
UNIVERSITY OF OSLO
Department of informatics

Explore the challenges of
providing documentation in
open source projects

Master thesis
60 credits

Margrethe Store

July 31, 2007

Abstract
It is well known that software documentation in open source projects is often poor and
incomplete. Open source communities are generally driven by project members doing
what they want to do, and because few programmers enjoy writing documentation,
many open source projects are poorly documented compared to proprietary projects.
This does not mean that documentation is any less important in open source projects,
and this thesis looks at why it is so hard to provide good documentation. Findings from
this thesis shows that even if all project members agree that documentation is
important, resource constraints mean that the time and effort necessary to create
quality documentation it is not necessarily provided.

How lack of documentation is affecting new project members who try to contribute to a
project is also described in this thesis. Several new project members found the given
documentation to be messy and outdated, making it hard to contribute. Poor
documentation can also influence the number of project members willing to contribute to
the open source project.

The thesis is based on an action research project where the author has participated in
the development of a health information system, District Health Information System
version 2 (DHIS 2), within the Health Information System Programme (HISP) network.

2

Acknowledgements
I would like to thank my supervisors Knut Staring and Ola Titlestad for guidance in
writing this thesis and support during my time in Vietnam.

I would like to thank the Vietnamese HISP employees in Ho Chi Minh City and Hue for
their friendship and the warm welcome they gave me to their country. I would also like
to thank my fellow Norwegian students who were with me during my time in Vietnam.
Your support and friendship has been of great value.

I would also like to thank the rest of the DHIS 2 development team for great
collaboration, for answering my questions and providing support when needed.

A warm thanks to my friends and family who have supported me and put up with me
during the time of writing this thesis. I would like to give a special thanks to Are for
proofreading and believing I could do this. Your support has always helped me.

3

Table of Contents
1 Introduction...9

1.1 The action research project...9
1.2 Motivation..9
1.3 Research objectives..10
1.4 Structure of this thesis ..11

2 Literature review and background..12
2.1 Open source..12

2.1.1 Motivation...13
2.2 Technical infrastructure in open source..14

2.2.1 Website..14
2.2.2 Documentation...15

2.2.2.1 Focusing on the developer...17
2.2.2.2 Keeping documentation up-to-date..18
2.2.2.3 Availability of documentation..18
2.2.2.4 Documentation technologies..18
2.2.2.5 Documentation tools...19
2.2.2.6 Wiki...19
2.2.2.7 Javadoc...21
2.2.2.8 FAQ...22

2.2.3 Mailing lists...22
2.2.4 Public code archive..23
2.2.5 Issue tracker...23

2.3 Social infrastructure in open source project..24
2.3.1 Leadership...25
2.3.2 Coordination...26
2.3.3 Decision making...26
2.3.4 Releasing and distributing..27
2.3.5 Guidelines..28
2.3.6 Communication and knowledge sharing..28

2.4 Former research on DHIS 2..29
3 Health Information Systems Programme (HISP)... 30

3.1 HISP history...30
3.2 DHIS history..31

3.2.1 DHIS 1..31
3.2.2 DHIS 2..33

3.3 Development network..35
3.4 DHIS 2 development...35

3.4.1 Technical infrastructure in DHIS 2...35
3.4.1.1 Web pages..36
3.4.1.2 Visual documentation...36
3.4.1.3 Mailing lists...37
3.4.1.4 Public code archive...38
3.4.1.5 Issue tracker...39
3.4.1.6 Releases...40
3.4.1.7 Other tools used in DHIS 2...41

3.4.2 Social infrastructure in DHIS 2...41
3.4.2.1 Leadership..41
3.4.2.2 Decision making...41

4

3.4.2.3 Task assignment...43
3.4.2.4 Developer guidelines..44
3.4.2.5 Milestone releases..44

3.5 Is DHIS 2 an open source project?...46
4 Methods..47

4.1 Action research...47
4.2 Action research in the field of IS...48
4.3 My research approach...49

4.3.1 The HISP team...49
4.3.2 Interviews...49
4.3.3 Development and participation..50
4.3.4 Meetings...50

5 Empirical study...51
5.1 Introduction to the HISP project..51
5.2 My experiences from Vietnam...51

5.2.1 Arriving in Vietnam...51
5.2.2 The start up phase...52
5.2.3 Development and installation...53

5.2.3.1 Installing DHIS 2...54
5.2.3.2 Collaboration in Hue...54
5.2.3.3 Interruption in development and installation...54

5.3 The validation module...55
5.4 Technical infrastructure...56

5.4.1 Web pages and documentation...56
5.4.1.1 The DHIS documentation project...58
5.4.1.2 The HISP wiki...58

5.4.1.2.1 Shortcomings of Confluence...59

5.4.1.3 Javadoc...59
5.4.1.4 FAQ...60
5.4.1.5 Documentation and recruiting developers..61
5.4.1.6 Help functionality..61

5.4.2 Issue tracker...62
5.5 Communication...63

5.5.1 IRC channel...63
5.5.2 Shared knowledge...63

6 Discussion..66
6.1 Communication...66

6.1.1 IRC channel...66
6.1.2 Shared knowledge...67

6.2 Web pages and documentation..68
6.2.1 End user documentation..70
6.2.2 Language barriers..70
6.2.3 Keeping the documentation up-to-date ...70
6.2.4 The HISP wiki...71
6.2.5 Javadoc..72
6.2.6 FAQ..72
6.2.7 Documentation and recruiting developers...73

7 Conclusion..75
8 List of acronyms..77
9 References...78

5

 Appendix A...81
 Appendix B...83
 Appendix C...86

6

List of figures
Figure 1: A screenshot from Wikipedia, one of the best-known wikis.............................20
Figure 2: The bulleted list rendered in a web browser..20
Figure 3: Screenshot of the welcome screen of DHIS 1.4..32
Figure 4: Screenshot of data entry in DHIS 2..33
Figure 5: Screenshot of the DHIS 2 space on the wiki..36
Figure 6: Simple Action Research Model (from MacIsaac, 1995)...................................48
Figure 7: Screenshot from the Validation module in DHIS 2.. 55
Figure 8: Screenshot of the developer FAQ..61

List of tables
Table 1: Useful Documentation Technologies...18

Table 2: Release dates and scheduled release dates for the milestone releases..........45

7

1 Introduction
This thesis is based on the development of the District Health Information Software
version 2 (DHIS 2) that is a part of the Health Information Systems Programme (HISP).
The author has been part of the DHIS 2 development team at the University of Oslo
with a field trip to Vietnam from July to November 2006.

1.1 The action research project
I have been involved in the development of a global open source health information
system called DHIS for the HISP project. HISP is a global research and development
network aimed at improving health information systems for developing countries. DHIS
1 was implemented using Microsoft Access and Visual Basic. This thesis focuses on the
development of the second version of this software, DHIS 2. DHIS 2 is an open source
web-based Java application, developed using open source tools and frameworks. The
development of DHIS 2 is distributed among four collaborating nodes located in
Norway, Vietnam, India and Ethiopia. Since I am situated in Norway and have been on
a field trip to Vietnam for four months, this thesis is mainly focused on the Norwegian
and the Vietnamese node. India is also an important part of the general development
effort and is therefore frequently made references to.

1.2 Motivation
I was introduced to the HISP project and the DHIS software through a course at the
University of Oslo called “Open source software development and Java frameworks in
global networks”, which was held by one of the coordinators of the HISP project. The
focus of the subject was to learn about the goals of HISP, help with the development of
DHIS 2 and learn about open source software in general. The course gave me an
introduction to the tools and frameworks used in the development of DHIS 2, and I got
acquainted with some of the developers based in Norway. Java has always been a
favourite programming language of mine, and I was enthusiastic about the opportunity
to learn more about Java-related tools and frameworks.

My motivation for writing this thesis originates from personal observations made as a
member of the DHIS 2 development team. I have actively used, favoured and been
interested in open source software for several years. The HISP project gave me the
chance to learn more about this exciting topic and actually participate in an OSS
project.

I have often felt that documentation is neglected in open source projects, and
experienced this in the DHIS 2 project as well. Being, for the first time, a participant of
an open source software project, I decided to take the opportunity to investigate the
documentation in detail.

One of the HISP goals is to provide better health information systems (HIS) to
marginalised countries. From an ideological point of view, I deeply believe open source
software and information and communication technology can have a positive impact on
poor countries and communities. To work with HISP gives me a chance to visit one of
these countries and potentially enables me to make a difference and contribute to

8

improving the welfare of the citizens in that country. This is an exciting and highly
motivating prospect.

Additionally, working on software that is deployed and used in real life is a great way to
learn more about every aspect of the software development process and a very
valuable experience for me as a software developer.

1.3 Research objectives

Primary research objective

Explore the challenges of providing documentation in open source projects.

By documentation, I am referring to any artifact whose purpose is to communicate
information about the software system. These artifacts can be end user documentation,
manuals, software documentation, both in the source code and external documentation,
mailing lists and general knowledge sharing within the project.

Open source projects are typically organised in a distributed and decentralised manner,
and these factors strongly influence the development processes and the type of tools
that can be utilized (Erenkrantz and Taylor, 2003). Globally distributed projects have to
deal with many problems arising from participants not speaking the same language or
being in the same time zones, participants having different work ethics and hardware
and software requirements, plus cultural differences in general.

By taking part in the development of the health information system DHIS 2, and by
being part of that development community, I will explore the challenges of providing
documentation. To do this I will look at the documentation written before I joined the
project and the other tools and technologies being used in the project which may have
an impact on the documentation and the writing of it.

Secondary research objective

Investigate how lack of documentation affects new project members.

Goldman and Gabriel (2005) state that it should be as easy as possible for new
developers to learn their way around the source code. As being new to an ongoing
open source software project I want to see which impact documentation have on
participants, and especially new project members who decide to join the project.

As I explore the problems caused by a lack of documentation, I will also discuss related
knowledge sharing issues. I have approached these objectives through an action
research project and will draw on my experiences from this process when I explore the
research objectives.

This thesis covers the common issues found in open source projects after they are
founded and does not discuss the establishment of open source projects. Earlier
research about the initial phase of the DHIS 2 project has been conducted by Nordal
(2006). Former research about DHIS 2 is described further in chapter 2.4.

9

1.4 Structure of this thesis
This thesis is structured into four parts and 7 chapters. Each chapter opens with an
introduction to the included contents. The following parts are presented:

● Literature and Background – the theoretical framework for this study and former
research on DHIS 2 is described in chapter 2. Chapter 3 tells the history of the
HISP project and the DHIS software. The development process of DHIS 2 is also
described.

● Methods – the research approach used in this thesis is presented in chapter 4.

● Empirical study – the empirical material used in the thesis, focusing on my
experiences from Vietnam, is presented in chapter 5.

● Discussion and Conclusion – chapter 6 and 7.

10

2 Literature review and background
In this section I will present the theoretical background relevant to my project. Theories
and strategies outlined here will be reflected in my empirical study and then discussed
in relation to my empirical findings.

2.1 Open source
Computer users have been sharing software since the beginning of the computer era,
and the origin of open source software can be traced back to the 50s. Back then, all
software was available for free, and most of it was open so the user could examine the
source code if they want to. You bought the hardware and got the software thrown in for
free. It was available for free because it had not really occurred to anyone that it had
value, and it was open because there was no reason for it not to be, as it had no value
in the market (Glass, 2005).

The software remained freely available until the mid-60's when the hardware and
software was separated, making it possible to sell software. Manufacturers started to
ship software with licenses that more strictly enforced their copyrights.

In the 80s, when software was increasingly commercialized, Richard Stallmann founded
the Free Software Foundation (FSF) and the GNU Project (Hars and Ou, 2001). FSF is
a non-profit corporation dedicated to promoting computer users' rights to use, study,
copy, modify, and redistribute computer programs. The term “free software” became a
widely popular definition for this practice of sharing source code for software. The “free”
in free software is “free” as in “freedom” and not price.

The term open source came out of a strategy session in reaction to Netscape's
announcement of a source code release for their flagship Navigator web browser in
January 1998 (INI, 2007). The Open Source Initiative (OSI) was created as an
organization to further the ideas of open source and to certify licenses as being true
open source.

Open source does not just mean access to the source code, but must follow certain
criteria. Based on the Debian Free Software Guidelines written by Bruce Perens, OSI
provides an Open Source Definition which asserts nine criteria for open source
software. The three main criteria are:

● The ability to distribute the software freely
● The source code’s availability
● The right to create derived works through modification

In addition, there are six more criteria dealing with licensing issues.1

Some draw a distinction between the terms Free Software and open source, believing
that Free Software is political while open source is pragmatic. I will not go deeper into
that discussion in this thesis, but will use the term open source or open source software
(OSS) in a wide context throughout this thesis. Other terms have also come up that
means more or less the same, like for instance Free/Libre/Open-Source Software
(FLOSS), Software Libre and Free and Open Source Software (FOSS).

1 See http://www.opensource.org/docs/definition.html for the whole list

11

http://www.opensource.org/docs/definition.html
http://www.opensource.org/docs/definition.html
http://www.opensource.org/docs/definition.html

“Open source” is not a precise term with one meaning, but projects claiming to be open
source have something in common (Gacek and Arief, 2004). Gacek and Arief (2004)
investigated 80 open source projects and found two characteristics that existed in all of
them: They adhere to the Open Source Definition, and developers are always users.
They found even more characteristics that might vary from project to project. These
characteristics included project starting points, motivation among the participants, the
community, software development support, licensing, and size. This is not a full list, and
even more characteristics might exist.

There are thousands of open source projects ranging from small tools and utilities to
database system like MySQL and operating systems like Linux. The Apache web server
is the most popular web server in use, and as of January 2007 Apache served 60% of
all websites.2 SourceForge.net, the world's largest open source software development
web site, holds over 140.000 projects and has close to 1,5 million users (as of January
2007). So, even though you are not an open source developer or seeking open source
software, you are likely using or taking benefit from what open source has to offer. Even
large companies writing proprietary software help out in the open source software
communities when they can reap long term benefits (DiBona, 2005).

2.1.1 Motivation
So why do they do it? Why do thousands of people devote considerable resources of
time and intellect developing a software for free? Although much research and many
surveys has focused on what motivates people to engage in open source projects, the
answer is still complex and the the reasons numerous.

Hars and Ou (2001) distinguish between motivations which are rooted in the psychology
of the individual (internal factors) and motivation which originate from the environment
(external factors). The internal factors involves intrinsic motivation, programmers being
motivated by the feeling of competence, satisfaction and fulfillment that arises from
writing programs, altruism, increasing the welfare of others, and community
identification where people identify themselves as a part of the community and align
their goals with those of the community. The external factors are future rewards and
personal needs.

Bonaccorsi and Rossi (2003) see the production of open source software, first of all, as
a form of intellectual gratification. Secondly they see it as an art form. And thirdly and
finally, they believe programmers sees the pleasure of creativity. They also states that
altruism does not explain the behavior of the open source developers, but at most
explains the behavior of people writing software in their spare time.

Findings from the survey of Ghosh et al. (2002) on open source project shows that the
most important reasons for people joining an open source project is to learn and
develop new skills. Other important reasons they found includes sharing knowledge and
skills with other software developers, participating in new forms of cooperation,
improving software products or simply participating in the open source scene.

These findings are largely congruent with the findings from The Open Source
Technology Group's survey on developers participating in projects at SourceForge. In
this survey personal learning and intellectual stimulation from programming was rated
highest (Lakhani and Wolf, 2001).

2 http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html

12

http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html

Goldman and Gabriel (2005) has a long list of explanations as to why people volunteer
to do something they can be paid to do, including:

● Need for the product
● Enjoyment, fun, and desire to create and improve
● Reputation and status
● Affiliation
● Identity
● Values and ideology
● Training, learning, reputation outside the community, and career concerns
● Fairness
● Hope of making things better
● Feedback

The reasons for contributing are many, and they even change over time, but no matter if
people are doing it for their own personal benefit, for some ideological reason or for the
welfare of some community, they are all doing work which we all freely can take
advantage of.

2.2 Technical infrastructure in open source
Most open source projects offer at least a minimum, standard set of tools including
mailing lists, website, version control, bug tracking and real time chat (Goldman and
Gabriel, 2005). Since OSS projects are traditionally open to all, they most often use
tools that are open source and available to everyone as well (Erenkrantz and Taylor,
2003). Due to the variety of platform preferences between participants, the tools should
also be cross-platform (ibid). Each project uses the tools and the processes that best fit
their needs and preferences, but in some areas, a few tools or a single tool is
predominant in the market (ibid). When it comes to source control systems, almost all
OSS projects use CVS or SVN, and there are two mailing list systems that are
commonly used. In other areas, there is no single tool that dominates. Since different
tools are used, one can not expect all new developers to have special training in all of
them, and to cope with this, the projects should provide clear documentation on
techniques that will help unfamiliar developers (ibid).

Almost all OSS projects use a distributed development process with developers located
in different places all over the world, and can therefore not rely on face-to-face
meetings. This places a strain on the mechanisms used to communicate, and they have
to make use of synchronous and asynchronous technologies that can communicate
over distance (Holz et al., 1998). The projects primarily rely on mailing lists for almost all
communication activities (Cubranic and Booth, 1999). Mailing lists and some of the
other tools mentioned will be covered in more detail in this chapter.

2.2.1 Website
Every OSS project needs a website where potential users and developers can find
information about the project. When people first hear about a project, the project's

13

website is the first place they will go to find information about it (Goldman and Gabriel,
2005). The website should be the portal to all aspects on the project and the main
function should be to present a clear and welcoming overview of the project, and to bind
together the other tools (the version control system, bug tracker, etc.) (Fogel, 2005).
The site should contain a download page where the latest version of the source code
and the program is available. Other topics that websites typically cover are news about
the project, user guides, tutorials, archives of mailing lists, and other documentation.
Information about how to get involved, sign up for mailing lists and information about the
key developers and how to contact them are usually presented as well. Large projects
will also have web pages for developer documentation, a road map, descriptions of
each module, a list of FAQs about the project and so on. The front page on the website
must make it unambiguously clear that the project is open source and which free
license the software is distributed under (Fogel, 2005). By not mentioning these topics,
the project will lose many potential users.

The website is essential for both new and established developers as well as for users.
They will all use the website as a place to meet and a place to find out about the current
status of the project. The information presented and how it is organized can help your
project to be more successful. A survey mentioned by Goldman and Gabriel (2005, in
the chapter: A Community Website) shows that over half the people who responded to
the survey did not read any of the mailing lists, but instead relied solely on the website
for news. This makes it clear that web pages needs to be up-to-date.

A good website helps create a sense of community and should welcome new
participants to this community (Goldman and Gabriel, 2005). To do so, the web pages
should include a page listing the major contributors, and it is even better if pictures of
the participants are presented together with the name.

2.2.2 Documentation
Documentation is essential (Fogel, 2005, p. 25). Good documentation allows people to
use, and equally important in open source projects, understand and modify the
software. But even incomplete, rudimentary documentation is better than nothing at all
(ibid). Open source communities are generally driven by project members doing what
they want to do, and because few programmers enjoy writing documentation, many
open source projects are poorly documented compared to proprietary projects. This
does not mean that documentation is any less important in open source projects. To
align with the read and show that the project members are aware of the deficiencies of
the documentation, Fogel (2005, p. 26) suggest to label the areas where documentation
is incomplete.

Even though few programmers enjoy writing documentation, Drummond (2000) states
that the idea that programmers are poor writers is an unfortunate stereotype. He lists
several of the very best hackers, among them Eric Raymond, Richard Stallman and
Larry Wall, who are also excellent writers and have written numerous essays, manuals,
and technical books.

There are several different types of documentation, including (Wikipedia, 2007a):

● Architecture/Design - Overview of software. Includes relations to an environment
and construction principles to be used in design of software components

● Technical - Documentation of code, algorithms, interfaces, and APIs

14

● End User - Manuals for the end user, system administrators and support staff
● Marketing - Product briefs and promotional collateral

Technical developer documentation is written to help programmers understand the code
(Fogel, 2005), and an open source project needs to have good internal documentation
for developers (Goldman and Gabriel, 2005). It should be as easy as possible for new
developers to get an overview of the software and learn their way around the source
code (ibid). The easier it is to learn how to get started, the more developers will be
attracted to the project. If the internal documentation is poor or non-existent, the
developers are forced to rely solely on the source code. This is a time-consuming and
error-prone process and many developers will become frustrated and give up (ibid).

A survey done by Lethbridge et al. (2003) among software engineers shows that
documentation is important when learning a new software system. 61 percent rated the
available software documentation effective or extremely effective when learning a new
software system, and 54 percent reported the same when working with a new software
system. This survey was conducted among software engineers, but it is likely that the
result would be similar if only open source developers were asked.

The most important documentation for end users is the basics: how to quickly set up the
software, an overview of how it works etc. Even though this is the kind of information
the writer of the documentation knows all too well, it can be difficult for them to see
things from the reader's point of view and they might view some information as too
obvious to be worth mentioning (Fogel, 2005).

In addition to the four types of documentation listed above, there are three forms in
which open source programs are usually documented (Drummond 2000):

● README files that are distributed with each individual program

● Manual pages or technical references which are also distributed with each
program

● HOWTO documents, which are instructional in nature, and usually task- (as
opposed to program-) oriented.

Mailing lists are the primary communication channel, making the resulting mailing
archives also a source of documentation (Madsen and Nürnberg, 2005).

The causes of poor and lacking software documentation are not unique to open source
projects, but in traditional software engineering contexts it is possible and normal to
employ technical writers who have dedicated time to write documentation (Yeates,
2006).

The generic challenges to software documentation include skills, time, change, libraries
and level, while the issues that aggravate the problem in OS project include (Yeates,
2006):

● Focus on developers – OS projects revolve around developers, pushing other
contributors away. See chapter 2.2.2.1

● Excitement – Writing documentation is not perceived as exciting and in OS
projects where the contributors have freedom to chose what to do, few contribute
to anything that is not exciting.

15

● Diffuse information – the documentation is usually spread around in mailing lists,
forums, chat logs and wiki pages, and few projects have mechanisms for
integrating the information into formal documentation.

Spinuzzi (2002) point out accuracy to be one difficulties that can arise from an open
system documentation process. When several participants are contributing to the
documentation, it can be hard to confirm the accuracy of what they write.

Eric Shepard held a presentation at the Free Software and Open Source Symposium in
2006 called “Documentation in the Open Source World”. In this presentation he listed
five important C's of documentation3:

● Completeness – all topics should be covered and the documentation should be
as thorough as possible, but not too detailed.

● Correctness – the given documentation needs to be correct.
● Clarity – the documentation should be written in easy-to-understand language

designed for readability. The format should be clear as well.
● Convenience – the documentation should be organized so it is easy to find what

you are looking for.
● Consistency – There should be consistency in language, spelling, grammar,

colours and formatting.

There is no magic solution to problems with documentation, and workarounds are hard
to come by (Yeates, 2006). If the project wants documentation, someone just needs to
sit down and write it (Fogel, 2005). The documentation issues can be overcome by
consciously and explicitly valuing documentation and the work of writing it (Yeates,
2006). Some of the ways to do this include (ibid):

● Requiring structured documentation along with every contribution of source code.
● Making mailing lists, chat logs, bug reports and other project information

accessible to search engines.
● Encouraging new users to contribute documentation as their first contribution to

the project. New users are ideal for writing documentation aimed at new users
since they have the same point of view.

● Allocation explicit resources to documentation writing.

2.2.2.1 Focusing on the developer
One problem in open source project is that they tend to focus on the code and the
developers writing code, and do not pay enough attention to other participants. As
Goldman and Gabriel (2005) put it “There is a tendency in open-source projects to
focus on the code, with the result that anyone who is not a developer is often treated as
a second-class citizen”. None-developer can have a lot of good ideas and can do other
kind of work, like writing documentation and tutorial and they should be encouraged to
do so (ibid). People willing to write, organize and keep web pages, servers or
documentation up to date, should be blessed and not treated any worse than
developers writing code (Goldman and Gabriel, 2005).

3 The presentation is available as a downloadable file: http://cs.senecac.on.ca/fsoss/2006/recordings/

16

http://cs.senecac.on.ca/fsoss/2006/recordings/
http://cs.senecac.on.ca/fsoss/2006/recordings/
http://cs.senecac.on.ca/fsoss/2006/recordings/

2.2.2.2 Keeping documentation up-to-date
A challenge with project documentation is its degree of freshness. Software changes all
the time, leading to out-of-date documentation for most software systems. It is also a
problem of keeping end user documentation synchronized with the current version of
the software (Erenkrantz and Taylor, 2003). Developers are often hesitant to write user
documentation, so when they make a visible change to the software, they may not
update the relevant documentation (ibid). Fortunately, Forward and Lethbridge's (2002)
survey concludes that document content can be relevant even if it is not up to date.
However, they still think keeping the documentation up to date is a good objective.

2.2.2.3 Availability of documentation
Documentation should be available both on the website and in the downloadable
distribution of the software (Fogel, 2005). The reason for having it in two places is that
people often want to read the documentation before they download the software, but at
the same time, the download should supply everything that is needed to use the
package. People often want to search for a specific word, and the online documentation
should therefore include a link that brings up the entire documentation i one HTML-page
(Fogel, 2005). If the document is divided into several chapters, people have to know in
which chapter they should look for the information, and this might not be obvious.

2.2.2.4 Documentation technologies
There are several different types of technologies used to write documentation, including
word and text processors like MS Word, OpenOffice Writer and Emacs and automated
documentation tools like Javadoc or Rational Rose. Word and text processors are
flexible and easy to use, but not the most efficient technologies with regards to
communication (Forward and Lethbridge, 2002, p. 28). Documentation is an important
tool for communication and technologies should enable quick and efficient of
communicating ideas (ibid).

Findings from the survey of Forward and Lethbridge (2002), which is based on the most
frequently cited technologies among 41 participants, shows that word processors are
the most used documentation technology (Table 1: Useful Documentation
Technologies).

Documentation Technology Frequency Percentage of Participants

MS Word and other word processors 22 54

Javadoc and similar tools (Doxygen,
Doc++)

21 51

Text Editors 9 22

Rational Rose 5 12

Together (Control Centre, IDE) 3 7

Table 1: Useful Documentation Technologies

17

2.2.2.5 Documentation tools
There have been several attempts to make tools to introduce structure and support the
writing of documentation. The basic approach has been to develop hypertext system
that models references between documentation and source code (Madsen and
Nürnberg, 2005). Examples of this kind of tools include Javadoc (described later),
Doxygen4 and ROBODoc5.

Madsen and Nürnberg made a prototype tool called Calliope to facilitate developers in
aligning their efforts in a common direction at a high level of abstraction. Work related to
the Calliope project is also described in Madsen and Nürnberg, among them a tool
developed by Cubranic and Murphy called Hipicat. Hipicat applies search algorithms to
make the data that is already available, such as CVS logs, mailing archives, IRC chats
etcetera, more accessible.

Other documentation tools and approaches have been put forward as well, but the
problem has been that open source developers refrain from using these types of tools
(Madsen and Nürnberg, 2005). Javadoc is a similar documentation tools and one of the
few tools that has won a relatively wide acceptance (ibid). Javadoc is described in
chapter 2.2.2.7.

2.2.2.6 Wiki
As stated in chapter 2.2.1, a website is very important for an OSS project. A wiki is a
kind of website where anyone with a given authority can add, remove, edit or change
the content in their own web browser. Some wiki pages allow everyone to change the
content, typically without the need for registration, while others are more restricted and
only allow a few trusted people to make changes.

The ease of interaction and operation makes a wiki an effective and powerful tool for
mass collaborative authoring, either in closed work groups or for the general public on
the open Internet (Aronsson, 2002). Wikis are not yet standard tools in open source
projects, but they probably will be soon (Fogel, 2005).

As chapter 2.2.2 stated, one critical aspect of software development is documentation,
and not only a user manual when the system is ready, but also technical specifications
for use by the developers during the project. Traditionally, this has been archived by
storing text documents on a shared file server (Aronsson, 2002). This has several
drawbacks, including; revision control and the ability to trace a document's history might
not be an integrated part of the system, the process for updating and approving a new
version of a document can be slow, hypertext links might not be supported and so on
(ibid). A documentation system needs to be fast, powerful, easy to use, and highly
automated, otherwise developers will avoid using it. This is where a wiki comes in
handy.

4 Doxygen homepage: http://www.stack.nl/~dimitri/doxygen/

5 ROBODoc homepage: http://www.xs4all.nl/~rfsber/Robo/robodoc.html

18

http://www.xs4all.nl/~rfsber/Robo/robodoc.html
http://www.xs4all.nl/~rfsber/Robo/robodoc.html
http://www.xs4all.nl/~rfsber/Robo/robodoc.html
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

Wiki pages are written in a special simplified markup language, sometimes known as
wikitext. This markup language is an attempt to simplify the syntax usually used to write
web pages, called HTML– Hypertext Markup Language.

The syntax to write a bulleted list with links in HTML is:

 Page one
 Page two
 Page three

In a web browser this would look like this:

The style and syntax varies between different wiki software, but to write the same
bulleted list with the syntax of MediaWiki, one wiki software, it would look like this:

* [[Page1|Page one]]
* [[Page2|Page two]]
* [[Page3|Page three]]

HTML, which is many cryptic tags, is not especially human-readable. The idea behind
the wiki syntax is to lower the barriers use so non-technical can easily contribute without
having to learn these cryptic tags.

The advantages of using a wiki include (Stafford and Webb, 2006):

19

Figure 1: A screenshot from Wikipedia, one of the best-known wikis.

Figure 2: The bulleted list rendered in a web browser.

● Good for writing down quick ideas or longer ones, giving you more time for
formal writing and editing.

● Instantly collaborative without emailing documents, keeping the group in sync.
● Accessible from anywhere with a web connection (if you do not mind writing in

web-browser text forms).
● Serves as an archive, because every page revision is kept.
● Exciting, immediate, and empowering--everyone has a say.

Most people, when they first learn about the wiki concept, assume that a website that
can be edited by anybody will suffer from “trolls” writing malicious or wrong information
(Aronsson, 2002; Goldman and Gabriel, 2005). This has turned out to be a small
problem in most cases, since people can easily see the changes that are done and all
pages are kept under version control, making it easy to roll-back to a previous version
(Aronsson, 2002).

Wiki pages are becoming more and more common in open source projects, but there
are a few of things to look out for when using wikis. Too often they suffer from (Fogel,
2005):

● Lack of navigational principles
● Duplication of information
● Inconsistent target audience

The common solution to all these problems is to have editorial standards and
demonstrate them by editing pages to adhere to them (Fogel, 2005).
Other disadvantages include that is it not obvious how to set up or back up wiki
software, the user needs to learn and understand the concept of text markup used in
the wiki and the wiki generally tends to get disorganized and chaotic(Stafford and
Webb, 2006). A wiki is not an administrative panacea and a certain amount of
maintenance and standards is needed to avoid a disorganized wiki (ibid).

People who are unfamiliar with wikis can also see it as a barrier to contribute. They can
be afraid of what will happen to the information they write, and can also be unsure
about what type of contributions are acceptable (Goldman and Gabriel, 2005).

2.2.2.7 Javadoc
Javadoc is a computer software tools for generating API documentation into HTML
format from Java source code. A Javadoc comment is a specially marked comment in
the source code that describes the code. The comment begins with /** and ends with */.
For most Java class libraries, the Javadoc is the only documentation (Goetz, 2002).
Javadoc is a great reference tool, but it is not a great tool for learning how Java classes
or methods are organized and how they should be used (ibid).

Most Java classes do not have Javadoc, and when they do, the Javadoc often contain
only the most basic information about what a method does. Effective Javadoc should at
least include descriptions of (ibid):

● How classes relate to each other

20

● How methods affect the state of the object
● How methods communicate error conditions to their callers and what errors they

might signal
● How the class deals with being used in a multithreaded application
● The domain of methods' arguments and the range of their return values

A positive side effect of writing good Javadoc is that it becomes a sort of code review
where the architecture of a class or method, and how they relate to each other is
explored (Goetz, 2002, Writing Javadoc is a form of code review). If a package, class or
method is hard to document, then it is probably trying to do more than one thing, and
should perhaps be re-engineered (ibid).

2.2.2.8 FAQ
A FAQ ("Frequently Asked Questions" document) is a document that covers questions
asked by the participants and answers to these question, and should contain the
questions that are actually asked instead of what might be asked. Since it is impossible
to know upfront the question people might ask, it is impossible to sit down and write
useful FAQs from scratch. The FAQ is often the first place users look to solve a problem
and it can be on of the best investment for a project when it comes to educational pay-
off (Fogel, 2005).

2.2.3 Mailing lists
Mailing lists are the most used communications form in open source projects; “[they]...
are the bread and butter of project communications” (Fogel, 2005, p. 37). All OS
projects, almost without exception, rely primarily on mailing lists for nearly all
communication activities (Cubranic and Booth, 1999). Cubranic and Booth give several
reasons for choosing this low-tech approach. First and foremost, e-mail is the lowest
common denominator for Internet communication, which makes it easy to get people to
participate or even just follow the discussion. Secondly, the distributed nature of open
source projects precludes the usage of synchronous communication. Thirdly, and
finally, the structure of open source projects is minimal and developers contribute when
they have time and feel like doing it. The asynchronous nature of e-mail means that
participants can take part in communication at their leisure.

It is important that all discussions about an open source project is done in the open, and
mailing lists or newsgroups are common ways of achieving this. These discussions
include announcements, bug reporting, problems and how to solve them, design issues,
and proposals for future work (Goldman and Gabriel, 2005). A small project may need
only a single mailing list, but to manage these different kinds of discussions in a large,
active project, several mailing lists can be necessary. By looking at some of the more
successful OSS projects, like the Apache web server and Maven, you will see that there
are often a number of different mailing lists in OSS projects; the most common being
(Nordal, 2006):

● Users' list for interaction between and among end-users and developers.
● Developers' list for interaction between internal and external developers.
● Issue list for mails announcing activities in the issue tracker.

21

● Commit list for announcing activities in the source code repository.

The point is not to have many mailing lists. A mailing list should be alive with activities,
and in general, it is better to have too few mailing lists than to have too many (Goldman
and Gabriel, 2005). When the traffic on one mailing list gets too intense or people start
discussing different topics over a long period of time, then a new mailing list should be
established. Large OSS projects with developers in many countries may have different
mailing lists in different languages (ibid).

It is important to keep an archive of each list and make searching them easy (ibid). This
is useful for new developers and new users so they can see if a particular issue has
already been discussed. It is also a nice way to keep a group record.

2.2.4 Public code archive
A prime requirement for an open source project is that the source code is publicly
available (Goldman and Gabriel, 2005), and it should be possible to get the latest
version of the source code at any time (Fogel, 2005; Goldman and Gabriel, 2005). The
way to achieve this is to use a version control system (Fogel, 2005).

Most projects will adopt some sort of source control management (SCM) system, and
the most widely used source control system in open source project is Concurrent
Versioning System, CVS (Erenkrantz and Taylor, 2003; Goldman and Gabriel, 2005).
There has been a recent trend in seeking tools that can replace CVS (Erenkrantz and
Taylor, 2003) and Subversion, often referred to as SVN, is one attempt at that. SVN is
meant to be a better CVS and a compelling replacement for it in the open source
community.6

Version control helps with virtually every aspect of running a project, from
communication between developers, code stability and release and bug management,
to experimental development efforts and attribution and authorization of changes by
particular developers (Fogel, 2005). A version control system manages files and
directories over time in a central repository where the repository is much like other file
servers, except that it remembers every change that have ever been done to the files
and directories. This makes it possible for multiple developers to work independently
while allowing them to remain updated and synchronized with the rest of the team
(Erenkrantz and Taylor, 2003). Since the history of every file is recorded, is it possible
to examine the history of the repository or recover an old version of data if problems
occur (Collins-Sussmann et al., 2006).

Typically in open source projects, version control systems allow anyone to read and
copy the source code, but only authenticated developers are allowed to update the
source code in the repository.

2.2.5 Issue tracker
An issue tracker is used to keep a record of known bugs and other issues, and is a
must in OSS projects (Goldman and Gabriel, 2005). The tracker goes by several
names, such as bug tracker and issue tracker, since these tools are usually fit for
tracking any kind of issues (bugs, tasks, request, ideas, etcetera). There are different

6 See the Subversion homepage for more information: http://subversion.tigris.org/

22

http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/

types of bug tracking tools, including web-based bug databases and tools that can be
used via e-mail.

The issues that are registered in a issue tracker have various kinds of tags or attributes
connected to them. These attributes can be status (e.g. new, assigned, resolved,
reopened, closed), priority (blocker, critical, high, normal, trivial), type (task, new
feature, defect, enhancement). In addition, issues can be assigned to a specific release
and to a particular developer who are responsible for resolving them.

The classic issue life cycle looks like this (Fogel, 2005, p. 54-55):

1. Someone files an issue and provides a summary and an initial description.
2. Others read the issue and make comments about it.
3. The bug gets reproduced to confirm that it is a real bug.
4. The bug gets diagnosed; its cause is identified, and if possible, the effort required

to fix it estimated.
5. The issue is scheduled for resolution.
6. The bug gets fixed.

There are other possible life cycles where the issue gets closed because it is not a bug,
the issue gets closed because it is a duplicate or other small variations (ibid).

Issue trackers are usually open to everyone and anyone may file an issue, look at an
issue or browse the current issues. For many people an open issue tracker is one of the
strongest signs that a project should be taken seriously (Fogel, 2005). Since both users
and developers can file issues, and users tends to be a prime source of bug reports, the
process of reporting bugs should be easy. As Goldman and Gabriel (2005, chapter 6)
puts it: “Keep in mind that they have already suffered by discovering bugs--they may
have lost their work and undoubtedly lost time--so don't make it painful for them to
submit bug reports too”. One way to solve this is to have different ways for users and
developers to report bugs. The users report the bugs they discovered, and the
developers, with more information and insight to the project or software, can file a more
informative issue.

Fogel (2005) argue that it is important to have the tracker connected to a mailing list, so
that every change to an issue causes a mail to go out describing what happened. This
automatically informs the project members of activities in the tracker and helps
encourage and stimulate timely reactions to the registered issues.

2.3 Social infrastructure in open source project
In an open source project, software building and community building are intertwined. As
the software matures, the community needs to keep up with it. Developers may be
physically and geographically separated, but a good community can make them feel like
they are working together in the same room (Fogel, 2005). The more they feel a part of
the community, the more time they will spend on the project. To enhance the feeling of
community, everyone involved with the project should know what is happening with it
(Goldman and Gabriel, 2005). Distributed software development also places a strain on
the communication mechanisms used in the project since developers are not co-located
(Erenkrantz and Taylor, 2003).

23

The following sections will introduce common practices and ways of conducting
software development in open source projects.

2.3.1 Leadership
The traditional approach to managing a large group of workers has been to establish a
strict hierarchy of managers controlling the activities of the people below them
(Goldman and Gabriel, 2005). This is time consuming, inefficient and requires a lot of
managers to manage the workers (ibid). Open source projects, on the other hand, are
self-organized and work towards shared goals where the actual people using and
developing the software discuss what needs to be done on mailing lists and
newsgroups. The unconstrained nature of the open source process might seem to leave
little scope for a leadership, but this is incorrect. Most successful open source projects
display a clear hierarchical organization (Bonaccorsi and Rossi, 2003) and by looking at
successful OSS projects like the Apache Software Foundation and SourceForge.net,
we can find examples of strong leadership and management (Nordal, 2006).

The governance structures of open source projects vary a lot, but the leaders share
some common features. Mostly, the leader is the person who started the project by
developing the initial code for the project or making another important contribution early
in the project's development. The initial experience is important in establishing the
credibility needed to manage the project. Leadership in OSS projects is not about being
in charge, making decisions, or give orders, but about having a vision and work with
others to make it happen (Goldman and Gabriel, 2005).

Fogel (2005) identifies two different leadership styles most commonly found in OSS
projects: The benevolent dictator (BD) and consensus-based democracy. These two
styles are the idealized extremes and most projects can be placed somewhere in a
continuum between them. In the BD model, final decision-making authority rests with
one person, but generally, the benevolent dictator act more like a judge and does not
make all the decisions personally. The BD leader will normally let things work
themselves out through discussions and experimentation, and only intervene when
considered necessary.

Another model commonly used by open source projects is the meritocracy model
(Erenkrantz and Taylor, 2003). In this model, all members share power equally and
there is no direct leader of the project. People gain power by sustained contributions
over time and those who have demonstrated their competency through their work on
the project, are the ones who make the decisions (Goldman and Gabriel, 2005).

Lerner and Tirole (2002, p. 21) list four tasks a leader must do:

● Provide a vision
● Make sure that the overall project is divided into smaller and well-defined tasks

(modules) that individuals can tackle independently from other tasks
● Attract other programmers
● Keep the project together (prevent it from forking or being abandoned)

Edwards (2000) disagrees with several of these tasks, and argues that defining
modules and tasks in an open source software development project is not the task of
the leader, but the leader should encourage the creation of modules. He also claims

24

that OSS projects gain users and co-developers from those searching to solve a
problem, and not because of the leader or his or hers actions. The project leader can of
course, according to Edwards, increase the probability of people finding the project by
promoting it on relevant search engines and web pages.

One determinant of project success appears to be the nature of its leadership (Lerner
and Tirole, 2002). Max Weber in Lerner and Tirole (2002) gives some attributes which
underlie successful leadership. The first attribute is that the programmers must trust the
leadership. The programmers have to believe that the leader's objectives are sufficiently
congruent with theirs and not polluted by ego-driven, commercial, or political biases.
Secondly, the leader must clearly communicate his/her goals and evaluation
procedures. Edwards (2000) claims that the properties associated with good leadership
are difficult to apply and find in OSS projects. He even suggests that the term “leader”
should be abandoned in OSS development projects, and the term “maintainer” should
be used instead to describe the key person in a given project.

2.3.2 Coordination
Project coordination can be defined as the attempt to get the right information to the
right people at the right time (Holz et al., 1998).

Since open source development is a collaborating process between participants
dispersed worldwide it calls for other types of coordination than proprietary development
where all participants are co-located. Open source projects cannot rely on face-to-face
meetings, but have to make use of other forms of technology to coordinate the project
and make decisions over distance (Cubranic and Booth 1999). Mailing lists are one
common technology used to archive this kind of coordination over distance.

OSS projects are missing many of the traditional mechanisms used to coordinate
software development, such as plans, system-level design and scheduled and defined
processes (Mockus et al., 2000).

2.3.3 Decision making
All decision making in an open source project should happen either on the project's
public mailing lists or in a public community meeting (Goldman and Gabriel, 2005). The
disadvantages of public list discussions included the delay of using e-mail for
conversations, the hassle of volunteers who think they understand all the issues, when
they actually do not, rude or insulting behaviour because people will say things in e-mail
that they would never say face-to-face, and so on (Fogel, 2005). Public discussion also
usually takes more time to reach a conclusion then proprietary development groups, but
even though public discussion may be slow, they are always preferable in the long run
(ibid). Few volunteers will stick around in a project where a secret group makes all the
big decisions (ibid).

The process of making a decision varies from one open source project to the next, but it
is often based on the idea of a meritocracy (Goldman and Gabriel, 2005). Following this
idea, the originator of the code, or the model owner, often has the final say, but it only
works if the benevolent dictator can maintain the respect of the developer community
(ibid). If this respect is lost, the community will call for a replacement.

25

2.3.4 Releasing and distributing
Every time someone checks in a change to the source code repository, that is a new
release (Goldman and Gabriel, 2005). This means that active developers are
guaranteed to be working on the most recent code and do not have to spend time trying
to fix a bug somebody already has fixed. In addition, the developers contributions can
be used and given feedback on immediately. Users, on the other hand, might want
more stability in the software they rely on. To satisfy these two conflicting needs, many
OSS projects do a series of frequent, small, incremental releases. “Release early and
release often” is a strong community norm in OSS development (Raymond, 1998).

Goldman and Gabriel (2005) argue that the release process for an OS project is very
similar to that used for proprietary products, except that OS projects tend to be more
loosely organised (Goldman and Gabriel 2005, chapter 6. How To Do Open-Source
Development), while Fogel think there is a difference (Fogel 2005, p. 111). Fogel (2005)
argues that a corporation can ask all developers to put everything on hold and fully
focus on an upcoming release, while in an OSS project not everyone will be interested
in helping out with an ongoing release. Volunteers contribute to the OSS project for all
sorts of reasons, and even though they are not interested in helping with an upcoming
release, they might still want to continue regular development work while the release is
in process. As a consequence, the release process tends to take longer time in OSS
project, but it is less disruptive compared to commercial release processes.

Code freezing is not a good idea in OSS project, because ongoing development is likely
to continue during the release process. Developers who want to continue their work on
new and experimental modules that will not be included in the release, might abandon
the project if they cannot check in their code and test it promptly because of code
freezing. The solution to this problem is to use a release branch (Fogel, 2005; Goldman
and Gabriel, 2005). A release branch is just a branch in the version control system
where the release activity can proceed, while normal development continues in the
main trunk.

Before making a release, it must be decided which changes will be in the release, and
which will not. There are several systems used to do this work of stabilizing a release.
Two of the most popular systems are the dictatorship model with a release owner and a
more democratic vote system (Fogel, 2005). In the dictatorship model, the group agrees
on one person to be the release owner. There is a discussion about what makes it into
the release, but the release owner has the authority to make final decisions. With a
voting system, the majority makes the decisions. Not every participant in the project is
necessarily given a vote, and having a voting system raises the question about who
gets to vote. There are several ways of solving this, but one approach is to use the
voting system itself to choose new voters.

A release manager can be used to coordinate the release process. The release
manager is quite different from the release owner, and the manager's job includes
helping to keep track of what goes into the release and what is not yet ready, recruiting
testers and coordinating the testing process (Fogel, 2005 and Goldman and Gabriel,
2005).

When most of the known bugs have been fixed and the release is becoming stable, the
release should be tested and approved by developers (Fogel, 2005). Raymond (1998)
introduces what he calls “Linus' Law”: Given enough eyeballs, all bugs are shallow. He

26

argues that more users find more bugs because adding more users adds more different
ways of stressing the program. “Given a large enough beta-tester and co-developer
base, almost every problem will be characterized quickly and the fix obvious to
someone” (Raymond, 1998, The eight lesson). Goldman and Gabriel (2005) follow up
on this and suggest that a beta release should be put out before the official release.
They argue that more people are willing to try out a beta version which has already
undergone substantial testing, and that these people, the second batch of testers, will
help catch the remaining bugs and improve the quality of the release.

Once all major bugs are fixed and the release is approved, it should be packed for
distribution and announced to the world. The release should be placed into the project's
download area and made available to users as both source code packages and binary
packages in different file types.

It is important to give each release a unique release number so that everyone knows
what is the newest release is and that bugs can be reported to the right version of the
source code (Fogel, 2005; Goldman and Gabriel, 2005). The most common release
number system is the three-component system where the first component is the major
number, the second is the minor number and the third is the micro number. A project
usually has guidelines to describe what kind of changes are micro, minor and major.
There are many different methods and conventions for how many components to use,
and what they mean, but the differences tend to be minor (Fogel, 2005).

2.3.5 Guidelines
Developer guidelines are social guidelines which explains how the developers interact
with each other and with the users, and how things get done. When some one is
considering contributing to the project, the first thing they will look for are the guidelines
(Fogel, 2005).

Open source projects usually have a high turnover rate, and it is thus important to have
developer guidelines which allow new developers to familiarise themselves with the
processes and tools being used in the project. If given good guidelines, new developers
can contribute to the project in an intelligent manner (Erenkrantz and Taylor, 2003).
Guidelines can also prevent conflicts. The idea is that most conflicts will be resolved
peacefully by creating and following pre-made guidelines (ibid).

2.3.6 Communication and knowledge sharing
A common problem in open source projects is to understand what the other participants
are currently working on (Erenkrantz and Taylor, 2003). It can even be hard to identify
the participants who are currently active in the project (ibid).

Asynchronous mechanisms for communication, like e-mails, makes it easier for more
people to participate and are usually preferred. If synchronous methods are used, some
participants may not be able to contribute to a discussion because of different time
zones, busy time schedules or other appointments (ibid). When synchronous
communications are used, and not all developers can participate, it is essential to make
some form of archive of the communication (ibid).

Mailing lists are great for discussions, but not everyone has the time to follow them. To
keep people informed on current issues, Goldman and Gabriel (2005) suggest having a

27

project newsletter published on a regular basis. This newsletter could contain links to
interesting discussions on the mailing lists, articles covering project related news,
articles on some individual who is doing interesting work on the project, pointers to
press articles about the project, news on related software and so on.

Open source projects with public discussions usually have a larger diversity of
viewpoints than proprietary projects, and therefore the conclusion is often of higher
quality (Goldman and Gabriel, 2005). This can lead to a shorter overall development
cycle because subsequent work will not be discarded because issues were raised after,
rather than during, the discussion period (ibid). Fogel (2005) lists other beneficial side
effects gain from public discussions:

● The discussion will help train and educate new developers. You never know how
many eyes are watching the conversation; even if most people don't participate,
many may be tracking silently, gleaning information about the software.

● The discussion will train you in the art of explaining technical issues to people
who are not as familiar with the software as you are. This is a skill that requires
practice, and you can't get that practice by talking to people who already know
what you know.

● The discussion and its conclusions will be available in public archives forever
after, enabling future discussions to avoid retracing the same steps.

Small groups can, and should, discuss in private to work up proposals and suggestions,
but these proposals should be presented to the community for feedback as soon as
possible (ibid). There are also some discussions that must be held in private, but the
principle should always be: "If there's no reason for it to be private, it should be public"
(Fogel, 2005, p. 31).

2.4 Former research on DHIS 2
Several master theses has been written about the DHIS 2 software, most noticeable are
the theses written by Nordal (2006) and Øverland (2006). Nordal's thesis explores a lot
of the problems arising from establishing the DHIS 2 project as an open source project.
He was one of the central participants in the early period and took part in the
discussions about the tools, frameworks and programming languages being used in the
development. He also contributed greatly to the development of the software and was
part of the first initiative to establish a HISP node in Vietnam. Empirical data and
findings from his thesis are used as background information about the DHIS 2 software
and its development process in this thesis.

Øverland is one of the core developers who participated in the effort to establish a local
development team in Vietnam. Øverland supplies more information about the Vietnam
node which complements Nordal's work, but this is not used extensively in this thesis.

This thesis is mainly based on experiences and findings from after the time period
covered in the two other thesis.

28

3 Health Information Systems Programme (HISP)
This section will give a brief historical overview of the HISP project and the development
of the health information systems DHIS 1 and DHIS 2. The technical and social
infrastructure surrounding the DHIS 2 development will also be presented and
discussed.

3.1 HISP history
The Health Information Systems Programme, HISP, is an ongoing research and
development project which was initiated after the fall of apartheid in South Africa in
1994. The project started as a collaboration between public health, medical and
computer science departments at the University of Oslo(UiO) in Norway, the University
of Western Cape(UWC) in South Africa and the Ministry of Health in South Africa.

As a legacy of apartheid, South Africa was left with one of the least equitable health
care systems in the world where 60% of the resources were being used by the private
sector, serving only 20% of the population (Braa and Hedberg, 2002). The new
government launched the Reconstruction and Development Program (RDP) to
reconstruct and redevelop the communities that suffered under apartheid. One of its
goals was to develop a new national health information system. As a part of this, the
Strategic Management Team, established by the RDP, proposed a pilot project to
develop district health and management information systems. HISP was established in
1996 in three health districts in and around Cape Town to be a part of this pilot project.

Braa et al. (2004, p. 343) define the primary HISP research goal as follows:

The primary goal of the HISP research is to design, implement and sustain
HIS following a participatory approach to support local management of
health care delivery and information flows in selected health facilities,
districts and provinces, and its further spread within and across developing
countries.

HISP wanted to empower the health districts and focus on the use of the information at
district level. These efforts transformed into two main areas for research and
implementation (Braa and Hedberg, 2002):

 Development of Essential Data Sets and standards for primary health care data
 Development of a District Health Information Software (DHIS) supporting the

implementation and use of such data sets

An Essential Data Set is defined as a set of the most important data elements, selected
from all vertical primary health care programmes, that should be reported by health
service providers on a routine basis. The benefits of developing these essential dataset
is to clearly define which parameters should be monitored and used (Shaw 2005).

The first essential data set was implemented in 1997 in all local government health
facilities in the Cape Metropole (including the HISP pilot districts). It later spread to the
whole province of Western Cape. In 1998 HISP released the first implementation of the
District Health Information Software (DHIS), supporting the collection of standardized
health care data.

29

In February 1999, the Department of Health in South Africa adopted the strategies,
processes and software developed in the pilot districts as the national standard (Braa
and Hedberg, 2002). By 2001, HISP was established in all provinces and districts in
South Africa. This later evolved into HISP efforts in other countries like Mozambique,
India, Vietnam, Tanzania, Ethiopia and Zanzibar.

In the beginning of the 2000s, HISP approached the European Union and formed the
BEANISH (Building Europe-Africa Network for applying IST in the Health care sector)
network. This initiative seeks to involve various institutional actors (government,
universities, private sector and non-governmental organisations) to strengthen and
extend an Europe-Africa collaborative network. The focus of the network is to support
cooperation, learning and innovation in mutually beneficial ways.

3.2 DHIS history
The free and open source District Health Information Software (DHIS) application is a
flexible database tool for capturing data elements and conducting planning and analysis
on registered routine data, semi-permanent data, audit data and survey data. DHIS is
designed to support health workers and managers at all administrative levels through a
balance between flexibility and standardization, and with a strong emphasis on using
information for local action.

The basic idea is to give health workers an overview of the situation in a district or
region. This overview then serves as a tool in determining where to concentrate extra
resources and efforts.

3.2.1 DHIS 1
The first prototype of DHIS 1 was released for pilot testing in March 1998, and went
through a series of rapid prototype cycles with new releases on a weekly or even daily
basis. The software was at this time developed by a two-person team; one system
analyst/designer and one developer. In 2000-2001 additional developers took part in the
software development. After that period, the development was done primarily by one
developer, who hired extra help when needed. Masters students connected to the HISP
network have also participated, but mostly on the implementation side.

The software was developed with the following objectives (Braa and Hedberg, 2002):

 Shift of control of information systems from central towards local levels, i.e.
towards more equal control between central and local levels.

 Local flexibility and user orientation – it should be easy to adapt the software to
local conditions.

 Support for health sector reform towards decentralization and the development of
health districts, i.e. integrating the vertical flows at district level.

 Empowerment of local management, health workers and communities.
 Horizontal flow of information and knowledge, based on the principle of free

access to all anonymous, aggregated health data/information.

30

The software has been developed using Visual Basic (VB) and runs in a Microsoft (MS)
environment with Windows and MS Office (Access and Excel). MS Office was selected
mainly because it was a standard among potential users already.

Multiple versions of DHIS exists. The DHIS version 1.3 is based on Microsoft (MS)
Office. The DHIS version 1.4 also relies on MS Office to some extent, but it is at the
moment regarded as the last version to rely predominantly on Office/VBA.

DHIS 1 has been used on a national basis in South Africa since 2001, and because of
its success it has spread through several other developing countries.

31

Figure 3: Screenshot of the welcome screen of DHIS 1.4

3.2.2 DHIS 2

HISP has all along defined DHIS as open-source software and the code for DHIS 1 is
open and free, but the modules being used from Microsoft are not. This means you
have the possibility to change DHIS to suit your needs, but you still have to purchase
Microsoft licenses to run the software. Microsoft licenses can be expensive, especially
for developing countries, so the DHIS 2 is now being developed using open source
Java frameworks and tools: The Spring Framework, Hibernate, WebWork, Maven, and
JUnit.

The license for DHIS is written by HISP and has been bundled with and made available
through the application. It is in principle quite similar to the Lesser GPL license. In short
it says that anyone can use the DHIS software however they like, except for commercial
purposes. The license is specific to the DHIS software, and not an official OSS license
(defined by the Open Source Initiative as a license conforming to the Open Source
Definition).

In 2003, DHIS 1.3 was the current stable version of the software, with a version 1.4 on
the way. Evaluations of the software were conducted at this time, and discussion and
criticism around the core issues in the software was triggered from a number of central
persons tied to the HISP network.

The core of the discussion was as follows (Nordal, 2006, p. 30-31):

 DHIS was not web-enabled, and the technologies that it was built on made it
practically impossible to change that. Integration between users (exporting and
importing data) was done manually (exporting to file and manually sending it via
e-mail even between users with Internet connectivity.

 The software was a standalone desktop application that would only run on MS
Windows, using the Access DB. A web-enabling of the software would open it up
for use on all platforms, using web browsers as clients.

32

Figure 4: Screenshot of data entry in DHIS 2.

 Users were experiencing major performance issues with the MS Access
database engine because of the amount of data handled by DHIS. Being able to
use the DHIS software with a full-blown relational database management system
(RDBMS) was starting to become critical for some.

 DHIS was the result of a lengthy prototyping approach, where add-ons have
been built on add-ons and so on. DHIS has therefore often been described as an
onion, where new layers of functionality have been added to the existing layers,
creating an overly complex data model.

 A major issue that concerned many was the lack of a layered architecture. It was
argued that splitting the application into a three-tier architecture model and
modularizing it would be critical for further development and adoption of DHIS.

 DHIS is built with technologies and written in a language that were starting to
become outdated, and some of the participants were arguing that HISP needed
to start looking at other alternatives that are more suitable for the continued
evolution and development of DHIS

Talk and discussions around the DHIS 2 continued, but it was not until May 2004 that
HISP hired a researcher to start working on it full time. Another PhD student joined in
June, and together they started the initial phases of the DHIS 2 project, involving a
review of potential technologies and frameworks. The previous versions of DHIS acted
as a requirements specification, but in addition, two new technical requirements were
considered vital:

 The system needed to be platform independent and able to run on most
relational database management systems.

 It must be possible to develop both web based and desktop modules for the
system

Java was selected as the programming language for several reasons; it has a strong
presence at UiO where Java is used in most of the programming courses, it is a popular
programming language, it provides services which make it highly suitable for web
application development and it is platform independent.

While the development of DHIS 1 started from scratch with little or no experience with
HIS, the development of DHIS 2 could benefit from the experience and findings from the
work with DHIS 1, resulting in less need for user participation and prototyping. The
requirements was to a large extent defined by DHIS 1; the initial focus was to copy and
improve the functionality from the existing system with a web based application. While
most of the development of DHIS 1 was done by a hired team of professional
developers, DHIS 2 is primarily developed by students and researchers.

DHIS 2 has (as of July 2007) reached its seventh milestone release, and has been
translated into English, Norwegian, Vietnamese, Hindi, French, Malayalam, Telugu,
Amharic, Gujarati and Kannada. The software is implemented and used in several
districts in Vietnam and India.

33

3.3 Development network
HISP consists of different nodes bundled together in the HISP network. Braa et al.
(2004) define the nodes as being on two levels, different countries and set of
institutions, typically universities, in the various countries. The primary nodes, as
defined by Braa et al. (2004), are South Africa, Norway, Mozambique, Tanzania and
Ethiopia. Since this article was written, HISP has expanded further, with primary nodes
in among other places Malawi, Vietnam and India. An effort was also made in Cuba, but
failed. The DHIS 2 project consists of four nodes or teams: Norway (usually referred to
as ‘Oslo’), Vietnam, India and Ethiopia. The HISP teams are separate legal nodes with
their own employees and local issues.

The leadership group of HISP controls the overall project and oversees the movement
of people between the nodes. It also works to get funding to the project from
international organisations like the EU and WHO.

The core DHIS 1 development competence is located in Cape Town, South Africa,
where the two core developers are situated. The South Africa team has extensive
experience with health information systems and therefore has a highly influential role as
advisor also in the DHIS 2 project. They have been collaborating with the coordinators
and developers of DHIS 2 to define DHIS 2 requirements and plan the direction of the
DHIS 2 development. India has also strongly influenced the direction of the software
development. After the first official release of DHIS 2, they have become the main target
area for piloting the system (Nordal, 2006). The feedback and requirements from India
has affected much of the development focus.

An important focus for HISP is to develop local competence. During the DHIS 1
implementation process HISP put a lot of effort into establishing local capacity at the
nodes in the network to be able to achieve sustainability and foster growth. The
competence building efforts for DHIS 1 was primarily focused on use and software
administration, but for DHIS 2, building local development teams has been an additional
goal.

3.4 DHIS 2 development
The technical and the social infrastructure in DHIS 2 will be presented in this chapter.
The description provides essential background information for understanding the DHIS
2 case and helps to address the research objectives of this thesis.

3.4.1 Technical infrastructure in DHIS 2
The technical infrastructure of the HISP project consists of mailing lists, an online
source code repository and several different types of web pages; a general wiki, country
specific sites containing information regarding that particular country, a bug database
and an online demo of the newest DHIS 2 release. The wiki pages covers both
information about the HISP project in general and more specific information about the
DHIS 2 software and the development process. The wiki also contains documentation
which will be described in its own subsection.

34

3.4.1.1 Web pages
DHIS 2 has several different types of web pages, including wiki-pages, downloadable
documentation, Javadoc and help functionality in the software.

HISP uses Confluence from Atlassian as its wiki tool. Confluence is not open source,
but Atlassian gives away free licenses to OSS projects that conform to a set of given
requirements. Before deciding to use Confluence, it was discussed how appropriate it
was to use such a “semi-proprietary” solution (Nordal, 2007). Confluence was chosen
because of the quality of the product, the foothold they have in the OSS Java
community, and because it is based on the same technologies being used in the
development of DHIS 2 (ibid).

The Confluence wiki is divided into different sections called spaces, which are
independently managed wikis, all part of the same site. The wiki for HISP is available at
http://www.hisp.info, with a dedicated space for the DHIS 2 project at
http://www.hisp.info/confluence/display/DHIS2. The wiki is the main tool for publishing
information about DHIS 2 on the web. Anyone can sign up for an account and edit the
pages. Local HISP web pages with more static information have been introduced in
several countries, including the countries where DHIS 2 is being used, India
(http://www.hispindia.org) and Vietnam (http://www.hispvietnam.info). Both these sites
contain some information about the project, the Indian site written in English and the
Vietnamese site in Vietnamese, but they are both unfinished sites under construction
where not all information is presented.

Only registered users on the wiki are allowed to edit and create new pages, and only
administrators are allowed to delete pages and comments.

3.4.1.2 Visual documentation
DHIS 2 had some diagrams in the source code earlier, but since it was agreed that
diagrams do not belong in the source code, they were deleted. The old diagrams are

35

Figure 5: Screenshot of the DHIS 2 space on the wiki.

http://www.hispvietnam.info/
http://www.hispvietnam.info/
http://www.hispvietnam.info/
http://www.hispindia.org/
http://www.hispindia.org/
http://www.hispindia.org/
http://www.hisp.info/confluence/display/DHIS2
http://www.hisp.info/confluence/display/DHIS2
http://www.hisp.info/confluence/display/DHIS2
http://www.hisp.info/
http://www.hisp.info/
http://www.hisp.info/

still available on the wiki, but they are outdated and new ones should be drawn and
made readily available on the wiki. Another form of visual documentation that is not
presented on the DHIS 2 wiki is screenshots from the software. Fogel (2005, p. 27)
argues that a single screenshot can be more convincing than descriptive text and output
from mailing lists. Screenshots also show is functional and that the software actually
works (ibid).

Visual documentation in the form of diagram, especially on the API, has been requested
on the mailing list, but new ones have not been made.

3.4.1.3 Mailing lists
The mailing lists of DHIS 2 have been extensively used and serve as a common place
for everyone involved to speak their mind and ask questions. They provide a great
opportunity to conduct asynchronous communication between participants in different
countries and time zones.

DHIS 2 originally started out with 4 mailing lists called dev, scm, jira and despots
(Nordal, 2006). “dev”, dhis-dev@hisp.info, is a developers' mailing list and is the most
important mailing list in the development of DHIS 2. The list brings developers from
various nodes together to discuss everything regarding the development of DHIS 2;
technical solutions, questions, support, coordination and so on. Developers and
administrators with questions ask them on this list. In the rest of this thesis the
developers' mailing list is referred to as the “dev-list” or just the “mailing list”.

“scm”, dhis-scm@hisp.info, is for mail automatically generated by Subversion when a
participant commits an update to the central source code repository. Most, if not all
developers who are subscribed to the dev-list are also receiving the commit mails.

“jira” (no longer in use) is for mail from JIRA, the former issue tracker, and “despots”,
despots@hisp.info, is for administration purposes. After the first milestone release in
January 2006 an additional mailing list named “user” was created to allow users of the
software to give feedback and get help. When the infrastructure for mailing lists was
established, a mailing list for the stable DHIS 1.4 was also created. Today, 4 mailing
lists are commonly used and made reference to. The mailing list called JIRA has been
removed and one new mailing list called “HISP”, hisp@hisp.info, has been established.
The HISP list covers general topics regarding the HISP project. Additionally, there are a
couple of more mailing lists for people interested in specific topics or located in a
specific country. DHIS 2 developers are required to subscribe to at least the dev-list and
the scm-list.

The mailing lists are not only for interaction between participants, but also serves as a
complement to the documentation and knowledge transfer process (Nordal, 2006). This
is especially important in hectic periods when things change overnight and keeping
static documentation up to date would create too much work. To enhance the
usefulness of the mailing lists and make it easier to refer to previous discussions, the
mailing lists are stored in web archives.

In the beginning of 2007 it was decided to change to a new mailing list system which
enables better archives and the possibility to search the archive. The system is also
easier to administrate. The old archives still exist to prevent data from being lost, but
they are no longer being updated since the mailing lists are closed.

36

mailto:hisp@hisp.info
mailto:hisp@hisp.info
mailto:hisp@hisp.info
mailto:despots@hisp.info
mailto:despots@hisp.info
mailto:despots@hisp.info
mailto:dhis-scm@hisp.info
mailto:dhis-scm@hisp.info
mailto:dhis-scm@hisp.info
mailto:dhis-dev@hisp.info
mailto:dhis-dev@hisp.info
mailto:dhis-dev@hisp.info

3.4.1.4 Public code archive
Fogel (2005) state that everyone will expect an open source project to be using version
control tools, and it was decided early in the development process that DHIS 2 needed
a public code archive where all participants could contribute (Nordal, 2006). Both CVS
and SVN were considered, but since CVS was the most widely used version control tool
in open source projects at that time and was considered more mature then SVN, CVS
was chosen for the project (ibid). It later turned out to be problems with CVS, especially
regarding permission handling, and it was decided to change to Subversion (ibid). SVN
has proved to be very stable and has been successfully used in the development of
DHIS 2 since the beginning of 2005.

As of May 2007 there have been more than 3300 commits (changes done by
developers) to the source code repository, and SVN is used nearly on a daily basis (98
out of 120 days in the first 4 months in 2007 had a commit) and by all developers. There
were 634 commits to the repository from January to April 2007 - more than 5 commits
every day on an average basis. This makes SVN one of the most frequently used tools
in the development of DHIS 2, and it is essential for the collaboration between
developers.

It is possible to anonymously access the source code over http7, but only read access is
granted. To be able to contribute to the project and commit new code, the participant
has to sign up for an account. Anyone interested can do so, and how to do it is
explained on the wiki.

When participants commit their code to the repository they are asked to provide a log
message explaining the changes they have done. This log message, combined with a
log message showing the differences between the new and the old source code, is
automatically sent to the scm mailing list. All developers are encouraged to read the log
messages to know what is going on in the repository and what the other developers are
doing. The mailing lists show that people are paying attention and read the log
messages. If there is a commit without a log message, it will not take long before
someone sees it and writes a mail complaining about the missing log message; “Please
write log messages!” The same goes when participants commit files that should not be
in the repository, e.g. binary files, or do something else that seems out of place.

Several open source projects do not give write access to the source code right away
and/or have trusted project members that control every commit. All the projects at
Apache operates under a meritocracy where those participating to a high extent are
invited to the project as a committer.8 This is not the case with DHIS 2, where everyone
involved in the project can commit to the central repository. The fact that everyone has
write access to the source code could potentially lead to abuse of the repository, but
has never been a problem in the development of DHIS 2. Another more important
aspect, that could be a problem, is that no one is in charge of controlling the commits.
This could lead to poor code or defect functionality, but by having the SVN server send
log messages to a mailing lists with reports on all activities and encouraging people to
read the mails, the project gains a measure of commit-control. Since DHIS 2 is a small
project, whit less than 10 active developers, not having approval of the commits have
not been a problem and most of the commits are without problems. Whether or not this

7 Http-access address: http://www.hisp.info/svn/scm

8 See the Apache site for more information: http://www.apache.org/

37

http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.hisp.info/svn/scm
http://www.hisp.info/svn/scm
http://www.hisp.info/svn/scm

is sufficient commit-control has never, to my knowledge, been discussed among the
participants.

3.4.1.5 Issue tracker
DHIS 2 has a bug and issue tracking software. DHIS 2 used for a long period of time
JIRA from Atlassian since it's integration with the Confluence wiki provided benefits for
the project. However, this integration possibility has not been used, apart from a
common user database between the two tools. The core developers did actively use
JIRA in the beginning, but problems with mail configuration in JIRA resulted in no mails
being sent to the dev-list when changes were made (Nordal, 2006). This made it hard to
follow what was going on, and as one of the project members wrote to the dev-list: "[...]
JIRA should send e-mails when changes occur. It is basically useless as anything more
than a task list for individual developers in the state it's in now".9 Less mail activity leads
to less use of JIRA, and new developers never got to see how JIRA might work and the
usefulness it, or other bug and issue tracking software, can provide.

There are several reasons why the issue tracker was not used as much as it should be
in the development of DHIS 2, but the most likely reason was the lack of e-mail support.
Fogel (2005) mentions that it is important to have the tracker connected to a mailing list.
It is hard to keep up to date and follow the development when no mails are sent from
the tracker. The DHIS 2 developers could log into JIRA every now and then to see what
is going on, but it is not a perfect solution nor sustainable in the long run. The lack of
mail notification was also the root to the problem of getting new developers to use it
(Nordal, 2006).

Other reasons why JIRA was not used include that the software is too complex for
regular users and therefore only usable for developers. As mentioned earlier, Goldman
and Gabriel (2005) stress the fact that the process of reporting bugs should be easy
and not painful. The developers and coordinators involved in the DHIS 2 development
has suggested several possible ways of how to get the users bugs and request into
JIRA.

It was decided from the start that the issue tracker required user accounts to see and
file issues (Nordal, 2006). The registration is open to anyone, but it requires that extra
step of registering an account before it can be used. The reason for requiring an user
account is to minimize the risk of abuse and to be able to contact the person who files
an issue (ibid). Since the process of reporting bugs should be easy, requiring the users
to create an account before reporting bugs could scare them away. DHIS 2 see little (or
none) issues being filed from the end users, but as few of the end users has internet
access or write English, the project is not likely to get issues directly from them either.

Goldman and Gabriel (2005) argue that issue trackers should not necessarily require
that users register an account, and the observations from the DHIS 2 project suggest
that this view could be reasonable. Findings from Nordal's thesis also observe how the
value of the tools, and especially the issue tracker, diminishes when fewer participants
use them. Nordal further suggests that when a project grow to a size where it is difficult
to keep track of what everyone is doing, participants should be encourage or even in
some situations demanded to use them.

9 From the mailing list archive: http://www.hisp.info/archives/dev/msg02388.html

38

http://www.hisp.info/archives/dev/msg02388.html
http://www.hisp.info/archives/dev/msg02388.html
http://www.hisp.info/archives/dev/msg02388.html

3.4.1.6 Releases
Fogel (2005) mentions two popular systems to stabilize a release; a dictatorship model
with a release owner and a more democratic vote system. DHIS 2 uses neither of these,
but a democratic system where developers, coordinators and facilitates are given the
right to tell their point of view. The release process in DHIS 2 usually starts with a
discussion about what goes into the release, who is doing it and when it is to be
released. Then the developers do their tasks and when the release date approaches
one out of two things happens; either someone ask for more time to finish his or her
task, and are granted that extra time, or the release date passes by without a release. It
has been discussed several ways of doing the release process on the mailing list. Most
people (in fact everyone who answered to one of the threads about releases on the
mailing list) agreed that the best approach is to set a feature-freeze date and make a
release branch. An excerpt from the discussion on the mailing list shows what the
developers think:

XX days before the release we make a new branch/tag without changing the
version number (still -SNAPSHOT). Bug-fixes go into this new branch and
gets merged back to trunk. On the release date this branch is made ready for
release like we normally do it (change versions).10

This fits well with the statement of Fogel (2005) and Goldman and Gabriel (2005) that
code freezing is not a good idea, but that using a release branch is. By having a release
branch developers can continue on the features they either did not finish in time or that
are scheduled for a later release, while bug fixing is happening in the branch. This
sounds reasonable, but the problem is that it never has happened in the developing of
DHIS 2. The new features in DHIS 2 are tested before a milestone release by
voluntaries, but there are no formalize testing routines. The last milestone release (as
of July 2007), milestone 7, was not tested probably before the release, and when the
users downloaded it, they found several critical bugs that had to be fixed before they
could deploy it in the field. This lead to a maintenance release a couple of weeks later.
By either making a release branch a week or so before the release, or release a beta
version, this kind of problems might not occur that often. The developers are aware of
the problem with lack of testing and it is often raised when the next milestone is
discussed, but so fare no one has step forward and actually changed the release
process.

Another problem DHIS 2 faces is to agree on a release date and stick to this date. “I
don't think enough things have been committed to warrant a release right now, so
suggest we put it off a bit.”11 Statement like this from a coordinator on the mailing list
shows that no one is working towards a agreed release date or are sticking to the
predefined date. One of the developers wrote to the mailing list argue that “As a
dev[eloper], I like writing code, I like writing new stuff, and I'd like to make everything
perfect and polished before releasing it”.12 This goes for most of the developers and can
lead to delay in the release process when there are no release manager or owner, and
no prioritized list of what goes in the release. A roadmap with a feature list (although,
not a prioritized list) has been made and updated since this discussing.

10 From the mailing list archive: http://www.hisp.info/archives/dev/msg01707.html

11 From the mailing list archive: http://www.hisp.info/pipermail/dhis-dev/2007-May/000796.html

12 From the mailing list archive: http://www.hisp.info/archives/dev/msg03187.html

39

http://www.hisp.info/archives/dev/msg03187.html
http://www.hisp.info/archives/dev/msg03187.html
http://www.hisp.info/archives/dev/msg03187.html
http://www.hisp.info/pipermail/dhis-dev/2007-May/000796.html
http://www.hisp.info/pipermail/dhis-dev/2007-May/000796.html
http://www.hisp.info/pipermail/dhis-dev/2007-May/000796.html
http://www.hisp.info/archives/dev/msg01707.html
http://www.hisp.info/archives/dev/msg01707.html
http://www.hisp.info/archives/dev/msg01707.html

Erenkrantz and Taylor (2003) argue that if a project does not have a coherent release
process, it may have problems attracting users or achieving a reputation for stability.

3.4.1.7 Other tools used in DHIS 2
A number of other tools are also being used in the DHIS 2 project, including an IRC
channel, a blog and instant messaging clients.

An IRC channel is mainly designed for many-to-many communication in discussion
forums and is a place where users and developers can ask each other questions and
get instant responses (Fogel, 2005).

A blog (or weblog) is an online journal with entries, often known as posts, on whatever
topic or topics interest the author (Goldman and Gabriel, 2005).

Instant messaging (IM) is a form of real-time communication between two or more
people based on typed text (Wikipedia, 2007b). It is widely used between project
members of DHIS 2, and all the developers has one or several accounts. Different IM
clients are popular in different countries, and both GTalk, MSN, Skype and Yahoo!
Messenger are being used.

3.4.2 Social infrastructure in DHIS 2

3.4.2.1 Leadership
DHIS 2 has a loosely organized project structure, where everyone involved, as in most
open source project, is participating on a public mailing list and uttering their thoughts
and point of view. The leadership or maintainer of DHIS 2 has mainly consisted of 2
coordinators and a core group. The core group is a subset of the participating
developers and consist of a 3-5 developers who contribute to the project frequently and
substantially. The core developer group is given decision-making authority in the
development project. Who the core developers are, is not formalized or written down
anywhere.

This sort of developer organization are usually reflected in the code repository where
everyone has read access, but only core developers are allowed to directly modify the
source tree (Cubranic and Booth, 1999). With DHIS 2 you need an account to get
access to the repository, but there is not made any differences between the core group
and the other developers when it comes to directly commits. This means no one is
given the task of watching the other's commits and approve them, but the developers
still pay attention to what goes into the repository through the commit mails.

3.4.2.2 Decision making
If people feel that they are involved in the decision-making process and that
their viewpoints are heard and respected, then the community will generally
accept whatever decision is made.(Goldman and Gabriel, 2005).

The development of DHIS distinguish it self from most other OSS developing process
by not being developed by the user of the software, but mainly by students who wants
to participate in an open source project or other participants engaged to develop a

40

system for someone else. Since DHIS 2 is a system for gathering health information,
some knowledge about the health sector is needed to make the right decisions in some
cases. Most of the decisions are open for discussion on the mailing lists, but even if
consensus is reached among the people participating in the discussions, there are often
uncertainties about the legitimacy of the decision (Nordal, 2006). The average
developer lack a good overview of health information domain, and can therefor not
always make informed decisions when if comes to health related topics, but needs input
from the coordinators or the health personal in a given country.

When developers can not make all the decisions on their own, it can lead to delay in the
development process. The developers may want to contribute and write code, but
before they can go any further with the implementation or a problem, they might have to
wait for input from participants who know the health sector and can tell them how a
particular thing should be done or what the normal procedures in a given setting is. The
coordinators of DHIS 2 have a deeper understanding of the health sector and pay
attention to the dev-list to answer question which the developers can not know. One
example from the dev-list where a developer ask a question about something he is
working on, but do not know the answer to: “...the Indicators don't have short names.
Should they?”.13 The developer has the technical competence to implement the request,
but lacks the knowledge about the general demands of the use of DHIS 2, and whether
this is something a health information system needs. One of the coordinators answered
this question, and the short names where then implemented. My experience with DHIS
2 is that this is seldom a huge problem, but can causes some delay if the developers
have to wait on someone with knowledge to answer a question.

To avoid more delay then necessary, it has been suggested to have the discussions
tied to the health domain on a more general basis without technical terms. The reason
is to get more people from the HISP network involved, and hopefully with more people
participating, and especially people who knows the health domain, the faster and better
the discussions and answers will be.

Decision making about technical topics are usually left to the developers to figure out,
but everyone is more than welcome to participate in all the discussions. The developers
have a good overview of the technology used in the system, and are given full decision
making authority.

Some discussion on the mailing lists are quickly decided by the coordinators and are
not left to further discussion. The discussion about how to write the name of the
software is one example of a discussion that was decided quickly:

To avoid a new long not-very-important discussion that takes away important
development time, [coordinator 1] and [coordinator 2] decide that the name is
DHIS 2 for general use, and that each version has the name DHIS 2.0, DHIS
2.0.15, DHIS 2.1 etc.14

What seems to be the biggest problem when it comes to decision making in the
development of DHIS 2, is from my experience, to know when a decision or conclusion
is reached. Some discussions on the mailing list simply stop at some point without a
conclusion, other discussions have no, or few answers, and sometimes two participants

13 From the mailing list archive: http://www.hisp.info/archives/dev/msg01984.html

14 From the mailing list archive: http://www.hisp.info/archives/dev/msg02616.html

41

http://www.hisp.info/archives/dev/msg02616.html
http://www.hisp.info/archives/dev/msg02616.html
http://www.hisp.info/archives/dev/msg02616.html
http://www.hisp.info/archives/dev/msg01984.html
http://www.hisp.info/archives/dev/msg01984.html
http://www.hisp.info/archives/dev/msg01984.html

can not agree upon a given topic. It has been said that “Sometimes it seems we're
running some kind of strange and ineffective democracy via the mailing list.”15 DHIS 2
lacks guidelines telling when the developers have consensus to deal with an issue or
when a decision is reached. It has been suggested on the mailing lists that when a
feature request or issue is posted to the mailing list, the discussion should conclude
with someone saying either “yes, we will do this” or “no, we are not going to do this”. But
as with several other discussion, this one died out and no one followed up what was
discussed. A related topic occurs when a conclusion is reached, but not registered in
the issue tracker.

Nordal (2006) point out in his thesis a difference between the decision making process
in DHIS 2 and that frequently found in other projects where a formal voting mechanism
is used to fall back on when consensus cannot be reached. If this is the case, one with
decision making authority, often the coordinators or leaders, must act as a benevolent
dictator and make the final decision (ibid).

3.4.2.3 Task assignment
Several different groups of participants are working on the DHIS 2 project which has
lead to various possibilities for task assignment. Students taking the HISP course are
assigned task as part of their group work.

Task assignment to new developers in the development of DHIS 2 is usually done one
out of two ways; If the new participant has taken the HISP course at UiO they are often
put to continue the work they did during the course. If the developers either have not
taken the course or want something else to work on, they are usually appointed a task
from one of the coordinators. The task the established developers take on are usually
determined by a negotiation process where the coordinators ask the developer to do a
task, usually with a positive response, or the developer comes forward and appoint
themselves to do the work. Some task are easily agreed upon, like this task assignment
on an instant messaging conversation where one coordinator is trying to assign a
developer to help another developer solving a task16:

Coordinator 1 says:
 Developer 1, can you help Developer 2 to integrate CDE into the data entry
 module?
Developer 1 says:
 sure
Coordinator 1 says:

 great

This kind of task assignment has also resulted in a sort of responsibility for modules or
module owners. One module in the software is usually written by one, or occasionally
by two developers. This developer then have a good overview of the module and the
source code, and can answer question related to the module and the use of it. None of
the task assignment process or the module responsibility are formalised in any
document.

15 From the mailing list archive: http://www.hisp.info/archives/dev/msg02199.html

16 From a conversation available on the wiki:
http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790

42

http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790
http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790
http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790
http://www.hisp.info/archives/dev/msg02199.html
http://www.hisp.info/archives/dev/msg02199.html
http://www.hisp.info/archives/dev/msg02199.html

The hired teams in Vietnam and India are HISP employees dedicated to the
development and implementation of DHIS 2. Task assignment to these groups have
primarily been target at local needs to where they are situated (Nordal 2006). The
teams have been given specific modules or task to develop, with a given requirement
specification worked out in collaboration effort between the Norwegian node and the
local coordinators. The employed development teams are not that different from other
developers, and they have been encouraged to take part in the discussion on the
mailing lists and be a part of the open source community at the same level as any other
participants.

3.4.2.4 Developer guidelines
The developer guidelines of DHIS 2 consist of a wiki section called “Development
standards and conventions”.17 These wiki pages contain a description of which
standards, principles and guidelines to stick to when developing, including code
conventions to improve maintainability and readability of the code. The page also
contain downloadable formatting templates for integrated development environments
(IDEs) to make it easier to stick to these code conventions. The developers have gotten
used to these guidelines, and if someone commits code to the repository that do not
follow the guidelines, they are likely to receive an e-mail on the dev-list asking them to
correct their commit.

DHIS 2 also have guidelines for the mailing lists which tells how to write and not write e-
mails (e.g. write in English, use plain text, do not include large attachments, answer
below the question and so on).18 Some of these rules are common sense, like write in
English, other are based on traditions from newsgroup and mailing lists, like respond
below the text you are replying to, use plain text and avoid acronyms like “plz” and “thx”.
Not everyone is aware of these rules, especially non-technical participants, resulting in
some comments on the mailing list to follow the guidelines.

Just one thing: Please don't answer on top (like I am doing now), but
rather below the text you are replying to (while cutting away
unnecessary parts of the conversation).19

Nordal (2006) conclude in his thesis that formal guidelines for how the participants
should interact with the information management infrastructure should be in place to
avoid that unstructured information generates an unnecessary and frustrating burden
for the participants.

3.4.2.5 Milestone releases
Before making a release, it must be decided what goes into the release and what is not
yet ready. DHIS 2 has a roadmap on the wiki20 telling when the milestones are to be
released and what it should contain, but there are no guidelines to how the release
process is actually done.

17 Available at http://www.hisp.info/confluence/display/DOC/Development+standards+and+conventions

18 The guidelines from the mailing lists page http://www.hisp.info/confluence/display/DOC/Mailing+lists

19 From the mailing list archive: http://www.hisp.info/archives/dev/msg03847.html

20 The roadmap is available on the wiki: http://www.hisp.info/confluence/display/DHIS2/Roadmap

43

http://www.hisp.info/confluence/display/DHIS2/Roadmap
http://www.hisp.info/confluence/display/DHIS2/Roadmap
http://www.hisp.info/confluence/display/DHIS2/Roadmap
http://www.hisp.info/archives/dev/msg03847.html
http://www.hisp.info/archives/dev/msg03847.html
http://www.hisp.info/archives/dev/msg03847.html
http://www.hisp.info/confluence/display/DOC/Mailing+lists
http://www.hisp.info/confluence/display/DOC/Mailing+lists
http://www.hisp.info/confluence/display/DOC/Mailing+lists
http://www.hisp.info/confluence/display/DOC/Development+standards+and+conventions
http://www.hisp.info/confluence/display/DOC/Development+standards+and+conventions
http://www.hisp.info/confluence/display/DOC/Development+standards+and+conventions

DHIS 2 is released in milestone releases, with M1, M2... and M7.1 meaning milestone
1, milestone 2 and milestone 7 maintenance release 1. DHIS 2 started to use 1.0.0-
SNAPSHOT versions because they were working toward the 1.0.0 release, which was
originally planned to be released at the end of 2006. This did not happened, and the
new release date has been purposed to December 2007. There are no formal
description of what is needed to make it to a 1.0.0 release, but one rule of tomb has
been to provide the same functionality as in DHIS 1.4.

In the beginning it was decided to have a monthly release the 15th every month. What
was going into each release was decided among developers and coordinators up front.
This was successful for the first 4-5 milestone releases, but after the fifth release,
nothing happened for a very long time. The developers were still developing and the
software was deployed several places in Vietnam and India, but there was no new
milestone release for months. Following the roadmap, milestone 6 should have been
released July 15, 2006, but was not released until December 13 (see Table 2: Release
dates and scheduled release dates for the milestone releases).

Milestone Scheduled release date Actual release date

M1 2006–02-15 2006–02-15

M2 2006–03-15 2006–03-17

M3 2006–04-15 2006–04-17

M4 2006–05-15 2006–05-15

M5 2006–06-15 2006–06-15

M6 2006–07-15 2006–12-13

M7 2007–03-15 2007–04-02

M8 May 2007 Not yet released

Table 2: Release dates and scheduled release dates for the milestone releases

After the release of milestone 6 it was decided to not have monthly releases, but to give
the developers more time to make a bug free release with more functionality. The first
release in 2007, milestone 7, was scheduled to March 15, but did not happened until
April 2. The process of updating the roadmap and distribute tasks were done among
developers and coordinators from Norway, Vietnam and India, using instant messenger
clients. This was done for each of the milestones, before the actually developing
started.

The releases are available as both user-friendly and developer-friendly release formats
and can be downloaded from the wiki.21 The download page contains a WAR file to be
used by administrators who want to install and run the software, a demo WAR file
containing data to be used as a demo, and the source code in different file format. The
Vietnamese team has used Installer2GO, a tool to make installation packages for
Windows, when they have deployed DHIS 2 in their districts, while India has used a
similar tool, InstallShield.
21 The DHIS 2 download page: http://www.hisp.info/confluence/display/DHIS2/Downloads

44

http://www.hisp.info/confluence/display/DHIS2/Downloads
http://www.hisp.info/confluence/display/DHIS2/Downloads
http://www.hisp.info/confluence/display/DHIS2/Downloads

3.5 Is DHIS 2 an open source project?
Although coordinators and other participants often make references to DHIS 2 as an
open source project, it is not always clear that DHIS 2 in fact is an open source project.
Nordal (2006) argues in his thesis that DHIS 2 is not a pure OSS project, but share
several similarities to hybrid projects like the Mozilla web browser. Although there are
some similarities, he also describes some differences. DHIS 2 does not have the strong
financial backing which is found in hybrid project and no guarantees for the amount of
time and effort the developers will spend on the project.

A common denominator in OSS projects is that the developers also are the user of the
software (Gacek and Arief, 2004). The developers are then intimately familiar with the
features and know what the correct and desirable behavior of the software is (Mockus
2000). The developers of DHIS 2 are not the user of the system, and according to
Mockus (2000), the developers are unlikely to have the necessary level of domain
expertise when they are not also experienced user of the software, and will unlikely
have the necessary motivation to succeed as an OSS project. Eric Raymond also states
in his well know paper, “The Cathedral and the Bazaar”, that “Every good work of
software starts by scratching a developer's personal itch.” In the developing of DHIS 2 it
is not the developers personal itch that get scratched, at least not in the way that they
develop a software they use themselves. The developers of DHIS 2 develop a software
that is used in the health sector in developing countries, and the developers have no
use for it's functionality themselves. As seen earlier the motivation for participate in OSS
project are numerous and complex, and the personal itch the developers of DHIS 2
scratch can be to gain knowledge, help out in developing countries or other issues at a
personal level

The way a project gain new participants are usually influenced by the same aspect, but
not in the DHIS 2 project. Most developers from Norway gets introduced to the software
and the project through the course at the University of Oslo, and are later becoming a
part of the development team. In India most developers are hired through the HISP
India project. DHIS 2 wants to get participants from outside the HISP network, but
Nordal (2006) suggest that HISP is not doing enough to attract these outside
participants. When the DHIS 2 project first started it was put a lot of effort into having
flexibility in the core of the software to enable this part of the software to be used
outside the health sector, and to appeal to a larger group of participators (ibid).
Experience from the DHIS 2 project suggest that it takes a lot more than publishing
source code on the Internet and having an open development process to get new
participants (ibid), and as of July 2007, DHIS 2 has not seen any outside participants
yet.

The DHIS 2 project use a lot of the tools, functionality and infrastructure usually found in
OSS project like a freely available software, mailing lists, wikis, public code archive,
version control system, geographically distributed developers etcetera. This does not
automatically make DHIS 2 an open source project, but the fact that it is released under
an OSS license, makes it OSS in a legal aspect. The single most important requirement
of an OSS is that it's source code is freely available to anyone who wishes to examine
or change it (Godfrey and Tu, 2000), which DHIS 2 is. Combined with the fact that the
project managers and other stakeholders define DHIS 2 as an open source project,
makes it obvious to me to use literature from the open source world in this thesis.

45

4 Methods
This chapter presents the methods I have used during my research along with a
description of my research approach.

4.1 Action research
The research approach used in this thesis falls within the framework of action research
(AR). Put simply, action research is “learning by doing”. A more complete definition is
given by Gilmore, Krantz and Ramirez (cited in O'Brien, 2001, What is Action
Research?):

Action research...aims to contribute both to the practical concerns of people
in an immediate problematic situation and to further the goals of social
science simultaneously. Thus, there is a dual commitment in action research
to study a system and concurrently to collaborate with members of the
system in changing it in what is together regarded as a desirable direction.
Accomplishing this twin goal requires the active collaboration of researcher
and client, and thus it stresses the importance of co-learning as a primary
aspect of the research process.

AR is thus a process of social research where both outsiders and problem owners work
together to solve problems and reach common goals. Action research refers not to a
single, monolithic research method, but rather to a class of research approaches.
Baskerville (1999) list four common, agreed characteristics of AR:

● An action and change orientation.
● A problem focus.
● An “organic” process involving systematic and sometimes iterative stages.
● Collaboration among participants.

AR is a collaborative research network where democracy has a central role. Each
participant is a co-researcher and every participant's ideas are considered equally
significant as potential resources. An AR researcher will work with the problem owner to
gain as much knowledge on the problem domain as possible and insights that cannot
be understood by studying it from a distance. This is in contrast to conventional social
research, where the researchers try to be fully objective and thus are not interacting
with what they are studying.

O'Brien (2001) points to several other attributes of AR that separates it from traditional
interpretive research. Primarily, AR focuses on turning the people involved into
researchers. People learn more, and use what they have learned more willingly, when
they do it themselves. AR also has a secondary social dimension; the research takes
place in real-world situations and aims to solve real problems. Finally, the researcher
makes no attempt to remain objective.

46

Kurt Lewin is generally considered the ‘father’ of action research. He first coined the
term ‘action research’ in his 1946 paper “Action Research and Minority Problems”. He
characterizes Action Research as “a comparative research on the conditions and
effects of various forms of social action and research leading to social action” (ibid). AR
is typically preformed as an iterative process where the researcher refine the
interventions (actions) on a cyclical basis. Each of these cycles have four steps; plan,
act, observe and reflect (see Figure 6: Simple Action Research Model (from MacIsaac,
1995).

Initially, the problem is identified and one or more possible solutions to the problem
leads to an action plan which is then implemented. During the implementation, data on
the results is collected, analysed and observed. These findings are studied and
interpreted with regards to how successful the intervention was. Based on the reflection,
a plan for action is re-assessed and refined, and a new iteration can begin. This cycle
continues until the problem is solved.

4.2 Action research in the field of IS
Action research has been an established research method in the social and medical
sciences since the mid-twentieth century, but it was not until toward the end of the
1990's that AR began to grow in popularity in IS research fields (Baskerville, 1999).
Following The International Federation for Information Processing conference in 1998,
Avison et al. (1999) reported that AR has now gained acceptance at the same level as
quantitative studies in the field of IS. They pointed to five main contributions of AR in
development of information systems;

47

Figure 6: Simple Action Research Model (from MacIsaac, 1995)

● The Multiview contingent systems development framework
● The soft systems methodology
● The Tavistock School’s socio-technical design
● Scandinavian research efforts intended to empower trade unions
● The Effective Technical and Human Implementation of Computer-based Systems

(ETHICS) participative and ethical approach to information systems development

The shift to qualitative methods by the mainstream of researchers was manifested in
2003 by a special issue of the prestigious paper MIS Quarterly named “Action Research
in Information Systems”.

4.3 My research approach
In this section I will outline my choice of research approach. Following the tradition of
HISP, action research has been used to conduct the research work both in Vietnam and
in Norway. I will also present the HISP team I have worked with in the project and the
methods used to obtain the data.

4.3.1 The HISP team
The HISP team supervising the development of DHIS 2 consists of two coordinators at
the University of Oslo in Norway, who are PhD students at the Department of
Informatics. One of the coordinators has, since the fall of 2006, been living in Zanzibar
to work with the local HISP team there, but still functions as a coordinator for the overall
HISP project.

The leadership and coordination efforts are mainly centralized at UiO, but independent
development teams have been established in the countries where HISP is piloting DHIS
2, like HISP India and HISP Vietnam. These teams have their own coordinators who are
working in close collaboration with and being supervised by the coordinators in Norway.
Norway does not have its own

The two developers of DHIS 1 are both hired by HISP South Africa, while the
developers of DHIS 2 mainly consist of master students from Norway. In addition, there
are hired employees in both Vietnam and India.

The DHIS 2 project is a part of the larger HISP network, and the development effort has
benefited from the large number of professionals involved in HISP. These range from
medical doctors and health workers to software developers involved in the global HISP
network.

I was introduced to HISP and DHIS 2 in a university course in the autumn of 2005, and
took slowly more and more part in the project after that. It was not until I arrived in
Vietnam in the summer of 2006 that I begun taking part in DHIS 2 development in
earnest. Since then I have been a part of the development team.

4.3.2 Interviews
DHIS 2 is a global project with people situated in different locations around the world,
and the participants I have collaborated with have often been working from other

48

locations than myself. As a result, combined with the tight schedule for most people
involved, few formal and planned interviews have been conducted. Instead, there has
been informal conversations and constructive discussions with participants at all levels
in the project.

These conversations have either been done face-to-face, privately on instant
messaging clients or e-mail, or on the open mailing lists. The mailing lists have
functioned as the project's main communications channel, and is a place where
everyone involved can speak their mind, making it a place to get different points of view
on any given topic.

The face to face conversations have been mainly day to day communication with
people I worked with, but also more structured discussions where we have sat down to
discuss particular subjects. The strong focus on participation in action research has also
made the informal approach a natural way for me to gather data.

4.3.3 Development and participation
I have participated in the development of DHIS 2 by developing a module for making
validation rules. Although the actual work of writing the code was done alone, the
requirements and underlying thinking and decision making is based on cooperation and
discussion with the other participants.

In Vietnam, everything regarding DHIS 2, from implementing, testing and installing the
system to future planning, was conducted in cooperation between the Norwegian
project members in Vietnam and the developers and health service workers in Vietnam.
In action research, the researcher works with the problem owner to gain knowledge of
and insight into the problem domain that cannot be understood by studying it from a
distance. I learned a lot about every aspect of the DHIS 2 development by being in
Vietnam and working with the other participants.

4.3.4 Meetings
Meeting takes place at all levels in the HISP project; there are coordination and
organisation meetings both locally and globally between participants, and formal
meetings between HISP and the health ministry in given countries.

When I first arrived in Vietnam we had a meeting between the participants situated in
Vietnam and one of the coordinators to discuss the situation and the further developing
of DHIS 2 in Vietnam. Later, when we arrived in Hue, we attended a meeting between
the health ministry in Vietnam and the HISP project where the future direction of the
DHIS 2 implementations process in Hue was discussed. This meeting and its outcome
determined most of our work and process while in Vietnam. Back in Norway I have
attended less formal meetings where the future development plan or particular modules
in the system have been discussed. Each of these meetings have given me a deeper
understanding of and insight into how the DHIS 2 development and its decision
processes function.

49

5 Empirical study
In this section I will give a topical overview of the empirical work I have done and taken
part in during my work with the DHIS 2 project.

5.1 Introduction to the HISP project
I was introduced to the software and the development team through the HISP course at
the University of Oslo in the fall of 2005. The course was held by one of the
coordinators, and with three of the most active DHIS 2 developers as teaching
assistants, I got a chance to know some of the participants face-to-face. I gradually took
more and more part in the development community and the development process
throughout the spring of 2006. By reading the mailing lists and talking face-to-face with
the project members, I gradually learnt who the participants were and which module
they were working on. Based on my impression of who the most active developers
were, and who others referred to as core developers, I also learned who the core
developers was.

The local HISP team22 and the DHIS 2 development team23 are presented on the wiki,
but what the developers are currently working on, who the core developers are, and
what it takes to become a core developer is not formalized anywhere.

5.2 My experiences from Vietnam
I spent 4 months in Vietnam, from July to November 2006 being a part of the Hue
development and implementation team. This chapter describes my time in Vietnam and
the work I did while situated there.

5.2.1 Arriving in Vietnam
I arrived in Ho Chi Minh City, the capital of Vietnam together with two other Norwegian
participants in the summer of 2006. We knew little up front about what we were going to
do while situated in Vietnam, but we knew that the majority of Norwegian HISP
participants who had been in Vietnam before had worked with the four employees in Ho
Chi Minh City (HCMC).

We were welcomed by the four developers at the airport when we arrived, and after
being introduced to them, the city and the office where they worked, we all attended a
meeting a couple of days later with one of the Norwegian coordinators visiting Vietnam.
The coordinator talked about the future plan for implementation and development in the
two HISP nodes in Vietnam, HCMC and Hue. It was decided that all three of the
Norwegian participants and one of the Vietnamese developers should go to Hue to
strengthen this node, which only consisted of one Vietnamese employee. One of the
Norwegian and the employee from HCMC would return to HCMC after some time to
continue the work from there. DHIS 1.4 had been installed and to some extent used in 5
districts in and around Hue, and one of our task was to upgrade to DHIS 2 in these
districts.

22 HISP teams on the wiki: http://www.hisp.info/confluence/display/HISP/HISP+Teams

23 DHIS 2 developers: http://www.hisp.info/confluence/display/DHIS2/Contact+info

50

http://www.hisp.info/confluence/display/DHIS2/Contact+info
http://www.hisp.info/confluence/display/DHIS2/Contact+info
http://www.hisp.info/confluence/display/DHIS2/Contact+info
http://www.hisp.info/confluence/display/HISP/HISP+Teams
http://www.hisp.info/confluence/display/HISP/HISP+Teams
http://www.hisp.info/confluence/display/HISP/HISP+Teams

The first couple of days in Hue consisted mainly of meetings and getting to know the
city, the people and the current situation. Both the coordinator of HISP Vietnam and one
representative from the Ministry of Health were visiting Hue at the same time, and we
attended several meetings and social events together. In one meeting, consisting of the
coordinator of HISP Vietnam, the coordinator from Norway, the representative from
Ministry of Health, the Norwegian HISP participants, the Vietnamese HISP participants
and three others from the local health service, our tasks and the responsibilities of both
parties were discussed. The meeting was held in Vietnamese, making it difficult to
follow, but the outcome was a signed contract between HISP and the Health Service of
Thua Thien-Hue province (see appendix A). It was also decided that we should be
given a place to work at the health office in Hue, and that we were only going to install
DHIS 2 in four out of five districts, since the last district is situated too far from the city.

The Norwegians and the developer from HCMC were all situated at the same hotel,
which also served as our office for a period of time. We bought a wireless router, and
had some tables and chairs brought to one of the room, making it an nice place to work.

When I first started my action research, the plan was to work on a module called
Customized Data Entry. I had been working on a similar module, Data Entry, as part of
my assignment in the HISP course the previous fall, and as a typical task assignment
process in DHIS 2, I was asked to continue this work.

A plan for our work while situated in Hue was made at one meeting shortly after we
arrived to Hue (see Appendix B). This plan also included some future tasks to be
carried out for the Vietnamese participants after we had left. I was made responsible for
the Customized Data Entry module with help from one developer in Norway, and for
fixing issues and bugs found in the field. The following is an excerpt from the plan,
showing my responsibilities:

6. Customized data entry module
Deadlines:
First sample report (B10) September 1
Prototype of a generic tool September 29
First release November 30
Developer: [the author]
Support: [Developer in Norway]

4. Bug fixing and software improvements
- Based on user feedback (be active in retrieving feedback)
Responsible: [Norwegian participants in Vietnam], [the author]

5.2.2 The start up phase
I had a brief overview of the tools and technologies being used in the development from
the HISP course, but the actual code had changed quite a bit since then, and there was
a lot to learn, understand and get an overview of. The wiki pages of DHIS 2 contain little
information about the tools being used in the development, besides links to additional
information and tutorials. This is great when you want to learn about a tool or
technology in isolation, but the main challenge for me was to learn how these tools and
technologies interact with one another.

51

I found a tutorial on the wiki written by a student during one of the HISP courses called
“Hello WebWork - Beginners tutorial from a beginner”.24 This tutorial explains how
WebWork works with both Maven and Jetty, but unfortunately for me, the tutorial was
outdated and the provided example did not work. I started looking at the given example
and tried to make it work with the newest versions of the tools. After some struggle I got
it running, and updated the text on the wiki page and provided a new working example.
The task of updating the tutorial gave me a better understanding of how these selected
tools and technologies interact, and I learned a lot from it.

Several tutorials or how-tos explaining how DHIS 2 works, have been written and made
available on the wiki since then, including “How to build a period selector”, “How to
create an exporter” and “How to use the Organisation Unit Web Tree”.

After a couple of weeks in Vietnam struggling with making a new web module for the
Customized Data Entry, one of the coordinators in Norway asked me to implement
functionality to generate minimum and maximum values based on previously entered
values. I was told to look at the DHIS 1.4 version, where this functionality is
implemented, and no further explanation was provided. I wrote an e-mail to the dev-list
asking what the requirements specification for the min/max functionality should be, but
no one answered. I then made up my own specification based on what was done in
DHIS 1.4 and what I thought was the best and most logical way of solving the problem.

At one point I got stuck with a problem regarding the min/max functionality, and asked
one of the core developers if he had any suggestion to how it could be solved. The core
developer had solved a similar problem before, but could not recall how it should be
done, and with no written documentation, it was a dead end. I eventually ended up
doing the whole thing in a different way to bypass the problem.

Working on this small task made me more familiar with both the source code and the
tools, and was a better way for me to learn, compared to creating a whole new module.
With help from one of the other Norwegians in Vietnam, we solved the task together.

While working with the software, I discovered that it was possible to enter data element
values below zero. I wrote an e-mail to the dev-list asking if this was correct, and was
told that it was not. I was asked if I could work on validation instead of the customized
data entry, since customized data entry was going to be developed by a student group.
I had never heard about the validation module before, and I had spent a significant
amount of time trying to understand the customized data entry and its requirements,
making the sudden switch of plan a surprise to me. In any event, I said I could do it, and
started concentrating on the validation module. My experience with the module and the
development of it is described in section 5.3.

5.2.3 Development and installation
In one of the meetings we attended when we first arrived in Hue, we were promised an
office to work from, but this was easier said than done. After a couple of weeks, the
Vietnamese employee in Hue told us there was a problem of getting acceptance to work
at the health centre. One of the Norwegians, later the same day, spoke with the
coordinator in Norway in an instant messaging chat, and he was more up-to-date on the
problem than we were. He even suggested that we perhaps should go back to Ho Chi

24 “Hello WebWork – Beginners tutorial from a beginner”, available on the wiki:
http://www.hisp.info/confluence/pages/viewpage.action?pageId=1532

52

http://www.hisp.info/confluence/pages/viewpage.action?pageId=1532
http://www.hisp.info/confluence/pages/viewpage.action?pageId=1532
http://www.hisp.info/confluence/pages/viewpage.action?pageId=1532

Minh City since they apparently did not want foreigners working in their offices. Having
the people back in Norway more up-to-date on the problem in Hue then we were
sometimes made it hard to know what was actually going on.

In the first month in Vietnam I spent a lot of time working together and discussing
problems with the other Norwegian developer in Vietnam. He went back to HCMC after
a while to help out there and develop his own module, leaving me to work by myself. I
still had the mailing lists and instant messaging chats with other developers to solve
problems and discuss further development, but I enjoy and learn a lot by working
closely with others.

The implementation process in the districts mainly followed the pre-made plan, but
since the customized data entry module was not my responsibility any longer, I did not
have any progress plan to follow. Making a new progress plan for the validation module
was never discussed and it did not occur to me to ask for one either.

5.2.3.1 Installing DHIS 2
One of our goals while situated in Hue was to upgrade from DHIS 1.4 to DHIS 2 in four
districts in and around Hue. I was not the one with main responsible for this task, but I
participated by testing installation packages and helping out whenever necessary. I also
came along on most of the trips to the hospitals to install, upgrade and teach the end
users to use the software. Since this work is not within the scope of this thesis, it is not
described any further here. Berg (2007) describes in his thesis some of the work and
challenges around the implementation in Hue.

5.2.3.2 Collaboration in Hue
The collaboration with the Vietnamese employee in Hue was not that close. She came
to the hotel and worked with us in the beginning, but she was mainly working on local
reports which she could do by herself and without any help or input from us. She also
had an office at the health centre, but since we were having problems getting
permission to work there, we could not work together at the health centre. She was,
after a period with little collaboration, told by one of the coordinators that she had to
work at least three days a week together with the Norwegians. When we visited the
hospitals in the districts, she was always with us, as she needed to be since none of the
health workers speak any English. After a couple of months, we were finally given
permission to work at the health centre, but the office had poor internet connection, no
air condition and construction work was going on outside the window. We spent some
time there, but the facilities were better at the hotel, making that our primary work place.

5.2.3.3 Interruption in development and installation
One annoying problem we encountered several times was malware; computer viruses
and computer worms. We usually transferred data between our computers and the
computers at the districts by USB flash drive. We did not think about the possibilities of
malware in the beginning since it is seldom a problem in Norway, but after all the
developer's machines, except the Mac, had been infected, we became more careful
before moving files between computers, flash drives and external hard disks.

The viruses we obtained were not very harmful, but they were very annoying, making
the computer reboot itself when writing particular words or phrases, hide folders,

53

copying itself to all attached mediums etcetera. I spent one whole day removing the first
virus from my machine.

After detecting viruses on the computers at all districts, we decided to install one of the
best free anti-virus program we know about, AVG Anti-Virus. The computers at the
districts are slow, making the virus scan take a long time, but we did manage to remove
a lot viruses. Only one of the districts has internet access, making it hard to update the
anti-virus program. We told them to be careful before copying files between computers,
but they do not seem to know the danger of viruses and what they can do, even though
we tried to explain it to them.

Another solution to avoid malware could be to install Linux, since most worms and
viruses are written for the Windows operating system. For some unknown reason, we
never really thought about changing the operation system at the districts. Although the
health workers use some software that only runs on Windows machine, and installing
and configuring Linux may be a bit harder than installing Windows, the possibility of
running Linux should absolutely be considered in the future. Most Linux distributions are
open source and free of charge, making them most suitable for developing countries.

5.3 The validation module

The validation module is a module to do validation on data elements in the system,
where I have been responsible for the development. Data elements refers to objects
which one can register data for in the software. For example, when counting the number
of tuberculosis (TB) vaccinated patients in a district, "Number of TB vaccinated patients"
would be a data element. The validation module contain predefined rules to ensure the
quality of this data.

The first thing I did when I was suddenly asked to develop this module, was to write an
e-mail asking what the requirements of the module was. I did not get any good answers
besides “look at DHIS 1.4 and the documentation”. I was told that one developer had
worked on validation before, and that there was some code for it in the repository. I

54

Figure 7: Screenshot from the Validation module in DHIS 2.

found the code, but could not understand all of it, so I turned to the wiki to see what was
written about the module. I found some documentation about validation, but it did not
explain every aspect of it, and I did not understand why some things were done the way
they were. I wrote an e-mail to the developer who had developed the validation part, but
he could not recall what he had done and why he had done it the way it was. I was left
with old code no one really knew what was doing or why it was done the way it was,
supposed to develop a module I did not understand every aspect of.

I asked on of the coordinators if he could explain more about the concept of validation
rule and how it was supposed to work, but was told he was not the right person to ask.
He gave me e-mail addresses to the developer of DHIS 1.4, who answered my e-mail
and explained some of the basic concepts about validation rule like when they are
suppose to be used, what the difference between various types of validation rules are
and the like.

I decided to start out with what I thought was the easiest part, the graphical user
interface (GUI), before struggling more with the concept of validation rule. I used the 1.4
version as guideline and developed something similar, but adjusted to the version 2
context.

Finding it hard to figure out the best way to approach the module, I also spent much of
my time writing and organising the documentation, which is another important task. This
work is described in subsection 5.4.1. I also solved small issues I found in the software,
helped out with the installation packages and the installation and fixed bugs based on
feedback from the end users.

One of the first things I did when it came to the coding, was to delete parts of the old
source code which neither I nor the other developers thought was necessary. I started
originally out with using the rest of the old code, but after some trial and failure, I found
it easier to rewrite everything from scratch. I discussed the structure of the validation
module and its connection modules with one of the core developers, summarised in an
e-mail to the dev-list.25 I did not finish the module before leaving Vietnam, but continued
the work back in Norway. In a meeting prior to the 7th milestone release, we discussed
what parts of the functionality for the module should be finished for the milestone
release and what could be postponed to later releases. At the time of writing, the
module is still not completed, as work on this thesis has taken priority.

5.4 Technical infrastructure
As said earlier I have on several occasions found the documentation to be superficial,
wrong, poor or missing. This section tells my experiences with and the evolution of the
web pages and documentation from when I first joined the project and up to the summer
of 2007. Topics relevant to documentation, like help functionality and mailing lists, are
also covered.

25 From the mailing list archive: http://www.hisp.info/archives/dev/msg03198.html

55

http://www.hisp.info/archives/dev/msg03198.html
http://www.hisp.info/archives/dev/msg03198.html
http://www.hisp.info/archives/dev/msg03198.html

5.4.1 Web pages and documentation
When I first joined the project, the wiki-pages suffered from a lack of structure and
insufficient documentation. Prior to the first milestone release in the beginning of 2006,
the developers worked very hard and documentation was given low priority due to high
pressure from the Kerala state in India, to deliver the milestone on time .

I got involved in the project right after this milestone release and felt a lot of frustration
when I did not find the information I needed or was looking for, because it was in a
strange place or not present at all. Confluence has a search functionality which is an
important tool for finding information on the wiki, but this functionality is not good
enough. If you are in a space when searching, the default is to only search within that
space. This may not be obvious to the users and can result in fewer or none search
results because the information is located in another space. The shortage of the search
functionality can be witnessed in the mailing lists, where some questions are related to
topics that are already in the wiki.

As the first milestone was released, there was a discussion about documentation on the
mailing lists. The discussion died out and nothing more happened. Several months
later, the discussion was raised again, but with no change in the outcome from last
time. An example of the frustration some new participants have felt when they enter the
projects can be seen on the dev-list. This e-mail is from a new developer trying to
understand the source code of DHIS 2:

I am trying to familiarise myself with the DHIS 2 source code. The
developers documentation is outdated. It is not in sync with the current state
of DHIS 2. The documentation confuses rater than explain, it is better with no
documentation than wrong documentation.26

Everyone I have interacted with agrees that documentation is important and should be
updated and present, but no one actually did anything about it. As one of the
coordinators wrote to the mailing list:

I think we all agree that documentation is very important. So what is needed
is then a joint effort in providing this documentation. This is not always easy
as we experience limited resources and a constant push from the users to
release new functionality.27

The developers and coordinators have a lot to do, and documentation is given a low
priority. It was not until one of the developers in Norway in the autumn of 2006 founded
“The DHIS Documentation project”, that things started happening. This project is
discussed in the next subsection.

Maven site information was added to the repository in the beginning of 2007, and
Maven generated websites were uploaded.28 These generated pages contain general
project information such as source repositories, dependencies and the Javadoc. The
Maven generated websites has not been updated on a regular basis. According to the

26 From the mailing list archive: http://www.hisp.info/archives/dev/msg02774.html

27 From the mailing list archive: http://www.hisp.info/archives/dev/msg02408.html

28 The root project is available at http://www.hisp.info/site, and the web project can be found at
http://www.hisp.info/site/web.

56

http://www.hisp.info/site/web
http://www.hisp.info/site/web
http://www.hisp.info/site/web
http://www.hisp.info/site/web
http://www.hisp.info/site/web
http://www.hisp.info/site/web
http://www.hisp.info/site
http://www.hisp.info/site
http://www.hisp.info/site
http://www.hisp.info/archives/dev/msg02408.html
http://www.hisp.info/archives/dev/msg02408.html
http://www.hisp.info/archives/dev/msg02408.html
http://www.hisp.info/archives/dev/msg02774.html
http://www.hisp.info/archives/dev/msg02774.html
http://www.hisp.info/archives/dev/msg02774.html

last published date on the sites, the web project was last updated on January 31, 2007,
and the root project on February 3.

5.4.1.1 The DHIS documentation project
The DHIS documentation project was founded in the autumn of 2006 after an initiative
from one developer in Norway. He started the work by making a separate space on the
Confluence wiki called “DHIS Documentation”, and then announced the project on the
mailing list.

A couple of people, including myself, indicated their interest in the project. I had been
disappointed about the lack of documentation on several occasions, and was very
pleased to see this suggestion be brought forward. I was a bit afraid it would turn out
like many other suggestion where no one does anything and the discussion dies out. To
prevent this, I decided to join in and do my part of the work.

The topics covered in the documentation space are listed in Appendix C. In addition to
the ones listed in the appendix, pages with information about the documentation project
and its participants have been created, but these have not been used yet. Other pages
that are listed, but have not been filled with content as of this writing, include the user
manual, the user FAQ, configuring DHIS 2, concepts and techniques, overview and
connections of the modules and the system FAQ.

After the skeleton for the space was made, the actual writing started. I did a lot of the
work moving pages back and forth, deleting outdated pages and started writing some of
the new pages. After a page or section was written, an e-mail was sent to the mailing
lists to get feedback from the other participants. One of the e-mail looked like this:

Please take a look at the documentation page for development environment
and tools,
http://www.hisp.info/confluence/display/DOC/Development+environment+an
d+tools, and let me know what you think. Is something missing? Or wrong?

Feel free to make changes:)29

Feedback from the other participants was then included and the documentation was
improved until it reached a worthy level. I got positive feedback from some of the
developers who liked the way the documentation was written and then presented on the
mailing lists for feedback.

The pages in the documentation space are not regarded as finished after they are
written and discussed on the mailing lists, as documentation is always a work in
progress. However, with little time and few writers, the resources are used on getting as
many pages as possible good enough, and then elaborate on the topics later on when
the participants have time.

The DHIS Documentation project does not have any written rules or guidelines beside
the given skeleton, and there are no formal members or leaders. There are a few
people, including myself, who has contributed and written most of the information, but
everyone can participate and write what they like.

29 From the mailing list archive: http://www.hisp.info/archives/dev/msg02987.html

57

http://www.hisp.info/archives/dev/msg02987.html
http://www.hisp.info/archives/dev/msg02987.html
http://www.hisp.info/archives/dev/msg02987.html
http://www.hisp.info/confluence/display/DOC/Development+environment+and+tools
http://www.hisp.info/confluence/display/DOC/Development+environment+and+tools
http://www.hisp.info/confluence/display/DOC/Development+environment+and+tools
http://www.hisp.info/confluence/display/DOC/Development+environment+and+tools
http://www.hisp.info/confluence/display/DOC/Development+environment+and+tools
http://www.hisp.info/confluence/display/DOC/Development+environment+and+tools

5.4.1.2 The HISP wiki
Most of the work I did on the wiki was related to the DHIS 2 space and the new
Documentation space. Some cleanup was also made to the HISP space and the
Research and Development space, especially moving pages around in a better
hierarchy and removing old, outdated material. Since I was not familiar with these
spaces, I was afraid I might be messing up someone else's work if I did too many
changes. One of the positive things about wiki pages is that it is easy to roll back to a
previous version if needed, but to be absolutely sure I did not delete anything relevant; I
made a space called “Deprecated” where pages I was not sure about were moved. An
e-mail was sent to the mailing list telling the other participants about the space, and that
if they found a page worth keeping there, they should move it back to where it
belonged. As of July 2007 no pages has been moved out from the deprecated space.

Few participants contribute beside minor changes to the HISP wiki, and as one
coordinator puts it on the mailing list:

A wiki is supposed to be a living "document" where everyone chips in to keep
it updated (see wikipedia). So please let us all join in. For those who need
some help to get going, pls don't hesitate to ask on the list - most HISP
people have yet to contribute to the wiki.30

Both the HISP and the DHIS 2 wiki contains a news section on the front page where big
meetings and conferences are announced.

5.4.1.2.1 Shortcomings of Confluence
I find that the Confluence wiki is lacking several useful and easy to use features that I
am familiar with from other wiki software like MediaWiki and DokuWiki. The most
noticeable shortcomings are that the entire page must be edited and not just a section,
there is no separate discussion section (“talk page”) on each page, there is no category
system and log messages and edit toolbars are absent. Confluence has similar
functionality, like spaces instead of categories and comments instead of discussion
pages, but they are not quite the same and do not fulfil all my wishes. Categories can
be more finely divided than spaces, making it easier to find similar information about a
given topic across spaces. I see the point of spaces, but would like to see categories as
well.

I have not got the impression that anyone else I have spoken to within the HISP project
has a strong opinion or is dissatisfied with Confluence. Whether this is because they
have not used Confluence enough or if they find Confluence to be good enough, I am
not sure.

When changing to Trac, it has been discussed on the mailing lists to move at least
everything that is relevant for the DHIS 2 project from Confluence to Trac, which has its
own wiki tool.

30 From the mailing list archive: http://www.hisp.info/archives/dev/msg02038.html

58

http://www.hisp.info/archives/dev/msg02038.html
http://www.hisp.info/archives/dev/msg02038.html
http://www.hisp.info/archives/dev/msg02038.html

5.4.1.3 Javadoc
DHIS 2 has Javadoc in most Java classes. This is a randomly picked example from a
Java class which contains the two attributes most commonly found in the Java classes
in the DHIS 2 software, @author and @version:

/**
 * Defines the functionality for persisting DataElements and
 * DataElementGroups.
 *
 * @author [Developer 1]
 * @version $Id: DataElementStore.java 3419 2007-06-27
 * 16:04:27Z [username] $
 */

The Javadoc attribute called @author is where the name of the author is given. It has
been a tradition to only list the developer who originally made the class, even if other
developers have contributed with small changes afterwards. This is not formalized
anywhere though.

The @version attribute is an automatically updated field that gives information about the
version number of a class including when it was last edited, and who the author was.

The Javadoc in DHIS 2 is published as part of the Maven-generated websites.

5.4.1.4 FAQ
From other software I have used or read about, I have found the FAQ a great place to
start looking for answers when I want to know more about a given problem, get basic
information or an overview of the software and its functionality. Since HISP had its own
two FAQs I thought that would be a great place to start as well when I was new to the
project. The only problem was that the first FAQ did not contain much information at all,
while the second one contained a lot of outdated information. After I wrote an e-mail to
the mailing list and consulted the other participants about the FAQ, we decided to
delete one of the FAQs, and have three different FAQs; one developer FAQ for
developers and problems they encounter, one administrator FAQ covering common
issues in installation and configuration the software, and one planned FAQ for the users
of the software. Later on, a system FAQ has been suggested as well, but it has not
been written yet.

The FAQs are not frequently updated, and the administrator FAQ of DHIS 2 only
contains 1 question, while the developer FAQ is a bit more popular with 7 questions (as
of July 2007). There is no one responsible for converting questions and answers from
the mailing lists into the FAQ, and there are no guidelines saying how this should be
done.

Another problem with the FAQ was the layout. The FAQ consisted of answers and
questions in random order and with no section containing an overview of all the topics.
Since I was the one who made the new FAQs I decided, after receiving input from the
dev-list, to have the questions grouped together in topics on the top of the page, and to
use the question heading as linked text to the answer.

59

5.4.1.5 Documentation and recruiting developers
There has been participants in the HISP project who have chosen not to be part of the
development team. One participant in the DHIS 2 project wrote to the mailing list,
arguing that poor documentation, and especially poor source code documentation, was
one of the reasons why he chose not to participate with any source code:

I'm one that chose not to code on dhis2, but rather work on other aspects of
the project for several reasons, one of them being the experiences I've had
with the code earlier.31

5.4.1.6 Help functionality
Since I am not a user of the software, I do not personally need much help functionality,
but it is still important to provide help to both new and established users of the software.
Since DHIS 2 is being used in developing countries by people unfamiliar with
computers, enough information has to be provided to make them understand how the
software should be used.

The software supports several different languages, and internationalisation needs to be
taken into consideration when help text are written. When we first installed DHIS 2 in
the districts in Hue, we did not have any end user manuals. Since the users are not very
familiar with computers, the lack of user manuals were noticeable. To compensate for
this, we wrote down very basic instructions in text files for the users to read if they
encountered any problems. Since these instructions have to be in Vietnamese, the
Vietnamese participants are the only ones suitable of writing them. The HCMC team
had written a user manual which the employee in Hue later customised for the users in
Hue.

DHIS 2 does not provide much help functionality in the software at the moment, but how
to provide it has been discussed several times both among developers and on the
mailing lists. One of the student groups from Norway worked on integrated help in DHIS

31 From the mailing list archive: http://www.hisp.info/archives/dev/msg02407.html

60

Figure 8: Screenshot of the developer FAQ.

http://www.hisp.info/archives/dev/msg02407.html
http://www.hisp.info/archives/dev/msg02407.html
http://www.hisp.info/archives/dev/msg02407.html

2 in the fall of 2006.32 They proposed several different kinds of help functionality in
forms:

● CSS pop-up
● Classic pop-up
● In-line help

They reached the conclusion that in-line help, which is a short description of each
important element, is not that efficient, since it takes too much space. CSS and classic
pop-up have different pros and cons, and it has not been decided witch one is going to
be used. A static manual as an independent document describing the overall concepts
and structure of DHIS 2 has also been suggested.

Another question raised from the discussions was how the help system should evolve
over time. When users get more experienced they need less help than new ones, and
the help functionality should not get in the way of these users. It has not been decided
how this is going to be solved yet.

DHIS 1.3 and DHIS 1.4, which has been around for a longer period of time, have better
end user documentation and manuals. As for now DHIS 2 has some help
documentation with various degree of content and length, in Gujarathi, Hindi,
Malayalam, Telugu, Vietnamese, and English. These are available in the Beanish space
on the wiki: http://www.hisp.info/confluence/display/BEANISH/BEANISH+documents.

5.4.2 Issue tracker
I have only used JIRA to a small extent, one of the reasons being that few others were
using the tool.

In the fall of 2006 a student group was given the task of examining the project tools
being used in the development of DHIS 2 and explore alternatives to these tools. One of
the tasks was to set up Trac33 and evaluate its usefulness versus JIRA, and especially
how data can be moved from Confluence and JIRA to Trac, and how Trac integrates
with other DHIS 2 tools.

Trac is an enhanced wiki and issue tracking system which uses a minimalistic approach
to web-based software project management. The student group reached the
conclusion: "While Confluence may be more complex, Trac uses a seemingly cleaner
and simpler design more inviting to the user. Code browsing and issue viewing/adding
are easy to locate as they are central to developing software”.34 Several people involved
with DHIS 2 has argued that JIRA is too complex and that something simpler would be
preferable. Trac might be the solution, but as the student group says: "This does sound
like a perfect fit for the HISP project, but ultimately it is the developers that must decide
upon its usefulness".

It was noticed in the beginning of April 2007 that only one issue had been registered in
JIRA this year. That is less than what one would expect in an active, ongoing project.
Another round of discussion was then conducted on the mailing list. One of the
32 The work is available at the wiki: http://www.hisp.info/confluence/display/RandD/Integrated+Help

33 Homepage of the Trac project: http://trac.edgewall.org/

34 The report is available online: http://www.hisp.info/confluence/download/attachments/10745/report.pdf

61

http://www.hisp.info/confluence/download/attachments/10745/report.pdf
http://www.hisp.info/confluence/download/attachments/10745/report.pdf
http://www.hisp.info/confluence/download/attachments/10745/report.pdf
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://www.hisp.info/confluence/display/BEANISH/BEANISH+documents
http://www.hisp.info/confluence/display/BEANISH/BEANISH+documents
http://www.hisp.info/confluence/display/BEANISH/BEANISH+documents
http://www.hisp.info/confluence/display/RandD/Integrated+Help
http://www.hisp.info/confluence/display/RandD/Integrated+Help
http://www.hisp.info/confluence/display/RandD/Integrated+Help

developers tried to take advantage of what the student group had archived last fall and
began to set up a Trac.35 Since Trac has been introduced, the project has seen an
increasing use of the issue tracker, and over 100 issues have been registered so far.
The issue tracker provides the possibility of assigning issues to users, but as of July
2007, only 11 out of 121 open issues has an owner.

Beside from being a place to register issues, Trac also serves as a roadmap showing
which issues belong to which release, and which issues that have to be completed
before a new release can be released.

5.5 Communication

5.5.1 IRC channel
An IRC channel was introduced to the HISP project during the summer of 2007. It has
so far mainly been used by the Norwegian participants, but the Indians have also visited
the channel to get support.

5.5.2 Shared knowledge
The mailing lists are one of the most central tools for collaboration in the development
of DHIS 2. The dev-list is the far most used list for communication with about 375 topics
discussed in the first six months of 2007. The HISP list is at second place, with about 40
topics in the same time span. It has been suggested to make several new mailing lists
in addition to the ones already in use, one of them being an announcement list where
new projects and releases are announced.

Information that is not going through the mailing lists is seldom shared between all
participants in the DHIS 2 project. Some information is not necessary for all to know
about, but I find the general information and knowledge sharing in DHIS 2 poor. I often
get to know information, especially about meetings and visits to the other HISP nodes,
accidentally when speaking to other developers or coordinators. The process of
finishing a release was in the beginning coordinated between only a subset of the
participants. This has been criticized on the mailing list, and one of the coordinators
wrote the following during the release process of milestone 6:

Finally, as some of you know, and probably correctly have criticised, earlier I
have coordinated this process of pushing and finalising releases through
private communication. As you see I have changed my approach this time,
so to those of you that have pushed a more open process, here it is, and
now is your time to prove that it works better this way.... :)36

After an initiative from a Norwegian developer situated in Vietnam for a period of time,
the Vietnamese employees are writing their own individual weekly status update on the
wiki to share what they are doing and which problems they are facing.37 The
Vietnamese developers have not always updated their reports on a weekly basis,

35 The DHIS 2's Trac page: http://www.hisp.info/dhis2

36 From the mailing list archive: http://www.hisp.info/archives/dev/msg03029.html

37 The weekly reports: http://www.hisp.info/confluence/display/HISP/Reports

62

http://www.hisp.info/confluence/display/HISP/Reports
http://www.hisp.info/confluence/display/HISP/Reports
http://www.hisp.info/confluence/display/HISP/Reports
http://www.hisp.info/archives/dev/msg03029.html
http://www.hisp.info/archives/dev/msg03029.html
http://www.hisp.info/archives/dev/msg03029.html
http://www.hisp.info/dhis2
http://www.hisp.info/dhis2
http://www.hisp.info/dhis2

although they are encouraged to do so. I started reading the weekly reports when I was
situated in Vietnam, and I continued doing so when I got home. I seldom gave feedback
to the employees based on what I read in their reports, but it kept me up-to-date on the
situation in Vietnam.

The Hue team, which I was a part of, wrote our own weekly reports on the wiki during
the time we were situated in Hue.38 The amount of information given in this weekly
update changed from week to week based on what we had done during the week and
how much information we thought we needed to share. We only experienced getting
feedback from the other participants based on what we wrote in our weekly report on a
few occasions.

Since HISP is a global collaboration project, participants often attend conferences and
meetings all over the world, but little of the information learned through these activities
is shared on the mailing lists or on the wiki. HISP India has an event calendar on their
web site showing upcoming events39, but the calendar is infrequently used. Big
meetings and conferences are announced on the wiki, but the rest of the meetings are
not shared. A relevant topic is to share what was discussed at the meetings afterwards.
Sometimes an e-mail is sent to one of the mailing lists, but most of the time, the project
members not participating in the gathering are left uninformed of the outcome of these
activities.

There are a number of systems being developed in parallel by HISP people, and to get
an overview of the projects, one of the coordinators in Norway made a list of the
systems on the HISP wiki early this year.40 The list contains information about the
technologies being used in each project, what the main development node is, and, if it
exists, an URL to the project. The list is supposed to get updated by the different nodes
when new projects start, and this has so far been followed up.

One developer in Norway made his own attempt to share information by writing on a
private blog when he travels to different HISP nodes.41 The first post was written when
he attended a HISP conference in South Africa in the fall of 2006. Several posts were
being posted during his stay in South Africa, and the blog was brought back to life when
he visited India in 2007. These blog posts are not strictly HISP or DHIS 2 related, but
conveys his thoughts and experiences with the project, the country, the people involved
at the different nodes and the software.

Lack of knowledge sharing can result in work being done over again or the same topic
being discussed several times between different project members. This is one example
from the mailing list where a few participants were discussing writing privileges to the
source code, when a third participant interposed and relates that he has already
changed this:

38 The Hue weekly report: http://www.hisp.info/confluence/display/HISP/Hue+weekly+report

39 The event calendar on the HISP India web site:
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=%40random451
eb80353064

40 Overview of HISP projects http://www.hisp.info/confluence/display/HISP/HISP+projects

41 hansst's hjørne, the blog written by a Norwegian developer: http://hansst.blogspot.com/

63

http://hansst.blogspot.com/
http://hansst.blogspot.com/
http://hansst.blogspot.com/
http://www.hisp.info/confluence/display/HISP/HISP+projects
http://www.hisp.info/confluence/display/HISP/HISP+projects
http://www.hisp.info/confluence/display/HISP/HISP+projects
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=@random451eb80353064
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=@random451eb80353064
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=@random451eb80353064
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=@random451eb80353064
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=@random451eb80353064
http://www.hispindia.org/index.php?action=viewmonth&module=calendarmodule&src=@random451eb80353064
http://www.hisp.info/confluence/display/HISP/Hue+weekly+report
http://www.hisp.info/confluence/display/HISP/Hue+weekly+report
http://www.hisp.info/confluence/display/HISP/Hue+weekly+report

I added *=r (read only access to everyone) to svnaccess a week ago or
so. Sorry for not telling anyone. [Coordinator 1] knew, at least :) It's not
documented on the wiki either.42

In late May 2007 there was an initiative from one HISP participant to create a newsletter
to share events and news from the different HISP nodes. It was proposed that the
coordinators (or others appointed to do the task) from each country send a small note
every month to one particular participant who puts it all together. It is said that the
newsletter should contain information about new implementations, conducted training
programs, new theses about HISP, new projects, software development activities or
other relevant information. This newsletter has not been distributed yet.

42 From the mailing list archive: http://www.hisp.info/pipermail/dhis-dev/2007-May/000523.html

64

http://www.hisp.info/pipermail/dhis-dev/2007-May/000523.html
http://www.hisp.info/pipermail/dhis-dev/2007-May/000523.html
http://www.hisp.info/pipermail/dhis-dev/2007-May/000523.html

6 Discussion
In this chapter I discuss my empirical findings by drawing on literature and concepts
presented in chapter 2 and 3.

6.1 Communication
The mailing lists are the number one form of communication in the development of
DHIS 2. Creating the proposed announcement list will keep people who are only
interested in information about releases and other announces updated on the current
status without having to spend time going through all the other mails on the other
mailing lists. This approach goes well with the argumentation of Holz et al. (1998) that
sending information to people who are not interested in it, is as bad as having people
not being informed on topics important to them.

On the other hand, increasing the number of mailing lists might not be such a good
idea. Erenkrantz and Taylor (2003) conclude in their article that limiting the scope of
discussion lists makes it easier for participants to understand and keep a record of what
is going on in the project. They also argue that this must be balanced with the number
of mailing lists and they see that having to many lists can be a problem as well. When
the right numbers of lists is achieved, it allows people to easily classify and separate
discussions based upon agreed topical lines (ibid).

It seems that the HISP and DHIS 2 projects have found the right balance of mailing lists
for the moment, apart from the user list. The user list is hardly ever used, with only 5 e-
mails within 2 topics being sent this year. The dev- and hisp-lists seems to have enough
traffic to be useful and worth keeping. The despots-list also has enough traffic and
important topics to be useful.

Erenkrantz and Taylor (2003) argue that asynchronous communication mechanisms,
like e-mail, are usually preferred. This is the case in the DHIS 2 project, where most of
the communication about the development goes on the public mailing lists. When
synchronous meetings are required, they are usually held via instant messaging clients
and the time are discussed up front and decided based on when the most people are
available. A summary of the meetings is often presented on the developer's mailing list
or at the wiki. This goes well with Erenkrantz and Taylor's statement that it is essential
to make some form of archive of the communication when synchronous mechanisms
are being used. Smaller synchronous meetings or IM-conversations between only a
subset of the developers happens all the time, but logs or summaries from these
meetings are seldom passed on to the rest of the project members. To keep everyone
informed of what is happening in the project, summaries from these meetings or
conversations should be shared as well. Knowledge sharing is further discussed in
chapter 6.1.2.

6.1.1 IRC channel
HISP recently introduced an IRC channel to the project. Fogel (2005, p. 59-60) state
that although it is possible to archive everything from an IRC channel, it is not
necessarily the best thing to do. Many think of IRC conversations as informal, semi-
private conversations, and do not want them preserved forever in an online archive

65

(ibid). Nothing from the HISP channel has been saved and published, although Fogel
argues that excerpts sometimes should be preserved. The HISP channel is a new
initiative, which may explain why nothing has been archived yet.

6.1.2 Shared knowledge
Erenkrantz and Taylor (2003) state that a common problem in a distributed software
project is to understand what other participants are currently working on. The weekly
reports from the Vietnamese developers clearly show what is going on in Vietnam,
including in which health care facilities the software is being implemented, what the
developers are working on, which problems they are facing and so on. The people
interested in what is happening in Vietnam can read their posts, and the developers
writing the weekly updates can get feedback and help based on what they are
struggling with. They can and should of course write to the dev-list if they have
problems or questions, but writing down all kinds of problems and issues on the wiki
shows what is going on in Vietnam. The initiative with weekly reports could be extended
to all participants in all HISP nodes to follow the advice of Goldman and Gabriel (2005)
to let everyone involved know what is happening in the project.

To fulfill the idea of letting people know what is going on, scheduling information should
be shared for conferences, meetings or other happenings, where the event is held and
who is attending. Although the HISP India calendar is not frequently used, a similar
attempt for the whole DHIS 2 project would be a good information sharing initiative. A
calendar would not be hard to implement on the wiki, but participants must update the
calendar when they attend a gathering or are visiting abroad.

A related topic is sharing the outcomes and discussions from these events with the rest
of the project afterwards. Sometimes an e-mail is send to one of the mailing lists, but
most of the time, the project members not participating in the gathering are left unknown
of the outcome.

The personal blog written by a developer in Norway is a more unusual way of sharing
information, and this kind of initiative brings a personal feeling to the project. It also
provides readers with a glimpse of what other participants in different countries are
doing. I have been to Vietnam, and know the setting and how they are working there,
but I have only met one of the Indian participants face-to-face and know few details
about the case in India. The same goes for most of the developers.

As stated in chapter 3.4.2.3, DHIS 2 has a kind of module owner, but since this is not
formalized in any document it is hard for new developers to know who is responsible for
each module. All the Java classes has the Javadoc attribute @author, but this only
gives the name of the original author, and since only the Java classes have this
information, it is not always clear who to contact if you have a question. The dev-list can
be used to get this information and ask questions, but it requires that extra step of
writing an e-mail and waiting for an answer.

Little information about what developers and other project members are currently
working on is shared on the wiki. I got to know the participants in Norway, and later on
in Vietnam, by meeting them face to face. By reading the mailing lists and talking
directly to the participants I learned which modules or part of the code they were
currently working on. Other new project members may not have this opportunity, and
when it is not formalized in any document, it can be hard for them to get an overview of

66

the current status. With Trac, is it possible to see who is responsible for each issue
registered in the tracker, but since only a handful of the issues have an owner, it serves
as a poor place to look for what developers are currently working on.

The DHIS 2 project lists the project members with contact information on the wiki, which
according to Goldman and Gabriel (2005) should be presented on the web site to help
novices learn who is who in the project. Goldman and Gabriel even suggest that
pictures of the participants are included. Confluence has user profiles for every
registered user of the wiki. These pages can be used to provide information about a
user, including a picture, but few of the HISP members has used this opportunity to
share information about themselves.

Fogel (2005) lists several beneficial side effects gained from public discussions, among
them that it can help avoid discussing the same issues over and over again. If all
discussions in the DHIS 2 project were public, situations like the one where some
developers were discussing writing privileges to the source code when these privileges
had already been changed, would be avoided.

The initiative to create a newsletter to share news and events from the different HISP
nodes to all participants fits well with Goldman and Gabriel's (2005) argument that
people who do not have enough time to follow the mailing list should be informed about
current issues in a regularly scheduled newsletter. Since the newsletter has not been
distributed yet, it is hard to tell if it will serve this role in the HISP network.

6.2 Web pages and documentation
Coordinator 1 says:
 Hi
 I wanted to test this i18n feature
 do you have some documentation saying how it works
Coordinator 1 says:
 I mean user documentation [...]
Developer 1 says:

 nope this is open source

Although the answer in this instant messaging conversation43 between a coordinator
and a developer of DHIS 2 is a joke, it still reflects the tendency of neglecting the writing
of documentation in open source projects. Documentation has been discussed a
number of times on the DHIS 2 mailing list, and even with a dedicated documentation
project, DHIS 2 still lacks documentation on several topics.

Yeates (2006) list several ways to improve documentation. The first one, requiring
structured documentation along with submitted source code, has been discussed in the
DHIS 2 development as well. This approach requires more from the developers, who
have to write documentation in parallel with writing code, but at the same time, the
project is guaranteed to get some documentation and the documentation will be up to
date. The first step to realising this method of structured documentation is to promote
the use of Javadoc. Section 6.2.5 further discusses the use of Javadoc.

43 The whole conversation is available for download from the wiki:
http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790

67

http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790
http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790
http://www.hisp.info/confluence/pages/viewpage.action?pageId=11790

The next point on Yeates' list, make as much as possible of the project information
accessible to search engines, has also been discussed on the dev-list of DHIS 2. The
documentation available on the wiki is searchable within the wiki. It has been suggested
to upgrade or change this search functionality to make it even easier and better to use.

HISP changed to a new mailing system this year, making the new mailing lists
searchable. The search functionality has not been fully implemented yet, even though it
was said that it would be available right away. The old archives are still accessible, but
not searchable.

The third point on the list is to encourage new users to contribute documentation as
their first contribution. Yeates argues that new users are ideal for writing documentation
aimed at new users, but this is not the experience I have from the development of DHIS
2, at least not when it comes to low-level documentation. My experiences is that new
users do not know enough about the system to write good documentation that can be
useful to others. One approach could be to have the new users write documentation
drafts, which can be used as framework for experienced participants to write better
documentation. Another possibility is to let new participants write documentation that
does not require a deep understanding of the system, like for instance documentation
on how to set up the system and install and configure software needed to do further
development.

The final point on Yeates' (2006) list is allocation of explicit resources to writing
documentation. Successful OS projects with external funding often use some of those
funds to employ technical writers to write documentation (ibid). DHIS 2 has a tight
budget and its money is not likely to be used on technical writers, but the project has
access to participants who choose not to develop the software itself, and these
participants could be encouraged to write documentation to a larger extent then what is
the case today.

Fogel (2005) argues that documentation is never really finished, and that may be one
reason why people delay starting writing at all. This seems to fit well with the
development of DHIS 2 where everyone agree that documentation is important, but the
actual work of writing it is postponed over and over. To get the basic documentation
written, Fogel (2005) suggests that the scope is limited in advance and argues it will not
feel like an open-ended task that way.

Appointing a leader of the DHIS Documentation project to organise the documentation,
keep track of what needs to be written, encourage participants to write documentation
and promote the documentation project, could be one approach to get people more
aware of documentation and write more documentation.

Spinuzzi (2002) points out that accuracy can be one difficulty that can arise from an
open system documentation process. DHIS 2 has a small development team where this
has never been a problem, and I do not expect any of the participants to write wrong
information on purpose. Furthermore, only registered users are allowed to edit the wiki
pages, and since there are only a few contributors, it is not hard to examine what they
are writing.

Lethbridge et al. (2003) found that people more often update issue tracker and source
code documentation, and ignored complex and time-consuming documentation. This
fits with my experience from the DHIS 2 project where most Java classes have some

68

Javadoc, but few sentences on the wiki page explaining how it works. Since Trac was
introduced, the issue tracker has also seen an increase in its use.

A observation done in a survey by Forward and Lethbridge (2002) shows that several
small to medium-scale software projects had little or no software documentation. The
individuals in these project said they believed in the importance of documentation, but
timing, budget and scheduling constraints left little time and resources to write
documentation. This also fits well with my experiences in the DHIS 2 project.

6.2.1 End user documentation
Fogel (2005) argue that if the project members feel they do not have enough time to
write documentation, they should start by focusing on documentation for the end-users.
Yeates (2006) goes as far as to suggest that the most important aspect of
documentation is to listen to the end-users' question and problem. He states that the
documentation should be improved by first answering the end-users' immediate
questions, followed by stepping back to examine and address the underlying causes of
the problem. One reason why the end user documentation of DHIS 2 has not been
prioritised, is that DHIS 2 is a rapidly changing software, and the end user manuals
would need to be updated on a regular basis to reflect these changes. This is not an
impossible task, but it takes time and no one has stepped forward and taken the task.

Another issue is that few of the end users can understand and read English, which
means the end users documentation has to be written or translated into the various
languages. Consequently, the project is dependant on participants with these particular
language skills, making the task of producing timely and good documentation more
complex.

6.2.2 Language barriers
None of the participants of DHIS 2 have English as their first language, but all the
developer documentation is written in English. This could be a reason why people do
not write documentation, but my experience with the project shows that language is
hardly the main cause of why documentation is not being written. More or less all
communication in the project is done in English, and language barriers is not a huge
problem in other areas, although the English skills vary between participants.
Norwegians receive several years of English training at school, but this is not the case
in India and Vietnam, resulting in varying English skills between participants. The
Vietnamese DHIS 2 employees in HCMC voluntarily attended English classes after
work several days a week to improve their English skills.

Participants are encouraged to write documentation even if they find it hard to write in
English. If someone first write the basis of a topic, other can read the proofs of the text,
and improve it. This is another area where wiki come in handy. The pages are easy to
change, making it less necessary to write good documentation at first since other easy
can edit and improve the text.

6.2.3 Keeping the documentation up-to-date
Erenkrantz and Taylor (2003) state that it is often a problem to keep the end user
documentation synchronized with the current version of the source code. Since DHIS 2

69

does not have much end user documentation, this is a minor problem, but keeping the
rest of the project documentation up-to-date is also a challenge. As mentioned earlier,
one participant wrote to the dev-list arguing that the documentation was outdated and
that no documentation is better than wrong documentation. This does not correspond to
the findings from Forward and Lethbridge's (2002) survey that concluded that document
content can be relevant even if it is not up to date or Fogel's (2005) statement that even
incomplete, rudimentary documentation is better than nothing at all. Forward and
Lethbridge further argue that keeping the documentation up-to-date is a good objective,
and based on my experience, the DHIS 2 participants share this point of view. The
problem is that it takes time to write documentation, and the documentation is thus not
always up-to-date.

The pages in the documentation space are not said to be finished after they are written,
which is a common procedure found in several wiki pages, including the Wikipedia
project. My experience from Wikipedia, especially with the smaller Wikipedia projects,
like the one written in Norwegian, shows that one participant could start a topic by only
writing a couple of sentences. Someone else might see this, have some more
information to contribute with, and the topic is gradually more fully covered. The DHIS
documentation space follows the same philosophy of stepwise improvement, although
with a smaller number of participants.

6.2.4 The HISP wiki
To avoid destructive inputs by “trolls”, the HISP wiki only allows registered user to edit
and create new pages. Only allowing registered users to edit the wiki may result in
fewer contributors, and a real threat to wikis are that nobody wants to edit them
(Aronsson, 2002). Aronsson further argues that an active core of at least five regular
contributors are needed to keep a wiki alive. It is hard to tell how many active
contributors the HISP wiki has, as the wiki is divided into several small spaces where
some users only contributing to one or a few of those spaces, but few participants
contribute beside minor changes to the wiki. As one coordinator wrote on the mailing
list: “most HISP people have yet to contribute to the wiki.” He also wrote that a wiki is
supposed to be a living document where everyone helps to keep it updated. This fits
with the findings from a survey presented by Goldman and Gabriel (2005) where over
half of the people did not read the mailing lists, but relied solely on the website for news.

Most developers only need to update information about the module they are working on,
and as long as there are a few people willing to do the rest of the work, the wiki
somehow survives. Goldman and Gabriel (2005) argue that the wiki cannot just be
created and left to its own devices. They further argue that providing well-written
content will work as a template for people to follow and will result in a better wiki since
contributors imitate whatever patterns they see in front of them. The renovation of the
HISP wiki, where old material was deleted, new documentation was written and the
pages were reorganised into a better structure, should, according Goldman and
Gabriel's (2005) thoughts, lead to a better wiki, and all the participants I have spoken to,
agree that it has.

As stated earlier, wikis often suffer from a lack of navigational principles, duplication of
information and an inconsistent target audience. I found all this to be true with the HISP
wiki. To try to overcome these problems, the new documentation space was divided into
different sections for users, administrators and developers. This makes it easier to

70

navigate and find the proper documentation for a given audience. In the DHIS 2 space, I
have reorganised the pages, trying to put everything related to the development of
DHIS 2 together, making it easier to find the right information there also.

6.2.5 Javadoc
Goetz (2002) states that the provided Javadoc of open source software ranges from
non-existent to poor, but that developers will still use the Javadoc to learn the code and
the facilities, since other forms of documentation is not presented. The Javadoc in the
DHIS 2 software is not organized to meet this reality and requires a lot of improvement
to be useful as documentation. One example from a randomly picked method in a Java
class, DataElementStore.java, shows this:

/**
 * Adds a DataElement.
 *
 * @param dataElement the DataElement to add.
 * @return a generated unique id of the added DataElement.
 */
int addDataElement(DataElement dataElement);

This Javadoc comment only tells the most basic information about the method, and
most of the information would be possible for a developer to guess (a method called
addDataElement is likely to be used for adding a data element). The information that
should have been provided, following the list given by Goetz (2002) in chapter 2.2.2.7,
includes how the method deals with bad inputs and error conditions, how this is
communicated back to the caller, the method's pre- or postconditions, side effects and
so on.

Goetz (2002) goes as far as to suggest that good code with bad documentation should
be considered bad code, since it is more or less impossible to reuse the code. At the
moment the DHIS 2 project has more then enough to focus on, and the Javadoc is
given a low priority due to this. Most developers write some Javadoc when they
implement new functionality, but it is not always as thorough as it should be. When I
tried to understand the old validation code, mentioned in chapter 5.3, improved Javadoc
would have made it much easier for me to understand the code and perhaps be able to
use the code for further development.

Goetz lists a positive side effect of writing good Javadoc - it becomes a sort of code
review. The only form of code review in the development of DHIS 2 is when the
developers are paying attention to the scm-list, so pushing for better Javadoc may have
several positive effects on both the software and the development process as a whole.

The Javadoc in DHIS 2 is published as part of the Maven generated websites, but when
the sites have not been updated in 5 months, they are not useful as documentation for
anything but old code.

6.2.6 FAQ
Collins-Sussmann et al. (2006) argue that a bad FAQ sheet is one that is composed not
of the questions people actually ask, but of the questions the FAQ's author wish people
were asking. The FAQs in the DHIS 2 project are made up of actually asked questions,

71

which can explain why there are few questions presented, but it is probably not the
main cause. The DHIS 2 mailing lists receives questions all the time, but few of these
questions and answers are moved into the FAQ. Participants in the DHIS 2 project may
not answer the same questions over and over again on the mailing lists, which is
usually one of the reasons why projects make FAQs, but it should still be a policy to
write on the FAQ when a problem is solved. The fact that no one is responsible for
converting questions and answers from the mailing lists into the FAQ, or the lack of
guidelines telling how this should be done, seems from my experiences to be among
the main reasons why the FAQs contain few topics. Another reason might be the
unawareness of the FAQs. References to the FAQ are seldom made on the mailing
lists, and people seems to forget that the FAQs exist; thus they are not updated.

As Collins-Sussmann et al. (2006) says:

Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses
monitored, and all gathered into a coherent, searchable whole that reflects
the collective experience of users in the wild.

The DHIS 2 project seems from my experience to lack this sustained and organised
effort when it comes to compiling a FAQ. The first step to archive a good FAQ would be
to start using it. Writing guidelines describing how the FAQ is intended to be used, who
is responsible for converting questions and answers into the FAQ and so on seems like
a place to start. Secondly, making references to the FAQ on the mailing lists, especially
if the question has been asked before, would make people more aware of its existence.
Fogel (2005) also says that a FAQ can be one of the best investments for a project
when it comes to educational pay-off. On the other hand, the participants seldom
answer the same question over and over again (although it has happened), and the
benefits the project could gain by expending resources on the FAQ might not be
worthwhile when the development is on a tight schedule.

6.2.7 Documentation and recruiting developers
Documentation is a problem in most open source projects, and to prevent frustration
and the loss of potential participants, projects need to have good internal
documentation for developers (Goldman and Gabriel, 2005).

I'm one that chose not to code on dhis2, but rather work on other aspects of
the project for several reasons, one of them being the experiences I've had
with the code earlier.

This statement from the dev-list shows that poor documentation can result in fewer
developers, which correlate with the statement of Goldman and Gabriel (2005) that poor
or nonexistent documentation will lead to frustration among potential developers which
might give up. Fogel (2005 p. 26) state that when people abandon a project they
abandon early, and therefore it is the start-up documentation, like how to install and get
started with the software, that is the most important. Goldman and Gabriel follow up on
this and state that the easier it is to learn how to get started, the more developers will be
attracted to the project.

The survey done by Lethbridge et al. (2003) showed that documentation is important
both when learning and when working with a new software system. My experience from

72

the DHIS 2 project back up this find, and e-mails from the dev-list show that other
participants have the same impression.

73

7 Conclusion
In this chapter I will summarise my research and make some concluding remarks in
relation to my research objectives.

Primary research objective

 Explore the challenges of providing documentation in open source projects.

During the process of learning the tools, frameworks and source code in the DHIS 2
project and developing a new validation module, I found the current documentation to
be outdated, messy or not present at all. Other participants have expressed the same
opinion on the mailing list, and this thesis has shown how documentation can be
neglected in a given open source project. This is not because the project members do
not want documentation. Findings from this thesis show that even if all project members
agree that documentation is important, the time and effort needed to provide good
documentation in sufficient quantities is not necessarily provided, mainly due to limited
resources. DHIS 2 gained a lot, in terms of new and updated documentation, by
establishing a separate documentation project and a separate wiki space to which the
documentation pages were moved. This effort could be expanded to include more
people and thereby create more and improved documentation.

After Trac was introduced to the project, the use of the issue tracker has increased
compared to the usage levels seen with the previous JIRA solution. This is probably
mostly because the Trac installation has a functioning e-mail alert system, illustrating
the importance of e-mail as a basic tool in open source projects.

Javadoc documentation is frequently used to learn about the source code in open
source projects, since other forms of documentation are often neglected. For instance,
my experience is that more wiki-situated documentation about the workings and
structure of the DHIS 2 code would be helpful, but since this sort of documentation is
lacking, I had to rely more on Javadoc. The Javadoc in the DHIS 2 software is not
organized to meet this reality and requires a lot of improvement to be useful as
documentation. Poorly written Javadoc also makes it more difficult to reuse the source
code.

The mailing lists of DHIS 2 are frequently used, and the associated mailing list archive
serves as a complement to the documentation and knowledge transfer process, but the
mailing list archive should be searchable to make it easier to use. Also, questions raised
on the mailing lists are not systematically transferred to the DHIS 2 FAQs, making the
FAQs less useful than they should be.

Knowledge sharing within the project has its limitations and only some reports and
summaries from events are shared on the mailing list or the wiki. Establishing weekly
reports for all project members, not only the Vietnamese employees, could be one way
to improve the information sharing. Other attempts include making an event calendar, a
project-wide newsletter, or, as recently introduced, an IRC channel where all
participants can talk together.

74

Secondary research objective

 Investigate how lack of documentation affects new project members.

My findings from the DHIS 2 project show that poor or lacking documentation can have
a negative impact on the number of participants in the project. One participants says he
is not willing to develop the software, based on his previous experience with the code
and its documentation. Other participants, including the author, found the
documentation messy and outdated, making it harder to contribute.

DHIS 2 is hoping to gain new participants the same way most other OSS projects gain
members, and not only through the HISP course at the University of Oslo. However,
without good documentation it can be hard to attract new members. The easier it is to
learn how to get started, the more developers will be attracted to and engaged in the
project, and the start-up documentation is thus the most important part of the
documentation.

75

8 List of acronyms
AR Action Research

BD Benevolent Dictator

CVS Concurrent Versioning System

DHIS 1 District Health Information Software version 1

DHIS 2 District Health Information Software version 2

FAQ Frequently Asked Questions

FSF Free Software Foundation

HIS Health Information System

HISP Health Information Systems Programme

HTML Hypertext Markup Language

IM Instant Messaging

IS Information Systems

IDE Integrated Development Environment

OS Open Source

OSI Open Source Initiative

OSS Open Source Software

RDP Reconstruction and Development Program

SVN Subversion

UiO University of Oslo

76

9 References
Aronsson, L. 2002 “Operation of a Large Scale, General Purpose Wiki Website”,

Proceedings of the 6th International ICCC/IFIP Conference on Electronic
Publishing, pp. 27-37. Retrieved May 29, 2007 from
http://aronsson.se/wikipaper.html

Avison, D., Lau F., Myers M. and Nielsen, P.A. 1999 “Action Research”,
Communications of the ACM, vol. 42, no. 1.

Baskerville, R. L. 1999 "Investigation information systems with action research",
Communications of the Association for Information Systems, vol. 2, article 19

Berg, E. 2007 “The challenges of implementing a health information system in
Vietnam”, Master thesis, University of Oslo.

Bonaccorsi, A. and Rossi, C. 2003 "Why Open Source software can succeed",
Research Policy, vol. 32, no. 7, pp. 1243-1258

Braa, J. and Hedberg, C. 2002 "The struggle for district-based health information
systems in South Africa", The Information Society, vol. 18, no. 2, pp. 113-127

Braa J., Monteiro, E. and Sahay, S. 2004 “Networks of action: sustainable health
information systems across developing countries”, Mis Quarterly, vol. 28, no. 3,
pp. 337-362

Collins-Sussmann, B., Fitzpatrick, B. W. and Pilato, C. M. 2006 Foreword from “Version
Control with Subversion”, book compiled from Revision 2147. Retrieved May
30, 2007 from http://svnbook.red-bean.com/en/1.2/index.html

Cubranic D. and Booth, K. S. 1999 “Coordinating Open-Source Software Development”,
Proceedings of the 8th Workshop on Enabling Technologies on Infrastructure
for Collaborative Enterprises, pp. 61-68.

DiBona, C. 2005 "Open source and proprietary software development" in DiBona C., D.
Cooper and M. Stone (eds), Open Sources 2.0: The Continuing Evolution,
O'Reilly Media, Inc., pp. 21-36

Drummond, J. G. 2000 “Open Source Software and Documents: A Literature and
Online Resource Review”. Retrieved July 19, 2007 from
http://www.omar.org/opensource/litreview/

Edwards, K. 2000 “When Beggars Become Choosers”, First Monday, vol. 5, no. 10,
Retrieved April 23, 2007 from
http://firstmonday.org/issues/issue5_10/edwards/index.html

Erenkrantz, J. R. and Taylor, R. N. 2003 “Supporting Distributed and Decentralize
Projects: Drawing Lessons from the Open Source Community", Proceedings of
1st Workshop on Open Source in an Industrial Context. Retrieved May 18, 2007
from http://citeseer.ist.psu.edu/erenkrantz03supporting.html

77

http://citeseer.ist.psu.edu/erenkrantz03supporting.html
http://citeseer.ist.psu.edu/erenkrantz03supporting.html
http://citeseer.ist.psu.edu/erenkrantz03supporting.html
http://firstmonday.org/issues/issue5_10/edwards/index.html
http://firstmonday.org/issues/issue5_10/edwards/index.html
http://firstmonday.org/issues/issue5_10/edwards/index.html
http://www.omar.org/opensource/litreview/
http://www.omar.org/opensource/litreview/
http://www.omar.org/opensource/litreview/
http://svnbook.red-bean.com/en/1.2/index.html
http://svnbook.red-bean.com/en/1.2/index.html
http://svnbook.red-bean.com/en/1.2/index.html
http://aronsson.se/wikipaper.html
http://aronsson.se/wikipaper.html
http://aronsson.se/wikipaper.html

Fogel, K. 2005 "Producing Open Source Software: How to Run a Successful Free
Software Project". Retrieved November 26, 2006 from http://producingoss.com/

Forward, A. and Lethbridge, T. C. 2002 “The Relevance of Software Documentation,
Tools and Technologies: A Survey“, Proceedings of the 2002 ACM symposium
on Document engineering, pp. 26-33.

Gacek, C. and Arief, B. 2004 "The Many Meanings of Open Source", Software, IEEE,
vol. 21, no. 1, pp. 34-40.

Ghosh, R. A, Glott, R., Krieger, B. and Robles, G. 2002 "Free/Libre and Open Source
Software: Survey and Study FLOSS. Part IV: Surve" Retrieved January 18,
2007 from http://www.infonomics.nl/FLOSS/report/

Glass R. L., 2005 "Standing in front of the open source steamroller" in Feller, J, B.
Fitzgerald, S. A. Hissam and K. R. Lakhani (eds), Perspectives on Free and
Open Source Software, The MIT Press, Cambridge/London, pp.81-92

Goetz B. 2002 “Java theory and practice: I have to document THAT?“. Retrieved May
15, 2007 from http://www-128.ibm.com/developerworks/java/library/j-
jtp0821.html

Goldman, R. and Gabriel, R. P. 2005 "Innovation Happens Elsewhere: Open Source as
Business Strategy", Retrieved April 12, 2007 from
http://dreamsongs.com/IHE/IHE.html

Hars A. and Ou, S. 2001 "Working for Free? - Motivations of Participating in Open
Source Projects", Proceedings of the 34th Annual Hawaii International
Conference on System Sciences.

Holz H., Goldmann, S. and Maurer, F. 1998 “Working Group Report on Coordinating
Distributed Software Development Projects”, Proceedings of the 7th Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 69-
73.

INI 2007 "Open Source Initiative: History of the OSI". Retrieved July 17, 2007 from
http://opensource.org/history

Lakhani K. and Wolf, B. 2001 "The Boston Consulting Group/OSTG Hacker Survey",
Retrieved February 10, 2007 from http://www.ostg.com/bcg/

Lerner, J. and Tirole, J. 2000 “The Simple Economics of Open Source”, NBER Working
Paper No. 7600. Retrieved April 23, 2007, from
http://www.nber.org/papers/w7600

Lethbridge, C. L., Singer, J., Forward, A. 2003 “How software engineers use
documentation: the state of the practise”, Software, IEEE, vol. 20, no. 6, pp.
35-39. Retrieved July 2, 2007.

Madsen, F. H and Nürnberg, P. J. 2005 “Calliope: Supporting High-level Documentation
of Open-Source Projects” Proceedings of the 2005 symposia on
Metainformatics

78

http://www.nber.org/papers/w7600
http://www.nber.org/papers/w7600
http://www.nber.org/papers/w7600
http://www.ostg.com/bcg/
http://www.ostg.com/bcg/
http://www.ostg.com/bcg/
http://www.opensource.org/docs/history.php
http://www.opensource.org/docs/history.php
http://www.opensource.org/docs/history.php
http://dreamsongs.com/IHE/IHE.html
http://dreamsongs.com/IHE/IHE.html
http://dreamsongs.com/IHE/IHE.html
http://www-128.ibm.com/developerworks/java/library/j-jtp0821.html
http://www-128.ibm.com/developerworks/java/library/j-jtp0821.html
http://www-128.ibm.com/developerworks/java/library/j-jtp0821.html
http://www-128.ibm.com/developerworks/java/library/j-jtp0821.html
http://www-128.ibm.com/developerworks/java/library/j-jtp0821.html
http://www-128.ibm.com/developerworks/java/library/j-jtp0821.html
http://www.infonomics.nl/FLOSS/report/
http://www.infonomics.nl/FLOSS/report/
http://www.infonomics.nl/FLOSS/report/
http://producingoss.com/
http://producingoss.com/
http://producingoss.com/

Nordal, K. 2006 "The Challenge of Being Open - Building an Open Source Development
Network", Master thesis, University of Oslo.

Mockus, A, Fielding, R. T. and Herbsleb, J. 2000 “A Case Study of Open Source
Software Development: The Apache Server”, 22nd International Conference on
Software Engineering (ICSE '00), pp. 263-272.

O'Brien, R. 2001 “An Overview of the Methodical Approach of Action Research”.
Retrieved April 20, 2007 from http://www.web.ca/~robrien/papers/arfinal.html

Raymond, E. S. 1998 “The Cathedral and the Bazaar”, First Monday, vol. 3, no. 3.
Retrieved May 14, 2007 from
http://www.firstmonday.org/issues/issue3_3/raymond/

Shaw, V. 2005 "Health information system reform in South Africa: developing an
essential data set", Bulletin of the World Health Organization, vol. 83, no. 8, pp.
632-639

Spinuzzi C. 2002 ”Documentation, Participatory Citizenship, and the Web: The Potential
of Open Systems”, Proceedings of the 20th annual international conference on
Computer documentation, pp. 194-199

Stafford, T. and Webb, M. 2006 “What Is a Wiki (and How to Use One for Your
Projects)”. Retrieved July 22, 2007 from
http://www.oreillynet.com/pub/a/network/2006/07/07/what-is-a-wiki.html

Wikipedia 2007a “Software documentation”. Retrieved July 16, 2007, from
http://en.wikipedia.org/wiki/Software_documentation

Wikipedia 2007b “Instant messaging”. Retrieved July 28, 2007, from
http://en.wikipedia.org/wiki/Instant_messaging

Yeates, S. 2006 “Documentation issues in open source”, OSS Watch. Retrieved May
28, 2007 from http://www.oss-watch.ac.uk/resources/documentation.xml

Øverland, L. 2006 “Global software development and local capacity building: A means
for improving sustainability in information systems implementation”, Master
thesis, University of Oslo.

79

http://www.oss-watch.ac.uk/resources/documentation.xml
http://www.oss-watch.ac.uk/resources/documentation.xml
http://www.oss-watch.ac.uk/resources/documentation.xml
http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Software_documentation
http://en.wikipedia.org/wiki/Software_documentation
http://en.wikipedia.org/wiki/Software_documentation
http://www.oreillynet.com/pub/a/network/2006/07/07/what-is-a-wiki.html
http://www.oreillynet.com/pub/a/network/2006/07/07/what-is-a-wiki.html
http://www.oreillynet.com/pub/a/network/2006/07/07/what-is-a-wiki.html
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.web.ca/~robrien/papers/arfinal.html
http://www.web.ca/~robrien/papers/arfinal.html
http://www.web.ca/~robrien/papers/arfinal.html

Appendix A
Agreement between Health Service of Thua Thien-Hue province,
and the HISP project

Background
The Health Information Systems Programme (HISP) is active in a number of countries, and is
commited to facilitate the introduction of computer based information systems for reporting and
analysis at the district level and below, and to enhance the use of public health caredata at all
levels. The HISP project in Hue was initiated in November 2004 and since then the software and
routines for computerization have been piloted in first two districts, and then since March 2006
in five of the totally nine districts.

The HISP project provides a flexible open source software package, the DHIS, to support
reporting and analysis of health information. This software has been co-developed and
customized to the Vietnamese context by the HISP Vietnam teams in HCMC and Hue.

The software being used is a previous version of the DHIS; the MS Access based DHIS 1.4 and
the next step in the project should be to upgrade to the newly released version 2.0. Following a
successful software upgrade process the plan is to extend the project’s scope to include all 15
statistical reports (B1-B15), and to involve all nine districts over the next 1,5 years. To support
this expansion, the HISP Vietnam project would like to strengthen the HISP team in Hue with
more technical staff. This agreement outlines how this upgrade and the expansion process will
take place and how responsibilities will be shared among the two collaborating parties.

Timeline and action plan

September 15 2006:
Finish upgrade to DHIS 2, including database, reports and pivot tables for analysis. This first
deliverable will include five (B1, B9, B10, B11, B12) of the 15 reports of the statistical health
information system.

This system will be implemented in the five pilot districts during September. The data from the
remaining four districts will be reported using the traditional paper forms from district to
province and registered electronically at the province level to ensure full provincial coverage of
the data (B1, B9, B10, B11, and B12).

December 15 2006:
Extend the data scope to include electronic reporting of all 15 (B1-B15) reports from the five
pilot districts.

April 2007:
Extend the geographical scope to include totally seven districts.

July 2007:
Extend the geographical scope to include all nine districts.

80

December 2007:
All districts should by then report all 15 reports (B1-B15) electronically to the province level.

Responsibilities

 TT Hue
● The health service will assign persons in all districts, who will be responsible for data

entry, report production and training locally. These persons will be given sufficient time
for training in and management of the system.

● The health service will provide sufficiently powerful computer systems for the remaining
4 districts, including printers for the production of local reports.

● The health service is responsible for supplying working place for Norwegian members of
HISP Team in Health Service of TT Hue.

HISP

● HISP will provide the DHIS 2.0 software customized to support the T.T. Hue Health
Service and the Statistical Division’s HIS (B1-B15).

● HISP will continue to support running project implementation costs with a monthly
contribution of 1.500.000 VND until the end of 2007.

● HISP will continue to support the salary of our employee in Hue until the end of 2007.
She provides technical support to the project.

● HISP will dedicate one of the HCMC-based developers to work for the project in Hue.
He will be based in HCMC and support software development from there, but visit Hue
when necessary.

● Two Norwegian developers will be based in Hue from August-November 2006 to
support the DHIS 2.0 upgrade process.

● The support for computerization process in the five pilot districts, HISP will provide 1
new computer and 1 printer to Nam Dong district and 1 printer to Huong Thuy district.

Dr. Nguyen Dung Dr. Duong Dinh Cong Ola Hodne Titlestad

81

Appendix B
DHIS 2.0 development/customisation for Hue:

1. Migrate database (orgunits, org hierarchy, data elements)
- Then add datasets in 2.0 GUI
- Then add data element and orgunit groups in 2.0 GUI

Deadline: Wednesday August 9
Responsible Developer: KA
Support: Eivind

2. Migrate data values
Deadline: Wednesday August 9
Responsible Developer: Anders
Support: KA, Thuy

3. Migrate reports (B1, B9, B10, B11, B12) to dhis-web-reporttool
Deadlines:
Report B10 Friday 11 August
All 5 reports September 15
Responsible Developer: Quang, Lars H. KA

4. Set up pivot table for health service and for district-level
Deadline: Friday 11 August
Responsible Developer: Eivind

5. Develop install package for Hue
Deadline: Friday August 11
Developer: Quang
Support: Duc, Thuy

6. Customized data entry module
Deadlines:
First sample report (B10) September 1
Prototype of a generic tool September 29
First release November 30
Developer: Margrethe
Support: Torgeir

Implementation
Phase 1 – testing and prototyping in T.P. Hue district
Time: August 7 – September 15
Responsible: Quang, KA and Eivind

1. Install first release of software Monday August 14
- Minimum 1 report ready (B10)
- Pivot table with data from this year (1st, 2nd quarter imported from 1.4)

82

2. Provide initial on-site training
- Week Aug 14-18
- 3 visits (2 hours sessions)

3. Follow-up training
- Next 4 weeks, Aug 21- Sept 15
- 1-2 visits a week

4. Bug fixing and software improvements
- Based on user feedback (be active in retrieving feedback)

5. Seminar on health management and information use

Phase 2 – implement software in the health service and three more districts
Time: September 15 – December 14

1. Install software in the four new offices
Responsible: KA, Eivind

2. Training seminar for all 5 offices
Time: Beginning of October
- Invite users from all five offices
- 1 day training seminar
Responsible: KA, Eivind
Support: The whole team in Hue

3. On-site training in all 5 offices
- Minimum 1 visit every two weeks to all five offices
- Prioritise quick response to support requests from the users
Responsible: KA, Eivind

4. Bug fixing and software improvements
- Based on user feedback (be active in retrieving feedback)
Responsible: Eivind, Margrethe

 Phase 3 – Scale up to include all 15 reports

December 15, 2006 – March 31, 2007

1. Migrate the remaining reports from 1.4 to 2.0
Deadline: December 15
Responsible Developer: Quang
Support: KA, Lars H.

2. Develop BIRT report templates for district and health service
Deadline: December 15
Responsible Developer: KA
Support: Quang, Lars H.

83

3. Extend pivot table templates to include data from new reports
Deadline: December 15
Responsible Developer: Quang
Support: KA, Lars H.

4. On-site training in the use of the new reports
Time: December 15, 2006 – January 31, 2007
- Minimum 1 visit to each office every week
Responsible: KA

5. Follow-up training at each of the five offices
- Minimum 1 visit every 3 weeks to each office
Responsible: KA

6. Seminar in health management and use of information
Time: February/March 2007
- 1 day seminar for all district managers and health service director/managers
- link this seminar to the HIS course in HCMC
Responsible: Cong

84

Appendix C
The topics covered in the documentation space are44:

● DHIS 2
● User documentation

● User manual : Manual on how to use the DHIS 2 application.
● User FAQ : Common issues users might encounter.

● Administrator documentation
● Installing DHIS 2
● Configuring DHIS 2
● Design a DHIS 2 report with Report tool and iReport
● Creating a DHIS 2 pivot table
● Administrator FAQ : Common issues in installation and

configuration.
● Developer documentation

● Downloading the source code : Instructions on how to retrieve the
source code from our repository.

● Building the source code : Instructions on how to build the source
code.

● Development environment and tools : A description of
recommended tools and frameworks for developing, including
downloading and configuring them.

● Tools : The tools used in the developing of DHIS 2.
● Windows
● Linux
● Mac

● Development standards and conventions : A description of which
standards, principles and guidelines to stick to when developing.

● Developer FAQ
● System documentation

● System history : A short introduction to the evolution of DHIS, the
motivation for the software and the health domain.

● System overview : A short description of what this system is
intended to do, which services it provide, and so on.

● Concepts and techniques : An introduction to concepts such as
layering, MVC, services, DAOs, inversion of control and the like.

● Frameworks : The frameworks used in the DHIS 2 system such as
Spring, Hibernate, Webwork, JUnit and the like.

● The DHIS 2 data model : Description of the DHIS 2 model classes,
such as DataElement, DataValue and the like.

● Java API : JavaDoc of the DHIS 2 Java API.

44 From the Documentation space on the wiki: http://www.hisp.info/confluence/display/DOC/Home

85

http://www.hisp.info/confluence/display/DOC/Home
http://www.hisp.info/confluence/display/DOC/Home
http://www.hisp.info/confluence/display/DOC/Home

● Database API : Description of the database structure which lies
under DHIS 2.

● Modules
● Overview and connections : A textual description of how the

modules are connected, which depend on which and so on.
● Import-Export Module
● Data Provider Module

● JavaDoc : External link to generated Javadoc.
● System FAQ

● Mailing lists : Mailing lists and rules for use of these.
● DHIS 1.4
● DHIS 1.3

86

87

	1Introduction
	1.1The action research project
	1.2Motivation
	1.3Research objectives
	1.4Structure of this thesis

	2Literature review and background
	2.1Open source
	2.1.1Motivation

	2.2Technical infrastructure in open source
	2.2.1Website
	2.2.2Documentation
	2.2.2.1Focusing on the developer
	2.2.2.2Keeping documentation up-to-date
	2.2.2.3Availability of documentation
	2.2.2.4Documentation technologies
	2.2.2.5Documentation tools
	2.2.2.6Wiki
	2.2.2.7Javadoc
	2.2.2.8FAQ

	2.2.3Mailing lists
	2.2.4Public code archive
	2.2.5Issue tracker

	2.3Social infrastructure in open source project
	2.3.1Leadership
	2.3.2Coordination
	2.3.3Decision making
	2.3.4Releasing and distributing
	2.3.5Guidelines
	2.3.6Communication and knowledge sharing

	2.4Former research on DHIS 2

	3Health Information Systems Programme (HISP)
	3.1HISP history
	3.2DHIS history
	3.2.1DHIS 1
	3.2.2DHIS 2

	3.3Development network
	3.4DHIS 2 development
	3.4.1Technical infrastructure in DHIS 2
	3.4.1.1Web pages
	3.4.1.2Visual documentation
	3.4.1.3Mailing lists
	3.4.1.4Public code archive
	3.4.1.5Issue tracker
	3.4.1.6Releases
	3.4.1.7Other tools used in DHIS 2

	3.4.2Social infrastructure in DHIS 2
	3.4.2.1Leadership
	3.4.2.2Decision making
	3.4.2.3Task assignment
	3.4.2.4Developer guidelines
	3.4.2.5Milestone releases

	3.5Is DHIS 2 an open source project?

	4Methods
	4.1Action research
	4.2Action research in the field of IS
	4.3My research approach
	4.3.1The HISP team
	4.3.2Interviews
	4.3.3Development and participation
	4.3.4Meetings

	5Empirical study
	5.1Introduction to the HISP project
	5.2My experiences from Vietnam
	5.2.1Arriving in Vietnam
	5.2.2The start up phase
	5.2.3Development and installation
	5.2.3.1Installing DHIS 2
	5.2.3.2Collaboration in Hue
	5.2.3.3Interruption in development and installation

	5.3The validation module
	5.4Technical infrastructure
	5.4.1Web pages and documentation
	5.4.1.1The DHIS documentation project
	5.4.1.2The HISP wiki
	5.4.1.2.1Shortcomings of Confluence

	5.4.1.3Javadoc
	5.4.1.4FAQ
	5.4.1.5Documentation and recruiting developers
	5.4.1.6Help functionality

	5.4.2Issue tracker

	5.5Communication
	5.5.1IRC channel
	5.5.2Shared knowledge

	6Discussion
	6.1Communication
	6.1.1IRC channel
	6.1.2Shared knowledge

	6.2Web pages and documentation
	6.2.1End user documentation
	6.2.2Language barriers
	6.2.3Keeping the documentation up-to-date
	6.2.4The HISP wiki
	6.2.5Javadoc
	6.2.6FAQ
	6.2.7Documentation and recruiting developers

	7Conclusion
	8List of acronyms
	9References
	Appendix A
	Appendix B
	Appendix C

