sets of equations.

9.1.3 Building the d
2-tree

As we recall, we use an octree data structure named the d2-tree to compute
and store approximants to the squared distance function d2 to ΦS .

For constructing the tree data structure, we first move the origin of the
coordinate system in which the triangulated model is given, to the centroid
of the triangulation. Although this was not suggested by [31], it turned out
to be crucial for our test cases; for one case in particular, this simple move
reduced the condition number of the system matrices involved in the least
square fits of the approximants from order of magnitude 1018 to 1010.

Further, the triangulation is encapsulated in a bounding box, i.e. the
root cube. For this purpose, the coordinates of the two points

(xmax, ymax, zmax) and (xmin, ymin, zmin)

are found such that for i = 1, . . . , nS where nS is the number of points in
the triangulated model,

xmax = max(xi)

xmin = min(xi)

ymax = max(yi)

...

zmin = min(zi).

Then the center of the box is computed as

(

xmax − xmin

2
,
ymax − ymin

2
,
zmax − zmin

2

)

.

The length of the sides of the root cube is set to be large enough to include
the space were we expect the point cloud P to lie, i.e near ΦS . In the test
cases we have moved the origin in both coordinate systems to the centroids
of the point sets and applied an initial rigid motion to the point cloud P .
This way, we have had full control over its whereabouts.

90 Implementation

9.1.4 Intersection testing

After having refined the root cube twice, the program refines twice all cubes
at even levels that intersect a triangle of the triangulated surface. This pro-
cess starts at level two. To check for intersection, the method of [2] was
employed. The intersection method is based on the Separating Axis Theo-
rem [3] which basically says that two arbitrary, convex polyhedra1 do not
intersect if one can put a line (or plane in 3D) between them. In our setting
we test for intersection between triangles and axis-aligned2 cubes. This im-
plies doing thirteen tests.

The method first translates the origin of the coordinate system to the
center of the cube. According to [3], this makes the testing a lot easier.
Further, the method searches for a separating axis and terminates as soon
as one is found. If all the thirteen tests fail, then the method returns true,
i.e. the polyhedra intersect.

We have not enough space to include all thirteen tests but we include
an easy example; one of the tests examines if the triangle and cube intersect
in the x-direction. For this, the most negative and most positive x coordi-
nate of the triangle’s vertices are found. Also we need to compute half the
length of the cube’s side, 1

2side_. Then we test whether the most negative
x coordinate of the triangle is greater than 1

2side_ or if the most positive x
coordinate of the triangle is less than −1

2side_. If either one of these two
tests succeed, then the objects do not intersect in the x-direction. (Remem-
ber that the cube’s center is the origin.)

We do the intersection testing at each even level, and stop when we
have finished testing at level m − 2 were m denotes the finest level of the
tree. The stop criterion follows naturally from the fact that we always refine
twice; if some of the cubes at level m−2 intersect a triangle and thereby are
refined twice, then we obtain cubes at the finest level m.

For each cube that intersects a triangle we also set the private variable
hit_ to true; we need to identify these cubes later on.

9.1.5 Squared distance from a point to a triangle, in R
3

At this point in the algorithm, Leopoldseder et el. [31] suggest refining
(twice) all cubes that are neighbours of cubes which intersect any given
triangle in the triangulation. Those neighbours do not intersect the trian-
gulation themselves and neither will their children. Thus when we refine
neighbours we will construct many more cubes at the finest level but none
of them will intersect the triangulation.

1Plural of polyhedron; geometric objects “with flat faces and straight edges” [45].
2An axis-aligned cube have face normals which coincides with the coordinate axes [3,

45].

9.1 The d2-tree construction 91

Later on, we shall compute exact squared distances to the triangula-
tion for each of the lower left corner points of the cubes at the finest level
which intersect a triangle. Why not then compute squared distances to the
triangulation for those cubes while we know which triangle(s) they may
intersect?

It follows from the above that we compute squared distances while we
refine cubes that intersect the triangulation. This way, we only need to
check for intersection between cubes at the finest level and a small amount
of triangles (those that intersect the cubes’ grandparent). If we detect that
a cube at the finest level intersects a triangle, we compute the squared dis-
tance from the lower left corner point of that cube, to the triangle.

For distance calculations, the method of Eberly [15] was employed. This
method computes the squared distance from a given point to a given trian-
gle in R

3. The points we are given are the lower left corners of the cubes at
the finest level in the octree. Again, we will not state the whole implemen-
tation, but review the ideas3.

Consider a parametrization of the triangle in question: If the three cor-
ners of the triangle are c1, c2 and c3, then the triangle can be written as

c1 + s(c2 − c1) + t(c3 − c1) = c1 + sv1 + tv2

for real values s and t such that (s, t) ∈ [0, 1] × [0, 1] and s + t ≤ 1. The
squared distance between a given point p and the triangle can be found as
the minimum of the function

Ψ(s, t) = ||c1 + sv1 + tv2 − p||2, (s, t) ∈ [0, 1] × [0, 1], s + t ≤ 1. (9.2)

We note that Ψ ≥ 0 for all s, t ∈ R.
By standard procedures, the global minimum of Ψ, s, t ∈ R, can be

found be setting the partial derivatives ∂Ψ
∂s

and ∂Ψ
∂t

of Ψ, equal to zero. The
parameters s and t minimizing Ψ are then found as the solutions of the set
of equations

[

||v1||2 v1v2

v1v2 ||v2||2
] [

s
t

]

= −
[

c1 · v1 − v1 · p

c1 · v2 − v2 · p

]

,

that is

s =
v1 · v2(c1 · v2 − v2 · p) − ||v2||2(c1 · v1 − v1 · p)

||v1||2||v2||2 − (v1 · v2)2

and

t =
v1 · v2(c1 · v1 − v1 · p) − ||v1||2(c1 · v2 − v2 · p)

||v1||2||v2||2 − (v1 · v2)2
.

Since Ψ is defined on a restricted domain, we also need to check the bound-
ary. First we take some general notes on the result.

3The actual implementation can be found at http://www.geometrictools.com.

92 Implementation

We realize that Ψ(s, t), when (s, t) ∈ [0, 1]×[0, 1] and s+t ≤ 1, equals the
squared distance from p to the point on the triangle which is the closest one
to p of all the points on the triangle. This point is located in the same plane
as the triangle, either within, or on, the triangle’s boundary. Of course, if p

is in the same plane as the triangle and also is located inside the triangle,
then the closest point to p on the triangle, is p itself.

We also note that if p is in the same plane as the triangle, then the global
minimum of Ψ is zero — regardless of whether p is inside or outside of the
triangle’s boundary. The vector sum c1 + sv1 + tv2 will in this case equal
p and consequently, Ψ(s, t) will be zero. Otherwise, if p is not in the same
plane as the triangle, then the global minimum of Ψ will be the squared
distance from p to the projection of p into the same plane where the triangle
is found.

When s and t are found from the equations above, we get the global
minimum of Ψ over R

2. It may be the case that s, t ∈ [0, 1] × [0, 1] and
that s + t ≤ 1. If so, then we are done; the value Ψ(s, t) is what we seek.
However, in general we need to check the boundary; it may very well be
the case that s+ t > 1 or s+ t < 0, and s, t /∈ [0, 1]× [0, 1]. We will then need
to do some investigation to find out where, on the triangle’s boundary, the
closest point to p on the triangle is located. In other words, we need to find
the values of s and t, with the restrictions s + t ≤ 1 and s, t ∈ [0, 1] × [0, 1].

The boundary of the triangular region given by s + t ≤ 1 and s, t ∈
[0, 1] × [0, 1] consists of three straight edges. These are s = 0, t = 0 and
s + t = 1. This gives us three univariate functions to consider; F1(0, t),
F2(s, 0) and F3(s, 1− s), respectively. Depending on the sum of s and t and
their signs, we find the minimum of one of these three functions. We know
we are seeking a minimum from the fact that

Ψ′′(0, t) = 2||v2||2 > 0,

Ψ′′(s, 0) = 2||v1||2 > 0

and

Ψ′′(s, 1 − s) = ||v1 − v2||2 > 0.

There are a total of seven cases we need to handle. One of them is the
“simple” case where s+t ≤ 1 and s, t ∈ [0, 1]× [0, 1]; in this case the method
simply returns Ψ(s, t), as stated above. The idea in the remaining six cases
is to find the level curve of Ψ which touches one of the boundary edges.
Since Ψ is a paraboloid, the level curves are ellipses. Finding the level
curve of interest implies first to figure out which of the three edges is the
closest one to the global minimum. Thereafter, we solve either F ′

1(0, t) = 0,
F ′

2(s, 0) = 0 or F ′
3(s, 1 − s) = 0.

We look at this by an example. If say, s+t < 1, 0 < s < 1 and t < 0, then
the point we seek is found on the triangle boundary corresponding to the

9.1 The d2-tree construction 93

edge t = 0. This follows, since in this case the triangle edge corresponding
to the edge t = 0, i.e. c1 + sv1, is the closest one, out of the three triangle
edges, to the point c1 + sv1 + tv2 giving the global minimum. Or, in other
words, the level curve of Ψ(s, t) which we now seek, will touch the triangle
at the edge c1 + sv1. Thus, in this case we solve F ′

2(s, 0) = 0.
When solving this equation, we may find that s is less than zero, be-

tween zero and one, or greater than one. If say, s < 0, then since the func-
tion in question reaches a minimum for this value and since its graph is
a parabola, it is decreasing for a lower value of s. Consequently, for s in
[0, 1], the function is increasing. So, in that case, the minimum we seek is
found when s is zero. Similarly, if we find that s is greater than one, then
the parabola is decreasing for s ∈ [0, 1] and the minimum we seek is found
for s equal to one. The value for t is found as 1 − s.

9.1.6 Producing the last cubes in the tree

The next step is to refine twice all cubes that are neighbours of cubes which
intersect the triangulation. Cubes which intersect the triangulation are eas-
ily identified since the value of their private boolean variable hit_ is set to
true. It is pointed out by [31] that several neighbourhood definitions are
possible — the definition of a neighbour as a cube which is in the 1-ring
of direct neighbours is used in this setting. Specifically, the neighbours are
found using the algorithms of Bhattacharya [9].

The algorithms of Bhattacharya are based on tables and on the fact that
each of the 26 direct neighbours can be classified as either an edge neigh-
bour (i.e. the cubes share an edge), a face neighbour (i.e. the cubes share a
side or “face”) or a vertex neighbour (i.e. the cubes share a vertex). Each of
the three types of neighbours requires its own neighbour-finding algorithm
and there are one or two tables associated with each algorithm. Fundamen-
tal for all three algorithms are also the existence of locational codes.

Each cube has its own locational code which can be thought of as an
array of integers where each integer is a value between zero and seven.
The length of the code, i.e. the length of the array, equals the level at which
the cube is located, plus one. The locational code of the root cube is set to
[0]. The root cube is located at level zero so the length of the array should
be 0 + 1 = 1, which is certainly the case.

To see how the rest of the codes are found, consider first figure 9.1. For
each cube in the octree we number its eight children as is done in the figure.
If the parent of the eight cubes in figure 9.1 is say, the root cube, then the
eight cubes are given the codes [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6] and
[0, 7]. Further, if the cube with locational code [0, 7] is refined, then its eight
children are given the codes [0, 7, 0], [0, 7, 1], [0, 7, 2], [0, 7, 3], [0, 7, 4], [0, 7, 5],
[0, 7, 6] and [0, 7, 7].

Given a cube which does not intersect the triangulation, we find its

94 Implementation

Figure 9.1: We see the numbering of the eight children of a given cube, the
children are separated to enhance the visibility.

neighbours by computing their locational codes, independent of whether or
not the code is valid. Computing codes that may not be valid is only for
convenience. The algorithm is given in pseudo code and had to be “trans-
lated” into C++. Computing possibly invalid codes and then afterwards
validating it, were found to be the easiest way out.

A valid code has a zero in its first entry. A code that does not have a
zero in its first entry refers to a cube inside a neighbour of the root cube.
Only valid codes are useful to us, and we must therefore always check if
the computed code is valid. Also we must check if the neighbour actually
exists — although the first entry is zero, the cube may be non existent since
we have not refined every cube in the octree. If a valid code is found, if
the neighbour exist and if that neighbour intersects the triangulation, only
then do we refine the cube in question.

We will not pose all three algorithms here, nor all the tables4, but we will
review how a face neighbour is found. (This choice was made arbitrarily.)
Input to the face-neighbour finding algorithm is the locational code of the
cube in question, the direction in which we seek and two tables. The six
directions are given names in [9] but are simply referred to as 0, 1, 2, 3, 4
and 5 in the program. Which of the numbers should be up, down, left,
right and so on is not important as long as one keeps track of which way is
which. The directions serve as part of indices into two-dimensional tables,
so giving them numbers as “names” were found convenient.

Continuing with this simple example, we refer to figure 9.1 again. Say
that the cube C marked 0, has locational code [0, 5, 0] and that we seek the

4Two of the tables contained an erroneous entry!

9.1 The d2-tree construction 95

locational code of the face neighbour located to the left (not present in the
figure). This corresponds to the direction 4 in the program. The input to
the algorithm is then an integer array code = [0, 5, 0], the number 4, a table
of boolean values and a “neighbour” table. Output is the locational code,
or array ncode, of the face neighbour.

The boolean table tells whether or not C and its neighbours have the
same parent. The neighbour table simply contains the rightmost integer of
the locational code of the face neighbour in each direction. Hence, there are
six entries in the neighbour table of every cube, one for each direction.

We first look up in the boolean table, since if C and its neighbour have
the same parent, only one look up in C’s neighbour table is required; the
rest of the code of the neighbour is equal to C’s own code. As an example,
if we look at the boolean table entry of the cube marked 0, corresponding to
the direction 4, we find that the neighbour does not have the same parent.
Thus, in this step we can only retrieve the last entry of the neighbour’s code
(by looking up in the neighbour table). From this we get the integer 1.

Face neighbour algorithm of [9] written in C++. Input is integer array
code, search direction d, a boolean table N and a neighbour table A. Output is
integer array ncode, i.e. locational code of the face neighbour in the direction
d.

1 i = code . s i z e () ;
2 while (i > 0) {
3 i f (!N[code [i]] [d]) {
4 / / t h e n e i g h b o u r i s o u t s i d e C ’ s p a r e n t
5 ncode [i] = A[code [i]] [d] ;
6 −−i ;
7 } else {
8 ncode [i] = A[code [i]] [d] ;
9 −−i ;

10 for (; i >=0; −− i)
11 ncode [i] = code [i] ;
12 }
13 }

When given the complete tables and by following the algorithm above,
one finds that the output of the algorithm with [0, 5, 0] and 4 as input, is
[0, 4, 1]. In other words, the locational code of the face neighbour of [0, 5, 0]
in the direction 4 is [0, 4, 1], which is a valid code (the first entry is zero).
It remains only to see if this cube exist, i.e. to check whether the cubes [0]
and [0, 4] have been refined. In the actual program, this is done by checking
whether or not their private arrays of children are empty.

9.1.7 Sorting and sweeping

When the refinement procedure is over, we must sort the cubes at each
even level so that we can apply the sweeping method of Zhao [47] at each

96 Implementation

of those levels. Recall from chapter 7 that the sweeping method solves, in
particular, the following Eikonal equation (numerically):

|∇d(x)| = 1, x ∈ R
3,

where d(·) denotes the distance function and with the boundary condition
d(x) = 0 (when x ∈ ΦS). Recall also that in three dimensions, sweeping
in eight directions guarantee a numerical solution as accurate as the solu-
tion we obtain if we let the iteration converge [47]. Each sweep implies
traversing the grid points through a number of x, y and z parallel layers in
turn. Moreover, we cover two directions by sweeping both ways for each
ordering of the cubes. Thus at each even level we must sort the cubes four
times.

The d2-tree algorithm of [31] implies sorting the cubes at even levels,
one z parallel layer at a time from top to bottom of the tree, and storing all
four orderings each time. The sort routine must of course be given appro-
priate predicates. Then the sweeping method is applied start at the bottom
of the tree, at the finest level.

However, sorting all cubes at each level in one operation simplifies this
particular stage greatly, and the job is still done within acceptable time lim-
its — at least for the maximum number of cubes (about eleven millions)
that we were able to store in memory. We can thereby sort and sweep from
bottom of the tree to the top, and work with one single array of pointers
at each level. Consequently, we increase the running time but save a lot of
memory.

It was also found that, for each cube at a given level, if all their valid
face neighbours are stored the first time we sweep through this level, then
the other seven sweeps through the same grid of cubes run quite fast. (The
grid neighbours of a cube’s lower left corner point are the lower left corner
points of the cube’s face neighbours.)

Recall from chapter 7 that during sweeping, we only update the dis-
tance information if the value d we try to store is less than the value dist_
which is already stored. The function setSqDist2Tri in the Point3D
class handles this condition in the obvious way;

1 d i s t _ = d < d i s t _ ? d : d i s t _ ;

9.1.8 Fitting the approximants

Finally, for the computations of the coefficients defining the approximants
of the squared distance functions, all even level points (lower left corners)
which are located within the given cubes, are considered. The octree con-
sists of m+1 levels, so least square fits are computed for every cube at level

9.1 The d2-tree construction 97

0, 1, . . . , m − 2 that contains more than eight points — eight points are not
enough to determine the ten unknowns. Each least square fit imply solving
a linear set of equations with ten unknows, i.e. the coefficients.

For solving the linear sets of equations, the JAMA/C++ linear algebra
package [38] is used. The JAMA/C++ linear algebra package is a trans-
lation into C++ of the Java Matrix Library providing the eigenvalues and
eigenvectors of a matrix, its singular value decomposition and its Cholesky
factorization, if it exists. As stated, the library utilizes the Template Numer-
ical Toolkit.

When solving the (many) linear sets of equations mentioned above we
call for the singular value decomposition USVT of the system matrices. If
the vector b is a known vector, more specifically the right hand side of a
given set of equations, then the solution vector is computed as

VS−1UT b. (9.3)

To get the singular value decomposition of a system matrix A, we first
need to create an instance, call it asvd, of the template class JAMA::SVD
with A as input to the SVD class constructor. See the first line of the code
snippet below. We then declare the matrices U, V as two empty matrices
(line two and three in the same excerpt) before we store there entries by
calling for the getU and getV routines:

1 JAMA : : SVD<double > asvd = JAMA : : SVD<double >(A) ;
2 TNT : : Array2D<double > U;
3 TNT : : Array2D<double > V;
4 asvd . getU (U) ;
5 asvd . getV (V) ;

The matrix S is diagonal and instead of storing a 10 × 10 matrix with
ninety zero entries, we only store its ten diagonal elements (the singular
values of A):

1 TNT : : Array1D<double > s ;
2 asvd . getS ingularValues (s) ;

To compute the solution vector we see from the expression (9.3) that
we need to compute VS−1 and thus we also need the inverse of S. But
since S is square and diagonal, its inverse is just the inverse of its diagonal
elements. Since the diagonal elements (singular values of A) are positive
by definition, their inverses are easily computed.

Further, computing VS−1 boils down to a scaling of the columns of V

by the inverse of the diagonal elements of S. We store the product VS−1 in
V:

98 Implementation

1 for (i n t c o l = 0 ; col <V. dim2 () ; + + c o l)
2 for (i n t row = 0 ; row<V. dim1 () ; + + row)
3 V[row] [c o l] ∗= s [c o l] ;

Next, we need to compute the product of the matrices VS−1 and UT .
The JAMA/C++ library contains a routine for computing a matrix product
so all we need is the transpose of U. The transpose of a matrix, on the other
hand, was not a routine provided by the library, so it was added. Doing so
was straightforward; the routine takes as input the matrix U of which we
want to compute the transpose, and returns a copy of a new matrix whose
(i, j)-th entry is the (j, i)-th entry of U.

Finally, we need to do matrix-vector multiplication, i.e. we need to mul-
tiply the matrix VS−1UT with the right hand side vector b. A routine for
this also had to be added, see figure 9.2.

1 / / Per form matr ix−v e c t o r m u l t i p l i c a t i o n , Av , and s t o r e
2 / / t h e r e s u l t in a new v e c t o r C . Return a copy o f C .
3 template < c l a s s T>
4 Array1D<T> vecmult (const Array2D<T> &A, const Array1D<T> &v) {
5

6 i f (A. dim2 () ! = v . dim1 ()) {
7 / / t a k e a p p r o p r i a t e a c t i o n , e . g .
8 return Array1D<T > () ;
9 }

10

11 / / A i s M x N
12 i n t M = A. dim1 () ; i n t N = A. dim2 () ;
13

14 Array1D<T> C(M) ;
15

16 for (i n t i = 0 ; i <M; + + i) {
17 T sum = 0 ;
18 for (i n t j = 0 ; j <N; + + j)
19 sum + = v [j]∗A[i] [j] ;
20 C[i] = sum ;
21 }
22 return C;
23 }

Figure 9.2: A routine for multiplying a matrix with a column vector.

9.2 Registration

9.2.1 Matrix functions

When the d2-tree construction is finished, the registration procedure is fi-
nally called for. Registration implies solving a linear set of equations as

9.2 Registration 99

given in [33]. However, there are two concerns that require special at-
tention: Firstly, the rotation matrices which are used are linearized and
hence only valid at small movements. Secondly, as we saw in chapter 7, for
each point pj in P we must do a point location in the d2-tree and pick out
the “adequate” approximant. The adequate approximant is found within a
cube that surrounds pj . Also, and importantly, the approximant is the best
one out of all the available approximants in the cubes surrounding pj .

The so-called Armijo condition is used to check whether or not the
computed transformation represents a small motion. When we compute
a transformation taking the point cloud from one point to another, then the
Armijo condition requires that we also compute the following quantities:
The sum of squares at both locations and the gradient vector of the error
function at the location we move from. This is straightforward. The diffi-
cult part turns out to be how to compute a fractional step which is what we
must do if the rotational approximations are no longer valid.

If the transformation is too large, it is suggested by [33] to use the
method of Alexa to compute a fractional rotation R’ and then compute the
fractional translation T’ as

(R − I)−1(R’ − I)T, I being the identity matrix.

However, the matrix (R−I) did not have an inverse in our test. Fortunately,
the method of Alexa applies to rigid transformation matrices as well so it
was decided to apply the method to the whole transformation TR instead.

As we may remember from chapter 7, if the motion TR is found to be
too large, the method of Alexa computes a 1

n
fraction of TR as

e
1

n
log TR.

Alexa has given methods for computing both the exponential and loga-
rithm of a matrix but suggests using Rodrigues’ formula when we deal
with rigid transformations. The methods of Alexa were nevertheless tested
and were found to be quite unstable. Especially the matrix square root
function involved in the computation of the matrix logarithm, was not
suited for our test data.

Rodrigues’ formula gives an expression for computing the exponential
map of a rotation matrix. There are also formulas for computing the expo-
nential map of a rigid transformation matrix and the Rodrigues’ formula
are embedded in these formulas. But first we are supposed to compute
the logarithm of the transformation matrix TR. Fortunately, there are also
formulas for this. These formulas imply computing the logarithm of the
“rotational” part of TR [35], separately. Unfortunately, this requires that
we have a “true” rotation at hand, i.e. an orthogonal matrix representing
the rotation. Thus, we cannot use the formulas “as they are” since the rota-
tion matrices we use, are approximations.

100 Implementation

For computing the logarithm of R we have turned to the definition of
the logarithmic function for a general matrix A,

log A =
∞

∑

n=1

(−1)n+1 (A − I)n

n

which is known to converge if ||A − I|| < 1 [35]. This is the case for our
rotation matrices as we remember that in general, they are on the form









1 −γ β 0
γ 1 −α 0
−β α 1 0
0 0 0 1









with 0 < α, β, γ < 1. By trial and error, including the first fifty terms
of the sum have shown to give a sufficiently close approximation to the
true matrix. We notice that the sum does not converge fast. However, the
routine is not called for very often, at most once for each time we solve
for the transformation parameters (i.e. at most eight times5). Also, for our
4 × 4 matrices the time it takes to compute the sum is negligible compared
to the overall running time of the algorithm, so the slow convergence was
considered not to be a big issue.

Finally, to compute the exponential of S = 1
n

log TR, we use the expo-
nential map formula given in [35],

eS =

[

B Dv

0 1

]

.

The vector v represents the translational part of TR. Further, letting a vector
r = [α, β, γ]T and a matrix R be the leading principal 3× 3 submatrix of TR

(i.e. its rotational part), the 3 × 3 matrices B and D are given as

I +
R

||r|| sin ||r|| + R2

||r||2 (1 − cos ||r||)

and

I +
R

||r||2 (1 − cos ||r||) +
R2

||r||3 (||r|| − sin ||r||),

respectively.

9.2.2 Point location

Each time the gradient vector is to be computed or when the linear set of
equations is solved, we need to do a point location. This follows from the

5This number was also found by trial and error, guided by the results of [33].

9.3 A test case 101

fact that the approximations we use to the squared distance function de-
pend upon the point in question, see section 7.2.1. A point location implies
finding out where in the d2-tree a given point is located. Or rather, to find
out which of the cubes surrounding the point, stores the best approximant
to the squared distance function. We assume that the point is inside the
root cube.

First, we check whether an adequate approximant is stored in the root
cube. If an adequate function is found, then we use this function. Other-
wise, the center of the root cube is computed. Then a vector extending from
the root cube center to the point is computed and its signs are examined.
From this we can deduce which of the eight children the point is located
inside. When the correct child is found, we check whether an appropriate
approximant is stored there. We continue this way until we reach the bot-
tom of the octree. See figure 9.3 on the following page for an outline of the
procedure in two dimensions.

Under the d2-tree construction above, we always store in a certain cube,
the approximant which is the best one out of that computed for the cube
itself and the one stored in the cube’s parent. This way, during point loca-
tion, we know that if we reach the bottom level without having found an
appropriate approximant, we can at least rest assured that the best approxi-
mant available is stored there.

It should be noted that since the part of the algorithm that deals with the
registration follows an iterative scheme, the procedures involved in regis-
tration (like point location and the routines for computing the matrix func-
tions) are executed multiple times.

9.3 A test case

We show how the program performs when given as input, a complete trian-
gulated model of a checkerboard’s knight (28, 716 points) and a scan (point
cloud) from an arbitrary side of the knight. The point cloud makes up a
subset (8, 375 points) of the complete model. As will be evident from the
figures, the scan is organized as a mesh (triangulation) by The Polygon
Editing Tool but we treat it as a point cloud. The model of the knight was
also made in The Polygon Editing Tool, from nine partial FINE mode scans
taken by the VI-910.

We constructed a thirteen level octree with error threshold 0.001. That
is, during the computation of the approximants we did not tolerate an error
greater than 0.001. The bounding box needed to made three times as large
as the height of the chess piece. As stated, these settings resulted in the
construction of about eleven million cubes. Further, we let the registration
iterate eight times.

The relative initial positions of P and ΦS can be seen in figure 9.4. Both

102 Implementation

Figure 9.3: We examine the signs of the vector from the middle of the cube
up to the point (at the tip of the vector), to figure out which of the four
children (squares) of the enclosing cube the point is in. In the top left figure
we see that the vector’s x component is positive while the y component is
negative. From this we deduce that the point is in the square marked ’1’.
Following the same procedure again, in the top right figure with both x
and y components negative, we see that the point is in the square marked
with a ’0’ — that is, the zero’th child of the cube marked ’1’ in the top left
figure. In the last stage of the point location algorithm (bottom figure) we
have either reached a childless square or a square which stores an adequate
squared distance function approximant.

9.3 A test case 103

shapes contain a certain amount of noise.

Figure 9.4: The initial positions of the point cloud P , in green, and the
completed model surface ΦS , in red.

Each time we solve for the transformation parameters, we move the
point cloud P correspondingly. If we store the different positions to which
the point cloud P moves, we obtain a series of positions which, when dis-
played, can help us to get a better “feel” for the flow of the algorithm —
the different “leaps” made by the point cloud P towards the triangulated
surface ΦS can be seen in figure 9.5 and figure 9.6. The final position of the
point cloud and the surface ΦS , i.e. the final registration, can be seen in
figure 9.7. For visualizing the meshes, OpenGL has been utilized.

The total running time of the program on an Intel(R) XeonTM 3.6 GHz
CPU, with the model of the checkerboard’s knight and the partial scan
given as input, is about three minutes. In this particular test case, all (lower
left corner) points inside a given cube were used to produce its associated
approximant to the squared distance function. Thus, no attempts were
made to try to improve the running time by only including points of, say,
the cube’s grandchildren. We discuss this matter further in the next chap-
ter.

104 Implementation

Figure 9.5: We see the (triangulated) point cloud P , in green, approach-
ing the triangulated model. The first four positions of the point cloud is
included.

Figure 9.6: We see the (triangulated) point cloud P , in green, approaching
the triangulated model from the opposite side of the previous view.

9.3 A test case 105

Figure 9.7: The positions of the point cloud P and the complete model after
eight iterations of the algorithm. Both sets of data can be seen to contain
some amount of noise.

106 Implementation

Part IV

Summary

107

Chapter 10

Discussion & Conclusions

In this last chapter we discuss properties of, and share thoughts on, the
registration method of Mitra et al. [33] which we have spent time studying
and implementing. Also, we indicate ways to change the method so that it
may provide better alignment of the input shapes.

10.1 Considerations on the running time

We start by picking up the thread from the end of the previous chapter.
We referred to the running time of the algorithm in the light of a particular
set of input data. In that particular case, much time is spent on sorting.
The size of the enclosing cube, the number of levels (twelve) and the er-
ror threshold resulted in about eleven million cubes produced at the finest
level. All these cubes were sorted simultaneously, in a straightforward
manner.

The sorting could have been done more efficiently. Mitra et al. [33] try to
explain one such way, but at the cost of internal memory. The large number
of cubes required to obtain the wanted level of accuracy already occupied
a large part of memory. Thus, in lieu of their way of sorting top to bottom,
storing four copies of the cubes at each level along the way, a brute-force
approach was preferred. In the end, running time was not an important
issue in either of the tests.

We can, however, reduce the running time considerably by allowing for
slightly bigger cubes at the finest level and still get a reasonably good result.
This can be done by either reducing the number of levels while keeping the
size of the enclosing cube fixed, or by keeping the number of levels fixed
while increasing the size of the enclosing cube. Note that reducing the
number of points representing the model and point cloud does not affect
the running time at all. It is the area of the model surface that determines
how many cubes are produced and this number in turn, is what affects the
execution time of the current program.

109

110 Discussion & Conclusions

10.2 Convergence

Another aspect to consider is in what situations the algorithm converges to
a correct situation. Some observations on this matter are already made in
[33]. To sum up, Mitra et al. state that the method converges for a larger
set of initial positions than the ICP algorithm and also that the initial po-
sitions for which the method converges, are clustered. This last property
has also been observed in all test cases. It also seems like a translational
displacement between the model and the partial scan has little effect on the
convergence, whereas a rotational displacement plays a central role.

Let us try to figure out why the initial rotational displacement is of such
importance to the final alignment. For this we have given a partial scan of
a knight (from a chess game) as input to the d2-tree construction algorithm,
and constructed a ten level octree with error threshold 0.001. According
to our previous notation, this scan represents the surface Φ of our model.
Further, we have given a copy of the same scan as input to the registration
algorithm and we will think of this copy as our point cloud P .

The idea is to apply successive rotations to the point cloud P about the
z axis, and to sample the error function at each orientation without doing
any registration. That is, we apply rotations Rz,i,

Rz,i =





cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1



 , θi =
iπ

180
,

for i = 180, 179, . . . ,−178,−179 to all the points in P and after each rotation
we use the points in their current positions to compute the sum of squared
residuals. The motion applied to the point cloud P is illustrated in figure
10.1.

The sum of squares is plotted in figure 10.2 as a function of the rotational
angle θi. Recall that the method follows a gradient descent approach in
the search for the optimal transformation parameters. Assume now that
we start the registration procedure with the above data after having first
applied an initial rotation of say, 120 degrees about the z axis. We see from
the plot that at the moment we start registration, we are to the right of a
(global) maximum (the point (90.0, 125)) and cannot possibly reach optimal
alignment (global minimum of the plotted function). It follows from this
that if the rotational displacement is large when the registration procedure
starts, then we should expect to get stuck at a local minimum, say the point
(166, 57.3) in the same figure.

The registration procedure solves for six transformation parameters,
and not only one rotational angle. Thus, it is not possible to see from the
plot in figure 10.2 where we end up if we start registration from a posi-
tion corresponding to a point between the global maximum and the local
minimum (166, 57.3).

10.2 Convergence 111

Figure 10.1: The figure indicates how the point cloud, in green, is ro-
tated in the xy plane around the z axis. We apply 180 anti-clockwise ro-
tations (θ = 180, 179, · · · , 1 degrees) followed by 180 clockwise rotations
(θ = 0,−1, · · · ,−179 degrees). The scan of the model (in red) stays fixed.

−200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140
X: 90
Y: 125

X: 166
Y: 57.31

Plot of error function using approximated square dist. functions

−179 ≤ θ ≤ 180

S
um

 o
f s

qu
ar

es

Figure 10.2: A plot of the sum of squares in the knight scan setting as a
function of successive rotations about the z-axis.

112 Discussion & Conclusions

0

50

100

150−100 −50 0 50 100 150

X: 155
Y: 15
Z: 16.44

X: 105
Y: 0
Z: 116.3

X: 165
Y: 0

Z: 57.25

Figure 10.3: A plot of the error function sampled at 72× 72 positions corre-
sponding to 72 × 72 different rotations applied to the point cloud P .

From experiments with the above data, we know for a fact that the suc-
cessive transformations found by the registration procedure contain a neg-
ligible amount of translation and also almost no rotation about the y axis.
Thus, in this case the error function can be seen as a function of only two
variables, the rotational angles about the x and z axes, and we can easily
plot it. To make such a plot, we have sampled the error function in a similar
manner to above. This time, for each Rz,i, i = 0, 5, 10, . . . , 355, we applied
successive rotations Rx,j j = 0, 5, 10, . . . , 355 about the x axis as well. For
each position of the point cloud corresponding to a rotation Rz,iRx,j , we
computed the sum of squared residuals. The plot is shown in figure 10.3
and for comparison, we have added the plot from figure 10.2.

In figure 10.3 we have included three points; a local minimum a (X =
155, Y = 15.0, Z = 16.4), the point b (X = 105, Y = 0, Z = 116.3) and a
local minimum on the graph from figure 10.2, c (X = 166, Y = 0, Z = 57.5).
The points’ x and y values correspond to the rotational angles about the z
and x axes, respectively. The z values are the sum of squares.

The z value of the point b is the sum of squares when the point cloud
P have been rotated 105 degrees about the z axis (and zero degrees about

10.3 Improvements 113

−200 −150 −100 −50 0 50 100 150 200
0

50

100

150

200

250
Plot of error function

−179 ≤ θ ≤ 180

S
um

 o
f s

qu
ar

es

Figure 10.4: A plot of the sum of squares in the frog scan setting as a func-
tion of successive rotations about the z-axis.

the x axis). If we look at the plot in figure 10.2 we expect to get stuck at c

if we start the registration procedure from the position corresponding to b.
However, we see from the plot in figure 10.3, which is a more correct image
of the error function, that we actually should get stuck at a. Experimental
results is in accordance with this reasoning.

If we rotate about an axis different from the z axis we do not in general
get the same sinusoidal graph as in plot 10.2. In other words, the form
of the plot depends on the shape of the object and about which axis we
rotate. See figure 10.4 for a display of a plot made in exactly the same way
as when we made the plot in figure 10.2, this time with two partial scans
of a rubber frog. Again, by just looking at the plot we believe that we will
reach the global minimum even for large rotational displacements. From
the reasoning above, we now know however, that life is not that simple.

10.3 Improvements

In this last section we indicate ways to improve the algorithm of Mitra et al.
[33]. By improvements we first of all think of ways to alter the method so
that it will not be as sensitive to the initial displacement between the input
shapes as it is in its current form. The first thought that may come to mind
in that respect is whether or not the local approximants to the exact squared
distance function are as good as Mitra et al. argue that they are. This line of
thought is followed up in the subsection below.

114 Discussion & Conclusions

−200 −150 −100 −50 0 50 100 150 200
−20

0

20

40

60

80

100

120

140
Plot of two error functions

−179 ≤ θ ≤ 180

S
um

 o
f s

qu
ar

es

The exact squared distance function
Approximation to the squared distance function

Figure 10.5: A plot of the sum of squares using the exact squared distance
function (in blue) and its local approximations (in red).

10.3.1 Change of basis

Expressing the approximants in a different basis other than the monomi-
als could possibly provide better alignment of the input shapes. A nice
replacement for the current approximants could be tensor product spline
surfaces.

A way to figure out how good the approximations are, is to compare
the sum of the squared residuals when using the exact squared distance
function to the sum we get when using approximants. This has been done
for the data which was used to produce the plots in figure 10.2 and figure
10.4. That is, we have rotated the point cloud 360 degrees around the z axis,
one degree at a time, and sampled the error function at each position us-
ing both the local squared distance function approximations and the exact
squared distance function.

The result of that experiment for the knight data is shown in figure
10.5. We see from the figure that the approximants produce values close
to those of the exact function when the initial (counter-clockwise or clock-
wise) rotation θ is no larger than, say fifty degrees. If we increase the size
of the bounding box, and thus construct larger cubes, the approximations
get slightly worse, see figure 10.6.

The result of sampling the error function using both the exact squared
distance function and its local approximants for the frog data is shown in
figure 10.7.

We have seen that the local approximations are quite good, and more
importantly, they are convex within the same regions as the exact squared

10.3 Improvements 115

h

−200 −150 −100 −50 0 50 100 150 200
0

50

100

150

200

250

300
Plots of two error functions

S
um

 o
f s

qu
ar

es

−179 ≤ θ ≤ 180

Approximations to the squared dist. funct.
The exact squared distance function

Figure 10.6: A plot of the sum of squares using the exact squared distance
function (in blue) and its local approximations (in red). The cubes at the
finest level are larger in this example than in the previous plot and conse-
quently, the approximations are not as good.

−200 −150 −100 −50 0 50 100 150 200
0

50

100

150

200

250

−179 ≤ θ ≤ 180

S
um

 o
f s

qu
ar

es

Plot of two error function

The exact squared distance function
Approximations to the squared dist. func.

Figure 10.7: A plot of the sum of squares using the exact squared distance
function (in blue) and its local approximations (in red).

116 Discussion & Conclusions

distance function. We could perhaps have approximated the function bet-
ter for large rotation angles but since the registration follows a gradient
descent approach, this would still not have “carried” us over the local max-
imum(s) during registration.

Consider next another possible way to change the method into some-
thing that may provide better alignment.

10.3.2 Feature points

How can we ensure optimal alignment when we do not know the relative
initial positions of the point cloud and the model? We think that the an-
swer may be; by making use of feature points. Recall from chapter 4 that
there are no precise definition of feature points, they can be thought of as
“characteristic” points. Examples are points on a surface corresponding to
maximum surface curvature. By settling a set of feature points and their
correspondences we could be able to compute, rather exact, the initial rota-
tional displacement, even if it is large. Thereby we would expect to get into
the convex setting where we know that the method ensures good align-
ment. Note that, this way, we could also be able to align shapes that may
overlap only partially.

We realize that the algorithm outlined in chapter 8 is appropriate for
this purpose. The method gives both a way to determine which points
should be chosen as features from the point cloud and the model and also a
way of matching them. However, the procedure for computing the integral
volume descriptor is rather complicated, and there has not been enough
time to implement it.

In an attempt to follow this line of thought, however, we have tried to
implement the point matching procedure of [22]. Given two sets of points
P and S, and a match matrix with entries mi,j , the authors seek to minimize
the sum

nS
∑

i=1

nP
∑

j=1

mi,j

∣

∣

∣

∣

∣

∣si − TRpj

∣

∣

∣

∣

∣

∣ − α

nS
∑

i=1

nP
∑

j=1

mi,j

by varying the mi,j ’s and the transformation parameters T and R. The mi,j ’s
take on values between 0 and 1 where 1 denotes a match. Clever as this
formulation might be, the resulting algorithm is too slow to be given large
point sets as input. Also, there are several parameters that need to be set
but the authors suggest doing so by trial and error. At the time of writing
the correct set of parameters and appropriate subsets of points have not
been settled.

10.3 Improvements 117

10.3.3 Nonlinear least squares

Recall that the algorithm uses a linearized rotation matrix and thus it only
works well for small rotational angles. The work that has to be done if the
computed motion is too large implies computing matrix functions which
adds to the complexity of the implementation. This could be avoided if we
instead solve the nonlinear system of equations which arise if we use an
exact representation of the rotation. Preferably we would want to employ
a globally convergent method solving a nonlinear system of equations.

Typically, when solving nonlinear systems of equations we must pro-
vide an initial guess for the solution. Some methods may not converge at
all if the initial guess is not good. This is certainly the case for Newton’s
method. This is bad news if we want to align shapes that are separated by,
say, a large rotation. A naive guess, like the identity transformation, would
probably not be sufficient for the Newton’s method to converge. However,
there exists methods that converge even when the initial guess is not very
good.

118 Discussion & Conclusions

List of Figures

1.1 An overview, or taxonomy, of three dimensional shape ac-
quisitioning systems. 5

1.2 The shape of the triangle ABC is determined by the base dis-
tance (distance between the points B and C), and the angles
at B and C. 7

1.3 A snap shot showing a pattern of structured halogen light
on the surface of a face. Courtesy of Christian Roquefort,
director of sales and marketing at InSpeck. 9

1.4 A schematic drawing of a coordinate measuring machine. . 10

2.1 The Konica Minolta VI-910. 18

2.2 Drawing of a scan, with the laser plane as seen partly from
the side. 21

2.3 A schematic drawing of figure 2.2 as seen from the side. . . . 22

2.4 Yet a schematic drawing of figure 2.2, this time from above. . 22

2.5 A segment of a polygon mesh representing a figure of the
character Sméagol from the movie The Lord of the Rings.
The segment shows the two largest toes of Sméagol’s left foot
as he sits on a river bank. 27

2.6 The polygon mesh representing the toes of Sméagol is now
triangulated. 27

2.7 The number of points making up the polygon mesh repre-
senting the toes of Sméagol is reduced. Since we have made
an adaptive subsample, points have been removed mainly
from the flat areas of the foot. 28

2.8 An example file written in the VRML 2.0 file format. 31

4.1 The figure to the left displays several scans as they appear
in the Polygon Editing Tool immediately after scanning. The
figure to the right displays the same scans after they have
been subjects to both an initial manual pairwise registration
and fine automatic registration. 50

119

120 LIST OF FIGURES

7.1 We see a selection of grid points, the one next to the question
mark has six grid neighbours. At each of the grid neighbours
we have stored a value u representing the distance from the
grid point to the triangulated surface. We use these six val-
ues in the computation of the solution at the grid point next
to the question mark. The scalar h is the grid size (which
equals the length of the sides of the cubes whose lower left
corner points make up the grid grid). 77

7.2 We see a small cluster of cubes. 78

9.1 We see the numbering of the eight children of a given cube,
the children are separated to enhance the visibility. 94

9.2 A routine for multiplying a matrix with a column vector. . . 98

9.3 We examine the signs of the vector from the middle of the
cube up to the point (at the tip of the vector), to figure out
which of the four children (squares) of the enclosing cube
the point is in. In the top left figure we see that the vector’s
x component is positive while the y component is negative.
From this we deduce that the point is in the square marked
’1’. Following the same procedure again, in the top right
figure with both x and y components negative, we see that
the point is in the square marked with a ’0’ — that is, the
zero’th child of the cube marked ’1’ in the top left figure. In
the last stage of the point location algorithm (bottom figure)
we have either reached a childless square or a square which
stores an adequate squared distance function approximant. . 102

9.4 The initial positions of the point cloud P , in green, and the
completed model surface ΦS , in red. 103

9.5 We see the (triangulated) point cloud P , in green, approach-
ing the triangulated model. The first four positions of the
point cloud is included. 104

9.6 We see the (triangulated) point cloud P , in green, approach-
ing the triangulated model from the opposite side of the pre-
vious view. 104

9.7 The positions of the point cloud P and the complete model
after eight iterations of the algorithm. Both sets of data can
be seen to contain some amount of noise. 105

10.1 The figure indicates how the point cloud, in green, is ro-
tated in the xy plane around the z axis. We apply 180 anti-
clockwise rotations (θ = 180, 179, · · · , 1 degrees) followed by
180 clockwise rotations (θ = 0,−1, · · · ,−179 degrees). The
scan of the model (in red) stays fixed. 111

LIST OF FIGURES 121

10.2 A plot of the sum of squares in the knight scan setting as a
function of successive rotations about the z-axis. 111

10.3 A plot of the error function sampled at 72× 72 positions cor-
responding to 72×72 different rotations applied to the point
cloud P . 112

10.4 A plot of the sum of squares in the frog scan setting as a
function of successive rotations about the z-axis. 113

10.5 A plot of the sum of squares using the exact squared distance
function (in blue) and its local approximations (in red). . . . 114

10.6 A plot of the sum of squares using the exact squared distance
function (in blue) and its local approximations (in red). The
cubes at the finest level are larger in this example than in the
previous plot and consequently, the approximations are not
as good. 115

10.7 A plot of the sum of squares using the exact squared distance
function (in blue) and its local approximations (in red). . . . 115

122 LIST OF FIGURES

Bibliography

[1] 3rdtech. http://www.3rdtech.com.

[2] T. Akenine-Möller. Fast 3d triangle-box overlap testing. Journal of
graphics tools, 6, 2001.

[3] T. Akenine-Möller and E. Haines. Real-Time Rendering. A K Peters,
2002.

[4] M. Alexa. Linear combination of transformations. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and inter-
active techniques, pages 380–387. ACM Press, 2002.

[5] E. Angel. Interactive Computer Graphics - A Top Down Approach Using
Open GL. Addison Wesley, 2003.

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.
An optimal algorithm for approximate nearest neighbor searching.
Journal of the ACM, 45:891–923, 1998.

[7] P. J. Besl. Active, optical range imaging sensors. Mach. Vision Appl.,
1(2):127–152, 1988.

[8] P. J. Besl and N. D. McKay. A method for registration of 3d-shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 1992.

[9] P. Bhattacharya. Efficient neighbor finding algorithms in quadtree and
octree. Technical report, Indian Institute of Technology, Department of
Computer Science and Engineering, Kanpur, 2001.

[10] F. Cazals and M. Pouget. Estimating differential quantities using poly-
nomial fitting of osculating jets. Comput. Aided Geom. Des., 22(2):121–
146, 2005.

[11] Immersion Corporation. http://www.immersion.com.

[12] S. J. Cunnington and A. J. Stoddart. N-view point set registration: A
comparison. In British Machine Vision Conference, volume 1, pages 234–
244, 1999.

123

124 BIBLIOGRAPHY

[13] B. Curless. New methods for surface reconstruction from range im-
ages. Technical report, Stanford University, 1997. http://graphics.
stanford.edu/papers/curless_thesis/.

[14] B. Curless and S. Seitz. 3d photography. ACM Siggraph ’00 Course
Notes, Course No. 19, 2000.

[15] D. Eberly. Distance between point and triangle in 3d. Geometric
Tools for Computer Graphics (The Morgan Kaufmann Series in Com-
puter Graphics), 1999. http://www.geometrictools.com/Documentation/
DistancePoint3Triangle3.pdf%/.

[16] Faro Europe GmbH et. co. http://www.iqvolution.com/en/.

[17] A. Fitzgibbon. Robust registration of 2d and 3d point sets. In British
Machine Vision Conference, pages 411–420, 1996.

[18] Max-Planck-Institut für Informatik, Polytechnical University of Cat-
alonia, Istituto di Scienza e Tecnologie dell’Informazione, Konica Mi-
nolta Europe, gedas Iberia S.A., and Soprintendenza per i beni ambi-
entali. http://www.vihap3d.org.

[19] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global
registration. In Proceedings of Symposium on Geometry Processing 2005,
pages 197–206, 2005.

[20] Leica Geosystems. http://www.leica-geosystems.com.

[21] Breuckmann GmbH. http://www.breuckmann.com.

[22] Steven Gold, Chien Ping Lu, Anand Rangarajan, Suguna Pappu, and
Eric Mjolsness. New algorithms for 2d and 3d point matching: Pose
estimation and correspondence. In Advances in Neural Information Pro-
cessing Systems, volume 7, pages 957–964. The MIT Press, 1995.

[23] A. P. Gueziec, X. Pennec, and N. Ayache. Medical image registration
using geometric hashing. IEEE Computational Science and Engineering,
4(4):29–41, 1997.

[24] A. Guéziec and N. Ayache. Smoothing and matching of 3-d space
curves. International Journal of Computer Vision, 12(1):79–104, 1994.

[25] Konica Minolta Holdings. http://www.konicaminolta-3d.com/.

[26] B. K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America, 4(4):629–642, 1987.

[27] inSpeck. http://www.inspeck.com.

BIBLIOGRAPHY 125

[28] Capture Geometry Internally. http://www.cgiinspection.com.

[29] J. B. Kuipers. Quaternions and Rotation Sequences - A primer with appli-
cations to orbits, aerospace and virtual reality. Princeton University Press,
2002.

[30] D. C. Lay. Linear Algebra and its applications. Addison Wesley, Greg
Tobin, 2003.

[31] S. Leopoldseder, H. Pottmann, and H. Zhao. The d2-tree: A hierarchi-
cal representation of the squared distance function. Technical report,
Institute of Geometry, Vienna University of Technology, Vienna, Aus-
tria, 2003. http://www.geometrie.tuwien.ac.at/ig/papers/t_rep101.pdf.

[32] A. Lorusso, D. W. Eggert, and R. B. Fisher. A comparison of four al-
gorithms for estimating 3-d rigid transformation. In British Machine
Vision Conference, pages pages 237 – 246, 1995.

[33] N. J. Mitra, N. Gelfand, L. J. Guibas, and H. Pottmann. Registration of
point cloud data from a geometric optimization perspective. In SGP
’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, pages 22–31. ACM Press, 2004.

[34] N. J. Mitra and A. Nguyen. Estimating surface normals in noisy point
cloud data. In SCG ’03: Proceedings of the 19th annual symposium on
Computational geometry, pages 322–328. ACM Press, 2003.

[35] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[36] F. Nooruddin and G. Turk. Simplification and repair of polygo-
nal models using volumetric techniques. Technical report, Geor-
gia Institute of Technology, 1999. http://citeseer.ist.psu.edu/article/
nooruddin99simplification.html.

[37] nub3d. http://www.nub3d.com/english/.

[38] U.S.A.’s National Institute of Standards and Technology. http://math.
nist.gov/tnt.

[39] Steinbichler Optotechnik. http://www.steinbichler.de.

[40] X. Pennec. Registration of uncertain geometric features: Estimating
the pose and its accuracy. In Proceedings of the First Image Registration
Workshop, 1997. http://citeseer.ist.psu.edu/pennec97registration.html.

[41] H. Pottmann and M. Hofer. Geometry of the squared distance function
to curves and surfaces. Visualization and Mathematics III, pages 221–
242, 2003.

126 BIBLIOGRAPHY

[42] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm.
In Proceedings of the Third International Conference on 3D Digital Imaging
and Modeling (3DIM), pages 145–152, 2001. http://citeseer.ist.psu.edu/
rusinkiewicz01efficient.html.

[43] Scantech. http://www.scantech.dk.

[44] INUS Technology. http://www.rapidform.com/.

[45] Wikipedia. A free-of-charge, multilingual, web-based encyclopedia
written by volunteers. http://en.wikipedia.org/.

[46] H. J. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE
Computational Science and Engineering, 4(4):10–21, 1997.

[47] H. Zhao. A fast sweeping method for eikonal equations. Mathematics
of Computation, 74(250):603–627, 2004.

