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ABSTRACT
CMB mapmaking relies on a data model to solve for the sky map, and this process is vulnerable

to bias if the data model cannot capture the full behavior of the signal. I demonstrate that this bias
is not just limited to small-scale effects in high-contrast regions of the sky, but can manifest as O(1)

power loss on large scales in the map under conditions and assumptions realistic for ground-based CMB
telescopes. This bias is invisible to simulation-based tests that do not explicitly model them, making it
easy to miss. I investigate the common case of sub-pixel errors in more detail and demonstrate that
this special case of model error can be eliminated using bilinear pointing matrices. Finally, I provide
simple methods for testing for the presence of large-scale model error bias in the general case.

1. INTRODUCTION

CMB telescopes observe the sky by scanning their
detectors across it while continuously reading off a series
of samples from the detectors. Typically the signal-to-
noise ratio of each sample is small, but by combining
a large number of samples with knowledge of which
direction the telescope was pointing at any time, it’s
possible to reconstruct an image of the sky. There are
several ways of doing this, with the most common being
maximum-likelihood, filter+bin and destriping. These
all start by modelling the telescope data as (Tegmark
1997)

d = Pm+ n (1)

Input signal Maximum likelihood solution

Figure 1. Preview of the model error bias we will discuss in
the following sections. Despite the standard expectations that
maximum-likelihood mapmaking is optimal and unbiased, the
maximum-likelihood solution (right) for a simple toy example
is strongly power-deficient on large scales compared to the
input signal (left). As we shall see this bias is not unique
to maximum-likelihood methods, and can be triggered by
several subtle types of model error.

where d is the set of samples read off from the detectors
(often called the time-ordered data), m is the set of pixels
of the sky image we want to reconstruct, n is the noise in
each sample (usually with significant correlations), and
P is a pointing matrix that encodes how each sample
responds to the pixels in the image.
Given this data model, it’s possible to either directly

solve for an unbiased map (as in maximum likelihood
mapmaking or destriping), or to measure and correct
for the bias in a biased estimator (as in filter+bin map-
making). However, this fails when the model does not
actually describe the data, and this turns out to be the
norm rather than the exception. Previously this bias
has been thought of as mainly a small-scale effect rele-
vant only in regions of the sky with very high contrast,
leading to artifacts like thin stripes or bowling around
bright sources (Piazzo 2017; Naess 2019), or as a tiny
correction on intermediate scales (Poutanen et al. (2006)
saw a bias of 0.6% peaking at ` = 800 for simulations
of the Planck space telescope). The goal of this paper
is to demonstrate the unintuitive and surprising result
that that these effects can lead to O(1) bias on large
scales everywhere in the map. The full scope of these er-
rors appears to be largely unappreciated, and I fear that
many CMB analyses so far suffer from uncorrected bias
at low multipoles in total intensity due to these effects.
As we shall see, it’s mainly ground-based telescopes that
are vulnerable to this bias, which usually manifests as a
power deficit at large scales, as illustrated in figure 1.

2. SUBPIXEL ERRORS

Subpixel errors may be both the most common and
most important class of model errors in CMB mapmak-
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Figure 2. a: Example path (red) of a detector across a few pixels. The area closest to each pixel center (black dots) is
shown with dotted lines. In the nearest neighbor model, the value associated with each sample is simply that of the closest
pixel, regardless of where inside that pixel it is. b: Example detector signal (red) for the same path. The closest matching
model (green) leaves a jagged residual (blue) that has power on all length scales despite the signal itself being very smooth. For
comparison, if our model were a constant zero, then the residual would just be the signal itself (red), and hence smooth. If
smooth residuals are much cheaper in the likelihood than jagged ones, then a zero model will be preferred to
one that hugs the signal as tightly as possible like the green curve.

ing. For efficiency reasons P is always1 chosen to use
simple nearest-neighbor interpolation, where the value
of a sample is simply given by the value of the pixel
nearest to it. This means that P can be implemented
by simply reading off one pixel value per sample, and its
transpose PT consists of simply summing the value of
the samples that hit each pixel. However, this comes at
the cost of there being a discontinuous jump in values
as one scans from one pixel to the next, as illustrated
in figure 2. Hence, the closest the model can get to a
smooth curve is a staircase-like function that hugs it,
leaving a residual full of discontinuous jumps (the blue
curve in the figure).
Discontinuous residuals are not necessarily problematic.

The trouble arises when this is coupled with a likelihood2

where some modes have much less weight than others.
Ground-based CMB telescopes suffer from atmospheric
emission that acts as a large source of noise on long

1 I am not aware of any published CMB analysis that has done
something else. This includes destripers like MADAM (Keihänen
et al. 2010) and SRoll (Planck Collaboration 2020), filter+bin
map-makers like those used in SPT (Schaffer et al. 2011; Dutcher
et al. 2021) and BICEP (BICEP2 Collaboration 2014) or the
maximum likelihood map-makers used in ACT (Aiola et al. 2020)
and QUIET (Ruud et al. 2015).

2 The equivalent for filter+bin is a filter that impacts some modes
more than others (which is the whole point of a filter), and for
destriping it’s the baseline length and any amplitude priors.
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Figure 3. The noise model/inverse weights/inverse filter
used in the subpixel bias demonstration in figures 4 and 5.
It is a simple Fourier-diagonal 1/f + white noise spectrum
typical for ground-based CMB observations. The frequency
axis is in dimensionless units in this toy example, but for real
telescopes the transition from white noise is typically a few
Hz, corresponding to multipoles of hundreds on the sky. The
power axis is dimensionless here, but for a real-world case
could have units like µK2/Hz.

timescales. This leads to time-ordered data noise power
spectra similar to the one sketched in figure 3, with
a white noise floor at short timescales (high frequency)
transitioning to a steep rise of several orders of magnitude
as one moves to longer timescales (low frequency). In this
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case long-wavelength modes have orders of magnitude
lower weight in the likelihood than short-wavelength
modes. Put another way, they are orders of magnitude
cheaper to sacrifice when the model can’t fully fit the
data.

2.1. 1D toy example

To illustrate the interaction between a nearest neighbor
pointing matrix’s subpixel errors and a likelihood where
large scales have low weight, let us consider a simple 1D
case where 100 samples scan uniformly across 10 pixels:
npix = 10
nsamp = 100
pix = np.arange(nsamp).astype(float)*npix/

nsamp

A standard nearest-neighbor pointing matrix for this
looks like:
P = np.zeros((nsamp ,npix))
for i, p in enumerate(pix):

P[i,int(np.round(pix[i]))%npix] = 1

We assume a typical Fourier-diagonal “1/f” noise model
N(f) = 1 + (f/fknee)

α with fknee = 0.03 and α = −3.5,
and build the inverse noise matrix/filter/baseline-prior
F by projecting the inverse noise spectrum N−1 into
pixel space:3

freq = np.fft.rfftfreq(nsamp)
inv_ps = 1/(1+( np.maximum(freq ,freq [1]/2) /0.03)

** -3.5)
F = np.zeros((nsamp ,nsamp))
I = np.eye(nsamp)
for i in range(nsamp):

F[:,i] = np.fft.irfft(inv_ps*np.fft.rfft(I[i
]), n=nsamp)

The signal itself consists of just a long-wavelength sine
wave:4

signal = np.sin (2*np.pi*pix/npix)

With this in place, we can now define our map estima-
tors.

2.1.1. Binning

The binned map is simply the mean value of the sam-
ples in each pixel, with no weighting:
map_binned = np.linalg.solve((P.T.dot(P)), P.T.

dot(signal))

This is the unweighted least-squares solution for the map.

3 In practice the “1/f” power law does not continue to infinity at
zero frequency, but stabilizes at some high value at low frequency.
We implement this by replacing f = 0 with a small, non-zero
number for the purposes of computing the noise spectrum in the
following.

4 Since all the mapmaking methods we will discuss are linear, signal
and noise can analysed independently. Since the focus in this
example is bias, it’s therefore enough to consider a signal-only
data set, and we thus don’t add any noise.

2.1.2. Maximum-likelihood

The maximum-likelihood solution of equation 1 for the
sky image m is

m̂ = (PTN−1P )−1PTN−1d (2)

where N is the covariance matrix of the noise n. This is
the generalized least-squares solution for the map.5 In
our toy example, N−1 = F , so the maximum-likelihood
map is
map_ml = np.linalg.solve((P.T.dot(F).dot(P)),P.

T.dot(F.dot(signal)))

2.1.3. Filter+bin

As the name suggests, filter+bin consists of filtering
the time-ordered data, and then making a binned map.
We’ll use F as our filter, so the filter+bin map is
map_fb = np.linalg.solve(P.T.dot(P), P.T.dot(F)

.dot(signal))

The filter+bin map is biased by design, so to interpret
or debias it one needs to characterize this bias. There
are two common approaches to doing this: Observation
matrix and simulations.

Observation matrix—The observation matrix approach
recognizes that the whole chain of operations observe,
filter, map together make up a linear system, and can
therefore be represented as a matrix, called the obser-
vation matrix (BICEP2 and Keck Array Collaboration
2016). Building this matrix is heavy, but doable for
some surveys. Under the standard assumption that the
observation step is given by equation 1, the observation
matrix is given by
obsmat = np.linalg.inv(P.T.dot(P)).dot(P.T.dot(

F).dot(P))

and using it, we can define a debiased filter+bin map
map_fb_deobs = np.linalg.solve(obsmat , map_fb)

Simulations—Alternatively, and more commonly, one can
characterize the bias by simulating the observation of a
set of random skies, passing them through the filter+bin
process, and comparing the properties of the input and
output images (e.g. Sayre et al. 2020). The standard way
of doing this is by assuming that equation 1 describes the
observation process, and that the bias can be described

5 The matrix PTN−1P is often poorly conditioned, making it slow
for iterative solution methods to recover the large scales. If
iteration is stopped early, this could result in a lack of power at
large scales. This well-known phenomenon is not the bias I’m
exploring in this paper, and since I solve the equation exactly it
does not appear here.
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by a transfer function: a simple independent scaling of
each fourier mode. Under these assumptions, we can
measure and correct the bias as follows.
nsim = 1000
sim_ips = np.zeros(npix //2+1)
sim_ops = np.zeros(npix //2+1)
for i in range(nsim):

sim_imap = np.random.standard_normal(npix)
sim_omap = np.linalg.solve(P.T.dot(P), P.T.

dot(F).dot(P).dot(sim_imap))
sim_ips += np.abs(np.fft.rfft(sim_imap))**2
sim_ops += np.abs(np.fft.rfft(sim_omap))**2

tf = (sim_ops/sim_ips)**0.5
map_fb_detrans = np.fft.irfft(np.fft.rfft(

map_fb)/tf , n=npix)

2.1.4. Destriping

Destriping splits the noise into a correlated and un-
correlated part, and models the correlated noise as as a
series of slowly changing degrees of freedom to be solved
for jointly with the sky image itself (Sutton et al. 2010;
Tristram et al. 2011). The data is modeled as

d = Pm+Qa+ nw (3)

where nw is the white noise with diagonal covariance ma-
trixNw, andQ describes how each correlated noise degree
of freedom a maps onto the time-ordered data, typically
in the form of seconds (ground) to minutes (space) long
baselines. Given this, the maximum-likelihood solutions
for a and m are

Z = I − P (PTN−1
w P )−1PTN−1

w

a = (QTN−1
w ZQ+ C−1

a )−1QTN−1
w Zd

m = (PTN−1
w P )−1PTN−1

w (d−Qa) (4)

where Ca is one’s prior knowledge of the covariance of
a. Destriping allows a speed/optimality tradeoff in the
choice of baseline length and prior, and approaches the
maximum likelihood map when the baseline length is a
single sample and Ca + Nw = N . We implement this
limit below, but explore other choices in section 2.2. In
our toy example Nw = I, so Ca = F−1 − I.
iCa = np.linalg.inv(np.linalg.inv(F) - I)
Z = I-P.dot(np.linalg.solve(P.T.dot(P), P.T))
a = np.linalg.solve(Z+iCa , Z.dot(signal))
map_ds = np.linalg.solve(P.T.dot(P), P.T.dot(

signal - a))

2.1.5. Results

Figure 4 compares the recovered 1D sky “images” for
the different mapmaking methods for this toy example.
All methods are expected to have a small loss of power at
small scale (called the “pixel window”) due to averaging
the signal within each pixel, but this effect is well-known,
easy to model, and not our focus here. We deconvolve it
using the following function before plotting.
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Figure 4. Demonstration of large loss of power in long-
wavelength mode caused by the poor subpixel treatment in
the standard nearest-neighbor pointing matrix. The vertical
axis is dimensionless in this toy example, but could have
units like µK or Jy/sr for a real-world case. Figure 3 shows
the noise model/inverse weights/inverse filter used in the
various methods. signal: The input signal, a smooth long-
wavelength mode, sampled at 10 samples per output pixel.
binned: Simple binned map (the unweighted average per
pixel). Very suboptimal in the presence of correlated noise,
but unbiased. ML: Maximum-likelihood map. 2/3 of the
signal amplitude is lost despite the naive expectation of bi-
aslessness for this estimator. FB deobs: Filter+bin map
debiased using an observation matrix. Identical to ML. FB
detrans: Filter+bin map debiased by deconvolving a transfer
function measured from simulations. Even more biased than
the others due to ignoring mode coupling. destripe: De-
striper in the maximum-likelihood limit (1-sample baselines
with optimal baseline prior). Identical to ML.

def dewin(x): return np.fft.irfft(np.fft.rfft(x
)/np.sinc(freq),n=len(x)).real

After pixel window deconvolution the binned map (green)
closely matches the input signal (red). The same can not
be said for the other estimators. Maximum likelihood,
filter+bin with observation matrix debiasing and destrip-
ing (which are all equivalent in the limit we consider here)
are strongly biased, with the signal only being recovered
with 1/3 of its real amplitude.
The situation is even worse for for filter+bin with

simulation-based debiasing, as this suffers from an addi-
tional bias due to assuming that the Fourier modes are
independent.6

2.1.6. Explanation

To see why inaccuracies in modelling the signal at
sub-pixel scales can bias the largest scales in the map,

6 This additional bias disappears if the simulations have exactly the
same statistical properties as the real signal we wish to recover.



5

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10

Pixel (x)

signal

binned

ML

FB deobs

FB detrans

destripe

Figure 5. Like figure 4, but with the input signal having
the same nearest-neighbor pixelization as the models. In this
case all models except FB detrans are unbiased.

let us consider the example in figure 2, where a detector
measures a smooth, large-scale signal while moving across
a few pixels. With a nearest-neighbor pointing matrix it
is impossible to model this smooth signal: the model for
each sample is simply that of the closest pixel, regardless
of where inside that pixel it is. The model therefore
looks like a staircase-like function in time domain.
Given that we can’t exactly match the signal, what

is the best approximation? Let us consider two very
different alterantives. Model A: The value in each pixel
is the average of the samples that hits it, making the
model curve trace the smooth signal as closely as it
can. This is the green curve in figure 2, and has the
sawtooth-like residual shown with the blue curve. It is
probably the model most people would choose if asked
to draw one manually. Model B: The value in each
pixel is zero, and the residual is simply the signal itself.
Model B seems like a terrible fit to the data, but under a
reasonable noise model for a ground-based telescope, like
the one shown in figure 3, it will actually have a higher
likelihood (lower χ2 = rTN−1r where r is the residual)
than model A. The reason is that while model B has a
much larger residual than model A, model B’s residual is
smooth and hence has most of its power at low frequency
in time domain where N−1 is very small. Meanwhile,
model A’s residual extends to all frequencies due to its
jagged nature, including the costly high frequencies. The
actual maximum-likelihood solution will be intermediate
between these two cases, sacrificing some but not all of
the large-scale power in the model to make the residual
smoother.
To demonstrate that the bias really is caused by sub-

pixel errors, I repeated the simulation with a signal
that follows the same nearest-neighbor behavior as the

data model, thus eliminating subpixel errors. The result
is shown in figure 5. The bias has disappeared in all
methods except filter+bin with transfer-function based
debiasing, which has an additional source of bias due to
its assumption of a Fourier-diagonal filter response.

2.2. 2D toy example

The 1D toy example is useful for understanding the
origin of the bias, but its unrealistic observing pattern
makes it insufficient for exploring optimality/bias trade-
offs in the different methods. I therefore made a larger toy
example where a single detector scans at constant speed
across a square patch, sampling Nscan = 400 equi-spaced
rows with Nscan equi-spaced samples per row, followed
by a column-wise scan the same patch, leading to a total
cross-linked data set Nsamp = 2N2

scan = 3200 samples
long. This equi-spaced grid of samples was chosen to
make it easy to simulate a signal directly onto the sam-
ples without needing the complication of pixel-to-sample
projection. These samples will then be mapped onto a
square grid of pixels with a side length of Nside = 100

using the different mapmaking methods.
For the signal I draw realizations from a CMB-like 1/l2

power spectrum with a Gaussian beam with standard
deviation σ = 3 pixels. Here l is the pixel-space wave-
number, which I evaluate in the higher resolution sample
space as
ly = np.fft.fftfreq(N_scan)[:,None] * N_side/

N_scan
lx = np.fft.fftfreq(N_scan)[None ,:] * N_side/

N_scan
l = (ly**2+lx**2) **0.5

With this we can define the signal power spectrum
Cl = l−2 and beam Bl = exp(−l2σ2/2), and draw signal
realizations as
signal_map = np.fft.ifft2(np.fft.fft2(np.random

.standard_normal ((N_scan ,N_scan)))*Cl **0.5*
Bl).real

signal_tod = np.concatenate ([ signal_map.reshape
(-1), signal_map.T.reshape (-1)])

The last step here takes into account that the simulated
scanning pattern covers the field twice, first horizontally
and then vertically.
For the noise I use a simple 1/f spectum N(f) =

1 + (f/fknee)
α, with f = np.fft.rfftfreq(N_samp) and the

knee frequency fknee corresponding to 1/30th of the
side length, fknee = 0.5 · 30/Nscan = 0.0375 (6.7 pixel
wavelength), and with an atmosphere-like exponent α =

−3.5.
The pixel coordinates of each sample are

pix_pat1 = (np.mgrid [:N_scan ,: N_scan ]* N_side/
N_scan).reshape (2,-1)

pix_pat2 = pix_pat1 [::-1]
pix = np.concatenate ([pix_pat1 ,pix_pat2 ],1)
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which I use to build the nearest-neighbor pointing matrix
iy , ix = np.floor(pix).astype(int)%N_side
P_nn = scipy.sparse.csr_array ((np.full(N_samp

,1) ,(np.arange(N_samp),iy*N_side+ix)),shape
=(N_samp ,N_pix))

2.2.1. Cases

We will investigate 5 classes of nearest-neighbor maps:

1. bin: Simple binned map, which I expect to be
unbiased but very noisy

2. ML: Maximum-likelihood map. Ideally unbiased
and optimal, but will deviate from this due to
model errors.

3. ML wX: Maximum-likelihood maps with a
“whitened” noise model, which overestimates the
white noise power by a factor 10X , X ∈ {1, 2, 3}, re-
ducing the overall correlatedness of the noise model.
I expect the bias to be proportional to the overall
dynamic range of the noise model, so making the
nosie model whiter should reduce bias. The cost
will be suboptimal noise weighting, leading to a
noisier map, but it might be worth it.

4. DS X: Destriping map with a baseline of X ∈
{4, 16, 64} samples and no amplitude prior. This is
probably the most common type of destriping. The
baseline lengths can be compared with the noise
knee wavelength of 6.7 pixels ≈ 27 samples. This
is the wavelength where the correlated and white
noise powers are equal.

5. DS+ X: Like DS X, but uses the correlated part
of the maximum-likelihood noise model as an am-
plitude prior (Ca in equation 4).

6. FB: Filter+bin mapmaking where a transfer func-
tion is measured using simulations based on the
data model, and this is deconvolved when mea-
suring the power spectrum. This is the standard
approach for filter+bin mapmaking. In this case
only the power spectrum is debiased, not the map,
so I don’t show an example map for this case.

Since all the mapmaking methods are linear, the signal
and noise can be mapped separately. I make 400 signal-
only and noise-only data realizations, and map them
using each method, computing the mean signal and noise
power spectra.

2.2.2. Results

Example maps are shown in figure 6, while the bias
and noise are quantified in figures 7 and 8 respectively.

As expected the binned map is unbiased but extremely
noisy. The maximum-likelihood map is low-noise, but
measurably biased on all scales, with a power deficit of a
few percent at the smallest scales which grows to almost
100% on the largest scales. The deficit appears to fall
proportionally with the whitening, with ML w1 and w2
being respectively 10x and 100x as close to unbiased.
Sadly this comes at the cost of 40% and 350% higher
noise power respectively. These numbers may differ for
real-world cases, but this still seems like a very expensive
bias mitigation method. All but the longest-baseline
destriped maps are also strongly biased, with the shortest
baseline being considerably worse than ML for almost all
scales. Much like we saw with the ML variants, the less
biased destriping versions come at a high cost in noise.
Finally, the filter+bin map is biased even after simulation-
based debiasing due to the simulations not capturing the
subpixel behavior of the real data. Both the bias and
noise levels are the same as maximum-likelihood in this
example.
To test whether the observed biases are truly caused

by subpixel errors, I repeat the simulations with only
one sample per pixel (Nscan = Nside). As expected this
results in an unbiased power spectrum for all methods.7

2.2.3. Effective mitigation of subpixel errors

There will be no subpixel errors in the limit of infinitely
small pixels, so it’s tempting to simply reduce the pixel
size to solve the problem. This does work, but since
subpixel errors are proportional to |∇s · ~∆|, where s is
the true, smooth signal on the sky and ~∆ = [∆x,∆y] is
the pixel shape, the improvement is only first order in
the pixel side length. A much more feasible solution is
to instead improve the subpixel handling in the pointing
matrix. Going from nearest neighbor to bilinear interpo-
lation is enough to practically eliminate subpixel errors
without reducing pixel size. We can implement this in
the toy example by defining

pix_left = np.floor(pix).astype(int)
ry, rx = pix -pix_left
iy1 ,ix1 = pix_left % N_side
iy2 ,ix2 = (pix_left +1)% N_side
weights = np.concatenate ([

(1-ry)*(1-rx), (1-ry)*rx,
ry *(1-rx), ry *rx])

samps = np.tile(np.arange(N_samp) ,4)
inds = np.concatenate ([

iy1*N_side+ix1 , iy1*N_side+ix2 ,
iy2*N_side+ix1 , iy2*N_side+ix2])

7 Even filter+bin, which ignores mode coupling, ends up having an
unbiased power spectrum because the simulations used to build
the transfer function followed the same distribution as the real
signal.
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Input bin

ML DS 4

ML w1 DS+ 4

ML w2 DS 64

ML w3 DS+ 64

ML lin DS+ 4 lin

Figure 6. Example signal and noise maps for the different mapmaking methods. The top left map is the input signal, which is
directly evaluated at 4x higher resolution than what is used for reconstructing the output maps. All output maps were built
built from the same data and assume a nearest neighbor pointing matrix, except for the last row where a bilinear pointing
matrix was used. The color range is the same for all panels. The binned map (top right) is bias-free but has uselessly high noise.
Maximum likelihood (ML) and destriping with short baselengths (with (DS+) and without (DS) baseline amplitude prior, which
only matters for the shortest baseline) are all low-noise but biased on large scales. This bias goes away as the noise model is
artificially whitened (ML wX) or the baseline length is increased (for destriping), but this comes at a cost of increased noise on
all scales. Bilinear mapmaking (last row) instead avoids the bias by eliminating most of the model error. It can be difficult to
judge how significant the bias and noise levels are from these images. See figures 7 and 8 for easier to interpret comparisons of
the signal and noise power spectra respectively.
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Figure 7. Comparison of the subpixel bias of different
mapmaking methods described in section 2.2.1 and discussed
in section 2.2.2. Standard maximum-likelihood (thick blue)
is strongly biased, as are all but the (very noisy) longest
destriping baseline. This bias disappears (ML) or is greatly
reduced (DS) when switching to bilinear interpolation in the
pointing matrix. See figure 8 for the corresponding noise
spectra. The wavenumber l is dimensionless and with a
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aliasing, which is expected and not relevant for the biases we
consider here.
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binned case was divided by 103 to bring it partially inside
the plot bounds. The wavenumber l is dimensionless and
with a Nyquist frequency of 0.5. It’s clear that simple bias
mitigation methods like artificially whitening the noise model
or increasing the baseline length are too costly to be practical.

P_lin = scipy.sparse.csr_array ((weights ,(samps ,
inds)),shape =(N_samp ,N_pix))
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Figure 9. Comparison of the 1D pixel window for nearest
neighbor mapmaking (red, sinc(l)) and linear mapmaking
(blue). The 2D pixel window is the outer product of the 1D
one along each axis. The pixel windows model the response
of the Fourier coefficients to binned (unweighted) mapmaking.
Square it to get the effect on the power spectrum.

Bilinear mapmaking results in a different pixel window
than the standard pixwin_nn = sinc(ly)[:,None]*sinc(lx)[

None,:] of nearest neighbor mapmaking. I measure this
empirically using simulations of simple binned mapmak-
ing, and find it to have the separable form pixwin_lin =

linwin1d(ly)[:,None]*linwin1d(lx)[None,:], with linwin1d

being plotted in figure 9.
Since each sample in bilinear mapmaking gets contri-

butions from the four closest pixels, the pointing matrix
is about four times slower than the standard nearest
neighbor version. However, as shown in figures 7 and 8
this cost is worh it, with bilinear maximum-likelihood
mapmaking being bias-free and even lower noise than
standard ML. The bias is also greatly reduced for de-
striping, but not eliminated.

3. DON’T THINK YOU’RE SAFE JUST BECAUSE
YOU AVOID SUBPIXEL ERRORS

By no means all model errors have the strong impact
on large scales that subpixel errors do. For example,
gain errors typically have a scale-independent response
while pointing errors broaden the beam, damping small
scales but not large ones. It is, in fact, quite difficult to
come up with other mechanisms by which model errors
can cause large-scale power bias. One example I found
requires a multi-detector system with large gain error
error differences between the detectors, combined with
a noise model where the noise is dominated by a long-
wavelength common mode (strong correlation between
detectors at long wavelengths). This is implemented in
the program common_mode_test.py (see section 5) with
the output shown in figure 10. In this example the large
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Figure 10. Demonstration of large-scale bias in a multi-
detector system due to an interaction between strong large-
scale detector correlations in the noise model and large relative
gain errors between the detectors. signal long: An input
long-wavelength signal, with the same pixelization as the
output to avoid subpixel bias. ML long: Corresponding
maximum-likelihood map, which exhibits both an amplitude
and phase error. signal short and ML short: The same,
but for a short-wavelength mode. Here the bias is negligible,
despite the model’s gain errors being scale-independent.

scales are biased high and also subject to a phase shift,
while the small scales have negligible bias.
While the commmon-mode/bias-interplay works as a

demonstration, it is a much less robust error mechanism
than subpixel errors, and requires quite extreme param-
eters to produce appreciable bias. In my tests it also
tends to disappear as more data is added and crosslinking
increases, and I have not been able to provoke large-scale
bias using this method for full-scale realistic datasets
(unlike subpixel errors!).

It would be convenient if the difficulty in finding model
error mechanisms that bias large scales meant that sub-
pixel errors are the only ones one needs to worry about,
but sadly that does not seem to be the case. In my prac-
tical experience with ground-based CMB mapmaking
there have been cases of large-scale power loss where
subpixel errors were responsible for less than half of the
total bias. In these cases the difficulty in finding these
mechanisms becomes a curse rather than a blessing, since
it makes it very difficult to track down the source of the
bias.
What makes model error bias especially insidious is

that it is completely invisible to any simulation that does
not explicitly include that particular type of model error.
For example, a simulation where the CMB is read off
from a simulated map using the same pointing matrix
as is used in the mapmaking itself would be blind to
subpixel errors. Given the many possible ways the real
data might deviate from one’s model of it, it is hard to be

sure that one has included all the relevant types of model
error in the simulations. It is therefore very easy to trick
oneself into believing that one has an unbiased analysis
pipeline while there are in fact O(1) biases remaining.

4. USEFUL TESTS

The unintuitive large-scale effects of model errors rely
on the interaction between model errors and non-local
weighting/filtering. A noise model (or filter) with a large
dynamic range, such as one capturing the huge ratio
between the long-wavelength and short-wavelength noise
power for ground-based CMB telescopes, is therefore
much more vulnerable to large-scale power loss than one
appropriate for a space-based telescopes which have al-
most flat noise power spectra. This suggests the following
tests for large-scale model error bias:

1. Compare power spectra with those from a space-
based telescope. This is reliable but comes at the
cost of being able to make an independent mea-
surement.

2. Split the data into subsets with different ratios
of correlated noise to white noise and check their
consistency. This could for example be a split by
the level of precipitable water-vapour (PWV) in the
atmosphere. High-PWV-data would be expected
to have a higher dynamic range and therefore be
more vulnerable.

3. Map the same data both using the standard noise
model/filter and a less optimal one an artificially
reduced lower dynamic range, e.g. one that un-
derestimates the amount of correlated noise. The
latter should result in less a biased but noisier map,
as we saw in figures 7 and 8. If the maps are consis-
tent, then large-scale model error bias is probably
not an issue.

5. SOURCE CODE

The source code and data files behind these ex-
amples is available at https://github.com/amaurea/
model_error2. The 1D and 2D subpixel simula-
tions are available in subpix/model_error_toy.py
and subpix/model_error_toy.py respectively, while
the common-mode/gain-error interplay example is in
common_mode/common_mode_test.py.

6. CONCLUSION

1. All CMB current mapmaking methods are
vulnerable to model error bias, including
maximum-likelihood mapmaking, destriping and
filter+bin mapmaking.

https://github.com/amaurea/model_error2
https://github.com/amaurea/model_error2
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2. The most common model error is subpixel
errors due to the assumption that the signal is con-
stant inside each pixel (a nearest-neighbor pointing
matrix), but other types of model error can
also be important.

3. Model error bias can manifest in unintuitive ways,
with a common symptom being a large (O(1)) loss
of long-wavelength power in the maps.

4. The size of the bias is proportional to the dynamic
range of the filter/noise model. Hence it is impor-
tant for ground-based measurements of the
unpolarized CMB due to the presence of large-
scale atmospheric noise there, but is much less
important for polarization measurements or
space-based telescopes.

5. Simulations are blind to these biases unless
specifically designed to target them. There

is a large risk of ending up thinking one has an
unbiased pipeline despite there being large bias in
the actual CMB maps.

6. An effective way of testing for this bias is to also
map the data using a (much) lower dynamic
range noise model/filter8 and checking if this
leads to consistent power spectra.
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